WorldWideScience

Sample records for antimalarial drug quality

  1. Use of refractometry and colorimetry as field methods to rapidly assess antimalarial drug quality.

    Science.gov (United States)

    Green, Michael D; Nettey, Henry; Villalva Rojas, Ofelia; Pamanivong, Chansapha; Khounsaknalath, Lamphet; Grande Ortiz, Miguel; Newton, Paul N; Fernández, Facundo M; Vongsack, Latsamy; Manolin, Ot

    2007-01-04

    The proliferation of counterfeit and poor-quality drugs is a major public health problem; especially in developing countries lacking adequate resources to effectively monitor their prevalence. Simple and affordable field methods provide a practical means of rapidly monitoring drug quality in circumstances where more advanced techniques are not available. Therefore, we have evaluated refractometry, colorimetry and a technique combining both processes as simple and accurate field assays to rapidly test the quality of the commonly available antimalarial drugs; artesunate, chloroquine, quinine, and sulfadoxine. Method bias, sensitivity, specificity and accuracy relative to high-performance liquid chromatographic (HPLC) analysis of drugs collected in the Lao PDR were assessed for each technique. The HPLC method for each drug was evaluated in terms of assay variability and accuracy. The accuracy of the combined method ranged from 0.96 to 1.00 for artesunate tablets, chloroquine injectables, quinine capsules, and sulfadoxine tablets while the accuracy was 0.78 for enterically coated chloroquine tablets. These techniques provide a generally accurate, yet simple and affordable means to assess drug quality in resource-poor settings.

  2. Anti-malarial drug quality in Lagos and Accra - a comparison of various quality assessments

    Directory of Open Access Journals (Sweden)

    Bate Roger

    2010-06-01

    Full Text Available Abstract Background Two major cities in West Africa, Accra, the capital of Ghana, and Lagos, the largest city of Nigeria, have significant problems with substandard pharmaceuticals. Both have actively combated the problem in recent years, particularly by screening products on the market using the Global Pharma Health Fund e.V. Minilab® protocol. Random sampling of medicines from the two cities at least twice over the past 30 months allows a tentative assessment of whether improvements in drug quality have occurred. Since intelligence provided by investigators indicates that some counterfeit producers may be adapting products to pass Minilab tests, the results are compared with those from a Raman spectrometer and discrepancies are discussed. Methods Between mid-2007 and early-2010, samples of anti-malarial drugs were bought covertly from pharmacies in Lagos on three different occasions (October 2007, December 2008, February 2010, and from pharmacies in Accra on two different occasions (October 2007, February 2010. All samples were tested using the Minilab® protocol, which includes disintegration and active ingredient assays as well as visual inspection, and most samples were also tested by Raman spectrometry. Results In Lagos, the failure rate in the 2010 sampling fell to 29% of the 2007 finding using the Minilab® protocol, 53% using Raman spectrometry, and 46% using visual inspection. In Accra, the failure rate in the 2010 sampling fell to 54% of the 2007 finding using the Minilab® protocol, 72% using Raman spectrometry, and 90% using visual inspection. Conclusions The evidence presented shows that drug quality is probably improving in both cities, especially Lagos, since major reductions of failure rates over time occur with all means of assessment. Many more samples failed when examined by Raman spectrometry than by Minilab® protocol. The discrepancy is most likely caused by the two techniques measuring different aspects of the medication

  3. The quality of antimalarials available in Yemen

    Directory of Open Access Journals (Sweden)

    Atta Hoda

    2005-06-01

    Full Text Available Abstract Background Malaria has always been a major public health problem in Yemen. Several studies in developing countries have demonstrated ineffective and poor quality drugs including antimalarials. Therefore, quality assessment of antimalarial drugs is of crucial importance. This study aimed to assess the quality of antimalarials (chloroquine and sulfadoxine/pyrimethamine available in Yemen and to determine whether the quality of these products was related to the level of the distribution chain at which the samples were collected or related to the manufacturers. Methods Four samples from each antimalarial product were collected from each of the various levels of the distribution chain. One sample was kept with the research team. Two were tested at Sana'a and Aden Drug Quality Control Laboratories. The fourth was sent to the Centre for Quality Assurance of Medicines in Potchefstroom, South Africa, for analysis. Quality indicators measured were the content of the active ingredient and dissolution rate (for tablets only in comparison to standard specifications for these products in the relevant pharmacopoeia. Results The results identified several problems of sub-standard products within the drug distribution chain. They included high and low failures in ingredient content for chloroquine tablets and chloroquine syrup. There was some dissolution failure for chloroquine tablets, and high sulfadoxine/pyrimethamine tablets dissolution failures. Failures with the dissolution of the pyrimethamine were found at most of the collection points. No clear relationship neither between the quality products and the level of the distribution chain, nor between locally manufactured and imported products was observed. Conclusion There are sub-standard antimalarial products circulating within the drug distribution chains in the country, which will have serious implications on the reduced therapeutic effectiveness and on the development of drug resistance. This

  4. Quality of anti-malarial drugs provided by public and private healthcare providers in south-east Nigeria

    Directory of Open Access Journals (Sweden)

    Uzochukwu Benjamin

    2009-02-01

    Full Text Available Abstract Background There is little existing knowledge about actual quality of drugs provided by different providers in Nigeria and in many sub-Saharan African countries. Such information is important for improving malaria treatment that will help in the development and implementation of actions designed to improve the quality of treatment. The objective of the study was to determine the quality of drugs used for the treatment of malaria in a broad spectrum of public and private healthcare providers. Methods The study was undertaken in six towns (three urban and three rural in Anambra state, south-east Nigeria. Anti-malarials (225 samples, which included artesunate, dihydroartemisinin, sulphadoxine-pyrimethamine (SP, quinine, and chloroquine, were either purchased or collected from randomly selected providers. The quality of these drugs was assessed by laboratory analysis of the dissolution profile using published pharmacopoeial monograms and measuring the amount of active ingredient using high performance liquid chromatography (HPLC. Findings It was found that 60 (37% of the anti-malarials tested did not meet the United States Pharmacopoeia (USP specifications for the amount of active ingredients, with the suspect drugs either lacking the active ingredients or containing suboptimal quantities of the active ingredients. Quinine (46% and SP formulations (39% were among drugs that did not satisfy the tolerance limits published in USP monograms. A total of 78% of the suspect drugs were from private facilities, mostly low-level providers, such as patent medicine dealers (vendors. Conclusion This study found that there was a high prevalence of poor quality drugs. The findings provide areas for public intervention to improve the quality of malaria treatment services. There should be enforced checks and regulation of drug supply management as well as stiffer penalties for people stocking substandard and counterfeit drugs.

  5. World Antimalarial Resistance Network I: Clinical efficacy of antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Olliaro Piero

    2007-09-01

    Full Text Available Abstract The proliferation of antimalarial drug trials in the last ten years provides the opportunity to launch a concerted global surveillance effort to monitor antimalarial drug efficacy. The diversity of clinical study designs and analytical methods undermines the current ability to achieve this. The proposed World Antimalarial Resistance Network (WARN aims to establish a comprehensive clinical database from which standardised estimates of antimalarial efficacy can be derived and monitored over time from diverse geographical and endemic regions. The emphasis of this initiative is on five key variables which define the therapeutic response. Ensuring that these data are collected at the individual patient level in a consistent format will facilitate better data management and analytical practices, and ensure that clinical data can be readily collated and made amenable for pooled analyses. Such an approach, if widely adopted will permit accurate and timely recognition of trends in drug efficacy. This will guide not only appropriate interventions to deal with established multidrug resistant strains of malaria, but also facilitate prompt action when new strains of drug resistant plasmodia first emerge. A comprehensive global database incorporating the key determinants of the clinical response with in vitro, molecular and pharmacokinetic parameters will bring together relevant data on host, drug and parasite factors that are fundamental contributors to treatment efficacy. This resource will help guide rational drug policies that optimize antimalarial drug use, in the hope that the emergence and spread of resistance to new drugs can be, if not prevented, at least delayed.

  6. Quality of antimalarial drugs and antibiotics in Papua New Guinea: a survey of the health facility supply chain.

    Directory of Open Access Journals (Sweden)

    Manuel W Hetzel

    Full Text Available BACKGROUND: Poor-quality life-saving medicines are a major public health threat, particularly in settings with a weak regulatory environment. Insufficient amounts of active pharmaceutical ingredients (API endanger patient safety and may contribute to the development of drug resistance. In the case of malaria, concerns relate to implications for the efficacy of artemisinin-based combination therapies (ACT. In Papua New Guinea (PNG, Plasmodium falciparum and P. vivax are both endemic and health facilities are the main source of treatment. ACT has been introduced as first-line treatment but other drugs, such as primaquine for the treatment of P. vivax hypnozoites, are widely available. This study investigated the quality of antimalarial drugs and selected antibiotics at all levels of the health facility supply chain in PNG. METHODS AND FINDINGS: Medicines were obtained from randomly sampled health facilities and selected warehouses and hospitals across PNG and analysed for API content using validated high performance liquid chromatography (HPLC. Of 360 tablet/capsule samples from 60 providers, 9.7% (95% CI 6.9, 13.3 contained less, and 0.6% more, API than pharmacopoeial reference ranges, including 29/37 (78.4% primaquine, 3/70 (4.3% amodiaquine, and one sample each of quinine, artemether, sulphadoxine-pyrimethamine and amoxicillin. According to the package label, 86.5% of poor-quality samples originated from India. Poor-quality medicines were found in 48.3% of providers at all levels of the supply chain. Drug quality was unrelated to storage conditions. CONCLUSIONS: This study documents the presence of poor-quality medicines, particularly primaquine, throughout PNG. Primaquine is the only available transmission-blocking antimalarial, likely to become important to prevent the spread of artemisinin-resistant P. falciparum and eliminating P. vivax hypnozoites. The availability of poor-quality medicines reflects the lack of adequate quality control and

  7. Anti-malarial drug quality in Lagos and Accra - a comparison of various quality assessments

    OpenAIRE

    2010-01-01

    Abstract Background Two major cities in West Africa, Accra, the capital of Ghana, and Lagos, the largest city of Nigeria, have significant problems with substandard pharmaceuticals. Both have actively combated the problem in recent years, particularly by screening products on the market using the Global Pharma Health Fund e.V. Minilab® protocol. Random sampling of medicines from the two cities at least twice over the past 30 months allows a tentative assessment of whether improvements in drug...

  8. World Antimalarial Resistance Network (WARN II: In vitro antimalarial drug susceptibility

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2007-09-01

    Full Text Available Abstract Intrinsic resistance of Plasmodium falciparum is clearly a major determinant of the clinical failure of antimalarial drugs. However, complex interactions between the host, the parasite and the drug obscure the ability to define parasite drug resistance in vivo. The in vitro antimalarial drug susceptibility assay determines ex-vivo growth of parasite in the presence of serial drug concentrations and, thus, eliminates host effects, such as drug metabolism and immunity. Although the sensitivity of the parasite to various antimalarials provided by such a test provides an important indicator of intrinsic parasite susceptibility, there are fundamental methodological issues that undermine comparison of in vitro susceptibility both between laboratories and within a single laboratory over time. A network of laboratories is proposed that will agree on the basic parameters of the in vitro test and associated measures of quality control. The aim of the network would be to establish baseline values of sensitivity to commonly used antimalarial agents from key regions of the world, and create a global database, linked to clinical, molecular and pharmacology databases, to support active surveillance to monitor temporal trends in parasite susceptibility. Such a network would facilitate the rapid detection of strains with novel antimalarial resistance profiles and investigate suitable alternative treatments with retained efficacy.

  9. Neuropsychiatric effects of antimalarial drugs

    NARCIS (Netherlands)

    M.M. van Riemsdijk

    2001-01-01

    textabstractMalaria is a serious, potentially life threatening disease, and generally endemic in the (sub) tropics. Prevention may be carried out by interrupting transmission, by vector control and by giving travellers prophylactic drugs. The use of prophylactic drugs has generally been effective fo

  10. Expanding the Antimalarial Drug Arsenal—Now, But How?

    Directory of Open Access Journals (Sweden)

    Rajeev K. Mehlotra

    2011-04-01

    Full Text Available The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii repurposing drugs that are currently used to treat other infections or diseases; (iii chemically modifying existing antimalarial compounds; (iv exploring natural sources; (v large-scale screening of diverse chemical libraries; and (vi through parasite genome-based (“targeted” discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum, and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs, and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into “short term” (4. Feasible options for now and “long term” (5. Next generation of

  11. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  12. A database of antimalarial drug resistance

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2006-06-01

    Full Text Available Abstract A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria.

  13. Substandard anti-malarial drugs in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sie Ali

    2008-05-01

    Full Text Available Abstract Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers and illicit (market and street vendors, shops sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50% chloroquine, 10/77 (13% pyrimethamine-sulphadoxine, 9/77 (12% quinine, 6/77 (8% amodiaquine, 9/77 (12% artesunate, and 4/77 (5% artemether-lumefantrine. 32/77 (42% drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6% and 27/30 (90.0% samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the

  14. Hemozoin Formation as a Target for Antimalarial Drug Design

    Science.gov (United States)

    2005-02-01

    AD Award Number: DAMD17-03-1-0030 TITLE: Hemozoin Formation as a Target for Antimalarial Drug Design PRINCIPAL INVESTIGATOR: Michael K. Riscoe, Ph.D...Formation as a Target for Antimalarial Drug Design DAMD17-03-1-0030 6. A UTHOR(S) Michael K. Riscoe, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S) AND ADDRESS...Report: by Principal Investigator - Michael K. Riscoe, Ph.D. DAMD1 7-03-1-0030: "Hemozoin Formation as a Target for Antimalarial Drug Design " INTRODUCTION

  15. How do antimalarial drugs reach their intracellular targets?

    Directory of Open Access Journals (Sweden)

    Katherine eBasore

    2015-05-01

    Full Text Available Drugs represent the primary treatment available for human malaria, as caused by Plasmodium spp. Currently approved drugs and antimalarial drug leads generally work against parasite enzymes or activities within infected erythrocytes. To reach their specific targets, these chemicals must cross at least three membranes beginning with the host cell membrane. Uptake at each membrane may involve partitioning and diffusion through the lipid bilayer or facilitated transport through channels or carriers. Here, we review the features of available antimalarials and examine whether transporters may be required for their uptake. Our computational analysis suggests that most antimalarials have high intrinsic membrane permeability, obviating the need for uptake via transporters; a subset of compounds appear to require facilitated uptake. We also review parasite and host transporters that may contribute to drug uptake. Broad permeability channels at the erythrocyte and parasitophorous vacuolar membranes of infected cells relax permeability constraints on antimalarial drug design; however, this uptake mechanism is prone to acquired resistance as the parasite may alter channel activity to reduce drug uptake. A better understanding of how antimalarial drugs reach their intracellular targets is critical to prioritizing drug leads for antimalarial development and may reveal new targets for therapeutic intervention.

  16. Drug Discovery and Development of Antimalarial Agents: Recent Advances.

    Science.gov (United States)

    Thota, Sreekanth; Yerra, Rajeshwar

    2016-01-01

    Malaria, a deadly infectious parasitic disease, is a major issue of public health in the world today and already produces serious economic constraints in the endemic countries. Most of the malarial infections and deaths are due to Plasmodium falciparum and Plasmodium vivax species. The recent emergence of resistance necessitates the search for new antimalarial drugs, which overcome the resistance and act through new mechanisms. Although much effort has been directed towards the discovery of novel antimalarial drugs. 4-anilino quinolone triazines as potent antimalarial agents, their in silico modelling and bioevaluation as Plasmodium falciparum transketolase and β-hematin inhibitors has been reported. This review is primarily focused on the drug discovery of the recent advances in the development of antimalarial agents and their mechanism of action.

  17. Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs.

    Science.gov (United States)

    An, Jie; Minie, Mark; Sasaki, Tomikazu; Woodward, Joshua J; Elkon, Keith B

    2017-01-14

    The best known of the naturally occurring antimalarial compounds are quinine, extracted from cinchona bark, and artemisinin (qinghao), extracted from Artemisia annua in China. These and other derivatives are now chemically synthesized and remain the mainstay of therapy to treat malaria. The beneficial effects of several of the antimalarial drugs (AMDs) on clinical features of autoimmune disorders were discovered by chance during World War II. In this review, we discuss the chemistry of AMDs and their mechanisms of action, emphasizing how they may impact multiple pathways of innate immunity. These pathways include Toll-like receptors and the recently described cGAS-STING pathway. Finally, we discuss the current and future impact of AMDs on systemic lupus erythematosus, rheumatoid arthritis, and devastating monogenic disorders (interferonopathies) characterized by expression of type I interferon in the brain.

  18. New approaches in antimalarial drug discovery and development: a review

    Directory of Open Access Journals (Sweden)

    Anna Caroline C Aguiar

    2012-11-01

    Full Text Available Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.

  19. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  20. Interactions of hemin, antimalarial drugs and hemin-antimalarial complexes with phospholipid monolayers

    NARCIS (Netherlands)

    Ginsburg, H.; Demel, R.A.

    1984-01-01

    Hemin, antimalarial drugs and complexes formed between them, have demonstrable effects on biological membranes. Using the phospholipid monolayer model, we show that hemin intercalates into the membrane and increases its surface pressure, depending on the lipid composition and the initial surface pre

  1. Brands, costs and registration status of antimalarial drugs in the Kenyan retail sector

    Directory of Open Access Journals (Sweden)

    Snow Robert W

    2005-07-01

    Full Text Available Abstract Background Although an important source of treatment for fevers, little is known about the structure of the retail sector in Africa with regard to antimalarial drugs. This study aimed to assess the range, costs, sources and registration of antimalarial drugs in the Kenyan retail sector. Methods In 2002, antimalarial drug registration and trade prices were established by triangulating national registration lists, government gazettes and trade price indices. Data on registration status and trade prices were compared with similar data generated through a retail audit undertaken among 880 randomly sampled retailers in four districts of Kenya. Results Two hundred and eighteen antimalarial drugs were in circulation in Kenya in 2002. These included 65 "sulfur"-pyrimethamine (sulfadoxine-pyrimethamine and sulfalene-pyrimethamine (SP, the first-line recommended drug in 2002 and 33 amodiaquine (AQ, the second-line recommended drug preparations. Only half of SP and AQ products were registered with the Pharmacy and Poisons Board. Of SP and AQ brands at district level, 40% and 44% were officially within legal registration requirements. 29% of retailers at district level stocked SP and 95% stocked AQ. The retail price of adult doses of SP and AQ were on average 0.38 and 0.76 US dollars, 100% and 347% higher than trade prices from manufacturers and importers. Artemether-lumefantrine, the newly announced first-line recommended antimalarial drug in 2004, was found in less than 1% of all retail outlets at a median cost of 7.6 US dollars. Conclusion There is a need to ensure that all antimalarial drugs are registered with the Pharmacy and Poisons Board to facilitate a more stringent post-marketing surveillance system to ensure drugs are safe and of good quality post-registration.

  2. The antimalarial drug quinine interferes with serotonin biosynthesis and action

    DEFF Research Database (Denmark)

    Islahudin, Farida; Tindall, Sarah M.; Mellor, Ian R.;

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmit......The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor...

  3. Important drug interactions in patients with rheumatic disorders: interactions of glucocorticoids, immunosuppressants and antimalarial drugs.

    Science.gov (United States)

    Hromadkova, L; Soukup, T; Vlcek, J

    2012-08-01

    Despite the fact that biological treatments are very promising, classical immunosuppressants, antimalarial drugs and glucocorticosteroids are still very important and widely used in practice. Although drug interactions can have fatal consequences, few studies have reviewed drug interactions of these classical drugs used in rheumatology, and very few guidelines are available on this subject. Therefore, this report summarizes important interactions of immunosuppressants, antimalarial drugs and glucocorticosteroids with drugs commonly used in internal medicine. In the present study, more than 300 interactions were retrieved from the Micromedex ® database. The selection was reduced to the interactions rated as moderate, major or contraindicated. The selected interactions were further checked against PubMed ®, MEDLINE ®, InfoPharm Compendium of Drug Interactions and Summaries of Product Characteristics. For each interaction, its nature, mechanism, onset and clinical severity were indicated, documentation quality was rated and recommendations for clinical practice were formulated. Twenty significant interactions that we rated as moderate, severe and very severe were identified. Interacting drugs were warfarin, fluoroquinolones, azole antifungals, co-trimoxazole, proton pump inhibitors, amiodarone, cholestyramine, activated carbon, allopurinol, angiotensin-converting enzyme inhibitors, statins, digoxin, iron, aluminium and magnesium salts, and hepatotoxic and nephrotoxic agents.

  4. Medical need, scientific opportunity and the drive for antimalarial drugs.

    Science.gov (United States)

    Ridley, Robert G

    2002-02-07

    Continued and sustainable improvements in antimalarial medicines through focused research and development are essential for the world's future ability to treat and control malaria. Unfortunately, malaria is a disease of poverty, and despite a wealth of scientific knowledge there is insufficient market incentive to generate the competitive, business-driven industrial antimalarial drug research and development that is normally needed to deliver new products. Mechanisms of partnering with industry have been established to overcome this obstacle and to open up and build on scientific opportunities for improved chemotherapy in the future.

  5. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Lee Sue J

    2009-11-01

    Full Text Available Abstract Background Preventing the emergence of anti-malarial drug resistance is critical for the success of current malaria elimination efforts. Prevention strategies have focused predominantly on qualitative factors, such as choice of drugs, use of combinations and deployment of multiple first-line treatments. The importance of anti-malarial treatment dosing has been underappreciated. Treatment recommendations are often for the lowest doses that produce "satisfactory" results. Methods The probability of de-novo resistant malaria parasites surviving and transmitting depends on the relationship between their degree of resistance and the blood concentration profiles of the anti-malarial drug to which they are exposed. The conditions required for the in-vivo selection of de-novo emergent resistant malaria parasites were examined and relative probabilities assessed. Results Recrudescence is essential for the transmission of de-novo resistance. For rapidly eliminated anti-malarials high-grade resistance can arise from a single drug exposure, but low-grade resistance can arise only from repeated inadequate treatments. Resistance to artemisinins is, therefore, unlikely to emerge with single drug exposures. Hyperparasitaemic patients are an important source of de-novo anti-malarial drug resistance. Their parasite populations are larger, their control of the infection insufficient, and their rates of recrudescence following anti-malarial treatment are high. As use of substandard drugs, poor adherence, unusual pharmacokinetics, and inadequate immune responses are host characteristics, likely to pertain to each recurrence of infection, a small subgroup of patients provides the particular circumstances conducive to de-novo resistance selection and transmission. Conclusion Current dosing recommendations provide a resistance selection opportunity in those patients with low drug levels and high parasite burdens (often children or pregnant women. Patients with

  6. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  7. Quantifying the pharmacology of antimalarial drug combination therapy

    Science.gov (United States)

    Hastings, Ian M.; Hodel, Eva Maria; Kay, Katherine

    2016-01-01

    Most current antimalarial drugs are combinations of an artemisinin plus a ‘partner’ drug from another class, and are known as artemisinin-based combination therapies (ACTs). They are the frontline drugs in treating human malaria infections. They also have a public-health role as an essential component of recent, comprehensive scale-ups of malaria interventions and containment efforts conceived as part of longer term malaria elimination efforts. Recent reports that resistance has arisen to artemisinins has caused considerable concern. We investigate the likely impact of artemisinin resistance by quantifying the contribution artemisinins make to the overall therapeutic capacity of ACTs. We achieve this using a simple, easily understood, algebraic approach and by more sophisticated pharmacokinetic/pharmacodynamic analyses of drug action; the two approaches gave consistent results. Surprisingly, the artemisinin component typically makes a negligible contribution (≪0.0001%) to the therapeutic capacity of the most widely used ACTs and only starts to make a significant contribution to therapeutic outcome once resistance has started to evolve to the partner drugs. The main threat to antimalarial drug effectiveness and control comes from resistance evolving to the partner drugs. We therefore argue that public health policies be re-focussed to maximise the likely long-term effectiveness of the partner drugs. PMID:27604175

  8. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs.

    Science.gov (United States)

    Abdul-Ghani, Rashad; Al-Maktari, Mohamed T; Al-Shibani, Latifa A; Allam, Amal F

    2014-09-01

    Effective chemotherapy is the mainstay of malaria control. However, resistance of falciparum malaria to antimalarial drugs compromised the efforts to eliminate the disease and led to the resurgence of malaria epidemics. Three main approaches are used to monitor antimalarial drug efficacy and drug resistance; namely, in vivo trials, in vitro/ex vivo assays and molecular markers of drug resistance. Each approach has its implications of use as well as its advantages and drawbacks. Therefore, there is a need to use an integrated approach that would give the utmost effect to detect resistance as early as its emergence and to track it once spread. Such integration becomes increasingly needed in the era of artemisinin-based combination therapy as a forward action to deter resistance. The existence of regional and global networks for the standardization of methodology, provision of high quality reagents for the assessment of antimalarial drug resistance and dissemination of open-access data would help in approaching an integrated resistance surveillance system on a global scale.

  9. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Directory of Open Access Journals (Sweden)

    Newton Paul N

    2011-12-01

    Full Text Available Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA containing paracetamol (acetaminophen, counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems.

  10. Antimalarial drug resistance in Bangladesh, 1996-2012.

    Science.gov (United States)

    Haque, Ubydul; Glass, Gregory E; Haque, Waziul; Islam, Nazrul; Roy, Shyamal; Karim, Jahirul; Noedl, Harald

    2013-12-01

    Malaria remains an important health problem in Bangladesh, with approximately 14 million people at risk. Antimalarial drug resistance is a major obstacle to the control of malaria in endemic countries. In 2012, Bangladesh reported an estimated 29 522 malaria episodes, of which 94% were reported as being caused by Plasmodium falciparum. In this study, we reviewed and summarized antimalarial drug resistance data from Bangladesh published until June 2013. We searched published sources for data referring to any type of P. falciparum drug resistance (in vivo, in vitro, or molecular) and found 169 articles published in peer-reviewed journals. Of these, 143 articles were excluded because they did not meet our inclusion criteria. After detailed review of the remaining 26 articles, 14 were selected for evaluation. Published studies indicate that P. falciparum shows varying levels of resistance to chloroquine, mefloquine and sulfadoxine-pyrimethamine. Combination therapy of chloroquine and primaquine has proven ineffective and combinations of sulfadoxine-pyrimethamine with either quinine or chloroquine have also shown poor efficacy. Recent studies indicate that artemisinin derivatives, such as artesunate, remain highly efficacious in treating P. falciparum malaria. Available data suggest that artemisinins, quinine, doxycyline, mefloquine-artesunate and azithromycin-artesunate combination therapy remain efficacious in the treatment of P. falciparum malaria in Bangladesh.

  11. Perspective for the reproduction of antimalarial drugs in Brazil

    Directory of Open Access Journals (Sweden)

    Benjamin Gilbert

    1992-01-01

    Full Text Available The appears to be no chemical manufacture of antimalarial drugs is Brazil. Technology at laboratory process level has been developed for chloroquine, mefloquine, pyrimethamine and cycloquanil, but not perfected nor scaled-up, largely for economic reasons and market uncertainty. Development of primaquine has been contracted but it will run into the same difficulty. Manufacturing capacity for sulfadoxine was registred in the SDI by Roche. A project to produce artemisinine and its derivates is under way at UNICAMP-CPQBA but is hampered by low content in the plant. Proguanil could be produced easily, but apparently no attempt has been made to do so. Quinine is imported on a large scale mostly for softdrink production. Since malarial treatment falls largely within responsability of the Government health authorities, manufacture of drugs in Brazil will depend on an assured medium-term purchase order made to a potential local manufacturer, since competition in the world market is scarcelyviable at the present moment.

  12. Effect of antimalarial drugs on stimulation and interleukin 2 production of human lymphocytes

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Svenson, M; Theander, T G;

    1987-01-01

    Effect of pyrimethamine, an antimalarial antifolate, and of mefloquine, chloroquine, and quinine, which belong to the quinoline group of antimalarials, on proliferation and interleukin 2 (IL-2) production of human lymphocytes was studied in vitro. Pyrimethamine at concentrations above therapeutic...... mononuclear cells of the various antimalarial drugs and the potential adverse effects of antimalarial chemotherapy are discussed.......Effect of pyrimethamine, an antimalarial antifolate, and of mefloquine, chloroquine, and quinine, which belong to the quinoline group of antimalarials, on proliferation and interleukin 2 (IL-2) production of human lymphocytes was studied in vitro. Pyrimethamine at concentrations above therapeutic...... levels suppressed the lymphocytes' proliferation, but not their IL-2 production. All three quinolines suppressed the proliferation of lymphocytes, but not equally, with mefloquine having the strongest effect. Quinine suppressed the growth at therapeutic concentrations. The IL-2 production was suppressed...

  13. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery

    OpenAIRE

    Marques, Joana; Valle-Delgado, Juan J.; Urbán, Patricia; Baró, Elisabet; Prohens, Rafel; Mayor, Alfredo; Cisteró, Pau; Delves, Michael; Robert E Sinden; Grandfils, Christian; de Paz, José L.; García-Salcedo, José A.; Fernández-Busquets, Xavier

    2016-01-01

    The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial dru...

  14. The antimalarial drug quinine interferes with serotonin biosynthesis and action.

    Science.gov (United States)

    Islahudin, Farida; Tindall, Sarah M; Mellor, Ian R; Swift, Karen; Christensen, Hans E M; Fone, Kevin C F; Pleass, Richard J; Ting, Kang-Nee; Avery, Simon V

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmitter serotonin (5-HT), here we test the hypothesis that quinine disrupts serotonin function. Quinine inhibited serotonin-induced proliferation of yeast as well as human (SHSY5Y) cells. One possible cause of this effect is through inhibition of 5-HT receptor activation by quinine, as we observed here. Furthermore, cells exhibited marked decreases in serotonin production during incubation with quinine. By assaying activity and kinetics of the rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase (TPH2), we showed that quinine competitively inhibits TPH2 in the presence of the substrate tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells.

  15. Targeting Plasmodium Metabolism to Improve Antimalarial Drug Design.

    Science.gov (United States)

    Avitia-Domínguez, Claudia; Sierra-Campos, Erick; Betancourt-Conde, Irene; Aguirre-Raudry, Miriam; Vázquez-Raygoza, Alejandra; Luevano-De la Cruz, Artemisa; Favela-Candia, Alejandro; Sarabia-Sanchez, Marie; Ríos-Soto, Lluvia; Méndez-Hernández, Edna; Cisneros-Martínez, Jorge; Palacio-Gastélum, Marcelo Gómez; Valdez-Solana, Mónica; Hernández-Rivera, Jessica; De Lira-Sánchez, Jaime; Campos-Almazán, Mara; Téllez-Valencia, Alfredo

    2016-01-01

    Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria.

  16. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Monica Escolà; Hansen, Martin; Krogh, Kristine A;

    2014-01-01

    Antimalarial drugs commonly referred to as antimalarials, include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, e.g. the drug concentrations in whole blood, plasma, and urin...... summarized. Finally, the main problems that the researchers have dealt with are highlighted. This information will aid analytical chemists in the development of novel methods for determining existing antimalarials and upcoming new drugs.......Antimalarial drugs commonly referred to as antimalarials, include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, e.g. the drug concentrations in whole blood, plasma, and urine...

  17. Perspective for the production of antimalarial drugs in Brazil.

    Science.gov (United States)

    Gilbert, B

    1992-01-01

    There appears to be no chemical manufacture of antimalarial drugs in Brazil. Technology at the laboratory process level has been developed for chloroquine, mefloquine, pyrimethamine and cycloguanil, but not perfected nor scaled-up, largely for economic reasons and market uncertainty. Development of primaquine has been contracted but it will run into the same difficulty. Manufacturing capacity for sulfadoxine was registered in the SDI by Roche. A project to produce artemisinine and its derivatives is under way at UNICAMP-CPQBA but is hampered by low content in the plant. Proguanil could be produced easily, but apparently no attempt has been made to do so. Quinine is imported on a large scale mostly for soft-drink production. Since malarial treatment falls largely within the responsibility of the Government health authorities, manufacture of drugs in Brazil will depend on an assured medium-term purchase order made to a potential local manufacturer, since competition in the world market is scarcely viable at the present moment.

  18. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2015-07-01

    Full Text Available Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml, significantly decreased forward scatter (≥5 µg/ml, significantly increased ROS abundance (5 µg/ml, significantly increased [Ca2+]i (7.5 µg/ml and significantly increased ceramide abundance (10 µg/ml. The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.

  19. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya

    Directory of Open Access Journals (Sweden)

    Rusk Andria

    2012-08-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. Methods To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Results Most of the medicine retailers surveyed (65% were able to identify artemether-lumefantrine (AL as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Conclusion Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could

  20. Resistance to antimalarial drugs: An endless world war against Plasmodium that we risk losing.

    Science.gov (United States)

    Severini, Carlo; Menegon, Michela

    2015-06-01

    The objective of this review was to describe the 'state of the art' of Plasmodium falciparum resistance to the main antimalarial drugs. A brief note on Plasmodium vivax is also included. Resistance of P. falciparum to the various antimalarials has a long history of hits and misses. During the last 60 years, the pace at which this parasite has developed resistance to antimalarial drugs has exceeded the pace at which new drugs have been developed. In the last decade, the introduction of artemisinin-based combination therapies (ACTs) as a first-line drug treatment for non-complicated P. falciparum malaria had led to extraordinary results in disease control, especially in sub-Saharan Africa. However, the emergence and spread of resistance to artemisinin in Southeast Asia jeopardise these results. In conclusion, the possible spread of artemisinin resistance in Africa should be considered as an epochal disaster.

  1. Retinal toxicity induced by antimalarial drugs: literature review and case report.

    Science.gov (United States)

    Garza-Leon, Manuel; Flores-Alvarado, Diana Elsa; Muñoz-Bravo, Juan Manuel

    2016-06-17

    Antimalarial drugs are widely used in several countries for control of rheumatologic diseases such as systemic lupus erythematosus and rheumatoid arthritis. They are still used in Mexico because of their low cost and few secondary effects, most of which are mild and reversible. Even so, at an ophthalmological level, they could produce irreversible visual damage, which is why it is important to have ophthalmological evaluation and proper follow up. We present a clinical case as an example of characteristic ophthalmological findings as well as risk factors for retinal toxicity. We then discuss guidelines for diagnosis and follow up of patients who use antimalarial drugs for the treatment of rheumatologic illnesses.

  2. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug.

    Science.gov (United States)

    Bacaer, Nicolas; Sokhna, Cheikh

    2005-04-01

    A mathematical model representing the difusion of resistance to an antimalarial drug is developed. Resistance can spread only when the basic reproduction number of the resistant parasites is bigger than the basic reproduction number of the sensitive parasites (which depends on the fraction of infected people treated with the antimalarial drug). Based on a linearization study and on numerical simulations, an expression for the speed at which resistance spreads is conjectured. It depends on the ratio of the two basic reproduction numbers, on a coefficient representing the difusion of mosquitoes, on the death rate of mosquitoes infected by resistant parasites, and on the recovery rate of nonimmune humans infected by resistant parasites.

  3. Rational Design of Antimalarial Drugs Using Molecular Modeling and Statistical Analysis.

    Science.gov (United States)

    Santos, Cleydson Breno Rodrigues dos; Lobato, Cleison Carvalho; Braga, Francinaldo Sarges; Costa, Josivan da Silva; Favacho, Hugo Alexandre Silva; Carvalho, Jose Carlos Tavares; Macedo, Williams Jorge da Cruz; Brasil, Davi Do Socorro Barros; Silva, Carlos Henrique Tomich de Paula da; Silva Hage-Melim, Lorane Izabel da

    2015-01-01

    Artemisinin is an antimalarial compound isolated from Artemisia annua L. that is effective against Plasmodium falciparum. This paper proposes the development of new antimalarial derivatives of artemisinin from a SAR study and statistical analysis by multiple linear regression (MLR). The HF/6-31G** method was used to determine the molecular properties of artemisinin and 10 derivatives with antimalarial action. MEP maps and molecular docking were used to study the interface between ligand and receptor (heme). The Pearson correlation was used to choose the most important properties interrelated to the antimalarial activity: Hydration Energy (HE), Energy of the Complex (Ecplex), bond length (FeO1), and maximum index of R/Electronegativity of Sanderson (RTe+). After the Pearson correlation, 72 MLR models were built between antimalarial activity and molecular properties; the statistical quality of the models was evaluated by means of correlation coefficient (r), squared correlation coefficient (r(2)), explained variance (adjusted R(2)), standard error of estimate (SEE), and variance ratio (F), and only four models showed predictive ability. The selected models were used to predict the antimalarial activity of ten new artemisinin derivatives (test set) with unknown activity, and only eight of these compounds were predicted to be more potent than artemisinin, and were therefore subjected to theoretical studies of pharmacokinetic and toxicological properties. The test set showed satisfactory results for six new artemisinin compounds which is a promising factor for future synthesis and biological assays.

  4. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    OpenAIRE

    Asrar Alam

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes...

  5. Rational Design of Proteasome Inhibitors as Antimalarial Drugs.

    Science.gov (United States)

    Le Chapelain, Camille; Groll, Michael

    2016-05-23

    One life, two strategies: Crucial structural differences between the human and the Plasmodium falciparum proteasomes were recently identified. A combination of cryo-EM and functional characterization enabled the design of a selective antimalarial proteasome inhibitor that shows low toxicity in the host. When used with artemisinin, this ligand offers a new approach for the efficient treatment of malaria at all stages of the parasite lifecycle.

  6. ANTIMALARIAL DRUGS IN THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS: PAST, PRESENT, FUTURE

    Directory of Open Access Journals (Sweden)

    Tatyana Andreyevna Lisitsyna

    2010-01-01

    Full Text Available The data available in the literature on experience in using antimalarial drugs in the treatment of systemic lupus erythematosus are summarized. A major emphasis is placed on therapy with hydroxychlorochine (plaquenil versus chlorine. Possible mechanisms of action of the drug and its effect on the course of the disease itself and concomitant abnormalities are described. Data on the toxicity of the drug and its safe use in pregnancy and lactation are also discussed

  7. Formation of the diuretic chlorazanil from the antimalarial drug proguanil--implications for sports drug testing.

    Science.gov (United States)

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Tretzel, Laura; Bailloux, Isabelle; Buisson, Corinne; Lasne, Francoise; Schaefer, Maximilian S; Kienbaum, Peter; Mueller-Stoever, Irmela; Schänzer, Wilhelm

    2015-11-10

    Chlorazanil (Ordipan, N-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine) is a diuretic agent and as such prohibited in sport according to the regulations of the World Anti-Doping Agency (WADA). Despite its introduction into clinical practice in the late 1950s, the worldwide very first two adverse analytical findings were registered only in 2014, being motive for an in-depth investigation of these cases. Both individuals denied the intake of the drug; however, the athletes did declare the use of the antimalarial prophylactic agent proguanil due to temporary residences in African countries. A structural similarity between chlorazanil and proguanil is given but no direct metabolic relation has been reported in the scientific literature. Moreover, chlorazanil has not been confirmed as a drug impurity of proguanil. Proguanil however is metabolized in humans to N-(4-chlorophenyl)-biguanide, which represents a chemical precursor in the synthesis of chlorazanil. In the presence of formic acid, formaldehyde, or formic acid esters, N-(4-chlorophenyl)-biguanide converts to chlorazanil. In order to probe for potential sources of the chlorazanil detected in the doping control samples, drug formulations containing proguanil and urine samples of individuals using proguanil as antimalarial drug were subjected to liquid chromatography-high resolution/high accuracy mass spectrometry. In addition, in vitro simulations with 4-chlorophenyl-biguanide and respective reactants were conducted in urine and resulting specimens analyzed for the presence of chlorazanil. While no chlorazanil was found in drug formulations, the urine samples of 2 out of 4 proguanil users returned findings for chlorazanil at low ng/mL levels, similar to the adverse analytical findings in the doping control samples. Further, in the presence of formaldehyde, formic acid and related esters, 4-chlorophenyl-biguanide was found to produce chlorazanil in human urine, suggesting that the detection of the obsolete diuretic

  8. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    Directory of Open Access Journals (Sweden)

    Asrar Alam

    2014-01-01

    Full Text Available Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets.

  9. A new in vivo screening paradigm to accelerate antimalarial drug discovery.

    Directory of Open Access Journals (Sweden)

    María Belén Jiménez-Díaz

    Full Text Available The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR, which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0 of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1 or induce parasite clearance (PRR >1 with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a

  10. Saleability of anti-malarials in private drug shops in Muheza, Tanzania

    DEFF Research Database (Denmark)

    Ringsted, Frank M; Massawe, Isolide S; Lemnge, Martha M;

    2011-01-01

    prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. Results......: All surveyed drug shops illicitly sold SP and quinine (QN), and legally amodiaquine (AQ). Calculated monthly sale was 4,041 doses, in a town with a population of 15,000 people. Local brands of SP accounted for 74% of sales volume, compared to AQ (13%), QN (11%) and ACT (2%). Conclusions: In community...... resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp strategy. Further studies are recommended to find out barriers for ACT utilization and preference for self-medication and to train private drug...

  11. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies

    DEFF Research Database (Denmark)

    Vestergaard, Lasse S; Ringwald, Pascal

    2007-01-01

    Reduced sensitivity of Plasmodium falciparum to formerly recommended cheap and well-known antimalarial drugs places an increasing burden on malaria control programs and national health systems in endemic countries. The high costs of the new artemisinin-based combination treatments underline the use...... of rational and updated malaria treatment policies, but defining and updating such policies requires a sufficient volume of high-quality drug-resistance data collected at national and regional levels. Three main tools are used for drug resistance monitoring, including therapeutic efficacy tests, in vitro...... tests, and analyses of molecular markers. Data obtained with the therapeutic efficacy test conducted according to the standard protocol of the World Health Organization are most useful for updating national treatment policies, while the in vitro test and molecular markers can provide important...

  12. Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs

    OpenAIRE

    Movellan, Julie; Urbán, Patricia; Moles, Ernest; de la Fuente, Jesús M.; Sierra, Teresa; Serrano, José Luis; Fernàndez-Busquets, Xavier

    2014-01-01

    It can be foreseen that in a future scenario of malaria eradication, a varied armamentarium will be required, including strategies for the targeted administration of antimalarial compounds. The development of nanovectors capable of encapsulating drugs and of delivering them to Plasmodium-infected cells with high specificity and efficacy and at an affordable cost is of particular interest. With this objective, dendritic derivatives based on 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and Pl...

  13. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea.

    Science.gov (United States)

    Menegon, Michela; Nurahmed, Abduselam M; Talha, Albadawi A; Nour, Bakri Y M; Severini, Carlo

    2016-05-01

    The introduction of artemisinin-based combination therapy has led to extraordinary results in malaria control, however the recent emergence of partial resistance to artemisinin therapy in Southeast Asia jeopardizes these successes. This study aimed at investigating resistance to the antimalarial drugs by evaluating the polymorphisms in the PfK13, Pfcrt and Pfmdr1 genes in Plasmodium falciparum isolates obtained from patients in Eritrea.

  14. Glycosides as possible lead antimalarial in new drug discovery: future perspectives.

    Science.gov (United States)

    Marya; Khan, Haroon; Ahmad, Izhar

    2017-01-15

    Malaria remains one of the major public health problems worldwide and is responsible for a large number of morbidity and mortality. Especially, in the third world countries, it is still alarming. The development of drug-resistant to Plasmodium falciparum strains has further degraded the overall situation. However, a limited number of effective drugs available emphasizes how essential it is to establish new anti-malarial compounds. New antimalarial agents with distinctive structures and mechanism of action from the natural origin are thus immediately required to treat sensitive and drug-resistant strains of malaria. over the years, phytopharmaceuticals have provided numerous lead compounds. Similarly, the success rate of botanicals in terms of clinical significance is also very high. Of them, glycosides is one of the most widely distributed and emerging class of plant secondary metabolites. This review provides an outlook to recently isolated glycosides from plants with marked antimalarial effects in an in-vitro and in-vivo protocols and thus ideal candidates for clinical trials to ascertain their clinical utility and or led compounds.

  15. [Plasmodium falciparum susceptibility to antimalarial drugs: global data issued from the Pasteur Institutes international network].

    Science.gov (United States)

    Ménard, Didier; Ariey, Frédéric; Mercereau-Puijalon, Odile

    2013-01-01

    Malaria research units within the Institut Pasteur international network (RIIP-Palu) located in Africa, in South-East Asia and in South America, work for many years in close collaboration with the National malaria control programmes. Relying on technical platforms with well-equipped laboratories and scientific expertise, they are at the forefront of research on the antimalarial drug resistance by working together for training young scientists and developping similar protocols allowing comprehensive comparisons. Including fundamental and operational researches, they conduct regional and international projects which aim (1) to detect the emergence of antimalarial drugs resistant parasites and to evaluate their spatio-temporal distribution, (2) to develop in vitro and molecular tools, (3) to identify epidemiological factors involved in the emergence and the spread of antimalarial drugs resistant parasites and (4) to understand the molecular and cellular mechanisms implicated in resistance. In this review, will be presented methodological approaches and data obtained since 2000.

  16. Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition.

    Science.gov (United States)

    Kim, Ju-Hwa; Choi, Ae-Ran; Kim, Yong Kee; Yoon, Sungpil

    2013-11-22

    The purpose of this study was to identify conditions that will increase the sensitivity of resistant cancer cells to anti-mitotic drugs. Currently, atovaquine (ATO), chloroquine (CHL), primaquine (PRI), mefloquine (MEF), artesunate (ART), and doxycycline (DOY) are the most commonly used anti-malarial drugs. Herein, we tested whether anti-malarial drugs can sensitize drug-resistant KBV20C cancer cells. None of the six tested anti-malarial drugs was found to better sensitize the drug-resistant cells compared to the sensitive KB cells. With an exception of DOY, all other anti-malarial drugs tested could sensitize both KB and KBV20C cells to a similar extent, suggesting that anti-malarial drugs could be used for sensitive as well as resistant cancer cells. Furthermore, we examined the effects of anti-malarial drugs in combination with an antimitotic drug, vinblastine (VIN) on the sensitisation of resistant KBV20C cells. Using viability assay, microscopic observation, assessment of cleaved PARP, and Hoechst staining, we identified that two anti-malarial drugs, PRI and MEF, highly sensitized KBV20C-resistant cells to VIN treatment. Moreover, PRI- or MEF-induced sensitisation was not observed in VIN-treated sensitive KB parent cells, suggesting that the observed effect is specific to resistant cancer cells. We demonstrated that the PRI and MEF sensitisation mechanism mainly depends on the inhibition of p-glycoprotein (P-gp). Our findings may contribute to the development of anti-malarial drug-based combination therapies for patients resistant to anti-mitotic drugs.

  17. In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003

    Directory of Open Access Journals (Sweden)

    Mungthin Mathirut

    2005-08-01

    Full Text Available Abstract Background The Thai-Myanmar and Thai-Cambodia borders have been historically linked with the emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs. Indeed, the areas are often described as harbouring multi-drug resistant parasites. These areas of Thailand have experienced significant changes in antimalarial drug exposure patterns over the past decade. This study describes the in vitro antimalarial susceptibility patterns of 95 laboratory-adapted P. falciparum isolates, collected between 1998 and 2003,. Methods Ninety five P. falciparum isolates were collected from five sites in Thailand between 1998 and 2003. After laboratory adaptation to in vitro culture, the susceptibility of these parasites to a range of established antimalarial drugs (chloroquine [CQ], mefloquine [MQ], quinine [QN] and dihydroartemisinin [DHA] was determined by the isotopic microtest. Results Mefloquine (MQ sensitivity remained poorest in areas previously described as MQ-resistant areas. Sensitivity to MQ of parasites from this area was significantly lower than those from areas reported to harbour moderate (p = 0.002 of low level MQ resistance (p = 000001. Importantly for all drugs tested, there was a considerable range in absolute parasite sensitivities. There was a weak, but statistically positive correlation between parasite sensitivity to CQ and sensitivity to both QN and MQ and a positive correlation between MQ and QN. In terms of geographical distribution, parasites from the Thai-Cambodia were tended to be less sensitive to all drugs tested compared to the Thai-Myanmar border. Parasite sensitivity to all drugs was stable over the 6-year collection period with the exception of QN. Conclusion This study highlights the high degree of variability in parasite drug sensitivity in Thailand. There were geographical differences in the pattern of resistance which might reflect differences in drug usage in each area. In contrast to many

  18. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Maria P. Crespo-Ortiz

    2012-01-01

    Full Text Available Improvement of quality of life and survival of cancer patients will be greatly enhanced by the development of highly effective drugs to selectively kill malignant cells. Artemisinin and its analogs are naturally occurring antimalarials which have shown potent anticancer activity. In primary cancer cultures and cell lines, their antitumor actions were by inhibiting cancer proliferation, metastasis, and angiogenesis. In xenograft models, exposure to artemisinins substantially reduces tumor volume and progression. However, the rationale for the use of artemisinins in anticancer therapy must be addressed by a greater understanding of the underlying mechanisms involved in their cytotoxic effects. The primary targets for artemisinin and the chemical base for its preferential effects on heterologous tumor cells need yet to be elucidated. The aim of this paper is to provide an overview of the recent advances and new development of this class of drugs as potential anticancer agents.

  19. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Radhapyari, Keisham [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India); Konwar, Bolin Kumar [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Nagaland University (Central), Lumami, Zunheboto, Nagaland 798627 (India); Khan, Raju, E-mail: khan.raju@gmail.com [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India)

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL{sup −1}) with sensitivity of 0.26 μA μg mL{sup −1}. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL{sup −1} and 0.0036 μg mL{sup −1} in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor.

  20. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    Science.gov (United States)

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  1. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation.

    Directory of Open Access Journals (Sweden)

    S M D K Ganga Senarathna

    Full Text Available The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10(-6 cm/sec, followed by amodiaquine around 20 x 10(-6 cm/sec; both mefloquine and artesunate were around 10 x 10(-6 cm/sec. Methylene blue was between 2 and 6 x 10(-6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine.

  2. Why hospital pharmacists have failed to manage antimalarial drugs stock-outs in pakistan? A qualitative insight.

    Science.gov (United States)

    Malik, Madeeha; Hassali, Mohamed Azmi Ahmad; Shafie, Asrul Akmal; Hussain, Azhar

    2013-01-01

    Purpose. This study aimed to explore the perceptions of hospital pharmacists towards drug management and reasons underlying stock-outs of antimalarial drugs in Pakistan. Methods. A qualitative study was designed to explore the perceptions of hospital pharmacists regarding drug management and irrational use of antimalarial drugs in two major cities of Pakistan, namely, Islamabad (national capital) and Rawalpindi (twin city). Semistructured interviews were conducted with 16 hospital pharmacists using indepth interview guides at a place and time convenient for the respondents. Interviews, which were audiotaped and transcribed verbatim, were evaluated by thematic content analysis and by other authors' analysis. Results. Most of the respondents were of the view that financial constraints, inappropriate drug management, and inadequate funding were the factors contributing toward the problem of antimalarial drug stock-outs in healthcare facilities of Pakistan. The pharmacists anticipated that prescribing by nonproprietary names, training of health professionals, accepted role of hospital pharmacist in drug management, implementation of essential drug list and standard treatment guidelines for malaria in the healthcare system can minimize the problem of drug stock outs in healthcare system of Pakistan. Conclusion. The current study showed that all the respondents in the two cities agreed that hospital pharmacist has failed to play an effective role in efficient management of anti-malarial drugs stock-outs.

  3. Why Hospital Pharmacists Have Failed to Manage Antimalarial Drugs Stock-Outs in Pakistan? A Qualitative Insight

    Directory of Open Access Journals (Sweden)

    Madeeha Malik

    2013-01-01

    Full Text Available Purpose. This study aimed to explore the perceptions of hospital pharmacists towards drug management and reasons underlying stock-outs of antimalarial drugs in Pakistan. Methods. A qualitative study was designed to explore the perceptions of hospital pharmacists regarding drug management and irrational use of antimalarial drugs in two major cities of Pakistan, namely, Islamabad (national capital and Rawalpindi (twin city. Semistructured interviews were conducted with 16 hospital pharmacists using indepth interview guides at a place and time convenient for the respondents. Interviews, which were audiotaped and transcribed verbatim, were evaluated by thematic content analysis and by other authors’ analysis. Results. Most of the respondents were of the view that financial constraints, inappropriate drug management, and inadequate funding were the factors contributing toward the problem of antimalarial drug stock-outs in healthcare facilities of Pakistan. The pharmacists anticipated that prescribing by nonproprietary names, training of health professionals, accepted role of hospital pharmacist in drug management, implementation of essential drug list and standard treatment guidelines for malaria in the healthcare system can minimize the problem of drug stock outs in healthcare system of Pakistan. Conclusion. The current study showed that all the respondents in the two cities agreed that hospital pharmacist has failed to play an effective role in efficient management of anti-malarial drugs stock-outs.

  4. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development.

    Science.gov (United States)

    Deniskin, Roman; Frame, I J; Sosa, Yvett; Akabas, Myles H

    2016-04-01

    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs

  5. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1 for antimalarial drug development

    Directory of Open Access Journals (Sweden)

    Roman Deniskin

    2016-04-01

    Full Text Available Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs. Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1. Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1 homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine and pyrimidines ([3H]uridine, whereas wild type (fui1Δ yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM, compared to guanosine (14.9 μM and adenosine (142 μM. For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range. IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1. The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel

  6. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Directory of Open Access Journals (Sweden)

    Huthmacher Carola

    2010-08-01

    Full Text Available Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte. Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.

  7. Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery.

    Science.gov (United States)

    Pradhan, Anupam; Siwo, Geoffrey H; Singh, Naresh; Martens, Brian; Balu, Bharath; Button-Simons, Katrina A; Tan, Asako; Zhang, Min; Udenze, Kenneth O; Jiang, Rays H Y; Ferdig, Michael T; Adams, John H; Kyle, Dennis E

    2015-01-01

    The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs' mechanisms of action. A mutant of the artemisinin resistance candidate gene - "K13-propeller" gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways.

  8. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.

    Science.gov (United States)

    Boss, Christoph; Aissaoui, Hamed; Amaral, Nathalie; Bauer, Aude; Bazire, Stephanie; Binkert, Christoph; Brun, Reto; Bürki, Cédric; Ciana, Claire-Lise; Corminboeuf, Olivier; Delahaye, Stephane; Dollinger, Claire; Fischli, Christoph; Fischli, Walter; Flock, Alexandre; Frantz, Marie-Céline; Girault, Malory; Grisostomi, Corinna; Friedli, Astrid; Heidmann, Bibia; Hinder, Claire; Jacob, Gael; Le Bihan, Amelie; Malrieu, Sophie; Mamzed, Saskia; Merot, Aurelien; Meyer, Solange; Peixoto, Sabrina; Petit, Nolwenn; Siegrist, Romain; Trollux, Julien; Weller, Thomas; Wittlin, Sergio

    2016-09-20

    More than 40 % of the world's population is at risk of being infected with malaria. Most malaria cases occur in the countries of sub-Saharan Africa, Central and South America, and Asia. Resistance to standard therapy, including artemisinin combinations, is increasing. There is an urgent need for novel antimalarials with new mechanisms of action. In a phenotypic screen, we identified a series of phenylalanine-based compounds that exhibit antimalarial activity via a new and yet unknown mechanism of action. Our optimization efforts culminated in the selection of ACT-451840 [(S,E)-N-(4-(4-acetylpiperazin-1-yl)benzyl)-3-(4-(tert-butyl)phenyl)-N-(1-(4-(4-cyanobenzyl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl)acrylamide] for clinical development. Herein we describe our optimization efforts from the screening hit to the potential drug candidate with respect to antiparasitic activity, drug metabolism and pharmacokinetics (DMPK) properties, and in vivo pharmacological efficacy.

  9. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development.

    Science.gov (United States)

    Chakraborty, Arnish

    2016-08-01

    Malaria is a life-threatening tropical disease, caused by the intracellular parasite Plasmodium falciparum. The World Health Organization counts malaria as one of the top ten causes of worldwide death. The unavailability of a successful malaria vaccine and the ever-increasing instances of drug resistance in the malaria parasite demand the discovery of new targets within P. falciparum for the development of next generation antimalarials. Fortunately, all apicomplexan parasites, including P. falciparum harbor a relict, non-photosynthetic plastid known as the apicoplast. The apicoplast is a semi-autonomous organelle within P. falciparum containing a 35kb circular genome. Despite a genome of its own, majority of the apicoplast proteins are encoded by the parasite nucleus and imported into the apicoplast. The organelle has been shown to be essential to P. falciparum survival and the loss the apicoplast manifests as a 'delayed death' response in the parasite. The apicoplast has evolved out of cyanobacteria in a complex, two step endosymbiotic event. As a result the architecture and the gene expression machinery of the apicoplast is quite bacteria-like and is susceptible to a wide range of antibiotics such as fosmidomycin, tetracycline, azithromycin, clindamycin and triclosan. The biosynthetic pathways for isoprenoids, fatty acids and heme operate within the malaria apicoplast, making the organelle an excellent target for drug development. The review focuses on the evolution, biology and the essentiality of the apicoplast within the malaria parasite and discusses some of the recent achievements towards the design and discovery of apicoplast targeted antimalarial compounds.

  10. Molecular Farming in Artemisia annua, a sustainable approach to improve anti-malarial drug production

    Directory of Open Access Journals (Sweden)

    Giuseppe ePulice

    2016-03-01

    Full Text Available Malaria is a parasite infection affecting millions of people worldwide. Even though progresses in prevention and treatment have been developed, 198 million cases of malaria occurred in 2013, resulting in 584000 estimated deaths. 90% of all malaria deaths occurred in Africa, mostly among children under the age of five. This article aims to review malaria’s history, epidemiology and current treatments, with a particular focus on the potential of molecular farming that use metabolic engineering in plants as effective anti-malarial solution. Malaria indeed represents an example of how a health problem on one hand, may eventually influence the proper development of a country due to the burden of the disease, and on the other hand, constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is here proposed as a sustainable alternative for the production not only of natural herbal repellents used for malaria prevention but also for the production of sustainable anti-malarial drugs like artemisinin used for primary parasite infection treatments.Artemisinin, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua plant. However, the low concentration of artemisinin in plant makes this molecule relatively expensive and difficult to meet the worldwide demand of Artemisinin Combination Therapies, especially for economically disadvantaged people in developing countries. The biosynthetic pathway of artemisinin, a process that only takes place in glandular secretory trichomes of A. annua, is relatively well elucidated, and significant efforts using plant genetic engineering have been made to increase the production of this compound. These include studies on diverse transcription factors, which all have been shown to regulate artemisinin genetic pathway and other biological processes. Therefore, genetic manipulation of these genes may be used as a cost-effective potential

  11. A review of age-old antimalarial drug to combat malaria:efficacy up-gradation by nanotechnology based drug delivery

    Institute of Scientific and Technical Information of China (English)

    Satyajit Tripathy; Somenath Roy

    2014-01-01

    Malaria is uncontrolled burden in the world till now.Despite of different efforts to develop antimalarial drug for decades, any anti-malarial drug can able to eradicate completely till now. Many anti-malarial substances are practically ineffectual because of their physicochemical limitations, cytotoxicity, chemical instability and degradation, and limited activities against intracellular parasites.Taking into consideration, the amount of research is going to conduct in the field of nanoparticle based drug delivery systems, lead to new ways of improving the treatment of infectious diseases.The study has focused on the progress and advancement of research on nanotechnology based drug delivery to eradicate the malaria.We like to focus the efficacy of nanotechnology based drug applicationfor the opening out of novel chemotherapeutics in laboratory research, which may show the way to better use with age-old antimalarial drug and may draw the attention of pharmaceutical industries for the improvement and designing of effective anti-malarial drugs in future.

  12. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname

    Directory of Open Access Journals (Sweden)

    Evans Lawrence

    2012-06-01

    Full Text Available Abstract Background Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector and unlicensed facilities (informal sector is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. Methods To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Results Quality issues were observed in 45 of 77 (58% anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30 and 11% (5/47 respectively. A higher proportion of medicines sampled from the private sector 34% (11/32 failed quality control tests versus 16% (7/45 in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86% were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. Conclusions The findings of the studies in both countries point to

  13. Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor.

    Science.gov (United States)

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K; Gil, José P; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.

  14. Antimalarial Drug Resistance: Surveillance and Molecular Methods for National Malaria Control Programmes

    Directory of Open Access Journals (Sweden)

    Umberto D'Alessandro

    1998-09-01

    Full Text Available National malaria control programmes have the responsibility to develop a policy for malaria disease management based on a set of defined criteria as efficacy, side effects, costs and compliance. These will fluctuate over time and national guidelines will require periodic re-assessment and revision. Changing a drug policy is a major undertaking that can take several years before being fully operational. The standard methods on which a decision can be taken are the in vivo and the in vitro tests. The latter allow a quantitative measurement of the drug response and the assessment of several drugs at once. However, in terms of drug policy change its results might be difficult to interpret although they may be used as an early warning system for 2nd or 3rd line drugs. The new WHO 14-days in vivo test addresses mainly the problem of treatment failure and of haematological parameters changes in sick children. It gives valuable information on whether a drug still `works'. None of these methods are well suited for large-scale studies. Molecular methods based on detection of mutations in parasite molecules targeted by antimalarial drugs could be attractive tools for surveillance. However, their relationship with in vivo test results needs to be established

  15. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Science.gov (United States)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  16. Assessment of the Worldwide Antimalarial Resistance Network Standardized Procedure for In Vitro Malaria Drug Sensitivity Testing Using SYBR Green Assay for Field Samples with Various Initial Parasitemia Levels.

    Science.gov (United States)

    Cheruiyot, Agnes C; Auschwitz, Jennifer M; Lee, Patricia J; Yeda, Redemptah A; Okello, Charles O; Leed, Susan E; Talwar, Mayank; Murthy, Tushar; Gaona, Heather W; Hickman, Mark R; Akala, Hoseah M; Kamau, Edwin; Johnson, Jacob D

    2016-04-01

    The malaria SYBR green assay, which is used to profilein vitrodrug susceptibility ofPlasmodium falciparum, is a reliable drug screening and surveillance tool. Malaria field surveillance efforts provide isolates with various low levels of parasitemia. To be advantageous, malaria drug sensitivity assays should perform reproducibly among various starting parasitemia levels rather than at one fixed initial value. We examined the SYBR green assay standardized procedure developed by the Worldwide Antimalarial Resistance Network (WWARN) for its sensitivity and ability to accurately determine the drug concentration that inhibits parasite growth by 50% (IC50) in samples with a range of initial parasitemia levels. The initial sensitivity determination of the WWARN procedure yielded a detection limit of 0.019% parasitemia.P. falciparumlaboratory strains and field isolates with various levels of initial parasitemia were then subjected to a range of doses of common antimalarials. The IC50s were comparable for laboratory strains with between 0.0375% and 0.6% parasitemia and for field isolates with between 0.075% and 0.6% parasitemia for all drugs tested. Furthermore, assay quality (Z') analysis indicated that the WWARN procedure displays high robustness, allowing for drug testing of malaria field samples within the derived range of initial parasitemia. The use of the WWARN procedure should allow for the inclusion of more malaria field samples in malaria drug sensitivity screens that would have otherwise been excluded due to low initial parasitemia levels.

  17. Evaluation of the Quality of Artemisinin-Based Antimalarial Medicines Distributed in Ghana and Togo

    Directory of Open Access Journals (Sweden)

    Dorcas Osei-Safo

    2014-01-01

    Full Text Available This study, conducted as part of our overall goal of regular pharmacovigilance of antimalarial medicines, reports on the quality of 132 artemisinin-based antimalarial medicines distributed in Ghana and Togo. Three methods were employed in the quality evaluation—basic (colorimetric tests for establishing the identity of the requisite active pharmaceutical ingredients (APIs, semi-quantitative TLC assay for the identification and estimation of API content, and HPLC assay for a more accurate quantification of API content. From the basic tests, only one sample totally lacked API. The HPLC assay, however, showed that 83.7% of the ACTs and 57.9% of the artemisinin-based monotherapies failed to comply with international pharmacopoeia requirements due to insufficient API content. In most of the ACTs, the artemisinin component was usually the insufficient API. Generally, there was a good correlation between the HPLC and SQ-TLC assays. The overall failure rates for both locally manufactured (77.3% and imported medicines (77.5% were comparable. Similarly the unregistered medicines recorded a slightly higher overall failure rate (84.7% than registered medicines (70.8%. Only two instances of possible cross-border exchange of medicines were observed and there was little difference between the medicine quality of collections from border towns and those from inland parts of both countries.

  18. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    Science.gov (United States)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  19. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence "transmission blocking" assay.

    Directory of Open Access Journals (Sweden)

    Joël Lelièvre

    Full Text Available BACKGROUND: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. METHODS AND FINDINGS: Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV-V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. CONCLUSIONS: The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial

  20. The biological and clinical activity of anti-malarial drugs in autoimmune disorders.

    Science.gov (United States)

    Taherian, Elham; Rao, Anshul; Malemud, Charles J; Askari, Ali D

    2013-01-01

    Chloroquine and hydroxychloroquine are 4-aminoquinoline compounds commonly employed as anti-malarial drugs. Chloroquine and its synthetic analogue, hydroxychloroquine also belong to the disease-modifying anti-rheumatic drug class because these drugs are immunosuppressive. The immunosuppressive activity of chloroquine and hydroxychloroquine is likely to account for their capacity to reduce T-cell and B-cell hyperactivity as well as pro-inflammatory cytokine gene expression. This review evaluated experimental and clinical trials results as well as clinical response data relative to the use of chloroquine and/or hydroxychloroquine as first-line medical therapies in systemic lupus erythematosus, rheumatoid arthritis, primary Sjogren's syndrome, the anti-phospholipid syndrome and in the treatment of sarcoidosis. A primary outcomes measure in these clinical trials was the extent to which chloroquine and/or hydroxychloroquine reduced disease progression or exacerbations and/or the use and dosage of corticosteroids. The relative efficacy of chloroquine and hydroxychloroquine in modifying the clinical course of these autoimmune disorders is balanced against evidence that these drugs induce adverse effects which may reduce their use and effectiveness in the therapy of autoimmune disorders.

  1. Mass administration of the antimalarial drug mefloquine to Guantánamo detainees: a critical analysis.

    Science.gov (United States)

    Nevin, Remington L

    2012-10-01

    Recently, evidence has emerged from an unusual form of mass drug administration practised among detainees held at US Naval Station Guantánamo Bay, Cuba ('Guantánamo'), ostensibly as a public health measure. Mefloquine, an antimalarial drug originally developed by the US military, whose use is associated with a range of severe neuropsychiatric adverse effects, was administered at treatment doses to detainees immediately upon their arrival at Guantánamo, prior to laboratory testing for malaria and irrespective of symptoms of disease. In this analysis, the history of mefloquine's development is reviewed and the indications for its administration at treatment doses are discussed. The stated rationale for the use of mefloquine among Guantánamo detainees is then evaluated in the context of accepted forms of population-based malaria control. It is concluded that there was no plausible public health indication for the use of mefloquine at Guantánamo and that based on prevailing standards of care, the clinical indications for its use are decidedly unclear. This analysis suggests the troubling possibility that the use of mefloquine at Guantánamo may have been motivated in part by knowledge of the drug's adverse effects, and points to a critical need for further investigation to resolve unanswered questions regarding the drug's potentially inappropriate use.

  2. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2009-06-01

    Full Text Available Abstract Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency.

  3. Prospective strategies to delay the evolution of anti-malarial drug resistance: weighing the uncertainty

    Directory of Open Access Journals (Sweden)

    McKenzie F Ellis

    2010-07-01

    Full Text Available Abstract Background The evolution of drug resistance in malaria parasites highlights a need to identify and evaluate strategies that could extend the useful therapeutic life of anti-malarial drugs. Such strategies are deployed to best effect before resistance has emerged, under conditions of great uncertainty. Methods Here, the emergence and spread of resistance was modelled using a hybrid framework to evaluate prospective strategies, estimate the time to drug failure, and weigh uncertainty. The waiting time to appearance was estimated as the product of low mutation rates, drug pressure, and parasite population sizes during treatment. Stochastic persistence and the waiting time to establishment were simulated as an evolving branching process. The subsequent spread of resistance was simulated in simple epidemiological models. Results Using this framework, the waiting time to the failure of artemisinin combination therapy (ACT for malaria was estimated, and a policy of multiple first-line therapies (MFTs was evaluated. The models quantify the effects of reducing drug pressure in delaying appearance, reducing the chances of establishment, and slowing spread. By using two first-line therapies in a population, it is possible to reduce drug pressure while still treating the full complement of cases. Conclusions At a global scale, because of uncertainty about the time to the emergence of ACT resistance, there was a strong case for MFTs to guard against early failure. Our study recommends developing operationally feasible strategies for implementing MFTs, such as distributing different ACTs at the clinic and for home-based care, or formulating different ACTs for children and adults.

  4. Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Kamau Edwin

    2012-01-01

    Full Text Available Abstract Background Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods. Methods TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD for each assay. Results Data from genetic profiles of the Plasmodium falciparum laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples. Conclusion TaqMan Allelic Discrimination assay provides a good alternative tool in

  5. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  6. Ferroquine, an Ingenious Antimalarial Drug –Thoughts on the Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Faustine Dubar

    2008-11-01

    Full Text Available Ferroquine (FQ or SR97193 is a novel antimalarial drug candidate, currently in development at Sanofi-Aventis. In contrast to conventional drugs, FQ is the first organometallic drug: a ferrocenyl group covalently flanked by a 4-aminoquinoline and a basic alkylamine. FQ is able to overcome the CQ resistance problem, an important limit to the control of Plasmodium falciparum, the principal causative agent of malaria. After fifteen years of effort, it is now possible to propose a multifactorial mechanism of action of FQ by its capacity to target lipids, to inhibit the formation of hemozoin and to generate reactive oxygen species.

  7. Study on the developmental toxicity of combined artesunate and mefloquine antimalarial drugs on rats.

    Science.gov (United States)

    Boareto, Ana Cláudia; Müller, Juliane Centeno; de Araujo, Samanta Luiza; Lourenço, Ana Carolina; Lourenço, Emerson Luiz Botelho; Gomes, Caroline; Minatovicz, Bruna; Lombardi, Natália; Paumgartten, Francisco Roma; Dalsenter, Paulo Roberto

    2012-12-01

    Antimalarial drug combinations containing artemisinins (ACTs) have become first choice therapies for Plasmodium falciparum malaria. Data on safety of ACTs in pregnancy are limited and no previous study has been conducted on the developmental toxicity of artesunate-mefloquine combinations on the first trimester of gestation. To evaluate the developmental toxicity of an artesunate/mefloquine combination, pregnant rats were treated orally with artesunate (15 and 40 mg/kg bwt/day), mefloquine (30 and 80 mg/kg bwt/day) and artesunate/mefloquine (15/30 and 40/80 mg/kg bwt/day) on gestation days 9-11. Dams were C-sectioned on day 20, and their uteri and fetuses removed and examined for soft tissue and skeleton abnormalities. Artesunate increased embryolethality and the incidence of limb long bone malformations on the absence of overt maternal toxicity. Mefloquine (80 mg/kg bwt/day) was maternally toxic and enhanced fetal variations. Combination of artesunate and mefloquine did not enhance their toxicity compared to the toxicity observed after its separate administration. Embryotoxicity of artesunate was apparently attenuated when it is co-administered with mefloquine.

  8. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Directory of Open Access Journals (Sweden)

    Chance Michael L

    2011-08-01

    Full Text Available Abstract Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP. Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr-C59R and dihydropteroate synthase (dhps-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9. The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum

  9. Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development

    Directory of Open Access Journals (Sweden)

    Zaloumis Sophie

    2012-08-01

    Full Text Available Abstract Background Mechanistic within-host models relating blood anti-malarial drug concentrations with the parasite-time profile help in assessing dosing schedules and partner drugs for new anti-malarial treatments. A comprehensive simulation study to assess the utility of a stage-specific pharmacokinetic-pharmacodynamic (PK-PD model for predicting within-host parasite response was performed. Methods Three anti-malarial combination therapies were selected: artesunate-mefloquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine. The PK-PD model included parameters to represent the concentration-time profiles of both drugs, the initial parasite burden and distribution across the parasite life cycle, and the parasite multiplication factor due to asexual reproduction. The model also included the maximal killing rate of each drug, and the blood drug concentration associated with half of that killing effect (in vivo EC50, derived from the in vitro IC50, the extent of binding to 0.5% Albumax present in the in vitro testing media, and the drugs plasma protein binding and whole blood to plasma partitioning ratio. All stochastic simulations were performed using a Latin-Hypercube-Sampling approach. Results The simulations demonstrated that the proportion of patients cured was highly sensitive to the in vivo EC50 and the maximal killing rate of the partner drug co-administered with the artemisinin derivative. The in vivo EC50 values that corresponded to on average 95% of patients cured were much higher than the adjusted values derived from the in vitro IC50. The proportion clinically cured was not strongly influenced by changes in the parameters defining the age distribution of the initial parasite burden (mean age of 4 to 16 hours and the parasite multiplication factor every life cycle (ranging from 8 to 12 fold/cycle. The median parasite clearance times, however, lengthened as the standard deviation of the initial parasite burden increased (i

  10. Assay method for quality control and stability studies of a new antimalarial agent (CDRI 99/411)$

    Institute of Scientific and Technical Information of China (English)

    Kiran Khandelwal; Shakti Deep Pachauri; Sofia Zaidi; Pankaj Dwivedi; Ashok Kumar Sharma; Chandan Singh; Anil Kumar Dwivedi

    2013-01-01

    CDRI compound no. 99/411 is a potent 1,2,4-trioxane antimalarial candidate drug under development at our Institute. An HPLC method for determination of CDRI 99/411 with its starting material and intermediates has been developed and validated for in process quality control and stability studies. The analytical performance parameters such as linearity, precision, accuracy, specificity, limit of detection (LOD) and lower limit of quantification (LLOQ) were determined according to International Conference on Harmonization ICH Q2(R1) guidelines. HPLC separation was achieved on a RP-select B Lichrospheres column (250 mm  4 mm, 5μm, Merck) using water containing 0.1%glacial acetic acid and acetonitrile as the mobile phase in a gradient elution. The eluents were monitored by a photo diode array detector at 245 and 275 nm. Based on signal to noise ratio of 3 and 10 the LOD of CDRI 99/411 was 0.55 mg/mL, while the LLOQ was 1.05 mg/mL. The calibration curves were linear in the range of 1.05-68 mg/mL. Precision of the method was determined by inter- and intra-assay variations within the acceptable range.

  11. Low-cost, high-speed identification of counterfeit antimalarial drugs on paper.

    Science.gov (United States)

    Koesdjojo, Myra T; Wu, Yuanyuan; Boonloed, Anukul; Dunfield, Elizabeth M; Remcho, Vincent T

    2014-12-01

    With the emergence of artesunate antimalarial counterfeiting in Southeast Asia and sub-Saharan Africa, we present the production of a rapid, inexpensive and simple colorimetric-based testing kit for the detection of counterfeit artesunate in order to preserve life and prevent the development of multi-drug resistant malaria. The kit works based on paper microfluidics which offer several advantages over conventional microfluidics, and has great potential to generate inexpensive, easy-to-use, rapid and disposable diagnostic devices. Here, we have developed a colorimetric assay that is specific to artesunate and turns yellow upon addition of the sample. The test can be done within minutes, and allows for a semi-quantitative analysis of the artesunate tablets by comparing the developed yellow color on the paper test to a color-coded key chart that comes with the kit. A more accurate and precise analysis is done by utilizing a color analyzer on an iPhone camera that measures the color intensity of the developed color on the paper chip. A digital image of the chip was taken and analyzed by measuring the average gray intensity of the color developed on the paper circle. A plot of the artesunate concentration versus the average gray scale intensity was generated. Results show that the intensity of the yellow color developed on the paper test was consistent and proportional to the amount of artesunate present in the sample. With artesunate concentrations ranging from 0.0 to 20mg/mL, a linear calibration plot was obtained with a detection limit of 0.98 mg/mL.

  12. The search for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: a review

    Directory of Open Access Journals (Sweden)

    Krettli Antoniana U

    2001-01-01

    Full Text Available In this review we discuss the ongoing situation of human malaria in the Brazilian Amazon, where it is endemic causing over 610,000 new acute cases yearly, a number which is on the increase. This is partly a result of drug resistant parasites and new antimalarial drugs are urgently needed. The approaches we have used in the search of new drugs during decades are now reviewed and include ethnopharmocology, plants randomly selected, extracts or isolated substances from plants shown to be active against the blood stage parasites in our previous studies. Emphasis is given on the medicinal plant Bidens pilosa, proven to be active against the parasite blood stages in tests using freshly prepared plant extracts. The anti-sporozoite activity of one plant used in the Brazilian endemic area to prevent malaria is also described, the so called "Indian beer" (Ampelozizyphus amazonicus, Rhamnaceae. Freshly prepared extracts from the roots of this plant were totally inactive against blood stage parasites, but active against sporozoites of Plasmodium gallinaceum or the primary exoerythrocytic stages reducing tissue parasitism in inoculated chickens. This result will be of practical importance if confirmed in mammalian malaria. Problems and perspectives in the search for antimalarial drugs are discussed as well as the toxicological and clinical trials to validate some of the active plants for public health use in Brazil.

  13. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.A.Judith A.; Laseter, Anne G.; Filer, C.N.Crist N. E-mail: crist.filer@perkinelmer.com

    2002-09-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3-{sup 3}H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl-{sup 3}H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [{sup 3}H] ethyl iodide.

  14. Analysis of the electrochemical reactivity of natural hemozoin and {beta}-hemozoin in the presence of antimalarial drugs

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Reyes-Cruz, Victor, E-mail: reyescruz16@yahoo.com [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Urbano Reyes, Gustavo, E-mail: gurbano2003@yahoo.com.mx [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Veloz Rodriguez, Maria Aurora, E-mail: maveloz70@yahoo.com.mx [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Imbert Palafox, Jose Luis, E-mail: imbertox@hotmail.com [Area Academica de Medicina, Instituto de Ciencias de la Salud, Universidad Autonoma del Estado de Hidalgo (Mexico)

    2011-11-30

    We report an evaluation of the reactivity of hemozoin (HZ) and {beta}-hemozoin ({beta}-HZ) obtained from the Triatoma Meccus longipennis, alone and in combination with quinine and amodiaquine. Using cyclic voltammetry and carbon paste electrodes, the redox processes that these compounds undergo were analysed. The results indicated that the atom Fe presence, the substance concentration, the drugs existence and the nature of the electrolytic medium are important in the redox processes. The strongest reactivity was for {beta}-HZ from Triatoma, which suggests that cellular molecules are embedded in an oxidising environment due to the presence of {beta}-HZ and indicates that like HZ, {beta}-HZ could be associate with phospholipid bilayers and interfere with their physical and chemical integrity, contributing to membrane breakdown and hyper-oxidation of molecules. It was further observed that when measuring the reactivity of HZ and {beta}-HZ with quinine and amodiaquine, a more oxidative stress was generated between the second one and the {beta}-HZ, which could explain the effectiveness of amodiaquine as a better antimalarial drug. Finally, it was concluded that electrochemical evaluation may be a convenient tool in determining the efficiency of antimalarial drugs and the identification of their redox processes.

  15. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  16. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System

    Directory of Open Access Journals (Sweden)

    Zoraima Neto

    2013-01-01

    Full Text Available Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS were analyzed. In vivo efficacy of curcumin was studied in BALB/c mice infected with Plasmodium chabaudi clones resistant to chloroquine and artemisinin, and drug interactions were analyzed by isobolograms. Subtherapeutic doses of curcumin, chloroquine, and artemisinin were administered to mice, and mRNA was collected following treatment for RT-PCR analysis of genes encoding deubiquitylating enzymes (DUBs. Curcumin was found be nontoxic in BALB/c mice. The combination of curcumin/chloroquine/piperine reduced parasitemia to 37% seven days after treatment versus the control group’s 65%, and an additive interaction was revealed. Curcumin/piperine/artemisinin combination did not show a favorable drug interaction in this murine model of malaria. Treatment of mice with subtherapeutic doses of the drugs resulted in a transient increase in genes encoding DUBs indicating UPS interference. If curcumin is to join the arsenal of available antimalarial drugs, future studies exploring suitable drug partners would be of interest.

  17. Effect of transmission reduction by insecticide-treated bednets (ITNs on antimalarial drug resistance in western Kenya.

    Directory of Open Access Journals (Sweden)

    Monica Shah

    Full Text Available Despite the clear public health benefit of insecticide-treated bednets (ITNs, the impact of malaria transmission-reduction by vector control on the spread of drug resistance is not well understood. In the present study, the effect of sustained transmission reduction by ITNs on the prevalence of Plasmodium falciparum gene mutations associated with resistance to the antimalarial drugs sulfadoxine-pyrimethamine (SP and chloroquine (CQ in children under the age of five years was investigated during an ITN trial in Asembo area, western Kenya. During the ITN trial, the national first line antimalarial treatment changed from CQ to SP. Smear-positive samples collected from cross sectional surveys prior to ITN introduction (baseline, n = 250 and five years post-ITN intervention (year 5 survey, n = 242 were genotyped for single nucleotide polymorphisms (SNPs at dhfr-51, 59, 108, 164 and dhps-437, 540 (SP resistance, and pfcrt-76 and pfmdr1-86 (CQ resistance. The association between the drug resistance mutations and epidemiological variables was evaluated. There were significant increases in the prevalence of SP dhps mutations and the dhfr/dhps quintuple mutant, and a significant reduction in the proportion of mixed infections detected at dhfr-51, 59 and dhps-437, 540 SNPs from baseline to the year 5 survey. There was no change in the high prevalence of pfcrt-76 and pfmdr1-86 mutations. Multivariable regression analysis further showed that current antifolate use and year of survey were significantly associated with more SP drug resistance mutations. These results suggest that increased antifolate drug use due to drug policy change likely led to the high prevalence of SP mutations 5 years post-ITN intervention and reduced transmission had no apparent effect on the existing high prevalence of CQ mutations. There is no evidence from the current study that sustained transmission reduction by ITNs reduces the prevalence of genes associated with malaria

  18. A small-fish model for behavioral-toxicological screening of new antimalarial drugs: a comparison between erythro- and threo-mefloquine

    OpenAIRE

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2015-01-01

    Background New antimalarial drugs need to be developed because over time resistance against the existing drugs develops. Furthermore, some of the drugs have severe side effects. Here we describe a behavioral small-fish model for early detection of neurotoxic effects of new drugs. As case example we compare the effects of two mefloquine diastereomers on the behavior of goldfish using an automated 3D tracking system. Findings In a preliminary experiment, the overall toxic effects in terms of mo...

  19. Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs

    Directory of Open Access Journals (Sweden)

    Pradines Bruno

    2011-10-01

    Full Text Available Abstract Background As a result of widespread chloroquine and sulphadoxine-pyrimethamine resistance, artemisinin-based combination therapy (ACT (which includes artemether-lumefantrine and artesunate-amodiaquine has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Since then, there have been very few reports on the ex vivo susceptibility of Plasmodium falciparum to anti-malarial drugs. To examine whether parasite susceptibility has been affected by the widespread use of ACT, the ex vivo susceptibility of local isolates was assessed at the military hospital of Dakar. Methods The ex vivo susceptibility of 93 P. falciparum isolates from Dakar was successfully determined using the Plasmodium lactate dehydrogenase (pLDH ELISA for the following drugs: chloroquine (CQ, quinine (QN, mefloquine (MQ, monodesethylamodiaquine (MDAQ, lumefantrine (LMF, dihydroartemisinin (DHA and doxycycline (DOX. Results After transformation of the isolate IC50 in ratio of IC50 according to the susceptibility of the 3D7 reference strain (isolate IC50/3D7 IC50, the prevalence of the in vitro resistant isolates with reduced susceptibility was 50% for MQ, 22% for CQ, 12% for DOX, 6% for both QN and MDAQ and 1% for the drugs LMF and DHA. The highest significant positive correlations were shown between responses to CQ and MDAQ (r = 0.569; P r = 0.511; P r = 0.428; P = 0.0001, LMF and MQ (r = 0.413; P = 0.0002, QN and DHA (r = 0.402; P = 0.0003 and QN and MQ (r = 0.421; P = 0.0001. Conclusions The introduction of ACT in 2002 has not induced a decrease in P. falciparum susceptibility to the drugs DHA, MDAQ and LMF, which are common ACT components. However, the prevalence of P. falciparum isolates with reduced susceptibility has increased for both MQ and DOX. Taken together, these data suggest that intensive surveillance of the P. falciparum in vitro susceptibility to anti-malarial drugs in Senegal is required.

  20. Assessment of global reporting of adverse drug reactions for anti-malarials, including artemisinin-based combination therapy, to the WHO Programme for International Drug Monitoring

    Directory of Open Access Journals (Sweden)

    Van Erps Jan

    2011-03-01

    Full Text Available Abstract Background In spite of enhanced control efforts, malaria remains a major public health problem causing close to a million deaths annually. With support from several donors, large amounts of artemisinin-based combination therapy (ACT are being deployed in endemic countries raising safety concerns as little is known about the use of ACT in several of the settings where they are deployed. This project was undertaken to profile the provenance of the pharmacovigilance reporting of all anti-malarials, including ACT to the WHO adverse drug reaction (ADR database (Vigibase™ over the past 40 years. Methods The WHO Programme for International Drug Monitoring, the Uppsala Monitoring Centre (UMC provided anonymized extracts of Vigibase™ covering the period 1968-2008. All countries in the programme were clustered according to their malaria control phase and income status. The number of individual case safety reports (ICSRs of anti-malarials was analyzed according to those clusters. Results From 1968 to 2008, 21,312 ICSRs suspecting anti-malarials were received from 64 countries. Low-income countries, that are also malaria-endemic (categorized as priority 1 countries submitted only 1.2% of the ICSRs. Only 60 out of 21,312 ICSRs were related to ACT, 51 of which were coming from four sub-Saharan African countries. Although very few ICSRs involved artemisinin-based compounds, many of the adverse events reported were potentially serious. Conclusions This paper illustrates the low reporting of ADRs to anti-malarials in general and ACT in particular. Most reports were submitted by non-endemic and/or high-income countries. Given the current mix of large donor funding, the insufficient information on safety of these drugs, increasing availability of ACT and artemisinin-based monotherapies in public and private sector channels, associated potential for inappropriate use and finally a pipeline of more than 10 new novel anti-malarials in various stages of

  1. Antimalarial drug resistance of Plasmodium falciparum in India: changes over time and space

    OpenAIRE

    Shah, Naman K.; Dhillon, Gajender P S; Dash, Adtiya P; Arora, Usha; Meshnick, Steven R.; Valecha, Neena

    2011-01-01

    After the launch of the National Malaria Control Programme in 1953, the number of malaria cases reported in India fell to an all-time low of 0·1 million in 1965. However, the initial success could not be maintained and a resurgence of malaria began in the late 1960s. Resistance of Plasmodium falciparum to chloroquine was first reported in 1973 and increases in antimalarial resistance, along with rapid urbanisation and labour migration, complicated the challenge that India’s large geographical...

  2. Is primaquine useful and safe as true exo-erythrocytic merontocidal, hypnozoitocidal and gametocidal antimalarial drug?

    Directory of Open Access Journals (Sweden)

    Francisco Javier López-Antuñano

    1999-10-01

    Full Text Available The main objective of this paper is to make available in a single document, a sequence of events that have been published on the biology of malaria parasites and their interaction with the human host, looking for arguments for effective and save treatment: what we know and what we would like to know about the effects of primaquine in order to justify its use in clinical and public health practice. The practicioner should be aware that the antimalarial activity, hemolytic and methemoglobinemic side effects, and detoxification of primaquine are all thought to depend on various biotransformation products of the drug. In spite of the universal use during over six decades, their site and mechanism of formation and degradation and their specific biologic effects remain very poorly understood in human beings. The mature gametocytes of P. falciparum are naturally resistant to chloroquine and other blood merontocides, but they are usually eliminated with a single dose of 1.315 mg/kg per os (p.o. of primaquine phosphate (equivalent to 0.75 mg-base. Rather than empirically, related with relapses frequency, dosage schedules should only be determined through consideration of the kinetics and dynamics of the drug and its effect on sporozoites, pre and exo-erythrocytic merontes, hypnozoites and gametocytes of P. vivax. Where medical care services are not available or not capable to detect glucose -6- phosphate dehydrogenese- (G-6-PD deficiencies and deleterious effects of the drug, we recommend not to use primaquine. Both, P. vivax primary clinical attack and P. vivax relapses, as and when they occur should be treated with a course of 10 mg/kg chloroquine-base p.o. Prevention of relapses is probably related to strain characteristics of P. vivax hypnozoites populations envolved. If well informed and qualified medical care workers decide to use primaquine in the absence of enzime defficiencies and are able to follow-up the clinical, toxicological and parasitic

  3. Establishment of an in vitro screening model for neurodegeneration induced by antimalarial drugs of the artemisinin-type..

    Science.gov (United States)

    Schmuck, G; Haynes, R K

    2000-01-01

    The establishment of an in vitro screening model for neurodegeneration inducing antimalarial drugs was conducted in stepwise fashion. Firstly, the in vivo selective neurotoxic potency of artemisinin was tested in neuronal cells in vitro in relation to the cytotoxic potency in other organ cell cultures such as liver and kidney or versus glial cells. Secondly, a comparison between different parts of the brain (cortex vs. brain stem) was performed and in the last step, a fast and sensitive screening endpoint was identified. In summary, non-neuronal cell lines such as hepatocytes (HEP-G2), liver epithelial cells (IAR), proximal tubular cells (LLC-PK(1)) and glial cells from the rat (C6) and human (GO-G-IJKT) displayed only moderate sensitivity to artemisinin and its derivatives. The same was found in undifferentiated neuronal cell lines from the mouse (N-18) and from human (Kelly), whereas during differentiation, these cells became much more sensitive. Primary astrocytes from the rat also were not specifically involved. In the comparison of primary neuronal cell cultures from the cortex and brain stem of the rat, the brain stem was found to be more sensitive than the cortex. The neurotoxic potential was determined by cytoskeleton elements (neurofilaments), which were degradated in vitro by diverse neurodegenerative compounds. In comparison of dog and rat primary brain stem cultures, the dog cells were found to be more sensitive to artemisinin than the rat cells. In addition to the primary brain stem cell cultures it was shown that the sprouting assay, which determines persistent delayed neurotoxic effects, is also useful for screening antimalarial drugs. To other compounds, artemether and artesunate, showed that use of the sprouting assay followed by primary brain stem cultures of the rat will be a good strategy to select candidate compounds.

  4. Saleability of anti-malarials in private drug shops in Muheza, Tanzania: a baseline study in an era of assumed artemisinin combination therapy (ACT

    Directory of Open Access Journals (Sweden)

    Ringsted Frank M

    2011-08-01

    Full Text Available Abstract Background Artemether-lumefantrine (ALu replaced sulphadoxine-pymimethamine (SP as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant women depend on SP for Intermittent Preventive Treatment (IPTp during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform a baseline study of the private market for anti-malarials in Muheza town, an area with widespread anti-malarial drug resistance, prior to the implementation of a provider training and accreditation programme that will allow accredited drug shops to sell subsidized ALu. Methods All drug shops selling prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. Results All surveyed drug shops illicitly sold SP and quinine (QN, and legally amodiaquine (AQ. Calculated monthly sale was 4,041 doses, in a town with a population of 15,000 people. Local brands of SP accounted for 74% of sales volume, compared to AQ (13%, QN (11% and ACT (2%. Conclusions In community practice, the saleability of ACT was negligible. SP was best-selling, and use was not reserved for IPTp, as stipulated in the national anti-malarial policy. It is a major reason for concern that such drug-pressure in the community equals de facto intermittent presumptive treatment. In an area where SP drug resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp

  5. World Antimalarial Resistance Network (WARN IV: Clinical pharmacology

    Directory of Open Access Journals (Sweden)

    Gbotosho Grace O

    2007-09-01

    Full Text Available Abstract A World Antimalarial Resistance Network (WARN database has the potential to improve the treatment of malaria, through informing current drug selection and use and providing a prompt warning of when treatment policies need changing. This manuscript outlines the contribution and structure of the clinical pharmacology component of this database. The determinants of treatment response are multi-factorial, but clearly providing adequate blood concentrations is pivotal to curing malaria. The ability of available antimalarial pharmacokinetic data to inform optimal dosing is constrained by the small number of patients studied, with even fewer (if any studies conducted in the most vulnerable populations. There are even less data relating blood concentration data to the therapeutic response (pharmacodynamics. By pooling all available pharmacokinetic data, while paying careful attention to the analytical methodologies used, the limitations of small (and thus underpowered individual studies may be overcome and factors that contribute to inter-individual variability in pharmacokinetic parameters defined. Key variables for pharmacokinetic studies are defined in terms of patient (or study subject characteristics, the formulation and route of administration of the antimalarial studied, the sampling and assay methodology, and the approach taken to data analysis. Better defining these information needs and criteria of acceptability of pharmacokinetic-pharmacodynamic (PK-PD studies should contribute to improving the quantity, relevance and quality of these studies. A better understanding of the pharmacokinetic properties of antimalarials and a more clear definition of what constitutes "therapeutic drug levels" would allow more precise use of the term "antimalarial resistance", as it would indicate when treatment failure is not caused by intrinsic parasite resistance but is instead the result of inadequate drug levels. The clinical pharmacology component

  6. Estimating antimalarial drugs consumption in Africa before the switch to artemisinin-based combination therapies (ACTs

    Directory of Open Access Journals (Sweden)

    Vreeke Ed

    2007-07-01

    Full Text Available Abstract Background Having reliable forecasts is critical now for producers, malaria-endemic countries and agencies in order to adapt production and procurement of the artemisinin-based combination treatments (ACTs, the new first-line treatments of malaria. There is no ideal method to quantify drug requirements for malaria. Morbidity data give uncertain estimations. This study uses drug consumption to provide elements to help estimate quantities and financial requirements of ACTs. Methods The consumption of chloroquine, sulphadoxine/pyrimethamine and quinine both through the private and public sector was assessed in five sub-Saharan Africa countries with different epidemiological patterns (Senegal, Rwanda, Tanzania, Malawi, Zimbabwe. From these data the number of adult treatments per capita was calculated and the volumes and financial implications derived for the whole of Africa. Results Identifying and obtaining data from the private sector was difficult. The quality of information on drug supply and distribution in countries must be improved. The number of adult treatments per capita and per year in the five countries ranged from 0.18 to 0.50. Current adult treatment prices for ACTs range US$ 1–1.8. Taking the upper range for both volumes and costs, the highest number of adult treatments consumed for Africa was estimated at 314.5 million, corresponding to an overall maximum annual need for financing ACT procurement of US$ 566.1 million. In reality, both the number of cases treated and the cost of treatment are likely to be lower (projections for the lowest consumption estimate with the least expensive ACT would require US $ 113 million per annum. There were substantial variations in the market share between public and private sources among these countries (the public sector share ranging from 98% in Rwanda to 33% in Tanzania. Conclusion Additional studies are required to build a more robust methodology, and to assess current consumptions

  7. Fake anti-malarials: start with the facts.

    Science.gov (United States)

    Kaur, Harparkash; Clarke, Siȃn; Lalani, Mirza; Phanouvong, Souly; Guérin, Philippe; McLoughlin, Andrew; Wilson, Benjamin K; Deats, Michael; Plançon, Aline; Hopkins, Heidi; Miranda, Debora; Schellenberg, David

    2016-02-13

    This meeting report presents the key findings and discussion points of a 1-day meeting entitled 'Fake anti-malarials: start with the facts' held on 28th May 2015, in Geneva, Switzerland, to disseminate the findings of the artemisinin combination therapy consortium's drug quality programme. The teams purchased over 10,000 samples, using representative sampling approaches, from six malaria endemic countries: Equatorial Guinea (Bioko Island), Cambodia, Ghana, Nigeria, Rwanda and Tanzania. Laboratory analyses of these samples showed that falsified anti-malarials (fact that the WHO has urged regulatory authorities in malaria-endemic countries to take measures to halt the production and marketing of these oral monotherapies since 2007. This report summarizes the presentations that reviewed the public health impact of falsified and substandard drugs, sampling strategies, techniques for drug quality analysis, approaches to strengthen health systems capacity for the surveillance of drug quality, and the ensuing discussion points from the dissemination meeting.

  8. Assessment of Markers of Antimalarial Drug Resistance in Plasmodium falciparum Isolates from Pregnant Women in Lagos, Nigeria.

    Directory of Open Access Journals (Sweden)

    Chimere Obiora Agomo

    Full Text Available The use of antimalarial drugs for prevention and treatment is a major strategy in the prevention of malaria in pregnancy. Although sulphadoxine-pyrimethamine (SP is currently recommended for intermittent preventive treatment of malaria during pregnancy in Nigeria, previously used drugs for prophylaxis such as chloroquine (CQ and pyrimethamine are accessible as they are purchased over the counter. This study describes the markers of absence or presence of resistance to quinoline (Pfcrt and Pfmdr 1 and type 1 antifolate antimalarial medicines (Pfdhfr.Plasmodium falciparum-positive dried blood spots from pregnant women attending antenatal clinics for the first time during current pregnancy were investigated for the presence of mutations at codons 72-76 of Plasmodium falciparum chloroquine resistance transporter (Pfcrt gene by real time polymerase chain reaction (PCR using haplotype-specific probes. PCR followed by sequence analysis was used to identify mutations at codons 86, 184, 1034, 1042 and 1246 of P. falciparum multi-drug resistance-1 (Pfmdr1 gene; and codons 16, 50, 51, 59, 108, 140 and 164 of Pfdhfr gene.Two haplotypes of Pfcrt (n = 54 were observed: CVMNK 13(24.2% and CVIET 41 (75.9% of the samples. The SVMNT haplotype was absent in this population. The Pfmdr1 (n = 28 haplotypes were NYSND 15(53.6%, YYSND 5(17.9%, NFSND 6(21.4% and YFSND 2(7.1%. The Pfdhfr (n = 15 were ACNCSVI 4(26.7%, and ACICNSVI 1(6.7% and ACIRNVI 10 (66.7%. The rate of occurrence of Pfcrt 76T, Pfdhfr108N, Pfmdr186Y and 184F were 75.9%, 73.3%, 25% and 28.1% respectively. The Pfmdr1 86Y was associated with low parasitaemia (median = 71 parasites/μl, P = 0.024 while Pfcrt 76T was associated with young maternal age (mean 24.1 ± 4.5 years; P = 0.006. The median parasitaemia were similar (P>0.05 in wild and mutant strains of Pfcrt 76, Pfmdr1 184 and Pfdhfr 108. There was no association between gravidity or gestational age of the women and presence of mutations in the Pfcrt

  9. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN

    Directory of Open Access Journals (Sweden)

    Barnes Karen I

    2010-12-01

    Full Text Available Abstract Background The Worldwide Antimalarial Resistance Network (WWARN is a global collaboration to support the objective that anyone affected by malaria receives effective and safe drug treatment. The Pharmacology module aims to inform optimal anti-malarial drug selection. There is an urgent need to define the drug exposure - effect relationship for most anti-malarial drugs. Few anti-malarials have had their therapeutic blood concentration levels defined. One of the main challenges in assessing safety and efficacy data in relation to drug concentrations is the comparability of data generated from different laboratories. To explain differences in anti-malarial pharmacokinetics in studies with different measurement laboratories it is necessary to confirm the accuracy of the assay methods. This requires the establishment of an external quality assurance process to assure results that can be compared. This paper describes this process. Methods The pharmacology module of WWARN has established a quality assurance/quality control (QA/QC programme consisting of two separate components: 1. A proficiency testing programme where blank human plasma spiked with certified reference material (CRM in different concentrations is sent out to participating bioanalytical laboratories. 2. A certified reference standard programme where accurately weighed amounts of certified anti-malarial reference standards, metabolites, and internal standards are sent to participating bioanalytical and in vitro laboratories. Conclusion The proficiency testing programme is designed as a cooperative effort to help participating laboratories assess their ability to carry out drug analysis, resolve any potential problem areas and to improve their results - and, in so doing, to improve the quality of anti-malarial pharmacokinetic data published and shared with WWARN. By utilizing the same source of standards for all laboratories, it is possible to minimize bias arising from poor

  10. The antimalarial drug mefloquine inhibits cardiac inward rectifier K+ channels: evidence for interference in PIP2-channel interaction.

    Science.gov (United States)

    López-Izquierdo, Angélica; Ponce-Balbuena, Daniela; Moreno-Galindo, Eloy G; Aréchiga-Figueroa, Iván A; Rodríguez-Martínez, Martín; Ferrer, Tania; Rodríguez-Menchaca, Aldo A; Sánchez-Chapula, José A

    2011-04-01

    The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 μM) > Kir2.1 (IC50 > 30 μM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 μM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.

  11. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity.

    Science.gov (United States)

    Lucchi, Naomi W; Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-12-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya.

  12. Artemisinin combination therapies price disparity between government and private health sectors and its implication on antimalarial drug consumption pattern in Morogoro Urban District, Tanzania

    Directory of Open Access Journals (Sweden)

    Malisa Allen

    2012-03-01

    Full Text Available Abstract Background Universal access to effective treatments is a goal of the Roll Back Malaria Partnership. However, despite official commitments and substantial increases in financing, this objective remains elusive, as development assistance continue to be routed largely through government channels, leaving the much needed highly effective treatments inaccessible or unaffordable to those seeking services in the private sector. Methods To quantify the effect of price disparity between the government and private health systems, this study have audited 92 government and private Drug Selling Units (DSUs in Morogoro urban district in Tanzania to determine the levels, trend and consumption pattern of antimalarial drugs in the two health systems. A combination of observation, interviews and questionnaire administered to the service providers of the randomly selected DSUs were used to collect data. Results ALU was the most selling antimalarial drug in the government health system at a subsidized price of 300 TShs (0.18 US$. By contrast, ALU that was available in the private sector (coartem was being sold at a price of about 10,000 TShs (5.9 US$, the price that was by far unaffordable, prompting people to resort to cheap but failed drugs. As a result, metakelfin (the phased out drug was the most selling drug in the private health system at a price ranging from 500 to 2,000 TShs (0.29–1.18 US$. Conclusions In order for the prompt diagnosis and treatment with effective drugs intervention to have big impact on malaria in mostly low socioeconomic malaria-endemic areas of Africa, inequities in affordability and access to effective treatment must be eliminated. For this to be ensued, subsidized drugs should be made available in both government and private health sectors to promote a universal access to effective safe and affordable life saving antimalarial drugs.

  13. Development and validation of a generic liquid chromatographic method for the simultaneous determination of five commonly used antimalarial drugs: Application to pharmaceutical formulations and human plasma.

    Science.gov (United States)

    Mannemala, Sai Sandeep; Nagarajan, Janaki Sankarachari Krishnan

    2015-05-01

    A simple, sensitive, and rapid liquid chromatographic method was developed and validated using diode array detection for the determination of five commonly used antimalarial drugs in pharmaceutical formulations and in human plasma. Chromatographic separation of antimalarial drugs and internal standard (ibuprofen) was achieved on a C18 column with a mobile phase composed of 10 mM dipotassium orthophosphate at pH 3.0, methanol, and acetonitrile in a ratio of 20:38:42 v/v, at a flow rate of 1 mL/min. The analytes were monitored at 220 nm and separated in ˂10 min. The method was validated for linearity, accuracy, precision, limit of quantification, and robustness. Both intra- and interday precisions (in terms of %RSD) were lower than 3% and accuracy ranged from 98.1 to 104.5%. Extraction recoveries were ≥96% in plasma. The limits of quantitation for artemether, lumefantrine, pyrimethamine, sulfadoxine, and mefloquine were 0.3, 0.03, 0.06, 0.15, and 0.15 μg/mL in human plasma. Stability under various conditions was also investigated. The method was successfully applied for quantification of antimalarial drugs in marketed formulations and in spiked human plasma. The method can be employed for routine QC purposes and in pharmacokinetic investigations.

  14. Insights following change in drug policy: A descriptive study for antimalarial prescription practices in children of public sector health facilities in Jharkhand state of India

    Directory of Open Access Journals (Sweden)

    Neelima Mishra

    2013-12-01

    Full Text Available Background & objectives: Widespread resistance to chloroquine was the mainstay to implement artemisininbased combination therapy (ACT in the year 2007 in few malaria endemic states in India including Jharkhand as the first line of treatment for uncomplicated Plasmodium falciparum malaria. This study was conducted in Jharkhand state of the country just after the implementation of ACT to assess the prevailing antimalarial drug prescribing practices, availability of antimalarial drugs and the acceptability of the new policy by the health professionals for the treatment of uncomplicated P. falciparum malaria patients particularly in children ≤15 yr of age. Methods: This is a cross-sectional study in children aged ≤15 yr with malaria or to whom antimalarial drug was prescribed. Main outcome measure was prescription of recommended ACT in children aged ≤15 yr with malaria in the selected areas of Jharkhand. Results: In the year 2008, artemisinin-based combination therapy (ACT was implemented in 12 districts of the studied state; however, the availability of ACT was confirmed only in five districts. Antimalarial prescription was prevalent amongst the undiagnosed (8.4%, malaria negative (64.3% and unknown blood test result (1.2% suggesting the prevalence of irrational treatment practices. ACT prescription was very low with only 3.2% of confirmed falciparum malaria patients receiving it while others received either non-artesunate (NA treatment (88.1% including chloroquine (CQ alone, CQ + Primaquine (PQ/other drugs, sulphadoxine-pyrimethamine (SP alone, SP + other drugs or artemisinin monotherapy (AM treatment (6.3%. Still others were given nonantimalarial treatment (NM in both malaria positive (0.3% and malaria negative (2.1% cases. Interpretation & conclusion: Despite the change in drug policy in the studied state the availability and implementation of ACT was a major concern. Nevertheless, the non-availability of blister packs for children aged

  15. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: A structure-based drug designing approach

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Kesharwani

    2013-04-01

    Full Text Available Background & objectives: Cysteine proteases (falcipains, a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Methods: Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64 and leupeptin respectively were retrieved from protein data bank (PDB and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. Results: The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in

  16. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine

    Directory of Open Access Journals (Sweden)

    Pybus Brandon S

    2012-08-01

    Full Text Available Abstract Background The 8-aminoquinoline (8AQ drug primaquine (PQ is currently the only approved drug effective against the persistent liver stage of the hypnozoite forming strains Plasmodium vivax and Plasmodium ovale as well as Stage V gametocytes of Plasmodium falciparum. To date, several groups have investigated the toxicity observed in the 8AQ class, however, exact mechanisms and/or metabolic species responsible for PQ’s haemotoxic and anti-malarial properties are not fully understood. Methods In the present study, the metabolism of PQ was evaluated using in vitro recombinant metabolic enzymes from the cytochrome P450 (CYP and mono-amine oxidase (MAO families. Based on this information, metabolite identification experiments were performed using nominal and accurate mass measurements. Results Relative activity factor (RAF-weighted intrinsic clearance values show the relative role of each enzyme to be MAO-A, 2C19, 3A4, and 2D6, with 76.1, 17.0, 5.2, and 1.7% contributions to PQ metabolism, respectively. CYP 2D6 was shown to produce at least six different oxidative metabolites along with demethylations, while MAO-A products derived from the PQ aldehyde, a pre-cursor to carboxy PQ. CYPs 2C19 and 3A4 produced only trace levels of hydroxylated species. Conclusions As a result of this work, CYP 2D6 and MAO-A have been implicated as the key enzymes associated with PQ metabolism, and metabolites previously identified as potentially playing a role in efficacy and haemolytic toxicity have been attributed to production via CYP 2D6 mediated pathways.

  17. Seasonal distribution of anti-malarial drug resistance alleles on the island of Sumba, Indonesia

    NARCIS (Netherlands)

    Asih, P.B.; Rogers, W.O.; Susanti, A.I.; Rahmat, A.; Rozi, I.E.; Kusumaningtyas, M.A.; Dewi, R.M.; Coutrier, F.N.; Sutamihardja, A.; Ven, A.J.A.M. van der; Sauerwein, R.W.; Syafruddin, D.

    2009-01-01

    BACKGROUND: Drug resistant malaria poses an increasing public health problem in Indonesia, especially eastern Indonesia, where malaria is highly endemic. Widespread chloroquine (CQ) resistance and increasing sulphadoxine-pyrimethamine (SP) resistance prompted Indonesia to adopt artemisinin-based com

  18. Determination of log P values of new cyclen based antimalarial drug leads using RP-HPLC.

    Science.gov (United States)

    Rudraraju, A V; Amoyaw, P N A; Hubin, T J; Khan, M O F

    2014-09-01

    Lipophilicity, expressed by log P, is an important physicochemical property of drugs that affects many biological processes, including drug absorption and distribution. The main purpose of this study to determine the log P values of newly discovered drug leads using reversed-phase high-performance liquid chromatography (RP-HPLC). The reference standards, with varying polarity ranges, were dissolved in methanol and analyzed by RP-HPLC using a C18 column. The mobile phase consisted of a mixture of acetonitrile, methanol and water in a gradient elution mode. A calibration curve was plotted between the experimental log P values and obtained log k values of the reference standard compounds and a best fit line was obtained. The log k values of the new drug leads were determined in the same solvent system and were used to calculate the respective log P values by using the best fit equation. The log P vs. log k data gave a best fit linear curve that had an R2 of 0.9786 with Pvalues of the intercept and slope of 1.19 x 10(-6) and 1.56 x 10(-10), respectively, at 0.05 level of significance. Log P values of 15 new drug leads and related compounds, all of which are derivatives of macrocyclic polyamines and their metal complexes, were determined. The values obtained are closely related to the calculated log P (Clog P) values using ChemDraw Ultra 12.0. This experiment provided efficient, fast and reasonable estimates of log P values of the new drug leads by using RP-HPLC.

  19. Cost-effectiveness study of three antimalarial drug combinations in Tanzania.

    Directory of Open Access Journals (Sweden)

    Virginia Wiseman

    2006-10-01

    Full Text Available BACKGROUND: As a result of rising levels of drug resistance to conventional monotherapy, the World Health Organization (WHO and other international organisations have recommended that malaria endemic countries move to combination therapy, ideally with artemisinin-based combinations (ACTs. Cost is a major barrier to deployment. There is little evidence from field trials on the cost-effectiveness of these new combinations. METHODS AND FINDINGS: An economic evaluation of drug combinations was designed around a randomised effectiveness trial of combinations recommended by the WHO, used to treat Tanzanian children with non-severe slide-proven malaria. Drug combinations were: amodiaquine (AQ, AQ with sulfadoxine-pyrimethamine (AQ+SP, AQ with artesunate (AQ+AS, and artemether-lumefantrine (AL in a six-dose regimen. Effectiveness was measured in terms of resource savings and cases of malaria averted (based on parasitological failure rates at days 14 and 28. All costs to providers and to patients and their families were estimated and uncertain variables were subjected to univariate sensitivity analysis. Incremental analysis comparing each combination to monotherapy (AQ revealed that from a societal perspective AL was most cost-effective at day 14. At day 28 the difference between AL and AQ+AS was negligible; both resulted in a gross savings of approximately US1.70 dollars or a net saving of US22.40 dollars per case averted. Varying the accuracy of diagnosis and the subsistence wage rate used to value unpaid work had a significant effect on the number of cases averted and on programme costs, respectively, but this did not change the finding that AL and AQ+AS dominate monotherapy. CONCLUSIONS: In an area of high drug resistance, there is evidence that AL and AQ+AS are the most cost-effective drugs despite being the most expensive, because they are significantly more effective than other options and therefore reduce the need for further treatment. This is

  20. General Pharmacology of Artesunate, a Commonly used Antimalarial Drug:Effects on Central Nervous, Cardiovascular, and Respiratory System.

    Science.gov (United States)

    Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Eun-Joo

    2010-09-01

    Artesunate, a semi-synthetic derivative of artemisinin, is used primarily as a treatment for malaria. Its effects on the central nervous system, general behavior, and cardiovascular, respiratory, and other organ systems were studied using mice, rats, guinea pigs, and dogs. Artesunate was administered orally to mice at doses of 125, 250, and 500 mg/kg and to rats and guinea pigs at 100, 200, and 400 mg/kg. In dogs, test drugs were administered orally in gelatin capsules at doses of 50, 100, and 150 mg/kg. Artesunate induced insignificant changes in general pharmacological studies, including general behavior, motor coordination, body temperature, analgesia, convulsion modulation, blood pressure, heart rate (HR) , and electrocardiogram (ECG) in dogs in vivo; respiration in guinea pigs; and gut motility or direct effects on isolated guinea pig ileum, contractile responses, and renal function. On the other hand, artesunate decreased the HR and coronary flow rate (CFR) in the rat in vitro; however, the extent of the changes was small and they were not confirmed in in vivo studies in the dog. Artesunate increased hexobarbital-induced sleeping time in a dose-related manner. Artesunate induced dose-related decreases in the volume of gastric secretions and the total acidity of gastric contents, and induced increases in pH at a dose of 400 mg/kg. However, all of these changes were observed at doses much greater than clinical therapeutic doses (2.4 mg/kg in humans, when used as an anti-malarial) . Thus, it can be concluded that artesunate is safe at clinical therapeutic doses.

  1. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Chang Cheng

    Full Text Available BACKGROUND: Phosphoinositide 3-kinase (PI3K/Akt pathway is linked to the development of asthma. Anti-malarial drug artesunate is a semi-synthetic derivative of artemisinin, the principal active component of a medicinal plant Artemisia annua, and has been shown to inhibit PI3K/Akt activity. We hypothesized that artesunate may attenuate allergic asthma via inhibition of the PI3K/Akt signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: Female BALB/c mice sensitized and challenged with ovalbumin (OVA developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Artesunate dose-dependently inhibited OVA-induced increases in total and eosinophil counts, IL-4, IL-5, IL-13 and eotaxin levels in bronchoalveolar lavage fluid. It attenuated OVA-induced lung tissue eosinophilia and airway mucus production, mRNA expression of E-selectin, IL-17, IL-33 and Muc5ac in lung tissues, and airway hyperresponsiveness to methacholine. In normal human bronchial epithelial cells, artesunate blocked epidermal growth factor-induced phosphorylation of Akt and its downstream substrates tuberin, p70S6 kinase and 4E-binding protein 1, and transactivation of NF-κB. Similarly, artesunate blocked the phosphorylation of Akt and its downstream substrates in lung tissues from OVA-challenged mice. Anti-inflammatory effect of artesunate was further confirmed in a house dust mite mouse asthma model. CONCLUSION/SIGNIFICANCE: Artesunate ameliorates experimental allergic airway inflammation probably via negative regulation of PI3K/Akt pathway and the downstream NF-κB activity. These findings provide a novel therapeutic value for artesunate in the treatment of allergic asthma.

  2. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    James S McCarthy

    Full Text Available BACKGROUND: Critical to the development of new drugs for treatment of malaria is the capacity to safely evaluate their activity in human subjects. The approach that has been most commonly used is testing in subjects with natural malaria infection, a methodology that may expose symptomatic subjects to the risk of ineffective treatment. Here we describe the development and pilot testing of a system to undertake experimental infection using blood stage Plasmodium falciparum parasites (BSP. The objectives of the study were to assess the feasibility and safety of induced BSP infection as a method for assessment of efficacy of new drug candidates for the treatment of P. falciparum infection. METHODS AND FINDINGS: A prospective, unblinded, Phase IIa trial was undertaken in 19 healthy, malaria-naïve, male adult volunteers who were infected with BSP and followed with careful clinical and laboratory observation, including a sensitive, quantitative malaria PCR assay. Volunteers were randomly allocated to treatment with either of two licensed antimalarial drug combinations, artemether-lumefantrine (A/L or atovaquone-proguanil (A/P. In the first cohort (n = 6 where volunteers received ∼360 BSP, none reached the target parasitemia of 1,000 before the day designated for antimalarial treatment (day 6. In the second and third cohorts, 13 volunteers received 1,800 BSP, with all reaching the target parasitemia before receiving treatment (A/L, n = 6; A/P, n = 7 The study demonstrated safety in the 19 volunteers tested, and a significant difference in the clearance kinetics of parasitemia between the drugs in the 13 evaluable subjects, with mean parasite reduction ratios of 759 for A/L and 17 for A/P (95% CI 120-4786 and 7-40 respectively; p<0.01. CONCLUSIONS: This system offers a flexible and safe approach to testing the in vivo activity of novel antimalarials. TRIAL REGISTRATION: ClinicalTrials.gov NCT01055002.

  3. Identification of the Schistosoma mansoni Molecular Target for the Antimalarial Drug Artemether

    KAUST Repository

    Lepore, Rosalba

    2011-11-28

    Plasmodium falciparum and Schistosoma mansonii are the parasites responsible for most of the malaria and schistosomiasis cases in the world. Notwithstanding their many differences, the two agents have striking similarities in that they both are blood feeders and are targets of an overlapping set of drugs, including the well-known artemether molecule. Here we explore the possibility of using the known information about the mode of action of artemether in Plasmodium to identify the molecular target of the drug in Schistosoma and provide evidence that artemether binds to SmSERCA, a putative Ca2+-ATPase of Schistosoma. We also predict the putative binding mode of the molecule for both its Plasmodium and Schistosoma targets. Our analysis of the mode of binding of artemether to Ca2+-ATPases also provides an explanation for the apparent paradox that, although the molecule has no side effect in humans, it has been shown to possess antitumoral activity. © 2011 American Chemical Society.

  4. Prescription pattern of anti-malarial drugs in a tertiary care hospital

    Institute of Scientific and Technical Information of China (English)

    Santoshkumar R Jeevangi; Manjunath S; Sharanabasappa M Awanti

    2010-01-01

    Objective:To evaluate the prescribing pattern of anti malarial drugs in a tertiary care hospital. Methods:A prospective cross-sectional study was conducted for 6 months of patients visiting in Basaveshwar Teaching and General Hospital, Gulbarga. Data were analyzed for various drug use indicators. Results: A total of 212 prescriptions were collected, with 136 (64.15%) male and 76 (35.85%) female. There were 128 (60.37%) Plasmodium vivax cases and 84 (39.63%) Plasmodium falciparum cases. All Plasmodium vivax cases were treated with chloroquine alone and among these 16 (12.5%) recieved radical treatment with primaquine along with chloroquine. Among 84 patients with Pasmodium falciparum, 40 patients received single drug such as quinine/mefloquinine/artesunate/arteether. Another 44 patients received multidrug regime like, quinine+artesunate (54.54%), quinine+mefloquine (27.27%) and quinine+arteether (18.18%). Chloroquine was not administered to any of the patients with Plasmodium falciparum malaria. The most common adverse effects with chloroquine were anorexia, nausea, vomiting and tinnitus in 9.37%of the cases. With quinine it was nausea and vomiting in 17.64%, tinnitus in 11.76%and hypoglycemia in 2.1%of cases. Conclusions: Our study found the perennial favorites like chloroquine for Plasmodium vivax and quinine for Plasmodium falciparum were the most effective drug. In the severe Plasmodium falciparum cases the artesunate derivatives and combination of artesunate with quinine/mefloquine were most effective with fewer incidences of side effects.

  5. Inhibition of native 5-HT3 receptor-evoked contractions in guinea pig and mouse ileum by antimalarial drugs.

    Science.gov (United States)

    Kelley, Stephen P; Walsh, Jacqueline; Kelly, Mark C; Muhdar, Simerjyot; Adel-Aziz, Mohammed; Barrett, Iain D; Wildman, Scott S

    2014-09-05

    Quinine, chloroquine and mefloquine are commonly used to treat malaria, however, with associated gastrointestinal (GI) side-effects. These drugs act as antagonists at recombinant 5-HT3 receptors and modulate gut peristalsis. These gastrointestinal side effects may be the result of antagonism at intestinal 5-HT3 receptors. Ileum from male C57BL/6 mice and guinea pigs was mounted longitudinally in organ baths. The concentration-response curves for 5-HT and the selective 5-HT3 agonist 2-Me-5-HT were obtained with 5-HT (pEC50 = 7.57 ± 0.33, 12) more potent (P = 0.004) than 2-Me-5-HT (pEC50 = 5.45 ± 0.58, n = 5) in mouse ileum. There was no difference in potency of 5-HT (pEC50 = 5.42 ± 0.15, n = 8) and 2-Me-5-HT (pIC50 = 5.01 ± 0.55, n = 11) in guinea pig ileum (P > 0.05). Quinine, chloroquine or mefloquine was applied for 10 min and inhibitions prior to submaximal agonist application. In mouse ileum, quinine, chloroquine and mefloquine antagonised 5-HT-induced contractions (pIC50 = 4.9 ± 0.17, n = 7; 4.76 ± 0.14, n = 5; 6.21 ± 0.2, n = 4, correspondingly) with mefloquine most potent (P contractions (pIC50 = 6.35 ± 0.11, n = 8; 4.64 ± 0.2, n = 7; 5.11 ± 0.22, n = 6, correspondingly) with quinine most potent (P contractions (pIC50 = 5.02 ± 0.15, n = 6; 4.54 ± 0.1, n = 7; 5.32 ± 0.13, n = 5) and 2-me-5-HT-induced contractions (pIC50 = 4.62 ± 0.25, n = 5; 4.56 ± 0.14, n = 6; 5.67 ± 0.12, n = 4) with chloroquine least potent against 5-HT and mefloquine most potent against 2-me-5-HT (P < 0.05). These results support previous studies identifying anti-malarial drugs as antagonists at recombinant 5-HT3 receptors and may also demonstrate the ability of these drugs to influence native 5-HT3 receptor-evoked contractile responses which may account for their associated GI side-effects.

  6. Differential speciation of ferriprotoporphyrin IX in the presence of free base and diprotic 4-aminoquinoline antimalarial drugs

    Science.gov (United States)

    Gildenhuys, Johandie; Müller, Ronel; le Roex, Tanya; de Villiers, Katherine A.

    2017-03-01

    The crystal structures of the μ-propionato dimer and π-π dimer of ferriprotoporphyrin IX (Fe(III)PPIX) have been determined by single crystal X-ray diffraction (SCD). Both species were obtained in the presence of the synthetic 4-aminoquinoline antimalarial drug, amodiaquine (AQ). The solution that afforded the μ-propionato dimer contained AQ as a free base (i.e. with both quinoline and terminal amine nitrogen atoms neutral). On the other hand, when the diprotic salt of AQ was included in the crystallization medium, the Fe(III)PPIX π-π dimer was obtained. The structure of the μ-propionato dimer, which is the discrete structural unit that constitutes haemozoin (malaria pigment), is identical to that obtained previously in presence of chloroquine free base. We suspect that the drug, via its two available basic sites, facilitates dissociation of one of the two Fe(III)PPIX propionic acid groups to yield a propionate group that is required for reciprocal coordination of the metal centre to form the centrosymmetric dimer. On the other hand, this proton transfer is not possible when the drug is present as a diprotic salt. In this case, the π-π dimer of Fe(III)PPIX is obtained. In the current study, the π-π dimer of haemin (chloro-Fe(III)PPIX) was obtained as a DMF solvate from non-aqueous aprotic solution (dimethyl formamide and chloroform), however the π-π dimer is also known to exist in aqueous solution (as aqua- or hydroxo-Fe(III)PPIX), where it is purportedly involved in the nucleation of haemozoin. We have been able to unambiguously determine the positions of all non-hydrogen atoms, as well as locate or assign all hydrogen atoms in the structure of the π-π dimer, which was not possible in the SCD structure of haemin reported by Koenig in 1965 owing to disorder in the vinyl and methyl substituents. Interestingly, no disorder in the methyl and vinyl groups is observed in the current structure. Both the π-π and μ-propionato dimers of Fe(III)PPIX are

  7. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia

    Science.gov (United States)

    Suswardany, Dwi Linna; Sibbritt, David W.; Supardi, Sudibyo; Pardosi, Jerico F.; Chang, Sungwon; Adams, Jon

    2017-01-01

    Background The level of traditional medicine use, particularly Jamu use, in Indonesia is substantial. Indonesians do not always seek timely treatment for malaria and may seek self-medication via traditional medicine. This paper reports findings from the first focused analyses of traditional medicine use for malaria in Indonesia and the first such analyses worldwide to draw upon a large sample of respondents across high-risk malaria endemic areas. Methods A sub-study of the Indonesia Basic Health Research/Riskesdas Study 2010 focused on 12,226 adults aged 15 years and above residing in high-risk malaria-endemic provinces. Logistic regression was undertaken to determine the significant associations for traditional medicine use for malaria symptoms. Findings Approximately one in five respondents use traditional medicine for malaria symptoms and the vast majority experiencing multiple episodes of malaria use traditional medicine alongside free antimalarial drug treatments. Respondents consuming traditional medicine for general health/common illness purposes every day (odds ratio: 3.75, 95% Confidence Interval: 2.93 4.79), those without a hospital in local vicinity (odds ratio: 1.31, 95% Confidence Interval: 1.10 1.57), and those living in poorer quality housing, were more likely to use traditional medicine for malaria symptoms. Conclusion A substantial percentage of those with malaria symptoms utilize traditional medicine for treating their malaria symptoms. In order to promote safe and effective malaria treatment, all providing malaria care in Indonesia need to enquire with their patients about possible traditional medicine use. PMID:28329019

  8. Molecular diagnosis of resistance to antimalarial drugs during epidemics and in war zones.

    Science.gov (United States)

    Djimdé, Abdoulaye A; Dolo, Amagana; Ouattara, Amed; Diakité, Sira; Plowe, Christopher V; Doumbo, Ogobara K

    2004-08-15

    Plasmodium falciparum mutations pfcrt K76T and the dhfr/dhps "quintuple mutant" are molecular markers of resistance to chloroquine and sulfadoxine-pyrimethamine, respectively. During an epidemic of P. falciparum malaria in an area of political unrest in northern Mali, where standard efficacy studies have been impossible, we measured the prevalence of these markers in a cross-sectional survey. In 80% of cases of infection, pfcrt K76T was detected, but none of the cases carried the dhfr/dhps quintuple mutant. On the basis of these results, chloroquine was replaced by sulfadoxine-pyrimethamine in control efforts. This example illustrates how molecular markers for drug resistance can provide timely data that inform malaria-control policy during epidemics and other emergency situations.

  9. Plants as Sources of Antimalarial Drugs Part. 1. In vitro Test Method for the Evaluation of Crude Extracts from Plants.

    Science.gov (United States)

    O'neill, M J; Bray, D H; Boardman, P; Phillipson, J D; Warhurst, D C

    1985-10-01

    An IN VITRO antimalarial test, utilising the inhibition of uptake of [G- (3)H]-hypoxanthine into PLASMODIUM FALCIPARUM cultured in human blood, has been used to assess the activity of crude extracts of ARTEMISIA ANNUA and A. VULGARIS (Compositae) and of BRUCEA JAVANICA, AILANTHUS ALTISSIMA, and SIMABA CEDRON (Simaroubaceae).

  10. Factors related to compliance to anti-malarial drug combination: example of amodiaquine/sulphadoxine-pyrimethamine among children in rural Senegal

    Directory of Open Access Journals (Sweden)

    Sow Diarietou

    2009-06-01

    Full Text Available Abstract Background The introduction of new anti-malarial treatment that is effective, but more expensive, raises questions about whether the high level of effectiveness observed in clinical trials can be found in a context of family use. The objective of this study was to determine the factors related to adherence, when using the amodiaquine/sulphadoxine-pyrimethamine (AQ/SP association, a transitory strategy before ACT implementation in Senegal. Methods The study was conducted in five rural dispensaries. Children, between two and 10 years of age, who presented mild malaria were recruited at the time of the consultation and were prescribed AQ/SP. The child's primary caretaker was questioned at home on D3 about treatment compliance and factors that could have influenced his or her adherence to treatment. A logistic regression model was used for the analyses. Results The study sample included 289 children. The adherence rate was 64.7%. Two risks factors for non-adherence were identified: the children's age (8–10 years (ORa = 3.07 [1.49–6.29]; p = 0.004; and the profession of the head of household (retailer/employee versus farmer (ORa = 2.71 [1.34–5.48]; p = 0.006. Previously seeking care (ORa = 0.28 [0.105–0.736], p=0.001] satisfaction with received information (ORa = 0.45 [0.24–0.84]; p = 0.013, and the quality of history taking (ORa = 0.38 [0.21–0.69]; p = 0.001 were significantly associated with good compliance. Conclusion The results of the study show the importance of information and communication between caregivers and health center staff. The experience gained from this therapeutic transition emphasizes the importance of information given to the patients at the time of the consultation and drug delivery in order to improve drug use and thus prevent the emergence of rapid drug resistance.

  11. Phase I randomized dose-ascending placebo-controlled trials of ferroquine - a candidate anti-malarial drug - in adults with asymptomatic Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    Ospina Salazar Carmen L

    2011-03-01

    Full Text Available Abstract Background The development and spread of drug resistant Plasmodium falciparum strains is a major concern and novel anti-malarial drugs are, therefore, needed. Ferroquine is a ferrocenic derivative of chloroquine with proven anti-malarial activity against chloroquine-resistant and -sensitive P. falciparum laboratory strains. Methods Adult young male aged 18 to 45 years, asymptomatic carriers of P. falciparum, were included in two-dose escalation, double-blind, randomized, placebo-controlled Phase I trials, a single dose study and a multiple dose study aiming to evaluate oral doses of ferroquine from 400 to 1,600 mg. Results Overall, 54/66 patients (40 and 26 treated in the single and multiple dose studies, respectively experienced at least one adverse event, 15 were under placebo. Adverse events were mainly gastrointestinal symptoms such as abdominal pain (16, diarrhoea (5, nausea (13, and vomiting (9, but also headache (11, and dizziness (5. A few patients had slightly elevated liver parameters (10/66 including two patients under placebo. Moderate changes in QTc and morphological changes in T waves were observed in the course of the study. However, no adverse cardiac effects with clinical relevance were observed. Conclusions These phase I trials showed that clinically, ferroquine was generally well-tolerated up to 1,600 mg as single dose and up to 800 mg as repeated dose in asymptomatic young male with P. falciparum infection. Further clinical development of ferroquine, either alone or in combination with another anti-malarial, is highly warranted and currently underway.

  12. The quality of antimalarial medicines in western Cambodia: a case study along the Thai-Cambodian border.

    Science.gov (United States)

    Phanouvong, Souly; Raymond, Christopher; Krech, Laura; Dijiba, Yanga; Mam, Boravann; Lukulay, Patrick; Socheat, Duong; Sovannarith, Tey; Sokhan, Chroeng

    2013-05-01

    The prevalence, availability, and use of antimalarial medicines (AMLs) were studied in six Cambodian provinces along the Thai-Cambodian border. The study was divided into two parts: the first looked at the quality of AMLs available in Pursat, Pailin, Battambang, Bantey Meanchey, Oddar Meanchey, and Preah Vihear and the second obtained information about the availability and use of AMLs. A randomized sampling methodology was used to select locations and collect samples, which were screened using Global Pharma Health Fund (GPHF) Minilabs. A subset of samples was sent to quality control laboratories for confirmatory testing. For the second part of the study, face-to-face interviews were conducted using standardized surveys with members of randomly selected households and staff of health facilities in the villages with highest malaria incidence to find out where they acquired their AMLs and which were most frequently used. The results showed an overall failure rate of 12.3% (n = 46 of 374 total AML samples). The causes of medication sample failure were low active pharmaceutical ingredient (API) content, failed dissolution properties, and unacceptably high levels of impurities. A total of 86.2% of survey respondents (n = 1,648 of 1,912) reported a member of their household having malaria in the previous year. The most commonly used medicines were paracetamol (67.1% of respondents), Malarine (A+M co-blistered, 28.6%), artesunate + mefloquine co-blistered (public sector product, 17.3%), quinine (16.7%), and artesunate monotherapy (11.9%). Health staff typically prescribed co-blistered artesunate plus mefloquine in the public sector (67.8%), the artesunate plus mefloquine "social marketing" product from Population Services International (PSI), Malarine (50.3%) in the private sector, artemether (49.7%), chloroquine (39%) and paracetamol (72.9%) to reduce fever.

  13. Quality specifications for the antimalarial compound lumefantrine and products thereof / Mari-Alet de Jager

    OpenAIRE

    De Jager, Mari-Alet

    2011-01-01

    Malaria has been responsible for the deaths of thousands of people annually and is considered one of the biggest health challenges globally. In order to ensure that patients in malaria affected areas receive products of suitable quality, it is important that effective pharmacopoeial monographs for these medicines are available for distinguishing between good and inferior quality products, prior to distribution to the public. With artemether and lumefantrine forming part of t...

  14. Microbial transformation of antimalarial terpenoids.

    Science.gov (United States)

    Parshikov, Igor A; Netrusov, Alexander I; Sutherland, John B

    2012-01-01

    The fungal and bacterial transformation of terpenoids derived from plant essential oils, especially the sesquiterpenoid artemisinin from Artemisia annua, has produced several new candidate drugs for the treatment of malaria. Obtaining new derivatives of terpenoids, including artemisinin derivatives with increased antimalarial activity, is an important goal of research in microbial biotechnology and medicinal chemistry.

  15. Research influence on antimalarial drug policy change in Tanzania: case study of replacing chloroquine with sulfadoxine-pyrimethamine as the first-line drug

    Directory of Open Access Journals (Sweden)

    Gonzalez-Block Miguel A

    2005-10-01

    Full Text Available Abstract Introduction Research is an essential tool in facing the challenges of scaling up interventions and improving access to services. As in many other countries, the translation of research evidence into drug policy action in Tanzania is often constrained by poor communication between researchers and policy decision-makers, individual perceptions or attitudes towards the drug and hesitation by some policy decision-makers to approve change when they anticipate possible undesirable repercussions should the policy change as proposed. Internationally, literature on the role of researchers on national antimalarial drug policy change is limited. Objectives To describe the (a role of researchers in producing evidence that influenced the Tanzanian government replace chloroquine (CQ with sulfadoxine-pyrimethamine (SP as the first-line drug and the challenges faced in convincing policy-makers, general practitioners, pharmaceutical industry and the general public on the need for change (b challenges ahead before a new drug combination treatment policy is introduced in Tanzania. Methods In-depth interviews were held with national-level policy-makers, malaria control programme managers, pharmaceutical officers, general medical practitioners, medical research library and publications officers, university academicians, heads of medical research institutions and district and regional medical officers. Additional data were obtained through a review of malaria drug policy documents and participant observations were also done. Results In year 2001, the Tanzanian Government officially changed its malaria treatment policy guidelines whereby CQ – the first-line drug for a long time was replaced with SP. This policy decision was supported by research evidence indicating parasite resistance to CQ and clinical CQ treatment failure rates to have reached intolerable levels as compared to SP and amodiaquine (AQ. Research also indicated that since SP was also facing

  16. New antimalarial hits from Dacryodes edulis (Burseraceae--part I: isolation, in vitro activity, in silico "drug-likeness" and pharmacokinetic profiles.

    Directory of Open Access Journals (Sweden)

    Denis Zofou

    Full Text Available The aims of the present study were to identify the compounds responsible for the anti-malarial activity of Dacryoedes edulis (Burseraceae and to investigate their suitability as leads for the treatment of drug resistant malaria. Five compounds were isolated from ethyl acetate and hexane extracts of D. edulis stem bark and tested against 3D7 (chloroquine-susceptible and Dd2 (multidrug-resistant strains of Plasmodium falciparum, using the parasite lactate dehydrogenase method. Cytotoxicity studies were carried out on LLC-MK2 monkey kidney epithelial cell-line. In silico analysis was conducted by calculating molecular descriptors using the MOE software running on a Linux workstation. The "drug-likeness" of the isolated compounds was assessed using Lipinski criteria, from computed molecular properties of the geometry optimized structures. Computed descriptors often used to predict absorption, distribution, metabolism, elimination and toxicity (ADMET were used to assess the pharmacokinetic profiles of the isolated compounds. Antiplasmodial activity was demonstrated for the first time in five major natural products previously identified in D. edulis, but not tested against malaria parasites. The most active compound identified was termed DES4. It had IC50 values of 0.37 and 0.55 µg/mL, against 3D7 and Dd2 respectively. In addition, this compound was shown to act in synergy with quinine, satisfied all criteria of "Drug-likeness" and showed considerable probability of providing an antimalarial lead. The remaining four compounds also showed antiplasmodial activity, but were less effective than DES4. None of the tested compounds was cytotoxicity against LLC-MK2 cells, suggesting their selective activities on malaria parasites. Based on the high in vitro activity, low toxicity and predicted "Drug-likeness" DES4 merits further investigation as a possible drug lead for the treatment of malaria.

  17. A study of toxicity and differential gene expression in murine liver following exposure to anti-malarial drugs: amodiaquine and sulphadoxine-pyrimethamine

    Directory of Open Access Journals (Sweden)

    Rath Srikanta

    2011-05-01

    Full Text Available Abstract Background Amodiaquine (AQ along with sulphadoxine-pyrimethamine (SP offers effective and cheaper treatment against chloroquine-resistant falciparum malaria in many parts of sub-Saharan Africa. Considering the previous history of hepatitis, agranulocytosis and neutrocytopenia associated with AQ monotherapy, it becomes imperative to study the toxicity of co-administration of AQ and SP. In this study, toxicity and resulting global differential gene expression was analyzed following exposure to these drugs in experimental Swiss mice. Methods The conventional markers of toxicity in serum, oxidative stress parameters in tissue homogenates, histology of liver and alterations in global transcriptomic expression were evaluated to study the toxic effects of AQ and SP in isolation and in combination. Results The combination therapy of AQ and SP results in more pronounced hepatotoxicity as revealed by elevated level of serum ALT, AST with respect to their individual drug exposure regimen. Furthermore, alterations in the activity of major antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, indicating the development of oxidative stress, was more significant in AQ+SP combination therapy. cDNA microarray results too showed considerably more perturbed gene expression following combination therapy of AQ and SP as compared to their individual drug treatment. Moreover, a set of genes were identified whose expression pattern can be further investigated for identifying a good biomarker for potential anti-malarial hepatotoxicity. Conclusion These observations clearly indicate AQ+SP combination therapy is hepatotoxic in experimental Swiss mice. Microarray results provide a considerable number of potential biomarkers of anti-malarial drug toxicity. These findings hence will be useful for future drug toxicity studies, albeit implications of this study in clinical conditions need to be monitored with cautions.

  18. Efficacy comparison between anti-malarial drugs in Africans presenting with mild malaria in the Central Republic of Africa: a preliminary study

    Directory of Open Access Journals (Sweden)

    Nambei W.S.

    2005-03-01

    Full Text Available Drug resistance to Plasmodium falciparum contributes to major health problems in central Africa and, as a consequence, poverty. We have analyzed the efficacy of three currently available antimalarial drugs to treat symptomatic, uncomplicated P. falciparum malaria in semiimmune adults living in Bangui, Central Republic of Africa. 210 consecutive individuals were enrolled in the survey, of which 45 were excluded. Those having received dihydroartemisin proved significantly less parasitemic than those having received quinine per os or sulfadoxin-pyrimethamin (χ2 = 16.93 ; p < 0.05, and 75 % recovered in two days compared to 57 and 44 %, respectively. The 25 % who did not recover benefited from a second cure with dihydroartemisin, which proved 100 % efficient. The most accurate protocol remains to be established by analyzing clinical and parasitological data and taking into account the economics of the country.

  19. Anti-malarial drug safety information obtained through routine monitoring in a rural district of South-Western Senegal

    Directory of Open Access Journals (Sweden)

    Brasseur Philippe

    2012-12-01

    Full Text Available Abstract Background Knowing the safety profile of anti-malarial treatments in routine use is essential; millions of patients receive now artemisinin combination therapy (ACT annually, but the return on information through current systems is as yet inadequate. Cohort event monitoring (CEM is a WHO (World Health Organization-recommended practice; testing its performance and feasibility in routine practice in malaria-endemic is important. Methods A nine-year CEM-based study of the safety of artesunate-amodiaquine (ASAQ at five peripheral health facilities in a rural district of South-western Senegal. Staff (nurses, health workers were trained to collect actively and systematically information on the patient, treatment and events on a purposely designed questionnaire. The occurrence and severity of events was collected before, during and after treatment up to 28 days in order to generate information on all adverse events (AEs as well as treatment-emerging signs/symptoms (TESS. Laboratory tests (haematology, liver and renal was planned for at least 10% of cases. Results During 2001–2009, 3,708 parasitologically-confirmed malaria cases (mean age = 16.0 ± 12.7 years were enrolled (26% and 52% of all and parasitologically-confirmed ASAQ treatments, respectively. Treatment was supervised in 96% of cases. Products changed over time: 49% were a loose combination of individually-packaged products (available 2001–03, 42% co-blistered products (2004–09 and 9% a fixed-dose co-formulation (2006–09; dosing was age-based for 42%, weight-based for 58%. AS and AQ were correctly dosed in 97% and 82% of cases with the loose and 93% and 86% with the fixed combination, but only 50% and 42% with the co-blistered product. Thirty-three per cent (33% of patients had at least one sign/symptom pre-treatment, 12% had at least one AE and 9% a TESS (total events 3,914, 1,144 and 693, respectively. AEs overestimated TESS by 1.2-2 fold (average 1.7. Changes in

  20. High School Students Are a Target Group for Fight against Self-Medication with Antimalarial Drugs: A Pilot Study in University of Kinshasa, Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    Ramsès Kabongo Kamitalu

    2016-01-01

    Full Text Available Aim. To assess the self-medication against malaria infection in population of Congolese students in Kinshasa, Democratic Republic of Congo (DRC. Methods. A cross-sectional study was carried out in University of Kinshasa, Kinshasa, Democratic Republic of Congo. Medical records of all students with malaria admitted to Centre de Santé Universitaire of University of Kinshasa from January 1, 2008, to April 30, 2008, were reviewed retrospectively. Results. The median age of the patients was 25.4 years (range: from 18 to 36 years. The majority of them were male (67.9%. Artemisinin-based combination treatments (ACTs was the most used self-prescribed antimalarial drugs. However, self-medication was associated with the ingestion of quinine in 19.9% of cases. No case of ingestion of artesunate/artemether in monotherapy was found. All the medicines taken were registered in DRC. In this series, self-prescribed antimalarial was very irrational in terms of dose and duration of treatment. Conclusion. This paper highlights self-medication by a group who should be aware of malaria treatment protocols. The level of self-prescribing quinine is relatively high among students and is disturbing for a molecule reserved for severe disease in Congolese health care policy in management of malaria.

  1. Antimalarial Activity of Methanolic Leaf Extract of Piper betle L.

    OpenAIRE

    Amran, Adel A.; Rohela Mahmud; Zurainee M. Nor; Al-Mekhlafi, Hesham M; Al-Adhroey, Abdulelah H

    2010-01-01

    International audience; The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial eff...

  2. FlexiChip package: an universal microarray with a dedicated analysis software for high-thoughput SNPs detection linked to anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2009-10-01

    Full Text Available Abstract Background A number of molecular tools have been developed to monitor the emergence and spread of anti-malarial drug resistance to Plasmodium falciparum. One of the major obstacles to the wider implementation of these tools is the absence of practical methods enabling high throughput analysis. Here a new Zip-code array is described, called FlexiChip, linked to a dedicated software program, which largely overcomes this problem. Methods Previously published microarray probes detecting single-nucleotide polymorphisms (SNP associated with parasite resistance to anti-malarial drugs (ResMalChip were adapted for a universal microarray FlexiChip format. To evaluate the overall sensitivity of the FlexiChip package (microarray + software, the results of FlexiChip were compared to ResMalChip microarray, using the same extension probes and with the same PCR products. In both cases, sequence results were used as gold standard to calculate sensitivity and specificity. FlexiChip results obtained with a set of field isolates were then compared to those assessed in an independent reference laboratory. Results The FlexiChip package gave results identical to the ResMalChip results in 92.7% of samples (kappa coefficient 0.8491, with a standard error 0.021 and had a sensitivity of 95.88% and a specificity of 97.68% compared to the sequencing as the reference method. Moreover the method performed well compared to the results obtained in the reference laboratories, with 99.7% of identical results (kappa coefficient 0.9923, S.E. 0.0523. Conclusion Microarrays could be employed to monitor P. falciparum drug resistance markers with greater cost effectiveness and the possibility for high throughput analysis. The FlexiChip package is a promising tool for use in poor resource settings of malaria endemic countries.

  3. Different Patterns of pfcrt and pfmdr1 Polymorphisms in P. falciparum Isolates from Nigeria and Brazil: The Potential Role of Antimalarial Drug Selection Pressure

    Science.gov (United States)

    Gbotosho, Grace O.; Folarin, Onikepe A.; Bustamante, Carolina; Pereira da Silva, Luis Hildebrando; Mesquita, Elieth; Sowunmi, Akintunde; Zalis, Mariano G.; Oduola, Ayoade M. J.; Happi, Christian T.

    2012-01-01

    The effect of antimalarial drug selection on pfcrt and pfmdr1 polymorphisms in Plasmodium falciparum isolates from two distinct geographical locations was determined in 70 and 18 P. falciparum isolates from Nigeria and Brazil, respectively, using nested polymerase chain reaction and direct DNA sequencing approaches. All isolates from Brazil and 72% from Nigeria harbored the mutant SVMNT and CVIET pfcrt haplotype, respectively. The pfcrt CVMNT haplotype was also observed in (7%) of the Nigerian samples. One hundred percent (100%) and 54% of the parasites from Brazil and Nigeria, respectively, harbored wild-type pfmdr1Asn86. We provide first evidence of emergence of the CVMNT haplotype in West Africa. The high prevalence of pfcrt CVIET and SVMNT haplotypes in Nigeria and Brazil, respectively, is indicative of different selective pressure by chloroquine and amodiaquine. Continuous monitoring of pfcrt SVMNT haplotype is required in endemic areas of Africa, where artesunate-amodiaquine combination is used for treatment of acute uncomplicated malaria. PMID:22302850

  4. Polymorphisms of the oxidant enzymes glutathione S-transferase and glutathione reductase and their association with resistance ofPlasmodium falciparum isolates to antimalarial drugs

    Institute of Scientific and Technical Information of China (English)

    Raewadee Wisedpanichkij; Wanna Chaicharoenkul; Poonuch Mahamad; Prapichaya Prompradit; Kesara Na-Bangchang

    2010-01-01

    Objective:To investigate the association between amplification of the two regulatory genes controlling glutathione(GSH)levels, glutathione reductase(PfGR)and glutathione S-transferase (PfGST) genes and sensitivity ofPlasmodium falciparum (P. falciparum)isolates collected from different malaria endemic areas of Thailand to standard antimalarial drugs.Methods: A total of70P. falciparum isolates were collected from endemic areas of multi-drug resistance (Tak, Chantaburi and Ranong Provinces) during the year2008-2009. The in vitro assessment of antimalarial activity ofP. falciparumclones (K1- and Dd2 chloroquine resistant and3D7-chloroquine sensitive) and isolates to chloroquine, quinine, mefloquine and arteusnate was performed based onSYBR Green modified assay.Results:68 (97.14%), 11 (15.71%) and28 (40%) isolates respectively were classified as chloroquine-, quinine- and mefloquine-resistant isolates. With this limited number ofP. falciparum isolates included in the analysis, no significant association between amplification ofPfGST gene and sensitivity of the parasite to chloroquine, quinine, mefloquine and quinine was found. Based onPCR analysis,Dd2, K1 and3D7clones all contained only one copy of thePfGST gene. All isolates (70) also carried only one copy number of PfGST gene. There appears to be an association between amplification ofPfGR gene and chloroquine resistance. The3D7and Dd2 clones were found to carry only onePfGR gene copy, whereas the K1 clone carried two gene copies.Conclusions: Chloroquine resistance is likely to be a consequence of multi-factors and enzymes in theGSH system may be partly involved. Larger number of parasite isolates are required to increase power of the hypothesis testing in order to confirm the involvement of both genes as well as other genes implicated in glutathione metabolism in conferring chloroquine resistance.

  5. Development of a transgenic Plasmodium berghei line (Pb pfpkg expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    Directory of Open Access Journals (Sweden)

    Rita Tewari

    Full Text Available With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  6. Development of a transgenic Plasmodium berghei line (Pb pfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    Science.gov (United States)

    Tewari, Rita; Patzewitz, Eva-Maria; Poulin, Benoit; Stewart, Lindsay; Baker, David A

    2014-01-01

    With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  7. Exposure to anti-malarial drugs and monitoring of adverse drug reactions using toll-free mobile phone calls in private retail sector in Sagamu, Nigeria: implications for pharmacovigilance

    Directory of Open Access Journals (Sweden)

    Ogunwande Isiaka A

    2011-08-01

    Full Text Available Abstract Background Adverse drug reactions (ADRs contribute to ill-health or life-threatening outcomes of therapy during management of infectious diseases. The exposure to anti-malarial and use of mobile phone technology to report ADRs following drug exposures were investigated in Sagamu - a peri-urban community in Southwest Nigeria. Methods Purchase of medicines was actively monitored for 28 days in three Community Pharmacies (CP and four Patent and Proprietary Medicine Stores (PPMS in the community. Information on experience of ADRs was obtained by telephone from 100 volunteers who purchased anti-malarials during the 28-day period. Results and Discussion A total of 12,093 purchases were recorded during the period. Antibiotics, analgesics, vitamins and anti-malarials were the most frequently purchased medicines. A total of 1,500 complete courses of anti-malarials were purchased (12.4% of total purchases; of this number, purchases of sulphadoxine-pyrimethamine (SP and chloroquine (CQ were highest (39.3 and 25.2% respectiuvely. Other anti-malarials purchased were artesunate monotherapy (AS - 16.1%, artemether-lumefantrine (AL 10.0%, amodiaquine (AQ - 6.6%, quinine (QNN - 1.9%, halofantrine (HF - 0.2% and proguanil (PR - 0.2%. CQ was the cheapest (USD 0.3 and halofantrine the most expensive (USD 7.7. AL was 15.6 times ($4.68 more expensive than CQ. The response to mobile phone monitoring of ADRs was 57% in the first 24 hours (day 1 after purchase and decreased to 33% by day 4. Participants in this monitoring exercise were mostly with low level of education (54%. Conclusion The findings from this study indicate that ineffective anti-malaria medicines including monotherapies remain widely available and are frequently purchased in the study area. Cost may be a factor in the continued use of ineffective monotherapies. Availability of a toll-free telephone line may facilitate pharmacovigilance and follow up of response to medicines in a resource

  8. Optimization of propafenone analogues as antimalarial leads.

    Science.gov (United States)

    Lowes, David J; Guiguemde, W Armand; Connelly, Michele C; Zhu, Fangyi; Sigal, Martina S; Clark, Julie A; Lemoff, Andrew S; Derisi, Joseph L; Wilson, Emily B; Guy, R Kiplin

    2011-11-10

    Propafenone, a class Ic antiarrythmic drug, inhibits growth of cultured Plasmodium falciparum. While the drug's potency is significant, further development of propafenone as an antimalarial would require divorcing the antimalarial and cardiac activities as well as improving the pharmacokinetic profile of the drug. A small array of propafenone analogues was designed and synthesized to address the cardiac ion channel and PK liabilities. Testing of this array revealed potent inhibitors of the 3D7 (drug sensitive) and K1 (drug resistant) strains of P. falciparum that possessed significantly reduced ion channel effects and improved metabolic stability. Propafenone analogues are unusual among antimalarial leads in that they are more potent against the multidrug resistant K1 strain of P. falciparum compared to the 3D7 strain.

  9. Development of ELISA-based methods to measure the anti-malarial drug chloroquine in plasma and in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Ronn Anita

    2011-08-01

    Full Text Available Abstract Background In Central and South America and Eastern and Southern Africa, Plasmodium vivax infections accounts for 71-81% and 5% of malaria cases, respectively. In these areas, chloroquine (CQ remains the treatment of choice for P. vivax malaria. In addition, CQ has recently proven to be an effective HIV-1 therapeutic agent. There is a dire need to continue monitoring quality of CQ as there is a major influx of substandard and fake formulations into malaria-endemic countries. The use of fake/substandard drugs will result in sub-therapeutic levels endangering the patient and possibly select for parasite resistance. The aim of this study was to develop an inexpensive, simple antibody-based ELISA to measure CQ concentrations in tablets and in plasma. Methods A monoclonal antibody (MAb that reacts with the N-side chain of the CQ molecule was prepared by use of a CQ analogue. A specific and reliable ELISA for detection of CQ was developed. The developed assay was validated by measuring CQ in tablets sold in Denmark, India and Sudan. Furthermore, kinetics of CQ concentrations in plasma of four volunteers, who ingested two tablets of Malarex® containing, 250 mg CQ base, were measured before drug intake, three hours later and thereafter at days 1, 3, 7, 14, 21 and 28. The same plasma samples were simultaneously measured by high performance liquid chromatography (HPLC. Results The ELISA proved an easy-to-handle and very sensitive tool for the detection of CQ with a lower limit of detection at 3.9 ng/ml. ELISA levels of CQ in plasma showed high agreement with the levels obtained by HPLC (r = 0.98. The specificity in the negative control group was 100%. Conclusion The developed ELISA can be used for quality screening of CQ in pharmaceutical formulations and for drug monitoring in malaria and in other infectious diseases, such as HIV, where CQ proved to be an effective therapeutic agent. The methodology has been exploited to develop monoclonal

  10. Rifabutin reduces systemic exposure of an antimalarial drug 97/78 upon co- administration in rats:anin-vivo & in-vitro analysis

    Institute of Scientific and Technical Information of China (English)

    Yeshwant Singh; Mahendra Kumar Hidau; Shio Kumar Singh

    2015-01-01

    Objective:To determine the potential drug-drug interactions between anti-malarial candidate 97/78 and anti-tubercular drug rifabutin in-vivo in rats followed byin-vitro investigation of the underlying mechanisms of drug interaction.Methods: Single oral dose study was conducted in male and female rats at 40 mg/kg and 70 mg/kg for 97/78 and rifabutin respectively. Results:It was reported that rifabutin co-administration altered pharmacokinetics of 97/63 (active metabolite of 97/78). A significant decrease was reported in the systemic exposure of 97/63 by a factor of 3-4. The AUC0-last values were (4.03 ± 0.60) and (5.44 ± 1.15) μg•h•mL-1 upon 97/78 administration alone, while the values were decreased to (1.13 ± 0.10) and (1.23 ± 1.13) μg•h•mL-1 upon rifabutin co-administration in male and female rats respectively. Statistically significant differences were also reported in Cmaxand Tmax values upon rifabutin co-administration.In-vitro drug metabolism study in rat liver microsomes has shown that the metabolism of 97/63 was increased by 10%-12% upon rifabutin co-incubation. The extent of plasma protein binding of 97/63 was found to be decreased from 54%-55% to 6%-8% upon rifabutin addition.Conclusions:It was concluded that rifabutin co-administration altered PK parameters of 97/63 in SD rats. However, no intersex influences were reported in the interaction pattern. The results obtained in the in-vivo study were well correlated with thein-vitro findings and can further be applied to explore other aspects of potential drug interactions between these two drugs.

  11. A phase I trial to evaluate the safety and pharmacokinetics of low-dose methotrexate as an anti-malarial drug in Kenyan adult healthy volunteers

    Directory of Open Access Journals (Sweden)

    Oyoo George O

    2011-03-01

    Full Text Available Abstract Background Previous investigations indicate that methotrexate, an old anticancer drug, could be used at low doses to treat malaria. A phase I evaluation was conducted to assess the safety and pharmacokinetic profile of this drug in healthy adult male Kenyan volunteers. Methods Twenty five healthy adult volunteers were recruited and admitted to receive a 5 mg dose of methotrexate/day/5 days. Pharmacokinetics blood sampling was carried out at 2, 4, 6, 12 and 24 hours following each dose. Nausea, vomiting, oral ulcers and other adverse events were solicited during follow up of 42 days. Results The mean age of participants was 23.9 ± 3.3 years. Adherence to protocol was 100%. No grade 3 solicited adverse events were observed. However, one case of transiently elevated liver enzymes, and one serious adverse event (not related to the product were reported. The maximum concentration (Cmax was 160-200 nM and after 6 hours, the effective concentration (Ceff was Conclusion Low-dose methotraxate had an acceptable safety profile. However, methotrexate blood levels did not reach the desirable Ceff of 250-400-nM required to clear malaria infection in vivo. Further dose finding and safety studies are necessary to confirm suitability of this drug as an anti-malarial agent.

  12. High prevalence of pfdhfr-pfdhps triple mutations associated with anti-malarial drugs resistance in Plasmodium falciparum isolates seven years after the adoption of sulfadoxine-pyrimethamine in combination with artesunate as first-line treatment in Iran.

    Science.gov (United States)

    Rouhani, Maryam; Zakeri, Sedigheh; Pirahmadi, Sakineh; Raeisi, Ahmad; Djadid, Navid Dinparast

    2015-04-01

    The spread of anti-malarial drug resistance will challenge any malaria control and elimination strategies, and routine monitoring of resistance-associated molecular markers of commonly used anti-malarial drugs is very important. Therefore, in the present investigation, the extent of mutations/haplotypes in dhfr and dhps genes of Plasmodium falciparum isolates (n=72) was analyzed seven years after the introduction of sulfadoxine-pyrimethamine (SP) plus artesunate (AS) as first-line anti-malarial treatment in Iran using PCR-RFLP methods. The results showed that the majority of the patients (97.2%) carried both 59R and 108N mutations in pure form with wild-type genotype at positions N51 and I164. Additionally, a significant increase (Pdrug for treatment of falciparum patients in these malaria-endemic areas of Iran. However, no quintuple mutations associated with treatment failure were detected. In conclusion, the present results along with in vivo assays suggest that seven years after the adoption of SP-AS as the first-line treatment in Iran, this drug remains efficacious for treatment of uncomplicated falciparum malaria, as a partner drug with AS in these malaria-endemic areas.

  13. Recent progress in the development of anti-malarial quinolones.

    Science.gov (United States)

    Beteck, Richard M; Smit, Frans J; Haynes, Richard K; N'Da, David D

    2014-08-30

    Available anti-malarial tools have over the ten-year period prior to 2012 dramatically reduced the number of fatalities due to malaria from one million to less than six-hundred and thirty thousand. Although fewer people now die from malaria, emerging resistance to the first-line anti-malarial drugs, namely artemisinins in combination with quinolines and arylmethanols, necessitates the urgent development of new anti-malarial drugs to curb the disease. The quinolones are a promising class of compounds, with some demonstrating potent in vitro activity against the malaria parasite. This review summarizes the progress made in the development of potential anti-malarial quinolones since 2008. The efficacy of these compounds against both asexual blood stages and other stages of the malaria parasite, the nature of putative targets, and a comparison of these properties with anti-malarial drugs currently in clinical use, are discussed.

  14. Finding parasites and finding challenges: improved diagnostic access and trends in reported malaria and anti-malarial drug use in Livingstone district, Zambia

    Directory of Open Access Journals (Sweden)

    Masaninga Freddie

    2012-10-01

    Full Text Available Abstract Background Understanding the impact of malaria rapid diagnostic test (RDT use on management of acute febrile disease at a community level, and on the consumption of anti-malarial medicines, is critical to the planning and success of scale-up to universal parasite-based diagnosis by health systems in malaria-endemic countries. Methods A retrospective study of district-wide community-level RDT introduction was conducted in Livingstone District, Zambia, to assess the impact of this programmed on malaria reporting, incidence of mortality and on district anti-malarial consumption. Results Reported malaria declined from 12,186 cases in the quarter prior to RDT introduction in 2007 to an average of 12.25 confirmed and 294 unconfirmed malaria cases per quarter over the year to September 2009. Reported malaria-like fever also declined, with only 4,381 RDTs being consumed per quarter over the same year. Reported malaria mortality declined to zero in the year to September 2009, and all-cause mortality declined. Consumption of artemisinin-based combination therapy (ACT dropped dramatically, but remained above reported malaria, declining from 12,550 courses dispensed by the district office in the quarter prior to RDT implementation to an average of 822 per quarter over the last year. Quinine consumption in health centres also declined, with the district office ceasing to supply due to low usage, but requests for sulphadoxine-pyrimethamine (SP rose to well above previous levels, suggesting substitution of ACT with this drug in RDT-negative cases. Conclusions RDT introduction led to a large decline in reported malaria cases and in ACT consumption in Livingstone district. Reported malaria mortality declined to zero, indicating safety of the new diagnostic regime, although adherence and/or use of RDTs was still incomplete. However, a deficiency is apparent in management of non-malarial fever, with inappropriate use of a low-cost single dose drug, SP

  15. Relationship between treatment-seeking behaviour and artemisinin drug quality in Ghana

    Directory of Open Access Journals (Sweden)

    Klein Eili Y

    2012-04-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT is currently the recommended first-line treatment for uncomplicated malaria infections. However, a significant proportion of ACT is assumed to be of poor quality, particularly in Africa. In addition, little is known about how treatment-seeking behaviour of individuals or drug price is associated with drug quality. Methods Caregivers of children less than 5 years of age were interviewed on their knowledge of malaria and their choices for treatment. Artemisinin drugs were then purchased from sellers that caregivers preferred or had previously patronized. The active ingredients were quantified by nuclear magnetic resonance spectroscopy. Results A negative relationship was anticipated between the education level of caregivers and the quality of anti-malarial drugs purchased. However, of the 33 drugs collected from 16 different shops, only one contained less than 80% of its purported active ingredient, and most drugs were within 90% of their listed amounts. No link was found between drug quality and price. Nonetheless, while ACT is the recommended first-line treatment in Ghana, 21% of the drugs collected were artemisinin monotherapy, and 27% of the ACT was not co-formulated. Among caregivers, higher education was found to be associated with both an increased likelihood of seeking treatment in a clinic first, as opposed to visiting drug shops or using herbal remedies, and with purchasing drugs from licensed sellers. Conclusion Surprisingly, drug quality was found to be uniformly high and thus no significant relationship between price, treatment-seeking behaviour and the content of the active ingredients was observed. However, artemisinin monotherapy, which the WHO considers inappropriate therapy, was still widely available in Ghana in 2010. Monotherapy was more likely to be available in unlicensed vendors where less-educated caregivers generally shopped. This linkage between education

  16. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Directory of Open Access Journals (Sweden)

    Chapman Steven

    2011-10-01

    Full Text Available Abstract Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT and malaria diagnostics including rapid diagnostic tests (RDTs. To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the

  17. The anti-malarial drug Mefloquine disrupts central autonomic and respiratory control in the working heart brainstem preparation of the rat

    Directory of Open Access Journals (Sweden)

    Lall Varinder K

    2012-12-01

    Full Text Available Abstract Background Mefloquine is an anti-malarial drug that can have neurological side effects. This study examines how mefloquine (MF influences central nervous control of autonomic and respiratory systems using the arterially perfused working heart brainstem preparation (WHBP of the rat. Recordings of nerve activity were made from the thoracic sympathetic chain and phrenic nerve, while heart rate (HR and perfusion pressure were also monitored in the arterially perfused, decerebrate, rat WHBP. MF was added to the perfusate at 1 μM to examine its effects on baseline parameters as well as baroreceptor and chemoreceptor reflexes. Results MF caused a significant, atropine resistant, bradycardia and increased phrenic nerve discharge frequency. Chemoreceptor mediated sympathoexcitation (elicited by addition of 0.1 ml of 0.03% sodium cyanide to the aortic cannula was significantly attenuated by the application of MF to the perfusate. Furthermore MF significantly decreased rate of return to resting HR following chemoreceptor induced bradycardia. An increase in respiratory frequency and attenuated respiratory-related sympathetic nerve discharge during chemoreceptor stimulation was also elicited with MF compared to control. However, MF did not significantly alter baroreceptor reflex sensitivity. Conclusions These studies indicate that in the WHBP, MF causes profound alterations in autonomic and respiratory control. The possibility that these effects may be mediated through actions on connexin 36 containing gap junctions in central neurones controlling sympathetic nervous outflow is discussed.

  18. Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    Katherine Kay

    Full Text Available Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies to incorporate (i time lags and drug concentration profiles resulting from absorption across the gut wall and, if required, conversion to another active form; (ii multiple drugs within a treatment combination; (iii differing modes of action of drugs in the combination: additive, synergistic, antagonistic; (iv drugs converted to an active metabolite with a similar mode of action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine where the likelihood of increased artemisinin tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that PK/PD data is generally very

  19. [Animal drugs quality status and reason analysis].

    Science.gov (United States)

    Ding, Qing; Qiu, Ya-jing; Fang, Ke-hui; Hu, Hao-bin; Wu, Yue

    2015-11-01

    In order to reaction the quality present situation, problems on the current quality of animal sources of drugs are summed up by using test data analysis, literature search and marketing research. This paper can also help the improvement of the quality management, the revision of the relevant department policy system and the improvement of standards.

  20. The impact of HIV-1 on the malaria parasite biomass in adults in sub-Saharan Africa contributes to the emergence of antimalarial drug resistance

    Directory of Open Access Journals (Sweden)

    Korenromp Eline

    2008-07-01

    Full Text Available Abstract Background HIV-related immune-suppression increases the risk of malaria (infection, disease and treatment failure and probably the circulating parasite biomass, favoring the emergence of drug resistance parasites. Methods The additional malaria parasite biomass related to HIV-1 co-infection in sub-Saharan Africa was estimated by a mathematical model. Parasite biomass was computed as the incidence rate of clinical malaria episodes multiplied by the number of parasites circulating in the peripheral blood of patients at the time symptoms appear. A mathematical model estimated the influence of HIV-1 infection on parasite density in clinical malaria by country and by age group, malaria transmission intensity and urban/rural area. In a multivariate sensitivity analysis, 95% confidence intervals (CIs were calculated using the Monte Carlo simulation. Results The model shows that in 2005 HIV-1 increased the overall malaria parasite biomass by 18.0% (95%CI: 11.6–26.9. The largest relative increase (134.9–243.9% was found in southern Africa where HIV-1 prevalence is the highest and malaria transmission unstable. The largest absolute increase was found in Zambia, Malawi, the Central African Republic and Mozambique, where both malaria and HIV are highly endemic. A univariate sensitivity analysis shows that estimates are sensitive to the magnitude of the impact of HIV-1 infection on the malaria incidence rates and associated parasite densities. Conclusion The HIV-1 epidemic by increasing the malaria parasite biomass in sub-Saharan Africa may also increase the emergence of antimalarial drug resistance, potentially affecting the health of the whole population in countries endemic for both HIV-1 and malaria.

  1. Assessment of the efficacy of first-line antimalarial drugs after 5 years of deployment by the National Malaria Control Programme in Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Offianan AT

    2011-11-01

    Full Text Available Andre T Offianan1, Serge B Assi2, Aristide MA Coulibaly1, Landry T N'guessan1, Aristide A Ako1, Florence K Kadjo2, Moïse K San2, Louis K Penali2 1Malariology Department, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire; 2National Malaria Control Programme, Abidjan, Côte d'Ivoire Background: The emergence of artemisinin resistance has raised concerns that the most potent antimalarial drug may be under threat. Artesunate + amodiaquine (ASAQ and artemether-lumefantrine (AL are respectively the first- and second-line treatments for uncomplicated falciparum malaria in Côte d'Ivoire. A comparison of the efficacy and safety of these two drug combinations was necessary to make evidence-based drug treatment policies. Methods: In an open-label, non inferiority, randomized, controlled clinical trial, children aged 6–59 months were randomized to receive ASAQ or AL. Both drug regimens were given for 3 days, and follow-up was for 28 days. The primary endpoint was the 28-day cure rates and was defined as proportion of patients with polymerase chain reaction (PCR-corrected cure rate after 28 days of follow-up. Findings: A total of 251 patients who were attending the Ayame and Dabakala hospitals and presenting with symptomatic acute uncomplicated falciparum malaria were randomized to receive ASAQ (128 and AL (123. The intention-to-treat analysis showed effectiveness rates of 94.5% and 93.5% for ASAQ and AL, respectively on day 28. After adjustment for PCR results, these rates were 96.1% and 96.8%, respectively. On day 28, the per-protocol analysis showed effectiveness rates of 98.4% and 96.6% for ASAQ and AL, respectively. After adjustment by PCR for reinfection, these rates were 100% for each drug, and both regimens were well tolerated. Conclusion: ASAQ and AL remain efficacious treatments of uncomplicated falciparum malaria in Ivorian children 5 years after adoption. The efficacy of ASAQ and AL in Côte d'Ivoire requires, therefore, continuous

  2. Substandard artemisinin-based antimalarial medicines in licensed retail pharmaceutical outlets in Ghana

    Directory of Open Access Journals (Sweden)

    M. El-Duah & K. Ofori-Kwakye

    2012-09-01

    Full Text Available Background & objectives: The artemisinin-based antimalarial medicines are first line medicines in the treatmentof severe and uncomplicated falciparum malaria. Numerous brands of these medicines manufactured in variouscountries are available in the Ghanaian market. The study was aimed at evaluating the authenticity and qualityof selected brands of artemisinin-based antimalarial medicines marketed in Ghana.Methods: In all, 14 artemisinin-based antimalarial medicines were purchased from pharmacies (P and licensedchemical shops (LCSs in the Kumasi metropolis, Ghana. Simple field tests based on colorimetry and thin layerchromatography were employed in determining the authenticity of the samples. Important quality assessmenttests, namely uniformity of mass, crushing strength, disintegration time, and the percentage content of activepharmaceutical ingredients (APIs were determined.Results: All the brands tested contained the stipulated APIs. Artesunate tablet AT2 failed the uniformity of masstest while artesunate tablets AT3 & AT4 as well as amodiaquine tablets AM4 & AM6 failed the crushing strengthtest. All the six artemether-lumefantrine tablet brands passed the uniformity of mass, crushing strength anddisintegration tests. Only artemether-lumefantrine tablet brand AL1 contained the correct amount of the drugs.The other 13 artemisinin products contained either a lower (underdose or higher (overdose amount of thespecified drug. Artesunate monotherapy tablets were readily available in pharmacies and licensed chemicalshops.Interpretation & conclusion: All the artemisinin-based medicines tested (except AL1 were of substandardquality. The results demonstrate the need for continuous monitoring and evaluation of the quality of artemisininbased antimalarials in the Ghanaian market. Also, the practice of artemisinin antimalarial monotherapy is prevalentin Ghana. Determined efforts should, therefore, be made to eradicate the practice to prevent the development

  3. Genotyping of Plasmodium falciparum using antigenic polymorphic markers and to study anti-malarial drug resistance markers in malaria endemic areas of Bangladesh

    Directory of Open Access Journals (Sweden)

    Akter Jasmin

    2012-11-01

    Full Text Available Abstract Background In the past many regions of Bangladesh were hyperendemic for malaria. Malaria control in the 1960s to 1970s eliminated malaria from the plains but in the Chittagong Hill Tracts remained a difficult to control reservoir. The Chittagong Hill Tracts have areas with between 1 and 10% annual malaria rates, predominately 90-95% Plasmodium falciparum. In Southeast Asia, multiplicity of infection for hypo-endemic regions has been approximately 1.5. Few studies on the genetic diversity of P. falciparum have been performed in Bangladesh. Anderson et al. performed a study in Khagrachari, northern Chittagong Hill Tracts in 2002 on 203 patients and found that parasites had a multiplicity of infection of 1.3 by MSP-1, MSP-2 and GLURP genotyping. A total of 94% of the isolates had the K76T Pfcrt chloroquine resistant genotype, and 70% showed the N86Y Pfmdr1 genotype. Antifolate drug resistant genotypes were high with 99% and 73% of parasites having two or more mutations at the dhfr or dhps loci. Methods Nested and real-time polymerase chain reaction (PCR methods were used to genotype P. falciparum using antigenic polymorphic markers and to study anti-malarial drug resistance markers in malaria endemic areas of Bangladesh. Results The analysis of polymorphic and drug resistant genotype on 33 paired recrudescent infections after drug treatment in the period 2004 to 2008 in the Chittagong Hill Tracts, which is just prior to countrywide provision of artemisinin combination therapy. Overall the multiplicity of infection for MSP-1 was 2.7 with a slightly smaller parasite diversity post-treatment. The 13 monoclonal infections by both GLURP and MSP-1 were evenly divided between pre- and post-treatment. The MSP-1 MAD block was most frequent in 66 of the samples. The prevalence of the K76T PfCRT chloroquine resistant allele was approximately 82% of the samples, while the resistant Pfmdr1 N86Y was present in 33% of the samples. Interestingly, the post

  4. Oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine that potentially interacts with parasite ferritin and cystatin.

    Science.gov (United States)

    Küster, Tatiana; Stadelmann, Britta; Rufener, Reto; Risch, Corina; Müller, Joachim; Hemphill, Andrew

    2015-11-01

    This study investigated the effects of oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine (MEF) and identified proteins that bind to MEF in parasite extracts and human cells by affinity chromatography. In a pilot experiment, MEF treatment was applied 5 days per week and was intensified by increasing the dosage stepwise from 12.5 mg/kg to 200 mg/kg during 4 weeks followed by treatments of 100 mg/kg during the last 7 weeks. This resulted in a highly significant reduction of parasite weight in MEF-treated mice compared with mock-treated mice, but the reduction was significantly less efficacious compared with the standard treatment regimen of albendazole (ABZ). In a second experiment, MEF was applied orally in three different treatment groups at dosages of 25, 50 or 100 mg/kg, but only twice a week, for a period of 12 weeks. Treatment at 100 mg/kg had a profound impact on the parasite, similar to ABZ treatment at 200 mg/kg/day (5 days/week for 12 weeks). No adverse side effects were noted. To identify proteins in E. multilocularis metacestodes that physically interact with MEF, affinity chromatography of metacestode extracts was performed on MEF coupled to epoxy-activated Sepharose(®), followed by SDS-PAGE and in-gel digestion LC-MS/MS. This resulted in the identification of E. multilocularis ferritin and cystatin as MEF-binding proteins. In contrast, when human cells were exposed to MEF affinity chromatography, nicotinamide phosphoribosyltransferase was identified as a MEF-binding protein. This indicates that MEF could potentially interact with different proteins in parasites and human cells.

  5. [Generic drugs: quality, efficacy, safety and interchangeability].

    Science.gov (United States)

    Tschabitscher, Doris; Platzer, Peter; Baumgärtel, Christoph; Müllner, Marcus

    2008-01-01

    Since the introduction of generic drugs to the pharmaceutical market a sometimes emotional debate exists whether they are well-investigated and of high quality. There is some uncertainty about whether evidence of bioequivalence is enough to guarantee efficacy and safety of generic drugs. Some physicians ask the question if competent authorities are able to ascertain that the pharmaceutical quality of generics is acceptable. Doctors and patients sometimes are ill at ease about the interchangeability of innovator and generic products. This article describes how the European Union legislation ensures that a generic drug is only approved if its risk-benefit relationship is favourable and that it is essentially similar to the innovator product. In this context pharmacokinetic parameters are accepted as surrogates for clinical results because bioequivalence means therapeutic equivalence as well. For most drugs, current bioequivalence testing generally enables clinicians to routinely substitute generic for innovator products. Published findings, however, suggest that particular drugs may not be ideally suited for generic substitution when a patient is already on that drug. These are the so called critical dose medicinal products (drugs with a narrow therapeutic range). When starting a new therapy with any generic drug, however, its similarity to the innovator drug in terms of efficacy, safety and quality is guaranteed.

  6. Antimalarial natural products: a review

    Directory of Open Access Journals (Sweden)

    Faraz Mojab

    2012-03-01

    Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures.

  7. Selection of antimalarial drug resistance after intermittent preventive treatment of infants and children (IPTi/c) in Senegal

    DEFF Research Database (Denmark)

    Ndiaye, Magatte; Tine, Roger; Faye, Babacar;

    2013-01-01

    Senegal has since 2003 used sulphadoxine-pyrimethamine (SP) for Intermittent Preventive Treatment (IPT) of malaria in risk groups. However, the large-scale IPT strategy may result in increasing drug resistance. Our study investigated the possible impact of SP-IPT given to infants and children...... on IPTi/c and one without IPTi/c intervention) located in the southern part of Senegal. The prevalence of SP-resistance-related haplotypes in Pfdhfr and Pfdhps was determined by nested PCR followed by sequence-specific oligonucleotide probe (SSOP)-ELISA. The prevalence of the Pfdhfr double mutant...

  8. Investigations of the effects of the antimalarial drug dihydroartemisinin (DHA) using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX).

    Science.gov (United States)

    Longo, Monica; Zanoncelli, Sara; Della Torre, Paola; Rosa, Francesco; Giusti, AnnaMaria; Colombo, Paolo; Brughera, Marco; Mazué, Guy; Olliaro, Piero

    2008-08-01

    Artemisinin derivatives are effective and safe drugs for treating malaria, but they are not recommended during the first trimester of pregnancy because of resorptions and abnormalities observed in animal reproduction studies. Previous studies in rats showed that artemisinin embryotoxicity derives from the depletion of primitive red blood cells (RBCs) over a narrow critical time window (gestation Days 9-14). In order to further investigate the susceptibility of primitive RBCs to artemisinins and to establish whether this susceptibility is species-specific or inherent to the compound, we studied dihydroartemisinin (DHA), both a drug in its own right and the main metabolite of current artemisinin derivatives in use, in the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). This model readily allows investigation and monitoring of primitive and definitive RBCs. Effects on frog larvae exposed to DHA for 48 h during early embryonic development, starting from 24 h post fertilization, were similar to those on rat embryos in terms of reduction in the number of primitive RBCs (clonally produced within the ventral blood island). In contrast, RBCs of older larvae (stage 47, produced at the definitive sites of hematopoiesis) were affected minimally and subsequently recovered. Compared to rat embryos, the frog larvae had no areas of necrosis but they shared similar heart defects. The mitochondrion appeared to be the main subcellular target, similar to observations in Plasmodium. These results implicate artemisinin-induced embryotoxicity through perturbation of metabolically active RBCs; whereas this mode of action does not appear to be species-specific, the stages of susceptibility varied between different species. The window of susceptibility and duration of exposure must be considered to evaluate the clinical relevance of these findings.

  9. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.

    Science.gov (United States)

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-12-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.

  10. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Natalie Jane Spillman

    2015-12-01

    Full Text Available The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na+ concentration and the plasma membrane P-type cation translocating ATPase ‘PfATP4’ has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's ‘Malaria Box’. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na+. Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.

  11. A combined within-host and between-hosts modelling framework for the evolution of resistance to antimalarial drugs.

    Science.gov (United States)

    Legros, Mathieu; Bonhoeffer, Sebastian

    2016-04-01

    The spread of drug resistance represents a significant challenge to many disease control efforts. The evolution of resistance is a complex process influenced by transmission dynamics between hosts as well as infection dynamics within these hosts. This study aims to investigate how these two processes combine to impact the evolution of resistance in malaria parasites. We introduce a stochastic modelling framework combining an epidemiological model of Plasmodium transmission and an explicit within-human infection model for two competing strains. Immunity, treatment and resistance costs are included in the within-host model. We show that the spread of resistance is generally less likely in areas of intense transmission, and therefore of increased competition between strains, an effect exacerbated when costs of resistance are higher. We also illustrate how treatment influences the spread of resistance, with a trade-off between slowing resistance and curbing disease incidence. We show that treatment coverage has a stronger impact on disease prevalence, whereas treatment efficacy primarily affects resistance spread, suggesting that coverage should constitute the primary focus of control efforts. Finally, we illustrate the importance of feedbacks between modelling scales. Overall, our results underline the importance of concomitantly modelling the evolution of resistance within and between hosts.

  12. Selection of antimalarial drug resistance after intermittent preventive treatment of infants and children (IPTi/c) in Senegal.

    Science.gov (United States)

    Ndiaye, Magatte; Tine, Roger; Faye, Babacar; Ndiaye, Jean L; Diouf, Ibrahima; Lo, Aminata C; Sylla, Khadime; Dieng, Yemou; Hallett, Rachel; Alifrangis, Michael; Gaye, Oumar

    2013-01-01

    Senegal has since 2003 used sulphadoxine-pyrimethamine (SP) for Intermittent Preventive Treatment (IPT) of malaria in risk groups. However, the large-scale IPT strategy may result in increasing drug resistance. Our study investigated the possible impact of SP-IPT given to infants and children on the prevalence of SP-resistant haplotypes in the Plasmodium falciparum genes Pfdhfr and Pfdhps, comparing sites with and without IPTi/c. P. falciparum positives samples (n=352) were collected from children under 5years of age during two cross-sectional surveys in 2010 and 2011 in three health districts (two on IPTi/c and one without IPTi/c intervention) located in the southern part of Senegal. The prevalence of SP-resistance-related haplotypes in Pfdhfr and Pfdhps was determined by nested PCR followed by sequence-specific oligonucleotide probe (SSOP)-ELISA. The prevalence of the Pfdhfr double mutant haplotypes (CNRN and CICN) was stable between years atSenegal according to WHO recommendations.

  13. Analysis on the Application and Development of Antimalarials Drugs%抗疟药物的应用与发展

    Institute of Scientific and Technical Information of China (English)

    张楠

    2016-01-01

    人类在抗疟药物的应用过程中,先后经历了蚊帐、纱窗、巫术、中草药等传统办法,由金鸡纳树皮的疗效促使了奎宁、氯喹的产生,以及DDT杀虫剂和青蒿素类药物的使用,上述治疗手段和方法都对控制疟疾的传播扩散发挥了重要作用。本文通过回顾这些抗疟药物应用历程的同时,以期展望该领域的发展前景和未来趋势。%In the history, human used several ways, such as mosquito nets, screens, witchcraft, Chinese herbal medicine and other traditional ways, and due to the curative effect of cinchona bark, human find quinine and chloroquine, later, the pesticide DDT and arte-misinin drugs also can be found.All of them played an important role to control the spread of malaria.This paper is overviewed how many treatments and methods which by human used and found, and its development is also prospected.

  14. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    OpenAIRE

    Norazsida Ramli; Pakeer Oothuman Syed Ahamed; Hassan Mohamed Elhady; Muhammad Taher

    2014-01-01

    Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral t...

  15. Synthesis of triazol derivatives of lupeol with potential antimalarial activity

    OpenAIRE

    Tatiane Freitas Borgati; Guilherme Rocha Pereira; Geraldo Célio Brandão; Alaíde Braga Oliveira; José Dias Souza Filho

    2012-01-01

    The goal of this project is synthesize and characterization of derivatives of lupeol and evaluated antimalarial activity. Historically, plants are important source of antimalarial medicines, highlighting quinine (1) (Figure 1), an important      alkaloid from the Cinchona calisaya bark. This compound was an important model for cloroquine  synthesis, a drug that was widely used in malaria treatment. In addition, one of the principal medicines used today is artemisinine, isolated from the Chine...

  16. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    Science.gov (United States)

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-06-29

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  17. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids

    Directory of Open Access Journals (Sweden)

    Birgit Viira

    2016-06-01

    Full Text Available Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  18. A novel in vitro bioluminescence rate-of-kill (BRoK) assay to study the pharmacodynamic properties of antimalarial drug action in Plasmodium falciparum

    OpenAIRE

    Ullah, Imran

    2016-01-01

    Massive screens of chemical libraries for antimalarial activity have identified thousands of compounds that exhibit sub-micromolar potency against the blood stage of the malaria parasite Plasmodium falciparum. Triaging these compounds to establish priorities to take forward for development requires additional information regarding their activity. Key amongst their pharmacodynamics (PD) properties is the rate of kill– with a rapid cytocidal effect specifically identified as a key requirement f...

  19. Psychoactive Drugs and Quality of Life

    Directory of Open Access Journals (Sweden)

    Soren Ventegodt

    2003-01-01

    Full Text Available This study was performed on a representative sample of the Danish population in order to investigate the connection to the use of psychoactive drugs and quality of life (QOL by way of a questionnaire-based survey. The questionnaire was mailed in February 1993 to 2,460 persons aged between 18 and 88, randomly selected from the CPR (Danish Central Register, and 7,222 persons from the Copenhagen Perinatal Birth Cohort 1959–61.A total of 1,501 persons between the ages 18 and 88 years and 4,626 persons between the ages 31 and 33 years returned the questionnaire (response rates of 61.0% and 64.1%, respectively. Variables investigated in this study were ten different psychotropic drugs and quality of life.Our study showed that over half the Danish population had used illegal psychotropic drugs. The most commonly used was cannabis (marijuana though experience of this drug appeared not to co-vary with QOL to any significant extent. Cocaine, amphetamine, and psilocybin had been used by 1.2 to 3.3% of the population and this varied with QOL to a clear albeit small extent. LSD has been used by 1.2% of the population and the users had a QOL score 10% lower than those who had never used psychotropic drugs. The group with the lowest quality of life was found to be persons who had used heroin, morphine, methadone, and a mixture of alcohol and tranquilizers (10–20% below the group with the highest quality of life.

  20. Psychoactive drugs and quality of life.

    Science.gov (United States)

    Ventegodt, Søren; Merrick, Joav

    2003-08-18

    This study was performed on a representative sample of the Danish population in order to investigate the connection to the use of psychoactive drugs and quality of life (QOL) by way of a questionnaire-based survey. The questionnaire was mailed in February 1993 to 2,460 persons aged between 18 and 88, randomly selected from the CPR (Danish Central Register), and 7,222 persons from the Copenhagen Perinatal Birth Cohort 1959-61. A total of 1,501 persons between the ages 18 and 88 years and 4,626 persons between the ages 31 and 33 years returned the questionnaire (response rates of 61.0% and 64.1%, respectively). Variables investigated in this study were ten different psychotropic drugs and quality of life. Our study showed that over half the Danish population had used illegal psychotropic drugs. The most commonly used was cannabis (marijuana) though experience of this drug appeared not to co-vary with QOL to any significant extent. Cocaine, amphetamine, and psilocybin had been used by 1.2 to 3.3% of the population and this varied with QOL to a clear albeit small extent. LSD has been used by 1.2% of the population and the users had a QOL score 10% lower than those who had never used psychotropic drugs. The group with the lowest quality of life was found to be persons who had used heroin, morphine, methadone, and a mixture of alcohol and tranquilizers (10-20% below the group with the highest quality of life).

  1. Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads

    DEFF Research Database (Denmark)

    Jensen, Kasper; Plichta, Damian Rafal; Panagiotou, Gianni;

    2012-01-01

    The parasite Plasmodium falciparum is the main agent responsible for malaria. In this study, we exploited a recently published chemical library from GlaxoSmithKline (GSK) that had previously been confirmed to inhibit parasite growth of the wild type (3D7) and the multi-drug resistance (D2d) strains......, in order to uncover the weak links in the proteome of the parasite. We predicted 293 proteins of P. falciparum, including the six out of the seven verified targets for P. falciparum malaria treatment, as targets of 4645 GSK active compounds. Furthermore, we prioritized druggable targets, based on a number...... on integration of available chemical-protein and protein-protein interaction data. Our work suggests that a large number of the P. falciparum proteome is potentially druggable and could therefore serve as novel drug targets in the fight against malaria. At the same time, prioritized compounds from the GSK...

  2. Antimalarial properties of imipramine and amitriptyline

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P.; Siegel, L.; Pinto, J.; Meshnick, S.

    1986-03-01

    This laboratory has previously demonstrated that imipramine (IM) and amitriptyline (AM), inhibit the conversion of riboflavin to its coenzymic derivatives. Several other laboratories have shown that dietary riboflavin deficiency is protective against malarial infection. In the present investigation, the authors determined whether IM and AM exert antimalarial effects similar to that of riboflavin deficiency, as they have hypothesized. In addition, they evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of P. falciparum (FCR3) in the absence or presence of these drugs (80 ..mu..M) was measured by incubating parasitized erythrocytes for 48 h in RPMI 1640 medium. Parasitemia was determined by counting erythrocyte smears and monitoring (/sup 3/H)hypoxanthine uptake. With no drug, parasitemia was 20.3 +/- 5.3%, whereas in the presence of IM and AM, parasitemia was reduced to 7.3 +/- 0.8% and 13.6 +/- 2.8%, respectively. The uptake of (/sup 3/H)hypoxanthine was reduced to 47 +/- 3.6% and 54 +/- 2.9% of control by IM and AM, respectively. Assays of hemolysis were conducted by incubating 0.5% RBC suspension in NaCl-Tris buffer for 3 h at 37/sup 0/C with variable concentrations of drugs and/or FP (1-7 ..mu..M). Both drugs at 10 to 100 ..mu..M significantly enhanced hemolysis induced by FP. No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, IM and AM, possess substantial antimalarial properties, thereby supporting the hypothesis that drugs which interfere with riboflavin metabolism should also provide protection against malaria.

  3. [Historical overview of antimalarials used in Venezuela].

    Science.gov (United States)

    Zerpa de Artiles, N

    1993-06-01

    A historical review of antimalarials used in Venezuela is presented from the time when the bark of quina was used until the massive distribution of quinine and metoquine by the Dirección de Malariología y Saneamiento Ambiental. The utility of chloroquine and primaquine against sensible parasite isolates and of sulfadoxine-pyrimethamine and quinine, currently used against P. falciparum resistant strains, is thoroughly discussed. The author suggests use of artemisimine and its derivatives as a very promising antimalarial drug. She also stresses the possibility of the application of new antimalaria vaccine against P. falciparum blood states, presently assayed in the country as an additional tool in malaria control programs.

  4. Antimalarial pharmacology and therapeutics of atovaquone.

    Science.gov (United States)

    Nixon, Gemma L; Moss, Darren M; Shone, Alison E; Lalloo, David G; Fisher, Nicholas; O'Neill, Paul M; Ward, Stephen A; Biagini, Giancarlo A

    2013-05-01

    Atovaquone is used as a fixed-dose combination with proguanil (Malarone) for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travellers. Indeed, in the USA, between 2009 and 2011, Malarone prescriptions accounted for 70% of all antimalarial pre-travel prescriptions. In 2013 the patent for Malarone will expire, potentially resulting in a wave of low-cost generics. Furthermore, the malaria scientific community has a number of antimalarial quinolones with a related pharmacophore to atovaquone at various stages of pre-clinical development. With this in mind, it is timely here to review the current knowledge of atovaquone, with the purpose of aiding the decision making of clinicians and drug developers involved in the future use of atovaquone generics or atovaquone derivatives.

  5. Quality and stability of artemether-lumefantrine stored under ambient conditions in rural Mali

    OpenAIRE

    Gitua, John; Beck, Aaron; Rovers, John

    2014-01-01

    Background The quality and stability of anti-malarial drugs in the Global South has long been of significant concern. Drug quality can be affected by poor or fraudulent manufacturing processes, while drug stability is affected by temperature and humidity. Knowledge of drug quality and stability is often the unique contribution of pharmacists volunteering on short-term medical mission trips. Objective To determine the quality and stability of artemether-lumefantrine 20/120 mg under ambient sto...

  6. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    Science.gov (United States)

    Kalani, Komal; Agarwal, Jyoti; Alam, Sarfaraz; Khan, Feroz; Pal, Anirban; Srivastava, Santosh Kumar

    2013-01-01

    Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  7. Antimalarial activity of cedronin.

    Science.gov (United States)

    Moretti, C; Deharo, E; Sauvain, M; Jardel, C; David, P T; Gasquet, M

    1994-06-01

    Cedronin was isolated from Simaba cedron Planchon (Simaroubaceae), a species popularly believed in South America to have antimalarial properties. It was examined for in vitro and in vivo antimalarial activities and for cytotoxicity against KB cells. Experimental results showed that cedronin was active against chloroquine-sensitive and resistant strain, with an IC50 of 0.25 micrograms/ml (0.65 mumol/ml). It was also found to be active in vivo against Plasmodium vinkei with an IC50 of 1.8 mg/kg (4.7 nM/kg) in the classic 4-day test. Cedronin belongs to the small group of quassinoids with a C19 basic skeleton and shows a rather low cytotoxicity against KB cells (IC50 = 4 micrograms/ml, 10.4 microM) as compared with C20 biologically active quassinoids; however its toxic/therapeutic ratio (10/1.8) remains lower than chloroquine (10/0.5).

  8. 76 FR 50741 - 2011 Parenteral Drug Association/Food and Drug Administration Joint Public Conference; Quality...

    Science.gov (United States)

    2011-08-16

    ... Administration Joint Public Conference; Quality and Compliance in Today's Regulatory Enforcement Environment AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public conference. The Food and Drug Administration (FDA), in cosponsorship with Parenteral Drug Association (PDA), is announcing a public...

  9. Antimalarial activity of methanolic leaf extract of Piper betle L.

    Science.gov (United States)

    Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela

    2010-12-28

    The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  10. Synthesis of triazol derivatives of lupeol with potential antimalarial activity

    Directory of Open Access Journals (Sweden)

    Tatiane Freitas Borgati

    2012-06-01

    Full Text Available The goal of this project is synthesize and characterization of derivatives of lupeol and evaluated antimalarial activity. Historically, plants are important source of antimalarial medicines, highlighting quinine (1 (Figure 1, an important      alkaloid from the Cinchona calisaya bark. This compound was an important model for cloroquine  synthesis, a drug that was widely used in malaria treatment. In addition, one of the principal medicines used today is artemisinine, isolated from the Chinese plant Artemisia annua L (2 (Figure 1, and their semi synthetic derivatives (artesunate, artemeter, arteter. However, the malaria parasite has already shown resistance    to most of these current drugs and  the search for new candidates is essential. Lupeol (3 (Figura 1 is a compound that occurs in many plant species and discloses antimalarial, antiinflamatoryl and antitumoral activities. Considering its potential as a lead antimalarial molecule, we focused our work in the synthesis of new lupeol derivatives with increased antimalarial activity(scheme 1.

  11. Otimização do processo de extração e isolamento do antimalárico artemisinina a partir de Artemisia annua L. Optimization of the extraction and isolation of the antimalarial drug artemisinin from Artemisia annua L.

    Directory of Open Access Journals (Sweden)

    Rodney Alexandre Ferreira Rodrigues

    2006-04-01

    Full Text Available Malaria is still one of the major diseases in the world, causing physical and economic problems in tropical regions. Artemisinin (Qinghaosu, a natural compound identified in Artemisia annua L. , is an effective drug mainly against cerebral malaria. The action of this drug is immediate and parasitaemia in the treatment of drug-resistant malaria is rapidily reduced, justifying the industrial production of artemisinin. This article focuses on the industrial production of this potent antimalarial drug, including strategies for enhancing yield using inexpensive and easy steps.

  12. On the molecular basis of the activity of the antimalarial drug chloroquine: EXAFS-assisted DFT evidence of a direct Fe-N bond with free heme in solution

    Science.gov (United States)

    Macetti, Giovanni; Rizzato, Silvia; Beghi, Fabio; Silvestrini, Lucia; Lo Presti, Leonardo

    2016-02-01

    4-aminoquinoline antiplasmodials interfere with the biocrystallization of the malaria pigment, a key step of the malaria parasite metabolism. It is commonly believed that these drugs set stacking π···π interactions with the Fe-protoporphyrin scaffold of the free heme, even though the details of the heme:drug recognition process remain elusive. In this work, the local coordination of Fe(III) ions in acidic solutions of hematin at room temperature was investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy in the 4.0-5.5 pH range, both in the presence and in the absence of the antimalarial drug chloroquine. EXAFS results were complemented by DFT simulations in polarizable continuum media to model solvent effects. We found evidence that a complex where the drug quinoline nitrogen is coordinated with the iron center might coexist with formerly proposed adduct geometries, based on stacking interactions. Charge-assisted hydrogen bonds among lateral chains of the two molecules play a crucial role in stabilizing this complex, whose formation is favored by the presence of lipid micelles. The direct Fe-N bond could reversibly block the axial position in the Fe 1st coordination shell in free heme, acting as an inhibitor for the crystallization of the malaria pigment without permanently hampering the catalytic activity of the redox center. These findings are discussed in the light of possible implications on the engineering of drugs able to thwart the adaptability of the malaria parasite against classical aminoquinoline-based therapies.

  13. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity

    NARCIS (Netherlands)

    Rijpma, S.R.; Heuvel, J.J.; Velden, M. van der; Sauerwein, R.W.; Russel, F.G.; Koenderink, J.B.

    2014-01-01

    BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involve

  14. Quinine conjugates and quinine analogues as potential antimalarial agents.

    Science.gov (United States)

    Jones, Rachel A; Panda, Siva S; Hall, C Dennis

    2015-06-01

    Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds.

  15. Monitoring the efficacy of antimalarial medicines in India via sentinel sites: Outcomes and risk factors for treatment failure

    Directory of Open Access Journals (Sweden)

    Neelima Mishra

    2016-01-01

    Interpretation & conclusion: Till 2012, India′s national antimalarial drug resistance monitoring system proved highly efficacious and safe towards first-line antimalarials used in the country, except in Northeastern region where a decline in efficacy of AS+SP has been observed. This led to change in first-line treatment for P. falciparum to artemether-lumefantrine in Northeastern region.

  16. Quality of artemisinin-based combination formulations for malaria treatment: prevalence and risk factors for poor quality medicines in public facilities and private sector drug outlets in Enugu, Nigeria.

    Directory of Open Access Journals (Sweden)

    Harparkash Kaur

    Full Text Available Artemisinin-based combination therapies are recommended by the World Health Organisation (WHO as first-line treatment for Plasmodium falciparum malaria, yet medication must be of good quality for efficacious treatment. A recent meta-analysis reported 35% (796/2,296 of antimalarial drug samples from 21 Sub-Saharan African countries, purchased from outlets predominantly using convenience sampling, failed chemical content analysis. We used three sampling strategies to purchase artemisinin-containing antimalarials (ACAs in Enugu metropolis, Nigeria, and compared the resulting quality estimates.ACAs were purchased using three sampling approaches--convenience, mystery clients and overt, within a defined area and sampling frame in Enugu metropolis. The active pharmaceutical ingredients were assessed using high-performance liquid chromatography and confirmed by mass spectrometry at three independent laboratories. Results were expressed as percentage of APIs stated on the packaging and used to categorise each sample as acceptable quality, substandard, degraded, or falsified.Content analysis of 3024 samples purchased from 421 outlets using convenience (n=200, mystery (n=1,919 and overt (n=905 approaches, showed overall 90.8% ACAs to be of acceptable quality, 6.8% substandard, 1.3% degraded and 1.2% falsified. Convenience sampling yielded a significantly higher prevalence of poor quality ACAs, but was not evident by the mystery and overt sampling strategies both of which yielded results that were comparable between each other. Artesunate (n=135; 4 falsified and dihydroartemisinin (n=14 monotherapy tablets, not recommended by WHO, were also identified.Randomised sampling identified fewer falsified ACAs than previously reported by convenience approaches. Our findings emphasise the need for specific consideration to be given to sampling frame and sampling approach if representative information on drug quality is to be obtained.

  17. Quality of Artemisinin-Based Combination Formulations for Malaria Treatment: Prevalence and Risk Factors for Poor Quality Medicines in Public Facilities and Private Sector Drug Outlets in Enugu, Nigeria

    Science.gov (United States)

    Kaur, Harparkash; Allan, Elizabeth Louise; Mamadu, Ibrahim; Hall, Zoe; Ibe, Ogochukwu; El Sherbiny, Mohamed; van Wyk, Albert; Yeung, Shunmay; Swamidoss, Isabel; Green, Michael D.; Dwivedi, Prabha; Culzoni, Maria Julia; Clarke, Siân; Schellenberg, David; Fernández, Facundo M.; Onwujekwe, Obinna

    2015-01-01

    Background Artemisinin-based combination therapies are recommended by the World Health Organisation (WHO) as first-line treatment for Plasmodium falciparum malaria, yet medication must be of good quality for efficacious treatment. A recent meta-analysis reported 35% (796/2,296) of antimalarial drug samples from 21 Sub-Saharan African countries, purchased from outlets predominantly using convenience sampling, failed chemical content analysis. We used three sampling strategies to purchase artemisinin-containing antimalarials (ACAs) in Enugu metropolis, Nigeria, and compared the resulting quality estimates. Methods ACAs were purchased using three sampling approaches - convenience, mystery clients and overt, within a defined area and sampling frame in Enugu metropolis. The active pharmaceutical ingredients were assessed using high-performance liquid chromatography and confirmed by mass spectrometry at three independent laboratories. Results were expressed as percentage of APIs stated on the packaging and used to categorise each sample as acceptable quality, substandard, degraded, or falsified. Results Content analysis of 3024 samples purchased from 421 outlets using convenience (n=200), mystery (n=1,919) and overt (n=905) approaches, showed overall 90.8% ACAs to be of acceptable quality, 6.8% substandard, 1.3% degraded and 1.2% falsified. Convenience sampling yielded a significantly higher prevalence of poor quality ACAs, but was not evident by the mystery and overt sampling strategies both of which yielded results that were comparable between each other. Artesunate (n=135; 4 falsified) and dihydroartemisinin (n=14) monotherapy tablets, not recommended by WHO, were also identified. Conclusion Randomised sampling identified fewer falsified ACAs than previously reported by convenience approaches. Our findings emphasise the need for specific consideration to be given to sampling frame and sampling approach if representative information on drug quality is to be obtained

  18. Antimalarial Activity of Methanolic Leaf Extract of Piper betle L.

    Directory of Open Access Journals (Sweden)

    Adel A. Amran

    2010-12-01

    Full Text Available The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50–400 mg/kg was investigated for its antimalarial activity against Plasmodium berghei (NK65 during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05 schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  19. Medicines informal market in Congo, Burundi and Angola: counterfeit and sub-standard antimalarials

    Directory of Open Access Journals (Sweden)

    Bertocchi Paola

    2007-02-01

    Full Text Available Abstract Background The presence of counterfeits and sub-standards in African medicines market is a dramatic problem that causes many deaths each year. The increase of the phenomenon of pharmaceutical counterfeiting is due to the rise of the illegal market and to the impossibility to purchase branded high cost medicines. Methods In this paper the results of a quality control on antimalarial tablet samples purchased in the informal market in Congo, Burundi and Angola are reported. The quality control consisted in the assay of active substance by means of validated liquid chromatographic methods, uniformity of mass determination, disintegration and dissolution tests. Moreover, a general evaluation on label and packaging characteristics was performed. Results The results obtained on thirty antimalarial tablet samples containing chloroquine, quinine, mefloquine, sulphadoxine and pyrimethamine showed the presence of different kinds of problems: a general problem concerning the packaging (loose tablets, packaging without Producer name, Producer Country and sometimes without expiry date; low content of active substance (in one sample; different, non-declared, active substance (in one sample; sub-standard technological properties and very low dissolution profiles (in about 50% of samples. This last property could affect the bioavailability and bioequivalence in comparison with branded products and could be related to the use of different excipients in formulation or bad storage conditions. Conclusion This paper evidences that the most common quality problem in the analysed samples appears to be the low dissolution profile. Here it is remarked that the presence of the right active substance in the right quantity is not a sufficient condition for a good quality drug. Dissolution test is not less important in a quality control and often evidences in vitro possible differences in therapeutic efficacy among drugs with the same active content. Dissolution

  20. PfMDR2 and PfMDR5 are dispensable for Plasmodium falciparum asexual parasite multiplication but change in vitro susceptibility to anti-malarial drugs

    NARCIS (Netherlands)

    Velden, M. van der; Rijpma, S.R.; Russel, F.G.M.; Sauerwein, R.W.; Koenderink, J.B.

    2015-01-01

    BACKGROUND: Membrane-associated ATP binding cassette (ABC) transport proteins hydrolyze ATP in order to translocate a broad spectrum of substrates, from single ions to macromolecules across membranes. In humans, members from this transport family have been linked to drug resistance phenotypes, e.g.,

  1. The impact of HIV-1 on the malaria parasite biomass in adults in sub-Saharan Africa contributes to the emergence of antimalarial drug resistance

    NARCIS (Netherlands)

    J.P. van Geertruyden (Jean Pierre); J. Menten (Joris); R. Colebunders (Robert); E.L. Korenromp (Eline); U. D'Alessandro (Umberto)

    2008-01-01

    textabstractBackground. HIV-related immune-suppression increases the risk of malaria (infection, disease and treatment failure) and probably the circulating parasite biomass, favoring the emergence of drug resistance parasites. Methods. The additional malaria parasite biomass related to HIV-1 co-inf

  2. Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Mariana Conceição Souza

    2015-06-01

    Full Text Available A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3 inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.

  3. The in vitro antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with mefloquine/artesunate.

    Science.gov (United States)

    Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2014-03-01

    Multidrug resistance Plasmodium falciparum is the major health problem in Thailand. Discovery and development of new antimalarial drugs with novel modes of action is urgently required. The aim of the present study was to investigate the antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with the standard antimalarial drugs mefloquine and artesunate in chloroquine sensitive (3D7) and chloroquine resistant (K1) P. falciparum clones in vitro. Median (range) IC50 (drug concentration which produces 50% parasite growth inhibition) values of the 9-hydroxycalabaxanthone, α-mangostin, artesunate and mefloquine for 3D7 vs K1 clones were 1.5 (0.9-2.1) vs 1.2 (1.1-1.6) μM, 17.9 (15.7.0-20.0) vs 9.7 (6.0-14.0) μM, 1.0 (0.4-3.0) vs 1.7 (1.0-2.5) nM, and 13.3 (11.1-13.3) vs 7.1 (6.7-12.2) nM, respectively. Analysis of isobologram and combination index (CI) of 9-hydroxycalabaxanthone with artesunate or mefloquine showed synergistic and indifference antimalarial interaction, respectively. α-mangostin-artesunate combination exhibited a slight antagonistic effect of antimalarial interaction, whereas α-mangostin and mefloquine combination showed indifference interaction in both clones. The combination of 9-hydroxycalabaxanthone with α-mangostin showed the synergistic antimalarial interaction in both clones.

  4. Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake

    Directory of Open Access Journals (Sweden)

    Carmen E Contreras

    2004-03-01

    Full Text Available The evaluation of new antimalarial agents using older methods of monitoring sensitivity to antimalarial drugs are laborious and poorly suited to discriminate stage-specific activity. We used flow cytometry to study the effect of established antimalarial compounds, cysteine protease inhibitors, and a quinolone against asexual stages of Plasmodium falciparum. Cultured P. falciparum parasites were treated for 48 h with different drug concentrations and the parasitemia was determined by flow cytometry methods after DNA staining with propidium iodide. P. falciparum erythrocytic life cycle stages were readily distinguished by flow cytometry. Activities of established and new antimalarial compounds measured by flow cytometry were equivalent to results obtained with microscopy and metabolite uptake assays. The antimalarial activity of all compounds was higher against P. falciparum trophozoite stages. Advantages of flow cytometry analysis over traditional assays included higher throughput for data collection, insight into the stage-specificity of antimalarial activity avoiding use of radioactive isotopes.

  5. Assessing website pharmacy drug quality: safer than you think?

    Directory of Open Access Journals (Sweden)

    Roger Bate

    Full Text Available BACKGROUND: Internet-sourced drugs are often considered suspect. The World Health Organization reports that drugs from websites that conceal their physical address are counterfeit in over 50 percent of cases; the U.S. Food and Drug Administration (FDA works with the National Association of Boards of Pharmacy (NABP to regularly update a list of websites likely to sell drugs that are illegal or of questionable quality. METHODS AND FINDINGS: This study examines drug purchasing over the Internet, by comparing the sales of five popular drugs from a selection of websites stratified by NABP or other ratings. The drugs were assessed for price, conditions of purchase, and basic quality. Prices and conditions of purchase varied widely. Some websites advertised single pills while others only permitted the purchase of large quantities. Not all websites delivered the exact drugs ordered, some delivered no drugs at all; many websites shipped from multiple international locations, and from locations that were different from those advertised on the websites. All drug samples were tested against approved U.S. brand formulations using Raman spectrometry. Many (17 websites substituted drugs, often in different formulations from the brands requested. These drugs, some of which were probably generics or perhaps non-bioequivalent copy versions, could not be assessed accurately. Of those drugs that could be assessed, none failed from "approved", "legally compliant" or "not recommended" websites (0 out of 86, whereas 8.6% (3 out of 35 failed from "highly not recommended" and unidentifiable websites. CONCLUSIONS: Of those drugs that could be assessed, all except Viagra(R passed spectrometry testing. Of those that failed, few could be identified either by a country of manufacture listed on the packaging, or by the physical location of the website pharmacy. If confirmed by future studies on other drug samples, then U.S. consumers should be able to reduce their risk by

  6. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    Science.gov (United States)

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.

  7. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    Directory of Open Access Journals (Sweden)

    Komal Kalani

    Full Text Available Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  8. The acceptability of mass administrations of anti-malarial drugs as part of targeted malaria elimination in villages along the Thai–Myanmar border

    Directory of Open Access Journals (Sweden)

    Ladda Kajeechiwa

    2016-09-01

    Full Text Available Abstract Background A targeted malaria elimination project, including mass drug administrations (MDA of dihydroartemisinin/piperaquine plus a single low dose primaquine is underway in villages along the Thailand Myanmar border. The intervention has multiple components but the success of the project will depend on the participation of the entire communities. Quantitative surveys were conducted to study reasons for participation or non-participation in the campaign with the aim to identify factors associated with the acceptance and participation in the mass drug administrations. Methods The household heads in four study villages in which MDAs had taken place previously were interviewed between January 2014 and July 2015. Results 174/378 respondents (46 % completed three rounds of three drug doses each, 313/378 (83 % took at least three consecutive doses and 56/378 (15 % did not participate at all in the MDA. The respondents from the two villages (KNH and TPN were much more likely to participate in the MDA than respondents from the other two villages (HKT and TOT. The more compliant villages KNH and TPN had both an appearance of cohesive communities with similar demographic and ethnic backgrounds. By contrast the villages with low participation were unique. One village was fragmented following years of armed conflict and many respondents gave little inclination to cooperate with outsiders. The other village with low MDA coverage was characterised by a high percentage of short-term residents with little interest in community interventions. A universal reason for non-participation in the MDA applicable to all villages was an inadequate understanding of the intervention. Conclusions It is unlikely that community engagement can unite fragmented communities in participating in an intervention, which benefits the community. Understanding the purpose and the reasons underlying the intervention is an important pre-condition for participation. In the

  9. Antimalarials and the fight against malaria in Brazil

    Directory of Open Access Journals (Sweden)

    Luiz MA Carmargo

    2009-04-01

    Full Text Available Luiz MA Carmargo1, Saulo de Oliveira2, Sergio Basano3, Célia RS Garcia21ICBV-USP, Monte Negro, Rondônia, Brasil; 2Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, SP, Brazil; 3CEMETRON, Porto Velho, Guaporé, BrazilAbstract: Malaria, known as the “fevers,” has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named “Jesuits’ powder.” Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira–Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients.Keywords: Plasmodium falciparum, malaria, antimalarials, calcium

  10. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    Directory of Open Access Journals (Sweden)

    Dea Shahinas

    2013-02-01

    Full Text Available Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.

  11. [Generic drugs: we must cut pharmaceutical spending but undertaking drug quality].

    Science.gov (United States)

    Carrillo Norte, Juan Antonio; Postigo Mota, Salvador

    2012-02-01

    The World Health Organization and all drug regulatory agencies (DRA) support the commercialization of generic medicines because they control costs and are irreplaceable therapeutic options in countries lacking the innovator product. Generic drugs are widely considered to be cost-efficient substitutes for brand-name medications. They make up about 20% of the total number of prescriptions in Spain, a figure that is still far from the use of generic drugs in USA and other European countries. Despite economical interest in this issue, in this article we review the interest of generic drugs from a pharmacological and clinical perspective that must undertake drug quality to ensure drug efficacy and safety of the patients. A generic drug (generic drugs, short: generics) is defined as "a drug product that is comparable to brand/reference listed drug product in dosage form, strength, route of administration, quality and performance characteristics, and intended use". Both the reference drug and the generic drug have to demonstrate previously they are therapeutically equivalent. With the exception of parenteral drugs, two products have demonstrated to be therapeutically equivalent if after administration in the same molar dose, their effects with respect to both efficacy and safety are essentially the same, as determined from bioequivalence studies in terms of comparison of appropriate pharmacokinetic parameters and bioavailability. Parenteral formulations, however, are not required to demonstrate therapeutic equivalence because it may be considered self-evident. Such assumptions have never been challenged, but there are reasons to do so for parenteral antimicrobials. It is interesting to highlight that although brand-name drugs and generic drugs are both approved by DRA and may be interchangeable with respect to their clinical effects, they can differ substantially in their appearance. Consumers of brand-name medications receive identical-appearing batches of pills with

  12. Potential antimalarials from African natural products: A reviw.

    Science.gov (United States)

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Kabiru, Adamu Yusuf; Jigam, Ali Audu; Umar, Maimuna Bello; Berinyuy, Eustace Bonghan; Alozieuwa, Blessing Uchenna

    2015-01-01

    Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health, and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in vivo or in vitro against malaria parasite. Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, and Science domain) that report on antiplasmodial activity of natural products from differernts Africa region. A total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%), Fababceae (8.128%), Euphorbiaceae (5.52%), Rubiaceas (5.52%), and Apocyanaceae (5.214%), have received more scientific validation than others. African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against Plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products are of paramount importance.

  13. The role of antimalarial treatment in the elimination of malaria.

    Science.gov (United States)

    Gosling, R D; Okell, L; Mosha, J; Chandramohan, D

    2011-11-01

    With declining transmission of malaria in several regions of the world and renewed interest in the elimination of malaria, strategies for malaria control using antimalarial drugs are being revisited. Drug-based strategies to reduce transmission of malaria need to target the asymptomatic carriers of infection. Drugs that are effective against gametocytes are few in number, but it may be possible to reduce gametocyte production by killing the asexual stages, for which more drugs are available. Drugs for use in large-scale programmes must be safe and tolerable. Strategies include improving access to treatment for malaria with an efficacious drug, intermittent-treatment programmes, and mass drug administration, with and without screening for malaria. Recent proposals have targeted high-risk groups for interventions. None of the strategies has been rigorously tested with appropriate control groups for comparison. Because of the lack of field evidence, modelling has been used. Models have shown, first, that for long-lasting effects, drug administration programmes should be linked with vector control, and second, that if elimination is the aim, programmes are likely to be more successful when applied to smaller populations of a few thousand or less. In order to sustain the gains following the scaling up of vector control and use of artemisinin combination therapies (ACTs), strategies that use antimalarials effectively need to be devised and evidence generated for the most cost-efficient way forward.

  14. Single Ascending Dose Safety and Pharmacokinetics of CDRI-97/78: First-in-Human Study of a Novel Antimalarial Drug

    Directory of Open Access Journals (Sweden)

    N. Shafiq

    2014-01-01

    Full Text Available Background. CDRI 97/78 has shown efficacy in animal models of falciparum malaria. The present study is the first in-human phase I trial in healthy volunteers. Methods. The study was conducted in 50 healthy volunteers in a single, ascending dose, randomized, placebo-controlled, double blind design. The dose ranges evaluated were from 80 mg to 700 mg. Volunteers were assessed for clinical, biochemical, haematological, radiographic, and electrocardiographic parameters for any adverse events in an in-house facility. After evaluation of safety study results, another cohort of 16 participants were administered a single oral dose of 200 mg of the drug and a detailed pharmacokinetic analysis was undertaken. Results. The compound was found to be well tolerated. MTD was not reached. The few adverse events noted were of grade 2 severity, not requiring intervention and not showing any dose response relationship. The laboratory and electrocardiographic parameters showed statistically significant differences, but all were within the predefined normal range. These parameters were not associated with symptoms/signs and hence regarded as clinically irrelevant. Mean values of T1/2, MRT, and AUC0-∞ of the active metabolite 97/63 were 11.85±1.94 h, 13.77±2.05 h, and 878.74±133.15 ng·h/mL, respectively Conclusion. The novel 1,2,4 trioxane CDRI 97/78 is safe and will be an asset in malarial therapy if results are replicated in multiple dose studies and benefit is shown in confirmatory trials.

  15. 78 FR 31943 - Draft Guidance for Industry on Contract Manufacturing Arrangements for Drugs: Quality Agreements...

    Science.gov (United States)

    2013-05-28

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Contract Manufacturing... guidance for industry entitled ``Contract Manufacturing Arrangements for Drugs: Quality Agreements.'' This... draft guidance for industry entitled ``Contract Manufacturing Arrangements for Drugs: Quality...

  16. Antimalarial Properties of Aqueous Crude Extracts of Gynostemma pentaphyllum and Moringa oleifera Leaves in Combination with Artesunate in Plasmodium berghei-Infected Mice.

    Science.gov (United States)

    Somsak, Voravuth; Borkaew, Preeyanuch; Klubsri, Chokdee; Dondee, Kittiyaporn; Bootprom, Panatda; Saiphet, Butsarat

    2016-01-01

    Due to the emergence and spread of malaria parasite with resistance to antimalarial drugs, discovery and development of new, safe, and affordable antimalarial are urgently needed. In this respect, medicinal plant extracts are targets to optimize antimalarial actions and restore efficacy of standard antimalarial drugs. The present study was aimed at determining the antimalarial activities of Gynostemma pentaphyllum and Moringa oleifera leaf extracts in combination with artesunate against Plasmodium berghei-infected mice. P. berghei ANKA maintained by serial passage in ICR mice were used based on intraperitoneal injection of 1 × 10(7) parasitized erythrocytes and subsequent development of parasitemia. These infected mice were used to investigate the antimalarial activity of artesunate (6 mg/kg) in combination with 500, 1,000, and 2,000 mg/kg of G. pentaphyllum and M. oleifera leaf extracts using 4-day suppressive test. It was found that these extracts showed significant (P leaf extract and 35, 40, and 50% for M. oleifera leaf extract. Additionally, artesunate combined with these extracts presented higher antimalarial activity, compared to extract treated alone with percentage of suppression of 78, 91, and 96% for G. pentaphyllum leaf extract and 73, 82, and 91% for M. oleifera leaf extract. The results indicated that combination treatment of G. pentaphyllum or M. oleifera leaf extracts with artesunate was able to increase the antimalarial activity by using low dose of artesunate. Hence, these results justified the combination of these extracts and artesunate in antimalarial herbal remedies.

  17. Application of quality by design in the current drug development

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2017-01-01

    Full Text Available Quality by Test was the only way to guarantee quality of drug products before FDA launched current Good Manufacturing Practice. To clearly understand the manufacture processes, FDA generalized Quality by Design (QbD in the field of pharmacy, which is based on the thorough understanding of how materials and process parameters affect the quality profile of final products. The application of QbD in drug formulation and process design is based on a good understanding of the sources of variability and the manufacture process. In this paper, the basic knowledge of QbD, the elements of QbD, steps and tools for QbD implementation in pharmaceutics field, including risk assessment, design of experiment, and process analytical technology (PAT, are introduced briefly. Moreover, the concrete applications of QbD in various pharmaceutical related unit operations are summarized and presented.

  18. Refractometry for quality control of anesthetic drug mixtures.

    Science.gov (United States)

    Stabenow, Jennifer M; Maske, Mindy L; Vogler, George A

    2006-07-01

    Injectable anesthetic drugs used in rodents are often mixed and further diluted to increase the convenience and accuracy of dosing. We evaluated clinical refractometry as a simple and rapid method of quality control and mixing error detection of rodent anesthetic or analgesic mixtures. Dilutions of ketamine, xylazine, acepromazine, and buprenorphine were prepared with reagent-grade water to produce at least 4 concentration levels. The refraction of each concentration then was measured with a clinical refractometer and plotted against the percentage of stock concentration. The resulting graphs were linear and could be used to determine the concentration of single-drug dilutions or to predict the refraction of drug mixtures. We conclude that refractometry can be used to assess the concentration of dilutions of single drugs and can verify the mixing accuracy of drug combinations when the components of the mixture are known and fall within the detection range of the instrument.

  19. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NARCIS (Netherlands)

    Baragana, B.; Hallyburton, I.; Lee, M.C.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Martinez, M.S.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jimenez-Diaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H.

    2015-01-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activ

  20. 75 FR 70011 - Guidance for Industry, Mammography Quality Standards Act Inspectors, and Food and Drug...

    Science.gov (United States)

    2010-11-16

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry, Mammography Quality Standards Act Inspectors, and Food and Drug Administration Staff; The Mammography Quality Standards Act Final Regulations... the guidance entitled ``The Mammography Quality Standards Act Final Regulations: Modifications...

  1. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones

    Science.gov (United States)

    Sarkar, Souvik; Siddiqui, Asim A.; Saha, Shubhra J.; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S.; Nag, Shiladitya; Adhikari, Susanta

    2016-01-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [3H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. PMID:27139466

  2. Quality of Sulfadoxine-Pyrimethamine Given as Antimalarial Prophylaxis in Pregnant Women in Selected Health Facilities in Central Region of Ghana

    Directory of Open Access Journals (Sweden)

    Danny F. Yeboah

    2016-01-01

    Full Text Available The use of sulfadoxine-pyrimethamine (SP as an intermittent preventive treatment (IPT against malaria during pregnancy has become a policy in most sub-Sahara African countries and crucially depends on the efficacy of SP. This study sets out to evaluate the effectiveness of the SP given to the pregnant women in some selected health facilities in the Central Region of Ghana to prevent maternal malaria in pregnant women. A total of 543 pregnant women recruited from 7 selected health centres in Central Region of Ghana participated in the study. Parasite density of Plasmodium falciparum was determined from peripheral blood of the pregnant women using microscopy. High performance liquid chromatography (HPLC and dissolution tester were used to determine the quality of the SP. Malaria infection was recorded in 11.2% of pregnant women who had a history of SP consumption. SP failed the dissolution test. Pregnant women who did not receive IPT-SP were 44%. Low haemoglobin level was recorded in 73.5% of the pregnant women. The results indicated that SP was substandard. IPT-SP is ineffective in preventing malaria infection.

  3. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    Institute of Scientific and Technical Information of China (English)

    Jerapan Krungkrai; Sudaratana Rochanakij Krungkrai

    2016-01-01

    Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu(Chinese name) and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  4. Antimalarial qinghaosu/artemisinin:The therapy worthy of a Nobel Prize

    Institute of Scientific and Technical Information of China (English)

    Jerapan Krungkrai

    2016-01-01

    Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name) and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  5. Deployment of ACT antimalarials for treatment of malaria: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Leslie Toby

    2008-12-01

    Full Text Available Abstract Following a long period when the effectiveness of existing mono-therapies for antimalarials was steadily declining with no clear alternative, most malaria-endemic countries in Africa and Asia have adopted artemisinin combination therapy (ACT as antimalarial drug policy. Several ACT drugs exist and others are in the pipeline. If properly targeted, they have the potential to reduce mortality from malaria substantially. The major challenge now is to get the drugs to the right people. Current evidence suggests that most of those who need the drugs do not get them. Simultaneously, a high proportion of those who are given antimalarials do not in fact have malaria. Financial and other barriers mean that, in many settings, the majority of those with malaria, particularly the poorest, do not access formal healthcare, so the provision of free antimalarials via this route has only limited impact. The higher cost of ACT creates a market for fake drugs. Addressing these problems is now a priority. This review outlines current evidence, possible solutions and research priorities.

  6. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    Directory of Open Access Journals (Sweden)

    Jerapan Krungkrai

    2016-05-01

    Full Text Available Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  7. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    Directory of Open Access Journals (Sweden)

    Littrell Megan

    2011-10-01

    Full Text Available Abstract Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT. The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85% and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%, drug stores (14%, mobile providers (4% and grocery stores (2%. Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61% and private (42% sectors. Conclusions While data on the anti-malarial

  8. Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Directory of Open Access Journals (Sweden)

    Mpimbaza Arthur

    2008-06-01

    Full Text Available Abstract Background New antimalarial regimens, including artemisinin-based combination therapies (ACTs, have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. Case description Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. Discussion and evaluation Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. Conclusion Although the World Health Organization has supported the development of

  9. Liposomal Drug Products: A Quality by Design Approach

    Science.gov (United States)

    Xu, Xiaoming

    Quality by Design (QbD) principles has been applied to the development of two liposomal formulations, containing a hydrophilic small molecule therapeutic (Tenofovir) and a protein therapeutic (superoxide dismutase). The goal of the research is to provide critical information on 1) how to reduce the preparation variability in liposome formulations, and 2) how to increase drug encapsulation inside liposomes to reduce manufacturing cost. Most notably, an improved liposome preparation method was developed which increased the encapsulation efficiency of hydrophilic molecules. In particular, this method allows for very high encapsulation efficiency. For example, encapsulation efficiencies of up to 50% have been achieved, whereas previously only 20% or less have been reported. Another significant outcome from this research is a first principle mathematical model to predict the encapsulation efficiency of hydrophilic drugs in unilamellar liposomes. This mathematical model will be useful in: formulation development to rapidly achieve optimized formulations; comparison of drug encapsulation efficiencies of liposomes prepared using different methods; and assisting in the development of suitable process analytical technologies to achieve real-time monitoring and control of drug encapsulation during manufacturing. A novel two-stage reverse dialysis in vitro release testing method has also been developed for passively targeted liposomes, which uses the first stage to mimic the circulation of liposomes in the body and the second stage to imitate the drug release process at the target. The developed in vitro release testing method can be used to distinguish formulations with varied compositions for quality control testing purposes. This developed method may pave the way to the development of more biorelevant quality control testing methods for liposomal drug products in the future. The QbD case studies performed in this research are examples of how this approach can be used to

  10. Drug resistance in malaria

    Directory of Open Access Journals (Sweden)

    S C Parija

    2011-01-01

    Full Text Available Antimalarial chemotherapy is an important component of all malaria control programmes throughout the world. This is especially so in light of the fact that there are no antimalarial vaccines which are available for clinical use at present. Emergence and spread of malaria parasites which are resistant to many of the available antimalarials today is, therefore, a major cause for concern. Till date, resistance to all groups of antimalarials excluding artemisinin has been reported. In recent years, in vitro resistance to even artemisinin has been described. While resistance to antibacterial agents has come to prominence as a clinical problem in recent years, antiparasitic resistance in general and antimalarial resistance in particular has not received much attention, especially in the Indian scenario. The present review deals with commonly used antimalarial drugs and the mechanisms of resistance to them. Various methods of detecting antimalarial resistance and avoiding the same have also been dealt with. Newer parasite targets which can be used in developing newer antimalarial agents and antimalarials obtained from plants have also been mentioned.

  11. Fixed dose combination of arterolane and piperaquine: a newer prospect in antimalarial therapy.

    Science.gov (United States)

    Patil, Cy; Katare, Ss; Baig, Ms; Doifode, Sm

    2014-07-01

    Malaria has been very prevalent vector-borne disease in India and until date bears enormous implications on health care services of the country. Over the period of time, the development of resistance to traditional antimalarials like chloroquine has been posed as major deterrent in efforts of malaria control. As the drug resistance is today universally prevalent, especially in Plasmodium falciparum species, major burden of malarial control resides with the new artemisinin drug class. However, arterolane is one of the first fully synthetic non-artemisinin antimalarial compound with rapid schizontocidal activity, hence offering an alternative to artemisinin drugs in malaria control. Piperaquine is a synthetic bisquinoline (4-amioquinoline Antimalarial) with slow and longer schizontocidal activity. Therefore their combination has been shown to provide rapid parasitemic clearance and quick relief of most malaria-related symptoms along with prevention of recrudescences. This combination was approved by Drugs Controller General of India in 2011 for treatment of uncomplicated P. falciparum malaria. The article is aimed at to review this newer prospect in antimalarial therapy for which comprehensive database search was done in Google, Google Scholar, PubMed using the terms "Malaria," "Arterolane," "OZ277," "Piperaquine," and "Artemisinin combination therapy." A total of 323 articles were screened and 28 articles were considered for this review along with the World Health Organization and National malarial program guidelines.

  12. Synthesis and evaluation of antimalarial activity of curcumin derivatives; Sintese e avaliacao da atividade antimalarica de compostos derivados da curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa [Universidade Federal de Juiz de Fora (UFSJ), MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla, E-mail: varotti@ufsj.edu.br [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil). Centro de Ciencias da Saude; and others

    2014-05-15

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC{sub 50} values ranging from 1.7 to 15.2 μg mL{sup -1}), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  13. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    Directory of Open Access Journals (Sweden)

    Shen S

    2015-06-01

    Full Text Available Shuo Shen, Shu-Zhi Liu, Yu-Shi Zhang, Mao-Bo Du, Ai-Hua Liang, Li-Hua Song, Zu-Guang Ye Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China Abstract: Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data

  14. Blood schizontocidal activity of methylene blue in combination with antimalarials against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Garavito G.

    2007-06-01

    Full Text Available Methylene blue (MB is the oldest synthetic antimalarial. It is not used anymore as antimalarial but should be reconsidered. For this purpose we have measured its impact on both chloroquine sensitive and resistant Plasmodium strains. We showed that around 5 nM of MB were able to inhibit 50% of the parasite growth in vitro and that late rings and early trophozoites were the most sensitive stages; while early rings, late trophozoites and schizonts were less sensitive. Drug interaction study following fractional inhibitory concentrations (FIC method showed antagonism with amodiaquine, atovaquone, doxycycline, pyrimethamine; additivity with artemether, chloroquine, mefloquine, primaquine and synergy with quinine. These results confirmed the interest of MB that could be integrated in a new low cost antimalarial combination therapy.

  15. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Directory of Open Access Journals (Sweden)

    Eberlin Marcos N

    2011-05-01

    Full Text Available Abstract Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7 and -resistant (S20 strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4 and 50% methanolic (F5 fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  16. Antimalarial Properties of Aqueous Crude Extracts of Gynostemma pentaphyllum and Moringa oleifera Leaves in Combination with Artesunate in Plasmodium berghei-Infected Mice

    Directory of Open Access Journals (Sweden)

    Voravuth Somsak

    2016-01-01

    Full Text Available Due to the emergence and spread of malaria parasite with resistance to antimalarial drugs, discovery and development of new, safe, and affordable antimalarial are urgently needed. In this respect, medicinal plant extracts are targets to optimize antimalarial actions and restore efficacy of standard antimalarial drugs. The present study was aimed at determining the antimalarial activities of Gynostemma pentaphyllum and Moringa oleifera leaf extracts in combination with artesunate against Plasmodium berghei-infected mice. P. berghei ANKA maintained by serial passage in ICR mice were used based on intraperitoneal injection of 1 × 107 parasitized erythrocytes and subsequent development of parasitemia. These infected mice were used to investigate the antimalarial activity of artesunate (6 mg/kg in combination with 500, 1,000, and 2,000 mg/kg of G. pentaphyllum and M. oleifera leaf extracts using 4-day suppressive test. It was found that these extracts showed significant (P<0.05 antimalarial activity in dose-dependent manner with percentage of suppression of 45, 50, and 55% for G. pentaphyllum leaf extract and 35, 40, and 50% for M. oleifera leaf extract. Additionally, artesunate combined with these extracts presented higher antimalarial activity, compared to extract treated alone with percentage of suppression of 78, 91, and 96% for G. pentaphyllum leaf extract and 73, 82, and 91% for M. oleifera leaf extract. The results indicated that combination treatment of G. pentaphyllum or M. oleifera leaf extracts with artesunate was able to increase the antimalarial activity by using low dose of artesunate. Hence, these results justified the combination of these extracts and artesunate in antimalarial herbal remedies.

  17. Antimalarial Properties of Aqueous Crude Extracts of Gynostemma pentaphyllum and Moringa oleifera Leaves in Combination with Artesunate in Plasmodium berghei-Infected Mice

    Science.gov (United States)

    Borkaew, Preeyanuch; Klubsri, Chokdee; Dondee, Kittiyaporn; Bootprom, Panatda; Saiphet, Butsarat

    2016-01-01

    Due to the emergence and spread of malaria parasite with resistance to antimalarial drugs, discovery and development of new, safe, and affordable antimalarial are urgently needed. In this respect, medicinal plant extracts are targets to optimize antimalarial actions and restore efficacy of standard antimalarial drugs. The present study was aimed at determining the antimalarial activities of Gynostemma pentaphyllum and Moringa oleifera leaf extracts in combination with artesunate against Plasmodium berghei-infected mice. P. berghei ANKA maintained by serial passage in ICR mice were used based on intraperitoneal injection of 1 × 107 parasitized erythrocytes and subsequent development of parasitemia. These infected mice were used to investigate the antimalarial activity of artesunate (6 mg/kg) in combination with 500, 1,000, and 2,000 mg/kg of G. pentaphyllum and M. oleifera leaf extracts using 4-day suppressive test. It was found that these extracts showed significant (P < 0.05) antimalarial activity in dose-dependent manner with percentage of suppression of 45, 50, and 55% for G. pentaphyllum leaf extract and 35, 40, and 50% for M. oleifera leaf extract. Additionally, artesunate combined with these extracts presented higher antimalarial activity, compared to extract treated alone with percentage of suppression of 78, 91, and 96% for G. pentaphyllum leaf extract and 73, 82, and 91% for M. oleifera leaf extract. The results indicated that combination treatment of G. pentaphyllum or M. oleifera leaf extracts with artesunate was able to increase the antimalarial activity by using low dose of artesunate. Hence, these results justified the combination of these extracts and artesunate in antimalarial herbal remedies. PMID:27872647

  18. Drug-induced lupus erythematosus

    Science.gov (United States)

    ... A chest x-ray may show signs of pleuritis or pericarditis (inflammation around the lining of the ... anti-inflammatory drugs (NSAIDs) to treat arthritis and pleurisy Corticosteroid creams to treat skin rashes Antimalarial drugs ( ...

  19. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response.

    Science.gov (United States)

    Veiga, Maria Isabel; Osório, Nuno S; Ferreira, Pedro Eduardo; Franzén, Oscar; Dahlstrom, Sabina; Lum, J Koji; Nosten, Francois; Gil, José Pedro

    2014-12-01

    Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.

  20. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  1. Accepting the Invitation to Open Innovation in Malaria Drug Discovery: Synthesis, Biological Evaluation, and Investigation on the Structure-Activity Relationships of Benzo[b]thiophene-2-carboxamides as Antimalarial Agents.

    Science.gov (United States)

    Pieroni, Marco; Azzali, Elisa; Basilico, Nicoletta; Parapini, Silvia; Zolkiewski, Michal; Beato, Claudia; Annunziato, Giannamaria; Bruno, Agostino; Vacondio, Federica; Costantino, Gabriele

    2017-03-09

    Malaria eradication is a global health priority, but current therapies are not always suitable for providing a radical cure. Artemisinin has paved the way for the current malaria treatment, the so-called Artemisinin-based Combination Therapy (ACT). However, with the detection of resistance to ACT, innovative compounds active against multiple parasite species and at multiple life stages are needed. GlaxoSmithKline has recently disclosed the results of a phenotypic screening of an internal library, publishing a collection of 400 antimalarial chemotypes, termed the "Malaria Box". After analysis of the data set, we have carried out a medicinal chemistry campaign in order to define the structure-activity relationships for one of the released compounds, which embodies a benzothiophene-2-carboxamide core. Thirty-five compounds were prepared, and a description of the structural features responsible for the in vitro activity against different strains of P. falciparum, the toxicity, and the metabolic stability is herein reported.

  2. An Invitation to Open Innovation in Malaria Drug Discovery: 47 Quality Starting Points from the TCAMS.

    Science.gov (United States)

    Calderón, Félix; Barros, David; Bueno, José María; Coterón, José Miguel; Fernández, Esther; Gamo, Francisco Javier; Lavandera, José Luís; León, María Luisa; Macdonald, Simon J F; Mallo, Araceli; Manzano, Pilar; Porras, Esther; Fiandor, José María; Castro, Julia

    2011-10-13

    In 2010, GlaxoSmithKline published the structures of 13533 chemical starting points for antimalarial lead identification. By using an agglomerative structural clustering technique followed by computational filters such as antimalarial activity, physicochemical properties, and dissimilarity to known antimalarial structures, we have identified 47 starting points for lead optimization. Their structures are provided. We invite potential collaborators to work with us to discover new clinical candidates.

  3. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    Science.gov (United States)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  4. Antimaláricos e Ototoxicidade Antimalarials and Ototoxicity

    Directory of Open Access Journals (Sweden)

    Marcelo Cardoso Figueiredo

    2004-06-01

    Full Text Available Os antimaláricos, como o difosfato de cloroquina, têm sido usados amplamente no tratamento não só da malária, mas também de doenças reumatológicas como a síndrome de Sjögren (SS, artrite reumatóide (AR e lúpus eritematoso sistêmico (LES. Essas drogas são usadas cronicamente e, em conseqüência do acúmulo nos melanócitos, podem causar hiperpigmentação cutânea, retinopatia e lesão no ouvido interno. Como o protocolo do uso de antimaláricos só envolve a avaliação oftalmológica e das enzimas hepáticas, esta revisão discute a necessidade de novos estudos da avaliação periódica da audição desses pacientes.Antimalarials such as chloroquine diphosphate have been widely used not only for the treatment of malaria, but also for several rheumatic diseases such as Sjögren's syndrome (SS, rheumatoid arthritis (RA and Systemic Lupus Erythematosus (SLE. These drugs are used on a long-term basis and, due to melanocytes' accumulation, can cause cutaneous hyperpigmentation, retinopathy and internal ear damage. As the antimalarials' user follow-up protocol recommends only periodic eye exams and liver function testing, we reviewed the literature questioning whether new studies on the periodic hearing evaluation are required for antimalarials' users.

  5. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    Science.gov (United States)

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

  6. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Norazsida Ramli

    2014-01-01

    Full Text Available Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral toxicity dose at 5000 mg/kg was conducted to evaluate the safety of this extract. Twenty mice were divided into control and experimental group. All the mice were observed for signs of toxicity, mortality, weight changes and histopathological changes. Antimalarial activity of different extract doses of 50, 200, 400 and 1000 mg/kg were tested in vivo against Plasmodium berghei infections in mice (five mice for each group during early, established and residual infections. Results: The acute oral toxicity test revealed that no mortality or evidence of adverse effects was seen in the treated mice. The extract significantly reduced the parasitemia by the 50 (P = 0.000, 200 (P = 0.000 and 400 mg/kg doses (P = 0.000 in the in vivo prophylactic assay. The percentage chemo-suppression was calculated as 83.33% for 50 mg/kg dose, 75.62% for 200 mg/kg dose and 90.74% for 400 mg/kg dose. Body weight of all treated groups; T1, T2, T3 and T4 also showed enhancement after 7 days posttreatment. Statistically no reduction of parasitemia calculated for curative and suppressive test. Conclusion: Thus, this extract may give a promising agent to be used as a prophylactic agent of P. berghei infection.

  7. Discovery of Novel Liver-Stage Antimalarials through Quantum Similarity.

    Science.gov (United States)

    Sullivan, David J; Liu, Yi; Mott, Bryan T; Kaludov, Nikola; Martinov, Martin N

    2015-01-01

    Without quantum theory any understanding of molecular interactions is incomplete. In principal, chemistry, and even biology, can be fully derived from non-relativistic quantum mechanics. In practice, conventional quantum chemical calculations are computationally too intensive and time consuming to be useful for drug discovery on more than a limited basis. A previously described, original, quantum-based computational process for drug discovery and design bridges this gap between theory and practice, and allows the application of quantum methods to large-scale in silico identification of active compounds. Here, we show the results of this quantum-similarity approach applied to the discovery of novel liver-stage antimalarials. Testing of only five of the model-predicted compounds in vitro and in vivo hepatic stage drug inhibition assays with P. berghei identified four novel chemical structures representing three separate quantum classes of liver-stage antimalarials. All four compounds inhibited liver-stage Plasmodium as a single oral dose in the quantitative PCR mouse liver-stage sporozoites-challenge model. One of the newly identified compounds, cethromycin [ABT-773], a macrolide-quinoline hybrid, is a drug with an extensive (over 5,000 people) safety profile warranting its exploitation as a new weapon for the current effort of malaria eradication. The results of our molecular modeling exceed current state-of-the-art computational methods. Drug discovery through quantum similarity is data-driven, agnostic to any particular target or disease process that can evaluate multiple phenotypic, target-specific, or co-crystal structural data. This allows the incorporation of additional pharmacological requirements, as well as rapid exploration of novel chemical spaces for therapeutic applications.

  8. Discovery of Novel Liver-Stage Antimalarials through Quantum Similarity.

    Directory of Open Access Journals (Sweden)

    David J Sullivan

    Full Text Available Without quantum theory any understanding of molecular interactions is incomplete. In principal, chemistry, and even biology, can be fully derived from non-relativistic quantum mechanics. In practice, conventional quantum chemical calculations are computationally too intensive and time consuming to be useful for drug discovery on more than a limited basis. A previously described, original, quantum-based computational process for drug discovery and design bridges this gap between theory and practice, and allows the application of quantum methods to large-scale in silico identification of active compounds. Here, we show the results of this quantum-similarity approach applied to the discovery of novel liver-stage antimalarials. Testing of only five of the model-predicted compounds in vitro and in vivo hepatic stage drug inhibition assays with P. berghei identified four novel chemical structures representing three separate quantum classes of liver-stage antimalarials. All four compounds inhibited liver-stage Plasmodium as a single oral dose in the quantitative PCR mouse liver-stage sporozoites-challenge model. One of the newly identified compounds, cethromycin [ABT-773], a macrolide-quinoline hybrid, is a drug with an extensive (over 5,000 people safety profile warranting its exploitation as a new weapon for the current effort of malaria eradication. The results of our molecular modeling exceed current state-of-the-art computational methods. Drug discovery through quantum similarity is data-driven, agnostic to any particular target or disease process that can evaluate multiple phenotypic, target-specific, or co-crystal structural data. This allows the incorporation of additional pharmacological requirements, as well as rapid exploration of novel chemical spaces for therapeutic applications.

  9. Pilot study of essential drug quality in two major cities in India.

    Directory of Open Access Journals (Sweden)

    Roger Bate

    Full Text Available BACKGROUND: India is an increasingly influential player in the global pharmaceutical market. Key parts of the drug regulatory system are controlled by the states, each of which applies its own standards for enforcement, not always consistent with others. A pilot study was conducted in two major cities in India, Delhi and Chennai, to explore the question/hypothesis/extent of substandard and counterfeit drugs available in the market and to discuss how the Indian state and federal governments could improve drug regulation and more importantly regulatory enforcement to combat these drugs. METHODOLOGY/PRINCIPAL FINDINGS: Random samples of antimalarial, antibiotic, and antimycobacterial drugs were collected from pharmacies in urban and peri-urban areas of Delhi and Chennai, India. Semi-quantitative thin-layer chromatography and disintegration testing were used to measure the concentration of active ingredients against internationally acceptable standards. 12% of all samples tested from Delhi failed either one or both tests, and were substandard. 5% of all samples tested from Chennai failed either one or both tests, and were substandard. Spatial heterogeneity between pharmacies was observed, with some having more or less substandard drugs (30% and 0% respectively, as was product heterogeneity, with some drugs being more or less frequently substandard (12% and 7% respectively. CONCLUSIONS/SIGNIFICANCE: In a study using basic field-deployable techniques of lesser sensitivity rather than the most advanced laboratory-based techniques, the prevalence of substandard drugs in Delhi and Chennai is confirmed to be roughly in accordance with the Indian government's current estimates. However, important spatial and product heterogeneity exists, which suggests that India's substandard drug problem is not ubiquitous, but driven by a subset of manufacturers and pharmacies which thrive in an inadequately regulated environment. It is likely that the drug regulatory

  10. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi

    Directory of Open Access Journals (Sweden)

    Dismas Baza

    2011-02-01

    Full Text Available Abstract Background Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Methods Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO, a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment of AS-AQ, quinine and other anti-malarials were calculated. Results Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9% compared to public (4.2% and NGO (0% outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu. Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu, private and NGO sectors (both US$1.61 or 2,000 FBu. Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors

  11. Maximizing antimalarial efficacy and the importance of dosing strategies.

    Science.gov (United States)

    Beeson, James G; Boeuf, Philippe; Fowkes, Freya J I

    2015-05-09

    Artemisinin-based combination therapies (ACTs) are the cornerstone for the treatment of malaria. However, confirmed resistance to artemisinins in South-East Asia, and reports of reduced efficacy of ACTs raise major concerns for malaria treatment and control. Without new drugs to replace artemisinins, it is essential to define dosing strategies that maximize therapeutic efficacy, limit the spread of resistance, and preserve the clinical value of ACTs. It is important to determine the extent to which reduced efficacy of ACTs reflects true resistance versus sub-optimal dosing, and quantify other factors that determine treatment failure. Pooled analyses of individual patient data from multiple clinical trials, by investigators in the Worldwide Antimalarial Resistance Network, have shown high overall efficacy for three widely used ACTs, artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine. Analyses also highlight that suboptimal dosing leads to increased risk of treatment failure, especially among children. In the most recent study, an analysis of clinical trials of artesunate-amodiaquine, widely used among children in Africa, revealed a superior efficacy for fixed-dose combination tablets compared to loose non-fixed dose combinations. This highlights the benefits of fixed-dose combinations as a practical strategy for ensuring optimal antimalarial dosing and maximizing efficacy. Please see related article: http://www.biomedcentral.com/1741-7015/13/66.

  12. Liposomal Drug Product Development and Quality: Current US Experience and Perspective.

    Science.gov (United States)

    Kapoor, Mamta; Lee, Sau L; Tyner, Katherine M

    2017-02-03

    Research in the area of liposomes has grown substantially in the past few decades. Liposomes are lipid bilayer structures that can incorporate drug substances to modify the drug's pharmacokinetic profile thereby improving drug delivery. The agency has received over 400 liposomal drug product submissions (excluding combination therapies), and there are currently eight approved liposomal drug products on the US market. In order to identify the pain points in development and manufacturing of liposomal drug products, a retrospective analysis was performed from a quality perspective on submissions for new and generic liposomal drug products. General analysis on liposomal drug product submissions was also performed. Results indicated that 96% of the submissions were Investigational New Drug (IND) applications, 3% were New Drug Applications (NDAs), and the remaining 1% was Abbreviated New Drug Applications (ANDAs). Doxorubicin hydrochloride was the most commonly used drug substance incorporated into the liposomes (31%). The majority of the liposomal products were administered via intravenous route (84%) with cancer (various types) being the most common indication (63%). From a quality perspective, major challenges during the development of liposomal drug products included identification and (appropriate) characterization of critical quality attributes of liposomal drug products and suitable control strategies during product development. By focusing on these areas, a faster and more efficient development of liposomal drug products may be achieved. Additionally, in this way, the drug review process for such products can be streamlined.

  13. Recent progress in the identification and development of anti-malarial agents using virtual screening based approaches.

    Science.gov (United States)

    Shah, Priyanka; Tiwari, Sunita; Siddiqi, Mohammad Imran

    2015-01-01

    Malaria has continued to be one of the most perplexing diseases for biological science community around the world due to its prevalent devastating nature and quick developing resistance against the frontline drugs. Artimisinin-based combination therapy (ACT) has been so far found to be among the best therapies against Plasmodium pathogens but alarming emergence of resistance in parasites against every known chemotherapy has prompted the scientific community to step up all the efforts towards development of new and affordable anti-malarial drugs. Computer-aided approaches have received enormous attention in recent years in the field of identification and design of novel drugs. In this review, we summarize recently published research concerning the identification and development of anti-malarial compounds using virtual screening approaches. It would be admirable to discern the successful application of in silico studies for anti-malarial drug discovery hitherto and would certainly help in generating new avenues for pursuing integrated studies between the experimentalists and computational chemists in a systematic manner as a time and cost efficient alternative for future antimalarial drug discovery projects.

  14. New developments in anti-malarial target candidate and product profiles.

    Science.gov (United States)

    Burrows, Jeremy N; Duparc, Stephan; Gutteridge, Winston E; Hooft van Huijsduijnen, Rob; Kaszubska, Wiweka; Macintyre, Fiona; Mazzuri, Sébastien; Möhrle, Jörg J; Wells, Timothy N C

    2017-01-13

    A decade of discovery and development of new anti-malarial medicines has led to a renewed focus on malaria elimination and eradication. Changes in the way new anti-malarial drugs are discovered and developed have led to a dramatic increase in the number and diversity of new molecules presently in pre-clinical and early clinical development. The twin challenges faced can be summarized by multi-drug resistant malaria from the Greater Mekong Sub-region, and the need to provide simplified medicines. This review lists changes in anti-malarial target candidate and target product profiles over the last 4 years. As well as new medicines to treat disease and prevent transmission, there has been increased focus on the longer term goal of finding new medicines for chemoprotection, potentially with long-acting molecules, or parenteral formulations. Other gaps in the malaria armamentarium, such as drugs to treat severe malaria and endectocides (that kill mosquitoes which feed on people who have taken the drug), are defined here. Ultimately the elimination of malaria requires medicines that are safe and well-tolerated to be used in vulnerable populations: in pregnancy, especially the first trimester, and in those suffering from malnutrition or co-infection with other pathogens. These updates reflect the maturing of an understanding of the key challenges in producing the next generation of medicines to control, eliminate and ultimately eradicate malaria.

  15. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.

    Science.gov (United States)

    Santos, Sofia A; Lukens, Amanda K; Coelho, Lis; Nogueira, Fátima; Wirth, Dyann F; Mazitschek, Ralph; Moreira, Rui; Paulo, Alexandra

    2015-09-18

    A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs.

  16. Syntheses and antimalarial activities of N-substituted 11-azaartemisinins.

    Science.gov (United States)

    Torok, D S; Ziffer, H; Meshnick, S R; Pan, X Q; Ager, A

    1995-12-22

    A two-step reaction sequence between artemisinin and methanolic ammonia followed by treatment with Amberlyst 15 yielded 11-azaartemisinin in 65% yield. Substituting a variety of primary alkyl- and heteroaromatic amines for ammonia in the reaction sequence yields N-substituted 11-azaartemisinins in similar or greater yield. When Amberlyst 15 is replaced by a mixture of sulfuric acid/silica gel, both 11-azaartemisinin and the expected metabolite, 10-azadesoxyartemisinin, are formed in 45% and 15% yields, respectively. In vitro and in vivo test data for a number of novel N-substituted 11-azaartemisinins, against drug-resistant strains of Plasmodium falciparum, show they possess antimalarial activities equal to or greater than that of artemisinin. The most active derivative, N-(2'-acetaldehydo)-11-azaartemisinin, 17, was 26 times more active in vitro and 4 times more active in vivo than artemisinin.

  17. Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals.

    Science.gov (United States)

    Shibi, Indira G; Aswathy, Lilly; Jisha, Radhakrishnan S; Masand, Vijay H; Gajbhiye, Jayant M

    2016-01-01

    Malaria parasites show resistance to most of the antimalarial drugs and hence developing antimalarials which can act on multitargets rather than a single target will be a promising strategy of drug design. Here we report a new approach by which virtual screening of 292 unique phytochemicals present in 72 traditionally important herbs is used for finding out inhibitors of plasmepsin-2 and falcipain-2 for antimalarial activity against P. falciparum. Initial screenings of the selected molecules by Random Forest algorithm model of Weka using the bioassay datasets AID 504850 and AID 2302 screened 120 out of the total 292 phytochemicals to be active against the targets. Toxtree scan cautioned 21 compounds to be either carcinogenic or mutagenic and were thus removed for further analysis. Out of the remaining 99 compounds, only 46 compounds offered drug-likeness as per the 'rule of five' criteria. Out of ten antimalarial drug targets, only two target proteins such as 3BPF and 3PNR of falcipain-2 and 1PFZ and 2BJU of plasmepsin-2 are selected as targets. The potential binding of the selected 46 compounds to the active sites of these four targets was analyzed using MOE software. The docked conformations and the interactions with the binding pocket residues of the target proteins were understood by 'Ligplot' analysis. It has been found that 8 compounds are dual inhibitors of falcipain-2 and plasmepsin-2, with the best binding energies. Compound 117 (6aR, 12aS)-12a-Hydroxy-9-methoxy-2,3-dimethylenedioxy-8-prenylrotenone (Usaratenoid C) present in the plant Millettia usaramensis showed maximum molecular docking score.

  18. Synthesis and antimalarial activity evaluation of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one derivatives

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Kumawat

    2016-09-01

    Full Text Available Some novel derivatives of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro antimalarial activity against chloroquine sensitive strain of Plasmodium falciparum (RKL-2 employing chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities towards the parasite in comparison to the standard. It was found that antimalarial activity of 3-(3-(7-chloroquinolin-4-ylaminopropyl-2-(4-bromophenyl-1,3-thiazinan-4-one was marginally superior than all the compounds evaluated.

  19. Xanthone as Antimalarial: QSAR Analysis, Synthesis, Molecular Docking and In-vitro Antimalarial Evaluation

    Directory of Open Access Journals (Sweden)

    Jufrizal Syahri

    2017-02-01

    Full Text Available The rational design of eighteen new antimalarial compounds from xanthone derivatives has been conducted based on Quantitative Structure-Activity Relationship(QSAR calculation using semi-empirical AM1 methods. The best equation model obtained from QSAR calculation was Log pIC50 = 2.997 - 29.256 (qO8 - 138.234 (qC9 - 6.882 (qC12 - 107.836 (qC14 + 48.764 (qO15. Among the designed compounds, 3,6-dihydroxy-9H-xanthen-9-one (26 and 3,4,6-trihydroxy-9H-xanthen-9-one (27 have been synthesized and investigated their in-vitro antimalarial activities against the chloroquine-sensitive 3D7 strain. An in-vitro antimalarial activity of compound 26 and 27 showed to be highly potential as antimalarial compounds with IC50 of 0.71 and 0.11 µM respectively. Molecular docking studies of compound 26 and 27 showed the formation of a binding interaction between the compounds with the amino acids Ala16, Ser108, Phe58, Asp54 and Leu46, which is the crucial amino acids for antimalarial activity based on the protein-ligand co-crystal structure of WR99210(1,3,5-triazine, a pre-clinical molecule as P. falciparum DHFR-TS inhibitor.

  20. In-vitro antimalarial activity of azithromycin against chloroquine sensitive and chloroquine resistant Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Biswas S

    2001-10-01

    Full Text Available BAKGROUND: The spread of drug resistance in Plasmodium falciparum has made the situation essential to look into new effective therapeutic agents like antibiotics. Azithromycin is a potential, chemotherapeutic agent which possesses antimalarial activity and favourable pharmacokinetic properties. It is an azalide microbiocide derived semi-synthetically from macrolide erythromycin. Like other antibiotics, the azalide azithromycin has ability to inhibit protein synthesis on 70S ribosomes. SETTINGS: Experimental study. SUBJECTS AND METHODS: The parasiticidal profile was studied in five chloroquine sensitive and five chloroquine resistant P. falciparum isolates obtained from various places of India. The antimalarial activity was evaluated in P. falciparum schizont maturation by short term culture for 24 hours and by exposing the parasites to the drug for 96 hours. Parasites synchronized at ring stage were put for culture with various concentrations of azithromycin dihydrate (0.01-40 micro/ml. RESULTS: At highest concentration (40 micro/ml, parasite growth was inhibited totally in all 10 isolates. Antimalarial activity at 96 hours was greater than at 24 hours in both chloroquine sensitive and resistant parasites, which may indicate that the inhibition of parasite growth may occur at clinically achievable concentration of the drug when parasites were exposed for several asexual cycles. CONCLUSION: Azithromycin shows a potential for eventual use alone or in combination in the treatment of chloroquine sensitive and resistant P. falciparum malaria.

  1. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    Science.gov (United States)

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.

  2. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    Science.gov (United States)

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.

  3. Therapeutic efficacy of artesunate in the treatment of uncomplicated Plasmodium falciparum malaria and anti-malarial, drug-resistance marker polymorphisms in populations near the China-Myanmar border

    Directory of Open Access Journals (Sweden)

    Huang Fang

    2012-08-01

    Full Text Available Abstract Background The aim of this study was to evaluate the clinical outcome after seven-day artesunate monotherapy for uncomplicated Plasmodium falciparum malaria in Yingjiang County along the China-Myanmar border and investigate genetic polymorphisms in the P. falciparum chloroquine-resistance transporter (pfcrt, multidrug resistance 1 (pfmdr1, dihydrofolate reductase (pfdhfr, dihydropteroate synthase (pfdhps and ATPase (pfatp6 genes. Methods Patients ≥ one year of age with fever (axillary temperature ≥37.5°C or history of fever and P. falciparum mono-infection were included. Patients received anti-malarial treatment with artesunate (total dose of 16 mg/kg over seven days by directly observed therapy. After a 28-day follow-up, treatment efficacy and effectiveness were assessed based on clinical and parasitological outcomes. Treatment failure was defined as recrudescence of the original parasite and distinguished with new infection confirmed by PCR. Analysis of gene mutation and amplification were performed by nested polymerase chain reaction. Results Sixty-five patients were enrolled; 10 withdrew from the study, and six were lost to follow-up. All but two patients demonstrated adequate clinical and parasitological response; 12 had detectable parasitaemia on day 3. These two patients were confirmed to be new infection by PCR. The efficacy of artesunate was 95.9%. The pfcrt mutation in codon 76 was found in all isolates (100%, and mutations in codons 71 and 72 were found in 4.8% of parasite isolates. No mutation of pfmdr1 (codons 86 or 1246 was found. Among all samples, 5.1% were wild type for pfdhfr, whereas the other samples had mutations in four codons (51, 59, 108 and 164, and mutations in pfdhps (codons 436, 437, 540 and 581 were found in all isolates. No samples had mutations in pfatp6 codons 623 or 769, but two new mutations (N683K and R756K were found in 4.6% and 9.2% of parasite isolates, respectively. Conclusion Plasmodium

  4. Antimalarial compounds from Kniphofia foliosa roots.

    Science.gov (United States)

    Wube, Abraham Abebe; Bucar, Franz; Asres, Kaleab; Gibbons, Simon; Rattray, Lauren; Croft, Simon L

    2005-06-01

    During the course of screening Ethiopian medicinal plants for their antimalarial properties, it was found that the dichloromethane extract of the roots of Kniphofia foliosa Hochst. (Asphodelaceae), which have long been used in the traditional medicine of Ethiopia for the treatment of abdominal cramps and wound healing, displayed strong in vitro antiplasmodial activity against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum with an ED50 value of 3.8 microg/mL and weak cytotoxic activity against KB cells with an ED50 value of 35.2 microg/mL. Five compounds were isolated from the roots and evaluated for their in vitro antimalarial activity. Among the compounds tested, 10-(chrysophanol-7'-yl)-10-(xi)-hydroxychrysopanol-9-anthrone and chryslandicin, showed a high inhibition of the growth of the malaria parasite, P. falciparum with ED50 values of 0.260 and 0.537 microg/mL, respectively, while the naphthalene derivative, 2-acetyl-1-hydroxy-8-methoxy-3-methylnaphthalene, exhibited a less significant antimalarial activity with an ED50 value of 15.4 microg/mL. To compare the effect on the parasite with toxicity to mammalian cells, the cytotoxic activities of the isolated compounds against the KB cell line were evaluated and 10-(chrysophanol-7'-yl)-10-(xi)-hydroxychrysopanol-9-anthrone and chryslandicin displayed very low toxicity with ED50 values of 104 and 90 microg/mL, respectively. This is the first report of the inhibition of the growth of P. falciparum by anthraquinone-anthrone dimers and establishes them as a new class of potential antimalarial compounds with very little host cell toxicity.

  5. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5.

    Science.gov (United States)

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J

    2014-06-06

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable "next generation" target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are "druggable." One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease.

  6. Aspidosperma species as sources of antimalarials. Part III. A review of traditional use and antimalarial activity.

    Science.gov (United States)

    de Paula, Renata Cristina; Dolabela, Maria Fâni; de Oliveira, Alaíde Braga

    2014-03-01

    Several plant species belonging to the genus Aspidosperma are traditionally used in Brazil and other Meso- and South American countries for the treatment of malaria and fevers. These traditional uses were motivation for this review. A literature survey completed for this review has identified scientific bibliographical references to the use of 24 Aspidosperma species to treat malaria/fevers and to 19 species that have had their extracts and/or alkaloids evaluated, with good results, for in vitro and/or in vivo antimalarial activity. Indole alkaloids are typical constituents of Aspidosperma species. However, only 20 out of more than 200 known indole alkaloids isolated from this genus have been assayed for antimalarial activity. These data support the potential of Aspidosperma species as sources of antimalarials and the importance of research aimed at validating their use in the treatment of human malaria.

  7. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Directory of Open Access Journals (Sweden)

    Swain Bijay K

    2009-02-01

    Full Text Available Abstract Background Herbal extracts of Andrographis paniculata (AP and Hedyotis corymbosa (HC are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20 and resistant (MRC-pf-303 strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50 of AP (7.2 μg/ml was found better than HC (10.8 μg/ml. Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC and their individual synergism with curcumin (AP+CUR, HC+CUR were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs.

  8. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products

    Directory of Open Access Journals (Sweden)

    Alaíde Braga de Oliveira

    2009-08-01

    Full Text Available Malaria is still the most destructive and dangerous parasitic infection in many tropical and subtropical countries. The burden of this disease is getting worse, mainly due to the increasing resistance of Plasmodium falciparum against the widely available antimalarial drugs. There is an urgent need for new, more affordable and accessible antimalarial agents possessing original modes of action. Natural products have played a dominant role in the discovery of leads for the development of drugs to treat human diseases, and this fact anticipates that new antimalarial leads may certainly emerge from tropical plant sources. This present review covers most of the recently-published non-alkaloidal natural compounds from plants with antiplasmodial and antimalarial properties, belonging to the classes of terpenes, limonoids, flavonoids, chromones, xanthones, anthraquinones, miscellaneous and related compounds, besides the majority of papers describing antiplasmodial crude extracts published in the last five years not reviewed before. In addition, some perspectives and remarks on the development of new drugs and phytomedicines for malaria are succinctly discussed.

  9. Synthesis, characterization and in vitro evaluation of novel enantiomerically-pure sulphonamide antimalarials.

    Science.gov (United States)

    Anusha, Sebastian; Sinha, Ameya; Babu Rajeev, C P; Chu, Trang T T; Mathai, Jessin; Ximei, Huang; Fuchs, Julian E; Shivananju, NanjundaSwamy; Bender, Andreas; Preiser, Peter Rainer; Rangappa, Kanchugarakoppal S; Basappa; Chandramohanadas, Rajesh

    2015-11-21

    Malaria parasites are currently gaining drug-resistance rapidly, across countries and continents. Hence, the discovery and development of novel chemical scaffolds, with superior antimalarial activity remain an important priority, for the developing world. Our report describes the development, characterization and evaluation of novel bepotastine-based sulphonamide antimalarials inhibiting asexual stage development of Plasmodium falciparum parasites in vitro. The screening results showed potent inhibitory activity of a number of novel sulphonamides against P. falciparum at low micromolar concentrations, in particular in late-stage parasite development. Based on computational studies we hypothesize N-myristoyltransferase as the target of the compounds developed here. Our results demonstrate the value of novel bepotastine-based sulphonamide compounds for targeting the asexual developmental stages of P. falciparum.

  10. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  11. Understanding Private Sector Antimalarial Distribution Chains: A Cross-Sectional Mixed Methods Study in Six Malaria-Endemic Countries

    Science.gov (United States)

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Rueda, Sergio Torres; Kiefer, Sabine; O’Connell, Kathryn A.; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Chavasse, Desmond

    2014-01-01

    Background Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia). Methods and Findings We conducted nationally representative surveys of antimalarial wholesalers during 2009–2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4–6 steps between manufacturer and retailer; however, most likely pass through 2–3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important

  12. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    Directory of Open Access Journals (Sweden)

    Benjamin Palafox

    Full Text Available BACKGROUND: Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia. METHODS AND FINDINGS: We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are

  13. Bilayer Effects of Antimalarial Compounds.

    Directory of Open Access Journals (Sweden)

    Nicole B Ramsey

    Full Text Available Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05; MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.

  14. Quality of drug label information on QT interval prolongation

    DEFF Research Database (Denmark)

    Warnier, Miriam J; Holtkamp, Frank A; Rutten, Frans H;

    2014-01-01

    characteristics (SPC) of recently approved medicinal products. METHODS: Drug labels of products centrally approved in Europe between 2006 and 2012 were screened. Of drugs including the term 'QT' in the SPC, the message on QT-prolongation ('no prolongation'/'unclear drug-QT association'/'possibly QT......-prolongation'/'QT-prolongation') and the advice on cautionary measures pertaining to QT-prolongation in the label were examined, as well as their association. RESULTS: Of the 175 screened products, 44 contained information on QT in the SPC ('no QT-prolongation': 23%, 'unclear drug-QT association': 43%, 'possibly QT-prolongation': 16%, 'QT......-prolongation': 18%). 62% contained advices to act with caution in patients with additional risk factors for QT-prolongation. Products that more likely to have QT-prolonging properties according to the SPC provided more information on QT-prolongation in the SPC ('no prolongation': 10% and for the category 'QT...

  15. [Progress in researches on molecular markers of Plasmodium falciparum drug resistance].

    Science.gov (United States)

    Zhang, Mei-hua; Lu, Feng; Cao, Jun; Gao, Qi

    2015-06-01

    Effective chemotherapy is the mainstay of malaria control. However, it is undergoing the serious threat by resis- tance of falciparum malaria to antimalarial drugs. In recent years, with the development of molecular biology technology, molec- ular markers have been widely used to monitor antimalarial drug resistance. This paper reviews the researches on the common molecular markers related to Plasmodiumfalciparum drug resistance.

  16. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin.

    Science.gov (United States)

    Kumar, Sahil; Singh, Rajesh K; Sharma, Rajiv; Murthy, R S R; Bhardwaj, T R

    2015-01-23

    Various polymer drug conjugates (13-16) such as primaquine and dihydroartemisinin conjugated 2-propoxy substituted polyphosphazenes (13), primaquine and dihydroartemisinin conjugated 4-acetamidophenoxy substituted polyphosphazenes (14), primaquine and dihydroartemisinin conjugated 4-formyl substituted polyphosphazenes (15) and primaquine and dihydroartemisinin conjugated 4-aminoethylbenzoate substituted polyphosphazenes (16) were synthesized using substituted polyphosphazenes as polymer and primaquine and dihydroartemisinin as combination antimalarial pharmacophores and formulated to nanoparticles to achieve novel controlled combined drug delivery approach for radical cure of malaria. The polymeric backbone was suitably substituted to impart different physicochemical properties. The polymer-drug conjugates were characterized by IR, (1)H NMR, (31)P NMR and their molecular weights were determined by Gel Permeation Chromatography. The thermal properties of the conjugates (13-16) were studied by DSC and TGA. The conjugates (13-16) were then formulated to nanoparticles formulations to increase their uptake by hepatocytes and to achieve targeted drug delivery. The nanoparticle formulations were characterized by Zeta Sizer and their morphology were studied by TEM (Transmission Electron Microscopy) imaging. The nanoparticles formulations exhibited biphasic in vitro drug release profile, the initial burst release followed by a sustained release owing to the non-fickian diffusion during first step release and fickian diffusion during second step release. In vivo antimalarial efficacy was tested using Plasmodium berghei (NK65 resistant strain) infected swiss albino mice at different doses. The combination therapy exhibited promising antimalarial efficacy at lower doses in comparison to the standard drug combination. Further, this combination therapy provided protection over 35days without any recrudescence, thus proving to be effective against resistant malaria. The study

  17. Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery.

    Science.gov (United States)

    McCarty, Sara E; Schellenberger, Amanda; Goodwin, Douglas C; Fuanta, Ngolui Rene; Tekwani, Babu L; Calderón, Angela I

    2015-01-01

    The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR), an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper provides an overview of the structure and function of TrxR, discusses similarities and differences between the thioredoxin reductases (TrxRs) of different Plasmodium species and the human forms of the enzyme, gives an overview of modeling Plasmodium infections in animals, and suggests the role of Trx functions in antimalarial drug resistance. TrxR of Plasmodium falciparum is a central focus of this paper since it is the only Plasmodium TrxR that has been crystallized and P. falciparum is the species that causes most malaria cases. It is anticipated that the information summarized here will give insight and stimulate new directions in which research might be most beneficial.

  18. Five-year surveillance of molecular markers of Plasmodium falciparum antimalarial drug resistance in Korogwe District, Tanzania: accumulation of the 581G mutation in the em>P. falciparum dihydropteroate synthase gene

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Lusingu, John P; Mmbando, Bruno;

    2009-01-01

    In January 2007, Tanzania replaced sulfadoxine-pyrimethamine (SP) with artemether-lumefantrine for treatment of uncomplicated malaria. This study examined the impact of widespread SP use on molecular markers of Plasmodium falciparum drug resistance in blood samples from persons living in two vill...

  19. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  20. Formulation, quality control and shelf life of the experimental cytostatic drug cyclopentenyl cytosine

    NARCIS (Netherlands)

    K. Schimmel; H.J. Guchelaar; E. van Kan

    2006-01-01

    This paper describes the formulation and quality control of an aqueous sterilized formulation of the experimental cytostatic drug cyclopentenyl cytosine (CPEC) to be used in Phase I/II clinical trials. The raw drug substance was extensively tested. A High Pressure Liquid Chromotography (HPLC) method

  1. Quality of Reporting of Bioequivalence Trials Comparing Generic to Brand Name Drugs: A Methodological Systematic Review

    OpenAIRE

    Amélie van der Meersch; Agnès Dechartres; Philippe Ravaud

    2011-01-01

    BACKGROUND: Generic drugs are used by millions of patients for economic reasons, so their evaluation must be highly transparent. OBJECTIVE: To assess the quality of reporting of bioequivalence trials comparing generic to brand-name drugs. METHODOLOGY/PRINCIPAL FINDINGS: PubMed was searched for reports of bioequivalence trials comparing generic to brand-name drugs between January 2005 and December 2008. Articles were included if the aim of the study was to assess the bioequivalency of generic ...

  2. Access to Artemisinin-Combination Therapy (ACT) and other Anti-Malarials: National Policy and Markets in Sierra Leone

    Science.gov (United States)

    Amuasi, John H.; Diap, Graciela; Nguah, Samuel Blay; Karikari, Patrick; Boakye, Isaac; Jambai, Amara; Lahai, Wani Kumba; Louie, Karly S.; Kiechel, Jean-Rene

    2012-01-01

    Malaria remains the leading burden of disease in post-conflict Sierra Leone. To overcome the challenge of anti-malarial drug resistance and improve effective treatment, Sierra Leone adopted artemisinin-combination therapy artesunate-amodiaquine (AS+AQ) as first-line treatment for uncomplicated P. falciparum malaria. Other national policy anti-malarials include artemether-lumefantrine (AL) as an alternative to AS+AQ, quinine and artemether for treatment of complicated malaria; and sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment (IPTp). This study was conducted to evaluate access to national policy recommended anti-malarials. A cross-sectional survey of 127 medicine outlets (public, private and NGO) was conducted in urban and rural areas. The availability on the day of the survey, median prices, and affordability policy and available non-policy anti-malarials were calculated. Anti-malarials were stocked in 79% of all outlets surveyed. AS+AQ was widely available in public medicine outlets; AL was only available in the private and NGO sectors. Quinine was available in nearly two-thirds of public and NGO outlets and over one-third of private outlets. SP was widely available in all outlets. Non-policy anti-malarials were predominantly available in the private outlets. AS+AQ in the public sector was widely offered for free. Among the anti-malarials sold at a cost, the same median price of a course of AS+AQ (US$1.56), quinine tablets (US$0.63), were found in both the public and private sectors. Quinine injection had a median cost of US$0.31 in the public sector and US$0.47 in the private sector, while SP had a median cost of US$0.31 in the public sector compared to US$ 0.63 in the private sector. Non-policy anti-malarials were more affordable than first-line AS+AQ in all sectors. A course of AS+AQ was affordable at nearly two days’ worth of wages in both the public and private sectors. PMID:23133522

  3. Antimalarial activity of Ageratum conyzoides in combination with chloroquine and artesunate

    Institute of Scientific and Technical Information of China (English)

    Ukwe Chinwe V; Ekwunife Obinna I; Epueke Ebele A; Ubaka Chukwuemeka M

    2010-01-01

    Objective: To determine the suppressive and curative activity of aqueous leaf extract of Ageratum conyzoides (A. conyzoides) in combination with chloroquine and artesunate, respectively against Plasmodium berghei infection in mice. Methods: Using malaria (Plasmodium berghei) infected albino mice of both sexes, aqueous extracts of A. conyzoides in combination with chloroquine and artesunate were tested for antimalarial activity, respectively. Four-day suppressive test and Rane's curative test were carried out. Results: Suppressive tests showed significant dose dependent reduction in parasitemia level produced by the extract-chloroquine and extract-artesunate combinations. Suppressive activities of both extract-drug combinations were greater than the individual drugs alone. Extract-chloroquine (100:5) produced the highest suppressive effect (98% suppression). Curative tests showed absolute survival in two extract-drug combinations. Two extract-drug combinations produced higher curative effects than the individual drugs alone. The highest dose combinations of extract-chloroquine (100:5) and extract-artesunate (100:5) produced absolute parasitemia clearance (cure) in the infected mice. Conclusions: The study indicated that aqueous extract of A. conyzoides had the ability to potentiate the antimalarial activity of chloroquine and artesunate against induced plasmodiasis in mice. It contributes a lot in the malaria endemic and poverty stricken tropics.

  4. Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil.

    Science.gov (United States)

    Andrade-Neto, Valter F; Brandão, Maria G L; Oliveira, Francielda Q; Casali, Vicente W D; Njaine, Brian; Zalis, Mariano G; Oliveira, Luciana A; Krettli, Antoniana U

    2004-08-01

    Bidens pilosa (Asteraceae), a medicinal plant used worldwide, has antimalarial activity as shown in previous work. This study tested ethanol extracts from wild plants collected in three different regions of Brazil and from plants cultivated in various soil conditions. The extracts were active in mice infected with P. berghei: doses of humus enriched soil, were active; but the wild plants were the most active. Analysis using thin layer chromatography demonstrated the presence of flavonoids (compounds considered responsible for the antimalarial activity) in all plants tested, even though at different profiles. Because B. pilosa is proven to be active against P. falciparum drug-resistant parasites in vitro, and in rodent malaria in vivo, it is a good candidate for pre-clinical tests as a phytotherapeutic agent or for chemical isolation of the active compounds with the aim of finding new antimalarial drugs.

  5. Does price reveal poor-quality drugs? Evidence from 17 countries.

    Science.gov (United States)

    Bate, Roger; Jin, Ginger Zhe; Mathur, Aparna

    2011-12-01

    Focusing on 8 drug types on the WHO-approved medicine list, we constructed an original dataset of 899 drug samples from 17 low- and median-income countries and tested them for visual appearance, disintegration, and analyzed their ingredients by chromatography and spectrometry. Fifteen percent of the samples fail at least one test and can be considered substandard. After controlling for local factors, we find that failing drugs are priced 13.6-18.7% lower than non-failing drugs but the signaling effect of price is far from complete, especially for non-innovator brands. The look of the pharmacy, as assessed by our covert shoppers, is weakly correlated with the results of quality tests. These findings suggest that consumers are likely to suspect low quality from market price, non-innovator brand and the look of the pharmacy, but none of these signals can perfectly identify substandard and counterfeit drugs.

  6. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  7. Report of the WHO Collaborating Centre for Quality Assurance of Essential Drugs

    Directory of Open Access Journals (Sweden)

    Drs. R. Pandjaitan

    2012-09-01

    Full Text Available National Quality Control Laboratory of Drugs and Food (NQCL DF is a central quality control laboratory for pharmaceuticals and food commodities under the supervision of the Director General of Drug and Food Control, Ministry of Health.Based on the Ministry of Health Act.No. 145/Menkes/SK/IV/1978, in 1978, NQCL DF was established. In the same year 27 Provincial Quality Control Laboratory of Drug and Food (PQCL DF, in each province in Indonesia were also established based on the Ministry of Health Act.No. 146/Menkes/ SK/IV/1978. The objective of NQCL DF are: To protect the consumers from adulterated or misbranded pharmaceutical and food commodities.To evaluated and to accrediate the quality control laboratories of pharmaceuticals and food commoditities.To control and give guidance to all quality control laboratories of drug and food.To stimulate the quality of domestic pro­ducts of pharmaceuticals and food com­modities to promote the volume of exports.

  8. Antimalarial action of nitrobenzylthioinosine in combination with purine nucleoside antimetabolites.

    Science.gov (United States)

    Gero, A M; Scott, H V; O'Sullivan, W J; Christopherson, R I

    1989-04-01

    The infection of human erythrocytes by two strains of the human malarial parasite, Plasmodium falciparum (FCQ-27 or the multi-drug-resistant strain K-1), markedly changed the transport characteristics of the nucleosides, adenosine and tubercidin, compared to uninfected erythrocytes. A component of the transport of these nucleosides was insensitive to the classical mammalian nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR). In vitro studies with tubercidin demonstrated ID50 values of 0.43 and 0.51 microM for FCQ-27 and K-1, respectively. In addition, the nucleoside transport inhibitors NBMPR, nitrobenzylthioguanosine (NBTGR), dilazep and dipyridamole also independently exhibited antimalarial activity in vitro. The combination of tubercidin and NBMPR or NBTGR in vitro demonstrated synergistic activity, whilst tubercidin together with dilazep or dipyridamole showed subadditive activity. Analysis by HPLC indicated that NBMPR could permeate the infected cell membrane and provided evidence for the catabolism of NBMPR in vitro, with subsequent alteration of the purine pool in the infected erythrocyte. These observations further indicated the possibility of the utilization of cytotoxic nucleosides against P. falciparum infection in conjunction with a nucleoside transport inhibitor to protect the host tissue.

  9. Synthesis and structure-activity relationships of 4-pyridones as potential antimalarials.

    Science.gov (United States)

    Yeates, Clive L; Batchelor, John F; Capon, Edward C; Cheesman, Neil J; Fry, Mitch; Hudson, Alan T; Pudney, Mary; Trimming, Helen; Woolven, James; Bueno, José M; Chicharro, Jesús; Fernández, Esther; Fiandor, José M; Gargallo-Viola, Domingo; Gómez de las Heras, Federico; Herreros, Esperanza; León, María L

    2008-05-08

    A series of diaryl ether substituted 4-pyridones have been identified as having potent antimalarial activity superior to that of chloroquine against Plasmodium falciparum in vitro and murine Plasmodium yoelii in vivo. These were derived from the anticoccidial drug clopidol through a systematic study of the effects of varying the side chain on activity. Relative to clopidol the most active compounds show >500-fold improvement in IC50 for inhibition of P. falciparum in vitro and about 100-fold improvement with respect to ED50 against P. yoelii in mice. These compounds have been shown elsewhere to act selectively by inhibition of mitochondrial electron transport at the cytochrome bc1 complex.

  10. Molecular markers associated with resistance to commonly used antimalarial drugs among Plasmodium falciparum isolates from a malaria-endemic area in Taiz governorate-Yemen during the transmission season.

    Science.gov (United States)

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Mahmud, Rohela

    2016-10-01

    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a

  11. Relationship Between Time Consumption and Quality of Responses to Drug-related Queries

    DEFF Research Database (Denmark)

    Amundstuen Reppe, Linda; Lydersen, Stian; Schjøtt, Jan

    2016-01-01

    Purpose The aims of this study were to assess the quality of responses produced by drug information centers (DICs) in Scandinavia, and to study the association between time consumption processing queries and the quality of the responses. Methods We posed six identical drug-related queries to seven...... DICs in Scandinavia, and the time consumption required for processing them was estimated. Clinical pharmacologists (internal experts) and general practitioners (external experts) reviewed responses individually. We used mixed model linear regression analyses to study the associations between time...... consumption on one hand and the summarized quality scores and the overall impression of the responses on the other hand. Findings Both expert groups generally assessed the quality of the responses as “satisfactory” to “good.” A few responses were criticized for being poorly synthesized and less relevant...

  12. ANTIMICROBIAL, PHYSICAL AND CHEMICAL QUALITIES OF MEDICINAL ANTISEPTIC DRUGS

    Directory of Open Access Journals (Sweden)

    Paliy D. V.

    2014-12-01

    Full Text Available In our research results of the study of antimicrobial, physical and chemical qualities of antiseptic medicines of decamethoxin (DCM. Antimicrobial activity of DCM, palisan, decasan, deseptol against srains of S.aureus (n 56, S.epidermidis (n 26, E.coli (n 24, P.mirabilis (n 11, P.vulgaris (n 8 was studied by means of method of serial dilutions. Obtained data of mass spectrometry study of antimicrobial compositions with constant concentrations of DCM have shown that medicinal forms of DCM are complex physical and chemical systems, because of different origin and number of adjuvant ingredients used during their fabrication. Among synthetic quaternary ammonium agents there have been found the substance (commercial name of medicine is decamethoxin to have high antimicrobial activity against strains of grampositive and gram-negative microorganisms, an also C.albicans. There was found that antimicrobial activity of antiseptic palisan had been higher comparably to DCM in equivalent concentration. The composition and concentrations of acting agents and the methodology of preparation of palisan have been substantiated on the basis of microbiological, mass spectrometry characteristics of antiseptics DCM, palisan.

  13. A new roadmap for biopharmaceutical drug product development: Integrating development, validation, and quality by design.

    Science.gov (United States)

    Martin-Moe, Sheryl; Lim, Fredric J; Wong, Rita L; Sreedhara, Alavattam; Sundaram, Jagannathan; Sane, Samir U

    2011-08-01

    Quality by design (QbD) is a science- and risk-based approach to drug product development. Although pharmaceutical companies have historically used many of the same principles during development, this knowledge was not always formally captured or proactively submitted to regulators. In recent years, the US Food and Drug Administration has also recognized the need for more controls in the drug manufacturing processes, especially for biological therapeutics, and it has recently launched an initiative for Pharmaceutical Quality for the 21st Century to modernize pharmaceutical manufacturing and improve product quality. In the biopharmaceutical world, the QbD efforts have been mainly focused on active pharmaceutical ingredient processes with little emphasis on drug product development. We present a systematic approach to biopharmaceutical drug product development using a monoclonal antibody as an example. The approach presented herein leverages scientific understanding of products and processes, risk assessments, and rational experimental design to deliver processes that are consistent with QbD philosophy without excessive incremental effort. Data generated using these approaches will not only strengthen data packages to support specifications and manufacturing ranges but hopefully simplify implementation of postapproval changes. We anticipate that this approach will positively impact cost for companies, regulatory agencies, and patients, alike.

  14. Low quality of reporting adverse drug reactions in paediatric randomised controlled trials

    NARCIS (Netherlands)

    de Vries, Tjalling W; van Roon, Eric N

    2010-01-01

    OBJECTIVE: Randomised controlled trials (RCT) offer an opportunity to learn about frequency and character of adverse drug reactions. To improve the quality of reporting adverse effects, the Consort group published recommendations. The authors studied the application of these recommendations in RCTs

  15. Do advertisements for antihypertensive drugs in Australia promote quality prescribing? A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Spurling Geoffrey K

    2008-05-01

    Full Text Available Abstract Background Antihypertensive medications are widely prescribed by doctors and heavily promoted by the pharmaceutical industry. Despite strong evidence of the effectiveness and cost-effectiveness of thiazide diuretics, trends in both promotion and prescription of antihypertensive drugs favour newer, less cost-effective agents. Observational evidence shows correlations between exposure to pharmaceutical promotion and less ideal prescribing. Our study therefore aimed to determine whether print advertisements for antihypertensive medications promote quality prescribing in hypertension. Methods We performed a cross-sectional study of 113 advertisements for antihypertensive drugs from 4 general practice-oriented Australian medical publications in 2004. Advertisements were evaluated using a quality checklist based on a review of hypertension management guidelines. Main outcome measures included: frequency with which antihypertensive classes were advertised, promotion of thiazide class drugs as first line agents, use of statistical claims in advertisements, mention of harms and prices in the advertisements, promotion of assessment and treatment of cardiovascular risk, promotion of lifestyle modification, and targeting of particular patient subgroups. Results Thiazides were the most frequently advertised drug class (48.7% of advertisements, but were largely promoted in combination preparations. The only thiazide advertised as a single agent was the most expensive, indapamide. No advertisement specifically promoted any thiazide as a better first-line drug. Statistics in the advertisements tended to be expressed in relative rather than absolute terms. Drug costs were often reported, but without cost comparisons between drugs. Adverse effects were usually reported but largely confined to the advertisements' small print. Other than mentioning drug interactions with alcohol and salt, no advertisements promoted lifestyle modification. Few

  16. Malaria, anaemia and antimalarial drug resistance in African children

    NARCIS (Netherlands)

    Obonyo, C.O.

    2006-01-01

    Malaria-associated anaemia is a potentially preventable cause of severe morbidity and mortality in children < 5years of age, in areas of high malaria transmission in sub-Saharan Africa. In a cross-sectional study of 3586 children, 80% were anaemic (haemoglobin [Hb]<11g/dL) and 3% had severe anaemia

  17. A framework for assessing the risk of resistance for anti-malarials in development

    Directory of Open Access Journals (Sweden)

    Ding Xavier C

    2012-08-01

    Full Text Available Abstract Resistance is a constant challenge for anti-infective drug development. Since they kill sensitive organisms, anti-infective agents are bound to exert an evolutionary pressure toward the emergence and spread of resistance mechanisms, if such resistance can arise by stochastic mutation events. New classes of medicines under development must be designed or selected to stay ahead in this vicious circle of resistance control. This involves both circumventing existing resistance mechanisms and selecting molecules which are resilient against the development and spread of resistance. Cell-based screening methods have led to a renaissance of new classes of anti-malarial medicines, offering us the potential to select and modify molecules based on their resistance potential. To that end, a standardized in vitro methodology to assess quantitatively these characteristics in Plasmodium falciparum during the early phases of the drug development process has been developed and is presented here. It allows the identification of anti-malarial compounds with overt resistance risks and the prioritization of the most robust ones. The integration of this strategy in later stages of development, registration, and deployment is also discussed.

  18. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    Directory of Open Access Journals (Sweden)

    Khodakarim Nastaran

    2010-05-01

    Full Text Available Abstract Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain and CY27 (chloroquine-sensitive strain, using the parasite lactate dehydrogenase (pLDH assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain. Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy, Solanum surattense (Burm.f. and Prosopis juliflora (Sw. showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time.

  19. New heterocyclic hybrids of pyrazole and its bioisosteres: design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents.

    Science.gov (United States)

    Bekhit, Adnan A; Hassan, Ahmed M M; Abd El Razik, Heba A; El-Miligy, Mostafa M M; El-Agroudy, Eman J; Bekhit, Alaa El-Din A

    2015-04-13

    A new series of pyrazole derivatives were synthesized by hybridization with five-membered heterocyclic moieties such as thiazoles, thiazolidinones, 1,3,4-thiadiazoles and pyrazolines. The compounds were evaluated for their in vivo antimalarial activity against Plasmodium berghei infected mice and the most active derivatives were further examined for their in vitro antimalarial activity against chloroquine resistant (RKL9) strain of Plasmodium falciparum. Compounds 2c, 2d, 4b, 4c, 4d, 5a, 6c, 8c and 9b had more than 90% parasite suppression activity of that found with the antimalarial reference standard drug, chloroquine phosphate and had lower IC50 values than chloroquine. Compounds 4b and 9b were the most active derivatives, and their activities were 5-fold higher than chloroquine. All the newly synthesized compounds were evaluated for their in vitro antileishmanial activity against Leishmania aethiopica promastigotes and amastigote. The results showed that compounds 2c, 2d, 3d, 4b, 4c, 4d and 5a had lower or similar IC50 values than the reference standard drugs, amphotericin B and miltefosine. Compound 3d had the highest antileishmanial activity. Collectively, compounds 2c, 2d, 4b, 4c, 4d and 5a exhibited dual activity against malaria and leishmaniasis and were safe and well tolerated by the experimental animals orally up to 300 mg/kg and parenterally up to 100 mg/kg.

  20. A review on the status of quality control and standardization of herbal drugs in India

    Directory of Open Access Journals (Sweden)

    Anju Dhiman

    2016-01-01

    Full Text Available Background: Most of the herbal medicines in the world originate from the developing countries. There are ample opportunities for these countries to expand their global export. The world market for botanical medicines including drug products and raw materials has been estimated to have an annual growth rate between 5% and 15%. Total global botanical drug market is estimated at US$62 billion and is expected to grow to the tune of US$5 trillion by the year 2050. In the USA alone, the usage of botanicals has been increased by 380% between the years 1990 and 1997. Materials and Methods: Ayurveda, the Indian system of medicine, is one of the ancient, yet living traditions that face a typical Western bias. Widespread and growing use of botanicals has created public health challenges globally in terms of quality, safety, and efficacy. Results and Discussion: The development of parameters for standardization and quality control of botanicals is a challenging task. Various regulatory authorities, research organizations, and botanical drug manufacturers have contributed in developing guiding principles and addressing issues related to the quality, safety, and efficacy. Conclusions: The present review describes the regulatory aspects of herbal drugs in India and various other countries.

  1. Benefits of Exercise for the Quality of Life of Drug-Dependent Patients.

    Science.gov (United States)

    Giménez-Meseguer, Jorge; Tortosa-Martínez, Juan; de los Remedios Fernández-Valenciano, María

    2015-01-01

    This study combined quantitative and qualitative research methods to evaluate quality-of-life changes in drug-dependent patients after participation in a group-based exercise program. Quality of life (SF-36) and physical fitness (six-minute Walk Test, Timed Get Up and Go Test, and Chair Stand Test) were quantitatively determined in a group (n=37) of drug-dependent patients before and after a 12-week group exercise program (n=18) or routine care (n=19). Additionally, in-depth interviews were conducted at the end of the program with a subsample of 11 participants from the exercise group. Quantitative results showed improvements in fitness and different aspects of quality of life, such as physical function, mental health, vitality, social function, and general health perception. Qualitative results showed specific physical benefits (decreased injuries and muscle pain, decreased weight, and increased vitality with improvement in activities of daily living), psychological benefits (forgetting about everyday problems, improved mood, decreased stress and anxiety), social benefits, and a reduction in craving. The results of this study provide insight into the importance of exercise for the quality of life and recovery process of drug-dependent patients.

  2. [Drug users' quality of life, self-esteem and self-image].

    Science.gov (United States)

    Silveira, Camila da; Meyer, Carolina; Souza, Gabriel Renaldo de; Ramos, Manoella de Oliveira; Souza, Melissa de Carvalho; Monte, Fernanda Guidarini; Guimarães, Adriana Coutinho de Azevedo; Parcias, Sílvia Rosane

    2013-07-01

    This cross-sectional study aimed to investigate the quality of life, self-esteem and self-image among drug users of São José Institute in São José in the State of Santa Catarina. The accessibility sample was comprised of 100 male patients with a mean age of 43.0 ± 10.7, who had studied for a mean period of 8.4 ± 3.7 years. 48% of them were married and had been hospitalized or treated for a minimum period of seven days. When the participants were not hospitalized they lived with wives and children (23%), were married (48%), employed (72%), were part of income level B (58%), had done something they regret in their lives (57%) and perceived their health as good (57%). Regarding quality of life, the highest scores were found in the environmental domain (65%) and the lowest scores were in the psychological domain (58%). All patients were taking medication and had low self-esteem and self-image (77% and 96% respectively). The absence of interference of the quality of life on self-esteem and self-image of the drug users was observed by means of logistic regression. Positive quality of life did not interfere in changes in low self-esteem and self-image of drug users.

  3. 7种抗疟药抑制疟色素形成及其体外、体内抗日本血吸虫作用的比较观察%Comparative Observation on Inhibition of Hemozoin Formation and Their in vitro and in vivo Antischistosome Activity Displayed by 7 Antimalarial Drugs

    Institute of Scientific and Technical Information of China (English)

    薛剑; 姜斌; 刘丛珊; 孙军; 肖树华

    2013-01-01

    用培养血吸虫,前者在培养的1~3 d内全部虫体死亡,而氯喹与氯化血红素伍用组仅18.8% (3/16)的虫体死亡.相反,对血吸虫具有杀灭作用的咯萘啶50 μmol/L (46 μg/ml)与氯化血红素153.4 μmol/L (100 μg/ml)伍用示拮抗作用,无虫体死亡.感染血吸虫成虫的小鼠每天口服氯喹、咯萘啶和本芴醇400 mg/kg,连服3d,或前两者每天腹腔注射100 mg/kg,连续2~3 d,均无效.顿服蒿甲醚、奎宁和奎尼丁400 mg/kg或甲氟喹200 mg/kg均有明显疗效,减虫率为61.1%~98.1%. 结论 7种抗疟药抑制疟色素形成的作用与体外和体内抗血吸虫作用无明确的相关性.奎宁与氯化血红素伍用可明显增强其体外抗血吸虫的作用,而咯萘啶与氯化血红素伍用则示拮抗作用.%Objective To observe and compare the inhibition of hemozoin formation and the in vitro as well as in vivo antischistosomal activity induced by seven antimalarial drugs.Methods Inhibition of hemozoin formation displayed by chloroquine phosphate,quinine hydrochloride,quinidine,mefloquine hydrochloride,pyronaridine phosphate and lumefantrine at 25 μmol/L,and artemether at 100 μmol/L was performed by assay of inhibition of β-hematin formation in 1 mol/L sodium acetate buffers containing hematin with various pH of 4.0,4.2,4.4,4.6,4.8,and 5.0.In in vitro antischistosomal study,the medium of RPMI 1640 supplemented by 10% calf serum was used to maintain the adult Schistosoma japonicum,and the 50% and 95% lethal concentratrions(LC50 and LC95) to kill the adult worms of each drug were then determined.Meanwhile,the interaction of quinine,pyronaridine and chloroquine combined with hemin against adult schistosomes was also undertaken.As to in vivo test,the efficacy of seven antimalarial drugs administered orally or intraperitoneally to mice infected with adult schistosomes was observed.Results In the acidic acetate-hematin solution,25 μmol/L pyronaridine showed significant inhibition

  4. Identification and Characterization of Novel Drug Resistance Loci in Plasmodium falciparum

    OpenAIRE

    Van Tyne, Daria Natalie

    2012-01-01

    Malaria has plagued mankind for millennia. Antimalarial drug use over the last century has generated highly drug-resistant parasites, which amplify the burden of this disease and pose a serious obstacle to control efforts. This dissertation is motivated by the simple fact that malaria parasites have become resistant to nearly every antimalarial drug that has ever been used, yet the precise genetic mechanisms of parasite drug resistance remain largely unknown. Our work pairs genomics-age techn...

  5. Potent antimalarial 4-pyridones with improved physico-chemical properties.

    Science.gov (United States)

    Bueno, José M; Manzano, Pilar; García, María C; Chicharro, Jesús; Puente, Margarita; Lorenzo, Milagros; García, Adolfo; Ferrer, Santiago; Gómez, Rubén M; Fraile, María T; Lavandera, José L; Fiandor, José M; Vidal, Jaume; Herreros, Esperanza; Gargallo-Viola, Domingo

    2011-09-15

    Antimalarial 4-pyridones are a novel class of inhibitors of the plasmodial mitochondrial electron transport chain targeting Cytochrome bc1 (complex III). In general, the most potent 4-pyridones are lipophilic molecules with poor solubility in aqueous media and low oral bioavailability in pre-clinical species from the solid dosage form. The strategy of introducing polar hydroxymethyl groups has enabled us to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species.

  6. In vitro Potentiation of Antimalarial Activities by Daphnetin Derivatives Against Plasmodium falciparum

    Institute of Scientific and Technical Information of China (English)

    FANG HUANG; LIN-HUA TANG; LIN-QIAN YU; YI-CHANG NI; QIN-MEI WANG; FA-JUN NAN

    2006-01-01

    Objective To screen the antimalarial compounds of daphnetin derivatives against Plasmodium falciparum in vitro. Method Plasmodium faciparum (FCC1) was cultured in vitro by a modified method of Trager and Jensen. Antimalarial compounds were screened by microscopy-based assay and microfluorimetric method. Results DA79 and DA78 showed potent antimalarial activity against Plasmodium falciparum cultured in vitro. Conclusion Though the relationship between the structures of daphnetin derivatives and their antimalarial activities has not been clarified yet, this study may provide a new direction for discovery of more potential antimalarial compounds.

  7. Investigation of indolglyoxamide and indolacetamide analogues of polyamines as antimalarial and antitrypanosomal agents.

    Science.gov (United States)

    Wang, Jiayi; Kaiser, Marcel; Copp, Brent R

    2014-05-28

    Pure compound screening has previously identified the indolglyoxy lamidospermidine ascidian metabolites didemnidine A and B (2 and 3) to be weak growth inhibitors of Trypanosoma brucei rhodesiense (IC50 59 and 44 μM, respectively) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 41 and 15 μM, respectively), but lacking in selectivity (L6 rat myoblast, IC50 24 μM and 25 μM, respectively). To expand the structure-activity relationship of this compound class towards both parasites, we have prepared and biologically tested a library of analogues that includes indoleglyoxyl and indoleacetic "capping acids", and polyamines including spermine (PA3-4-3) and extended analogues PA3-8-3 and PA3-12-3. 7-Methoxy substituted indoleglyoxylamides were typically found to exhibit the most potent antimalarial activity (IC50 10-92 nM) but with varying degrees of selectivity versus the L6 rat myoblast cell line. A 6-methoxyindolglyoxylamide analogue was the most potent growth inhibitor of T. brucei (IC50 0.18 μM) identified in the study: it, however, also exhibited poor selectivity (L6 IC50 6.0 μM). There was no apparent correlation between antimalarial and anti-T. brucei activity in the series. In vivo evaluation of one analogue against Plasmodium berghei was undertaken, demonstrating a modest 20.9% reduction in parasitaemia.

  8. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model

    Directory of Open Access Journals (Sweden)

    Gayan S. Bamunuarachchi

    2013-12-01

    Full Text Available Background & objectives: Artemisinin isolated from Artemisia annua is the most potent antimalarial drug against chloroquine-resistant Plasmodium falciparum malaria. Artemisia vulgaris, an invasive weed, is the only Artemisia species available in Sri Lanka. A pilot study was undertaken to investigate the antiparasitic activity of an A. vulgaris ethanolic leaf extract (AVELE in a P. berghei ANKA murine malaria model that elicits pathogenesis similar to falciparum malaria. Methods: A 4-day suppressive and the curative assays determined the antiparasitic activity of AVELE using four doses (250, 500, 750 and 1000 mg/kg, Coartem® as the positive control and 5% ethanol as the negative control in male ICR mice infected with P. berghei. Results: The 500, 750 and 1000 mg/kg doses of AVELE significantly (p ≤0.01 inhibited parasitaemia by 79.3, 79.6 and 87.3% respectively, in the 4-day suppressive assay, but not in the curative assay. Chronic administration of the high dose of AVELE ruled out overt signs of toxicity and stress as well as hepatotoxicity, renotoxicity and haematotoxicity. Interpretation & conclusion: The oral administration of a crude ethonolic leaf extract of A. vulgaris is non-toxic and possesses potent antimalarial properties in terms of antiparasitic activity.

  9. Formulation and particle size reduction improve bioavailability of poorly water-soluble compounds with antimalarial activity.

    Science.gov (United States)

    Wang, Hongxing; Li, Qigui; Reyes, Sean; Zhang, Jing; Xie, Lisa; Melendez, Victor; Hickman, Mark; Kozar, Michael P

    2013-01-01

    Decoquinate (DQ) is highly effective at killing malaria parasites in vitro; however, it is extremely insoluble in water. In this study, solid dispersion method was used for DQ formulation which created a suitable physical form of DQ in aqueous phase for particle manipulation. Among many polymers and surfactants tested, polyvinylpyrrolidone 10, a polymer, and L- α -phosphatidylcholine or polysorbate, two surfactants, were chosen as DQ formulation components. The formulation particles were reduced to a mean size between 200 to 400 nm, which was stable in aqueous medium for at least three weeks. Pharmacokinetic (PK) studies showed that compared to DQ microparticle suspension, a nanoparticle formulation orally dosed to mice showed a 14.47-fold increase in area under the curve (AUC) of DQ plasma concentration and a 4.53-fold increase in AUC of DQ liver distribution. WR 299666, a poorly water-soluble compound with antimalarial activity, was also tested and successfully made into nanoparticle formulation without undergoing solid dispersion procedure. We concluded that nanoparticles generated by using appropriate formulation components and sufficient particle size reduction significantly increased the bioavailability of DQ and could potentially turn this antimalarial agent to a therapeutic drug.

  10. Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2011-04-01

    Full Text Available The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (∼ 1 SNP/kb, and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS, searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.

  11. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents.

    Science.gov (United States)

    Pingaew, Ratchanok; Saekee, Amporn; Mandi, Prasit; Nantasenamat, Chanin; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2014-10-06

    A new series of chalcone-coumarin derivatives (9-19) linked by the 1,2,3-triazole ring were synthesized through the azide/alkyne dipolar cycloaddition. Hybrid molecules were evaluated for their cytotoxic activity against four cancer cell lines (e.g., HuCCA-1, HepG2, A549 and MOLT-3) and antimalarial activity toward Plasmodium falciparum. Most of the synthesized hybrids, except for analogs 10 and 16, displayed cytotoxicity against MOLT-3 cell line without affecting normal cells. Analogs (10, 11, 16 and 18) exhibited higher inhibitory efficacy than the control drug, etoposide, in HepG2 cells. Significantly, the high cytotoxic potency of the hybrid 11 was shown to be non-toxic to normal cells. Interestingly, the chalcone-coumarin 18 was the most potent antimalarial compound affording IC50 value of 1.60 μM. Molecular docking suggested that the cytotoxicity of reported hybrids could be possibly due to their dual inhibition of α- and β-tubulins at GTP and colchicine binding sites, respectively. Furthermore, falcipain-2 was identified to be a plausible target site of the hybrids given their antimalarial potency.

  12. Nurses' perception of the quality of care they provide to hospitalized drug addicts: testing the theory of reasoned action.

    Science.gov (United States)

    Natan, Merav Ben; Beyil, Valery; Neta, Okev

    2009-12-01

    A correlational design was used to examine nursing staff attitudes and subjective norms manifested in intended and actual care of drug users based on the Theory of Reasoned Action. One hundred and thirty-five nursing staff from three central Israeli hospitals completed a questionnaire examining theory-based variables as well as sociodemographic and professional characteristics. Most respondents reported a high to very high level of actual or intended care of drug users. Nurses' stronger intentions to provide quality care to drug users were associated with more positive attitudes. Nursing staff members had moderately negative attitudes towards drug users. Nurses were found to hold negative stereotypes of drug addict patients and most considered the management of this group difficult. Positive attitudes towards drug users, perceived expectations of others and perceived correctness of the behaviour are important in their effect on the intention of nurses to provide high-quality care to hospitalized patients addicted to drugs.

  13. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Julia Jezmir

    Full Text Available To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS methodology.The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance.This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains.Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  14. A Quality by Design Approach to Developing and Manufacturing Polymeric Nanoparticle Drug Products.

    Science.gov (United States)

    Troiano, Greg; Nolan, Jim; Parsons, Donald; Van Geen Hoven, Christina; Zale, Stephen

    2016-11-01

    The translation of nanomedicines from concepts to commercial products has not reached its full potential, in part because of the technical and regulatory challenges associated with chemistry, manufacturing, and controls (CMC) development of such complex products. It is critical to take a quality by design (QbD) approach to developing nanomedicines-using a risk-based approach to identifying and classifying product attributes and process parameters and ultimately developing a deep understanding of the products, processes, and platform. This article exemplifies a QbD approach used by BIND Therapeutics, Inc., to industrialize a polymeric targeted nanoparticle drug delivery platform. The focus of the approach is on CMC affairs but consideration is also given to preclinical, clinical, and regulatory aspects of pharmaceutical development. Processes are described for developing a quality target product profile and designing supporting preclinical studies, defining critical quality attributes and process parameters, building a process knowledge map, and employing QbD to support outsourced manufacturing.

  15. Effect of Microbes Contamination in Quality of Compounding Antitubeculosis Drugs in Bandung

    Directory of Open Access Journals (Sweden)

    Angga P. Kautsar

    2013-06-01

    Full Text Available Based on The Indonesia’s TBC profile from WHO, total of TBC new cases in year 2011 is 313.601 cases and 8.9% involve children under age of 15. TBC cure rate for pediatric patient was influenced primarily by the quality of antituberculosis medicine given. Consideration of drug delivery in the form of compounded medicine because the dose can be calculated and adjust base on weight and age of the pediatric patient. The qualities of compounded medicine need to be monitored in order to increase the expected therapeutic effect and to prevent TBC treatment failure. Survey has been carried out in the level of microbe contaminations test using Total Plate Count Method (TPC. From the TPC test, all of the microbe contaminations tests (100% show qualified levels of contaminations. Both of the results, the qualities of compounded medicine shows 82% categorize as good and 18% as very good.

  16. Reactions of antimalarial peroxides with each of leucomethylene blue and dihydroflavins: flavin reductase and the cofactor model exemplified.

    Science.gov (United States)

    Haynes, Richard K; Cheu, Kwan-Wing; Tang, Maggie Mei-Ki; Chen, Min-Jiao; Guo, Zu-Feng; Guo, Zhi-Hong; Coghi, Paolo; Monti, Diego

    2011-02-07

    Flavin adenine dinucleotide (FAD) is reduced by NADPH-E. coli flavin reductase (Fre) to FADH(2) in aqueous buffer at pH 7.4 under argon. Under the same conditions, FADH(2) in turn cleanly reduces the antimalarial drug methylene blue (MB) to leucomethylene blue. The latter is rapidly re-oxidized by artemisinins, thus supporting the proposal that MB exerts its antimalarial activity, and synergizes the antimalarial action of artemisinins, by interfering with redox cycling involving NADPH reduction of flavin cofactors in parasite flavin disulfide reductases. Direct treatment of the FADH(2) generated from NADPH-Fre-FAD by artemisinins and antimalaria-active tetraoxane and trioxolane structural analogues under physiological conditions at pH 7.4 results in rapid reduction of the artemisinins, and efficient conversion of the peroxide structural analogues into ketone products. Comparison of the relative rates of FADH(2) oxidation indicate optimal activity for the trioxolane. Therefore, the rate of intraparastic redox perturbation will be greatest for the trioxolane, and this may be significant in relation to its enhanced in vitro antimalarial activities. (1)H NMR spectroscopic studies using the BNAH-riboflavin (RF) model system indicate that the tetraoxane is capable of using both peroxide units in oxidizing the RFH(2) generated in situ. Use of the NADPH-Fre-FAD catalytic system in the presence of artemisinin or tetraoxane confirms that the latter, in contrast to artemisinin, consumes two reducing equivalents of NADPH. None of the processes described herein requires the presence of ferrous iron. Ferric iron, given its propensity to oxidize reduced flavin cofactors, may play a role in enhancing oxidative stress within the malaria parasite, without requiring interaction with artemisinins or peroxide analogues. The NADPH-Fre-FAD system serves as a convenient mimic of flavin disulfide reductases that maintain redox homeostasis in the malaria parasite.

  17. Quality of Reporting of Serious Adverse Drug Events to an Institutional Review Board

    Science.gov (United States)

    Dorr, David A.; Burdon, Rachel; West, Dennis P.; Lagman, Jennifer; Georgopoulos, Christina; Belknap, Steven M.; McKoy, June M.; Djulbegovic, Benjamin; Edwards, Beatrice J.; Weitzman, Sigmund A.; Boyle, Simone; Tallman, Martin S.; Talpaz, Moshe; Sartor, Oliver; Bennett, Charles L.

    2009-01-01

    Purpose Serious adverse drug event (sADE) reporting to Institutional Review Boards (IRB) is essential to ensure pharmaceutical safety. However, the quality of these reports has not been studied. Safety reports are especially important for cancer drugs that receive accelerated Food and Drug Administration approval, like imatinib, as preapproval experience with these drugs is limited. We evaluated the quality, accuracy, and completeness of sADE reports submitted to an IRB. Experimental Design sADE reports submitted to an IRB from 14 clinical trials with imatinib were reviewed. Structured case report forms, containing detailed clinical data fields and a validated causality assessment instrument, were developed. Two forms were generated for each ADE, the first populated with data abstracted from the IRB reports, and the second populated with data from the corresponding clinical record. Completeness and causality assessments were evaluated for each of the two sources, and then compared. Accuracy (concordance between sources) was also assessed. Results Of 115 sADEs reported for 177 cancer patients to the IRB, overall completeness of adverse event descriptions was 2.4-fold greater for structured case report forms populated with information from the clinical record versus the corresponding forms from IRB reports (95.0% versus 40.3%, P < 0.05). Information supporting causality assessments was recorded 3.5-fold more often in primary data sources versus IRB adverse event descriptions (93% versus 26%, P < 0.05). Some key clinical information was discrepant between the two sources. Conclusions The use of structured syndrome-specific case report forms could enhance the quality of reporting to IRBs, thereby improving the safety of pharmaceuticals administered to cancer patients. PMID:19458059

  18. Cytotoxic Drugs Departments as a precondition for high-quality product

    Directory of Open Access Journals (Sweden)

    Katarzyna Głuszek

    2014-06-01

    a pharmacy becomes the producer and distributor of oncologic drugs. This is related with high requirements concerning the production of drugs (high quality, safety of the engaged staff, as well as participation in a rational management of medicines. According to the FIP, a pharmacy is a public health care facility where work is performed by authorised persons: Masters of Pharmacy and pharmacy technicians. At present the task of a clinical pharmacist also includes the supervision of activities in the area of clinical pharmacy. This is a new task for pharmacists, who are obliged to constantly expand their knowledge and actively participate in the activities of the medical team.

  19. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries

    Directory of Open Access Journals (Sweden)

    O'Connell Kathryn A

    2011-10-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC, Madagascar, Nigeria, Uganda and Zambia. Methods Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. Results 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets as compared to first-line quality-assured ACT ( Conclusions These standardized, nationally representative results demonstrate the typically low availability, low market share and high prices of ACT, in the private sector where most anti-malarials are accessed, with some exceptions. The results confirm that there is substantial room to improve availability and affordability of ACT treatment in the surveyed countries. The data will also be useful for monitoring the impact of interventions such as the Affordable Medicines Facility for malaria.

  20. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action.

    Science.gov (United States)

    Singh, Shiv Vardan; Manhas, Ashan; Kumar, Yogesh; Mishra, Sonali; Shanker, Karuna; Khan, Feroz; Srivastava, Kumkum; Pal, Anirban

    2017-03-05

    A clinical emergency stands due to the appearance of drug resistant Plasmodium strains necessitate novel and effective antimalarial chemotypes, where plants seem as the prime option, especially after the discovery of quinine and artemisinin. The present study was aimed towards bioprospecting leaves of Flueggea virosa for its antimalarial efficacy and active principles. Crude hydro-ethanolic extract along with solvent derived fractions were tested in vitro against Plasmodium falciparum CQ sensitive (3D7) and resistant (K1) strains, where all the fractions exhibited potential activity (IC50 values <10μg/mL) against both the strains. Interestingly, under in vivo conditions against P. berghei in Swiss mice, preferential chemo-suppression was recorded for crude hydro-ethanolic extract (77.38%) and ethyl acetate fraction (86.09%) at the dose of 500mg/kg body weight. Additionally, ethyl acetate fraction was found to be capable of normalizing the host altered pharmacological parameters and enhanced oxidative stress augmented during the infection. The bioactivity guided fractionation lead to the isolation of bergenin as a major and active constituent (IC50, 8.07±2.05μM) of ethyl acetate fraction with the inhibition of heme polymerization pathway of malaria parasite being one of the possible chemotherapeutic target. Furthermore, bergenin exhibited a moderate antimalarial activity against P. berghei and also ameliorated parasite induced systemic inflammation in host (mice). Safe toxicity profile elucidated through in vitro cytotoxicity and in silico ADME/T predications evidently suggest that bergenin possess drug like properties. Hence, the present study validates the traditional usage of F. indica as an antimalarial remedy and also insists for further chemical modifications of bergenin to obtain more effective antimalarial chemotypes.

  1. Gas chromatographic method for the determination of lumefantrine in antimalarial finished pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Sultan Suleman

    2015-09-01

    Full Text Available A simple method has been developed and validated for quantitative determination of lumefantrine in antimalarial finished pharmaceutical products using gas chromatography coupled to flame ionization detector. Lumefantrine was silylated with N,O–bis(trimethyl-silyltrifluoro-acetamide at 70°C for 30 minutes, and chromatographic separation was conducted on a fused silica capillary (HP-5, 30 m length × 0.32 mm i.d., 0.25 μm film thickness column. Evaluation of the method within analytical quality-by-design principles, including a central composite face-centered design for the sample derivatization process and Plackett–Burman robustness verification of the chromatographic conditions, indicated that the method has acceptable specificity toward excipients and degradants, accuracy [mean recovery = 99.5%, relative standard deviation (RSD = 1.0%], linearity (=0.9986, precision (intraday = 96.1% of the label claim, RSD = 0.9%; interday = 96.3% label claim, RSD = 0.9%, and high sensitivity with detection limits of 0.01 μg/mL. The developed method was successfully applied to analyze the lumefantrine content of marketed fixed-dose combination antimalarial finished pharmaceutical products.

  2. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Directory of Open Access Journals (Sweden)

    Wells Timothy NC

    2011-03-01

    Full Text Available Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal

  3. Malaria healthcare policy change in Kenya: Implications on sales and marketing of antimalarials

    Directory of Open Access Journals (Sweden)

    Peter K. Ngure , Lorraine Nyaoke & David Minja

    2012-03-01

    Full Text Available Background & objectives: Malaria healthcare policy change in Kenya aimed at improving the control of malariabut faced a number of challenges in implementation related to marketing of the drugs. This research investigatedthe effect of the change of the national malaria policy on drug sales and strategic marketing responses ofantimalarial pharmaceutical companies in Kenya.Study design: A descriptive cross-sectional design was employed to describe the existing state of antimalarialsmarket in Kenya after the change of the malaria healthcare policy.Results & conclusion: Policy change did result in an increase in the sales of Coartem®. Novartis Pharma recordeda 97% growth in sales of Coartem® between 2003 and 2004. However, this increase was not experienced by allthe companies. Further, SPs (which had been replaced as first-line therapy for malaria registered good sales. Inmost cases, these sales were higher than the sales of Coartem®. Generally, the sales contribution of SPs andgeneric antimalarial medicines exceeded that of Coartem® for most distributors. The most common changemade to marketing strategies by distributors (62.5% was to increase imports of antimalarials. A total of 40% ofthe manufacturers preferred to increase their budgetary allocation for marketing activities. In view of the factthat continued sale of SP drugs and limited availability of AL poses the risk of increasing the incidence ofmalaria in Kenya, it is therefore, recommended that pharmacy surveillance systems be strengthened to ensuredrugs that have been rendered non-viable or that prescription-only medicines are not sold contrary to the nationalguidelines.

  4. Evaluation of prescribing quality in nursing homes based on drug-specific indicators: The Bergen district nursing home (BEDNURS study

    Directory of Open Access Journals (Sweden)

    Sabine Ruths

    2009-09-01

    Full Text Available To examine prescribing quality among nursing home patients. Methods: A cross sectional study in 23 nursing homes, based on drug charts. The evaluation of prescribing quality was based on selected drug-specific indicators established by the Swedish National Board of Health and Welfare. Logistic regression analysis was used to examine associations between prescribing indicators and predictors related to patient (age, gender, drug number and institution (nurse and physician staff time characteristics. Results: A total of 1513 nursing home patients (76% women, mean age 85 years were included in the study. On average, the patients used 5.1 (SD 2.5 standing medications. Laxatives were most commonly used (58%, followed by loop-diuretics (35%, antidepressants (31%, and anti-thrombotic agents (27%. Altogether 850 (56% patients used at least one potentially inappropriate prescription (PIP, including long-term use of contact laxatives without proper indication (25%, long-acting benzodiazepines (17%, and anticholinergic drugs (16%. The number of drugs used was the most important determinant for any PIP as well as for all individual indicators (p<0.001. Relatively younger patients were more likely to receive any PIP, and in particular anticholinergic drugs, multiple psychotropic drugs, and interacting drugs (p<0.05. Conclusion: Prescribing quality assessment by use of drug-specific indicators revealed great potentials for improving drug therapy in Norwegian nursing homes.

  5. CoMFA, CoMSIA, and docking studies on thiolactone-class of potent anti-malarials: identification of essential structural features modulating anti-malarial activity.

    Science.gov (United States)

    Roy, Kuldeep K; Bhunia, Shome S; Saxena, Anil K

    2011-09-01

    The integrated ligand- and structure-based drug design techniques have been applied on a homogeneous dataset of thiolactone-class of potent anti-malarials, to explore the essential structural features for the inhibition of Plasmodium falciparum. Developed CoMFA (q(2) = 0.716) and CoMSIA (q(2) = 0.632) models well explained structure-activity variation in both the training (CoMFA R(2) = 0.948 & CoMSIA R(2) = 0.849) and test set (CoMFA R(2) (pred) = 0.789 & CoMSIA R(2) (pred) = 0.733) compounds. The docking and scoring of the most active compound 10 into the active site of high-resolution (2.35 Å) structure of FabB-TLM binary complex (PDB-ID: 1FJ4) indicated that thiolactone core of this compound forms bifurcated H-bonding with two catalytic residues His298 and His333, and its saturated decyl side group is stabilized by hydrophobic interactions with the residues of a small hydrophobic groove, illustrating that the active site architecture, including two catalytic histidines and a small hydrophobic groove, is vital for protein-ligand interaction. In particular, the length and flexibility of the side group attached to the position 5 of thiolactone have been observed to play a significant role in the interaction with FabB enzyme. These results present scope for rational design of thiolactone-class of compounds that could furnish improved anti-malarial activity.

  6. A non-radioactive DAPI-based high-throughput in vitro assay to assess Plasmodium falciparum responsiveness to antimalarials--increased sensitivity of P. falciparum to chloroquine in Senegal.

    Science.gov (United States)

    Ndiaye, Daouda; Patel, Vishal; Demas, Allison; LeRoux, Michele; Ndir, Omar; Mboup, Souleymane; Clardy, Jon; Lakshmanan, Viswanathan; Daily, Johanna P; Wirth, Dyann F

    2010-02-01

    The spread of Plasmodium falciparum drug resistance is outpacing new antimalarial development and compromising effective malaria treatment. Combination therapy is widely implemented to prolong the effectiveness of currently approved antimalarials. To maximize utility of available drugs, periodic monitoring of drug efficacy and gathering of accurate information regarding parasite-sensitivity changes are essential. We describe a high-throughput, non-radioactive, field-based assay to evaluate in vitro antimalarial drug sensitivity of P. falciparum isolates from 40 Senegalese patients. Compared with earlier years, we found a significant decrease in chloroquine in vitro and in genotypic resistances (> 50% and > 65%, respectively, in previous studies) with only 23% of isolates showing resistance. This is possibly caused by a withdrawal of chloroquine from Senegal in 2002. We also found a range of artemisinin responses. Prevalence of drug resistance is dynamic and varies by region. Therefore, the implementation of non-radioactive, robust, high-throughput antimalarial sensitivity assays is critical for defining region-specific prophylaxis and treatment guidelines.

  7. In vitro-in vivo Pharmacokinetic correlation model for quality assurance of antiretroviral drugs

    Directory of Open Access Journals (Sweden)

    Ricardo Rojas Gómez

    2015-10-01

    Full Text Available Introduction: The in vitro-in vivo pharmacokinetic correlation models (IVIVC are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance. 

  8. The lay user perspective on the quality of pharmaceuticals, drug therapy and pharmacy services--results of focus group discussions

    DEFF Research Database (Denmark)

    Traulsen, Janine Marie; Almarsdóttir, Anna Birna; Björnsdóttir, Ingunn

    2002-01-01

    This article presents the results of a study on quality of pharmacy services and perceived risk of pharmaceuticals. The results presented here are part of a multi-study evaluation of major changes in drug distribution in Iceland.......This article presents the results of a study on quality of pharmacy services and perceived risk of pharmaceuticals. The results presented here are part of a multi-study evaluation of major changes in drug distribution in Iceland....

  9. Injection Drug User Quality of Life Scale (IDUQOL: Findings from a content validation study

    Directory of Open Access Journals (Sweden)

    Palepu Anita

    2007-07-01

    Full Text Available Abstract Background Quality of life studies among injection drug users have primarily focused on health-related measures. The chaotic life-style of many injection drug users (IDUs, however, extends far beyond their health, and impacts upon social relationships, employment opportunities, housing, and day to day survival. Most current quality of life instruments do not capture the realities of people living with addictions. The Injection Drug Users' Quality of Life Scale (IDUQOL was developed to reflect the life areas of relevance to IDUs. The present study examined the content validity of the IDUQOL using judgmental methods based on subject matter experts' (SMEs ratings of various elements of this measure (e.g., appropriateness of life areas or items, names and descriptions of life areas, instructions for administration and scoring. Methods Six SMEs were provided with a copy of the IDUQOL and its administration and scoring manual and a detailed content validation questionnaire. Two commonly used judgmental measures of inter-rater agreement, the Content Validity Index (CVI and the Average Deviation Mean Index (ADM, were used to evaluate SMEs' agreement on ratings of IDUQOL elements. Results A total of 75 elements of the IDUQOL were examined. The CVI results showed that all elements were endorsed by the required number of SMEs or more. The ADM results showed that acceptable agreement (i.e., practical significance was obtained for all elements but statistically significant agreement was missed for nine elements. For these elements, SMEs' feedback was examined for ways to improve the elements. Open-ended feedback also provided suggestions for other revisions to the IDUQOL. Conclusion The results of the study provided strong evidence in support of the content validity of the IDUQOL and direction for the revision of some IDUQOL elements.

  10. Smart nanocrystals of artemether: fabrication, characterization, and comparative in vitro and in vivo antimalarial evaluation

    Science.gov (United States)

    Shah, Syed Muhammad Hassan; Ullah, Farhat; Khan, Shahzeb; Shah, Syed Muhammad Mukarram; de Matas, Marcel; Hussain, Zahid; Minhas, Muhammad Usman; AbdEl-Salam, Naser M; Assi, Khaled Hafez; Isreb, Mohammad

    2016-01-01

    Artemether (ARTM) is a very effective antimalarial drug with poor solubility and consequently low bioavailability. Smart nanocrystals of ARTM with particle size of 161±1.5 nm and polydispersity index of 0.172±0.01 were produced in <1 hour using a wet milling technology, Dena® DM-100. The crystallinity of the processed ARTM was confirmed using differential scanning calorimetry and powder X-ray diffraction. The saturation solubility of the ARTM nanocrystals was substantially increased to 900 µg/mL compared to the raw ARTM in water (145.0±2.3 µg/mL) and stabilizer solution (300.0±2.0 µg/mL). The physical stability studies conducted for 90 days demonstrated that nanocrystals stored at 2°C–8°C and 25°C were very stable compared to the samples stored at 40°C. The nanocrystals were also shown to be stable when processed at acidic pH (2.0). The solubility and dissolution rate of ARTM nanocrystals were significantly increased (P<0.05) compared to those of its bulk powder form. The results of in vitro studies showed significant antimalarial effect (P<0.05) against Plasmodium falciparum and Plasmodium vivax. The IC50 (median lethal oral dose) value of ARTM nanocrystals was 28- and 54-fold lower than the IC50 value of unprocessed drug and 13- and 21-fold lower than the IC50 value of the marketed tablets, respectively. In addition, ARTM nanocrystals at the same dose (2 mg/kg) showed significantly (P<0.05) higher reduction in percent parasitemia (89%) against P. vivax compared to the unprocessed (27%), marketed tablets (45%), and microsuspension (60%). The acute toxicity study demonstrated that the LD50 value of ARTM nanocrystals is between 1,500 mg/kg and 2,000 mg/kg when given orally. This study demonstrated that the wet milling technology (Dena® DM-100) can produce smart nanocrystals of ARTM with enhanced antimalarial activities. PMID:27920499

  11. Discovery of new antimalarial chemotypes through chemical methodology and library development.

    Science.gov (United States)

    Brown, Lauren E; Chih-Chien Cheng, Ken; Wei, Wan-Guo; Yuan, Pingwei; Dai, Peng; Trilles, Richard; Ni, Feng; Yuan, Jing; MacArthur, Ryan; Guha, Rajarshi; Johnson, Ronald L; Su, Xin-zhuan; Dominguez, Melissa M; Snyder, John K; Beeler, Aaron B; Schaus, Scott E; Inglese, James; Porco, John A

    2011-04-26

    In an effort to expand the stereochemical and structural complexity of chemical libraries used in drug discovery, the Center for Chemical Methodology and Library Development at Boston University has established an infrastructure to translate methodologies accessing diverse chemotypes into arrayed libraries for biological evaluation. In a collaborative effort, the NIH Chemical Genomics Center determined IC(50)'s for Plasmodium falciparum viability for each of 2,070 members of the CMLD-BU compound collection using quantitative high-throughput screening across five parasite lines of distinct geographic origin. Three compound classes displaying either differential or comprehensive antimalarial activity across the lines were identified, and the nascent structure activity relationships (SAR) from this experiment used to initiate optimization of these chemotypes for further development.

  12. Incorporation of basic side chains into cryptolepine scaffold: structure-antimalarial activity relationships and mechanistic studies.

    Science.gov (United States)

    Lavrado, João; Cabal, Ghislain G; Prudêncio, Miguel; Mota, Maria M; Gut, Jiri; Rosenthal, Philip J; Díaz, Cecília; Guedes, Rita C; dos Santos, Daniel J V A; Bichenkova, Elena; Douglas, Kenneth T; Moreira, Rui; Paulo, Alexandra

    2011-02-10

    The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity when compared with the parent compound. Localization studies inside parasite blood stages by fluorescence microscopy showed that these derivatives accumulate inside the nucleus, indicating that the incorporation of a basic side chain is not sufficient enough to promote selective accumulation in the acidic digestive vacuole of the parasite. Most of the compounds within this series showed the ability to bind to a double-stranded DNA duplex as well to monomeric hematin, suggesting that these are possible targets associated with the observed antimalarial activity. Overall, these novel cryptolepine analogues with substantially improved antiplasmodial activity and selectivity index provide a promising starting point for development of potent and highly selective agents against drug-resistant malaria parasites.

  13. The in vivo antimalarial activity of methylene blue combined with pyrimethamine, chloroquine and quinine

    Directory of Open Access Journals (Sweden)

    Giovanny Garavito

    2012-09-01

    Full Text Available The effectiveness of methylene blue (MB combined with pyrimethamine (PYR, chloroquine (CQ or quinine (Q was examined in a classical four-day suppressive test against a causative agent of rodent malaria, Plasmodium berghei. A marked potentiation was observed when MB was administered at a non-curative dose of 15 mg/kg/day in combination with PYR (0.19 mg/kg/day or Q (25 mg/kg/day. No synergy was found between MB (15 mg/Kg and CQ (0.75 mg/Kg. Our results suggest that the combination of MB with PYR or Q may improve the efficacy of these currently used antimalarial drugs.

  14. Chemical signatures and new drug targets for gametocytocidal drug development

    Science.gov (United States)

    Sun, Wei; Tanaka, Takeshi Q.; Magle, Crystal T.; Huang, Wenwei; Southall, Noel; Huang, Ruili; Dehdashti, Seameen J.; McKew, John C.; Williamson, Kim C.; Zheng, Wei

    2014-01-01

    Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 malaria transmission-blocking reagents.

  15. A novel way to grow hemozoin-like crystals in vitro and its use to screen for hemozoin inhibiting antimalarial compounds.

    Directory of Open Access Journals (Sweden)

    Vincent Thomas

    Full Text Available BACKGROUND: Hemozoin crystals are normally formed in vivo by Plasmodium parasites to detoxify free heme released after hemoglobin digestion during its intraerythrocytic stage. Inhibition of hemozoin formation by various drugs results in free heme concentration toxic for the parasites. As a consequence, in vitro assays have been developed to screen and select candidate antimalarial drugs based on their capacity to inhibit hemozoin formation. In this report we describe new ways to form hemozoin-like crystals that were incidentally discovered during research in the field of prion inactivation. METHODS: We investigated the use of a new assay based on naturally occurring "self-replicating" particles and previously described as presenting resistance to decontamination comparable to prions. The nature of these particles was determined using electron microscopy, Maldi-Tof analysis and X-ray diffraction. They were compared to synthetic hemozoin and to hemozoin obtained from Plasmodium falciparum. We then used the assay to evaluate the capacity of various antimalarial and anti-prion compounds to inhibit "self-replication" (crystallisation of these particles. RESULTS: We identified these particles as being similar to ferriprotoporphyrin IX crystal and confirmed the ability of these particles to serve as nuclei for growth of new hemozoin-like crystals (HLC. HLC are morphologically similar to natural and synthetic hemozoin. Growth of HLC in a simple assay format confirmed inhibition by quinolines antimalarials at potencies described in the literature. Interestingly, artemisinins and tetracyclines also seemed to inhibit HLC growth. CONCLUSIONS: The described HLC assay is simple and easy to perform and may have the potential to be used as an additional tool to screen antimalarial drugs for their hemozoin inhibiting activity. As already described by others, drugs that inhibit hemozoin crystal formation have also the potential to inhibit misfolded proteins

  16. Adherence of community caretakers of children to pre-packaged antimalarial medicines (HOMAPAK®) among internally displaced people in Gulu district, Uganda

    OpenAIRE

    Jan H Kolaczinski; Ojok, Naptalis; Opwonya, John; Meek, Sylvia; Collins, Andrew

    2006-01-01

    Abstract Background In 2002, home-based management of fever (HBMF) was introduced in Uganda, to improve access to prompt, effective antimalarial treatment of all fevers in children under 5 years. Implementation is through community drug distributors (CDDs) who distribute pre-packaged chloroquine plus sulfadoxine-pyrimethamine (HOMAPAK®) free of charge to caretakers of febrile children. Adherence of caretakers to this regimen has not been studied. Methods A questionnaire-based survey combined ...

  17. Characterization and optimization of the haemozoin-like crystal (HLC) assay to determine Hz inhibiting effects of anti-malarial compounds

    OpenAIRE

    2015-01-01

    Background The haem-haemozoin biocrystallization pathway is an attractive target where several efficacious and safe anti-malarial drugs act. Consequently, in vitro haemozoin (Hz) inhibition assays have been developed to identify novel compounds. However, results may differ between assays and often require complex methods or sophisticated infrastructure. The recently reported growth of haemozoin-like crystals (HLC) appears to be a simple alternative although the endproduct is structurally diff...

  18. The Stapled AKAP Disruptor Peptide STAD-2 Displays Antimalarial Activity through a PKA-Independent Mechanism.

    Directory of Open Access Journals (Sweden)

    Briana R Flaherty

    Full Text Available Drug resistance poses a significant threat to ongoing malaria control efforts. Coupled with lack of a malaria vaccine, there is an urgent need for the development of new antimalarials with novel mechanisms of action and low susceptibility to parasite drug resistance. Protein Kinase A (PKA has been implicated as a critical regulator of pathogenesis in malaria. Therefore, we sought to investigate the effects of disrupted PKA signaling as a possible strategy for inhibition of parasite replication. Host PKA activity is partly regulated by a class of proteins called A Kinase Anchoring Proteins (AKAPs, and interaction between HsPKA and AKAP can be inhibited by the stapled peptide Stapled AKAP Disruptor 2 (STAD-2. STAD-2 was tested for permeability to and activity against Plasmodium falciparum blood stage parasites in vitro. The compound was selectively permeable only to infected red blood cells (iRBC and demonstrated rapid antiplasmodial activity, possibly via iRBC lysis (IC50 ≈ 1 μM. STAD-2 localized within the parasite almost immediately post-treatment but showed no evidence of direct association with PKA, indicating that STAD-2 acts via a PKA-independent mechanism. Furosemide-insensitive parasite permeability pathways in the iRBC were largely responsible for uptake of STAD-2. Further, peptide import was highly specific to STAD-2 as evidenced by low permeability of control stapled peptides. Selective uptake and antiplasmodial activity of STAD-2 provides important groundwork for the development of stapled peptides as potential antimalarials. Such peptides may also offer an alternative strategy for studying protein-protein interactions critical to parasite development and pathogenesis.

  19. In Vivo Antimalarial Activity of Annona muricata Leaf Extract in Mice Infected with Plasmodium berghei.

    Science.gov (United States)

    Somsak, Voravuth; Polwiang, Natsuda; Chachiyo, Sukanya

    2016-01-01

    Malaria is one of the most important infectious diseases in the world. The choice for the treatment is highly limited due to drug resistance. Hence, finding the new compounds to treat malaria is urgently needed. The present study was attempted to evaluate the antimalarial activity of the Annona muricata aqueous leaf extract in Plasmodium berghei infected mice. Aqueous leaf extract of A. muricata was prepared and tested for acute toxicity in mice. For efficacy test in vivo, standard 4-day suppressive test was carried out. ICR mice were inoculated with 10(7) parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection. The extracts (100, 500, and 1000 mg/kg) were then given orally by gavage once a day for 4 consecutive days. Parasitemia, percentage of inhibition, and packed cell volume were subsequently calculated. Chloroquine (10 mg/kg) was given to infected mice as positive control while untreated control was given only distilled water. It was found that A. muricata aqueous leaf extract at doses of 100, 500, and 1000 mg/kg resulted in dose dependent parasitemia inhibition of 38.03%, 75.25%, and 85.61%, respectively. Survival time was prolonged in infected mice treated with the extract. Moreover, no mortality to mice was observed with this extract up to a dose of 4000 mg/kg. In conclusion, the A. muricata aqueous leaf extract exerted significant antimalarial activity with no toxicity and prolonged survival time. Therefore, this extract might contain potential lead molecule for the development of a new drug for malaria treatment.

  20. Drug: D02547 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D02547 Drug Pamaquine; Plasmoquine [veterinary] (TN) C19H29N3O 315.2311 315.4531 D0...2547.gif Antimalarial [veterinary] veterinary medicine map07025 Quinolines CAS: 491-92-9 PubChem: 17396718 L

  1. Drug: D04005 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D04005 Drug Enpiroline phosphate (USAN) C19H18F6N2O. H3PO4 502.1092 502.3446 D04005....gif Antimalarial CAS: 66364-74-7 PubChem: 47205983 LigandBox: D04005 ATOM 33 1 C8y C 16.3183 -17.3314 2 C8x

  2. Analysis of the importance of drug packaging quality for end users and pharmaceutical industry as a part of the quality management system

    Directory of Open Access Journals (Sweden)

    Lončar Irma M.

    2013-01-01

    Full Text Available In this study, we collected and analyzed information on the importance of drug packaging quality to end users and pharmaceutical industry, as an indicator of the process of traceability and originality of drugs. Two surveys were conducted: one among the end users of drugs (252 patients and the other among professionals working in seven pharmaceutical companies in Serbia. For most end users (82.5% quality on the packaging of drugs was important, but only 41.8% of them thought that the appearance of the packaging could be an indicator of genuinity of drugs. The existence of the control marks (KM on drug packaging was not of great importance, since most of them (86.9% know, its function, but majority (60.2% would nevertheless decide to buy the drug without KM. Regarding the experts from the pharmaceutical industry, more then two-thirds of them (68.4% believed that the existence of KM did not contribute to efficient operations. Although a great number of pharmaceutical industry professionals (84.2% answered that the introduction of GS1 DataMatrix system would allow for complete traceability of the drug from the manufacturer to the end user, only 22.2% of them introduced this system to their products. This study also showed that domestic producers did not have a great interest for additional protection (special inks, holograms, special graphics, smart multicolor design, watermark, chemically labeled paper and cardboard etc.. on their products, given that only 15.8 % of them had some kind of additional protection against counterfeiting. Monitoring drug traceability from a manufacturer to end user is achieved by many complex activities regulated by law. A high percentage of responders said they were satisfied with the functionality of traceability systems used in their companies. As a way to increase the quality of drug packaging and business performance most responders saw in the continuous improvement of the system of traceability within the company

  3. Application of Absorption Modeling in Rational Design of Drug Product Under Quality-by-Design Paradigm.

    Science.gov (United States)

    Kesisoglou, Filippos; Mitra, Amitava

    2015-09-01

    Physiologically based absorption models can be an important tool in understanding product performance and hence implementation of Quality by Design (QbD) in drug product development. In this report, we show several case studies to demonstrate the potential application of absorption modeling in rational design of drug product under the QbD paradigm. The examples include application of absorption modeling—(1) prior to first-in-human studies to guide development of a formulation with minimal sensitivity to higher gastric pH and hence reduced interaction when co-administered with PPIs and/or H2RAs, (2) design of a controlled release formulation with optimal release rate to meet trough plasma concentrations and enable QD dosing, (3) understanding the impact of API particle size distribution on tablet bioavailability and guide formulation design in late-stage development, (4) assess impact of API phase change on product performance to guide specification setting, and (5) investigate the effect of dissolution rate changes on formulation bioperformance and enable appropriate specification setting. These case studies are meant to highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of the product performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients.

  4. Quality control of the paracetamol drug by chemometrics and imaging spectroscopy in the near infrared region

    Science.gov (United States)

    Baptistao, Mariana; Rocha, Werickson Fortunato de Carvalho; Poppi, Ronei Jesus

    2011-09-01

    In this work, it was used imaging spectroscopy and chemometric tools for the development and analysis of paracetamol and excipients in pharmaceutical formulations. It was also built concentration maps to study the distribution of the drug in the tablets surface. Multivariate models based on PLS regression were developed for paracetamol and excipients concentrations prediction. For the construction of the models it was used 31 samples in the tablet form containing the active principle in a concentration range of 30.0-90.0% (w/w) and errors below to 5% were obtained for validation samples. Finally, the study of the distribution in the drug was performed through the distribution maps of concentration of active principle and excipients. The analysis of maps showed the complementarity between the active principle and excipients in the tablets. The region with a high concentration of a constituent must have, necessarily, absence or low concentration of the other one. Thus, an alternative method for the paracetamol drug quality monitoring is presented.

  5. Application of quality by design to the process development of botanical drug products: a case study.

    Science.gov (United States)

    Zhang, Lei; Yan, Binjun; Gong, Xingchu; Yu, Lawrence X; Qu, Haibin

    2013-03-01

    This paper was designed to assess the value of quality by design (QbD) to improve the manufacturing process understanding of botanical drug products. Ethanol precipitation, a widely used unit operation in the manufacture of botanical drug products was employed to illustrate the use of QbD, taking the process of danshen (the dry root of Salvia miltiorrhiza Bunge) as an example. The recovery of four active pharmaceutical ingredients (APIs) and the removal of saccharides were used to represent the performance of ethanol precipitation. Potentially critical variables, including density of concentrate, ethanol consumption, and settling temperature were identified through risk assessment methods. Design of experiments (DOE) was used to evaluate the effects of the potentially critical factors on the performance of ethanol precipitation. It was observed that higher density of concentrate leads to higher removal of saccharides, but results in lower recovery of APIs. With the rise of ethanol consumption, the recovery of different APIs behaves in different ways. A potential design space of ethanol precipitation operation was established through DOE studies. The results in this work facilitate the enhanced understanding of the relationships between multiple factors (material attributes and process parameters) and the performance of ethanol precipitation. This case study demonstrated that QbD is a powerful tool to develop manufacturing process of botanical drug products.

  6. Insights into cytochrome bc 1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling

    Science.gov (United States)

    Sodero, Ana Carolina Rennó; Abrahim-Vieira, Bárbara; Torres, Pedro Henrique Monteiro; Pascutti, Pedro Geraldo; Garcia, Célia RS; Ferreira, Vitor Francisco; da Rocha, David Rodrigues; Ferreira, Sabrina Baptista; Silva, Floriano Paes

    2017-01-01

    BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc 1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite. PMID:28327793

  7. Malaria: Antimalarial resistance and policy ramificationsand challenges

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2006-01-01

    Full Text Available ′The National health Policy 2002" of India and the "Roll Back Malaria" policy makers have set up an ambitious goal of reducing malaria mortality and morbidity by 25% by 2007, and by 50% by 2010. To achieve these goals, problems should be identified, available evidence analyzed and policy should be changed early. Infection with drug resistant malarial parasites has a tremendous impact on health (prolonged recurrent illness, increased hospital admissions and death, health system (higher cost of treatment and socioeconomics of the region. In view of the evidence of the economic burden of malaria, it has been suggested that second line treatment could be considered at 10% failure instead of 25%. Effective schizonticidal drugs will not only reduce morbidity and mortality but will also reduce transmission. Studies have shown that prevalence of viable (as tested by exflagellation test gametocytes is considerably more after the Chloroquine or Chloroquine + Sulphadoxine-Pyrimethamine treatment compared to Quinine. Unfortunately, the only gametocytocidal drug for Plasmodium falciparum, primaquine, is also loosing its efficacy. 45 mg Primaquine reduces gametocyte prevalence by 50% while a new drug, 75 mg bulaquine or 60 mg primaquine reduces it by 90%. Plasmodium vivax forms 60-70% of malaria cases in India. Relapses which occur in 10-20% of cases adds to the burden. Efficacy, as confirmed by Polymerase Chain Reaction-Single Strand Conformational Polymorphism (PCRSSCP to differentiate relapse and re-infection, of standard dose of primaquine (15 mg/day for 5 days, even 15 mg/day for 14 days for vivax malaria is reducing. Fourteen day treatment is also impractical as compliance is poor. Newer drugs, newer drug delivery systems are thus needed. Slow release formulations with blood levels maintained for one week may be useful. Rationale of giving primaquine in higher doses and different timing need to be considered. The genome of Plasmodium falciparum and

  8. Antimalarial diterpene alkaloids from the seeds of Caesalpinia minax.

    Science.gov (United States)

    Ma, Guoxu; Sun, Zhaocui; Sun, Zhonghao; Yuan, Jingquan; Wei, Hua; Yang, Junshan; Wu, Haifeng; Xu, Xudong

    2014-06-01

    Two new diterpene alkaloids, caesalminines A (1) and B (2), possessing a tetracyclic cassane-type furanoditerpenoid skeleton with γ-lactam ring, were isolated from the seeds of Caesalpinia minax. Their structures were determined by different spectroscopic methods and ECD calculation. The plausible biosynthetic pathway of caesalminines A and B was proposed. The anti-malarial activity of compounds 1 and 2 is presented with IC50 values of 0.42 and 0.79 μM, respectively.

  9. Antimalarial effect of agmatine on Plasmodium berghei K173 strain

    Institute of Scientific and Technical Information of China (English)

    SURui-Bin; WEIXiao-Li; LIUYin; LIJin

    2003-01-01

    AIM: To study the antimalarial effect of agmatine (Agm) on chloroquine-susceptible Plasmodium berghei K173strain (S strain) and the P berghei K173 resistant strain (R strain). METHODS: The antimalarial effects of Agm onP berghei K173 S strain and R strain were evaluated by Peters 4-d suppression test in mice. RESULTS: Agm(12.5-200 mg/kg,ig,daily) decreased the parasitemia for both P berghei K173 S strain (IC50=139 mg/kg) and Rstrain (IC50=126mg/kg) in mice. Subcutaneous injection (sc) of Agm (5-40mg/kg,tid) showed relatively strongerantimalarial effect than intragastric gavage (IC50=30 mg/kg) in P berghei K 173 S strain. Spermidine antagonized theantimalarial effect of Agm for P berghei K173 S strain and R strain. Agm did not reverse the chloroquine resistanceof P berghei K173 S strain, dl-α-Difluoromethylornithine (DFMO, sc) decreased the parasitemia of P BergheiK173 S strain and this effect was antagonized by spermidine. CONCLUSION: Agm has an antimalarial effect andthe mechanism is related to its inhibition of polyamine synthesis.

  10. Anti-Malarial Plants of Jonai, India: an Ethnobotanical Approach

    Directory of Open Access Journals (Sweden)

    Tonlong WANGPAN

    2016-03-01

    Full Text Available North-East India represents a unique ecosystem with treasured medicinal plant wealth closely related with Folk medicines. A large number of plants having medicinal properties and their folk uses have remained confined to the natives of this region. The tribal community of Jonai, Assam was explored to expose the indigenous herbal remedy for malaria. Sixteen antimalarial plants belonging to 13 families were reported. The analysis revealed highest fidelity level (FL value for Ajuga integrifolia (100% followed by Ricinus communis (94%, Alstonia scholaris (88%, Oroxylum indicum (86% and Achyranthes aspera (82%. The percentage of respondent’s knowledge (PRK about anti-malarial plants showed Alstonia scholaris as the most commonly known antimalarial species (53% within this region. Preference ranking (PR unveiled eight species to be very effective against malarial parasite, which includes Allium sativum, Artemisia indica, Azadirachta indica, Carica papaya, Clerodendrum glandulosum, Ocimum tenuiflorum, Oroxylum indicum, Piper longum and Piper nigrum. All medicine preparations are made using water as the medium and are orally administered in the form of crude extract, powder, juice and decoction. Overall analysis suggested Ajuga integrifolia, Achyranthes aspera, Alstonia scholaris, Artemisia indica, Oroxylum indicum and Ricinus communis to be used for the development of novel, economical, effective and ecofriendly herbal formulations for healthcare management.

  11. Review of pyronaridine anti-malarial properties and product characteristics

    Directory of Open Access Journals (Sweden)

    Croft Simon L

    2012-08-01

    Full Text Available Abstract Pyronaridine was synthesized in 1970 at the Institute of Chinese Parasitic Disease and has been used in China for over 30 years for the treatment of malaria. Pyronaridine has high potency against Plasmodium falciparum, including chloroquine-resistant strains. Studies in various animal models have shown pyronaridine to be effective against strains resistant to other anti-malarials, including chloroquine. Resistance to pyronaridine appears to emerge slowly and is further retarded when pyronaridine is used in combination with other anti-malarials, in particular, artesunate. Pyronaridine toxicity is generally less than that of chloroquine, though evidence of embryotoxicity in rodents suggests use with caution in pregnancy. Clinical pharmacokinetic data for pyronaridine indicates an elimination T1/2 of 13.2 and 9.6 days, respectively, in adults and children with acute uncomplicated falciparum and vivax malaria in artemisinin-combination therapy. Clinical data for mono or combined pyronaridine therapy show excellent anti-malarial effects against P. falciparum and studies of combination therapy also show promise against Plasmodium vivax. Pyronaridine has been developed as a fixed dose combination therapy, in a 3:1 ratio, with artesunate for the treatment of acute uncomplicated P. falciparum malaria and blood stage P. vivax malaria with the name of Pyramax® and has received Positive Opinion by European Medicines Agency under the Article 58 procedure.

  12. Antimalarial Activity of Cocos nucifera Husk Fibre: Further Studies

    Directory of Open Access Journals (Sweden)

    J. O. Adebayo

    2013-01-01

    Full Text Available In this study, the antimalarial and toxicity potentials of husk fibre extracts of five Nigerian varieties of Cocos nucifera were evaluated in vitro. The only active extract fraction, West African Tall (WAT ethyl acetate extract fraction, was then evaluated for its phytochemical constituents, antimalarial and toxicity potentials at varying doses (31.25–500 mg/kg body weight using various organ function indices. The results revealed that WAT ethyl acetate extract fraction (WATEAEF contained alkaloids, tannins, and flavonoids and was active against Plasmodium falciparum W2 strain maintained in continuous culture, with a selectivity index of 30.3. The same extract fraction was active in vivo against Plasmodium berghei NK65, causing more than 50% reduction in parasitaemia on days 4 and 6 after inoculation at various doses administered. WATEAEF did not significantly alter (P>0.05 function indices of the liver and cardiovascular system at all doses administered but significantly increased (P<0.05 plasma creatinine concentration at 250 and 500 mg/Kg body weight compared to controls. The results of this study suggest that WATEAEF possesses antimalarial activity and may not adversely affect normal liver function nor predispose subjects to cardiovascular diseases but may impair normal kidney function at higher doses. Further studies are underway to isolate the active principles.

  13. In vitro susceptibility of Plasmodium vivax to antimalarials in Colombia.

    Science.gov (United States)

    Fernández, Diana; Segura, César; Arboleda, Margarita; Garavito, Giovanny; Blair, Silvia; Pabón, Adriana

    2014-11-01

    The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia.

  14. Antimalarial activity of newly synthesized chalcone derivatives in vitro.

    Science.gov (United States)

    Yadav, Neesha; Dixit, Sandeep K; Bhattacharya, Amit; Mishra, Lokesh C; Sharma, Manish; Awasthi, Satish K; Bhasin, Virendra K

    2012-08-01

    Twenty-seven novel chalcone derivatives were synthesized using Claisen-Schmidt condensation and their antimalarial activity against asexual blood stages of Plasmodium falciparum was determined. Antiplasmodial IC(50) (half-maximal inhibitory concentration) activity of a compound against malaria parasites in vitro provides a good first screen for identifying the antimalarial potential of the compound. The most active compound was 1-(4-benzimidazol-1-yl-phenyl)-3-(2, 4-dimethoxy-phenyl)-propen-1-one with IC(50) of 1.1 μg/mL, while that of the natural phytochemical, licochalcone A is 1.43 μg/mL. The presence of methoxy groups at position 2 and 4 in chalcone derivatives appeared to be favorable for antimalarial activity as compared to other methoxy-substituted chalcones. Furthermore, 3, 4, 5-trimethoxy groups on chalcone derivative probably cause steric hindrance in binding to the active site of cysteine protease enzyme, explaining the relative lower inhibitory activity.

  15. Quality of Life in Arthritis Patients Using Nonsteroidal Anti-Inflammatory Drugs

    Directory of Open Access Journals (Sweden)

    Ingela Wiklund

    1999-01-01

    Full Text Available Arthritis is a painful and disabling condition. To suppress the pain and the inflammatory process, patients are often chronic nonsteroidal anti-inflammatory drug (NSAID users. Chronic use of NSAIDs may induce peptic ulcer, dyspeptic problems and heartburn. Therefore, these patients are often provided with treatment to relieve and/or protect against gastrointestinal problems. Rheumatic disorders also affect a range of health-related quality of life domains. In one study, patients with NSAID-associated gastroduodenal lesions complained about lack of energy, sleep disturbances, emotional distress and social isolation in addition to pain and mobility limitations. The degree of distress and dysfunction differed markedly from scores in an unselected population. Clinical trial data suggest that acid-suppressing therapy with omeprazole is superior to therapy with misoprostol and ranitidine in healing gastroduodenal lesions and preventing abdominal pain, heartburn and indigestion symptoms during continued NSAID treatment. Because arthritic patients are severely incapacitated by their condition regarding most aspects of health-related quality of life, it is important to offer a treatment that is effective in healing and preventing NSAID-induced ulcers and gastrointestinal symptoms during continued NSAID treatment without further compromising the patients’ quality of life. Treatment with omeprazole once daily has been shown to be superior to that with ranitidine and misoprostol in this respect.

  16. Smart nanocrystals of artemether: fabrication, characterization, and comparative in vitro and in vivo antimalarial evaluation

    Directory of Open Access Journals (Sweden)

    Shah SMH

    2016-11-01

    Full Text Available Syed Muhammad Hassan Shah,1 Farhat Ullah,2 Shahzeb Khan,2,3 Syed Muhammad Mukarram Shah,4 Marcel de Matas,5 Zahid Hussain,6 Muhammad Usman Minhas,7 Naser M AbdEl-Salam,8 Khaled Hafez Assi,3 Mohammad Isreb3 1Department of Pharmacy, Sarhad University of Science & Information Technology, Peshawar, 2Department of Pharmacy, University of Malakand, Chakdara, Pakistan; 3Institute of Life Sciences Research, School of Pharmacy, University of Bradford, West Yorkshire, 4Department of Pharmacy, University of Swabi, KPK, Pakistan; 5SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK; 6Faculty of Pharmacy, Department of Pharmaceutics, Universiti Teknologi MARA, Selangor, Malaysia; 7Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan; 8Riyadh Community College, King Saud University, Riyadh, Saudi Arabia Abstract: Artemether (ARTM is a very effective antimalarial drug with poor solubility and consequently low bioavailability. Smart nanocrystals of ARTM with particle size of 161±1.5 nm and polydispersity index of 0.172±0.01 were produced in <1 hour using a wet milling technology, Dena® DM-100. The crystallinity of the processed ARTM was confirmed using differential scanning calorimetry and powder X-ray diffraction. The saturation solubility of the ARTM nanocrystals was substantially increased to 900 µg/mL compared to the raw ARTM in water (145.0±2.3 µg/mL and stabilizer solution (300.0±2.0 µg/mL. The physical stability studies conducted for 90 days demonstrated that nanocrystals stored at 2°C–8°C and 25°C were very stable compared to the samples stored at 40°C. The nanocrystals were also shown to be stable when processed at acidic pH (2.0. The solubility and dissolution rate of ARTM nanocrystals were significantly increased (P<0.05 compared to those of its bulk powder form. The results of in vitro studies showed significant antimalarial effect (P<0

  17. Present development concerning antimalarial activity of phospholipid metabolism inhibitors with special reference to in vivo activity

    Directory of Open Access Journals (Sweden)

    Marie L. Ancelin

    1994-01-01

    Full Text Available The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50 against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain. This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50/ED50 but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral

  18. Evaluation of antimalarial resistance marker polymorphism in returned migrant workers in China.

    Science.gov (United States)

    Feng, Jun; Li, Jun; Yan, He; Feng, Xinyu; Xia, Zhigui

    2015-01-01

    Imported malaria has been a great challenge for public health in China due to decreased locally transmitted cases and frequent exchange worldwide. Plasmodium falciparum has been mainly responsible for the increasing impact. Currently, artesunate plus amodiaquine, one of the artemisinin combination therapies recommended by the World Health Organization, has been mainly used against uncomplicated P. falciparum malaria in China. However, drug resistance marker polymorphism in returning migrant workers has not been demonstrated. Here, we have evaluated the prevalence of pfmdr1 and pfcrt polymorphisms, as well as the K13 propeller gene, a molecular marker of artemisinin resistance, in migrant workers returned from Ghana to Shanglin County, Guangxi Province, China, in 2013. A total of 118 blood samples were randomly selected and used for the assay. Mutations of the pfmdr1 gene that covered codons 86, 184, 1034, and 1246 were found in 11 isolates. Mutations at codon N86Y (9.7%) were more frequent than at others, and Y(86)Y(184)S(1034)D(1246) was the most prevalent (63.6%) of the four haplotypes. Mutations of the pfcrt gene that covered codons 74, 75, and 76 were observed in 17 isolates, and M(74)N(75)T(76) was common (70.6%) in three haplotypes. Eight different genotypes of the K13 propeller were first observed in 10 samples in China, 2 synonymous mutations (V487V and A627A) and 6 nonsynonymous mutations. C580Y was the most prevalent (2.7%) in all the samples. The data presented might be helpful for enrichment of molecular surveillance of antimalarial resistance and will be useful for developing and updating antimalarial guidance in China.

  19. The lay user perspective on the quality of pharmaceuticals, drug therapy and pharmacy services--results of focus group discussions

    DEFF Research Database (Denmark)

    Traulsen, Janine Morgall; Almarsdóttir, Anna Birna; Björnsdóttir, Ingunn

    2002-01-01

    : The lay perspective emphasizes a definite split between lay and expert views on the value and quality of pharmaceuticals, drug therapy and pharmacy services, as well as in their assessment of risk. Participants voiced spontaneous criticism of the roles of both physicians and pharmacists in drug therapy......BACKGROUND: This article presents the results of a study on quality of pharmacy services and perceived risk of pharmaceuticals. The results presented here are part of a multi-study evaluation of major changes in drug distribution in Iceland. OBJECTIVES: This sub-study addressed the question: what...... is the lay user perspective on pharmaceuticals and pharmacy services, including their perception of risk? METHODS: To answer this question, seven focus group discussions were conducted with pharmacy customers in different locations in Iceland following new drug distribution legislation in 1996. RESULTS...

  20. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  1. Quality by design case study: an integrated multivariate approach to drug product and process development.

    Science.gov (United States)

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  2. Efficacy and tolerability of four antimalarial combinations in the treatment of uncomplicated Plasmodium falciparum malaria in Senegal

    Directory of Open Access Journals (Sweden)

    Faye Oumar

    2007-06-01

    Full Text Available Abstract Background In view of the high level of chloroquine resistance in many countries, WHO has recommended the use of combination therapy with artemisinin derivatives in the treatment of uncomplicated malaria due to Plasmodium falciparum. Four antimalarial drug combinations, artesunate plus amodiaquine (Arsucam®, artesunate plus mefloquine (Artequin®, artemether plus lumefantrine (Coartem®; four doses and six doses, and amodiaquine plus sulphadoxine-pyrimethamine, were studied in five health districts in Senegal. Methods This is a descriptive, analytical, open, randomized study to evaluate the efficacy and tolerability of these four antimalarial combinations in the treatment of uncomplicated falciparum malaria using the 2002 WHO protocol. Results All drug combinations demonstrated good efficacy. On day 28, all combinations resulted in an excellent clinical and parasitological response rate of 100% after correction for PCR results, except for the four-dose artemether-lumefantrine regimen (96.4%. Follow-up of approximately 10% of each treatment group on day 42 demonstrated an efficacy of 100%. The combinations were well tolerated clinically and biologically. No unexpected side-effect was observed and all side-effects disappeared at the end of treatment. No serious side-effect requiring premature termination of treatment was observed. Conclusion The four combinations are effective and well-tolerated.

  3. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria.

    Science.gov (United States)

    Bankole, A E; Adekunle, A A; Sowemimo, A A; Umebese, C E; Abiodun, O; Gbotosho, G O

    2016-01-01

    The use of plant to meet health-care needs has greatly increased worldwide in the recent times. The search for new plant-derived bioactive agents that can be explored for the treatment of drug-resistant malaria infection is urgently needed. Thus, we evaluated the antimalarial activity of three medicinal plants used in Nigerian folklore for the treatment of malaria infection. A modified Peter's 4-day suppressive test was used to evaluate the antimalarial activity of the plant extracts in a mouse model of chloroquine-resistant Plasmodium berghei ANKA strain. Animals were treated with 250, 500, or 800 mg/kg of aqueous extract. It was observed that of all the three plants studied, Markhamia tomentosa showed the highest chemosuppression of parasites of 73 % followed by Polyalthia longifolia (53 %) at day 4. All the doses tested were well tolerated. Percentage suppression of parasite growth on day 4 post-infection ranged from 1 to 73 % in mice infected with P. berghei and treated with extracts when compared with chloroquine diphosphate, the standard reference drug which had a chemosuppression of 90 %. The percentage survival of mice that received extract ranged from 0 to 60 % (increased as the dose increases to 800 mg/kg). Phytochemical analysis revealed the presence of tannins, saponins, and phenolic compounds in all the three plants tested.

  4. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids.

    Science.gov (United States)

    Amoa Onguéné, Pascal; Ntie-Kang, Fidele; Lifongo, Lydia Likowo; Ndom, Jean Claude; Sippl, Wolfgang; Mbaze, Luc Meva'a

    2013-12-13

    Traditional medicine caters for about 80% of the health care needs of many rural populations around the world, especially in developing countries. In addition, plant-derived compounds have played key roles in drug discovery. Malaria is currently a public health concern in many countries in the world due to factors such as chemotherapy faced by resistance, poor hygienic conditions, poorly managed vector control programmes and no approved vaccines. In this review, an attempt has been made to assess the value of African medicinal plants for drug discovery by discussing the anti-malarial virtue of the derived phytochemicals that have been tested by in vitro and in vivo assays. This survey was focused on pure compounds derived from African flora which have exhibited anti-malarial properties with activities ranging from "very active" to "weakly active". However, only the compounds which showed anti-malarial activities from "very active" to "moderately active" are discussed in this review. The activity of 278 compounds, mainly alkaloids, terpenoids, flavonoids, coumarines, phenolics, polyacetylenes, xanthones, quinones, steroids, and lignans have been discussed. The first part of this review series covers the activity of 171 compounds belonging to the alkaloid and terpenoid classes. Data available in the literature indicated that African flora hold an enormous potential for the development of phytomedicines for malaria.

  5. Drug resistant falciparum malaria and the use of artesunate-based combinations : focus on clinical trials sponsored by TDR

    Directory of Open Access Journals (Sweden)

    Walter R.J. Taylor, Jean Rigal & Piero L. Olliaro

    2003-09-01

    Full Text Available Antimalarial drug resistance has now become a serious global challenge and is the principal reasonfor the decline in antimalarial drug efficacy. Malaria endemic countries need inexpensive and efficaciousdrugs. Preserving the life spans of antimalarial drugs is a key part of the strategy for rollingback malaria. Artemisinin-based combinations offer a new and potentially highly effective way tocounter drug resistance. Clinical trials conducted in African children have attested to the good tolerabilityof oral artesunate when combined with standard antimalarial drugs. The cure rates of thedifferent combinations were generally dependent on the degree of resistance to the companiondrug. They were high for amodiaquine-artesunate, variable for sulfadoxine/pyrimethamine-artesunate,and poor for chloroquine-artesunate.

  6. Assessment of Quality of Sleep and Use of Drugs with Sedating Properties in Adult Patients Hospitalized in Hamadan Ekbatan Hospital

    Directory of Open Access Journals (Sweden)

    F. Zeraati

    2010-01-01

    Full Text Available Introduction & Objective: Hospitalization can significantly disrupt sleeping patterns. considering the prevalence of insomnia and widespread use of benzodiazepines and other hypnotics in hospitalized patients, we conducted this study to assess the quality of sleep and hypnotic drug use in hospitalized adult patients in 2007.Materials & Methods: This descriptive analytical cross-sectional study involved an assessment of sleep quality for patients whose consent had been obtained when admitted to the internal ward of Hamadan Ekbatan hospital. The Pittsburg sleep quality index (PSQI was used to measure the quality of sleep in patients and completed at the time of admission and discharge. Also the relation of factors such as age, sex. Marital status, education and sedating drug use prior to and during hospitalization with sleep quality were assessed. 300 patients entered this study and completed PSQI sleep questionnaires two twice, at the time of admission & discharge. Results: At the time of admission only 36% of patients had good sleep quality (PSQI score <5 while this percent decreased to 18.3% at the time of discharge. Mean global PSQI score was 7.6 at the time of admission versus 9.4 at the time of discharge indicating the patients’ worse sleep quality at the time of discharge (Pv<0.05. 23% of patients received hypnotic drugs while in the hospital with no evidence of preadmission hypnotic use. Benzodiazepines were prescribed for all of them.Conclusion: Quality of sleep at the time of discharge was significantly worse than it at the time of admission and it seems that despite widespread use of sedative drug in the hospital , there are still patients with poor sleep quality in the hospital.

  7. Could a revision of the current guidelines for cancer drug use improve the quality of cancer treatment?

    Directory of Open Access Journals (Sweden)

    Lippert TH

    2014-01-01

    Full Text Available Theodor H Lippert,1 Hans-Jörg Ruoff,1 Manfred Volm2 1Medical Faculty, University of Tübingen, Tübingen, Germany; 2Medical Faculty, University of Heidelberg, Heidelberg, Germany Abstract: Clinical practice guidelines are indispensable for such a variable disease as malignant solid tumors, with the complex possibilities of drug treatment. The current guidelines may be criticized on several points, however. First, there is a lack of information on the outcome of treatment, such as the expected success and failure rates. Treating not only drug responders but also nonresponders, that is, patients with drug resistance, must result in failures. There is no mention of the possibility of excluding the drug nonresponders, identifiable by special laboratory tests and no consideration is given to the different side effects of the recommended drug regimens. Nor are there any instructions concerning tumor cases for which anticancer drug treatment is futile. In such cases, early palliative care may lead to significant improvements in both life quality and life expectancy. Not least, there is no transparency concerning the preparation of the guidelines: persons cannot be identified who could give a statement of conflicts of interest, and responsibility is assumed only by anonymous medical associations. A revision of the current guidelines could considerably improve cancer treatment. Keywords: anticancer drugs, quality of guidelines, critical remarks

  8. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling

    Science.gov (United States)

    Le Bihan, Amélie; Angulo-Barturen, Iñigo; Binkert, Christoph; Boss, Christoph; Brun, Reto; Brunner, Ralf; Buchmann, Stephan; Dechering, Koen J.; Delves, Michael; Ewerling, Sonja; Ferrer, Santiago; Fischli, Christoph; Gamo–Benito, Francisco Javier; Heidmann, Bibia; Jiménez-Díaz, María Belén; Leroy, Didier; Martínez, Maria Santos; Meyer, Solange; Moehrle, Joerg J.; Noviyanti, Rintis; Sanz, Laura María; Sauerwein, Robert W.; Scheurer, Christian; Schleiferboeck, Sarah; Sinden, Robert; Snyder, Christopher; Straimer, Judith; Wirjanata, Grennady; Marfurt, Jutta; Weller, Thomas; Clozel, Martine; Wittlin, Sergio

    2016-01-01

    Background Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. Method and Findings The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3–4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11–16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23–39). The compound’s preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as

  9. A retrospective analysis of the change in anti-malarial treatment policy: Peru

    Directory of Open Access Journals (Sweden)

    Vincent-Mark Arlene

    2009-04-01

    Full Text Available Abstract Background National malaria control programmes must deal with the complex process of changing national malaria treatment guidelines, often without guidance on the process of change. Selecting a replacement drug is only one issue in this process. There is a paucity of literature describing successful malaria treatment policy changes to help guide control programs through this process. Objectives To understand the wider context in which national malaria treatment guidelines were formulated in a specific country (Peru. Methods Using qualitative methods (individual and focus group interviews, stakeholder analysis and a review of documents, a retrospective analysis of the process of change in Peru's anti-malarial treatment policy from the early 1990's to 2003 was completed. Results The decision to change Peru's policies resulted from increasing levels of anti-malarial drug resistance, as well as complaints from providers that the drugs were no longer working. The context of the change occurred in a time in which Peru was changing national governments, which created extreme challenges in moving the change process forward. Peru utilized a number of key strategies successfully to ensure that policy change would occur. This included a having the process directed by a group who shared a common interest in malaria and who had long-established social and professional networks among themselves, b engaging in collaborative teamwork among nationals and between nationals and international collaborators, c respect for and inclusion of district-level staff in all phases of the process, d reliance on high levels of technical and scientific knowledge, e use of standardized protocols to collect data, and f transparency. Conclusion Although not perfectly or fully implemented by 2003, the change in malaria treatment policy in Peru occurred very quickly, as compared to other countries. They identified a problem, collected the data necessary to justify the

  10. Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Directory of Open Access Journals (Sweden)

    Kaludov Nikola

    2011-09-01

    Full Text Available Abstract Background Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds. Methods A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and de novo molecular design. Results Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified in silico and tested in vitro; eight of them showed anti-malarial activity (IC50 ≤ 10 μM, with six being very effective (IC50 ≤ 1 μM, and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a

  11. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries

    Science.gov (United States)

    2011-01-01

    Background Artemisinin-based combination therapy (ACT) is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC), Madagascar, Nigeria, Uganda and Zambia. Methods Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. Results 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets) as compared to first-line quality-assured ACT (< 25%). In the public/not-for-profit sector, first-line quality-assured ACT was available for free in all countries except Benin and the DRC (US$1.29 [Inter Quartile Range (IQR): $1.29-$1.29] and $0.52[IQR: $0.00-$1.29] per adult equivalent dose respectively). In the private sector, first-line quality-assured ACT was 5-24 times more expensive than non-artemisinin therapies. The exception was Madagascar where, due to national social marketing of subsidized ACT, the price of first-line quality-assured ACT ($0.14 [IQR: $0.10, $0.57]) was significantly lower than the most popular treatment (chloroquine, $0.36 [IQR: $0.36, $0.36]). Quality-assured ACT accounted for less than 25% of total anti-malarial volumes; private-sector quality-assured ACT volumes represented less than 6% of the total market share

  12. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design.

    Science.gov (United States)

    Vuddanda, Parameswara Rao; Mishra, Amit; Singh, Sanjay Kumar; Singh, Sanjay

    2015-01-01

    The intention of this study is to achieve higher entrapment efficiency (EE) of berberine chloride (selected hydrophilic drug) using nanoprecipitation technique. The solubility of drug was studied in various pH buffers (1.2-7.2) for selection of aqueous phase and stabilizer. Quality by design (QbD)-based 3(2) factorial design were employed for optimization of formulation variables; drug to polymer ratio (X1) and surfactant concentration (X2) on entrapment efficiency (EE), particle size (PS) and polydispersity index (PDI) of the nanoparticles. The nanoparticles were subjected to solid state analysis, in vitro drug release and stability study. The aqueous phase and stabilizer selected for the formulations were pH 4.5 phthalate buffer and surfactant F-68, respectively. The formulation (F-6) containing drug to polymer ratio (1:3) and stabilizer (F-68) concentration of 50 mM exhibited best EE (82.12%), PS (196.71 nm), PDI (0.153). The various solid state characterizations assured that entrapped drug is amorphous and nanoparticles are fairly spherical in shape. In vitro drug release of the F-6 exhibited sustained release with non-Fickian diffusion and stable at storage condition. This work illustrates that the proper selection of aqueous phase and optimization of formulation variables could be helpful in improving the EE of hydrophilic drugs by nanoprecipitation technique.

  13. An Exploration of Quality of Life and Its Predictors in Patients with Addictive Disorders: Gambling, Alcohol and Drugs

    Science.gov (United States)

    Manning, Victoria; Gomez, Brenda; Guo, Song; Low, Yee Deng; Koh, Puay Kee; Wong, Kim Eng

    2012-01-01

    The study set out to examine Quality of Life (QoL), specifically subjective well being in three different addiction populations (260 alcohol-dependent, 282 drug-dependent, and 132 pathological gambling outpatients) at their first visit to treatment, using the Personal Well being Index (PWI). The mean PWI score for all patients was significantly…

  14. Application of quality by design (QbD) approach to ultrasonic atomization spray coating of drug-eluting stents.

    Science.gov (United States)

    McDermott, Martin; Chatterjee, Sharmista; Hu, Xiaoli; Ash-Shakoor, Ariel; Avery, Reginald; Belyaeva, Anastasiya; Cruz, Celia; Hughes, Minerva; Leadbetter, Joanne; Merkle, Conrad; Moot, Taylor; Parvinian, Sepideh; Patwardhan, Dinesh; Saylor, David; Tang, Nancy; Zhang, Tina

    2015-08-01

    The drug coating process for coated drug-eluting stents (DES) has been identified as a key source of inter- and intra-batch variability in drug elution rates. Quality-by-design (QbD) principles were applied to gain an understanding of the ultrasonic spray coating process of DES. Statistically based design of experiments (DOE) were used to understand the relationship between ultrasonic atomization spray coating parameters and dependent variables such as coating mass ratio, roughness, drug solid state composite microstructure, and elution kinetics. Defect-free DES coatings composed of 70% 85:15 poly(DL-lactide-co-glycolide) and 30% everolimus were fabricated with a constant coating mass. The drug elution profile was characterized by a mathematical model describing biphasic release kinetics. Model coefficients were analyzed as a DOE response. Changes in ultrasonic coating processing conditions resulted in substantial changes in roughness and elution kinetics. Based on the outcome from the DOE study, a design space was defined in terms of the critical coating process parameters resulting in optimum coating roughness and drug elution. This QbD methodology can be useful to enhance the quality of coated DES.

  15. A novel prediction approach for antimalarial activities of Trimethoprim, Pyrimethamine, and Cycloguanil analogues using extremely randomized trees.

    Science.gov (United States)

    Nattee, Cholwich; Khamsemanan, Nirattaya; Lawtrakul, Luckhana; Toochinda, Pisanu; Hannongbua, Supa

    2017-01-01

    Malaria is still one of the most serious diseases in tropical regions. This is due in part to the high resistance against available drugs for the inhibition of parasites, Plasmodium, the cause of the disease. New potent compounds with high clinical utility are urgently needed. In this work, we created a novel model using a regression tree to study structure-activity relationships and predict the inhibition constant, Ki of three different antimalarial analogues (Trimethoprim, Pyrimethamine, and Cycloguanil) based on their molecular descriptors. To the best of our knowledge, this work is the first attempt to study the structure-activity relationships of all three analogues combined. The most relevant descriptors and appropriate parameters of the regression tree are harvested using extremely randomized trees. These descriptors are water accessible surface area, Log of the aqueous solubility, total hydrophobic van der Waals surface area, and molecular refractivity. Out of all possible combinations of these selected parameters and descriptors, the tree with the strongest coefficient of determination is selected to be our prediction model. Predicted Ki values from the proposed model show a strong coefficient of determination, R(2)=0.996, to experimental Ki values. From the structure of the regression tree, compounds with high accessible surface area of all hydrophobic atoms (ASA_H) and low aqueous solubility of inhibitors (Log S) generally possess low Ki values. Our prediction model can also be utilized as a screening test for new antimalarial drug compounds which may reduce the time and expenses for new drug development. New compounds with high predicted Ki should be excluded from further drug development. It is also our inference that a threshold of ASA_H greater than 575.80 and Log S less than or equal to -4.36 is a sufficient condition for a new compound to possess a low Ki.

  16. The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2003-09-01

    Full Text Available Abstract Background The naturally occurring benzoquinone ansamycin compound, geldanamycin (GA, is a specific inhibitor of heat shock protein 90 (Hsp90 and is a potential anticancer agent. Since Plasmodium falciparum has been reported to have an Hsp90 ortholog, we tested the possibility that GA might inhibit it and thereby display antiparasitic activity. Results We provide direct recombinant DNA evidence for the Hsp90 protein of Plasmodium falciparum, the causative agent of fatal malaria. While the mRNA of Hsp90 was mainly expressed in ring and trophozoite stages, the protein was found in all stages, although schizonts contained relatively lower amounts. In vitro the parasitic Hsp90 exhibited an ATP-binding activity that could be specifically inhibited by GA. Plasmodium growth in human erythrocyte culture was strongly inhibited by GA with an IC50 of 20 nM, compared to the IC50 of 15 nM for chloroquine (CQ under identical conditions. When used in combination, the two drugs acted synergistically. GA was equally effective against CQ-sensitive and CQ-resistant strains (3D7 and W2, respectively and on all erythrocytic stages of the parasite. Conclusions Together, these results suggest that an active and essential Hsp90 chaperone cycle exists in Plasmodium and that the ansamycin antibiotics will be an important tool to dissect its role in the parasite. Additionally, the favorable pharmacology of GA, reported in human trials, makes it a promising antimalarial drug.

  17. Quality assessment of structure and language elements of written responses given by seven Scandinavian drug information centres

    DEFF Research Database (Denmark)

    Reppe, Linda Amundstuen; Spigset, Olav; Kampmann, Jens Peter

    2017-01-01

    for which queries were part of the study. The responses were assessed qualitatively by six clinical pharmacologists (internal experts) and six general practitioners (GPs, external experts). In addition, linguistic aspects of the responses were evaluated by a plain language expert. RESULTS: The quality......PURPOSE: The aim of this study was to identify structure and language elements affecting the quality of responses from Scandinavian drug information centres (DICs). METHODS: Six different fictitious drug-related queries were sent to each of seven Scandinavian DICs. The centres were blinded...... of responses was generally judged as satisfactory to good. Presenting specific advice and conclusions were considered to improve the quality of the responses. However, small nuances in language formulations could affect the individual judgments of the experts, e.g. on whether or not advice was given. Some...

  18. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.

    Science.gov (United States)

    Haynes, Richard K; Chan, Wing-Chi; Wong, Ho-Ning; Li, Ka-Yan; Wu, Wai-Keung; Fan, Kit-Man; Sung, Herman H Y; Williams, Ian D; Prosperi, Davide; Melato, Sergio; Coghi, Paolo; Monti, Diego

    2010-08-02

    The antimalarial drug methylene blue (MB) affects the redox behaviour of parasite flavin-dependent disulfide reductases such as glutathione reductase (GR) that control oxidative stress in the malaria parasite. The reduced flavin adenine dinucleotide cofactor FADH(2) initiates reduction to leucomethylene blue (LMB), which is oxidised by oxygen to generate reactive oxygen species (ROS) and MB. MB then acts as a subversive substrate for NADPH normally required to regenerate FADH(2) for enzyme function. The synergism between MB and the peroxidic antimalarial artemisinin derivative artesunate suggests that artemisinins have a complementary mode of action. We find that artemisinins are transformed by LMB generated from MB and ascorbic acid (AA) or N-benzyldihydronicotinamide (BNAH) in situ in aqueous buffer at physiological pH into single electron transfer (SET) rearrangement products or two-electron reduction products, the latter of which dominates with BNAH. Neither AA nor BNAH alone affects the artemisinins. The AA-MB SET reactions are enhanced under aerobic conditions, and the major products obtained here are structurally closely related to one such product already reported to form in an intracellular medium. A ketyl arising via SET with the artemisinin is invoked to explain their formation. Dihydroflavins generated from riboflavin (RF) and FAD by pretreatment with sodium dithionite are rapidly oxidised by artemisinin to the parent flavins. When catalytic amounts of RF, FAD, and other flavins are reduced in situ by excess BNAH or NAD(P)H in the presence of the artemisinins in the aqueous buffer, they are rapidly oxidised to the parent flavins with concomitant formation of two-electron reduction products from the artemisinins; regeneration of the reduced flavin by excess reductant maintains a catalytic cycle until the artemisinin is consumed. In preliminary experiments, we show that NADPH consumption in yeast GR with redox behaviour similar to that of parasite GR is

  19. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Wanna Chaijaroenkul; Artitiya Thiengsusuk; Kanchana Rungsihirunrat; Stephen Andrew Ward; Kesara Na-Bangchang

    2014-01-01

    Objective: To investigate possible protein targets for antimalarial activity of Garcinia mangostana Linn. (G. mangostana) (pericarp) in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry (LC/MS/MS). Methods: 3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G.mangostana Linn. (pericarp) at the concentrations of 12µg/mL (IC50 level: concentration that inhibits parasite growth by 50%) and 30 µg/mL (IC90 level: concentration that inhibits parasite growth by 90%) for 12 h. Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.Results:At the IC50 concentration, about 82% of the expressed parasite proteins were matched with the control (non-exposed), while at the IC90 concentration, only 15% matched proteins were found. The selected protein spots from parasite exposed to the plant extract at the concentration of 12 µg/mL were identified as enzymes that play role in glycolysis pathway, i.e., phosphoglycerate mutase putative, L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase, and fructose-bisphosphate aldolase/phosphoglycerate kinase. The proteosome was found in parasite exposed to 30 µg/mL of the extract.Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G. mangostana Linn. (pericarp).

  20. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Wanna; Chaijaroenkul; Artitiya; Thiengsusuk; Kanchana; Rungsihirunrat; Stephen; Andrew; Ward; Kesara; Na-Bangchang

    2014-01-01

    Objective:To investigate possible protein targets for antimalarial activity of Garcina mangostana Linn.(G.mangostana)(pericarp)in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry(LC/MS/MS).Methods:3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G.mangostana Linn.(pericarp)at the concentrations of 12μg/mL(1C50level:concentration that inhibits parasite growth by 50%)and 30μg/mL(1C90level:concentration that inhibits parasite growth by 90%)for 12 h.Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.Results:At the IC50concentration,about 82%of the expressed parasite proteins were matched with the control(non-exposed),while at the IC90concentration,only 15%matched proteins were found.The selected protein spots from parasite exposed to the plant extract at the concentration of 12μg/mL were identified as eneymes that play role in glycolysis pathway,i.e.,phosphoglyeerate mutase putative,L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase,and fruetose-bisphosphate aldolase/phosphoglyeerate kinase.The proteosome was found in parasite exposed to 30μg/mL of the extract.Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G.mangostana Linn.(pericarp).

  1. Febrifugine derivative antimalarial activity: quantum mechanical predictors Descritores da atividade antimalarial de derivados de febrifugina obtidos via mecânica qüântica

    Directory of Open Access Journals (Sweden)

    Pedro Alves da Silva Autreto

    2008-02-01

    Full Text Available Plasmodium falciparum resistant strain development has encouraged the search for new antimalarial drugs. Febrifugine is a natural substance with high activity against P. falciparum presenting strong emetic property and liver toxicity, which prevent it from being used as a clinical drug. The search for analogues that could have a better clinical performance is a current topic. We aim to investigate the theoretical electronic structure by means of febrifugine derivative family semi-empirical molecular orbital calculations, seeking the electronic indexes that could help the design of new efficient derivatives. The theoretical results show there is a clustering in well-defined ranges of several electronic indexes of the most selective molecules. The model proposed for achieving high selectivity was tested with success.O desenvolvimento de linhagens resistentes de Plasmodium falciparum tem encorajado a busca por novas drogas antimalariais. A febrifugina é uma substância natural com alta atividade contra o P. falciparum que apresenta propriedade emética e toxicidade para o fígado tal que não permitem o seu uso clínico. A busca por análogos que possam ter uma performance clínica melhor é um tema de pesquisa atual. Nosso objetivo é investigar a estrutura eletrônica teórica de uma família de derivados da febrifugina empregando cálculos semi-empíricos de orbitais moleculares, procurando por índices eletrônicos que possam ajudar a modelar novos derivados mais eficientes. Os resultados teóricos mostram que para as moléculas mais seletivas existe um agrupamento dos valores de determinados índices em intervalos bem definidos. O modelo proposto para se obter alta seletividade foi testado com sucesso.

  2. The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death.

    Science.gov (United States)

    Qiao, Shuxi; Tao, Shasha; Rojo de la Vega, Montserrat; Park, Sophia L; Vonderfecht, Amanda A; Jacobs, Suesan L; Zhang, Donna D; Wondrak, Georg T

    2013-12-01

    Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.

  3. 42 CFR 423.153 - Drug utilization management, quality assurance, and medication therapy management programs (MTMPs).

    Science.gov (United States)

    2010-10-01

    ... minimum standards for pharmacy practice as established by the States. (2) Concurrent drug utilization... dosage or duration of drug therapy. (vi) Drug-allergy contraindications. (vii) Clinical abuse/misuse. (3... by CMS. (5) Considerations in pharmacy fees. An applicant to become a Part D sponsor must—...

  4. Longitudinal Changes in Drug Use Severity and Physical Health-Related Quality of Life among Untreated Stimulant Users

    OpenAIRE

    BORDERS, TYRONE F.; Booth, Brenda M.; Falck, Russel S.; Leukefeld, Carl; Wang, Jichuan; Carlson, Robert G.

    2009-01-01

    The primary objective of this study was to investigate whether drug use severity is associated with physical health-related quality of life (HRQL) over time. Data are from a longitudinal, multi-state, natural history community study of users of cocaine and/or methamphetamine who were interviewed at 6-month intervals over 2 years with a 79% follow-up participation rate. Physical HRQL was assessed with the physical component summary (PCS) of the SF-8™ Health Survey and drug, alcohol, and psychi...

  5. Accessibility, availability and affordability of anti-malarials in a rural district in Kenya after implementation of a national subsidy scheme

    Directory of Open Access Journals (Sweden)

    Simiyu Chrispinus

    2011-10-01

    Full Text Available Abstract Background Poor access to prompt and effective treatment for malaria contributes to high mortality and severe morbidity. In Kenya, it is estimated that only 12% of children receive anti-malarials for their fever within 24 hours. The first point of care for many fevers is a local medicine retailer, such as a pharmacy or chemist. The role of the medicine retailer as an important distribution point for malaria medicines has been recognized and several different strategies have been used to improve the services that these retailers provide. Despite these efforts, many mothers still purchase ineffective drugs because they are less expensive than effective artemisinin combination therapy (ACT. One strategy that is being piloted in several countries is an international subsidy targeted at anti-malarials supplied through the retail sector. The goal of this strategy is to make ACT as affordable as ineffective alternatives. The programme, called the Affordable Medicines Facility - malaria was rolled out in Kenya in August 2010. Methods In December 2010, the affordability and accessibility of malaria medicines in a rural district in Kenya were evaluated using a complete census of all public and private facilities, chemists, pharmacists, and other malaria medicine retailers within the Webuye Demographic Surveillance Area. Availability, types, and prices of anti-malarials were assessed. There are 13 public or mission facilities and 97 medicine retailers (registered and unregistered. Results The average distance from a home to the nearest public health facility is 2 km, but the average distance to the nearest medicine retailer is half that. Quinine is the most frequently stocked anti-malarial (61% of retailers. More medicine retailers stocked sulphadoxine-pyramethamine (SP; 57% than ACT (44%. Eleven percent of retailers stocked AMFm subsidized artemether-lumefantrine (AL. No retailers had chloroquine in stock and only five were selling artemisinin

  6. Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods.

    Science.gov (United States)

    Graziose, Rocky; Lila, Mary Ann; Raskin, Ilya

    2010-03-01

    Traditional Chinese Medicines (TCM) are rapidly gaining attention in the West as sources of new drugs, dietary supplements and functional foods. However, lack of consistent manufacturing practices and quality standards, fear of adulteration, and perceived deficiencies in scientific validation of efficacy and safety impede worldwide acceptance of TCM. In addition, Western pharmaceutical industries and regulatory agencies are partial toward single ingredient drugs based on synthetic molecules, and skeptical of natural product mixtures. This review concentrates on three examples of TCM-derived pharmaceuticals and functional foods that have, despite these usual obstacles, risen to wide acceptance in the West based on their remarkable performance in recent scientific investigations. They are: Sweet wormwood (Artemisia annua), the source of artemisinin, which is the currently preferred single compound anti-malarial drug widely used in combination therapies and recently approved by US FDA; Thunder god vine (Tripterygium wilfordii) which is being developed as a botanical drug for rheumatoid arthritis; and green tea (Camellia sinensis) which is used as a functional beverage and a component of dietary supplements.

  7. Quality Evaluation of Ayurvedic Crude Drug Daruharidra, Its Allied Species, and Commercial Samples from Herbal Drug Markets of India

    Directory of Open Access Journals (Sweden)

    Sharad Srivastava

    2013-01-01

    Full Text Available Berberis aristata known as “Daruharidra” in Ayurveda is a versatile medicinal plant used singly or in combination with other medicinal plants for treating a variety of ailments like jaundice, enlargement of spleen, leprosy, rheumatism, fever, morning/evening sickness, snakebite, and so forth. A major bioactive marker of this genus is an alkaloid berberine, which is known for its activity against cholera, acute diarrhea, amoebiasis, and latent malaria and for the treatment of oriental sore caused by Leishmania tropica. Although the roots of B. aristata are considered as the official drug (Ayurvedic Pharmacopoeia of India, the study revealed that different species of Berberis, namely. B. asiatica, B. chitria, and B. lycium are also used under the name of Daruharidra in different parts of the country. Detailed physicochemical and phytochemical studies of subjects like total ash, acid insoluble ash, tannins, and total alkaloids were calculated from the shade dried powdered material according to the recommended procedures. Further, heavy metal studies and quantitative estimation of berberine through HPTLC have also been performed as per ICH guidelines. A detailed study of four Berberis species, namely B. aristata, B. asiatica, B. chitria, and B. lycium, which are implicated as Daruharidra and collected from wild and ten commercial samples procured from various important drug markets in India has been carried out, which may be useful to pharmaceutical industries for the authentication of the commercial samples and exploring the possibilities of using other species as a substitute of B. aristata.

  8. Alkoxide coordination of iron(III) protoporphyrin IX by antimalarial quinoline methanols: a key interaction observed in the solid-state and solution.

    Science.gov (United States)

    Gildenhuys, Johandie; Sammy, Chandre J; Müller, Ronel; Streltsov, Victor A; le Roex, Tanya; Kuter, David; de Villiers, Katherine A

    2015-10-14

    The quinoline methanol antimalarial drug mefloquine is a structural analogue of the Cinchona alkaloids, quinine and quinidine. We have elucidated the single crystal X-ray diffraction structure of the complexes formed between racemic erythro mefloquine and ferriprotoporphyrin IX (Fe(iii)PPIX) and show that alkoxide coordination is a key interaction in the solid-state. Mass spectrometry confirms the existence of coordination complexes of quinine, quinidine and mefloquine to Fe(iii)PPIX in acetonitrile. The length of the iron(iii)-O bond in the quinine and quinidine complexes as determined by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy unequivocally confirms that coordination of the quinoline methanol compounds to Fe(iii)PPIX occurs in non-aqueous aprotic solution via their benzylic alkoxide functional group. UV-visible spectrophotometric titrations of the low-spin bis-pyridyl-Fe(iii)PPIX complex with each of the quinoline methanol compounds results in the displacement of a single pyridine molecule and subsequent formation of a six-coordinate pyridine-Fe(iii)PPIX-drug complex. We propose that formation of the drug-Fe(iii)PPIX coordination complexes is favoured in a non-aqueous environment, such as that found in lipid bodies or membranes in the malaria parasite, and that their existence may contribute to the mechanism of haemozoin inhibition or other toxicity effects that lead ultimately to parasite death. In either case, coordination is a key interaction to be considered in the design of novel antimalarial drug candidates.

  9. Identification of Selective Inhibitors of the Plasmodium falciparum Hexose Transporter PfHT by Screening Focused Libraries of Anti-Malarial Compounds.

    Directory of Open Access Journals (Sweden)

    Diana Ortiz

    Full Text Available Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose transporter PfHT, which mediates uptake of glucose, has thus been recognized as a promising drug target. This transporter is highly divergent from mammalian hexose transporters, and it appears to be a permease that is essential for parasite viability in intra-erythrocytic, mosquito, and liver stages of the parasite life cycle. An assay was developed that is appropriate for high throughput screening against PfHT based upon heterologous expression of PfHT in Leishmania mexicana parasites that are null mutants for their endogenous hexose transporters. Screening of two focused libraries of antimalarial compounds identified two such compounds that are high potency selective inhibitors of PfHT compared to human GLUT1. Additionally, 7 other compounds were identified that are lower potency and lower specificity PfHT inhibitors but might nonetheless serve as starting points for identification of analogs with more selective properties. These results further support the potential of PfHT as a novel drug target.

  10. Application of a colorimetric technique in quality control for printed pediatric orodispersible drug delivery systems containing propranolol hydrochloride

    DEFF Research Database (Denmark)

    Vakili, Hossein; Nyman, Johan O; Genina, Natalja

    2016-01-01

    The feasibility of a colorimetric technique was investigated in CIELAB color space as an analytical quality control method for content uniformity of printed orodispersible pediatric delivery systems. Inkjet printing was utilized to fabricate orodispersibe film formulations containing propranolol...... analyses were conducted to study the effect of printing on the surface morphology and topography of the substrates. Differential scanning calorimetry and attenuated total reflectance infrared spectroscopy were used to study the solid state properties and possible interactions between the drug...

  11. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    Directory of Open Access Journals (Sweden)

    Laurent Calcul

    2013-12-01

    Full Text Available We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18 were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14, which was found to display the most favorable bioactivity profile.

  12. Triterpenes from Minquartia guianensis (Olacaceae) and in vitro antimalarial activity

    Energy Technology Data Exchange (ETDEWEB)

    Cursino, Lorena Mayara de Carvalho; Nunez, Cecilia Veronica [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Lab. de Bioprospeccao e Biotecnologia; Paula, Renata Cristina de; Nascimento, Maria Fernanda Alves do [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos; Santos, Pierre Alexandre dos, E-mail: cecilia@inpa.gov.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Fac. de Ciencias Farmaceuticas

    2012-07-01

    Minquartia guianensis, popularly known as acariquara, was phytochemically investigated. The following triterpenes were isolated from the dichloromethane extract of leaves: lupen-3-one (1), taraxer-3-one (2) and oleanolic acid (3). The dichloromethane extract of branches yielded the triterpene 3{beta}-methoxy-lup-20(29)-ene (4). The chemical structures were characterized by NMR data. Plant extracts, substance 3, squalene (5) and taraxerol (6), (5 and 6 previously isolated), were evaluated by in vitro assay against chloroquine resistant Plasmodium falciparum. The dichloromethane extract of leaves and the three triterpenes assayed have shown partial activity. Thus, these results demonstrated that new potential antimalarial natural products can be found even in partially active extracts. (author)

  13. Characterization of counterfeit artesunate antimalarial tablets from southeast Asia.

    Science.gov (United States)

    Hall, Krystyn Alter; Newton, Paul N; Green, Michael D; De Veij, Marleen; Vandenabeele, Peter; Pizzanelli, David; Mayxay, Mayfong; Dondorp, Arjen; Fernandez, Facundo M

    2006-11-01

    In southeast Asia, the widespread high prevalence of counterfeits tablets of the vital antimalarial artesunate is of great public health concern. To assess the seriousness of this problem, we quantified the amount of active ingredient present in artesunate tablets by liquid chromatography coupled to mass spectrometry. This method, in conjunction with analysis of the packaging, classified tablets as genuine, substandard, or fake and validated results of the colorimetric Fast Red TR test. Eight (35%) of 23 fake artesunate samples contained the wrong active ingredients, which were identified as different erythromycins and paracetamol. Raman spectroscopy identified calcium carbonate as an excipient in 9 (39%) of 23 fake samples. Multivariate unsupervised pattern recognition results indicated two major clusters of artesunate counterfeits, those with counterfeit foil stickers and containing calcium carbonate, erythromycin, and paracetamol, and those with counterfeit holograms and containing starch but without evidence of erythromycin or paracetamol.

  14. Short review on Quality by design: A new Era of Pharmaceutical drug development

    Directory of Open Access Journals (Sweden)

    Gupta Anuj

    2012-09-01

    Full Text Available The purpose of present article is to discuss the concept of pharmaceutical Quality by Design (QbD and describe how it can be help to ensure pharmaceutical quality. Quality by design is an essential part of the modern approach to pharmaceutical quality. The elements of quality by design are examined and a consistent nomenclature for quality by design, critical quality attribute, critical process parameter, critical material attribute, and control strategy is proposed. The use of QbD was contrasted with the evaluation of product quality by testing alone. The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include defining target product quality profile, designing product and manufacturing processes, identifying critical quality attributes, process parameters, and sources of variability & controlling manufacturing processes to produce consistent quality over time. Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables.

  15. Anti-malarial efficacy of pyronaridine and artesunate in combination in vitro and in vivo.

    Science.gov (United States)

    Vivas, Livia; Rattray, Lauren; Stewart, Lindsay; Bongard, Emily; Robinson, Brian L; Peters, Wallace; Croft, Simon L

    2008-03-01

    Pyronaridine is a Mannich base anti-malarial with demonstrated efficacy against drug resistant Plasmodium falciparum, P. vivax, P. ovale and P. malariae. However, resistance to pyronaridine can develop quickly when it is used alone but can be considerably delayed when it is administered with artesunate in rodent malaria models. The aim of this study was to evaluate the efficacy of pyronaridine in combination with artesunate against P. falciparum in vitro and in rodent malaria models in vivo to support its clinical application. Pyronaridine showed consistently high levels of in vitro activity against a panel of six P. falciparum drug-sensitive and resistant strains (Geometric Mean IC50=2.24 nM, 95% CI=1.20-3.27). In vitro interactions between pyronaridine and artesunate showed a slight antagonistic trend, but in vivo compared to pyronaridine and artesunate administered alone, the 3:1 ratio of the combination, reduced the ED90 of artesunate by approximately 15.6-fold in a pyronaridine-resistant P. berghei line and by approximately 200-fold in an artesunate-resistant line of P. berghei. Complete cure rates were achieved with doses of the combination above or equal to 8 mg/kg per day against P. chabaudi AS. These results indicate that the combination had an enhanced effect over monotherapy and lower daily doses of artesunate could be used to obtain a curative effect. The data suggest that the combination of pyronaridine and artesunate should have potential in areas of multi-drug resistant malaria.

  16. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    Directory of Open Access Journals (Sweden)

    Ghosh A

    2014-11-01

    Full Text Available Aparajita Ghosh,1 Tanushree Banerjee,2 Suman Bhandary,1 Avadhesha Surolia31Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; 2Department of Biotechnology, University of Pune, Pune, India; 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore, IndiaAim: The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods: Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results: The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 µM was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 µM. Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion: Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria

  17. Evaluation Management of Drugs and Relations with Quality of Outpatient Pharmacy Services in One of Hospital Pontianak City

    Directory of Open Access Journals (Sweden)

    Enggy Erwansani

    2016-04-01

    Full Text Available Nowadays government policy which embodies the National Social Security System (SJSN where the presence of this system that every Indonesian people entitled to social security to be able to meet the basic needs of living. This study aims to describe the pharmaceutical drug outpatient management Hospital X Pontianak City and analyze the relationship management with the quality of pharmaceutical care medicine outpatient Hospital X Pontianak. This medication management including planning, organizing, directing, and monitoring. This study uses a quantitative approach which is an observational analytic research using cross sectional study with a sample of outpatient pharmacy customer research in Hospital X Pontianak. Collecting data using questionnaires from 100 customers outpatient with consecutive sampling method. The results using Pearson Correlation analysis showed the drug management relationship with the quality of outpatient pharmacy services which means the value of aspects planning (r=0.626; p<0,001, organizing (r=0.409; p<0,001, directing (r=0.359; p<0,001, and controlling (r=0.426; p<0,001 with R2 multiple 66.80%. The description of pharmaceutical drug management in outpatient Hospital X produce an average value 96.90% so as to be in very good category, there by proving the existence of a strong relationship between the four functions of management of the quality of pharmaceutical care medicine outpatient Hospital X.

  18. 从药品质量公告数据的分析看如何监管药品质量风险%How to Administrate the Risk of Drug Quality Based on Drug Quality Announcement

    Institute of Scientific and Technical Information of China (English)

    王玉伟; 杨莉; 吉垠霖; 陈玄音; 都恩环; 耿冬梅

    2016-01-01

    OBJECTIVE:To explore drug quality dynamic evaluation mechanism based on analysis of drug quality announce-ment data. METHODS:The sorts and types of drugs,places of origin,quantity of production enterprises and frequency distribu-tion of being mentioned were analyzed on the basis of drug quality announcement issued by CFDA and provincial administration in 2013. RESULTS & CONCLUSIONS:Frequency of TCM being mentioned (0.75%) was higher than that of chemical drug (0.30%). Among drugs mentioned more than 10 times,the most chemical drugs were injection (70%) and the most TCM were tablet(66.7%). Among all types,drug types produced by more than 100 enterprises accounted for 62.5%,and those produced by more than 50 enterprises accounted for 93.75%,which indicated the frequency of problems was in relatively direct proportion to the quantity of drug manufacturing enterprises. Top 10 provinces in the list of the number of drug quality announcements showed different characteristics of problem type distribution. In compassion,the quality problems of TCM in Jilin,Guangxi,Mongolia,Si-chuan were prominent,and reference number proportion of involved TCM were 85%,80%,97% and 69%,respectively;the quality problems of chemical drugs in Henan,Shanxi,Jiangsu,Guangdong,Anhui,Shandong should be paid attention,and refer-ence number proportion of involved chemical drugs were 62%,61%,95%,57%,86% and 65%,respectively. It is suggested that the government should carry out the dynamic risk assessment system based on data of drug quality announcement,and strength-en standard management of data collection of local drug quality announcement.%目的:探索以药品质量公告数据分析为基础的药品质量风险动态评估机制。方法:在对国家食品药品监督管理总局和各省药品监督管理部门发布的2013年药品质量公告数据整理的基础上,分析其中涉及的药品品类、品种、产地、生产企业数量和上榜频次分布情况。结果与结

  19. Drug Susceptibility and Genetic Evaluation of Plasmodium falciparum Isolates Obtained in Four Distinct Geographical Regions of Kenya

    OpenAIRE

    Mbaisi, Abigael; Liyala, Pamela; Eyase, Fredrick; Achilla, Rachel; Akala, Hosea; Wangui, Julia; Mwangi, Josphat; Osuna, Finnley; Alam, Uzma; Smoak, Bonnie L.; Davis, Jon M.; Kyle, Dennis E.; Coldren, Rodney L; Mason, Carl; Waters, Norman C.

    2004-01-01

    The drug resistance profiles of Plasmodium falciparum isolated from four regions in Kenya were analyzed for drug resistance profiles. We observed variability in resistance to a broad range of antimalarial drugs across Kenya as determined from in vitro drug susceptibility screening and genotyping analysis.

  20. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    Science.gov (United States)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  1. Assessment of Antimalarial Activity against Plasmodium falciparum and Phytochemical Screening of Some Yemeni Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Mohammed A. Alshawsh

    2009-01-01

    Full Text Available Developing countries, where malaria is one of the most prevalent diseases, still rely on traditional medicine as a source for the treatment of this disease. In the present study, six selected plants (Acalypha fruticosa, Azadirachta indica, Cissus rotundifolia, Echium rauwalfii, Dendrosicyos socotrana and Boswellia elongata commonly used in Yemen by traditional healers for the treatment of malaria as well as other diseases, were collected from different localities of Yemen, dried and extracted with methanol and water successfully. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates of Plasmodium falciparum. The selectivity parameters to evaluate the efficacy of these medicinal plants were measured by in vitro micro test (Mark III according to World Health Organization (WHO 1996 & WHO 2001 protocols of antimalarial drug tests. Among the investigated 12 extracts, three were found to have significant antiplasmodial activity with IC50 values less than 4 µg/ml, namely the water extracts of A. fruticosa, A. indica and D. socotrana. Six extracts showed moderate activity with IC50 values ranging from 10 to 30 µg/ml and three appeared to be inactive with IC50 values more than 30 µg/ml. In addition, preliminary phytochemical screening of the methanolic and aqueous extracts indicated the presence of saponins, tannins, flavonoids, terpenoids, polysaccharides and peptides.

  2. Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil

    Science.gov (United States)

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  3. Influence Service Quality and Customer Satisfaction towards Drug Purchase Intention in Anggrek Outpatient Pharmacy Depo at Hasan Sadikin Hospital

    Directory of Open Access Journals (Sweden)

    Pratiwi

    2016-04-01

    Full Text Available The quality of service is an evaluation which focused on customer’s awareness about a structural construction of a service or product that involves 5 main aspects which are tangibility, empathy, responsiveness, reliability and assurance. Based on monthly reports of pharmacy installation only about 30% of patients buy drugs in the Anggrek out patient depo out off patients visiting Anggrek out patient specialist clinic in Dr. Hasan Sadikin Hospital. The aim of this study is to determine the effect of service quality and customer satisfaction to purchase intention in the Anggrek out patient depo Hasan Sadikin hospital at Bandung. The method used in this study is analytical survey with cross sectional design. The samples used were 200 patients, consist of 104 customers who have visited more than one times and 96 first visit costumer to this clinic. Data was collected using a questionnaire and analyzed using Smart PLS V 2.0 software. The results of this study showed that the service quality with tangible dimensions, reliability, responsiveness, assurance, and empathy are affecting the customer satisfaction with a score of 12.755 t-count (greater than t-table 1.983 and a positive value of the original sample of 0.800. Customer satisfaction affecting the customer purchase intentions with t-count is greater than t-table values of 5.012 and 0.726 of the original positive sample. While the service quality does not directly influence customer purchase intention with the t-test is smaller than t-table is 1.455 and the negative of the original sample -0.287. Some of service quality influence customers that causes not purchasing drugs from the out patient depo there are effect of unavailability of counseling, long waiting time of service, the need for special counseling room, a spacious waiting room, and the completeness of drug availability.

  4. Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein: towards a global multi-step design space.

    Science.gov (United States)

    Eon-duval, Alex; Valax, Pascal; Solacroup, Thomas; Broly, Hervé; Gleixner, Ralf; Strat, Claire L E; Sutter, James

    2012-10-01

    The article describes how Quality by Design principles can be applied to the drug substance manufacturing process of an Fc fusion protein. First, the quality attributes of the product were evaluated for their potential impact on safety and efficacy using risk management tools. Similarly, process parameters that have a potential impact on critical quality attributes (CQAs) were also identified through a risk assessment. Critical process parameters were then evaluated for their impact on CQAs, individually and in interaction with each other, using multivariate design of experiment techniques during the process characterisation phase. The global multi-step Design Space, defining operational limits for the entire drug substance manufacturing process so as to ensure that the drug substance quality targets are met, was devised using predictive statistical models developed during the characterisation study. The validity of the global multi-step Design Space was then confirmed by performing the entire process, from cell bank thawing to final drug substance, at its limits during the robustness study: the quality of the final drug substance produced under different conditions was verified against predefined targets. An adaptive strategy was devised whereby the Design Space can be adjusted to the quality of the input material to ensure reliable drug substance quality. Finally, all the data obtained during the process described above, together with data generated during additional validation studies as well as manufacturing data, were used to define the control strategy for the drug substance manufacturing process using a risk assessment methodology.

  5. Quality check of spontaneous adverse drug reaction reporting forms of different countries.

    Science.gov (United States)

    Bandekar, M S; Anwikar, S R; Kshirsagar, N A

    2010-11-01

    Adverse drug reactions (ADRs) are considered as one of the leading causes of death among hospitalized patients. Thus reporting of adverse drug reactions become an important phenomenon. Spontaneous adverse drug reaction reporting form is an essential component and a major tool of the pharmacovigilance system of any country. This form is a tool to collect information of ADRs which helps in establishing the causal relationship between the suspected drug and the reaction. As different countries have different forms, our aim was to study, analyze the suspected adverse drug reaction reporting form of different countries, and assess if these forms can capture all the data regarding the adverse drug reaction. For this analysis we identified 18 points which are essential to make a good adverse drug reaction report, enabling proper causality assessment of adverse reaction to generate a safety signal. Adverse drug reaction reporting forms of 10 different countries were collected from the internet and compared for 18 points like patient information, information about dechallenge-rechallenge, adequacy of space and columns to capture necessary information required for its causality assessment, etc. Of the ADR forms that we analyzed, Malaysia was the highest scorer with 16 out of 18 points. This study reveals that there is a need to harmonize the ADR reporting forms of all the countries because there is a lot of discrepancy in data captured by the existing ADR reporting forms as the design of these forms is different for different countries. These incomplete data obtained result in inappropriate causality assessment.

  6. Purely in silico BCS classification: science based quality standards for the world's drugs.

    Science.gov (United States)

    Dahan, Arik; Wolk, Omri; Kim, Young Hoon; Ramachandran, Chandrasekharan; Crippen, Gordon M; Takagi, Toshihide; Bermejo, Marival; Amidon, Gordon L

    2013-11-04

    BCS classification is a vital tool in the development of both generic and innovative drug products. The purpose of this work was to provisionally classify the world's top selling oral drugs according to the BCS, using in silico methods. Three different in silico methods were examined: the well-established group contribution (CLogP) and atom contribution (ALogP) methods, and a new method based solely on the molecular formula and element contribution (KLogP). Metoprolol was used as the benchmark for the low/high permeability class boundary. Solubility was estimated in silico using a thermodynamic equation that relies on the partition coefficient and melting point. The validity of each method was affirmed by comparison to reference data and literature. We then used each method to provisionally classify the orally administered, IR drug products found in the WHO Model list of Essential Medicines, and the top-selling oral drug products in the United States (US), Great Britain (GB), Spain (ES), Israel (IL), Japan (JP), and South Korea (KR). A combined list of 363 drugs was compiled from the various lists, and 257 drugs were classified using the different in silico permeability methods and literature solubility data, as well as BDDCS classification. Lastly, we calculated the solubility values for 185 drugs from the combined set using in silico approach. Permeability classification with the different in silico methods was correct for 69-72.4% of the 29 reference drugs with known human jejunal permeability, and for 84.6-92.9% of the 14 FDA reference drugs in the set. The correlations (r(2)) between experimental log P values of 154 drugs and their CLogP, ALogP and KLogP were 0.97, 0.82 and 0.71, respectively. The different in silico permeability methods produced comparable results: 30-34% of the US, GB, ES and IL top selling drugs were class 1, 27-36.4% were class 2, 22-25.5% were class 3, and 5.46-14% were class 4 drugs, while ∼8% could not be classified. The WHO list

  7. Abandoning presumptive antimalarial treatment for febrile children aged less than five years--a case of running before we can walk?

    Directory of Open Access Journals (Sweden)

    Mike English

    2009-01-01

    Full Text Available BACKGROUND TO THE DEBATE: Current guidelines recommend that all fever episodes in African children be treated presumptively with antimalarial drugs. But declining malarial transmission in parts of sub-Saharan Africa, declining proportions of fevers due to malaria, and the availability of rapid diagnostic tests mean it may be time for this policy to change. This debate examines whether enough evidence exists to support abandoning presumptive treatment and whether African health systems have the capacity to support a shift toward laboratory-confirmed rather than presumptive diagnosis and treatment of malaria in children under five.

  8. Effect of drug utilization reviews on the quality of in-hospital prescribing: a quasi-experimental study

    Directory of Open Access Journals (Sweden)

    Chabot Isabelle

    2006-03-01

    Full Text Available Abstract Background Drug utilization review (DUR programs are being conducted in Canadian hospitals with the aim of improving the appropriateness of prescriptions. However, there is little evidence of their effectiveness. The objective of this study was to assess the impact of both a retrospective and a concurrent DUR programs on the quality of in-hospital prescribing. Methods We conducted an interrupted time series quasi-experimental study. Using explicit criteria for quality of prescribing, the natural history of cisapride prescription was established retrospectively in three university-affiliated hospitals. A retrospective DUR was implemented in one of the hospitals, a concurrent DUR in another, whereas the third hospital served as a control. An archivist abstracted records of all patients who were prescribed cisapride during the observation period. The effect of DURs relative to the control hospital was determined by comparing estimated regression coefficients from the time series models and by testing the statistical significance using a 2-tailed Student's t test. Results The concurrent DUR program significantly improved the appropriateness of prescriptions for the indication for use whereas the retrospective DUR brought about no significant effect on the quality of prescribing. Conclusion Results suggest a retrospective DUR approach may not be sufficient to improve the quality of prescribing. However, a concurrent DUR strategy, with direct feedback to prescribers seems effective and should be tested in other settings with other drugs.

  9. Toward organometallic antischistosomal drug candidates.

    Science.gov (United States)

    Hess, Jeannine; Keiser, Jennifer; Gasser, Gilles

    2015-01-01

    In the recent years, there has been a growing interest in the use of novel approaches for the treatment of parasitic diseases such as schistosomiasis. Among the different approaches used, organometallic compounds were found to offer unique opportunities in the design of antiparasitic drug candidates. A ferrocenyl derivative, namely ferroquine, has even entered clinical trials as a novel antimalarial. In this short review, we report on the studies describing the use of organometallic compounds against schistosomiasis.

  10. A chemical proteomics approach for the search of pharmacological targets of the antimalarial clinical candidate albitiazolium in Plasmodium falciparum using photocrosslinking and click chemistry.

    Science.gov (United States)

    Penarete-Vargas, Diana Marcela; Boisson, Anaïs; Urbach, Serge; Chantelauze, Hervé; Peyrottes, Suzanne; Fraisse, Laurent; Vial, Henri J

    2014-01-01

    Plasmodium falciparum is responsible for severe malaria which is one of the most prevalent and deadly infectious diseases in the world. The antimalarial therapeutic arsenal is hampered by the onset of resistance to all known pharmacological classes of compounds, so new drugs with novel mechanisms of action are critically needed. Albitiazolium is a clinical antimalarial candidate from a series of choline analogs designed to inhibit plasmodial phospholipid metabolism. Here we developed an original chemical proteomic approach to identify parasite proteins targeted by albitiazolium during their native interaction in living parasites. We designed a bifunctional albitiazolium-derived compound (photoactivable and clickable) to covalently crosslink drug-interacting parasite proteins in situ followed by their isolation via click chemistry reactions. Mass spectrometry analysis of drug-interacting proteins and subsequent clustering on gene ontology terms revealed parasite proteins involved in lipid metabolic activities and, interestingly, also in lipid binding, transport, and vesicular transport functions. In accordance with this, the albitiazolium-derivative was localized in the endoplasmic reticulum and trans-Golgi network of P. falciparum. Importantly, during competitive assays with albitiazolium, the binding of choline/ethanolamine phosphotransferase (the enzyme involved in the last step of phosphatidylcholine synthesis) was substantially displaced, thus confirming the efficiency of this strategy for searching albitiazolium targets.

  11. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach

    Science.gov (United States)

    Nagasundaram, N.; George Priya Doss, C.; Chakraborty, Chiranjib; Karthick, V.; Thirumal Kumar, D.; Balaji, V.; Siva, R.; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-07-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.

  12. The role of private drug vendors as malaria treatment providers in selected malaria endemic areas of Sri Lanka

    DEFF Research Database (Denmark)

    Rajakaruna, R S; Weerasinghe, M; Alifrangis, M

    2006-01-01

    and improve adherence to the government's malaria drug policy. Results of a study on the knowledge and practices of the private drug vendors conducted in seven districts in Sri Lanka, mostly in malarious areas are presented. METHODS: Data on awareness of government's malaria drug policy, practice of issuing...... antimalarials, knowledge about malaria and antimalarial drugs were collected from the drug vendors using pre-tested questionnaire in vernacular language. Data were statistically analysed using Stata 8.2. Chi-square test was carried out for individual explanatory variables and a logistic regression model...

  13. Reverse pharmacology for developing an anti-malarial phytomedicine. The example of Argemone mexicana

    Directory of Open Access Journals (Sweden)

    Claudia Simoes-Pires

    2014-12-01

    Reverse pharmacology, also called bedside-to-bench, is a research approach based on the traditional knowledge and relates to reversing the classical laboratory to clinic pathway to a clinic to laboratory practice. It is a trans-disciplinary approach focused on traditional knowledge, experimental observations and clinical experiences. This paper is an overview of the reverse pharmacology approach applied to the decoction of Argemone mexicana, used as an antimalarial traditional medicine in Mali. A. mexicana appeared as the most effective traditional medicine for the treatment of uncomplicated falciparum malaria in Mali, and the clinical efficacy of the decoction was comparable to artesunate–amodiaquine as previously published. Four stages of the reverse pharmacology process will be described here with a special emphasis on the results for stage 4. Briefly, allocryptopine, protopine and berberine were isolated through bioguided fractionation, and had their identity confirmed by spectroscopic analysis. The three alkaloids showed antiparasitic activity in vitro, of which allocryptopine and protopine were selective towards Plasmodium falciparum. Furthermore, the amount of the three active alkaloids in the decoction was determined by quantitative NMR, and preliminary in vivo assays were conducted. On the basis of these results, the reverse pharmacology approach is discussed and further pharmacokinetic studies appear to be necessary in order to determine whether these alkaloids can be considered as phytochemical markers for quality control and standardization of an improved traditional medicine made with this plant.

  14. Drug Quality Management in the Application of Risk Assessment%药品质量管理中风险评估的应用

    Institute of Scientific and Technical Information of China (English)

    何莎

    2015-01-01

    In pharmaceutical production and management work,the drug quality management is a management content is very important,in the development of drug quality management process,a very important job is to conduct a risk assessment of drug quality management.The current drug development and production process,there are stil many drug quality risk management,the main content of this paper is the drug quality management risk assessment to the simple analysis,a brief description of the risk assessment process of drug quality management.%在药品生产与管理工作中,药品质量管理是非常重要的一项管理内容,在开展药品质量管理过程中,进行药品质量管理的风险评估十分重要。目前,药品研发与生产过程中,还存在较多的药品质量管理风险,本文就药品质量管理风险评估的主要内容予以简要分析,对药品质量管理中的风险评估流程予以简单介绍。

  15. Prescription drug samples--does this marketing strategy counteract policies for quality use of medicines?

    Science.gov (United States)

    Groves, K E M; Sketris, I; Tett, S E

    2003-08-01

    Prescription drug samples, as used by the pharmaceutical industry to market their products, are of current interest because of their influence on prescribing, and their potential impact on consumer safety. Very little research has been conducted into the use and misuse of prescription drug samples, and the influence of samples on health policies designed to improve the rational use of medicines. This is a topical issue in the prescription drug debate, with increasing costs and increasing concerns about optimizing use of medicines. This manuscript critically evaluates the research that has been conducted to date about prescription drug samples, discusses the issues raised in the context of traditional marketing theory, and suggests possible alternatives for the future.

  16. Quality indicators of preventable adverse drug events in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Thomsen, Linda Aagaard

    drug events in the primary care setting (Article 1). Construction of the preventable adverse drug events assessment model required four steps. The first step consisted of the development, validation, and feasibility of preventable adverse drug event indicators for type 2 diabetes (Articles 2 and 3...... associated with HbA1c monitoring and treatment was determined using logistic regression. The fourth step in the model was a health economic evaluation of the cost-effectiveness of shifting patients from inadequate to adequate medical treatment. The database used for the AMI indicator study formed...... in patients with type 2 diabetes, and apply a new register-based model with the ability to assess the epidemiology and economic impact of preventable adverse drug events in patients with type 2 diabetes, in order to give health care decision makers a clinical and health economic rationale for prioritizing...

  17. A call for using natural compounds in the development of new antimalarial treatments – an introduction

    Directory of Open Access Journals (Sweden)

    Deharo Eric

    2011-03-01

    Full Text Available Abstract Natural compounds, mostly from plants, have been the mainstay of traditional medicine for thousands of years. They have also been the source of lead compounds for modern medicine, but the extent of mining of natural compounds for such leads decreased during the second half of the 20th century. The advantage of natural compounds for the development of drugs derives from their innate affinity for biological receptors. Natural compounds have provided the best anti-malarials known to date. Recent surveys have identified many extracts of various organisms (mostly plants as having antiplasmodial activity. Huge libraries of fractionated natural compounds have been screened with impressive hit rates. Importantly, many cases are known where the crude biological extract is more efficient pharmacologically than the most active purified compound from this extract. This could be due to synergism with other compounds present in the extract, that as such have no pharmacological activity. Indeed, such compounds are best screened by cell-based assay where all potential targets in the cell are probed and possible synergies identified. Traditional medicine uses crude extracts. These have often been shown to provide many concoctions that deal better with the overall disease condition than with the causative agent itself. Traditional medicines are used by ~80 % of Africans as a first response to ailment. Many of the traditional medicines have demonstrable anti-plasmodial activities. It is suggested that rigorous evaluation of traditional medicines involving controlled clinical trials in parallel with agronomical development for more reproducible levels of active compounds could improve the availability of drugs at an acceptable cost and a source of income in malaria endemic countries.

  18. Longitudinal changes in drug use severity and physical health-related quality of life among untreated stimulant users.

    Science.gov (United States)

    Borders, Tyrone F; Booth, Brenda M; Falck, Russel S; Leukefeld, Carl; Wang, Jichuan; Carlson, Robert G

    2009-11-01

    The primary objective of this study was to investigate whether drug use severity is associated with physical health-related quality of life (HRQL) over time. Data are from a longitudinal, multi-state, natural history community study of users of cocaine and/or methamphetamine who were interviewed at 6-month intervals over 2 years with a 79% follow-up participation rate. Physical HRQL was assessed with the physical component summary (PCS) of the SF-8 Health Survey and drug, alcohol, and psychiatric severity were all assessed with the Addiction Severity Index (ASI). Random coefficient regression analyses were conducted to test for longitudinal associations between the independent variables and SF-8 PCS scores. Reductions in drug use severity over time were accompanied by only minor improvements in SF-8 PCS scores, underscoring the potential long-term harm of illicit drug use on physical health. Greater psychiatric severity was strongly associated with lower SF-8 PCS scores, suggesting that clinical attention to mental health issues could potentially lead to improvements in perceived physical health as well as among stimulant users.

  19. High-performance thin layer chromatography for quality control of multicomponent herbal drugs: example of cangzhu xianglian san.

    Science.gov (United States)

    Li, Zhi; Merfort, Irmgard; Reich, Eike

    2010-01-01

    Due to their complexity, multicomponent herbal drugs pose enormous analytical challenges for quality control (QC). Although they may have traditionally been used for hundreds of years, the information about their chemical composition is often still limited. Selecting suitable markers to monitor the identity and potency of the mixture is, therefore, difficult. There is also the possibility of natural variability for each plant. This paper illustrates a pragmatic and practical approach to QC of a multicomponent herbal drug by HPTLC. Cangzhu xianglian xan (CXS), composed of the herbal drugs Coptis rhizome, Aucklandia root, and Atractylodes rhizome (30 + 20 + 60, w/w/w), is used as an example. A characteristic fingerprint can be generated for CXS with toluene-ethyl acetate-methanol-isopropanol-water (60 + 30 + 20 + 15 + 3, v/v/v/v/v) mobile phase on HPTLC silica gel 60 conditioned with ammonia. While the corresponding monograph of the Chinese Veterinary Pharmacopoeia focuses only on the detection of berberine, one of the principal components of Coptis rhizome, the proposed method of identification determines the presence of all three components in the drug after derivatization with anisaldehyde reagent. The same method can also be used to quantitatively determine the content of berberine by scanning densitometry. This paper provides details about the validation of the qualitative and quantitative determinations.

  20. Quality by design (QbD) based development of a stability indicating HPLC method for drug and impurities.

    Science.gov (United States)

    Karmarkar, S; Garber, R; Genchanok, Y; George, S; Yang, X; Hammond, R

    2011-01-01

    In this paper, an application of Quality by Design (QbD) concepts to the development of a stability indicating HPLC method for a complex pain management drug product containing drug substance, two preservatives, and their degradants is described. The QbD approach consisted of (i) developing a full understanding of the intended purpose, (ii) developing predictive solutions, (iii) designing a meaningful system suitability solution that helps to identify failure modes, and (iv) following design of experiments (DOE) approach. The starting method lacked any resolution among drug degradant and preservative oxidative degradant peaks, and peaks for preservative and another drug degradant. The method optimization was accomplished using Fusion AE™ software (S-Matrix Corporation, Eureka, CA) that follows a DOE approach. Column temperature (50 ± 5°C), mobile phase buffer pH (2.9 ± 0.2), initial % acetonitrile (ACN, 2 ± 1%), and initial hold time (2.5, 5, or 10 min) of the HPLC method were simultaneously studied to optimize separation of the unresolved peaks. The optimized HPLC conditions (column temperature of 50°C, buffer pH of 3.1, 3% initial ACN with 2.5 min initial hold) resulted in fully resolved peaks in the two critical pairs. The QbD based method development helped in generating a design space and operating space with knowledge of all method performance characteristics and limitations and successful method robustness within the operating space.

  1. Terbinafine-induced lichenoid drug eruption.

    Science.gov (United States)

    Zheng, Yue; Zhang, Jie; Chen, Haiyan; Lai, Wei; Maibach, Howard I

    2017-03-01

    Drug-induced lichen planus has been induced by antibiotics, anticonvulsants, antidiabetics, antimalarials, antitubercular drugs, antihypertensives, psychiatric drugs, chemotherapeutic agents, diuretic, heavy metals, NSAIDs, etc. Terbinafine, an antifungal agent, is widely used for dermatophyte infections and onychomycosis. Cutaneous adverse effects of terbinafine are rarely reported. Here, we report a case of terbinafine-induced lichenoid drug eruption in a 22-year-old who presented with generalized lichenoid eruption 2 weeks after terbinafine initiation of. The body and lip cleared completely after 8 weeks of drug withdrawal; nail change cleared after 12 weeks.

  2. Malarial kinases: novel targets for in silico approaches to drug discovery.

    Science.gov (United States)

    Bullard, Kristen M; DeLisle, Robert Kirk; Keenan, Susan M

    2013-01-01

    Malaria, the disease caused by infection with protozoan parasites from the genus Plasmodium, claims the lives of nearly 1 million people annually. Developing nations, particularly in the African Region, bear the brunt of this malaria burden. Alarmingly, the most dangerous etiologic agent of malaria, Plasmodium falciparum, is becoming increasingly resistant to current first-line antimalarials. In light of the widespread devastation caused by malaria, the emergence of drug-resistant P. falciparum strains, and the projected decrease in funding for malaria eradication that may occur over the next decade, the identification of promising new targets for antimalarial drug design is imperative. P. falciparum kinases have been proposed as ideal drug targets for antimalarial drug design because they mediate critical cellular processes within the parasite and are, in many cases, structurally and mechanistically divergent when compared with kinases from humans. Identifying a molecule capable of inhibiting the activity of a target enzyme is generally an arduous and expensive process that can be greatly aided by utilizing in silico drug design techniques. Such methods have been extensively applied to human kinases, but as yet have not been fully exploited for the exploration and characterization of antimalarial kinase targets. This review focuses on in silico methods that have been used for the evaluation of potential antimalarials and the Plasmodium kinases that could be explored using these techniques.

  3. Pattern and quality of scientific communications on drug safety produced by a regional pharmacovigilance center in Nepal

    Directory of Open Access Journals (Sweden)

    Palaian S

    2010-09-01

    Full Text Available Analyzing the pattern and quality of scientific communications on pharmacovigilance can help the regional centers in Nepal and other developing countries to develop approaches for communicating effectively medicine safety issues. This kind of research is lacking in developing countries. Objectives: To analyze the pattern and quality of scientific communications on drug safety produced by the regional pharmacovigilance center at western Nepal. Methodology: Various conference abstracts and journal publications produced by the center during its initial four years of establishment (14th September 2004 till 13th September 2008 were identified. These communications were categorized in to case reports, review articles, conference presentations, short communications, newsletter and bulletin articles, original research and case series. In addition, the quality of the case reports were evaluated as per International Society of Pharmacovigilance/International Society of Pharmacoepidemiology (ISoP/ISPE guidelines on the requirements for submitting case reports on adverse event reports in biomedical journals. Results: During the study period, 53 scientific communications were produced by the staff of the regional pharmacovigilance center in relation with drug safety. Among these, 18 (34% were related to case reports and letters. The median (interquartile range age of the patients described in the case reports was 46.5 (21.7-51.2 years. Among the total 18 ADRs, four were fixed drug eruptions, followed by contact dermatitis (n=2. Majority of the published case reports were related to skin (n=13; 72.2%. Antimicrobials were responsible for 27.8% (n=5 of the case reports. Among the 18 case reports published by the pharmacovigilance center, a majority followed the ISoP/ISPE guidelines. Few parameters like physical examination of the patient experiencing ADR, patient disposition, dosage and administration of the suspected drugs, and drug-reaction interface were

  4. Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Sudipta Das

    2016-05-01

    Full Text Available Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2, glycosylphosphotidylinositol (GPI-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble "rhoptries" and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise.

  5. [GENERIC DRUGS: IS BIOEQUIVALENCE SUFFICIENT TO ENSURE QUALITY, EFFICACY AND SAFETY?].

    Science.gov (United States)

    Carrillo Norte, Juan Antonio; Postigo Mota, Salvador

    2015-05-01

    This article is focusing on the current debate that prescription of generic drugs is producing among patients and healthcare professionals. Following European Medicine Agency (EMA) recommendations, a number of generic medicines have recently been withdrawn from the market in Spain. The authorization for these generic drugs was primarily based on clinical studies conducted at GVK Biosciences in Hyderabad, India. The EMA inspection of GVK revealed data manipulation of electrocardiograms during the development of some studies of generic medicines. These manipulations had taken place over a period of at least five years. The article is also dealing with the consideration that bioavailability and bioequivalence studies receive as a cornerstone to approve generic drugs, and the discrepancies between the national regulatory agencies of medicines to implement guidelines of approval. Likewise, in the last few years, the rapid expansion of clinical trial activity regarding generic medicines and other drugs in emerging markets, is often leading to doubt on the integrity of the way trials were performed and on the reliability of data obtained from these studies.

  6. The impact of text message reminders on adherence to antimalarial treatment in northern Ghana: a randomized trial.

    Directory of Open Access Journals (Sweden)

    Julia R G Raifman

    Full Text Available BACKGROUND: Low rates of adherence to artemisinin-based combination therapy (ACT regimens increase the risk of treatment failure and may lead to drug resistance, threatening the sustainability of current anti-malarial efforts. We assessed the impact of text message reminders on adherence to ACT regimens. METHODS: Health workers at hospitals, clinics, pharmacies, and other stationary ACT distributors in Tamale, Ghana provided flyers advertising free mobile health information to individuals receiving malaria treatment. The messaging system automatically randomized self-enrolled individuals to the control group or the treatment group with equal probability; those in the treatment group were further randomly assigned to receive a simple text message reminder or the simple reminder plus an additional statement about adherence in 12-hour intervals. The main outcome was self-reported adherence based on follow-up interviews occurring three days after treatment initiation. We estimated the impact of the messages on treatment completion using logistic regression. RESULTS: 1140 individuals enrolled in both the study and the text reminder system. Among individuals in the control group, 61.5% took the full course of treatment. The simple text message reminders increased the odds of adherence (adjusted OR 1.45, 95% CI [1.03 to 2.04], p-value 0.028. Receiving an additional message did not result in a significant change in adherence (adjusted OR 0.77, 95% CI [0.50 to 1.20], p-value 0.252. CONCLUSION: The results of this study suggest that a simple text message reminder can increase adherence to antimalarial treatment and that additional information included in messages does not have a significant impact on completion of ACT treatment. Further research is needed to develop the most effective text message content and frequency. TRIAL REGISTRATION: ClinicalTrials.gov NCT01722734.

  7. Impact of Illicit Drug Use on Health-Related Quality of Life in Opioid Dependent Patients Undergoing HIV Treatment

    Science.gov (United States)

    Aden, Brandon; Dunning, Allison; Nosyk, Bohdan; Wittenberg, Eve; Bray, Jeremy W.; Schackman, Bruce R.

    2015-01-01

    Objective To assess the impact of illicit drug use on health-related quality of life (health utility) among opioid-dependent, HIV-infected patients. Design Secondary analyses of data from the Buprenorphine-HIV Evaluation and Support (BHIVES) cohort of HIV-infected patients with opioid dependence in 9 U.S. HIV clinics between 2004 and 2009. Health status (Short Form-12 (SF-12)), combination antiretroviral treatment (ART) status, CD4 cell count, HCV antibody status, current drug use, and demographics were assessed at an initial visit and quarterly follow-up visits for up to one year. Short Form-6D health utility scores were derived from the SF-12. Multivariate mixed effects regression models were used to assess the impact of illicit drug use on health utility controlling for demographic, clinical and social characteristics. Results Health utility was assessed among 307 participants, 67% male, with median age 46 at 1089 quarterly assessments. In multivariate analyses, illicit opioid use, non-opioid illicit drug use, not being on ART and being on ART with poor adherence were associated with lower health utility. The observed decrement in health utility associated with illicit opioid use was larger for those on ART with good adherence (beta = −0.067; popioid drug use are negatively associated with health utility in patients with HIV, however the relative effect of illicit opioid use is smaller than that of not being on ART. Postponing ART until initiation of opioid substitution therapy or abstinence may have limited benefits from the perspective of maximizing health utility. PMID:26218410

  8. Tenofovir induced lichenoid drug eruption.

    Science.gov (United States)

    Gupta, Mrinal; Gupta, Heena; Gupta, Anish

    2015-01-01

    Cutaneous adverse reactions are a common complication of anti-retroviral therapy. Tenofovir is a newer anti-retroviral drug belonging to the nucleotide reverse transcriptase inhibitor group. Systemic adverse effects like nausea, vomiting, diarrhea, hepatotoxicity and renal toxicity are common with tenofovir but cutaneous adverse effects are rare. Lichenoid drug eruptions are a common adverse effect seen with a large variety of drugs including antimalarials, antihypertensives, nonsteroidal anti-inflammatory drugs and diuretics. Lichenoid drug eruption is a rare cutaneous adverse effect of tenofovir with only a single case reported till date. Here, we report a case of tenofovir induced lichenoid drug eruption in a 54-year-old human immunodeficiency virus affected male who presented with generalized lichenoid eruption after 6 weeks of initiation of tenofovir and complete clearance on cessation of the drug.

  9. Analytical Quality by Design Approach to Test Method Development and Validation in Drug Substance Manufacturing

    Directory of Open Access Journals (Sweden)

    N. V. V. S. S. Raman

    2015-01-01

    Full Text Available Pharmaceutical industry has been emerging rapidly for the last decade by focusing on product Quality, Safety, and Efficacy. Pharmaceutical firms increased the number of product development by using scientific tools such as QbD (Quality by Design and PAT (Process Analytical Technology. ICH guidelines Q8 to Q11 have discussed QbD implementation in API synthetic process and formulation development. ICH Q11 guidelines clearly discussed QbD approach for API synthesis with examples. Generic companies are implementing QbD approach in formulation development and even it is mandatory for USFDA perspective. As of now there is no specific requirements for AQbD (Analytical Quality by Design and PAT in analytical development from all regulatory agencies. In this review, authors have discussed the implementation of QbD and AQbD simultaneously for API synthetic process and analytical methods development. AQbD key tools are identification of ATP (Analytical Target Profile, CQA (Critical Quality Attributes with risk assessment, Method Optimization and Development with DoE, MODR (method operable design region, Control Strategy, AQbD Method Validation, and Continuous Method Monitoring (CMM. Simultaneous implementation of QbD activities in synthetic and analytical development will provide the highest quality product by minimizing the risks and even it is very good input for PAT approach.

  10. Drug-Drug Interaction Analysis of Pyronaridine/Artesunate and Ritonavir in Healthy Volunteers

    OpenAIRE

    Morris, Carrie A.; Lopez-Lazaro, Luis; Jung, Donald; Methaneethorn, Janthima; Duparc, Stephan; Borghini-Fuhrer, Isabelle; Pokorny, Rolf; Shin, Chang-Sik; Fleckenstein, Lawrence

    2012-01-01

    A multiple dose, parallel group study was conducted to assess for a drug-drug interaction between the pyronaridine/artesunate (PA) combination antimalarial and ritonavir. Thirty-four healthy adults were randomized (1:1) to receive PA for 3 days or PA with ritonavir (100 mg twice daily for 17 days, PA administered on Days 8–10). Pharmacokinetic parameters for pyronaridine, artesunate, and its active metabolite dihydroartemisinin (DHA) were obtained after the last PA dose and for ritonavir on D...

  11. Natural products to improve quality of life targeting for colon drug delivery.

    Science.gov (United States)

    Kim, Hyunjo

    2012-03-01

    The colon is largely being investigated as a site for administration of protein and peptides, which are degraded by digestive enzymes in the upper GIT. Also for local diseases of the colon such as inflammatory bowel disease, colorectal cancer and ameobiasis, drug administration to the site of action can not only reduce the dose to be administered, but also decrease the side effects. Inflammatory Bowel Disease (IBD) such as Ulcerative colitis and Crohn's disease are characterized by chronic intestinal inflammation. Intestinal bacteria initiate the activation of intestinal inflammatory processes, which are mediated by pro-inflammatory cytokines and chemokine. Increased chemokine expression has also been observed in epithelial cells, endothelial cells, and smooth muscle cells. Future trials of specific agents capable of inhibiting chemokine synthesis and secretion or blocking chemokine-chemokine receptor interaction will be important to study in patients with ulcerative colitis and Crohn's disease. Many important bioactive compounds have been discovered from natural sources using bioactivity directed fractionation and isolation (BDFl) Continuing discovery has also been facilitated by the recent development of new bioassay methods. These bioactive compounds are mostly plant secondary metabolites, and many naturally occurring pure compounds have become medicines, dietary supplements, and other useful commercial products. The present review includes various approaches investigated for colon drug delivery and their site specificity. To achieve successful colonic delivery, a drug needs to be protected from absorption and the environment of the upper gastrointestinal tract and then be abruptly released into the proximal colon, which is considered the optimum site for colon targeted delivery of drugs.

  12. Lichenoid drug eruption induced by colchicine: case report.

    Science.gov (United States)

    An, Isa; Demir, Vasfiye; Akdeniz, Sedat

    2016-07-15

    Lichenoid drug eruption (LDE) is a common cutaneous side effect of drugs including antimalarials, antihypertensives, nonsteroids, anti-inflammatory drugs and diuretics. The physiopathologic relationship between colchicine treatment and LDE is unclear. There is very little documentation of LDE induced by colchicine in the literature. In this report, we present a case that developed LDE on the abdomen and the legs during the colchicine treatment.

  13. A novel endogenous antimalarial: Fe(II)-protoporphyrin IX alpha (heme) inhibits hematin polymerization to beta-hematin (malaria pigment) and kills malaria parasites.

    Science.gov (United States)

    Monti, D; Vodopivec, B; Basilico, N; Olliaro, P; Taramelli, D

    1999-07-13

    The polymerization of hemoglobin-derived ferric-protoporphyrin IX [Fe(III)PPIX] to inert hemozoin (malaria pigment) is a crucial and unique process for intraerythrocytic plasmodia to prevent heme toxicity and thus a good target for new antimalarials. Quinoline drugs, i.e., chloroquine, and non-iron porphyrins have been shown to block polymerization by forming electronic pi-pi interactions with heme monomers. Here, we report the identification of ferrous-protoporphyrin IX [Fe(II)PPIX] as a novel endogenous anti-malarial. Fe(II)PPIX molecules, released from the proteolysis of hemoglobin, are first oxidized and then polymerized to hemozoin. We obtained Fe(II)PPIX on preparative scale by electrochemical reduction of Fe(III)PPIX, and the reaction was monitored by cyclic voltammetry. Polymerization assays at acidic pH were conducted with the resulting Fe(II)PPIX using a spectrophotometric microassay of heme polymerization adapted to anaerobic conditions and the products characterized by infrared spectroscopy. Fe(II)PPIX (a) did not polymerize and (b) produced a dose-dependent inhibition of Fe(III)PPIX polymerization (IC(50) = 0.4 molar equiv). Moreover, Fe(II)PPIX produced by chemical reduction with thiol-containing compounds gave similar results: a dose-dependent inhibition of heme polymerization was observed using either L-cysteine, N-acetylcysteine, or DL-homocysteine, but not with L-cystine. Cyclic voltammetry confirmed that the inhibition of heme polymerization was due to the Fe(II)PPIX molecules generated by the thiol-mediated reduction of Fe(III)PPIX. These results point to Fe(II)PPIX as a potential endogenous antimalarial and to Fe(III)PPIX reduction as a potential new pharmacological target.

  14. Cost-effectiveness of pre-referral antimalarial, antibacterial, and combined rectal formulations for severe febrile illness.

    OpenAIRE

    Buchanan, J.; Mihaylova, B.; Gray, A; White, N

    2010-01-01

    BACKGROUND: Malaria and bacterial infections account for most infectious disease deaths in developing countries. Prompt treatment saves lives, but rapid deterioration often prevents the use of oral therapies; delays in reaching health facilities providing parenteral interventions are common. Rapidly and reliably absorbed antimalarial/antibacterial rectal formulations used in the community could prevent deaths and disabilities. Rectal antimalarial treatments are currently available; rectal ant...

  15. Investigation of specificity ensuring of quality of biological medicinal products on example of drugs Cortexin and Retinalamin

    Directory of Open Access Journals (Sweden)

    N. O. Vetiutneva

    2013-06-01

    consists of the following stages: preparing of the solution for bottling, sterilizing filtration, washing and sterilizing of the bottles, aseptic filling, freeze drying and plugging, seaming, continuous monitoring in bulk. After getting the quality certificate and declaration of conformity products are transferred to the storage place for finished products. The specificity of differences between biological medical products and synthetic medicines was investigated. Stages of ensuring of the quality of biological medicinal products with considering of particular qualities of the critical points were considered - the special conditions in the manufacturing process, temperature monitoring, systems and procedures of ensuring in quality during transportation, storage. The main stages of ensuring of quality were studied on the example of original drugs Cortexin and Retinalamin in the chain from production to sale.

  16. Lack of doxycycline antimalarial prophylaxis impact on Staphylococcus aureus tetracycline resistance.

    Science.gov (United States)

    Mende, Katrin; Beckius, Miriam L; Zera, Wendy C; Yu, Xin; Li, Ping; Tribble, David R; Murray, Clinton K

    2016-10-01

    There is concern that susceptibility of Staphylococcus aureus to tetracyclines may decrease due to use of antimalarial prophylaxis (doxycycline). We examined characteristics related to tetracycline resistance, including doxycycline exposure, in S. aureus isolates collected via admission surveillance swabs and inpatient clinical cultures from United States military personnel injured during deployment (June 2009-January 2012). Tetracycline class resistance was determined using antimicrobial susceptibility testing. The first S. aureus isolate from 168 patients were analyzed, of which 38 (23%) isolates were resistant to tetracyclines (class). Tetracycline-resistant isolates had a higher proportion of resistance to clindamycin (P=0.019) compared to susceptible isolates. There was no significant difference in tetracycline resistance between isolates collected from patients with and without antimalarial prophylaxis; however, significantly more isolates had tet(M) resistance genes in the doxycycline exposure group (P=0.031). Despite 55% of the patients receiving doxycycline as antimalarial prophylaxis, there was no association with resistance to tetracyclines.

  17. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus

    DEFF Research Database (Denmark)

    Kuhn, A; Sigges, J; Biazar, C

    2014-01-01

    BACKGROUND: In recent years it has been controversially discussed in the literature if smoking is associated with the activity of cutaneous lupus erythematosus (CLE) and the efficacy of antimalarial agents. OBJECTIVES: To investigate the influence of smoking on disease severity and antimalarial...... treatment in patients with CLE using the Core Set Questionnaire of the European Society of Cutaneous Lupus Erythematosus (EUSCLE). METHODS: A total of 1002 patients (768 female, 234 male) with different CLE subtypes were included in this cross-sectional study, which was performed in 14 different countries....... Smoking behaviour was assessed by the EUSCLE Core Set Questionnaire in 838 patients and statistically analysed using an SPSS database. The results were correlated with the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) and the efficacy of antimalarial treatment. RESULTS: A high...

  18. The evolution of drug-resistant malaria: the role of drug elimination half-life.

    OpenAIRE

    Hastings, Ian M.; Watkins, William M; White, Nicholas J

    2002-01-01

    This paper seeks to define and quantify the influence of drug elimination half-life on the evolution of antimalarial drug resistance. There are assumed to be three general classes of susceptibility of the malaria parasite Plasmodium falciparum to a drug: Res0, the original, susceptible wildtype; Res1, a group of intermediate levels of susceptibility that are more tolerant of the drug but still cleared by treatment; and Res2, which is completely resistant to the drug. Res1 and Res2 resistance ...

  19. Development of NIRS method for quality control of drug combination artesunate–azithromycin for the treatment of severe malaria

    Science.gov (United States)

    Boyer, Chantal; Gaudin, Karen; Kauss, Tina; Gaubert, Alexandra; Boudis, Abdelhakim; Verschelden, Justine; Franc, Mickaël; Roussille, Julie; Boucher, Jacques; Olliaro, Piero; White, Nicholas J.; Millet, Pascal; Dubost, Jean-Pierre

    2012-01-01

    Near infrared spectroscopy (NIRS) methods were developed for the determination of analytical content of an antimalarial-antibiotic (artesunate and azithromycin) co-formulation in hard gelatin capsule (HGC). The NIRS consists of pre-processing treatment of spectra (raw spectra and first-derivation of two spectral zones), a unique principal component analysis model to ensure the specificity and then two partial least-squares regression models for the determination content of each active pharmaceutical ingredient. The NIRS methods were developed and validated with no reference method, since the manufacturing process of HGC is basically mixed excipients with active pharmaceutical ingredients. The accuracy profiles showed β-expectation tolerance limits within the acceptance limits (±5%). The analytical control approach performed by reversed phase (HPLC) required two different methods involving two different preparation and chromatographic methods. NIRS offers advantages in terms of lower costs of equipment and procedures, time saving, environmentally friendly. PMID:22579599

  20. Development of NIRS method for quality control of drug combination artesunate-azithromycin for the treatment of severe malaria.

    Science.gov (United States)

    Boyer, Chantal; Gaudin, Karen; Kauss, Tina; Gaubert, Alexandra; Boudis, Abdelhakim; Verschelden, Justine; Franc, Mickaël; Roussille, Julie; Boucher, Jacques; Olliaro, Piero; White, Nicholas J; Millet, Pascal; Dubost, Jean-Pierre

    2012-01-01

    Near infrared spectroscopy (NIRS) methods were developed for the determination of analytical content of an antimalarial-antibiotic (artesunate and azithromycin) co-formulation in hard gelatin capsule (HGC). The NIRS consists of pre-processing treatment of spectra (raw spectra and first-derivation of two spectral zones), a unique principal component analysis model to ensure the specificity and then two partial least-squares regression models for the determination content of each active pharmaceutical ingredient. The NIRS methods were developed and validated with no reference method, since the manufacturing process of HGC is basically mixed excipients with active pharmaceutical ingredients. The accuracy profiles showed β-expectation tolerance limits within the acceptance limits (±5%). The analytical control approach performed by reversed phase (HPLC) required two different methods involving two different preparation and chromatographic methods. NIRS offers advantages in terms of lower costs of equipment and procedures, time saving, environmentally friendly.

  1. Prescription for antibiotics at drug shops and strategies to improve quality of care and patient safety

    DEFF Research Database (Denmark)

    Mbonye, Anthony K; Buregyeya, Esther; Rutebemberwa, Elizeus

    2016-01-01

    in the private health sector in Uganda. METHODS: A survey was conducted within 57 parishes from August to October 2014 in Mukono District, Uganda. Data was captured on the following variables: drug shop characteristics, training of staff in management of pneumonia, availability of guidelines and basic equipment.......5% were prescribing antibiotics, especially amoxicillin and trimethoprim-sulfamethoxazole (septrin). The professional qualification of a provider was significantly associated with this practice, p=0.04; where lower cadre staff (nursing assistants and enrolled nurses) overprescribed antibiotics. A third...

  2. New approach for high-throughput screening of drug activity on Plasmodium liver stages.

    NARCIS (Netherlands)

    Gego, A.; Silvie, O.; Franetich, J.F.; Farhati, K.; Hannoun, L.; Luty, A.J.F.; Sauerwein, R.W.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an infrare

  3. An assessment of quality of sleep and the use of drugs with sedating properties in hospitalized adult patients

    Directory of Open Access Journals (Sweden)

    Naumann Terryn

    2004-03-01

    Full Text Available Abstract Background Hospitalization can significantly disrupt sleeping patterns. In consideration of the previous reports of insomnia and apparent widespread use of benzodiazepines and other hypnotics in hospitalized patients, we conducted a study to assess quality of sleep and hypnotic drug use in our acute care adult patient population. The primary objectives of this study were to assess sleep disturbance and its determinants including the use of drugs with sedating properties. Methods This single-centre prospective study involved an assessment of sleep quality for consenting patients admitted to the general medicine and family practice units of an acute care Canadian hospital. A validated Verran and Snyder-Halpern (VSH Sleep Scale measuring sleep disturbance, sleep effectiveness, and sleep supplementation was completed daily by patients and scores were compared to population statistics. Patients were also asked to identify factors influencing sleep while in hospital, and sedating drug use prior to and during hospitalization was also assessed. Results During the 70-day study period, 100 patients completed at least one sleep questionnaire. There was a relatively even distribution of males versus females, most patients were in their 8th decade of life, retired, and suffered from multiple chronic diseases. The median self-reported pre-admission sleep duration for participants was 8 hours and our review of PharmaNetR profiles revealed that 35 (35% patients had received a dispensed prescription for a hypnotic or antidepressant drug in the 3-month period prior to admission. Benzodiazepines were the most common sedating drugs prescribed. Over 300 sleep disturbance, effective and supplementation scores were completed. Sleep disturbance scores across all study days ranged 16–681, sleep effectiveness scores ranged 54–402, while sleep supplementation scores ranged between 0–358. Patients tended to have worse sleep scores as compared to healthy non

  4. Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents.

    Science.gov (United States)

    Comer, Eamon; Beaudoin, Jennifer A; Kato, Nobutaka; Fitzgerald, Mark E; Heidebrecht, Richard W; Lee, Maurice duPont; Masi, Daniela; Mercier, Marion; Mulrooney, Carol; Muncipinto, Giovanni; Rowley, Ann; Crespo-Llado, Keila; Serrano, Adelfa E; Lukens, Amanda K; Wiegand, Roger C; Wirth, Dyann F; Palmer, Michelle A; Foley, Michael A; Munoz, Benito; Scherer, Christina A; Duvall, Jeremy R; Schreiber, Stuart L

    2014-10-23

    Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure-activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.

  5. Psychosocial functioning, quality of life and clinical correlates of comorbid alcohol and drug dependence syndromes in people with schizophrenia across Europe.

    Science.gov (United States)

    Carrà, Giuseppe; Johnson, Sonia; Crocamo, Cristina; Angermeyer, Matthias C; Brugha, Traolach; Azorin, Jean-Michel; Toumi, Mondher; Bebbington, Paul E

    2016-05-30

    Little is known about the correlates of comorbid drug and alcohol dependence in people with schizophrenia outside the USA. We tested hypotheses that dependence on alcohol/drugs would be associated with more severe symptoms, and poorer psychosocial functioning and quality of life. The EuroSC Cohort study (N=1204), based in France, Germany and the UK, used semi-structured clinical interviews for diagnoses, and standardized tools to assess correlates. We used mixed models to compare outcomes between past-year comorbid dependence on alcohol/drugs, controlling for covariates and modelling both subject and country-level effects. Participants dependent on alcohol or drugs had fewer negative symptoms on PANSS than their non-dependent counterparts. However, those dependent on alcohol scored higher on PANSS general psychopathology than those who were not, or dependent only on drugs. People with schizophrenia dependent on drugs had poorer quality of life, more extrapyramidal side effects, and scored worse on Global Assessment of Functioning (GAF) than those without dependence. People with alcohol dependence reported more reasons for non-compliance with medication, and poorer functioning on GAF, though not on Global Assessment of Relational Functioning. In people with schizophrenia, comorbid dependence on alcohol or drugs is associated with impaired clinical and psychosocial adjustment, and poorer quality of life.

  6. On the Ideal Quality Control Specification of Compound Prescription -- Taking thought for the New Ingredients Produced in the Single Drugs Combining Process in Compound Prescription

    Institute of Scientific and Technical Information of China (English)

    刘建利

    2002-01-01

    @@ Effectiveness, safety and quality controllability are the three basic and most important premises for evaluating the quality of drugs. Having undergone clinical tests and been verified in thousands of years, the effectiveness and safety of compound prescription, the chief form of medication in TCM, have been proved reliable. Sometimes due to the lack of quality controllability, incorrect drug or method of preparing being used, so poor therapeutic effect can be seen, though diagnosis and prescription are correct. Quality uncontrollability is also one of the important reasons that causes difficulty for TCM preparation to enter international market. In order to ensure the effectiveness and safety of TCM compound prescription and the entering of TCM preparation into international market, strict quality control specifications should be defined. Although wide attention has been paid to this task, how to define the specifications is still under discussion.

  7. Comparative study of the pharmacopeial quality and dissolution profiles of generic and other drug forms of sodium metamizole (dipyrone sold in Brazil

    Directory of Open Access Journals (Sweden)

    Morenna Alana Giordani

    2012-08-01

    Full Text Available In Brazil, in order for a pharmaceutical company to register a drug form as generic or ‘similar’ with the Brazilian food and drug agency (Anvisa, it must be proved bioequivalent to its innovatory branded form (reference drug. This requires comparative trials, carried out in conformity with official compendia (Brazilian Pharmacopeia or another officially recognized code. Additionally, according to the Anvisa resolution RDC 31/2010, the dissolution profile of the drug must be tested and compared with that of the branded reference, as a benchmark of quality. The aim of this study was to assess the quality of 500 mg sodium metamizole (dipyrone tablets produced by seven different laboratories in Brazil: three generic drugs (G1, G2, G3, three (branded similar drugs (S1, S2,S3 and their reference branded product (Novalgina®, Sanofi-Aventis, drug R. All tests were carried out by methods specified in the Brazilian Pharmacopeia 4th edition (Farmacopeia Brasileira IV. The following tests were performed: uniformity of mass, friability, disintegration time, hardness, assay, uniformity of dosage units, salicylic acid limit assay, dissolution and identification. The dissolution profile was also recorded, as recommended in RDC 31/2010. Whereas every sample was approved in all the Farmacopeia Brasileira IV tests, the results in the dissolution profile test showed that four of the test drugs (G1, G2, S1 and S2 were notpharmaceutically equivalent to drug R. Thus, only drugs G3 and S3 showed dissolution profiles similar to that of drug R and the other four drugs could not be considered equivalent to it and were not approved.

  8. Longitudinal in vitro surveillance of Plasmodium falciparum sensitivity to common anti-malarials in Thailand between 1994 and 2010

    Directory of Open Access Journals (Sweden)

    Parker Daniel

    2012-08-01

    Full Text Available Abstract Background Drug and multidrug-resistant Plasmodium falciparum malaria has existed in Thailand for several decades. Furthermore, Thailand serves as a sentinel for drug-resistant malaria within the Greater Mekong sub-region. However, the drug resistance situation is highly dynamic, changing quickly over time. Here parasite in vitro drug sensitivity is reported for artemisinin derivatives, mefloquine, chloroquine and quinine, across Thailand. Methods Blood was drawn from patients infected with P. falciparum in seven sentinel provinces along Thai international borders with Cambodia, Myanmar, Laos, and Malaysia. In vitro parasite sensitivity was tested using the World Health Organization’s microtest (mark III (between 1994 and 2002 and the histidine-rich protein-2 (HRP2-based enzyme-linked immunosorbent assay (in 2010. Following World Health Organization protocol, at least 30 isolates were collected for each province and year represented in this study. Where possible, t-tests were used to test for significant differences. Results There appears to be little variation across study sites with regard to parasite sensitivity to chloroquine. Quinine resistance appears to have been rising prior to 1997, but has subsequently decreased. Mefloquine sensitivity appears high across the provinces, especially along the north-western border with Myanmar and the eastern border with Cambodia. Finally, the data suggest that parasite sensitivity to artemisinin and its derivatives is significantly higher in provinces along the north-western border with Myanmar. Conclusions Parasite sensitivity to anti-malarials in Thailand is highly variable over time and largely mirrors official drug use policy. The findings with regard to reduced sensitivity to artemisinin derivatives are supported by recent reports of reduced parasite clearance associated with artemisinin. This trend is alarming since artemisinin is considered the last defence against malaria. Continued

  9. Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: a dose and duration dependent approach.

    Science.gov (United States)

    Tripathy, Satyajit; Das, Sabyasachi; Chakraborty, Subhankari Prasad; Sahu, Sumanta Kumar; Pramanik, Panchanan; Roy, Somenath

    2012-09-15

    Various strategies to deliver antimalarials using nanocarriers have been evaluated. However, taking into account the peculiarities of malaria parasites, the focus is placed mainly polymer-based chitosan nanocarriers. Our purpose of the study is to develop chitosan-tripolyphosphate (CS-TPP) nanoparticles (NPs) conjugated chloroquine in application for attenuation of Plasmodium berghei infection in Swiss mice. NPs were prepared by ionotropic gelation between CS and sodium TPP. In the study, the interaction of CS and TPP and the presence of chloroquine at the surface of chitosan-TPP NPs have been investigated by means of different methods like FTIR, DLS, and zeta potential. After drug preparation, effective dose of the nanoconjugated chloroquine (Nch) among 100, 250, and 500 mg/kg bw/day, was studied against P. berghei infection in Swiss mice by blood smear staining and biochemical assay of different inflammatory markers, and antioxidant enzyme levels also performed. After evaluating the effective dose, dose-dependent duration study was performed for 5, 10, 15 days. From the present study the maximum effect of Nch was found at 250 mg/kg bw concentration for 15 days treatment. So, this Nch might have potential of application as therapeutic anti-malarial and antioxidant agent.

  10. Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice

    Institute of Scientific and Technical Information of China (English)

    Phitsinee; Thipubon; Wachiraporn; Tipsuwan; Chairat; Uthaipibull; Sineenart; Santitherakul; Somdet; Srichiratanakool

    2015-01-01

    Objective: To examine the efficacy of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one(CM1) iron chelator and green tea extract(GTE) as anti-malarial activity in Plasmodium berghei(P. berghei) infected mice.Methods: The CM1(0–100 mg/kg/day) and GTE(0–100 mg(-)-epigallocatechin 3-gallate equivalent/kg/day) were orally administered to P. berghei infected mice for consecutive 4 days. Parasitized red blood cells(PRBC) were enumerated by using Giemsa staining microscopic method.Results: CM1 lowered percentage of PRBC in dose-dependent manner with an ED50 value of 56.91 mg/kg, when compared with pyrimethamine(PYR)(ED50= 0.76 mg/kg).GTE treatment did not show any inhibition of the malaria parasite growth. In combined treatment, CM1 along with 0.6 mg/kg PYR significantly inhibited the growth of P. berghei in mice while GTE did not enhance the PYR anti-malarial activity.Conclusions: CM1 would be effective per se and synergize with PYR in inhibiting growth of murine malaria parasites, possibly by limiting iron supply from plasma transferrin and host PRBC cytoplasm, and chelating catalytic iron cstitutive in parasites’ mitochondrial cytochromes and cytoplasmic ribonucleotide reductase. CM1 would be a promising adjuvant to enhance PYR anti-malarial activity and minimize the drug resistance.

  11. Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice

    Institute of Scientific and Technical Information of China (English)

    Phitsinee Thipubon; Wachiraporn Tipsuwan; Chairat Uthaipibull; Sineenart Santitherakul; Somdet Srichiratanakool

    2015-01-01

    Objective:To examine the efficacy of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) iron chelator and green tea extract (GTE) as anti-malarial activity in Plasmodium berghei (P. berghei ) infected mice. Methods:The CM1 (0–100 mg/kg/day) and GTE (0–100 mg (-)-epigallocatechin 3-gallate equivalent/kg/day) were orally administered to P. berghei infected mice for consecutive 4 days. Parasitized red blood cells (PRBC) were enumerated by using Giemsa staining microscopic method. Results: CM1 lowered percentage of PRBC in dose-dependent manner with an ED50 value of 56.91 mg/kg, when compared with pyrimethamine (PYR) (ED50=0.76 mg/kg). GTE treatment did not show any inhibition of the malaria parasite growth. In combined treatment, CM1 along with 0.6 mg/kg PYR significantly inhibited the growth of P. berghei in mice while GTE did not enhance the PYR anti-malarial activity. Conclusions: CM1 would be effective per se and synergize with PYR in inhibiting growth of murine malaria parasites, possibly by limiting iron supply from plasma transferrin and host PRBC cytoplasm, and chelating catalytic iron constitutive in parasites’ mitochondrial cytochromes and cytoplasmic ribonucleotide reductase. CM1 would be a promising adjuvant to enhance PYR anti-malarial activity and minimize the drug resistance.

  12. Antimalarial and hepatoprotective effects of crude ethanolic extract of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P.Karst. (higher Basidiomycetes), in Plasmodium berghei-infected mice.

    Science.gov (United States)

    Oluba, Olarewaju M; Olusola, Augustine O; Fagbohunka, Bamidele S; Onyeneke, E

    2012-01-01

    This study was aimed at investigating the in vivo antimalarial activity (using some biochemical indices) of crude aqueous extracts of the fruiting bodies of Ganoderma lucidum, a mushroom with well-established medicinal properties. A rodent malaria parasite, Plasmodium berghei (1 × 107), was inoculated intraperitoneally into Swiss albino mice. The test groups were administered G. lucidum extract and chloroquine (CQ, as standard drug), while the control groups were administered the same amount of distilled water by an intragastric tube once daily. The antimalarial activity of the extract was investigated from the suppressive, curative, and prophylactic effects of the extract on parasite growth. Serum aminotransferases (AST and ALT), alkaline phosphatase (ALP), and gamma glutamine transpeptidase (γ-GT) levels monitored following the 4-day suppressive test were significantly reduced, with a corresponding significant increase in the livers of mice treated with the extract compared with infected untreated mice. The results obtained from this study provide scientific justification in an animal model of malaria that an ethanolic extract of G. lucidum possesses potent antimalarial activity and also could help ameliorate the attendant Plasmodium-induced liver damage due to malarial infection.

  13. Exploration of the precaution against the quality risk in drug supplying%药品经营质量风险防范的探讨</