WorldWideScience

Sample records for antimalarial antiprotozoal antituberculosis

  1. Marine pharmacology in 2001--2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action.

    Science.gov (United States)

    Mayer, Alejandro M S; Hamann, Mark T

    2005-01-01

    During 2001--2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors' 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001--2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories.

  2. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Alejandro M. S. Mayer

    2017-08-01

    Full Text Available The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.

  3. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    Science.gov (United States)

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  4. Antiprotozoal compounds from Asparagus africanus

    DEFF Research Database (Denmark)

    Oketch-Rabah, H A; Dossaji, S F; Christensen, S B

    1997-01-01

    Two antiprotozoal compounds have been isolated from the roots of Asparagus africanus Lam. (Liliaceae), a new sapogenin, 2 beta, 12 alpha-dihydroxy-(25R)-spirosta-4,7-dien-3-one (1), which was named muzanzagenin, and the lignan (+)-nyasol (2), (Z)-(+)-4,4'-(3-ethenyl-1-propene-1,3-diyl)-bisphenol.......Two antiprotozoal compounds have been isolated from the roots of Asparagus africanus Lam. (Liliaceae), a new sapogenin, 2 beta, 12 alpha-dihydroxy-(25R)-spirosta-4,7-dien-3-one (1), which was named muzanzagenin, and the lignan (+)-nyasol (2), (Z)-(+)-4,4'-(3-ethenyl-1-propene-1,3-diyl...

  5. Antiprotozoal activity of extracts of Elaeodendron trichotomum ...

    African Journals Online (AJOL)

    0.14%). Conclusions: The dichloromethane extract of the roots bark showed significant activity against all screened protozoa. Keywords: Elaeodendron trichotomum, antiprotozoal activity, Celastraceae, tingenone, pristimerin, root bark.

  6. Discovery and Evaluation of Thiazinoquinones as Anti-Protozoal Agents

    Directory of Open Access Journals (Sweden)

    Marcel Kaiser

    2013-09-01

    Full Text Available Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2 to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM and Plasmodium falciparum (K1 dual drug resistant strain (IC50 3.3 μM while exhibiting low levels of cytotoxicity (L6, IC50 167 μM. A series of C-7 amide and Δ2(3 analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM, and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively, while Δ2(3-phenethylamide 8e (IC50 0.67 μM, SI 78 exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM combined with excellent selectivity (SI 560–4000. In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively.

  7. Peroxides with Anthelmintic, Antiprotozoal, Fungicidal and Antiviral Bioactivity: Properties, Synthesis and Reactions.

    Science.gov (United States)

    Vil', Vera A; Yaremenko, Ivan A; Ilovaisky, Alexey I; Terent'ev, Alexander O

    2017-11-02

    The biological activity of organic peroxides is usually associated with the antimalarial properties of artemisinin and its derivatives. However, the analysis of published data indicates that organic peroxides exhibit a variety of biological activity, which is still being given insufficient attention. In the present review, we deal with natural, semi-synthetic and synthetic peroxides exhibiting anthelmintic, antiprotozoal, fungicidal, antiviral and other activities that have not been described in detail earlier. The review is mainly concerned with the development of methods for the synthesis of biologically active natural peroxides, as well as its isolation from natural sources and the modification of natural peroxides. In addition, much attention is paid to the substantially cheaper biologically active synthetic peroxides. The present review summarizes 217 publications mainly from 2000 onwards.

  8. On peroxide antimalarials

    Directory of Open Access Journals (Sweden)

    IGOR OPSENICA

    2007-12-01

    Full Text Available Several dicyclohexylidene tetraoxanes were prepared in order to gain a further insight into structure–activity relationship of this kind of antimalarials. The tetraoxanes 2–5, obtained as a cis/trans mixture, showed pronounced antimalarial activity against Plasmodium falciparum chloroquine susceptible D6, chloroquine resistant W2 and multidrug-resistant TM91C235 (Thailand strains. They have better than or similar activity to the corresponding desmethyl dicyclohexylidene derivatives. Two chimeric endoperoxides with superior antimalarial activity to the natural product ascaridole were also synthesized.

  9. Antiprotozoal, antimycobacterial and cytotoxic potential of some british green algae.

    Science.gov (United States)

    Spavieri, Jasmine; Kaiser, Marcel; Casey, Rosalyn; Hingley-Wilson, Suzie; Lalvani, Ajit; Blunden, Gerald; Tasdemir, Deniz

    2010-07-01

    In the continuation of our search for natural sources for antiprotozoal and antitubercular molecules, we have screened the crude extracts of four green marine algae (Cladophora rupestris, Codium fragile ssp. tomentosoides, Ulva intestinalis and Ulva lactuca) collected from the Dorset area of England. Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Mycobacterium tuberculosis were used as test organisms in the in vitro assays. The selective toxicity of the extracts was also determined toward mammalian skeletal myoblast (L6) cells. The crude seaweed extracts had no activity against M. tuberculosis, but showed antiprotozoal activity against at least two protozoan species. All algal extracts were active against T. brucei rhodesiense, with C. rupestris being the most potent one (IC(50) value 3.7 microg/ml), whilst only C. rupestris and U. lactuca had moderate trypanocidal activity against T. cruzi (IC(50) values 80.8 and 34.9 microg/ml). Again, all four extracts showed leishmanicidal activity with IC(50) values ranging between 12.0 and 20.2 microg/ml. None of the extracts showed cytotoxicity toward L6 cells, indicating that their antiprotozoal activity is specific. This is the first study reporting antiprotozoal and antimycobacterial activity of British marine algae.

  10. Synthesis of some substituted pyrazole derivatives as antiprotozoal ...

    African Journals Online (AJOL)

    Compounds incorporating a pyrazole moiety have attracted a great deal of research owing to its therapeutic utility of the templates as useful drug molecule scaffolding. We report the synthesis of Pyrazoles moiety substituted with anilines at the fifth position of the ring as anti-protozoal lead moiety. All the compounds were ...

  11. Antiprotozoal Activities of Millettia richardiana (Fabaceae from Madagascar

    Directory of Open Access Journals (Sweden)

    Manitriniaina Rajemiarimiraho

    2014-04-01

    Full Text Available With at least 60% of the Millettia species (Fabaceae being in medicinal use, we found it relevant to assess the potential antiprotozoal and antifungal activities of Millettia richardiana. Water and methanol crude extracts of the stem barks from M. richardiana and the six fractions resulting from the fractionation of the methanol extract were tested. The dichloromethane extracted fraction showed the best in vitro antiprotozoal activities (IC50 = 5.8 μg/mL against Plasmodium falciparum, 11.8 μg/mL against Leishmania donovani and 12.8 μg/mL against Trypanosoma brucei brucei as well as low cytotoxicity on several cell lines. The phytochemical analysis showed this selected fraction to be rich in terpenoids and alkaloids, which could explain its antiparasitic activity. A phytochemical study revealed the presence of lonchocarpenin, betulinic acid, β-amyrin, lupeol, palmitic acid, linoleic acid and stearic acid, among which betulinic acid and lupeol could be the compounds responsible of these antiprotozoal activities. By contrast, neither the crude extracts nor the fractions showed antifungal activity against Candida. These results confirm the importance of the genus Millettia in Malagasy ethnomedicine, its potential use in antiparasitic therapy, and the interest of developing a sustainable exploitation of this plant. Moreover, both molecules betulinic acid and lupeol appeared as very relevant molecules for their antiprotozoal properties.

  12. Antiprotozoal Activity of α,β-Unsaturated δ-Lactones: Promising ...

    African Journals Online (AJOL)

    ... α,β-unsaturated δ-lactones displayed high antiprotozoal activity and thus are promising compounds for new drug discovery and development. These compounds and their activity are examined in this review. Keywords: Lactones, Pyrones, Antiparasitic, Antiprotozoal, Leishmania, Malaria, Chagas, Plasmodium falciparum, ...

  13. Biodegradable polymeric nanoformulation based on the antiprotozoal canthin-6-one

    International Nuclear Information System (INIS)

    Arias, José L.; Cebrián-Torrejón, Gerardo; Poupon, Erwan; Fournet, Alain; Couvreur, Patrick

    2011-01-01

    The efficacy of antiprotozoal agents against intracellular infections is very often limited by an almost negligible access to the cellular level where the pathogens are hidden. As a result, high doses of the chemotherapy agents are needed to be administered, but the great incidence of severe adverse drug effects generally leads to pharmacotherapy failure. To enhance the pharmacological effect of the antiprotozoal and antifungal canthin-6-one, loading into biodegradable poly(octylcyanoacrylate) nanoparticles has been considered. The preparation of canthin-6-one nanoformulation (average size ≈170 nm) has been performed by a single-absorption procedure with high drug loading and little burst release as determined by RP-HPLC. Further characterization of this nanoformulation has been carry out by electrophoretic measurements, analysis of the surface thermodynamics of the nanoparticles, and 1 H-NMR analysis. Nanoparticles loaded with canthin-6-one were characterized by a significant hydrophobicity and a great surface electrical charge under physiological conditions. These are two key physicochemical factors determining recognition by the reticuloendothelial system, resulting in a fast intracellular uptake by infected phagocytes. It is expected that this nanoformulation offers potential applications for an efficient canthin-6-one delivery to intracellular infections.

  14. Antimalarial naphthoquinones from Nepenthes thorelii.

    Science.gov (United States)

    Likhitwitayawuid, K; Kaewamatawong, R; Ruangrungsi, N; Krungkrai, J

    1998-04-01

    Roots of Nepenthes thorelii yielded plumbagin, 2-methylnaphthazarin, octadecyl caffeate, isoshinanolone, and droserone. In addition, seven derivatives were prepared from plumbagin. Each of these natural and semisynthetic compounds was evaluated for in vitro antimalarial potential.

  15. Antiprotozoal dispensing patterns in South Africa, with the focus on ...

    African Journals Online (AJOL)

    The primary aim was to determine the dispensing patterns of antimalarial medicine in a community pharmacy patient population in South Africa. A retrospective, cross-sectional drug utilisation study was conducted on a 2013 pharmacy database. Medicines reimbursed by private medical aid schemes and private purchases ...

  16. Metallocene Antimalarials: The Continuing Quest

    OpenAIRE

    Blackie, Margaret A. L.; Chibale, Kelly

    2007-01-01

    Over the last decade, a significant body of research has been developed around the inclusion of a metallocene moiety into known antimalarial compounds. Ferroquine is the most successful of these compounds. Herein, we describe our contribution to metallocene antimalarials. Our approach has sought to introduce diversity sites in the side chain of ferroquine in order to develop a series of ferroquine derivatives. The replacement of the ferrocenyl moiety with ruthenocene has given rise to rutheno...

  17. Adherence to anti-tuberculosis treatment in Tigray, Northern Ethiopia

    NARCIS (Netherlands)

    Kiros, Y. K.; Teklu, T.; Desalegn, F.; Tesfay, M.; Klinkenberg, E.; Mulugeta, A.

    2014-01-01

    Tuberculosis (TB) patients in Mekelle Zone, Tigray Region, in Ethiopia. To investigate adherence to anti-tuberculosis treatment. A cross-sectional study in health facilities providing anti-tuberculosis treatment was conducted. Adherence was measured in three ways: through self-reported missed doses,

  18. Biopharmaceutics, pharmacokinetics and pharmacodynamics of antituberculosis drugs.

    Science.gov (United States)

    Budha, Nageshwar R; Lee, Richard E; Meibohm, Bernd

    2008-01-01

    Tuberculosis (TB) is the leading cause of mortality due to a single infectious agent. The currently used combination drug regimens produce cure rates that exceed 95%, given good patient adherence during the multiple months treatment period. However the recent surge in HIV infections and the synergy between HIV and TB as well as the emergence of resistance resulted in an unforeseen increase in the number of TB cases, including multi-drug resistant (MDR) and extensively-drug resistant (XDR) forms of TB. Consequently, there is an urgent need to develop novel, fast acting antituberculosis drugs with high potency that can provide treatment options for all forms of TB. It is well known that the current TB drugs exhibit differences in their in vivo activity profile and these differences are largely determined by their pharmacodynamics (PD), i.e. intrinsic antibacterial activity, biopharmaceutical properties such as solubility and permeability, and pharmacokinetic (PK) properties such as drug exposure, tissue distribution, and protein binding. An understanding of the relationships among these properties is considered key for a rational use of antituberculosis therapeutics. The current review provides a comprehensive summary of physicochemical/biopharmaceutical, PK, and PD properties of currently used antituberculosis drugs and novel agents under development. Also, a brief review of PK/PD parameters of current TB drugs is given and properties of a desirable TB drug target and drug molecule are outlined. The information provided herewith may be useful in the optimization of biopharmaceutical and PK/PD characteristics in the development of novel TB therapeutics and in the design of optimal treatment regimens.

  19. Antimalarial drug induced decrease in creatinine clearance

    NARCIS (Netherlands)

    Landewé, R. B.; Vergouwen, M. S.; Goeei The, S. G.; van Rijthoven, A. W.; Breedveld, F. C.; Dijkmans, B. A.

    1995-01-01

    To confirm the antimalarial drug induced increase of creatinine to determine the factors contributing to this effect. Patients with rheumatoid arthritis (RA) (n = 118) who have used or still use antimalarials (chloroquine or hydroxychloroquine). Serum creatinines prior to antimalarials and serum

  20. Quantitative Structure ‒ Antiprotozoal Activity Relationships of Sesquiterpene Lactones

    Directory of Open Access Journals (Sweden)

    Reto Brun

    2009-06-01

    Full Text Available Prompted by results of our previous studies where we found high activity of some sesquiterpene lactones (STLs against Trypanosoma brucei rhodesiense (which causes East African sleeping sickness, we have now conducted a structure-(in-vitro-activity study on a set of 40 STLs against T. brucei rhodesiense, T. cruzi, Leishmania donovani and Plasmodium falciparum. Furthermore, cytotoxic activity against L6 rat skeletal myoblast cells was assessed. Some of the compounds possess high activity, especially against T. brucei (e.g. helenalin and some of its esters with IC50-values of 0.05-0.1 µM, which is about 10 times lower than their cytotoxic activity. It was found that all investigated antiprotozoal activities are significantly correlated with cytotoxicity and the major determinants for activity are a,b-unsaturated structural elements, also known to be essential for other biological activities of STLs. It was observed, however, that certain compounds are considerably more toxic against protozoa than against mammalian cells while others are more cytotoxic than active against the protozoa. A comparative QSAR analysis was therefore undertaken, in order to discern the antiparasitic activity of STLs against T. brucei and cytotoxicity. Both activities were found to depend to a large extent on the same structural elements and molecular properties. The observed variance in the biological data can be explained in terms of subtle variations in the relative influences of various molecular descriptors.

  1. ANTIPROTOZOAL ACTIVITY OF EXTRACTS OFELAEODENDRON TRICHOTOMUM(CELASTRACEAE).

    Science.gov (United States)

    Roca-Mézquita, Carolina; Graniel-Sabido, Manlio; Moo-Puc, Rosa E; Leon-Déniz, Lorena V; Gamboa-León, Rubí; Arjona-Ruiz, Carely; Tun-Garrido, Juan; Mirón-López, Gumersindo; Mena-Rejón, Gonzalo J

    2016-01-01

    Chagas disease, amebiasis, giardiasis and trichomoniasis represent a serious health problem in Latin America. The drugs employed to treat these illnesses produce important side effects and resistant strains have appeared. The present study was aimed to evaluate the antiprotozoal activity of leaves, stem bark and root bark of Elaeodendron trichotomum , a celastraceus, that is used in Mexico as an anti-infective in febrile-type diseases. Dichloromethane and methanol extracts of leaves, bark and roots of Elaeodendron trichotomum were tested against Entamoeba histolytica , Giardia lamblia , Trichomonas vaginalis , and Trypanosoma cruzi . A quantitative HPLC analysis of pristimerin and tingenone was performed. The dichloromethane extract of roots was active against E. histolytica , G. lamblia , T. vaginalis , and T. cruzi , at IC50's of 0.80, 0.44, 0.46, and 2.68 μg/mL, respectively. The HPLC analysis revealed the presence of tingenone (3.84%) and pristimerin (0.14%). The dichloromethane extract of the roots bark showed significant activity against all screened protozoa.

  2. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers to ...

  3. Antiprotozoal and molluscicidal activities of five Brazilian plants

    Directory of Open Access Journals (Sweden)

    Truiti M.C.T.

    2005-01-01

    Full Text Available Leishmaniasis, Chagas' disease and schistosomiasis (bilharzia are parasitic diseases with wide distribution on the American continent, affecting millions of people. In the present study, biological assays for antiprotozoal and molluscicidal activities were carried out with ethanolic extracts of plant species from the Brazilian part of the Upper Paraná River. Crude extracts were obtained by percolation with absolute ethanol from the leaves of Cayaponia podantha Cogn., Nectandra falcifolia (Nees Castiglioni and Paullinia elegans Cambess., as well as from the aerial parts of Helicteres gardneriana St. Hil. & Naud. and Melochia arenosa Benth., all belonging to genera used in folk medicine. Trypanocidal activity of plants was assayed on epimastigote cultures in liver infusion tryptose. Anti-leishmanial activity was determined over cultures of promastigote forms of the parasite in Schneider's Drosophila medium. Microscopic countings of parasites, after their incubation in the presence of different concentrations of the crude extracts, were made in order to determine the percentage of growth inhibition. C. podantha and M. arenosa, at a concentration of 10 µg/mL, showed 90.4 ± 11.52 and 88.9 ± 2.20% growth inhibition, respectively, of epimastigote forms of Trypanosoma cruzi, whereas N. falcifolia demonstrated an LD50 of 138.5 µg/mL against promastigote forms of Leishmania (Viannia braziliensis. Regarding molluscicidal activity, the acute toxicity of the extracts on Biomphalaria glabrata was evaluated by a rapid screening procedure. M. arenosa was 100% lethal to snails at 200 µg/mL and showed an LD50 of 143 µg/mL. Screening of plant extracts represents a continuous effort to find new antiparasitic drugs.

  4. Metallocene Antimalarials: The Continuing Quest

    Science.gov (United States)

    Blackie, Margaret A. L.; Chibale, Kelly

    2008-01-01

    Over the last decade, a significant body of research has been developed around the inclusion of a metallocene moiety into known antimalarial compounds. Ferroquine is the most successful of these compounds. Herein, we describe our contribution to metallocene antimalarials. Our approach has sought to introduce diversity sites in the side chain of ferroquine in order to develop a series of ferroquine derivatives. The replacement of the ferrocenyl moiety with ruthenocene has given rise to ruthenoquine and a modest series of analogues. The reaction of ferroquine and selected analogues with Au(PPh3)NO3, Au(C6F5)(tht), and [Rh(COD)Cl2] has resulted in a series of heterobimetallic derivatives. In all cases, compounds have been evaluated for in vitro antiplasmodial activity in both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Preliminary structure-activity relationships have been delineated. PMID:18274662

  5. Synthesis of marine-derived 3-alkylpyridinium alkaloids with potent antiprotozoal activity

    NARCIS (Netherlands)

    Rodenko, B.; Al-Salabi, M.I.; Teka, I.A.; Ho, W.; El-Sabbagh, N.; Ali, J.A.M.; Ibrahim, H.M.S.; Wanner, M.J.; Koomen, G.J.; de Koning, H.P.

    2011-01-01

    Given the pressing need for new antiprotozoal drugs without cross-resistance with current (failing) chemotherapy, we have explored 3-tridecylpyridinium alkaloids (3TPAs), derivatives of viscosamine, as antiparasitic agents. We have developed a simple synthetic route toward viscosamine and related

  6. Antiprotozoal Activity of α,β-Unsaturated δ-Lactones: Promising ...

    African Journals Online (AJOL)

    Erah

    2011-03-24

    Mar 24, 2011 ... lactones displayed high antiprotozoal activity and thus are promising compounds for new drug discovery and development. These compounds .... Aristolochia argentina (Aristolochiaceae) [31],. Chorisia crispflora (Bombaceae) [32], ... biological profiles of these compounds indicate there is no tendency to ...

  7. Synthesis and in vitro antiprotozoal activity of some 2- amino-4 ...

    African Journals Online (AJOL)

    Synthesis and in vitro antiprotozoal activity of some 2- amino-4-phenyloxazole derivatives. Rubén M. Carballo, Jesús Patrón-Vázquez, David Cáceres-Castillo, Ramiro Quijano-Quiñones, Angel Herrera-España, Rosa E. Moo-Puc, Juan Chalé-Dzul, Gonzalo J. Mena-Rejón ...

  8. Antimalarial natural products: a review

    Directory of Open Access Journals (Sweden)

    Faraz Mojab

    2012-03-01

    Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures.

  9. 8,8-dialkyldihydroberberines with potent antiprotozoal activity.

    Science.gov (United States)

    Endeshaw, Molla; Zhu, Xiaohua; He, Shanshan; Pandharkar, Trupti; Cason, Emily; Mahasenan, Kiran V; Agarwal, Hitesh; Li, Chenglong; Munde, Manoj; Wilson, W David; Bahar, Mark; Doskotch, Raymond W; Kinghorn, A Douglas; Kaiser, Marcel; Brun, Reto; Drew, Mark E; Werbovetz, Karl A

    2013-03-22

    Semisynthetic 8,8-dialkyldihydroberberines (8,8-DDBs) were found to possess mid- to low-nanomolar potency against Plasmodium falciparum blood-stage parasites, Leishmania donovani intracellular amastigotes, and Trypanosoma brucei brucei bloodstream forms. For example, 8,8-diethyldihydroberberine chloride (5b) exhibited in vitro IC50 values of 77, 100, and 5.3 nM against these three parasites, respectively. In turn, two 8,8-dialkylcanadines, obtained by reduction of the corresponding 8,8-DDBs, were much less potent against these parasites in vitro. While the natural product berberine is a weak DNA binder, the 8,8-DDBs displayed no affinity for DNA, as assessed by changes in the melting temperature of poly(dA·dT) DNA. Selected 8,8-DDBs showed efficacy in mouse models of visceral leishmaniasis and African trypanosomiasis, with 8,8-dimethyldihydroberberine chloride (5a) reducing liver parasitemia by 46% in L. donovani-infected BALB/c mice when given at an intraperitoneal dose of 10 mg/kg/day for five days. The 8,8-DDBs may thus serve as leads for discovering new antimalarial, antileishmanial, and antitrypanosomal drug candidates.

  10. Antituberculosis study of organotin(IV complexes: A review

    Directory of Open Access Journals (Sweden)

    Humaira Iqbal

    2015-12-01

    Full Text Available This review emphasized on the antituberculosis activity of organotin complexes. The astonishing antituberculosis activity of organotin complexes of mefenamic acid, 2-[(2,6-dimethylphenylamino]benzoic acid (HDMPA, and [bis(2,6-dimethylphenylamino]benzoic acid, NSAIDs from the carboxylic acid, oxicams family, meclofenamic acid or (N-(2,6-dichloro-m-tolylanthranilic acid, cinnamic acid, (Z-2-acetamido-3-phenylacrylic acid, 3-methyl-but-2-enoic acid, and 2,2-diphenylacetic acid is scrutinized using Mycobacterium tuberculosis H37Rv. It showed that there exists a beguiling, range of structural diversity for organotin moiety in all these complexes. Biologically active compounds should have available coordination positions at tin. Antituberculosis activity of organotin complexes is influenced by the nature of the ligand environment, organic groups attached to the tin, compound structure, toxicity, and potential mechanism of action; though generally, an MIC ≤ 1 μg ml−1 in a new compound class is considered a good lead. The results of complexes exhibited that triorganotin(IV complexes have superior antituberculosis activity as compared to diorganotin(IV complexes. It may be due to the fact that generally toxicity of the organotin compounds is associated with the organic ligand and the toxicity decreases with the order of tri > di > mono-organotins.

  11. Pharmacologic Considerations in Use and Development of Antituberculosis Drugs

    OpenAIRE

    Davies, Geraint

    2015-01-01

    Rational development and deployment of antituberculosis drugs depend on a comprehensive understanding of the pharmacokinetics and pharmacodynamics that underlie their clinical behavior. Successful implementation of a pharmacokinetic–pharmacodynamic approach faces difficulties that, although not unique to tuberculosis as a therapeutic area, in combination pose a significant scientific challenge. In recent years, a multidisciplinary response combining new technological and analytical approaches...

  12. In vitro antiprotozoal activity of abietane diterpenoids isolated from Plectranthus barbatus Andr.

    Science.gov (United States)

    Mothana, Ramzi A; Al-Said, Mansour S; Al-Musayeib, Nawal M; El Gamal, Ali A; Al-Massarani, Shaza M; Al-Rehaily, Adnan J; Abdulkader, Majed; Maes, Louis

    2014-05-12

    Chromatographic separation of the n-hexane extract of the aerial part of Plectranthus barbatus led to the isolation of five abietane-type diterpenes: dehydroabietane (1); 5,6-didehydro-7-hydroxy-taxodone (2); taxodione (3); 20-deoxocarnosol (4) and 6α,11,12,-trihydroxy-7β,20-epoxy-8,11,13-abietatriene (5). The structures were determined using spectroscopic methods including one- and two-dimensional NMR methods. Compounds (1)-(3) and (5) are isolated here for the first time from the genus Plectranthus. The isolated abietane-type diterpenes tested in vitro for their antiprotozoal activity against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxicity was determined against fibroblast cell line MRC-5. Compound (2) 5,6-didehydro-7-hydroxy-taxodone showed remarkable activity with acceptable selectivity against P. falciparum (IC50 9.2 µM, SI 10.4) and T. brucei (IC50 1.9 µM, SI 50.5). Compounds (3)-(5) exhibited non-specific antiprotozoal activity due to high cytotoxicity. Compound (1) dehydroabietane showed no antiprotozoal potential.

  13. In Vitro Antiprotozoal Activity of Abietane Diterpenoids Isolated from Plectranthus barbatus Andr.

    Directory of Open Access Journals (Sweden)

    Ramzi A. Mothana

    2014-05-01

    Full Text Available Chromatographic separation of the n-hexane extract of the aerial part of Plectranthus barbatus led to the isolation of five abietane-type diterpenes: dehydroabietane (1; 5,6-didehydro-7-hydroxy-taxodone (2; taxodione (3; 20-deoxocarnosol (4 and 6α,11,12,-trihydroxy-7β,20-epoxy-8,11,13-abietatriene (5. The structures were determined using spectroscopic methods including one- and two-dimensional NMR methods. Compounds (1–(3 and (5 are isolated here for the first time from the genus Plectranthus. The isolated abietane-type diterpenes tested in vitro for their antiprotozoal activity against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxicity was determined against fibroblast cell line MRC-5. Compound (2 5,6-didehydro-7-hydroxy-taxodone showed remarkable activity with acceptable selectivity against P. falciparum (IC50 9.2 µM, SI 10.4 and T. brucei (IC50 1.9 µM, SI 50.5. Compounds (3–(5 exhibited non-specific antiprotozoal activity due to high cytotoxicity. Compound (1 dehydroabietane showed no antiprotozoal potential.

  14. In Vitro Antiprotozoal Activity of Abietane Diterpenoids Isolated from Plectranthus barbatus Andr.

    Science.gov (United States)

    Mothana, Ramzi A.; Al-Said, Mansour S.; Al-Musayeib, Nawal M.; El Gamal, Ali A.; Al-Massarani, Shaza M.; Al-Rehaily, Adnan J.; Abdulkader, Majed; Maes, Louis

    2014-01-01

    Chromatographic separation of the n-hexane extract of the aerial part of Plectranthus barbatus led to the isolation of five abietane-type diterpenes: dehydroabietane (1); 5,6-didehydro-7-hydroxy-taxodone (2); taxodione (3); 20-deoxocarnosol (4) and 6α,11,12,-trihydroxy-7β,20-epoxy-8,11,13-abietatriene (5). The structures were determined using spectroscopic methods including one- and two-dimensional NMR methods. Compounds (1)–(3) and (5) are isolated here for the first time from the genus Plectranthus. The isolated abietane-type diterpenes tested in vitro for their antiprotozoal activity against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxicity was determined against fibroblast cell line MRC-5. Compound (2) 5,6-didehydro-7-hydroxy-taxodone showed remarkable activity with acceptable selectivity against P. falciparum (IC50 9.2 μM, SI 10.4) and T. brucei (IC50 1.9 μM, SI 50.5). Compounds (3)–(5) exhibited non-specific antiprotozoal activity due to high cytotoxicity. Compound (1) dehydroabietane showed no antiprotozoal potential. PMID:24823881

  15. Quinoline-based antimalarial hybrid compounds.

    Science.gov (United States)

    Vandekerckhove, Stéphanie; D'hooghe, Matthias

    2015-08-15

    Quinoline-containing compounds, such as quinine and chloroquine, have a long-standing history as potent antimalarial agents. However, the increasing resistance of the Plasmodium parasite against these drugs and the lack of licensed malaria vaccines have forced chemists to develop synthetic strategies toward novel biologically active molecules. A strategy that has attracted considerable attention in current medicinal chemistry is based on the conjugation of two biologically active molecules into one hybrid compound. Since quinolines are considered to be privileged antimalarial building blocks, the synthesis of quinoline-containing antimalarial hybrids has been elaborated extensively in recent years. This review provides a literature overview of antimalarial hybrid molecules containing a quinoline core, covering publications between 2009 and 2014. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Adverse Reactions to Antituberculosis Drugs in Iranian Tuberculosis Patients

    Directory of Open Access Journals (Sweden)

    Aliasghar Farazi

    2014-01-01

    Full Text Available Background. Antituberculosis multidrug regimens have been associated with increased incidence of adverse drug reactions (ADRs. This study aimed to determine the incidence and associated factors of ADRs due to antituberculosis therapy. Methods. This is a retrospective cross-sectional study on tuberculosis patients who were treated in tuberculosis clinics in Markazi province in Iran. The information contained in the medical files was extracted and entered into the questionnaire. Data was descriptively analyzed by using statistical package for social sciences (SPSS 18. Results. A total of 940 TB patients of 1240 patients’ medical records available in 10 medical offices were included in this study. Of the 563 ADRs found in this study, 82.4% were considered minor reactions and 17.6% were major reactions. No death from antituberculosis ADR was observed. We found that the risk of major ADRs was higher in females (P  value=0.0241, age >50 y (P  value=0.0223, coinfection with HIV (P  value=0.0323, smoking (P  value=0.002, retreatment TB (P  value=0.0203, and comorbidities (P  value=0.0005. Conclusions. This study showed that severe side effects of anti-TB drugs are common in patients who have risk factors of ADRs and they should be followed up by close monitoring.

  17. Recent developments in the antiprotozoal and anticancer activities of the 2-alkynoic fatty acids

    Science.gov (United States)

    Carballeira, Néstor M.

    2013-01-01

    The 2-alkynoic fatty acids are an interesting group of synthetic compounds that display antimycobacterial, antifungal, anticancer, and pesticidal activities but their antiprotozoal activity has received little attention until recently. In this review we have summarized our present knowledge of the biomedical potential of the 2-hexadecynoic acid (2-HDA) and 2-octadecynoic acid (2-ODA) together with several mechanistic pieces of work attesting to the fact that these compounds, and their metabolites, are good fatty acid biosynthesis inhibitors. The antiprotozoal activity of 2-HDA and 2-ODA against Leishmania donovani and Plasmodium falciparum, parasites responsible for visceral leishmaniasis and malaria, respectively, is also reviewed. The evidence obtained so far supports the fact that these fatty acids are good inhibitors of the L. donovani DNA topoisomerase IB enzyme (LdTopIB) and the potency of LdTopIB inhibition is chain length dependent. We also demonstrate the generality of the antiprotozoal activity of 2-HDA and 2-ODA against P. falciparum, and review our present knowledge of their inhibition of key P. falciparum enzymes such as PfFabZ, PfFabG, and PfFabI together with some possible modes of inhibition. Recent research by our group has also demonstrated that 2-ODA displays antineoplastic activity, specifically against the neuroblastoma SH-SY5Y cell line via lactate dehydrogenase (LDH) release, which is a cell death mechanism principally associated to necrosis. This is the first comprehensive review of the medicinal chemistry of this interesting group of acetylenic fatty acids. PMID:23727443

  18. Anti-Protozoal Activities of Cembrane-Type Diterpenes from Vietnamese Soft Corals

    Directory of Open Access Journals (Sweden)

    Nguyen Phuong Thao

    2015-07-01

    Full Text Available Based on our previous finding that certain cembranoid diterpenes possess selective toxicity against protozoan pathogens of tropical diseases such as Trypanosoma and Plasmodium, we have subjected a series of 34 cembranes isolated from soft corals living in the Vietnamese sea to an in vitro screening for anti-protozoal activity against Trypanosoma brucei rhodesiense (Tbr, T. cruzi (Tc, Leishmania donovani (Ld, and Plasmodium falciparum (Pf. Twelve of the tested compounds displayed significant activity against at least one of the parasites. Specifically, 7S,8S-epoxy-1,3,11-cembratriene-16-oic methyl ester (1, (1R,4R,2E,7E,11E-cembra-2,7,11-trien-4-ol (2, crassumol D (12, crassumol E (13, and (1S,2E,4S,6E,8S,11S-2,6,12(20-cembrantriene-4,8,11-triol (16 from Lobophytum crassum, L. laevigatum, and Sinularia maxima showed the highest level of inhibitory activity against T. b. rhodesiense, with IC50 values of about 1 µM or less. Lobocrasol A (6 and lobocrasol C (8 from L. crassum and L. laevigatum exhibited particularly significant inhibitory effects on L. donovani with IC50 values < 0.2 µM. The best antiplasmodial effect was exerted by laevigatol A (10, with an IC50 value of about 3.0 µM. The cytotoxicity of the active compounds on L6 rat skeletal myoblast cell was also assessed and found to be insignificant in all cases. This is the first report on anti-protozoal activity of these compounds, and points out the potential of the soft corals in discovery of new anti-protozoal lead compounds.

  19. Antimalarial work in China: a historical perspective.

    Science.gov (United States)

    Yip, K

    1998-06-01

    Systematic scientific studies of malaria in China did not begin until the 1920s. The persistence of misconceptions about the disease and the absence of political stability, funds and trained personnel were obstacles to any large scale antimalarial campaigns. In the 1920s and 30s, antimalarial efforts involved epidemiologic studies, environmental alterations, and treatment of patients. During the Sino-Japanese War when the Chinese government relocated inland, China's antimalarial work focused on the control of the disease, especially in the western and southwestern provinces. After the founding of the People's Republic of China in 1949, nationwide antimalarial campaigns were initiated and enforced by the central government which also promoted intersectoral and interregional cooperation. Together with the building of a preventive and anti-epidemic infrastructure and health care system as well as the training of personnel, the government used techniques of mass mobilization to launch programs of vector control and mass therapy. Provinces were also organized into antimalarial regional alliances to facilitate malaria control and surveillance.

  20. THE TRAGEDY CAUSED BY FAKE ANTIMALARIAL DRUGS

    Directory of Open Access Journals (Sweden)

    Pierre Ambroise-Thomas

    2012-01-01

    Full Text Available

    Counterfeit antimalarials (mainly artemisinin derivatives is a crucial health problem in developing countries, particularly in Africa. The illegal production, sale and distribution of fake drugs is a huge market evaluated to several billion of dollars and represents more than 50% of the pharmaceutical market in several African countries. Fake drugs have led to a very great number of deaths from untreated malaria or fatality provoked by toxic ingredients. These fake medicines increase the risk of artemisinin resistance developed by the use of sub therapeutic dosages of antimalarials. Tackling this criminal traffic is the objective of an international  programme created by WHO  and involves the international police and custom organizations like INTERPOL. Several very important and encouraging results have been obtained, but the problem will be completely solved if genuine antimalarials, free-of-charge, are handed-over to populations in sub Sahara African countries.

     

     

  1. THE TRAGEDY CAUSED BY FAKE ANTIMALARIAL DRUGS

    Directory of Open Access Journals (Sweden)

    Pierre Ambroise-Thomas

    2012-05-01

    Full Text Available Counterfeit antimalarials (mainly artemisinin derivatives is a crucial health problem in developing countries, particularly in Africa. The illegal production, sale and distribution of fake drugs is a huge market evaluated to several billion of dollars and represents more than 50% of the pharmaceutical market in several African countries. Fake drugs have led to a very great number of deaths from untreated malaria or fatality provoked by toxic ingredients. These fake medicines increase the risk of artemisinin resistance developed by the use of sub therapeutic dosages of antimalarials. Tackling this criminal traffic is the objective of an international  programme created by WHO  and involves the international police and custom organizations like INTERPOL. Several very important and encouraging results have been obtained, but the problem will be completely solved if genuine antimalarials, free-of-charge, are handed-over to populations in sub Sahara African countries.

  2. The tragedy caused by fake antimalarial drugs.

    Science.gov (United States)

    Ambroise-Thomas, Pierre

    2012-01-01

    Counterfeit antimalarials (mainly artemisinin derivatives) is a crucial health problem in developing countries, particularly in Africa. The illegal production, sale and distribution of fake drugs is a huge market evaluated to several billion of dollars and represents more than 50% of the pharmaceutical market in several African countries. Fake drugs have led to a very great number of deaths from untreated malaria or fatality provoked by toxic ingredients. These fake medicines increase the risk of artemisinin resistance developed by the use of sub therapeutic dosages of antimalarials. Tackling this criminal traffic is the objective of an international program created by WHO and involves the international police and custom organizations like INTERPOL. Several very important and encouraging results have been obtained, but the problem will be completely solved if genuine antimalarials, free-of-charge, are handed-over to populations in sub Sahara African countries.

  3. Accessibility of Antimalarials in Secondary Health Care Facilities ...

    African Journals Online (AJOL)

    Accessibility of Antimalarials in Secondary Health Care Facilities and Community Pharmacies in Lagos State – A Comparative Study. ... Private partnership pharmacies do not stock antimalarials as a matter of policy, since the drugs are supposed to be obtained free from the hospital. This first line antimalarial cost about six ...

  4. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria.

    Science.gov (United States)

    Achan, Jane; Talisuna, Ambrose O; Erhart, Annette; Yeka, Adoke; Tibenderana, James K; Baliraine, Frederick N; Rosenthal, Philip J; D'Alessandro, Umberto

    2011-05-24

    Quinine remains an important anti-malarial drug almost 400 years after its effectiveness was first documented. However, its continued use is challenged by its poor tolerability, poor compliance with complex dosing regimens, and the availability of more efficacious anti-malarial drugs. This article reviews the historical role of quinine, considers its current usage and provides insight into its appropriate future use in the treatment of malaria. In light of recent research findings intravenous artesunate should be the first-line drug for severe malaria, with quinine as an alternative. The role of rectal quinine as pre-referral treatment for severe malaria has not been fully explored, but it remains a promising intervention. In pregnancy, quinine continues to play a critical role in the management of malaria, especially in the first trimester, and it will remain a mainstay of treatment until safer alternatives become available. For uncomplicated malaria, artemisinin-based combination therapy (ACT) offers a better option than quinine though the difficulty of maintaining a steady supply of ACT in resource-limited settings renders the rapid withdrawal of quinine for uncomplicated malaria cases risky. The best approach would be to identify solutions to ACT stock-outs, maintain quinine in case of ACT stock-outs, and evaluate strategies for improving quinine treatment outcomes by combining it with antibiotics. In HIV and TB infected populations, concerns about potential interactions between quinine and antiretroviral and anti-tuberculosis drugs exist, and these will need further research and pharmacovigilance.

  5. Antimalarial properties of South African medicinal plants

    CSIR Research Space (South Africa)

    Pillay, P

    2007-01-01

    Full Text Available of structure-activity derivatives around these simplified structures is currently under way. CONCLUSIONS The study identified a number of promising South African medicinal plants for further investigation as plant-based antimalarial agents. The overall... as potential sources of antimalarial lead compounds. REFERENCES Clarkson, C., Maharaj, V.J., Crouch, N.R., Grace, O.M., Pillay, P., Matsabisa, M.G., Bhagwandin, N., Smith, P.J., Folb, P.I., 2004. In vitro antiplasmodial activity of medicinal plants native...

  6. Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of Baccharis dracunculifolia.

    Science.gov (United States)

    Parreira, Natállia A; Magalhães, Lizandra G; Morais, Denis R; Caixeta, Soraya C; de Sousa, João P B; Bastos, Jairo K; Cunha, Wilson R; Silva, Márcio L A; Nanayakkara, N P D; Rodrigues, Vanderlei; da Silva Filho, Ademar A

    2010-04-01

    Baccharis dracunculifolia DC. (Asteraceae), popularly known as 'alecrim do campo', is a native plant from Brazil used in folk medicine as febrifuge, anti-inflammatory, antiseptic, and to treat skin sores. Also, B. dracunculifolia is the most important plant source of the Brazilian green propolis, which is recognized for its antiseptic and antiprotozoal activities. This study aimed at investigating the in vitro antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of B. dracunculifolia. The essential oil was obtained by hydrodistillation and analyzed by GC and GC/MS, which allowed the identification of 14 compounds, mainly oxygenated sesquiterpenes, such as (E)-nerolidol (33.51%) and spathulenol (16.24%). The essential oil showed activity against promastigote forms of Leishmania donovani, with IC(50) values of 42 microg/ml. The essential oil displayed high activity in the schistosomicidal assay, since all pairs of Schistosoma mansoni adult worms were dead after incubation with the essential oil (10, 50, and 100 microg/ml). B. dracunculifolia essential oil was neither cytotoxic against Vero cells, nor active in the antimicrobial and antiplasmodial assays.

  7. Counterfeit and substandard antimalarial drugs in Cambodia.

    Science.gov (United States)

    Lon, C T; Tsuyuoka, R; Phanouvong, S; Nivanna, N; Socheat, D; Sokhan, C; Blum, N; Christophel, E M; Smine, A

    2006-11-01

    Counterfeit and substandard antimalarial drugs can cause death and contribute to the growing malaria drug resistance problem, particularly in Southeast Asia. Since 2003 in Cambodia the quality of antimalarial drugs both in the public and private health sector is regularly monitored in sentinel sites. We surveyed 34% of all 498 known facilities and drug outlets in four provinces. We collected 451 drug samples; 79% of these were not registered at the Cambodia Department of Drugs and Food (DDF). Twenty-seven percent of the samples failed the thin layer chromatography and disintegration tests; all of them were unregistered products. Immediate action against counterfeit drugs was taken by the National Malaria Control Program (NMCP) and the DDF. They communicated with the Provincial Health Department about the presence of counterfeit antimalarial drugs through alert letters, a manual, annual malaria conferencing and other training occasions. Television campaigns to alert the population about counterfeit drugs were conducted. Moreover, the NMCP has been promoting the use of good quality antimalarial drugs of a blister co-packaged combination of artesunate and mefloquine in public and private sectors. Appropriate strategies need to be developed and implemented by relevant government agencies and stakeholders to strengthen drug quality assurance and control systems in the country.

  8. Antimalarial Drugs for Pediatrics - Prescribing and Dispensing ...

    African Journals Online (AJOL)

    Purpose: To assess dispensing and prescribing practices with regard to antimalarial drugs for pediatrics in private pharmacies and public hospitals in Dar es Salaam, Tanzania. Methods: This was a cross-sectional, descriptive study that assessed the knowledge and practice of 200 drug dispensers in the private community ...

  9. Design, Synthesis and Testing of Novel Antimalarial

    Science.gov (United States)

    2006-05-05

    of P. falciparum Strains Tested ............................. 27 Figure 17 – Antimalarial Data of Chloroquine and Mefloquine ...vitro tests were performed by Dr. Lucia Gerena at the Walter Reed Army Institute of Research. 27 D6 W2 TM91-C235 Resistance Mefloquine ...Chloroquine Mefloquine Halofantrine Pyrimethamine Chloroquine Quinine Folate Antagonists Susceptibility Chloroquine Mefloquine

  10. Thiazole Containing Heterocycles With Antimalarial Activity.

    Science.gov (United States)

    Kumawat, Mukesh Kumar

    2017-07-25

    Heterocyclic compounds are the main class of medicinally important compounds. Many heterocyclic compounds bearing a five member ring in their structure have a good spectrum of biological activities. Thiazole is an important class of five membered heterocyclic compounds. Thiazole and its derivatives exhibited a broad range of biological activities due to the presence of various reaction posses. Thiazole, heterocyclic nucleus is present in several potent pharmacologically active molecules such as Sulfathiazole (antimicrobial drug), Ritonavir (antiretroviral drug), Tiazofurin (antineoplastic drug) and Abafungin (antifungal drug) etc. The search for some novel biologically active thiazoles is to be continued in the field of medicinal chemistry for investigators. An aim of this review is to identify and try making a SAR (Structure Activity Relationship) of substituted thiazole nucleus as possible new antimalarials. Author undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question and inclusion/exclusion criteria. The quality of retrieved papers was appraised using standard tools. The characteristics of screened papers were described, and a deductive qualitative content analysis methodology was applied to analyse the interventions and findings of included studies using a conceptual framework. Fifteen papers were included in the review; the majority were described about many biological activity of thiazole nucleus. Seven papers were find that had impacted upon the thaizoles as antimalarials. Some papers focused on the design, synthesis and antimalarial activity evaluation of thiazole derivatives. This review identified and made a SAR (Structure Activity Relationship) of substituted thiazole nucleus as possible new antimalarials. This review describes ongoing research in the search for novel thiazoles as targets and new antimalarial drug molecules. Copyright© Bentham Science Publishers; For any queries

  11. Suppression of adoptive antituberculosis immunity by normal recipient animals

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1983-01-01

    Adoptive immunity is poorly expressed in normal syngeneic mice. This phenomenon was studied by using experimental antituberculosis immunity as a model system representing pure cell-mediated immunity. Expression of adoptive immunity was facilitated by pretreating recipients with sublethal ionizing radiation (500 rads) or high doses (200 mg/kg) of cyclophosphamide or by using adult thymectomized, lethally irradiated, bone-marrow-reconstituted (TXB) mice. Adult thymectomy was less effective, and a low dose of cyclophosphamide (20 mg/kg) was completely ineffective. The beneficial effect of sublethal irradiation was reduced over time; it persisted for 4 weeks and was absent after 8 weeks. Attempts to restore the suppressed state of normal mice to sublethally irradiated mice by using normal spleen or thymus cells did not succeed. Even in rats, which express adoptive antituberculosis immunity without immunosuppressive treatment, the use of sublethally irradiated or TXB recipients potentiated adoptive immunity. It was concluded that suppression of adoptive immunization in normal recipient mice is mediated predominantly, if not exclusively, by T lymphocytes that are sensitive to a number of immunosuppressive agents. The suppressor cells are long-lived and can be regenerated from precursors that are resistant to 500 but not to 900 rads of ionizing radiation

  12. In vitro antiprotozoal and cytotoxic activity of ethnopharmacologically selected guinean plants.

    Science.gov (United States)

    Traore, Mohammed Sahar; Diane, Sere; Diallo, Mamadou Saliou Telly; Balde, Elhadj Saïdou; Balde, Mamadou Aliou; Camara, Aïssata; Diallo, Abdoulaye; Keita, Abdoulaye; Cos, Paul; Maes, Louis; Pieters, Luc; Balde, Aliou Mamadou

    2014-10-01

    Based on an ethnobotanical survey, 41 Guinean plant species widely used in the traditional treatment of fever and/or malaria were collected. From these, 74 polar and apolar extracts were prepared and tested for their in vitro antiprotozoal activity along with their cytotoxicity on MRC-5 cells. A potent activity (IC50 Terminalia albida, Vismia guineensis, Spondias mombin, and Pavetta crassipes against Plasmodium falciparum; for Pavetta crassipes, Vismia guineensis, Guiera senegalensis, Spondias mombin, Terminalia macroptera, and Combretum glutinosum against Trypanosoma brucei brucei; for Bridelia ferruginea, G. senegalensis, V. guineensis, P. crassipes, and C. glutinosum against Trypanosoma cruzi. Only the extract of Tetracera alnifolia showed a good activity (IC50 8.1 µg/mL) against Leishmania infantum. The selectivity index of the active samples varied from 0.08 to > 100. These results may validate at least in part the traditional use of some of the plant species. Georg Thieme Verlag KG Stuttgart · New York.

  13. Electrochemical and ESR study of 5-nitrofuryl-containing thiosemicarbazones antiprotozoal drugs.

    Science.gov (United States)

    Rigol, Carolina; Olea-Azar, C; Mendizábal, Fernando; Otero, Lucía; Gambino, Dinorah; González, Mercedes; Cerecetto, Hugo

    2005-10-01

    Cyclic voltammetry and electron spin resonance (ESR) techniques were used in the investigation of several potential antiprotozoal thiosemicarbazones nitrofurane derivatives. A self-protonation process involving the protonation of the nitro group due to the presence of an acidic proton in the thiosemicarbazone moiety was observed in the first step of a CEE(rev) reduction mechanism of these derivatives. ESR spectra of the free radicals obtained by electrolytic reduction were characterized and analyzed. AM1 methodology was used to obtain the optimized geometries and UB3LYP calculations were performed to obtain the theoretical hyperfine coupling constants. The theoretical study exhibited an unusual assignment of the spin densities showing a free radical centered in the thiosemicarbazone moiety rather than the nitro which are in agreement with the experimental hyperfine pattern.

  14. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids

    Directory of Open Access Journals (Sweden)

    Birgit Viira

    2016-06-01

    Full Text Available Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  15. [Historical overview of antimalarials used in Venezuela].

    Science.gov (United States)

    Zerpa de Artiles, N

    1993-06-01

    A historical review of antimalarials used in Venezuela is presented from the time when the bark of quina was used until the massive distribution of quinine and metoquine by the Dirección de Malariología y Saneamiento Ambiental. The utility of chloroquine and primaquine against sensible parasite isolates and of sulfadoxine-pyrimethamine and quinine, currently used against P. falciparum resistant strains, is thoroughly discussed. The author suggests use of artemisimine and its derivatives as a very promising antimalarial drug. She also stresses the possibility of the application of new antimalaria vaccine against P. falciparum blood states, presently assayed in the country as an additional tool in malaria control programs.

  16. Antituberculosis Drug-Induced Liver Injury with Autoimmune Features: Facing Diagnostic and Treatment Challenges

    Directory of Open Access Journals (Sweden)

    Maria Adriana Rangel

    2017-01-01

    Full Text Available The authors present a case report of antituberculosis drug-induced liver injury that offered diagnostic challenges (namely, the possibility of drug-induced autoimmune hepatitis and treatment difficulties.

  17. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes.

    NARCIS (Netherlands)

    Ruslami, R.; Nijland, H.M.J.; Adhiarta, I.G.; Kariadi, S.H.; Alisjahbana, B.; Aarnoutse, R.E.; Crevel, R. van

    2010-01-01

    Altered pharmacokinetics of antituberculosis drugs may contribute to an increased risk of tuberculosis treatment failure for diabetic patients. We previously found that rifampin exposure was 2-fold lower in diabetic than in nondiabetic tuberculosis patients during the continuation phase of

  18. Pricing, distribution, and use of antimalarial drugs.

    Science.gov (United States)

    Foster, S. D.

    1991-01-01

    Prices of new antimalarial drugs are targeted at the "travellers' market" in developed countries, which makes them unaffordable in malaria-endemic countries where the per capita annual drug expenditures are US$ 5 or less. Antimalarials are distributed through a variety of channels in both public and private sectors, the official malaria control programmes accounting for 25-30% of chloroquine distribution. The unofficial drug sellers in markets, streets, and village shops account for as much as half of antimalarials distributed in many developing countries. Use of antimalarials through the health services is often poor; drug shortages are common and overprescription and overuse of injections are significant problems. Anxiety over drug costs may prevent patients from getting the necessary treatment for malaria, especially because of the seasonal appearance of this disease when people's cash reserves are very low. The high costs may lead them to unofficial sources, which will sell a single tablet instead of a complete course of treatment, and subsequently to increased, often irrational demand for more drugs and more injections. Increasingly people are resorting to self-medication for malaria, which may cause delays in seeking proper treatment in cases of failure, especially in areas where chloroquine resistance has increased rapidly. Self-medication is now widespread, and measures to restrict the illicit sale of drugs have been unsuccessful. The "unofficial" channels thus represent an unacknowledged extension of the health services in many countries; suggestions are advanced to encourage better self-medication by increasing the knowledge base among the population at large (mothers, schoolchildren, market sellers, and shopkeepers), with an emphasis on correct dosing and on the importance of seeking further treatment without delay, if necessary. PMID:1893512

  19. The antimalarial ferroquine: from bench to clinic

    Directory of Open Access Journals (Sweden)

    Biot C.

    2011-08-01

    Full Text Available Ferroquine (FQ, SSR97193 is currently the most advanced organometallic drug candidate and about to complete phase II clinical trials as a treatment for uncomplicated malaria. This ferrocenecontaining compound is active against both chloroquine-susceptible and chloroquine-resistant Plasmodium falciparum and P. vivax strains and/or isolates. This article focuses on the discovery of FQ, its antimalarial activity, the hypothesis of its mode of action, the current absence of resistance in vitro and recent clinical trials.

  20. Pharmacologic considerations in use and development of antituberculosis drugs.

    Science.gov (United States)

    Davies, Geraint

    2014-09-18

    Rational development and deployment of antituberculosis drugs depend on a comprehensive understanding of the pharmacokinetics and pharmacodynamics that underlie their clinical behavior. Successful implementation of a pharmacokinetic-pharmacodynamic approach faces difficulties that, although not unique to tuberculosis as a therapeutic area, in combination pose a significant scientific challenge. In recent years, a multidisciplinary response combining new technological and analytical approaches has begun to directly address many of these issues, shedding light on some previously poorly understood aspects of drug distribution and response. These advances have important implications for optimization of existing and development of novel drug regimens, putting quantitative pharmacology at the heart of preclinical and early drug development. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children.

    Science.gov (United States)

    Donald, P R

    2010-09-01

    Tuberculous meningitis (TBM) causes a devastating morbidity and mortality in adults and children. Even in patients presenting at an early stage of disease, deterioration may occur despite apparently adequate therapy. The literature relating to cerebrospinal fluid penetration of antituberculosis agents is reviewed. Amongst the essential antituberculosis agents isoniazid has the best CSF pharmacokinetics reaching peak concentrations (C(max)) only slightly less than in blood. Pyrazinamide also has good CSF penetration and in children receiving dosages of 40 mg/kg the CSF C(max) exceeds the proposed minimal inhibitory concentration of 20 μg/ml. Streptomycin other aminoglycosides and ethambutol have poor CSF penetration and cannot be agents of first choice for TBM treatment. Rifampicin at dosages used in adults seldom reaches CSF concentrations exceeding MIC, but does so more frequently in children when dosages of up to 20 mg/kg are used. The non-essential agents ethionamide, the fluoroquinolones, with the exception of ciprofloxacin, and cycloserine (terizadone) have relatively good CSF penetration and are recommended for TBM treatment. The dosages of the essential agents recommended for the treatment of TBM in children are INH 10 mg/kg (range 6-15 mg/kg bodyweight), rifampicin 15 mg/kg (range 10-20 mg/kg), pyrazinamide 35 mg/kg (range 30-40 mg/kg), ethambutol 20 mg/kg (range 15-25 mg/kg) and streptomycin 15 mg/kg (range 12-18 mg/kg). Amongst second-line agents ofloxacin, levofloxacin and moxifloxacin should be used in dosages of 15-20 mg/kg, ethionamide 20 mg/kg in a single dose, if tolerated, and for cycloserine (terizadone) 15 mg/kg. Antituberculous chemotherapy should be started as soon as the diagnosis of TBM is considered. Copyright © 2010. Published by Elsevier Ltd.

  2. Initial resistance to antituberculosis drugs in Yaounde, Cameroon in 1995.

    Science.gov (United States)

    Bercion, R; Kuaban, C

    1997-04-01

    Tuberculosis centre of Hôpital Jamot, Yaounde, Cameroon, the sole referral and tuberculosis treatment facility for Yaounde and its surroundings. To identify Mycobacterium tuberculosis complex strains responsible for pulmonary tuberculosis in Yaounde, determine the prevalence of initial resistance to the main antituberculosis drugs and compare this prevalence in human immunodeficiency virus (HIV) positive and HIV-negative patients. In total, 576 consecutive and previously untreated adult patients admitted with sputum smear positive pulmonary tuberculosis to the tuberculosis centre from July 1994 to December 1995 were included in the study. Sputum specimens collected from each eligible patient were cultured on Löwenstein-Jensen and Coletsos media. Identification of the cultured strains was based on their cultural aspects and standard biochemical tests. The susceptibility of isolates to the major antituberculosis drugs was tested using the indirect proportion method. HIV testing was done using two ELISAs and confirmed by Western blot. Growth of M. tuberculosis complex strains was obtained from specimens of 516 (89.6%) of the 576 patients: 53 (10.3%) were identified as M. africanum and 463 (89.7%) as M. tuberculosis. Of the 516 patients with culture positive specimens, 92 (17.8%) were HIV-positive. Of the 516 strains isolated, 164 (31.8%) were resistant to at least one drug. The pattern of resistance was noted as 25% to one drug, 5.8% to two drugs and 1% to three or more drugs. Initial resistance to streptomycine was the most frequent (20.5%), followed by isoniazid (12.4%), thiacetazone (5.6%), rifampicin (0.8%) and ethambutol (0.4%). No significant difference in the rate of initial resistance was observed between HIV-positive and HIV-negative patients. The rate of initial drug resistance of M. tuberculosis in Yaounde is relatively high. There is therefore an urgent need to reestablish a tuberculosis control programme in Cameroon.

  3. Design and synthesis of indolopyridone hybrids as new antituberculosis agents.

    Science.gov (United States)

    Rather, Muzafar Ahmad; Rasool, Faheem; Bhat, Zubair Shanib; Dar, Hafiz-Ullah; Maqbool, Mubashir; Amin, Shajrul; Yousuf, Syed Khalid; Ahmad, Zahoor

    2017-12-01

    Tuberculosis continues to be the most dangerous infectious disease globally and need for development of new therapies is of utmost importance. In this study we describe the rationale design for synthesis using molecular hybridization and subsequent in-vitro antimycobacterial activity of various indolo-pyridone hybrid molecules against Mycobacterium tuberculosis H37Rv. A total of 16 indolo-pyridone hybrid molecules were synthesized with 85-90% yields and characterized by various spectroscopic techniques. Four compounds were ineffective with MIC >256 μg/ml (highest concentration tested), six exhibited poor activity with MIC > 100 μg/ml, four showed moderate activity with MIC > 50 μg/ml and two had notable anti-TB activity with MIC values 32 μg/ml. Interestingly the last two compounds were observed equally effective against drug susceptible and various drug resistant strains including multidrug-resistant (MDR) strains, thereby clearly demonstrating their potential against MDR-TB. Our results showed that un-substituted aryl rings posses better antituberculosis activity than those having any kind of substitution and derivatives with small sized electron withdrawing groups in aryl ring exhibited activity while bigger groups lead to considerable loss in activity. The results of this study open up a new door for further SAR guided synthesis on one hand and on the other hand provide a promising opportunity that may lead to the discovery of a new class of antituberculosis agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Neurocysticercosis as an important differential of paradoxical response during antituberculosis therapy in HIV-negative patient

    Directory of Open Access Journals (Sweden)

    Rivonirina Andry Rakotoarivelo

    2011-12-01

    Full Text Available Neurocysticercosis can simulate a paradoxical response during antituberculosis therapy with neurological ailments. We report the case of a 31 year-old-man, treated for tuberculous meningitis who developed neurological deficit after nine weeks of early antituberculous therapy. The diagnosis of neurocysticercosis was confirmed by CT scan and cerebrospinal fluid analysis. Neurocysticercosis should be sought as an important differential of paradoxical response during antituberculosis therapy.

  5. ANTITUBERCULOSIS DRUG DOSAGE FORMS: RANGE, KEY BENEFITS AND PROSPECTS OF TECHNOLOGICAL IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    M. E. Kim

    2016-01-01

    Full Text Available Interest to research in the development of new formulations of antituberculosis drugs due to the high incidence of tuberculosis in the Republic of Kazakhstan and the Russian Federation nowadays, including with acquired drug resistance. The reason for the development of acquired drug resistance is to interrupt the treatment of patients is the high toxicity of antituberculosis drugs. The improving the efficiency of antituberculosis therapy remains one of the most pressing.The aim this study was to review the dosage forms of antituberculosis drugs currently used and the ways to improve them.Methods. The study was conducted on the basis of scientific analysis (eLibrary database, PubMed, Cyberleninca, patent (kzpatents, reference (Klifar, Drugs register and technical literature.Results. It was revealed that the antituberculosis drugs are available in the form of tablets, capsules, granules for oral use and injection solutions. The advantages and disadvantages of oral dosage forms of antituberculosis drugs: tablets, capsules, granules, syrups, suspensions are described. The importance of the development and implementation in practice of pediatric formulations of antituberculosis drugs is mentioned. The state of current research inhaled formulations for the treatment of tuberculosis is described. The prospects of directional inhalation exposure by immobilization of antituberculosis drugs in liposomes, niosomes, nanocapsules, micelles, micro- and nanoparticles are mentioned. The prospect of the rectal formulations use is described. The increase in interest in the molecular encapsulation of medicinal substances with cyclodextrins in connection with the possibility of increasing the bioavailability of active ingredients, reduce the harmful effects on the gastrointestinal tract, extension, elimination of interaction of incompatible components in combination preparations, the protection of unstable substances is

  6. In vivo antimalarial and cytotoxic properties of Annona senegalensis ...

    African Journals Online (AJOL)

    The in vivo animal antimalarial and in vitro cytotoxic activities of the methanol extract of Annona senegalensis Pers. (Annonaceae) was investigated in this study. The in vivo antimalarial activity of the methanol extract against Plasmodium berghei was assessed using the 4-day suppressive test procedure. The extract of A.

  7. Antimalarial Anthrone and Chromone from the Leaf Latex of Aloe ...

    African Journals Online (AJOL)

    In Ethiopian traditional medicine, the leaf latex of Aloe debranan Chrstian is used for the treatment of several diseases including malaria. In an ongoing search for effective, safe and cheap antimalarial agents from plants, the leaf latex of A. debrana was tested for its in vivo antimalarial activity, in a 4-day suppressive assay ...

  8. In vivo Antimalarial Activity of Methanol and Water Extracts of ...

    African Journals Online (AJOL)

    Conclusions: The possible active compounds responsible for the observed chemosupression may be flavonoids, terpeneoids and anthraquinones which are present in the extract. This is the first report on the in vivo antimalarial activity of E. thorifolium. Keywords: Antimalarial, Eryngium thorifolium, Plasmodium berghei, ...

  9. Antimalarial properties of imipramine and amitriptyline

    International Nuclear Information System (INIS)

    Dutta, P.; Siegel, L.; Pinto, J.; Meshnick, S.

    1986-01-01

    This laboratory has previously demonstrated that imipramine (IM) and amitriptyline (AM), inhibit the conversion of riboflavin to its coenzymic derivatives. Several other laboratories have shown that dietary riboflavin deficiency is protective against malarial infection. In the present investigation, the authors determined whether IM and AM exert antimalarial effects similar to that of riboflavin deficiency, as they have hypothesized. In addition, they evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of P. falciparum (FCR3) in the absence or presence of these drugs (80 μM) was measured by incubating parasitized erythrocytes for 48 h in RPMI 1640 medium. Parasitemia was determined by counting erythrocyte smears and monitoring ( 3 H)hypoxanthine uptake. With no drug, parasitemia was 20.3 +/- 5.3%, whereas in the presence of IM and AM, parasitemia was reduced to 7.3 +/- 0.8% and 13.6 +/- 2.8%, respectively. The uptake of ( 3 H)hypoxanthine was reduced to 47 +/- 3.6% and 54 +/- 2.9% of control by IM and AM, respectively. Assays of hemolysis were conducted by incubating 0.5% RBC suspension in NaCl-Tris buffer for 3 h at 37 0 C with variable concentrations of drugs and/or FP (1-7 μM). Both drugs at 10 to 100 μM significantly enhanced hemolysis induced by FP. No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, IM and AM, possess substantial antimalarial properties, thereby supporting the hypothesis that drugs which interfere with riboflavin metabolism should also provide protection against malaria

  10. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  11. QSAR modeling and chemical space analysis of antimalarial compounds

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  12. Terahertz absorption spectra of commonly used antimalarial drugs

    Science.gov (United States)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-03-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  13. QSAR modeling and chemical space analysis of antimalarial compounds.

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including ~3000 molecules tested in one or several of 17 anti-Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  14. Bifurcatriol, a New Antiprotozoal Acyclic Diterpene from the Brown Alga Bifurcaria bifurcata

    Directory of Open Access Journals (Sweden)

    Vangelis Smyrniotopoulos

    2017-08-01

    Full Text Available Linear diterpenes that are commonly found in brown algae are of high chemotaxonomic and ecological importance. This study reports bifurcatriol (1, a new linear diterpene featuring two stereogenic centers isolated from the Irish brown alga Bifurcaria bifurcata. The gross structure of this new natural product was elucidated based on its spectroscopic data (IR, 1D and 2D-NMR, HRMS. Its absolute configuration was identified by experimental and computational vibrational circular dichroism (VCD spectroscopy, combined with the calculation of 13C-NMR chemical shielding constants. Bifurcatriol (1 was tested for in vitro antiprotozoal activity towards a small panel of parasites (Plasmodium falciparum, Trypanosoma brucei rhodesiense, T. cruzi, and Leishmania donovani and cytotoxicity against mammalian primary cells. The highest activity was exerted against the malaria parasite P. falciparum (IC50 value 0.65 μg/mL with low cytotoxicity (IC50 value 56.6 μg/mL. To our knowledge, this is the first successful application of VCD and DP4 probability analysis of the calculated 13C-NMR chemical shifts for the simultaneous assignment of the absolute configuration of multiple stereogenic centers in a long-chain acyclic natural product.

  15. Search for Antiprotozoal Activity in Herbal Medicinal Preparations; New Natural Leads against Neglected Tropical Diseases

    Directory of Open Access Journals (Sweden)

    Núria Llurba Montesino

    2015-08-01

    Full Text Available Sleeping sickness, Chagas disease, Leishmaniasis, and Malaria are infectious diseases caused by unicellular eukaryotic parasites (“protozoans”. The three first mentioned are classified as Neglected Tropical Diseases (NTDs by the World Health Organization and together threaten more than one billion lives worldwide. Due to the lack of research interest and the high increase of resistance against the existing treatments, the search for effective and safe new therapies is urgently required. In view of the large tradition of natural products as sources against infectious diseases [1,2], the aim of the present study is to investigate the potential of legally approved and marketed herbal medicinal products (HMPs as antiprotozoal agents. Fifty-eight extracts from 53 HMPs on the German market were tested by a Multiple-Target-Screening (MTS against parasites of the genera Leishmania, Trypanosoma, and Plasmodium. Sixteen HMPs showed in vitro activity against at least one of the pathogens (IC50 < 10 µg/mL. Six extracts from preparations of Salvia, Valeriana, Hypericum, Silybum, Arnica, and Curcuma exhibited high activity (IC50 < 2.5 µg/mL. They were analytically characterized by UHPLC/ESI-QqTOF-MSMS and the activity-guided fractionation of the extracts with the aim to isolate and identify the active compounds is in progress.

  16. Antiprotozoal, antimycobacterial and cytotoxic potential of twenty-three British and Irish red algae.

    Science.gov (United States)

    Allmendinger, Andrea; Spavieri, Jasmine; Kaiser, Marcel; Casey, Rosalyn; Hingley-Wilson, Suzie; Lalvani, Ajit; Guiry, Michael; Blunden, Gerald; Tasdemir, Deniz

    2010-07-01

    As part of our continuing research on seaweeds, we have screened the crude extracts of 23 red marine algae collected from England and Ireland. The clinically important blood-stage life forms of Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani and Mycobacterium tuberculosis were used as test organisms in the in vitro assays. The selectivity of the extracts was determined by using mammalian skeletal myoblast (L6) cells. All algal extracts showed activity against T. brucei rhodesiense, with Corallina officinalis and Ceramium virgatum being the most potent (IC(50) values 4.8 and 5.4 microg/ml), whilst none of the algal extracts inhibited the growth of T. cruzi. Except for Porphyra leucosticta, extracts from all seaweeds also showed leishmanicidal activity with IC(50) values ranging from 16.5 to 85.6 microg/ml. Only the crude extract of Calliblepharis jubata showed some weak activity against Mycobacterium tuberculosis (MIC value 256 microg/ml), while the others were inactive at this concentration. Corallina officinalis was the only seaweed that displayed some marginal cytotoxicity (IC(50) value 88.6 microg/ml), and all remaining extracts were non-toxic towards L6 cells at 90 microg/ml concentration. To our knowledge, this is the first study reporting antiprotozoal and antimycobacterial activity of British and Irish red algae.

  17. Classifying new anti-tuberculosis drugs: rationale and future perspectives

    Directory of Open Access Journals (Sweden)

    Simon Tiberi

    2017-03-01

    Full Text Available The classification of anti-tuberculosis (TB drugs is important as it helps the clinician to build an appropriate anti-TB regimen for multidrug-resistant (MDR and extensively drug-resistant (XDR TB cases that do not fulfil the criteria for the shorter MDR-TB regimen. The World Health Organization (WHO has recently approved a revision of the classification of new anti-TB drugs based on current evidence on each drug. In the previous WHO guidelines, the choice of drugs was based on efficacy and toxicity in a step-down manner, from group 1 first-line drugs and groups 2–5 second-line drugs, to group 5 drugs with potentially limited efficacy or limited clinical evidence. In the revised WHO classification, exclusively aimed at managing drug-resistant cases, medicines are again listed in hierarchical order from group A to group D. In parallel, a possible future classification is independently proposed. The aim of this viewpoint article is to describe the evolution in WHO TB classification (taking into account an independently proposed new classification and recent changes in WHO guidance, while commenting on the differences between them. The latest evidence on the ex-group 5 drugs is also discussed.

  18. Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis.

    Science.gov (United States)

    Brossier, F; Sougakoff, W

    2017-09-01

    Molecular methods predict drug resistance several weeks before phenotypic methods and enable rapid implementation of appropriate therapeutic treatment. We aimed to detail the most representative molecular tools used in routine practice for the rapid detection of resistance to antituberculosis drugs among Mycobacterium tuberculosis strains. The molecular diagnosis of resistance to antituberculosis drugs in clinical samples or from in vitro cultures is based on the detection of the most common mutations in the genes involved in the development of resistance in M. tuberculosis strains (encoding either protein targets of antibiotics, or antibiotic activating enzymes) by commercial molecular kits or by sequencing. Three hypotheses could explain the discrepancies between the genotypic results and the phenotypic drug susceptibility testing results: a low percentage of resistant mutants precluding the detection by genotypic methods on the primary culture; a low level of resistance not detected by phenotypic testing; and other resistance mechanisms not yet characterized. Molecular methods have varying sensitivity with regards to detecting antituberculosis drug resistance; that is why phenotypic susceptibility testing methods are mandatory for detecting antituberculosis drug-resistant isolates that have not been detected by molecular methods. The questionable ability of existing phenotypic and genotypic drug susceptibility testing to properly classify strains as susceptible or resistant, and at what level of resistance, was raised for several antituberculosis agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Anti-tuberculosis lupane-type isoprenoids from Syzygium guineense Wild DC. (Myrtaceae stem bark

    Directory of Open Access Journals (Sweden)

    I.A. Oladosu

    2017-12-01

    Full Text Available Plant derived isoprenoids commonly called terpenoids, are not only useful as chemosytemic markers but are increasingly attracting attention in the development of newer drugs for the treatment of multi-drug resistant tuberculosis. Anti-tuberculosis activity guided solvent fractionation and chromatographic separation of the chloroform extract of S. guineense stem bark resulted in the isolation of two bioactive 3-β-hydroxylupane-type isoprenoids: betulinic acid methylenediol ester (1 (MIC; 0.15 mg/mL and betulinic acid (2 (MIC; 0.60 mg/mL. The structures of the isolated compounds were elucidated using spectroscopic techniques. The antituberculosis assay was done using the Mycobacterium Growth Indicator Tube (MGIT method. This is the first report of the isolation of the anti-tuberculosis constituents of S. guineense and its potentials for the development of drug leads for the treatment of tuberculosis thus validating its ethno-medicinal uses.

  20. Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds.

    Science.gov (United States)

    Pérez-González, Mariana Z; Gutiérrez-Rebolledo, Gabriel A; Yépez-Mulia, Lilián; Rojas-Tomé, Irma S; Luna-Herrera, Julieta; Jiménez-Arellanes, María A

    2017-05-01

    Cnidoscolus chayamansa is a medicinal and edible plant known as Chaya, is commonly used as an anti-inflammatory, antiprotozoal, antibacterial agent and as a remedy for respiratory illness, gastrointestinal disorders, and vaginal infections related with the inflammation process. In this paper, we describe the plant's phytochemical analysis and biological activities (antimycobacterial, antibacterial, antiprotozoal, and anti-inflammatory properties) of the CHCl 3 :MeOH (1:1) leaves extract and isolated compounds, as well as the acute and sub-acute toxic effects. Chemical identification of isolated compounds was performed by 1 H- and 13 C NMR spectra data. In vitro antibacterial and antimycobacterial activities were determined by disc diffusion and MABA assays, respectively; antiprotozoal test by means of the sub-culture test. Topical and systemic anti-inflammatory effects were tested by TPA and carrageenan assay on BALB/c mice. Moretenol, moretenyl acetate, kaempferol-3,7-dimethyl ether, and 5-hydroxy-7-3',4'-trimethoxyflavanone were the main compounds isolated. The CHCl 3 :MeOH extract showed antiprotozoal (IC 50 ≤65.29μg/mL), antimycobacterial (MIC≤50μg/mL), and anti-inflammatory activities (ED 50 =1.66mg/ear and 467.73mg/kg), but was inactive against the bacterial strains tested. The LD 50 for extract was >2g/kg. In the sub-acute toxicity test, the extract was administered at 1g/kg for 28days and did not cause lethality or any alteration in hematological and biochemical parameters; in addition, liver, kidney, and spleen histological analysis exhibited no structural changes. Moretenol and moretenyl acetate showed MIC=25μg/mL against Mycobacterium tuberculosis H37Rv and against four monoresistant strains of M. tuberculosis H37Rv. Both compounds exhibited moderate activity against Entamoeba histolytica and Giardia lamblia (IC 50 ≤71.70μg/mL). Kaempferol-3,7-dimethyl ether and 5-hydroxy-7-3',4'-trimethoxy-flavanone were more active than the extract against E

  1. Adverse reactions to antituberculosis drugs in Manguinhos, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Glauciene Santana Damasceno

    2013-01-01

    Full Text Available OBJECTIVES: This study aimed to characterize and estimate the frequency of adverse reactions to antituberculosis drugs in the population treated at the Centro de Saúde Escola Germano Sinval Faria, a primary health care clinic in Manguinhos, Rio de Janeiro City, and to explore the relationship between adverse drug reactions and some of the patients' demographic and health characteristics. METHODS: This descriptive study was conducted via patient record review of incident cases between 2004 and 2008. RESULTS: Of the 176 patients studied, 41.5% developed one or more adverse reactions to antituberculosis drugs, totaling 126 occurrences. The rate of adverse reactions to antituberculosis drugs was higher among women, patients aged 50 years or older, those with four or more comorbidities, and those who used five or more drugs. Of the total reactions, 71.4% were mild. The organ systems most affected were as follows: the gastrointestinal tract (29.4%, the skin and appendages (21.4%, and the central and peripheral nervous systems (14.3%. Of the patients who experienced adverse reactions to antituberculosis drugs, 65.8% received no drug treatment for their adverse reactions, and 4.1% had one of the antituberculosis drugs suspended because of adverse reactions. "Probable reactions" (75% predominated over "possible reactions" (24%. In the study sample, 64.3% of the reactions occurred during the first two months of treatment, and most (92.6% of the reactions were ascribed to the combination of rifampicin + isoniazid + pyrazinamide (Regimen I. A high dropout rate from tuberculosis treatment (24.4% was also observed. CONCLUSION: This study suggests a high rate of adverse reactions to antituberculosis drugs.

  2. Antiprotozoal Screening of 60 South African plants, and the identification of the Antitrypanosomal Germacranolides Schkuhrin I and II

    CSIR Research Space (South Africa)

    Mokoka, TA

    2013-08-01

    Full Text Available , Moodley N1, Maharaj V1, Koorbanally NA5, Hamburger M2, Brun R2, and Fouche G1 1CSIR. Biosciences, Pretoria 2Department of Pharmaceutical Sciences, University of Basel, Switzerland 3Swiss Tropical and Public Health Institute, Basel, Switzerland... of Planta Medica August 2013/Vol. 79 Antiprotozoal Screening of 60 South African Plants, and the Identification of the Antitrypanosomal Germacranolides Schkuhrin I and II Mokoka TA1, Peter XK1, Zimmermann S2,3, Hata Y2,4, Adams M2, Kaiser M3...

  3. Artemisinin anti-malarial drugs in China

    Directory of Open Access Journals (Sweden)

    Zongru Guo

    2016-03-01

    Full Text Available Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought the global anti-malarial treatment to a new era, saving millions of lives all around the world for the past 40 years. The discoveries of artemisinins were carried out beginning from the 1970s, a special period in China, by hundreds of scientists all together under the “whole nation” system. This article focusing on medicinal chemistry research, briefly introduced the discovery and invention course of the scientists according to the published papers, and highlighted their academic contribution and achievements.

  4. The antiprotozoal drug pentamidine ameliorates experimentally induced acute colitis in mice

    Directory of Open Access Journals (Sweden)

    Esposito Giuseppe

    2012-12-01

    Full Text Available Abstract Background Intestinal inflammation is partly driven by enteroglial-derived S100B protein. The antiprotozoal drug pentamidine directly blocks S100B activity. We aimed to investigate the effect of pentamidine on intestinal inflammation using an animal model of dextran sodium sulphate (DSS-induced acute colitis. Methods Mice were divided into: control group, colitis group (4% DSS for four days and two pentamidine-treated colitis groups (0.8 mg/kg and 4 mg/kg. Anti-inflammatory effect of pentamidine was assessed in colonic tissue by evaluating the disease activity index and the severity of histological changes. Colonic tissue were also used to evaluate cyclooxigenase-2, inducible nitric oxide synthase, S100B, glial fibrillary acidic protein, phosphorylated-p38 MAPkinase, p50, p65 protein expression, malondyaldheyde production, mieloperoxidase activity, and macrophage infiltration. Nitric oxide, prostaglandin E2, interleukin-1 beta, tumor necrosis factor alpha, and S100B levels were detected in plasma samples. Parallel measurements were performed in vitro on dissected mucosa and longitudinal muscle myenteric plexus (LMMP preparations after challenge with LPS + DSS or exogenous S100B protein in the presence or absence of pentamidine. Results Pentamidine treatment significantly ameliorated the severity of acute colitis in mice, as showed by macroscopic evaluation and histological/biochemical assays in colonic tissues and in plasma. Pentamidine effect on inflammatory mediators was almost completely abrogated in dissected mucosa but not in LMMP. Conclusions Pentamidine exerts a marked anti-inflammatory effect in a mice model of acute colitis, likely targeting S100B activity. Pentamidine might be an innovative molecule to broaden pharmacological tools against colitis.

  5. ent-Pimarane and ent-Kaurane Diterpenes from Aldama discolor (Asteraceae and Their Antiprotozoal Activity

    Directory of Open Access Journals (Sweden)

    Mauro S. Nogueira

    2016-09-01

    Full Text Available Aldama discolor (syn.Viguiera discolor is an endemic Asteraceae from the Brazilian “Cerrado”, which has not previously been investigated for its chemical constituents and biological activity. Diterpenes are common secondary metabolites found in Aldama species, some of which have been reported to present potential antiprotozoal and antimicrobial activities. In this study, the known ent-3-α-hydroxy-kaur-16-en-18-ol (1, as well as three new diterpenes, namely, ent-7-oxo-pimara-8,15-diene-18-ol (2, ent-2S,4S-2-19-epoxy-pimara-8(3,15-diene-7β-ol (3 and ent-7-oxo-pimara-8,15-diene-3β-ol (4, were isolated from the dichloromethane extract of A. discolor leaves and identified by means of MS and NMR. The compounds were assayed in vitro against Trypanosoma brucei rhodesiense, T. cruzi and Leishmania donovani, Plasmodium falciparum and also tested for cytotoxicity against mammalian cells (L6 cell line. The ent-kaurane 1 showed significant in vitro activity against both P. falciparum (IC 50 = 3.5 μ M and L. donovani (IC 50 = 2.5 μ M and ent-pimarane 2 against P. falciparum (IC 50 = 3.8 μ M. Both compounds returned high selectivity indices (SI >10 in comparison with L6 cells, which makes them interesting candidates for in vivo tests. In addition to the diterpenes, the sesquiterpene lactone budlein A (5, which has been reported to possess a strong anti-T. b. rhodesiense activity, was identified as major compound in the A. discolor extract and explains its high activity against this parasite (100% growth inhibition at 2 μ g/mL.

  6. Augmentation of the Differentiation Response to Antitumor Antimalarials

    National Research Council Canada - National Science Library

    Rahim, Rayhana

    2003-01-01

    .... We have shown that the quinoline antimalarials chloroquine (CO) and hydroxychioroquine (HCQ) inhibit proliferation and induce differentiation in breast cancer cell lines without toxicity to normal MCF-10A cells...

  7. Unambiguous Synthesis and Prophylactic Antimalarial Activities of Imidazolidinedione Derivatives

    National Research Council Canada - National Science Library

    Zhang, Quan; Guan, Jian; Sacci, John; Ager, Arba; Ellis, William; Mihlhous, Wilbur; Kyle, Dennis; Lin, Ai J

    2005-01-01

    .... To search for compounds with good oral efficacy, a series of carbamate derivatives of the active components were prepared by the new procedure, many of which showed profound causal prophylactic antimalarial activity against Plasmodium yoelil in mouse by oral administration.

  8. Pharmacological screening of some traditionally-used antimalarial ...

    African Journals Online (AJOL)

    Pharmacological screening of some traditionally-used antimalarial plants from the Democratic Republic of Congo compared to their ecological taxonomic equivalence in Madagascar. KN Ngbolua, H Rafatro, H Rakotoarimanana, US Ratsimamanga, V Mudogo, PT Mpiana, DST Tshibangu ...

  9. In Vivo Antimalarial Activities of Plants Used in Ethiopian Traditional ...

    African Journals Online (AJOL)

    In Vivo Antimalarial Activities of Plants Used in Ethiopian Traditional Medicine, Delomenna, Southeast Ethiopia. Ashenafi Asefa, Kelbassa Urga, Mulugeta Guta, Waleleng Mekonene, Daniel Melaku, Kise Mudie, Tesgayae Kidanemariam ...

  10. Investigation of Calcium Channel Blockers as Antiprotozoal Agents and Their Interference in the Metabolism of Leishmania (L. infantum

    Directory of Open Access Journals (Sweden)

    Juliana Quero Reimão

    2016-01-01

    Full Text Available Leishmaniasis and Chagas disease are neglected parasitic diseases endemic in developing countries; efforts to find new therapies remain a priority. Calcium channel blockers (CCBs are drugs in clinical use for hypertension and other heart pathologies. Based on previous reports about the antileishmanial activity of dihydropyridine-CCBs, this work aimed to investigate whether the in vitro anti-Leishmania infantum and anti-Trypanosoma cruzi activities of this therapeutic class would be shared by other non-dihydropyridine-CCBs. Except for amrinone, our results demonstrated antiprotozoal activity for fendiline, mibefradil, and lidoflazine, with IC50 values in a range between 2 and 16 μM and Selectivity Index between 4 and 10. Fendiline demonstrated depolarization of mitochondrial membrane potential, with increased reactive oxygen species production in amlodipine and fendiline treated Leishmania, but without plasma membrane disruption. Finally, in vitro combinations of amphotericin B, miltefosine, and pentamidine against L. infantum showed in isobolograms an additive interaction when these drugs were combined with fendiline, resulting in overall mean sum of fractional inhibitory concentrations between 0.99 and 1.10. These data demonstrated that non-dihydropyridine-CCBs present antiprotozoal activity and could be useful candidates for future in vivo efficacy studies against Leishmaniasis and Chagas’ disease.

  11. In vitro antimicrobial, antiprotozoal activities and heavy metals toxicity of different parts of Ballota pseudodictamnus (L.) Benth.

    Science.gov (United States)

    Ullah, Najeeb; Ahmad, Ijaz; Ahmad, Nisar; Fozia, -

    2017-11-01

    The study was done to check the antimicrobial and antiprotozoal activity of different parts of Ballota pseudodictamnus (L.) Benth. These activities were then compared with the heavy metals toxicity of different parts, which plants accumulate in different concentrations in different parts. In in-vitro antileishmanial results ethanolic extract, chloroform and ethyl acetate fractions in roots of Ballota pseudodictamnus (L.) Benth showed antileishmanial activity. The ethanol, n-butanol and ethyl acetate fraction in stem revealed inhibition of amastigote form of leishmania. The ethanolic extract, chloroform, and n-butanol fraction in leaves showed inhibition of leishmanial parasite. In heavy metals study, Chromium was above permissible value in all parts except in leaves. Nickel was above WHO limit in roots. Cadmium and lead were beyond permissible limits in entire plant parts. Results revealed that different parts of the plant have different inhibition properties. So each part of plant should be checked for antimicrobial and antiprotozoal assay separately. It is concluded that various metals accumulates with miscellaneous concentrations in different plant parts.

  12. Quality of Antimalarials at the Epicenter of Antimalarial Drug Resistance: Results from an Overt and Mystery Client Survey in Cambodia

    Science.gov (United States)

    Yeung, Shunmay; Lawford, Harriet L. S.; Tabernero, Patricia; Nguon, Chea; van Wyk, Albert; Malik, Naiela; DeSousa, Mikhael; Rada, Ouk; Boravann, Mam; Dwivedi, Prabha; Hostetler, Dana M.; Swamidoss, Isabel; Green, Michael D.; Fernandez, Facundo M.; Kaur, Harparkash

    2015-01-01

    Widespread availability of monotherapies and falsified antimalarials is thought to have contributed to the historical development of multidrug-resistant malaria in Cambodia. This study aimed to document the quality of artemisinin-containing antimalarials (ACAs) and to compare two methods of collecting antimalarials from drug outlets: through open surveyors and mystery clients (MCs). Few oral artemisinin-based monotherapies and no suspected falsified medicines were found. All 291 samples contained the stated active pharmaceutical ingredient (API) of which 69% were considered good quality by chemical analysis. Overall, medicine quality did not differ by collection method, although open surveyors were less likely to obtain oral artemisinin-based monotherapies than MCs. The results are an encouraging indication of the positive impact of the country's efforts to tackle falsified antimalarials and artemisinin-based monotherapies. However, poor-quality medicines remain an ongoing challenge that demands sustained political will and investment of human and financial resources. PMID:25897063

  13. Relatively low primary resistance to anti-tuberculosis drugs in Bangui and Bimbo, Central African Republic.

    Science.gov (United States)

    Minime-Lingoupou, F; Manirakiza, A; Yango, F; Zandanga, G; Le Faou, A; Rigouts, L

    2011-05-01

    The Central African Republic (CAR) is a country with a high burden of tuberculosis (TB). Although its national tuberculosis programme is effective, there is no continuous surveillance system for anti-tuberculosis drug resistance in place. To establish base-line anti-tuberculosis drug resistance data to allow for future monitoring of trends and evolutions. More specifically, we aimed at investigating primary anti-tuberculosis drugs in Bangui and Bimbo, two cities of CAR. A total of 225 Mycobacterium tuberculosis isolates were tested for susceptibility to the anti-tuberculosis drugs commonly used in the country (isoniazid [INH, H], rifampicin [R], streptomycin [SM, S] and ethambutol [EMB, E]). Human immunodeficiency virus co-infection was recorded. Overall primary drug resistance was found to be 14.7% (33/225). The highest rate of primary resistance was for INH (9.3%), followed by SM (8.4%), and EMB (2.2%). The multidrug resistance rate was 0.4%. Our study indicates that primary drug resistance levels in urban settings of CAR are similar to or lower than in other African cities, and that the spread of multidrug-resistant TB in this population is limited. Extended nationwide monitoring of drug resistance remains important, especially in view of the planned introduction of a new treatment regimen (2HRZE/4HR [Z = pyrazinamide]).

  14. Gelation Behavior of 5-Chloro-8-hydroxyquinoline, an Antituberculosis Agent in Aqueous Alcohol Solutions

    Directory of Open Access Journals (Sweden)

    Jukka Korpela

    2012-09-01

    Full Text Available It was shown that 5-chloro-8-hydroxyquinoline, an antituberculosis agent, gels aqueous alcohol solutions efficiently. Thermal stability and gel-to-sol transition temperature of 1% gel in CD3OD/D2O (2:1 was studied by 1H-NMR. Fibrous structures of four xerogels have been characterized by scanning electron microscope.

  15. Profile of Antituberculosis Use in Community Pharmacist of Bandung City 2008–2010

    Directory of Open Access Journals (Sweden)

    Sofa D. Alfian

    2012-12-01

    Full Text Available Infectious disease is still a major disease in developing countries such as in Indonesia. As one of the health care providers which has privilege to distribute antibiotics, it is very important to control the use of antibiotics in pharmacy. The aim of this study is to conduct a profile of anti-tuberculosis use, in all pharmacies in Bandung during the period from 2008–2010. This study was performed using an observational method and retrospective approach. In this study we applied the Anatomical Therapeutic Chemical/Defined Daily Dose (ATC/DDD and Drug Utilization 90 % (DU90% method. The result showed that the use of antituberculosis tends to decrease. During the period from 2008 to 2010, the use of antituberculosis decreased by 17,783 and 169,416 DDD/1000 inhabitants in 2009 and 2010, respectively. It can be concluded that the totaluse of antituberculosis in all pharmacies in Bandung during the period from 2008 to 2010 tends to decrease.

  16. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    Science.gov (United States)

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  17. Gelation Behavior of 5-Chloro-8-hydroxyquinoline, an Antituberculosis Agent in Aqueous Alcohol Solutions.

    Science.gov (United States)

    Kolehmainen, Erkki; Salo, Hannu; Korpela, Jukka

    2012-09-19

    It was shown that 5-chloro-8-hydroxyquinoline, an antituberculosis agent, gels aqueous alcohol solutions efficiently. Thermal stability and gel-to-sol transition temperature of 1% gel in CD₃OD/D₂O (2:1) was studied by ¹H-NMR. Fibrous structures of four xerogels have been characterized by scanning electron microscope.

  18. Successful drug desensitization in patients with delayed-type allergic reactions to anti-tuberculosis drugs.

    Science.gov (United States)

    Siripassorn, Krittaecho; Ruxrungtham, Kiat; Manosuthi, Weerawat

    2018-02-02

    To evaluate the outcomes of anti-tuberculosis drug desensitization. This was a retrospective study. Inclusion criteria were as follows: age >18years, documented tuberculosis infection, a previous cutaneous allergic reaction to anti-tuberculosis drugs, and having undergone drug desensitization between January 2003 and March 2014. The definition of allergic reaction to anti-tuberculosis drugs included (1) a temporal relationship between drug use and the allergic reaction; (2) improvement in the allergic reaction after drug withdrawal; (3) recurrence of the allergic reaction after reintroduction of only the offending drug; and (4) absence of other causes. A total of 19 desensitization procedures were performed. The drugs used for these procedures were isoniazid (n=7), rifampicin (n=6), or ethambutol (n=6). Of note, severe allergic reactions (Stevens-Johnson syndrome (n=4), erythema multiforme (n=3), and drug rash with eosinophilia and systemic syndrome (n=1)) were included. All patients underwent resolution of the previous allergic reactions before desensitization. The median duration of desensitization was 18 days. The success rate was 78.9%. The allergic reactions following failed desensitization were not severe; most were maculopapular rashes. The desensitization protocol for anti-tuberculosis drugs was associated with a high success rate, and the individuals who failed desensitization experienced mild allergic reactions. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Antiprotozoal Activity against Entamoeba histolytica of Plants Used in Northeast Mexican Traditional Medicine. Bioactive Compounds from Lippia graveolens and Ruta chalepensis

    Directory of Open Access Journals (Sweden)

    Ramiro Quintanilla-Licea

    2014-12-01

    Full Text Available Amoebiasis caused by Entamoeba histolytica is associated with high morbidity and mortality is becoming a major public health problem worldwide, especially in developing countries. Because of the side-effects and the resistance that pathogenic protozoa build against the standard antiparasitic drugs, e.g., metronidazole, much recent attention has been paid to plants used in traditional medicine around the world in order to find new antiprotozoal agents. We collected 32 plants used in Northeast Mexican traditional medicine and the methanolic extracts of these species were screened for antiprotozoal activity against E. histolytica trophozoites using in vitro tests. Only 18 extracts showed a significant inhibiting activity and among them six plant extracts showed more than 80% growth inhibition against E. histolytica at a concentration of 150 µg/mL and the IC50 values of these extracts were determined. Lippia graveolens Kunth and Ruta chalepensis Pers. showed the more significant antiprotozoal activity (91.54% and 90.50% growth inhibition at a concentration of 150 µg/mL with IC50 values of 59.14 and 60.07 µg/mL, respectively. Bioassay-guided fractionation of the methanolic extracts from these two plants afforded carvacrol (1 and chalepensin (2, respectively, as bioactive compounds with antiprotozoal activity.

  20. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Mònica Escolà; Hansen, Martin; Krogh, Kristine A

    2014-01-01

    Abstract Antimalarial drugs commonly referred to as antimalarials , include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, eg the drug ...

  1. Immediate-type hypersensitivity reactions due to antituberculosis drugs: a successful readministration protocol.

    Science.gov (United States)

    Buhari, Gözde Köycü; Keren, Metin; Dursun, Adile Berna; Güler, Müjgan; Dulkar, Güngör; Kalaç, Nilgün; Özkara, Şeref; Erkekol, Ferda Öner

    2015-07-01

    Little is known about drug hypersensitivity reactions from antituberculosis drugs. To determine the frequency, risk factors, and characteristics of immediate-type hypersensitivity reactions from first-line antituberculosis drugs and to evaluate the usefulness of a readministration protocol for culprit drugs in this group of patients. The study population consisted of patients with tuberculosis who were hospitalized and treated in the authors' hospital in 2011. Demographics and disease and treatment characteristics of patients with immediate-type hypersensitivity from antituberculosis drugs were compared with the other patients. Culprit drugs were readministered gradually according to a defined protocol to patients with immediate-type hypersensitivity. Tree hundred seventy-nine patients were included in the study. Eighteen immediate-type hypersensitivity reactions were detected in 13 patients (3.43%). The only identified risk factor was female sex (odds ratio 4.085). Isoniazid, rifampicin, pyrazinamide, and ethambutol were readministered in 11 patients and rifampicin was readministered in 2 patients, with 6- to 8-step protocols for each drug. Only in 2 patients did allergic reactions with rifampicin develop during the procedure. In these patients, after treatment and complete remission of allergic symptoms, the last tolerated dose was administered and the protocol was completed with the same adjustments. Immediate-type allergic reactions from antituberculosis drugs are not rare and not related to disease or treatment characteristics. The protocols used in this study provide a useful and safe method for readministration of culprit drugs to patients with antituberculosis drug hypersensitivity. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure.

    Directory of Open Access Journals (Sweden)

    Eva Ramos-Morales

    Full Text Available The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS. The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001. The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39% and lower butyrate (-32% and lower ammonia concentration (-64% than the extracts incubated separately. HBS caused a decrease in butyrate (-45% and an increase in propionate (+43% molar proportions. However, the decrease in ammonia concentration (-42% observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05. It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an

  3. Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure

    Science.gov (United States)

    de la Fuente, Gabriel; Nash, Robert J.; Braganca, Radek; Duval, Stephane; Bouillon, Marc E.; Lahmann, Martina; Newbold, C. Jamie

    2017-01-01

    The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (Pstevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (Pstevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal

  4. Reappraisal of Antimalarials in Interferonopathies: New Perspectives for Old Drugs.

    Science.gov (United States)

    Piscianz, Elisa; Cuzzoni, Eva; Sharma, Rajan; Tesser, Alessandra; Sapra, Pooja; Tommasini, Alberto

    2017-09-11

    The story of antimalarials as antinflammatory drugs dates back several centuries. Chinin, the extract of the Cinchona bark, has been exploited since the 18th century for its antimalarial and antifebrile properties. Later, during the Second World War, the broad use of antimalarials allowed arguing their antirheumatic effect on soldiers. Since then, these drugs have been broadly used to treat Systemic Lupus Erythematosus, but, only recently, have the molecular mechanisms of action been partly clarified. Inhibitory action on vacuole function and trafficking has been considered for decades the main mechanism of the action of antimalarials, affecting the activation of phagocytes and dendritic cells. In addition, chloroquine is also known as a potent inhibitor of autophagy, providing another possible explanation of its antinflammatory action. However, much attention has been recently devoted to the action of antimalarials on the so-called cGAS-STING pathway leading from the sensing of cytoplasmic nucleic acids to the production of type I interferons. This pathway is a fundamental mechanism of host defence, since it is able to detect microbial DNA and induce the type I interferon-mediated immune response. Of note, genetic defects in the degradation of nucleic acids lead to inappropriate cGAS-STING activation and inflammation. These disorders, called type I interferonopathies, represent a valuable model to study the antinflammatory potential of antimalarials. We will discuss possible development of antimalarials to improve the treatment of type I interferonopathies and likely multifactorial disorders characterised by interferon inflammation, such as Systemic Lupus Erythematosus. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. World Antimalarial Resistance Network (WARN IV: Clinical pharmacology

    Directory of Open Access Journals (Sweden)

    Gbotosho Grace O

    2007-09-01

    Full Text Available Abstract A World Antimalarial Resistance Network (WARN database has the potential to improve the treatment of malaria, through informing current drug selection and use and providing a prompt warning of when treatment policies need changing. This manuscript outlines the contribution and structure of the clinical pharmacology component of this database. The determinants of treatment response are multi-factorial, but clearly providing adequate blood concentrations is pivotal to curing malaria. The ability of available antimalarial pharmacokinetic data to inform optimal dosing is constrained by the small number of patients studied, with even fewer (if any studies conducted in the most vulnerable populations. There are even less data relating blood concentration data to the therapeutic response (pharmacodynamics. By pooling all available pharmacokinetic data, while paying careful attention to the analytical methodologies used, the limitations of small (and thus underpowered individual studies may be overcome and factors that contribute to inter-individual variability in pharmacokinetic parameters defined. Key variables for pharmacokinetic studies are defined in terms of patient (or study subject characteristics, the formulation and route of administration of the antimalarial studied, the sampling and assay methodology, and the approach taken to data analysis. Better defining these information needs and criteria of acceptability of pharmacokinetic-pharmacodynamic (PK-PD studies should contribute to improving the quantity, relevance and quality of these studies. A better understanding of the pharmacokinetic properties of antimalarials and a more clear definition of what constitutes "therapeutic drug levels" would allow more precise use of the term "antimalarial resistance", as it would indicate when treatment failure is not caused by intrinsic parasite resistance but is instead the result of inadequate drug levels. The clinical pharmacology component

  6. Evaluation of French Guiana traditional antimalarial remedies.

    Science.gov (United States)

    Bertani, S; Bourdy, G; Landau, I; Robinson, J C; Esterre, Ph; Deharo, E

    2005-04-08

    In order to evaluate the antimalarial potential of traditional remedies used in French Guiana, 35 remedies were prepared in their traditional form and screened for blood schizonticidal activity in vitro on Plasmodium falciparum chloroquine re4sistant strain (W2). Some of these extracts were screened in vivo against Plasmodium yoelii rodent malaria. Ferriprotoporphyrin inhibition test was also performed. Four remedies, widely used among the population as preventives, were able to inhibit more than 50% of the parasite growth in vivo at around 100 mg/kg: Irlbachia alata (Gentiananceae), Picrolemma pseudocoffea (Simaroubaceae), Quassia amara (Simaroubaceae), Tinospora crispa (Menispermaceae) and Zanthoxylum rhoifolium (Rutaceae). Five remedies displayed an IC50 in vitro < 10 microg/ml: Picrolemma pseudocoffea, Pseudoxandra cuspidata (Annonaceae) and Quassia amara leaves and stem, together with a multi-ingredient recipe. Two remedies were more active than a Cinchona preparation on the ferriprotoporphyrin inhibition test: Picrolemma pseudocoffea and Quassia amara. We also showed that a traditional preventive remedy, made from Geissospermum argenteum bark macerated in rum, was able to impair the intrahepatic cycle of the parasite. For the first time, traditional remedies from French Guiana have been directly tested on malarial pharmacological assays and some have been shown to be active.

  7. Human serum albumin binding of certain antimalarials

    Science.gov (United States)

    Marković, Olivera S.; Cvijetić, Ilija N.; Zlatović, Mario V.; Opsenica, Igor M.; Konstantinović, Jelena M.; Terzić Jovanović, Nataša V.; Šolaja, Bogdan A.; Verbić, Tatjana Ž.

    2018-03-01

    Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37 °C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.

  8. Antimalarial drug policy in India: Past, present & future

    Science.gov (United States)

    Anvikar, Anupkumar R.; Arora, Usha; Sonal, G.S.; Mishra, Neelima; Shahi, Bharatendu; Savargaonkar, Deepali; Kumar, Navin; Shah, Naman K.; Valecha, Neena

    2014-01-01

    The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions. PMID:24718394

  9. Quinoline hybrids and their antiplasmodial and antimalarial activities.

    Science.gov (United States)

    Hu, Yuan-Qiang; Gao, Chuan; Zhang, Shu; Xu, Lei; Xu, Zhi; Feng, Lian-Shun; Wu, Xiang; Zhao, Feng

    2017-10-20

    Malaria, in particular infection with P. falciparum (the most lethal of the human malaria parasite species, responsible for nearly one million deaths every year), is one of the most devastating and common infectious disease throughout the world. Beginning with quinine, quinoline containing compounds have long been used in clinical treatment of malaria and remained the mainstays of chemotherapy against malaria. The emergence of P. falciparum strains resistant to almost all antimalarials prompted medicinal chemists and biologists to study their effective replacement with an alternative mechanism of action and new molecules. Combination with variety of quinolines and other active moieties may increase the antiplasmodial and antimalarial activities and reduce the side effects. Thus, hybridization is a very attractive strategy to develop novel antimalarials. This review aims to summarize the recent advances towards the discovery of antiplasmodial and antimalarial hybrids including quinoline skeleton to provide an insight for rational designs of more active and less toxic quinoline hybrids antimalarials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Effect of antimalarial drugs on stimulation and interleukin 2 production of human lymphocytes

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Svenson, M; Theander, T G

    1987-01-01

    Effect of pyrimethamine, an antimalarial antifolate, and of mefloquine, chloroquine, and quinine, which belong to the quinoline group of antimalarials, on proliferation and interleukin 2 (IL-2) production of human lymphocytes was studied in vitro. Pyrimethamine at concentrations above therapeutic...

  11. In vitro and in vivo study of anti-tuberculosis effect of extracts isolated from Ranunculi Ternati Radix.

    Science.gov (United States)

    Zhang, Lin; Li, Ruyi; Li, Mengzhu; Qi, Zhongjie; Tian, Jingkui

    2015-01-05

    This study was designed to investigate the anti-tuberculosis activities of Ranunculi Ternati Radix extracts to demonstrate the effect of active part of Ranunculi Ternati Radix, which could be enriched through macroporous resin, on mycobacterium tuberculosis infections. In vitro, the anti-tuberculosis activity of its water extract (WE), 70% ethanol extract (EE), water eluted part of EE from D101 macroporous resin (WEPMR), 70% ethanol eluted part of EE from D101 macroporous resin (EEPMR) was conducted using H37Rv. Then EEPMR of better anti-tuberculosis activity was chosen to carry out anti-tuberculosis activity test against MDR2314-2 and XDR1220. In vivo, the anti-tuberculosis activities of EEPMR, Ranunculi Ternati Capsules and Isoniazid alone or in combination with different doses were evaluated on mouse model infected H37Rv. In vitro, EEPMR had inhibitory effect on H37Rv, MDR2314-2 and XDR1220. In vivo study, both medium and high dose of EEPMR alone had therapeutic effect on chronic tuberculosis in mouse. No acute toxicity was identified of EEPMR at a dose of 12.0 g·kg-1. EEPMR possessed better anti-tuberculosis effects than other extracts and Radix Ranunculi Ternati Capsules. This supported the use of macroporous resin to enrich the active part of Ranunculi Ternati Radix to cure mycobacterium tuberculosis infections.

  12. Quinine conjugates and quinine analogues as potential antimalarial agents.

    Science.gov (United States)

    Jones, Rachel A; Panda, Siva S; Hall, C Dennis

    2015-06-05

    Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials.

    Science.gov (United States)

    Skinner-Adams, Tina S; Stack, Colin M; Trenholme, Katharine R; Brown, Chris L; Grembecka, Jolanta; Lowther, Jonathan; Mucha, Artur; Drag, Marcin; Kafarski, Pawel; McGowan, Sheena; Whisstock, James C; Gardiner, Donald L; Dalton, John P

    2010-01-01

    The neutral aminopeptidases M1 alanyl aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) of the human malaria parasite Plasmodium falciparum are targets for the development of novel anti-malarial drugs. Although the functions of these enzymes remain unknown, they are believed to act in the terminal stages of haemoglobin degradation, generating amino acids essential for parasite growth and development. Inhibitors of both enzymes are lethal to P. falciparum in culture and kill the murine malaria P. chabaudi in vivo. Recent biochemical, structural and functional studies provide the substrate specificity and mechanistic binding data needed to guide the development of more potent anti-malarial drugs. Together with biological studies, these data form the rationale for choosing PfM1AAP and PfM17LAP as targets for anti-malarial development. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Cajachalcone: An Antimalarial Compound from Cajanus cajan Leaf Extract

    Directory of Open Access Journals (Sweden)

    E. O. Ajaiyeoba

    2013-01-01

    Full Text Available Cajanus cajan L, a member of the family Fabaceae, was identified from the Nigerian antimalarial ethnobotany as possessing antimalarial properties. The bioassay-guided fractionation of the crude methanol extract of C. cajan leaves was done in vitro using the multiresistant strain of Plasmodium falciparum (K1 in the parasite lactate dehydrogenase assay. Isolation of compound was achieved by a combination of chromatographic techniques, while the structure of the compound was elucidated by spectroscopy. This led to the identification of a cajachalcone, 2′,6′-dihydroxy-4-methoxy chalcone, as the biologically active constituent from the ethyl acetate fraction. Cajachalcone had an IC50 value of 2.0 μg/mL (7.4 μM and could be a lead for anti-malarial drug discovery.

  15. The interaction of x-rays and antimalarials

    International Nuclear Information System (INIS)

    Geoghegan, D.S.; Skinner-Adams, T.; Davis, T.M.E.

    2001-01-01

    Full text: The radiation sensitivity of malaria parasites has three potential clinical applications, namely i) to prevent the transmission of malaria by blood transfusion, ii) as adjunctive therapy when a radioactive isotope is complexed to a conventional antimalarial drug, and iii) to attenuate the pathogenicity of specific parasite stages as part of the development of a vaccine. In the first two applications, detailed information relating to parasite radiosensitivity and the interaction of ionising radiation with antimalarials is of vital importance because dosimetry must allow for the exposure of normal cells. Malaria parasite cultures (Plasmodium falciparum) were exposed to a logarithmic series of concentrations of antimalarial agents and irradiated using a Siemens Stabilipan orthovoltage radiotherapy unit. The irradiation was performed at room temperature and ambient oxygen concentration. Control samples were also irradiated. The DNA synthesis in each culture was measured 48 hours post irradiation by using a 3 H-hypoxanthine incorporation assay. The antimalarials studied are: artesunate, quinine, retinol and chloroquine. The radiosensitivity of Plasmodium falciparum is not dependent on the strain of parasite with the dose required to inhibit 50% of DNA synthesis (ID 50 ) equal to 24.7 ± 3.0 Gy. This applies equally for the drug resistant and drug sensitive strains studied. Because the measured radiosensitivity is dependent on the sera oxygen concentration, the reported value for the ID 50 may not apply in hypoxic situations. The interaction of ionising radiation with the antimalarials shows synergy with retinol and choloquine, additivity with quinine and slight antagonism with artesunate. Radionuclide therapy may emerge as a novel treatment for malaria. If this does occur, then, although all strains appear to be equally radiosensitive, care must be taken when combining ionising radiation with existing antimalarials for the treatment of malaria. Copyright

  16. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  17. Identification of a novel class of quinoline-oxadiazole hybrids as anti-tuberculosis agents.

    Science.gov (United States)

    Jain, Puneet P; Degani, Mariam S; Raju, Archana; Anantram, Aarti; Seervi, Madhav; Sathaye, Sadhana; Ray, Muktikanta; Rajan, M G R

    2016-01-15

    A series of novel quinoline-oxadiazole hybrid compounds was designed based on stepwise rational modification of the lead molecules reported previously, in order to enhance bioactivity and improve druglikeness. The hybrid compounds synthesized were screened for biological activity against Mycobacterium tuberculosis H37Rv and for cytotoxicity in HepG2 cell line. Several of the hits exhibited good to excellent anti-tuberculosis activity and selectivity, especially compounds 12m, 12o and 12p, showed minimum inhibitory concentration values500. The results of this study open up a promising avenue that may lead to the discovery of a new class of anti-tuberculosis agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Primary resistance of Mycobacterium tuberculosis to anti-tuberculosis drugs in Kinshasa, (DRC)].

    Science.gov (United States)

    Kabedi, M J; Kashongwe, M; Kayembe, J M; Mumba Ngoyi, D; Mampasi, P; Mbaya, P; Fissette, K; Verhaegen, J; Portaels, F; Muyembe-Tamfum, J J

    2007-10-01

    In a descriptive cross-sectional study carried out in Kinshasa between July 2003 and January 2004, we determined the prevalence of the primary resistance of M. tuberculosis to first-line anti-tuberculosis drugs. The antibiogram was performed with the proportion method on 301 isolats from patients who all had a first episode of pulmonary tuberculosis with positive microscopy (TPM+) and who had not received any anti-tuberculosis treatment before. The primary resistance rate reached 43.5%; it reached 31.6% in 1990. The multi-drug-resistance rate (MDR-TB) notified as resistant to both rifamicine and isoniazide rose to 5.3%. This rate of primary resistance is among the highest in Africa. The emergence of the resistant strains and specially the multi-drug-resistant strains (MDR-TB) in Kinshasa requires a regular assessment of these phenomena which threaten seriously the implementation of the national tuberculosis control programme.

  19. Paradoxical reaction to antituberculosis therapy in a patient with lupus vulgaris.

    Science.gov (United States)

    Santesteban, R; Bonaut, B; Córdoba, A; Yanguas, I

    2015-03-01

    Patients receiving treatment for tuberculosis may experience an unexpected deterioration of their disease; this is known as a paradoxical reaction. We present the case of a 59-year-old man with lupus vulgaris who experienced a paradoxical deterioration of cutaneous lesions after starting antituberculosis therapy. The reaction was self-limiting; the lesions gradually improved, and the final outcome was very good. Paradoxical reactions are well-known in patients with human immunodeficiency virus (HIV) infection who start antiretroviral therapy, but they can also occur in non-HIV-infected patients with tuberculosis who start antituberculosis therapy. In the literature reviewed, paradoxical reactions involving skin lesions were described in patients with miliary tuberculosis. The case we report is the first of a paradoxical reaction in lupus vulgaris. The increasing frequency of tuberculosis in Spain could lead to a rise in the number of paradoxical reactions. Copyright © 2014 Elsevier España, S.L.U. y AEDV. All rights reserved.

  20. The antimalarial drug artemisinin alkylates heme in infected mice

    Science.gov (United States)

    Robert, Anne; Benoit-Vical, Françoise; Claparols, Catherine; Meunier, Bernard

    2005-01-01

    Heme alkylation by the antimalarial drug artemisinin is reported in vivo, within infected mice that have been treated at pharmacologically relevant doses. Adducts resulting from the alkylation of heme by the drug were characterized in the spleen of treated mice, and their glucuroconjugated derivatives were present in the urine. Because these heme-artemisinin adducts were not observed in noninfected mice, this report confirms that the alkylating activity of this antimalarial drug is related to the presence of the parasite in infected animals. The identification of heme-artemisinin adducts in mice should be considered as the signature of the alkylation capacity of artemisinin in vivo. PMID:16155128

  1. Quinoline-Based Hybrid Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Xhamla Nqoro

    2017-12-01

    Full Text Available The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

  2. Aptamer and nanotechnology- based approaches for active targeted delivery of anti-tuberculosis drugs

    CSIR Research Space (South Africa)

    Ramalapa, B

    2012-10-01

    Full Text Available and Nanotechnology- based Approaches for Active Targeted Delivery of Anti-Tuberculosis Drugs Presented by : Bathabile Ramalapa CSIR Emerging Researcher Symposium 10 0ctober 2012 Outline ? Background: Challenges in the current TB treatment ? Proposed Solution...-expressed by TB infected macrophages Aptamers: RNA/DNA that bind to a specific target molecule ?Enhance drug efficiency at site of infection ?Reduce systemic toxicity Aptamer Synthesis: SELEX Method ? CSIR 2012 www.csir.co.za Partitioning...

  3. [Mycobacterial species repartition: experience of the Antituberculosis Center in Pointe Noire (Republic of Congo)].

    Science.gov (United States)

    Ontsira Ngoyi, E N; Obengui; Taty Taty, R; Koumba, E L; Ngala, P; Ossibi Ibara, R B

    2014-12-01

    The aim of the present work was to describe mycobacteria species isolated in the antituberculosis center of Pointe-Noire city in Congo Brazzaville. It was a descriptive transversal study, conducted between September 2008 and April 2009 (7 months). A simple random sample was established from patients who came to the antituberculosis center of Pointe-Noire City (reference center on diagnosis and treatment of tuberculosis). To those patients consulting with symptoms leading to suspect pulmonary tuberculosis, a sputum sampling in three sessions was conducted. Staining techniques to Ziehl-Neelsen and auramine were performed in Pointe-Noire. Culture, molecular hybridization and antibiotic susceptibility testing to first-line antituberculosis drugs (isoniazid, rifampicin, ethambutol, pyrazinamide or streptomycine) using diffusion method on agar were performed in Cerba Pasteur laboratory in France. In 77 patients, 24 sputum (31.20%) were positive to the microscopic examination and 45 (58.44%) to the culture and identification by molecular hybridization. Mycobacteria species complex isolated were M. tuberculosis with 31 cases (68.9%) and M. africanum with 3 cases (6.67%). Non-tuberculous mycobacteria (NMT) were isolated in association or not with M. tuberculosis in 9 cases (20%) and the most common species were M. intracellulare. In M. tuberculosis species, 7 strains (41.20%) were tested sensitive to the first-line antituberculosis drugs, 8 cases (47%) monoresistance and 2 cases multidrug resistance at both isoniazide and rifampicine (12%) (MDR). This study showed the importance of Mycobacteria species complex and non-mycobacteria species in pulmonary tuberculosis. The data on resistance can help medical physicians in the treatment of pulmonary tuberculosis. Another study with a large population is required to confirm these data.

  4. Anti-Mycobacterium tuberculosis activity of antituberculosis drugs and amoxicillin/clavulanate combination.

    Science.gov (United States)

    Pagliotto, Aline Daniele Furlan; Caleffi-Ferracioli, Katiany Rizzieri; Lopes, Mariana Aparecida; Baldin, Vanessa Pietrowski; Leite, Clarice Queico Fujimura; Pavan, Fernando Rogério; Scodro, Regiane Bertin de Lima; Siqueira, Vera Lúcia Dias; Cardoso, Rosilene Fressatti

    2016-12-01

    We report the in vitro drugs interaction by the resazurin drugs combination microtiter assay (REDCA) of amoxicillin (AMO)/clavulanate (CLAV) with isoniazid (INH), ethambutol (EMB), and rifampicin (RIF) against susceptible and resistant Mycobacterium tuberculosis isolates. The addition of AMO/CLAV to classical antituberculosis drugs should be explored as a promising alternative for the treatment of resistant tuberculosis (TB). Copyright © 2015. Published by Elsevier B.V.

  5. Synthesis and Biological Evaluation of Novel 2-Methoxypyridylamino-Substituted Riminophenazine Derivatives as Antituberculosis Agents

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhang

    2014-04-01

    Full Text Available Clofazimine, a member of the riminophenazine class, is one of the few antibiotics that are still active against multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis. However, the clinical utility of this agent is limited by its undesirable physicochemical properties and skin pigmentation potential. With the goal of maintaining potent antituberculosis activity while improving physicochemical properties and lowering skin pigmentation potential, a series of novel riminophenazine derivatives containing a 2-methoxypyridylamino substituent at the C-2 position of the phenazine nucleus were designed and synthesized. These compounds were evaluated for antituberculosis activity against M. tuberculosis H37Rv and screened for cytotoxicity. Riminophenazines bearing a 3-halogen- or 3,4-dihalogen-substituted phenyl group at the N-5 position exhibited potent antituberculosis activity, with MICs ranging from 0.25~0.01 μg/mL. The 3,4-dihalogen- substituted compounds displayed low cytotoxicity, with IC50 values greater than 64 μg/mL. Among these riminophenazines, compound 15 exhibited equivalent in vivo efficacy against M. tuberculosis infection and reduced skin discoloration potential in an experimental mouse infection model as compared to clofazimine. Compound 15, as compared to clofazimine, also demonstrated improved physicochemical properties and pharmacokinetic profiles with a short half-life and less drug tissue accumulation. This compound is being evaluated as a potential drug candidate for the treatment of multidrug resistant tuberculosis.

  6. Cure of tuberculosis despite serum concentrations of antituberculosis drugs below published reference ranges.

    Science.gov (United States)

    Meloni, Monica; Corti, Natascia; Müller, Daniel; Henning, Lars; Gutteck, Ursula; von Braun, Amrei; Weber, Rainer; Fehr, Jan

    2015-01-01

    Therapeutic target serum concentrations of first-line antituberculosis drugs have not been well defined in clinical studies in tuberculosis (TB) patients. We retrospectively investigated the estimated maximum serum concentrations (eC max) of antituberculosis drugs and clinical outcome of TB patients with therapeutic drug monitoring performed between 2010-2012 at our institution, and follow-up until March 2014. The eC max was defined as the highest serum concentration during a sampling period (2, 4 and 6 hours after drug ingestion). We compared the results with published eC max values, and categorised them as either "within reference range", "low eC max", or "very low eC max".Low/very low eC max-levels were defined as follows: isoniazid 2-3/max levels were classified as "low" or "very low". The eC max was below the relevant reference range in 80% of isoniazid, 95% of rifampicin, 30% of pyrazinamide, and 30% of ethambutol measurements. All but one patient were cured of tuberculosis. Although many antituberculosis drug serum concentrations were below the widely used reference ranges, 16 of 17 patients were cured of tuberculosis. These results challenge the use of the published reference ranges for therapeutic drug monitoring.

  7. Factors contributing to antimalarial drug resistance in Rachuonyo ...

    African Journals Online (AJOL)

    Qualitative and quantitative data were collected among 380 respondents including health care providers, people seeking malaria treatment and Community Own Resource (CORPs), from 47 registered health facilities. The study revealed that all health facilities were using general-purpose trucks to transport antimalarial ...

  8. Bioguided investigation of the antimalarial activities of Trema ...

    African Journals Online (AJOL)

    Acetone extract of T. orientalis leaves was investigated for its antimalarial activity in a mouse model of Plasmodium berghei using the 4 day suppressive test. Bioguided investigation was carried out by using column chromatographic fractions for in-vivo antiplasmodial screening. Preliminary spectroscopic profile of the most ...

  9. Safety and Tolerability Profile of Artemisinin-Based Antimalarial ...

    African Journals Online (AJOL)

    The WHO in 2001 advocated artemisinin- based antimalarial combination therapy (ACT), which was adopted by Nigeria in 2005. The objective of this study was to characterize the safety and tolerability profile of the ACTs in adult patients with uncomplicated malaria. A descriptive longitudinal study was conducted in the ...

  10. The antimalarial drug quinine interferes with serotonin biosynthesis and action

    DEFF Research Database (Denmark)

    Islahudin, Farida; Tindall, Sarah M.; Mellor, Ian R.

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmit...

  11. Dried whole plant Artemisia annua as an antimalarial therapy.

    Directory of Open Access Journals (Sweden)

    Mostafa A Elfawal

    2012-12-01

    Full Text Available Drugs are primary weapons for reducing malaria in human populations. However emergence of resistant parasites has repeatedly curtailed the lifespan of each drug that is developed and deployed. Currently the most effective anti-malarial is artemisinin, which is extracted from the leaves of Artemisia annua. Due to poor pharmacokinetic properties and prudent efforts to curtail resistance to monotherapies, artemisinin is prescribed only in combination with other anti-malarials composing an Artemisinin Combination Therapy (ACT. Low yield in the plant, and the added cost of secondary anti-malarials in the ACT, make artemisinin costly for the developing world. As an alternative, we compared the efficacy of oral delivery of the dried leaves of whole plant (WP A. annua to a comparable dose of pure artemisinin in a rodent malaria model (Plasmodium chabaudi. We found that a single dose of WP (containing 24 mg/kg artemisinin reduces parasitemia more effectively than a comparable dose of purified drug. This increased efficacy may result from a documented 40-fold increase in the bioavailability of artemisinin in the blood of mice fed the whole plant, in comparison to those administered synthetic drug. Synergistic benefits may derive from the presence of other anti-malarial compounds in A. annua. If shown to be clinically efficacious, well-tolerated, and compatible with the public health imperative of forestalling evolution of drug resistance, inexpensive, locally grown and processed A. annua might prove to be an effective addition to the global effort to reduce malaria morbidity and mortality.

  12. Antimalarial activity of selected Ethiopian medicinal plants in mice

    Directory of Open Access Journals (Sweden)

    Eshetu M. Bobasa

    2018-02-01

    Full Text Available Context: Parasites are the leading killers in subtropical areas of which malaria took the lion share from protozoan diseases. Measuring the impact of antimalarial drug resistance is difficult, and the impact may not be recognized until it is severe, especially in high transmission areas. Aims: To evaluate the in vivo antimalarial activities of hydroalcoholic extracts of the roots of Piper capense and Adhatoda schimperiana, against Plasmodium berghei in mice. Methods: Four-day suppressive and curative test animal models were used to explore the antimalarial activities of the plants. 200, 400, and 600 mg/kg of each plant extract was administered to check the activities versus vehicle administered mice. Mean survival time and level of parasitemia were the major variables employed to compare the efficacy vs. negative control. Results: In both models the 400 and 600 mg/kg doses of Adhatoda schimperiana and the 600 mg/kg dose Piper capense. showed significant parasitemia suppression and increased in mean survival time at p≤0.05. The middle dose of Piper capense had a border line inhibition where the extracts were considered active when parasitemia was reduced by ≥ 30%. Conclusions: The hydroalcoholic extracts of the roots of Adhatoda schimperiana and Piper capense possess moderate antimalarial activities, which prove its traditional claims. Thus, further studies should be done to isolate the active constituents for future use in the modern drug discovery.

  13. Antimalarial drug use among caregivers in Ghana | Abuaku | African ...

    African Journals Online (AJOL)

    Methodology: Household surveys, using multi-stage sampling, were conducted in 2 sentinel districts, Wassa West and Kassena Nankana, established to monitor chloroquine resistance in the country. Five hundred caregivers were interviewed in each district to determine patterns of antimalarial drug use among caregivers of ...

  14. In Vivo anti-malarial activities of Clerodendrum myricoides ...

    African Journals Online (AJOL)

    Background: Malaria caused by the parasite Plasmodium falciparum is an acute disease which kills an estimated 863,000 people per year according to the WHO report of 2009. The fight against malaria is faced with the occurrence of widespread resistance of P. falciparum. The search for plant-derived antimalarial drugs ...

  15. Quality of Antimalarial Drugs Analysed in the National Quality ...

    African Journals Online (AJOL)

    During the period 2002–2005, the National Quality Control Laboratory analysed 229 samples of antimalarial drugs. In 2002, 42% of these products failed to comply with compendial specifications, with the sulfadoxine/ sulfamethoxypyrazine and pyrimethamine combination products forming 39% of the total failures.

  16. Comparative antimalarial and cytotoxic activities of two Vernonia ...

    African Journals Online (AJOL)

    Comparative antimalarial and cytotoxic activities of two Vernonia species: V. amygdalina from the Democratic Republic of Congo and V. cinerea subsp vialis endemic to Madagascar. KN Ngbolua, H Rakotoarimanana, H Rafatro, US Ratsimamanga, V Mudogo, PT Mpiana, DST Tshibangu ...

  17. CNS adverse events associated with antimalarial agents. Fact or fiction?

    NARCIS (Netherlands)

    Phillips-Howard, P. A.; ter Kuile, F. O.

    1995-01-01

    CNS adverse drug events are dramatic, and case reports have influenced clinical opinion on the use of antimalarials. Malaria also causes CNS symptoms, thus establishing causality is difficult. CNS events are associated with the quinoline and artemisinin derivatives. Chloroquine, once considered too

  18. In vivo Antimalarial Activity of Methanol and Water Extracts of ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vivo antimalarial effect of Eryngium thorifolium, an endemic plant in. Turkey. Methods: The methanol and water extracts were prepared and phytochemical analysis conducted on the extracts. Twenty four healthy Balb/c male mice, divided into 4 groups (n = 6), were infected intravenously with ...

  19. Antimalarial prescribing patterns in state hospitals and selected ...

    African Journals Online (AJOL)

    slowdown of progression to resistance could be achieved by improving prescribing practice, drug quality, and patient compliance. Objective: To determine the antimalarial prescribing pattern and to assess rational prescribing of chloroquine by prescribers in government hospitals and parastatals in Lagos State. Methods: ...

  20. Synthesis, and anti-malarial screening, of 1-diethylamino-4 ...

    African Journals Online (AJOL)

    Artemisinin and its derivatives have become antimalarial drugs of choice because they are effective against most stages in the life cycle of plasmodium and are safe for all, including pregnant women. World Health Organisation ... The target compound also had an LD50 of 330 mg/kg in mice by the oral route. A single dose ...

  1. Immunomodulating and Antiprotozoal Effects of Different Extracts of the Oyster Culinary-Medicinal Mushroom Pleurotus ostreatus (Higher Basidiomycetes) Against Coccidiosis in Broiler.

    Science.gov (United States)

    Ullah, Muhammad Irfan; Akhtar, Masood; Iqbal, Zafar; Shahid, Muhammad; Awais, Mian Muhammad

    2015-01-01

    The culinary-medicinal oyster mushroom Pleurotus ostreatus, procured from local sources, was processed for hot water and methanolic extraction. Extracts obtained were subjected to proximate analysis to determine the amount of crude protein, crude fiber, ash, ether, and nitrogen-free extracts. These extracts were evaluated for immunomodulating and antiprotozoal effects against coccidiosis in a broiler. Cellular immune investigation revealed significantly higher (P 0.05) findings were observed in investigations of lymphoid organs. Antiprotozoal studies revealed a significantly higher (P < 0.05) percentage of protection against coccidiosis in groups administered P. ostreatus extracts when compared with controls. Moreover, lesion scoring and oocysts per gram of droppings observed in the control group were significantly higher (P < 0.05) compared with those in groups administered hot water and methanolic extracts of P. ostreatus. Results concluded that hot water and methanolic extracts of P. ostreatus had strong immune-enhancing activities. Further, these extracts also had excellent antiprotozoal activities against coccidiosis in a broiler.

  2. Medicinal chemistry discoveries among 1,3,5-triazines: recent advances (2000-2013) as antimicrobial, anti-TB, anti-HIV and antimalarials.

    Science.gov (United States)

    Patel, Rahul V; Keum, Young-Soo; Park, Se Won

    2014-01-01

    The chemistry and an extensive spectrum of biological activities of s-triazines have been examined since several decades and this heterocyclic core has received emerging consensus. This article aims to summarize recent advances (2000-2013) made towards the discovery of antimicrobial, antituberculosis, anti-HIV and antimalarial agents holding 1,3,5-triazine ring as a nucleus with the substitution of several types of nucleophiles. Molecular patterns associated with particular potency have been identified targeting several Gram-positive and Gram-negative bacteria and some fungal species, mycobacterium tuberculosis H37Rv, HIV type I and HIV type II, particularly, HIV-1I IIB and HIV- 1ROD strains as well as a variety of P. falciparum malarial strains as chloroquine-resistant K1, chloroquine-susceptible NF54, chloroquine-sensitive 3D7, P. falciparum (D6 clone), P. falciparum (W2 clone), cycloguanil-resistant FCR-3, chloroquine sensitive RKL2. The report will be of considerable interest to gain useful information for the furtherance of drug discovery with extended 1,3,5-triazine designs.

  3. Quality of antimalarials at the epicenter of antimalarial drug resistance: results from an overt and mystery client survey in Cambodia.

    Science.gov (United States)

    Yeung, Shunmay; Lawford, Harriet L S; Tabernero, Patricia; Nguon, Chea; van Wyk, Albert; Malik, Naiela; DeSousa, Mikhael; Rada, Ouk; Boravann, Mam; Dwivedi, Prabha; Hostetler, Dana M; Swamidoss, Isabel; Green, Michael D; Fernandez, Facundo M; Kaur, Harparkash

    2015-06-01

    Widespread availability of monotherapies and falsified antimalarials is thought to have contributed to the historical development of multidrug-resistant malaria in Cambodia. This study aimed to document the quality of artemisinin-containing antimalarials (ACAs) and to compare two methods of collecting antimalarials from drug outlets: through open surveyors and mystery clients (MCs). Few oral artemisinin-based monotherapies and no suspected falsified medicines were found. All 291 samples contained the stated active pharmaceutical ingredient (API) of which 69% were considered good quality by chemical analysis. Overall, medicine quality did not differ by collection method, although open surveyors were less likely to obtain oral artemisinin-based monotherapies than MCs. The results are an encouraging indication of the positive impact of the country's efforts to tackle falsified antimalarials and artemisinin-based monotherapies. However, poor-quality medicines remain an ongoing challenge that demands sustained political will and investment of human and financial resources. © The American Society of Tropical Medicine and Hygiene.

  4. Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Karène Urgin

    2017-01-01

    Full Text Available With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N-arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal -N(Me2 or -N(Et2 in different positions (ortho, meta and para on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N-arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para-position of the substituent remains the most favourable position on the benzyl chain and the carbamate -NHBoc was found active both in vitro (42 nM versus 29 nM for plasmodione and in vivo in Plasmodium berghei-infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.

  5. A population-based case-control study of the safety of oral anti-tuberculosis drug treatment during pregnancy

    DEFF Research Database (Denmark)

    Czeizel, A.E.; Rockenbauer, M.; Olsen, J.

    2001-01-01

    OUTCOME MEASURES: Congenital abnormalities in newborn infants and fetuses diagnosed prenatally during the second and third trimesters, and postnatally from birth to the age of one year. RESULTS: Of 38,151 controls, 29 (0.08%) were exposed to anti-tuberculosis drug treatment during pregnancy......OBJECTIVE: To study the human teratogenic potential of isoniazid and other anti-tuberculosis drug treatment during pregnancy. DESIGN AND SETTING: Cases from a large population-based dataset at the Hungarian Case-Control Surveillance of Congenital Abnormalities, and controls from the National Birth...... Registry, between 1980 and 1996. Information on all oral anti-tuberculosis drug treatments during pregnancy was medically recorded. STUDY PARTICIPANTS: Women who had newborns or fetuses with congenital abnormalities (case group), and women who had babies with no congenital abnormality (control group). MAIN...

  6. [Observations of properties of the L-form of M. tuberculosis induced by the antituberculosis drugs].

    Science.gov (United States)

    Wang, H; Chen, Z

    2001-01-01

    To investigate the mechanism of generation of L-form of M. tuberculosis and its significance on the development, diagnosis and treatment of tuberculosis. M. tuberculosis was inoculated into the non-high osmotic medium with rifampin, isoniazid or ethambutol and then the L-form was observed by microscopy daily. The cultures were filtrated to get the pure cultures of stable L-form by subculture with the non-high osmotic medium and characteristics of morphology, growth, susceptibilities to the antibacterial drugs and the special gene of M. tuberculosis were observed when the pure subcultures of the L-form were isolated. L-form of M. tuberculosis was induced by the concentrations of routine inhibition test of rifampin, isoniazid or ethambutol. The L-form would not be susceptible to the above mentioned antituberculosis drugs but susceptible to streptomycin, erythromycin, ofloxacin, norfloxacin and others. The morphologies of L-form were irregular or spherical with single, paired or chain form, and growth under the bottom of the medium but not movement or adhere to the glass. The L-form was negative by acid-fast stain and negative or positive by Gram stain. The gene of L-form reacted with the PCR kit for the M. tuberculosis and showed the same band. M. tuberculosis could be killed by rifampin, isoniazid or ethambutol but also could be induced to become the L-form by these antituberculosis drugs, and it is one of the important factor that affecting the effect of treatment of the tuberculosis. The cell wall deficient variants of M. tuberculosis could be determined by the PCR of M. tuberculosis. It is recommended that the L-forms should be noticed during the treatment with the antituberculosis drugs and combination treatment with antituberculous drugs to which the L-forms were susceptible, is also very important.

  7. Antimycobacterial, antiprotozoal and cytotoxic potential of twenty-one brown algae (Phaeophyceae) from British and Irish waters.

    Science.gov (United States)

    Spavieri, Jasmine; Allmendinger, Andrea; Kaiser, Marcel; Casey, Rosalyn; Hingley-Wilson, Suzie; Lalvani, Ajit; Guiry, Michael D; Blunden, Gerald; Tasdemir, Deniz

    2010-11-01

    In the continuation of our research on seaweeds, crude extracts of 21 brown algae collected from the south coast of England and the west coast of Ireland were screened for in vitro trypanocidal, leishmanicidal and antimycobacterial activities. Mammalian stages of a small set of parasitic protozoa; i.e. Trypanosoma brucei rhodesiense, T. cruzi and Leishmania donovani, and the tubercle bacillus Mycobacterium tuberculosis were used as test organisms. The extracts were also evaluated for selectivity by testing on a mammalian cell line (L6 cells). Only four extracts were moderately active against T. cruzi, whereas all algal extracts showed significant activity against T. brucei rhodesiense, with Halidrys siliquosa and Bifurcaria bifurcata (Sargassaceae) being the most potent (IC50 values 1.2 and 1.9 μg/mL). All algal extracts also displayed leishmanicidal activity, with H. siliquosa and B. bifurcata again being the most active (IC50s 6.4 and 8.6 μg/mL). When tested against M. tuberculosis, only the B. bifurcata extract was found to have some antitubercular potential (MIC value 64.0 μg/mL). Only three seaweed extracts, i.e. H. siliquosa, B. bifurcata and Cystoseira tamariscifolia showed some cytotoxicity. To our knowledge, this is the first study on the antiprotozoal and antimycobacterial activity of brown algae from British and Irish waters. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Synthesis and Antiprotozoal Activity of Cationic 1,4-Diphenyl-1H-1,2,3-Triazoles

    Science.gov (United States)

    Bakunov, Stanislav A.; Bakunova, Svetlana M.; Wenzler, Tanja; Ghebru, Maedot; Werbovetz, Karl A.; Brun, Reto; Tidwell, Richard R.

    2011-01-01

    Novel dicationic triazoles 1–60 were synthesized by the Pinner method from the corresponding dinitriles, prepared via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The type and the placement of cationic moieties as well as the nature of aromatic substituents influenced in vitro antiprotozoal activities of compounds 1–60 against Trypanosoma brucei rhodesiense, Plasmodium falciparum, and Leishmania donovani and their cytotoxicity for mammalian cells. Eight congeners displayed antitrypanosomal IC50 values below 10 nM. Thirty-nine dications were more potent against P. falciparum than pentamidine (IC50 = 58 nM) and eight analogues were more active than artemisinin (IC50 = 6 nM). Diimidazoline 60 exhibited antiplasmodial IC50 value of 0.6 nM. Seven congeners administered at 4 × 5 mg/kg by the intraperitoneal route cured at least three out of four animals in the acute mouse model of African trypanosomiasis. At 4 × 1 mg/kg, diamidine 46 displayed better antitrypanosomal efficacy than melarsoprol, curing all infected mice. PMID:19928900

  9. NEW METHOD OF EPIDEMIOLOGICAL EVALUATION OF THE INCIDENCE OF COMPLICATIONS AFTER ANTI-TUBERCULOSIS VACCINATION

    OpenAIRE

    S. N. Shugaeva; E. D. Savilov

    2016-01-01

    The article offers a new method for calculation of incidence of complications after primary anti-tuberculosis vaccination. Using the example of analysis of continuous sampling of complications after anti-tuberculosis vaccination (n = 110) in Irkutsk Region in 2005-2014 the article shows the advantage of the offered method compared to the existing ones.

  10. SPECIFIC FEATURES OF ANTI-TUBERCULOSIS CHEMOTHERAPY TOLERANCE IN THE LIGHT OF PSYCHOLOGICAL STATUS OF PATIENTS

    Directory of Open Access Journals (Sweden)

    N. V. Zolotova

    2017-01-01

    Full Text Available Specific features of psychological state were studied in 295 pulmonary tuberculosis patients with satisfactory tolerance to anti-tuberculosis medications and 75 patients poorly tolerating the treatment.Before the treatment start the patients who later demonstrated adverse reactions to treatment were diagnosed with more intense neurotic and hypochondriac personal features, destructive reactions and higher level of emotional tension and frustration – all the above promote dysregulation of the host adaptation. The research demonstrated the need to consider psychological aspects when studying the tolerance to anti-tuberculosis chemotherapy. 

  11. Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals

    Directory of Open Access Journals (Sweden)

    Izzettin Fikret V

    2008-07-01

    Full Text Available Abstract Background The first line anti-tuberculosis drugs isoniazid (INH, rifampicin (RIF and pyrazinamide (PZA continues to be the effective drugs in the treatment of tuberculosis, however, the use of these drugs is associated with toxic reactions in tissues, particularly in the liver, leading to hepatitis. Silymarin, a standard plant extract with strong antioxidant activity obtained from S. marianum, is known to be an effective agent for liver protection and liver regeneration. The aim of this study was to investigate the protective actions of silymarin against hepatotoxicity caused by different combinations of anti-tuberculosis drugs. Methods Male Wistar albino rats weighing 250–300 g were used to form 6 study groups, each group consisting of 10 rats. Animals were treated with intra-peritoneal injection of isoniazid (50 mg/kg and rifampicin (100 mg/kg; and intra-gastric administration of pyrazinamid (350 mg/kg and silymarin (200 mg/kg. Hepatotoxicity was induced by a combination of drugs with INH+RIF and INH+RIF+PZA. Hepatoprotective effect of silymarin was investigated by co-administration of silymarin together with the drugs. Serum biochemical tests for liver functions and histopathological examination of livers were carried out to demonstrate the protection of liver against anti-tuberculosis drugs by silymarin. Results Treatment of rats with INH+RIF or INH+RIF+PZA induced hepatotoxicity as evidenced by biochemical measurements: serum alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP activities and the levels of total bilirubin were elevated, and the levels of albumin and total protein were decreased in drugs-treated animals. Histopathological changes were also observed in livers of animals that received drugs. Simultaneous administration of silymarin significantly decreased the biochemical and histological changes induced by the drugs. Conclusion The active components of silymarin had

  12. From crystal to compound: structure-based antimalarial drug discovery.

    Science.gov (United States)

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  13. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    OpenAIRE

    Calcul, Laurent; Waterman, Carrie; Ma, Wai Sheung; Lebar, Matthew D.; Harter, Charles; Mutka, Tina; Morton, Lindsay; Maignan, Patrick; Van Olphen, Alberto; Kyle, Dennis E.; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric; Baker, Bill J.

    2013-01-01

    We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fr...

  14. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  15. Ethnobotanical perspective of antimalarial plants: traditional knowledge based study.

    Science.gov (United States)

    Qayum, Abdul; Arya, Rakesh; Lynn, Andrew M

    2016-02-04

    Considering the demand of antimalarial plants it has become essential to find and locate them for their optimal extraction. The work aims to find plants with antimalarial activities which were used by the local people; to raise the value of traditional knowledge system (TKS) prevalent in the study region; to compile characteristics of local plants used in malaria treatment (referred as antimalarial plants) and to have its spatial distribution analysis to establish a concept of geographical health. Antimalarial plants are listed based on literature survey and field data collected during rainy season, from 85 respondents comprised of different ethnic groups. Ethno-medicinal utilities of plants was extracted; botanical name, family, local name, part used, folklore, geographical location and image of plants were recorded after cross validating with existing literatures. The interview was trifurcated in field, Vaidya/Hakims and house to house. Graphical analysis was done for major plants families, plant part used, response of people and patients and folklore. Mathematical analysis was done for interviewee's response, methods of plant identification and people's preferences of TKS through three plant indices. Fifty-one plants belonging to 27 families were reported with its geographical attributes. It is found plant root (31.75 %) is used mostly for malaria treatment and administration mode is decoction (41.2 %) mainly. The study area has dominance of plants of family Fabaceae (7), Asteraceae (4), Acanthaceae (4) and Amaranthaceae (4). Most popular plants found are Adhatoda vasica, Cassia fistula and Swertia chirata while  % usage of TKS is 82.0 % for malaria cure. The research findings can be used by both scientific community and common rural people for bio-discovery of these natural resources sustainably. The former can extract the tables to obtain a suitable plant towards finding a suitable lead molecule in a drug discovery project; while the latter can meet their

  16. Quinolone-3-diarylethers: a new class of antimalarial drug.

    OpenAIRE

    Nilsen Aaron; LaCrue Alexis N; White Karen L; Forquer Isaac P; Cross R Matthew; Marfurt Jutta; Mather Michael W; Delves Michael J; Shackleford David M; Saenz Fabian E; Morrisey Joanne M; Steuten Jessica; Mutka Tina; Li Yuexin; Wirjanata Grennady

    2013-01-01

    The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle thus impacting prevention treatment and transmission of the disease. The 4(1H) quinolone 3 diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite a...

  17. POTENCY OF THE INDONESIAN MEDICINAL PLANTS AS ANTIMALARIAL DRUGS

    Directory of Open Access Journals (Sweden)

    Subeki Subeki

    2012-12-01

    Full Text Available The Indonesian traditional herbal medicine has been practiced for many centuries in Indonesia to treat malaria diseases. Although modern medicine is becoming increasingly important, herbal medicine is still very popular. In order to select raw material for preparation of safety herbal medicines, forty five medicinal plants have been tested for acute toxicity in mouse at a dose 715 mg/kg body weight. The extracts of Asclepias curassavica leave, Alstonia scholaris leave, Decospermum fruticosum leave, Elaocarpus petiolatus bark, Elaocarpus parvifolius bark, Eurycoma longifolia root, Garcinia rigida bark, Nephelium lappaceum bark, Pentaspodan motleyi leave, Picrasma javanica leave, Phyllanthus niruri whole, Quassia indica leave, Syzygium pycnanthum bark, Tetrasera scandens leave, Cratoxylum glaucum bark, Sandoricum emarginatum bark, Mallotus paniculatus leave, Microcos ovatolanceolata bark, Poikilospermum suaveolens leave, Fibraurea chloroleuea leave, Tetrasera scandens root, and Timonius billitonensis bark showed toxicity with mortality level of 20-100%. The remaining 32 plant extracts were not toxic at dose tested. The toxic plant species should be considered in the preparation of herbal medicines. Of the safety extracts were tested for their antimalarial activity against Plasmodium berghei in vivo at a dose 715 mg/kg body weight. Extract of Carica papaya leave was most active than other plant extracts with parasitemia 1.13%, while control showed 17.21%. More research is needed to scientifically prove efficacy and to identity antimalarial constituents in the plant extracts. Key words: Indonesian medicinal plant, jamu, toxicity, antimalarial activity, Plasmodium berghei.

  18. Quality Testing of Artemisinin-Based Antimalarial Drugs in Myanmar.

    Science.gov (United States)

    Guo, Suqin; Kyaw, Myat Phone; He, Lishan; Min, Myo; Ning, Xiangxue; Zhang, Wei; Wang, Baomin; Cui, Liwang

    2017-10-01

    Artemisinin-based combination therapies are the frontline treatment of Plasmodium falciparum malaria. The circulation of falsified and substandard artemisinin-based antimalarials in Southeast Asia has been a major predicament for the malaria elimination campaign. To provide an update of this situation, we purchased 153 artemisinin-containing antimalarials, as convenience samples, in private drug stores from different regions of Myanmar. The quality of these drugs in terms of their artemisinin derivative content was tested using specific dipsticks for these artemisinin derivatives, as point-of-care devices. A subset of these samples was further tested by high-performance liquid chromatography (HPLC). This survey identified that > 35% of the collected drugs were oral artesunate and artemether monotherapies. When tested with the dipsticks, all but one sample passed the assays, indicating that the detected artemisinin derivative content corresponded approximately to the labeled contents. However, one artesunate injection sample was found to contain no active ingredient at all by the dipstick assay and subsequent HPLC analysis. The continued circulation of oral monotherapies and the description, for the first time, of falsified parenteral artesunate provides a worrisome picture of the antimalarial drug quality in Myanmar during the malaria elimination phase, a situation that deserves more oversight from regulatory authorities.

  19. Antimalarial Activity of Cocos nucifera Husk Fibre: Further Studies

    Science.gov (United States)

    Adebayo, J. O.; Balogun, E. A.; Malomo, S. O.; Soladoye, A. O.; Olatunji, L. A.; Kolawole, O. M.; Oguntoye, O. S.; Babatunde, A. S.; Akinola, O. B.; Aguiar, A. C. C.; Andrade, I. M.; Souza, N. B.; Krettli, A. U.

    2013-01-01

    In this study, the antimalarial and toxicity potentials of husk fibre extracts of five Nigerian varieties of Cocos nucifera were evaluated in vitro. The only active extract fraction, West African Tall (WAT) ethyl acetate extract fraction, was then evaluated for its phytochemical constituents, antimalarial and toxicity potentials at varying doses (31.25–500 mg/kg body weight) using various organ function indices. The results revealed that WAT ethyl acetate extract fraction (WATEAEF) contained alkaloids, tannins, and flavonoids and was active against Plasmodium falciparum W2 strain maintained in continuous culture, with a selectivity index of 30.3. The same extract fraction was active in vivo against Plasmodium berghei NK65, causing more than 50% reduction in parasitaemia on days 4 and 6 after inoculation at various doses administered. WATEAEF did not significantly alter (P > 0.05) function indices of the liver and cardiovascular system at all doses administered but significantly increased (P < 0.05) plasma creatinine concentration at 250 and 500 mg/Kg body weight compared to controls. The results of this study suggest that WATEAEF possesses antimalarial activity and may not adversely affect normal liver function nor predispose subjects to cardiovascular diseases but may impair normal kidney function at higher doses. Further studies are underway to isolate the active principles. PMID:23983800

  20. In Vitro Susceptibility of Plasmodium vivax to Antimalarials in Colombia

    Science.gov (United States)

    Fernández, Diana; Segura, César; Arboleda, Margarita; Garavito, Giovanny; Blair, Silvia

    2014-01-01

    The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia. PMID:25114141

  1. Substandard and falsified anti-tuberculosis drugs: a preliminary field analysis.

    Science.gov (United States)

    Bate, R; Jensen, P; Hess, K; Mooney, L; Milligan, J

    2013-03-01

    Pharmacies in 19 cities in Angola, Brazil, China, Democratic Republic of Congo, Egypt, Ethiopia, Ghana, India (n = 3), Kenya, Nigeria, Russia, Rwanda, Thailand, Turkey, Uganda, United Republic of Tanzania and Zambia. To assess the quality of the two main first-line anti-tuberculosis medicines, isoniazid and rifampicin, procured from private-sector pharmacies, to determine if substandard and falsified medicines are available and if they potentially contribute to drug resistance in cities in low- and middle-income countries. Local nationals procured 713 treatment packs from a selection of pharmacies in 19 cities. These samples were tested for quality using 1) thin-layer chromatography to analyze levels of active pharmaceutical ingredient (API), and 2) disintegration testing. Of 713 samples tested, 9.1% failed basic quality testing for requisite levels of API or disintegration. The failure rate was 16.6% in Africa, 10.1% in India, and 3.9% in other middle-income countries. Substandard and falsified drugs are readily available in the private marketplace and probably contribute to anti-tuberculosis drug resistance in low- and middle-income countries. This issue warrants further investigation through large-scale studies of drug quality in all markets.

  2. PROPOSAL OF ANTI-TUBERCULOSIS REGIMENS BASED ON SUSCEPTIBILITY TO ISONIAZID AND RIFAMPICIN

    Science.gov (United States)

    Mendoza-Ticona, Alberto; Moore, David AJ; Alarcón, Valentina; Samalvides, Frine; Seas, Carlos

    2014-01-01

    Objective To elaborate optimal anti-tuberculosis regimens following drug susceptibility testing (DST) to isoniazid (H) and rifampicin (R). Design 12 311 M. tuberculosis strains (National Health Institute of Peru 2007-2009) were classified in four groups according H and R resistance. In each group the sensitivity to ethambutol (E), pirazinamide (Z), streptomycin (S), kanamycin (Km), capreomycin (Cm), ciprofloxacin (Cfx), ethionamide (Eto), cicloserine (Cs) and p-amino salicilic acid (PAS) was determined. Based on resistance profiles, domestic costs, and following WHO guidelines, we elaborated and selected optimal putative regimens for each group. The potential efficacy (PE) variable was defined as the proportion of strains sensitive to at least three or four drugs for each regimen evaluated. Results Selected regimes with the lowest cost, and highest PE of containing 3 and 4 effective drugs for TB sensitive to H and R were: HRZ (99,5%) and HREZ (99,1%), respectively; RZECfx (PE=98,9%) and RZECfxKm (PE=97,7%) for TB resistant to H; HZECfx (96,8%) and HZECfxKm (95,4%) for TB resistant to R; and EZCfxKmEtoCs (82.9%) for MDR-TB. Conclusion Based on resistance to H and R it was possible to select anti-tuberculosis regimens with high probability of success. This proposal is a feasible alternative to tackle tuberculosis in Peru where the access to rapid DST to H and R is improving progressively. PMID:23949502

  3. Fresh Air and Good Food: Children and the Anti-Tuberculosis Campaign in the Netherlands c.1900-1940

    Science.gov (United States)

    Bakker, Nelleke

    2010-01-01

    As elsewhere in the Western world, between 1900 and 1940 the anti-tuberculosis campaign in the Netherlands produced a wide range of initiatives to promote child health. In each of these the social and the medical were linked, as the hygienic "mood" was encouraged by a child-saving ethos that focused upon the poor. In this article the…

  4. Meta-Analysis of Clinical Studies Supports the Pharmacokinetic Variability Hypothesis for Acquired Drug Resistance and Failure of Antituberculosis Therapy

    OpenAIRE

    Pasipanodya, Jotam G.; Srivastava, Shashikant; Gumbo, Tawanda

    2012-01-01

    Laboratory studies have questioned nonadherence as a cause of antituberculosis drug failure and propose that between-patient pharmacokinetic variability may be the cause. This meta-analysis provides clinical evidence that pharmacokinetic variability of isoniazid alone leads to worse microbiological failure, relapse, and acquired drug resistance.

  5. Late paradoxical lymph node enlargement during and after anti-tuberculosis treatment in non-HIV-infected patients.

    Science.gov (United States)

    Yu, S N; Cho, O-H; Park, K-H; Jung, J; Kim, Y K; Lee, J Y; Chong, Y-P; Lee, S-O; Choi, S-H; Kim, Y S; Woo, J H; Kim, S-H

    2015-11-01

    A tertiary referral centre in South Korea. To investigate the incidence, clinical characteristics and outcomes of late paradoxical response (>4 months after the initiation of anti-tuberculosis treatment) during and after anti-tuberculosis treatment in non-human immunodeficiency virus (HIV) infected patients with lymph node tuberculosis (TB). We retrospectively reviewed the medical records of non-HIV-infected patients with lymph node TB between 1997 and 2007, and prospectively enrolled patients with newly diagnosed lymph node TB between 2008 and 2013. Of 467 patients with confirmed and probable lymph node TB, 83 (18%) displayed a paradoxical response: 57 of these (69%) were classified as early and 26 (31%) as late paradoxical response. Patients with late paradoxical response (median 12 months) received more prolonged anti-tuberculosis treatment than those with early (median 9 months, P lymph node enlargement increased progressively from those without any paradoxical response (6%), through those with an early response (12%) to those with a late response (23%). Paradoxical response presents late in about one third of non-HIV-infected patients with lymph node TB who experience a response. Although anti-tuberculosis treatment is commonly prolonged in patients with late paradoxical response, post-treatment lymph node enlargement is more frequent in these patients.

  6. Fresh air and good food : Children and the anti-tuberculosis campaign in the Netherlands c.1900-1940

    NARCIS (Netherlands)

    Bakker, Nelleke

    2010-01-01

    As elsewhere in the Western world, between 1900 and 1940 the anti-tuberculosis campaign in the Netherlands produced a wide range of initiatives to promote child health. In each of these the social and the medical were linked, as the hygienic 'mood' was encouraged by a child-saving ethos that focused

  7. Combination Effect of Antituberculosis Drugs and Ethanolic Extract of Selected Medicinal Plants against Multi-Drug Resistant Mycobacterium tuberculosis Isolates

    Science.gov (United States)

    Fauziyah, Prabasiwi Nur; Sukandar, Elin Yulinah; Ayuningtyas, Dhyan Kusuma

    2017-01-01

    Adverse drug reaction and resistance to antituberculosis drugs remain the causes of tuberculosis therapeutic failure. This research aimed to find the combination effect of standard antituberculosis drugs with Hibiscus sabdariffa L., Kaempferia galanga L., and Piper crocatum N.E. Br against multi-drug resistant (MDR) Mycobacterium tuberculosis isolates. Two MDR strains (i.e., isoniazid/ethambutol resistant and rifampicin/streptomycin resistant) of M. tuberculosis were inoculated in Löwenstein–Jensen medium containing a combination of standard antituberculosis drugs and ethanolic extracts of H. sabdariffa calyces, K. galanga rhizomes, and P. crocatum leaves using various concentration combinations of drug and extract. The colony numbers were observed for 8 weeks. The effect of the combination was analyzed using the proportion method which was calculated by the mean percentage of inhibition reduction in a number of colonies on drug–extract containing medium compared to extract-free control medium. The results showed that all three plant extracts achieved good combination effects with rifampicin against the rifampicin/streptomycin resistant strain. Antagonistic effects were, however, observed with streptomycin, ethambutol and isoniazid, therefore calling for caution when using these plants in combination with antituberculosis treatment. PMID:28335544

  8. Incidence, clinical features and impact on anti-tuberculosis treatment of anti-tuberculosis drug induced liver injury (ATLI in China.

    Directory of Open Access Journals (Sweden)

    Penghui Shang

    Full Text Available Anti-tuberculosis drug induced liver injury (ATLI is emerging as a significant threat to tuberculosis control in China, though limited data is available about the burden of ATLI at population level. This study aimed to estimate the incidence of ATLI, to better understand its clinical features, and to evaluate its impact on anti-tuberculosis (TB treatment in China.In a population-based prospective study, we monitored 4,304 TB patients receiving directly observed treatment strategy (DOTS treatment, and found that 106 patients developed ATLI with a cumulative incidence of 2.55% (95% Confidence Interval [CI], 2.04%-3.06%. Nausea, vomiting and anorexia were the top three most frequently observed symptoms. There were 35 (33.02% ATLI patients with no symptoms, including 8 with severe hepatotoxicity. Regarding the prognosis of ATLI, 84 cases (79.25% recovered, 18 (16.98% improved, 2 (1.89% failed to respond to the treatment with continued elevation of serum alanine aminotransferase, and 2 (1.89% died as result of ATLI. Of all the ATLI cases, 74 (69.81% cases changed their anti-TB treatment, including 4 (3.77% cases with medication administration change, 21 (19.81% cases with drugs replacement, 54 (50.94% cases with therapy interruption, and 12 (11.32% cases who discontinued therapy. In terms of treatment outcomes, 53 (51.46% cases had TB cured in time, 48 (46.60% cases had therapy prolonged, and 2 (1.94% cases died. Compared with non-ATLI patients, ATLI patients had a 9.25-fold (95%CI, 5.69-15.05 risk of unsuccessful anti-TB treatment outcomes and a 2.11-fold (95%CI, 1.23-3.60 risk of prolonged intensive treatment phase.ATLI could considerably impact the outcomes of anti-TB treatment. Given the incidence of ATLI and the size of TB population in China, the negative impact is substantial. Therefore, more research and efforts are warranted in order to enhance the diagnosis and the prevention of ATLI.

  9. Elucidating antimalarial drug targets/mode-of-action by application of system biology technologies

    CSIR Research Space (South Africa)

    Becker, J

    2008-11-01

    Full Text Available . Eradication efforts are hampered by two major drawbacks-the absence of an effective vaccine coupled with the widespread occurrence of drug-resistant strains to frontline antimalarials and, of late, the emergence of resistance to current antimalarials of choice...

  10. Estimated Under-Five Deaths Associated with Poor-Quality Antimalarials in Sub-Saharan Africa

    Science.gov (United States)

    Renschler, John P.; Walters, Kelsey M.; Newton, Paul N.; Laxminarayan, Ramanan

    2015-01-01

    Many antimalarials sold in sub-Saharan Africa are poor-quality (falsified, substandard, or degraded), and the burden of disease caused by this problem is inadequately quantified. In this article, we estimate the number of under-five deaths caused by ineffective treatment of malaria associated with consumption of poor-quality antimalarials in 39 sub-Saharan countries. Using Latin hypercube sampling our estimates were calculated as the product of the number of private sector antimalarials consumed by malaria-positive children in 2013; the proportion of private sector antimalarials consumed that were of poor-quality; and the case fatality rate (CFR) of under-five malaria-positive children who did not receive appropriate treatment. An estimated 122,350 (interquartile range [IQR]: 91,577–154,736) under-five malaria deaths were associated with consumption of poor-quality antimalarials, representing 3.75% (IQR: 2.81–4.75%) of all under-five deaths in our sample of 39 countries. There is considerable uncertainty surrounding our results because of gaps in data on case fatality rates and prevalence of poor-quality antimalarials. Our analysis highlights the need for further investigation into the distribution of poor-quality antimalarials and the need for stronger surveillance and regulatory efforts to prevent the sale of poor-quality antimalarials. PMID:25897068

  11. In Vivo Antimalarial Activity of Solvent Fractions of the Leaves of ...

    African Journals Online (AJOL)

    Increasing resistance of Plasmodium falciparum to almost all the available antimalarial drugs urges a search for newer antimalarial drugs. Justicia schimperiana Hochst. Ex Nees is traditionally used for the treatment of malaria and a study conducted previously on the crude leaf extract confirmed that the plant is endowed ...

  12. Novel in vivo active anti-malarials based on a hydroxy-ethyl-amine scaffold.

    Science.gov (United States)

    Ciana, Claire-Lise; Siegrist, Romain; Aissaoui, Hamed; Marx, Léo; Racine, Sophie; Meyer, Solange; Binkert, Christoph; de Kanter, Ruben; Fischli, Christoph; Wittlin, Sergio; Boss, Christoph

    2013-02-01

    A novel series of anti-malarials, based on a hydroxy-ethyl-amine scaffold, initially identified as peptidomimetic protease inhibitors is described. Combination of the hydroxy-ethyl-amine anti-malarial phramacophore with the known Mannich base pharmacophore of amodiaquine (57) resulted in promising in vivo active novel derivatives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Mechanochemical Synthesis, In vivo Anti-malarial and Safety Evaluation of Amodiaquine-zinc Complex

    Directory of Open Access Journals (Sweden)

    Arise Rotimi Olusanya

    2017-09-01

    Full Text Available So far, some prospective metal-based anti-malarial drugs have been developed. The mechanochemical synthesis and characterization of Zn (II complex with amodiaquine and its anti-malarial efficacy on Plasmodium berghei-infected mice and safety evaluation were described in this study.

  14. malaria and anti-malarial drugs utilisation among adults in a rural

    African Journals Online (AJOL)

    Vihar

    Magreth Komanya (Bsc Nursing). AMREF. ABSTRACT. Objective: To study malaria and examine determinants of anti-malarial drugs utilization among ..... anti-malarials for prophylaxis and chemotherapy or may be provided with prescription forms to buy drugs. Moreover the general understanding that pregnant women are ...

  15. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei.

    Science.gov (United States)

    Ramli, Norazsida; Ahamed, Pakeer Oothuman Syed; Elhady, Hassan Mohamed; Taher, Muhammad

    2014-10-01

    Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Acute oral toxicity dose at 5000 mg/kg was conducted to evaluate the safety of this extract. Twenty mice were divided into control and experimental group. All the mice were observed for signs of toxicity, mortality, weight changes and histopathological changes. Antimalarial activity of different extract doses of 50, 200, 400 and 1000 mg/kg were tested in vivo against Plasmodium berghei infections in mice (five mice for each group) during early, established and residual infections. The acute oral toxicity test revealed that no mortality or evidence of adverse effects was seen in the treated mice. The extract significantly reduced the parasitemia by the 50 (P = 0.000), 200 (P = 0.000) and 400 mg/kg doses (P = 0.000) in the in vivo prophylactic assay. The percentage chemo-suppression was calculated as 83.33% for 50 mg/kg dose, 75.62% for 200 mg/kg dose and 90.74% for 400 mg/kg dose. Body weight of all treated groups; T1, T2, T3 and T4 also showed enhancement after 7 days posttreatment. Statistically no reduction of parasitemia calculated for curative and suppressive test. Thus, this extract may give a promising agent to be used as a prophylactic agent of P. berghei infection.

  16. Antimalarial interaction of quinine and quinidine with clarithromycin.

    Science.gov (United States)

    Pandey, Swaroop Kumar; Dwivedi, Hemlata; Singh, Sarika; Siddiqui, Waseem Ahmad; Tripathi, Renu

    2013-03-01

    Quinine (QN) and quinidine (QND) have been commonly used as effective and affordable antimalarials for over many years. Quinine primarily is used for severe malaria treatment. However, plasmodia resistance to these drugs and poor patient compliance limits their administration to the patients. The declining sensitivity of the parasite to the drugs can thus be dealt with by combining with a suitable partner drug. In the present study QN/QND was assessed in combination with clarithromycin (CLTR), an antibiotic of the macrolide family. In vitro interactions of these drugs with CLTR against Plasmodium falciparum (P. falciparum) have shown a synergistic response with mean sum fractional inhibitory concentrations (ΣFICs) of ≤1 (0.85 ± 0.11 for QN + CLTR and 0.64 ± 0.09 for QND + CLTR) for all the tested combination ratios. Analysis of this combination of QN/QND with CLTR in mouse model against Plasmodium yoelii nigeriensis multi-drug resistant (P. yoelii nigeriensis MDR) showed that a dose of 200 mg/kg/day for 4 days of QN or QND produces 100% curative effect with 200 mg/kg/day for 7 days and 150 mg/kg/day for 7 days CLTR respectively, while the same dose of individual drugs could produce only up to a maximum 20% cure. It is postulated that CLTR, a CYP3A4 inhibitor, might have caused reduced CYP3A4 activity leading to increased plasma level of the QN/QND to produce enhanced antimalarial activity. Further, parasite apicoplast disruption by CLTR synergies the antimalarial action of QN and QND.

  17. Antimalarial drug use in general populations of tropical Africa

    Directory of Open Access Journals (Sweden)

    Gardella Florence

    2008-07-01

    Full Text Available Abstract Background The burden of Plasmodium falciparum malaria has worsened because of the emergence of chloroquine resistance. Antimalarial drug use and drug pressure are critical factors contributing to the selection and spread of resistance. The present study explores the geographical, socio-economic and behavioural factors associated with the use of antimalarial drugs in Africa. Methods The presence of chloroquine (CQ, pyrimethamine (PYR and other antimalarial drugs has been evaluated by immuno-capture and high-performance liquid chromatography in the urine samples of 3,052 children (2–9 y, randomly drawn in 2003 from the general populations at 30 sites in Senegal (10, Burkina-Faso (10 and Cameroon (10. Questionnaires have been administered to the parents of sampled children and to a random sample of households in each site. The presence of CQ in urine was analysed as dependent variable according to individual and site characteristics using a random – effect logistic regression model to take into account the interdependency of observations made within the same site. Results According to the sites, the prevalence rates of CQ and PYR ranged from 9% to 91% and from 0% to 21%, respectively. In multivariate analysis, the presence of CQ in urine was significantly associated with a history of fever during the three days preceding urine sampling (OR = 1.22, p = 0.043, socio-economic level of the population of the sites (OR = 2.74, p = 0.029, age (2–5 y = reference level; 6–9 y OR = 0.76, p = 0.002, prevalence of anti-circumsporozoite protein (CSP antibodies (low prevalence: reference level; intermediate level OR = 2.47, p = 0.023, proportion of inhabitants who lived in another site one year before (OR = 2.53, p = 0.003, and duration to reach the nearest tarmacked road (duration less than one hour = reference level, duration equal to or more than one hour OR = 0.49, p = 0.019. Conclusion Antimalarial drug pressure varied considerably from

  18. Substandard anti-malarial drugs in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sie Ali

    2008-05-01

    Full Text Available Abstract Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers and illicit (market and street vendors, shops sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50% chloroquine, 10/77 (13% pyrimethamine-sulphadoxine, 9/77 (12% quinine, 6/77 (8% amodiaquine, 9/77 (12% artesunate, and 4/77 (5% artemether-lumefantrine. 32/77 (42% drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6% and 27/30 (90.0% samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the

  19. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    Directory of Open Access Journals (Sweden)

    Dea Shahinas

    2013-02-01

    Full Text Available Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.

  20. Stevens-Johnson syndrome associated with Malarone antimalarial prophylaxis.

    Science.gov (United States)

    Emberger, Michael; Lechner, Arno Michael; Zelger, Bernhard

    2003-07-01

    To the best of our knowledge, Stevens-Johnson syndrome (SJS) has not been reported previously as an adverse reaction to Malarone, which is a combination of atovaquone and proguanil hydrochloride used for antimalarial prophylaxis and therapy. We describe a 65-year-old patient who had SJS with typical clinical and histopathological findings associated with the use of Malarone prophylaxis for malaria. This report should alert physicians to this severe cutaneous reaction, and Malarone should be added to the list of drugs that can potentially cause SJS.

  1. Mono- and bis-thiazolium salts have potent antimalarial activity.

    Science.gov (United States)

    Hamzé, Abdallah; Rubi, Eric; Arnal, Pascal; Boisbrun, Michel; Carcel, Carole; Salom-Roig, Xavier; Maynadier, Marjorie; Wein, Sharon; Vial, Henri; Calas, Michèle

    2005-05-19

    Three new series comprising 24 novel cationic choline analogues and consisting of mono- or bis (N or C-5-duplicated) thiazolium salts have been synthesized. Bis-thiazolium salts showed potent antimalarial activity (much superior to monothiazoliums). Among them, bis-thiazolium salts 12 and 13 exhibited IC(50) values of 2.25 nM and 0.65 nM, respectively, against P. falciparum in vitro. These compounds also demonstrated good in vivo activity (ED(50)

  2. Modulating effects of plasma containing anti-malarial antibodies on in vitro anti-malarial drug susceptibility in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Udomsangpetch Rachanee

    2010-11-01

    Full Text Available Abstract Background The efficacy of anti-malarial drugs is determined by the level of parasite susceptibility, anti-malarial drug bioavailability and pharmacokinetics, and host factors including immunity. Host immunity improves the in vivo therapeutic efficacy of anti-malarial drugs, but the mechanism and magnitude of this effect has not been characterized. This study characterized the effects of 'immune' plasma to Plasmodium falciparumon the in vitro susceptibility of P. falciparum to anti-malarial drugs. Methods Titres of antibodies against blood stage antigens (mainly the ring-infected erythrocyte surface antigen [RESA] were measured in plasma samples obtained from Thai patients with acute falciparum malaria. 'Immune' plasma was selected and its effects on in vitro parasite growth and multiplication of the Thai P. falciparum laboratory strain TM267 were assessed by light microscopy. The in vitro susceptibility to quinine and artesunate was then determined in the presence and absence of 'immune' plasma using the 3H-hypoxanthine uptake inhibition method. Drug susceptibility was expressed as the concentrations causing 50% and 90% inhibition (IC50 and IC90, of 3H-hypoxanthine uptake. Results Incubation with 'immune' plasma reduced parasite maturation and decreased parasite multiplication in a dose dependent manner. 3H-hypoxanthine incorporation after incubation with 'immune' plasma was decreased significantly compared to controls (median [range]; 181.5 [0 to 3,269] cpm versus 1,222.5 [388 to 5,932] cpm (p= 0.001. As a result 'immune' plasma reduced apparent susceptibility to quinine substantially; median (range IC50 6.4 (0.5 to 23.8 ng/ml versus 221.5 (174.4 to 250.4 ng/ml (p = 0.02, and also had a borderline effect on artesunate susceptibility; IC50 0.2 (0.02 to 0.3 ng/ml versus 0.8 (0.2 to 2.3 ng/ml (p = 0.08. Effects were greatest at low concentrations, changing the shape of the concentration-effect relationship. IC90 values were not

  3. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc

    2015-05-27

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing.

  4. Photovoice: A Novel Approach to Improving Antituberculosis Treatment Adherence in Pune, India

    Directory of Open Access Journals (Sweden)

    Sangita C. Shelke

    2014-01-01

    Full Text Available We compared antituberculosis treatment (ATT adherence and outcomes among patients exposed to Photovoice (video of previously cured TB patients sharing experiences about TB treatment versus those not exposed. The odds of successful outcome (i.e., cured or completing treatment for the 135 patients who watched Photovoice were 3 times greater (odds ratio: 2.8; 95% CI: 1.3–6.1 than for patients who did not watch Photovoice. The comparison group, on average, missed more doses (10.9 doses; 95% CI: 6.6–11.1 than the intervention group who saw Photovoice (5.5 doses; 95% CI: 3.7–6.1. Using Photovoice at initiation of ATT has the potential to improve treatment adherence and outcomes.

  5. The antituberculosis dispensary in Mladenovac by architect Milorad Pantović

    Directory of Open Access Journals (Sweden)

    Stojanović Marko

    2015-01-01

    Full Text Available Study of healthcare architecture requires background knowledge of the subject but also a basic knowledge of the overall healthcare situation and, possibly, of the nature of particular diseases at the time a particular facility was built. Sanatoria constitute a distinctive phenomenon in the history of healthcare architecture. Designing them required knowledge of the nature of the disease and treatment regimens. Tuberculosis saw its last surge in the first half of the 20th century, when a number of sanatoria were built across Europe. The era of systematic tuberculosis prevention and treatment facilities in Serbia began after the Second World War. One of the architects engaged in designing such facilities was Milorad Pantović who designed the antituberculosis dispensary in Mladenovac.

  6. Anti-tuberculosis treatment defaulting: an analysis of perceptions and interactions in Chiapas, Mexico.

    Science.gov (United States)

    Reyes-Guillén, Ivett; Sánchez-Pérez, Héctor Javier; Cruz-Burguete, Jorge; Izaurieta-de Juan, Miren

    2008-01-01

    To analyze the perceptions and interactions of the actors involved in anti-tuberculosis treatment, and to explore their influence in treatment defaulting in Los Altos region of Chiapas, Mexico. From November 2002 to August 2003, in-depth interviews were administered to patients with PTB, patients' family members, institutional physicians, community health coordinators, and traditional medicine practitioners. We found different perceptions about PTB between patients and their families and among health personnel, as well as communication barriers between actors. Defaulting is considered to be mainly due to the treatment's adverse effects. It is necessary to conduct research and interventions in the studied area with the aim of changing perceptions, improving sensitization, quality and suitability of management of patients with PTB in a multicultural context, and promoting collaboration between institutional and traditional medicine.

  7. Sale of anti-tuberculosis drugs through private pharmacies: a cross sectional study in Kerala, India.

    Directory of Open Access Journals (Sweden)

    Binoo Divakaran

    2011-03-01

    Full Text Available

    Background: Private health care providers are largely the first point of contact for Tuberculosis (TB patients, who either undergo treatment from private practitioners or buy medicines on their own from private pharmacies. Aims: This study assessed the availability, sale and magnitude of anti-tuberculosis drugs dispensing through private pharmacies.

    Methodology: The present cross sectional study was conducted among private pharmacies located along the national highway from Thalassery to Payyannur in the Kannur district of Kerala, India. A total of 38 private pharmacies located along the national highway were included.

    Results: The duration that anti–TB drugs had been on sale showed that 74.3% of pharmacies had started to sell these drugs only less than ten years ago. The majority (82.9% of the private pharmacies received up to 5 prescriptions for anti-TB drugs weekly. Out of the total of 35 pharmacies selling these drugs, 22 (62.9% reported an increase in their sales. Nearly 82% of those pharmacies that reported an increase in the sale of anti-TB drugs were selling these drugs for less than the past ten years.

    Conclusions: The current study shows that a large number of tuberculosis patients are still approaching private pharmacies for anti-tuberculosis drugs. This tendency has to be completely stopped and needs properly planned strategies to encourage private pharmacies to participate actively in the DOTS (Direct Observation Treatment Short course program of the Government, by providing them attractive alternative incentives

  8. A cross-sectional and follow-up study of leukopenia in tuberculosis patients: prevalence, risk factors and impact of anti-tuberculosis treatment.

    Science.gov (United States)

    Lin, Fei-Shen; Wu, Mei-Ying; Tu, Wen-Jun; Pan, Hong-Qiu; Zheng, Jian; Shi, Jun-Wei; Fei, Zhong-Ting; Zhang, Rui-Mei; Yan, Wei-Guo; Shang, Ming-Qun; Zheng, Qiang; Wang, Meng-Jie; Zhang, Xia

    2015-12-01

    To investigate the prevalence of and risk factors for leukopenia in tuberculosis patients and the impact of anti-tuberculosis regimens on the occurrence of leukopenia in newly treated tuberculosis patients. A total of 1,904 tuberculosis patients were included in the study. A cross-sectional survey of the prevalence of leukopenia was initially conducted, and then factors influencing leukopenia were identified using Logistic regression analysis. Non-treatment factors influencing peripheral blood leukocyte counts were analyzed using univariate COX proportional hazards models. Covariate analysis was used to assess the independent effect of different anti-tuberculosis regimens on peripheral blood leukocyte counts. Being female, advanced age and longer duration of previous anti-tuberculosis treatment (>6 month) were risk factors for leukopenia in tuberculosis patients, while secondary pulmonary tuberculosis, higher body mass index (BMI: 24-27.9 kg/m(2)), and higher degree of education (senior high school or above) were protective factors. Gender, vegetable consumption, drinking, pulmonary infection, other chronic diseases, and use of antibiotics were significantly associated with the development of leukopenia in patients on anti-tuberculosis treatment. In tuberculosis patients treated with anti-tuberculosis regimens not containing antibiotics, peripheral blood leukocyte levels gradually declined with the prolongation of treatment duration. In tuberculosis patients treated with anti-tuberculosis regimens containing antibiotics, peripheral blood leukocyte levels showed a declining trend. Female patients, patients at advanced age and recurrent tuberculosis patients having longer previous anti-tuberculosis treatment are high-risk populations for leukopenia. Attention should be paid to the influence of vegetable consumption and drinking, co-morbidities and use of antibiotics during anti-tuberculosis treatment.

  9. Incidence of antituberculosis-drug-induced hepatotoxicity and associated risk factors among tuberculosis patients in Dawro Zone, South Ethiopia: A cohort study

    OpenAIRE

    Wondwossen Abera,; Waqtola Cheneke,; Gemeda Abebe,

    2016-01-01

    Background: Antituberculosis drugs cause hepatotoxicity in some individuals leading to acute liver failure, which results in death. Such phenomena limit the clinical use of drugs, contributing to treatment failure that possibly causes drug resistance. Furthermore, associated risk factors for the development of antituberculosis-drug-induced hepatotoxicity (anti-TB-DIH) are found to be controversial among different study findings. Methods: A prospective cohort study was conducted from May 20...

  10. Fake anti-malarials: start with the facts.

    Science.gov (United States)

    Kaur, Harparkash; Clarke, Siȃn; Lalani, Mirza; Phanouvong, Souly; Guérin, Philippe; McLoughlin, Andrew; Wilson, Benjamin K; Deats, Michael; Plançon, Aline; Hopkins, Heidi; Miranda, Debora; Schellenberg, David

    2016-02-13

    This meeting report presents the key findings and discussion points of a 1-day meeting entitled 'Fake anti-malarials: start with the facts' held on 28th May 2015, in Geneva, Switzerland, to disseminate the findings of the artemisinin combination therapy consortium's drug quality programme. The teams purchased over 10,000 samples, using representative sampling approaches, from six malaria endemic countries: Equatorial Guinea (Bioko Island), Cambodia, Ghana, Nigeria, Rwanda and Tanzania. Laboratory analyses of these samples showed that falsified anti-malarials (substandard artemisinin-based combinations were present in all six countries and, artemisinin-based monotherapy tablets are still available in some places despite the fact that the WHO has urged regulatory authorities in malaria-endemic countries to take measures to halt the production and marketing of these oral monotherapies since 2007. This report summarizes the presentations that reviewed the public health impact of falsified and substandard drugs, sampling strategies, techniques for drug quality analysis, approaches to strengthen health systems capacity for the surveillance of drug quality, and the ensuing discussion points from the dissemination meeting.

  11. Dihydroorotate dehydrogenase: A drug target for the development of antimalarials.

    Science.gov (United States)

    Singh, Anju; Maqbool, Mudasir; Mobashir, Mohammad; Hoda, Nasimul

    2017-01-05

    Malaria is a critical human disease with extensive exploration yet unestablished due to occurrence of frequent drug resistance. This aspect of malaria pharmacology calls for the introduction of new antimalarial. The drugs reported till date targeted different stages of the parasites in order to stop their growth and proliferation. Beside this, various drugs that could inhibit the imperative enzymes of the parasite have also been reported. Amid them, dihydroorotate dehydrogenase (DHODH) has a key worth. DHODH is involved in the de novo pyrimidine biosynthesis of the malarial parasite which acts as a primary source of energy for its survival. Since life of the parasite utterly depends on pyrimidine biosynthesis, so it can be used as an apt drug target for malaria eradication. In addition to this, DHODH is also present in human and their active sites have significant structural dissimilarities, so the development of selective inhibitors may prove to be a milestone in search of new antimalarials. Inhibitors of human DHODH have been used to treat autoimmune diseases such as, rheumatoid arthritis or multiple sclerosis and have been investigated in the treatment of cancer, viral diseases, as well as in plant pathology. Here, we have reviewed the important role of DHODH as a viable drug target against malaria, its importance for the survival of the parasite, and DHODH inhibitors reported so far. The rate of success of the reported DHODH inhibitors and further required improvements have also been accounted. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Towards histone deacetylase inhibitors as new antimalarial drugs.

    Science.gov (United States)

    Andrews, Katherine T; Tran, Thanh N; Fairlie, David P

    2012-01-01

    Histone deacetylases (HDACs) are important enzymes that effect post-translational modifications of proteins by altering the acetylation state of lysine residues. HDACs control epigenetic changes that trigger cell transformation and proliferation of transformed cells associated with many diseases. These enzymes are validated drug targets for some types of cancer and are promising therapeutic targets for a range of other diseases, including malaria. Annually, there are ~500 million clinical cases of malaria and ~0.8-1.2 million deaths. There is no licensed vaccine for preventing malaria, and parasites that cause malaria are becoming resistant to current drugs, necessitating the search for new therapies. HDAC inhibitors are emerging as a promising new class of antimalarial drugs with potent and selective action against Plasmodium parasites in vitro. Recent studies on the effects of HDAC inhibitors on the growth and development of P. falciparum have provided important new information on transcriptional regulation in malaria parasites and have validated the potential of this class of inhibitors for malaria therapy. To realise effective HDAC inhibitors for clinical trials, next generation inhibitors must not inhibit other human HDACs or proteins required for normal human physiology, be highly selective in killing parasites in vivo without killing normal host cells, and have improved bioavailability and pharmacokinetic profiles. This review summarizes current knowledge about malaria parasite HDACs and HDAC inhibitors with antimalarial properties, and provides insights for their development into new drugs for treatment of malaria.

  13. Patients with secondary amenorrhea due to tuberculosis endometritis towards the induced anti-tuberculosis drug category 1.

    Science.gov (United States)

    Perdhana, Raditya; Sutrisno, Sutrisno; Sugiri, Yani Jane; Baktiyani, Siti Candra Windu; Wiyasa, Arsana

    2016-01-01

    Tuberculosis (TB) is a disease which can affect various organs, including human's genital organs such as the endometrium. Tuberculosis endometritis can cause clinical symptoms of secondary amenorrhea and infertility. Infertility in genital TB caused by the involvement of the endometrium. The case presentation is 33-year-old woman from dr. Saiful Anwar Public Hospital to consult that she has not menstruated since 5 years ago (28 years old). The diagnosis was done by performing a clinical examination until the diagnosis of secondary amenorrhea due to tuberculosis endometritis is obtained. A treatment by using category I of anti-tuberculosis drugs was done for 6 months, afterward an Anatomical Pathology observation found no signs of the tuberculosis symptoms. Based on that, patient, who was diagnosed to have secondary amenorrhea due to tuberculosis endometritis, has no signs of tuberculosis process after being treated by using category I of anti-tuberculosis drugs for 6 months.

  14. Drug lymphocyte stimulation test is not useful for side effects of anti-tuberculosis drugs despite its timing.

    Science.gov (United States)

    Miwa, S; Suzuki, Y; Shirai, M; Ohba, H; Kanai, M; Eifuku, T; Suda, T; Hayakawa, H; Chida, K

    2012-09-01

    Some patients have adverse reactions to anti-tuberculosis drugs. We have reported that drug lymphocyte stimulation testing (DLST), which we performed at Week 1 of adverse reactions, provides little useful information (14.9% sensitivity). However, it remains unclear whether the time of performance of the DLST contributed to these results. Patients with adverse reactions to anti-tuberculosis drugs, including rash, hepatitis and fever, underwent DLST in the first week of the adverse reaction and were then randomly assigned to Group A (among whom a second DLST was performed 2 months after the reaction) or Group B (among whom a second DLST was performed >12 months after the reaction). We compared Group A with Group B to determine the optimal timing for the performance of DLST. The causative drug was identified by an oral drug provocation test. Consistent with the previous study, the sensitivity of DLST performed in the first week was low (14.3%). For DLST performed later, the sensitivity in Group A and Group B was respectively 5.0% and 6.7%. DLST is not useful for determining the causative drug in patients with rash, hepatitis or fever reactions to anti-tuberculosis drugs, regardless of when it is performed.

  15. Antimalarial polyoxygenated cyclohexene derivatives from the roots of Uvaria cherrevensis.

    Science.gov (United States)

    Lekphrom, Ratsami; Kanokmedhakul, Kwanjai; Schevenels, Florian; Kanokmedhakul, Somdej

    2018-02-01

    Three new polyoxygenated cyclohexene derivatives named cherrevenisyls A and B (1 and 2), and ellipeiopsol E (3), along with fifteen known compounds, were isolated from the roots of Uvaria cherrevensis. Their structures were determined by spectroscopic methods including 2D NMR techniques and mass spectrometry. The absolute configurations of 1 and 2 were assigned. Compounds 1, 2 and 5 showed antimalarial activity against Plasmodium falciparum with IC 50 ranging from 3.34-7.34μg/mL. Compounds 5-18 exhibited cytotoxicity against three cancer cell lines (KB, MCF-7 and NCI-H187) with IC 50 values in ranging from 1.26-49.03μg/mL. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Characterization of counterfeit artesunate antimalarial tablets from southeast Asia.

    Science.gov (United States)

    Hall, Krystyn Alter; Newton, Paul N; Green, Michael D; De Veij, Marleen; Vandenabeele, Peter; Pizzanelli, David; Mayxay, Mayfong; Dondorp, Arjen; Fernandez, Facundo M

    2006-11-01

    In southeast Asia, the widespread high prevalence of counterfeits tablets of the vital antimalarial artesunate is of great public health concern. To assess the seriousness of this problem, we quantified the amount of active ingredient present in artesunate tablets by liquid chromatography coupled to mass spectrometry. This method, in conjunction with analysis of the packaging, classified tablets as genuine, substandard, or fake and validated results of the colorimetric Fast Red TR test. Eight (35%) of 23 fake artesunate samples contained the wrong active ingredients, which were identified as different erythromycins and paracetamol. Raman spectroscopy identified calcium carbonate as an excipient in 9 (39%) of 23 fake samples. Multivariate unsupervised pattern recognition results indicated two major clusters of artesunate counterfeits, those with counterfeit foil stickers and containing calcium carbonate, erythromycin, and paracetamol, and those with counterfeit holograms and containing starch but without evidence of erythromycin or paracetamol.

  17. Triterpenes from Minquartia guianensis (Olacaceae) and in vitro antimalarial activity

    Energy Technology Data Exchange (ETDEWEB)

    Cursino, Lorena Mayara de Carvalho; Nunez, Cecilia Veronica [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Lab. de Bioprospeccao e Biotecnologia; Paula, Renata Cristina de; Nascimento, Maria Fernanda Alves do [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos; Santos, Pierre Alexandre dos, E-mail: cecilia@inpa.gov.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Fac. de Ciencias Farmaceuticas

    2012-07-01

    Minquartia guianensis, popularly known as acariquara, was phytochemically investigated. The following triterpenes were isolated from the dichloromethane extract of leaves: lupen-3-one (1), taraxer-3-one (2) and oleanolic acid (3). The dichloromethane extract of branches yielded the triterpene 3{beta}-methoxy-lup-20(29)-ene (4). The chemical structures were characterized by NMR data. Plant extracts, substance 3, squalene (5) and taraxerol (6), (5 and 6 previously isolated), were evaluated by in vitro assay against chloroquine resistant Plasmodium falciparum. The dichloromethane extract of leaves and the three triterpenes assayed have shown partial activity. Thus, these results demonstrated that new potential antimalarial natural products can be found even in partially active extracts. (author)

  18. Selection of a trioxaquine as an antimalarial drug candidate

    Science.gov (United States)

    Coslédan, Frédéric; Fraisse, Laurent; Pellet, Alain; Guillou, François; Mordmüller, Benjamin; Kremsner, Peter G.; Moreno, Alicia; Mazier, Dominique; Maffrand, Jean-Pierre; Meunier, Bernard

    2008-01-01

    Trioxaquines are antimalarial agents based on hybrid structures with a dual mode of action. One of these molecules, PA1103/SAR116242, is highly active in vitro on several sensitive and resistant strains of Plasmodium falciparum at nanomolar concentrations (e.g., IC50 value = 10 nM with FcM29, a chloroquine-resistant strain) and also on multidrug-resistant strains obtained from fresh patient isolates in Gabon. This molecule is very efficient by oral route with a complete cure of mice infected with chloroquine-sensitive or chloroquine-resistant strains of Plasmodia at 26–32 mg/kg. This compound is also highly effective in humanized mice infected with P. falciparum. Combined with a good drug profile (preliminary absorption, metabolism, and safety parameters), these data were favorable for the selection of this particular trioxaquine for development as drug candidate among 120 other active hybrid molecules. PMID:18987321

  19. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    Science.gov (United States)

    Calcul, Laurent; Waterman, Carrie; Ma, Wai Sheung; Lebar, Matthew D.; Harter, Charles; Mutka, Tina; Morton, Lindsay; Maignan, Patrick; Van Olphen, Alberto; Kyle, Dennis E.; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric; Baker, Bill J.

    2013-01-01

    We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18) were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14), which was found to display the most favorable bioactivity profile. PMID:24351903

  20. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    Directory of Open Access Journals (Sweden)

    Laurent Calcul

    2013-12-01

    Full Text Available We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18 were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14, which was found to display the most favorable bioactivity profile.

  1. Synthesis and antimalarial activity of new haemanthamine-type derivatives.

    Science.gov (United States)

    Cedrón, Juan C; Gutiérrez, David; Flores, Ninoska; Ravelo, Ángel G; Estévez-Braun, Ana

    2012-09-15

    Thirty one derivatives were prepared from the natural alkaloids haemanthamine (1), haemanthidine (2) and 11-hydroxyvittatine (3). They were evaluated for their in vitro antimalarial activity against chloroquine-sensitive strains of Plasmodium falciparum and some structure-activity relationships were outlined. For haemanthamine derivatives having a methoxy group at C-3, the presence of a free hydroxyl group at C-11 is important for the activity. The double bond at C-1-C-2 plays also an important role to achieve good inhibitory activity. Compound 35 with two nicotinate groups at C-3 and at C-11 was the most active compound with a IC(50) = 0.8 ± 0.06 μM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Plants of the American continent with antimalarial activity

    Directory of Open Access Journals (Sweden)

    Ingrid R. Mariath

    Full Text Available Malaria is a human parasitic disease caused by protozoa species of the Plasmodium genus. This disease has affected populations of the tropical and subtropical regions. About 500 million new cases occur annually on the world and therefore it is considered an emerging disease of important public health problem. In this context, the natural products as vegetables species have their bioactive molecules as targets for pharmacological, toxicological and phytochemical studies towards the development of more effective medicines for the treatment of many diseases. So this work intends to aid the researchers in the study of natural products to the treatment of malaria. In this review, 476 plants of the American continent were related for the antimalarial activity and of these vegetables species 198 were active and 278 inactive for some type of Plasmodium when they were evaluated through of in vitro or in vivo bioassays models.

  3. Antimalarial efficacy of hydroxyethylapoquinine (SN-119) and its derivatives.

    Science.gov (United States)

    Sanders, Natalie G; Meyers, David J; Sullivan, David J

    2014-01-01

    Quinine and other cinchona-derived alkaloids, although recently supplanted by the artemisinins (ARTs), continue to be important for treatment of severe malaria. Quinine and quinidine have narrow therapeutic indices, and a safer quinine analog is desirable, particularly with the continued threat of antimalarial drug resistance. Hydroxyethylapoquinine (HEAQ), used at 8 g a day for dosing in humans in the 1930s and halving mortality from bacterial pneumonias, was shown to cure bird malaria in the 1940s and was also reported as treatment for human malaria cases. Here we describe synthesis of HEAQ and its novel stereoisomer hydroxyethylapoquinidine (HEAQD) along with two intermediates, hydroxyethylquinine (HEQ) and hydroxyethylquinidine (HEQD), and demonstrate comparable but elevated antimalarial 50% inhibitory concentrations (IC50) of 100 to 200 nM against Plasmodium falciparum quinine-sensitive strain 3D7 (IC50, 56 nM). Only HEAQD demonstrated activity against quinine-tolerant P. falciparum strains Dd2 and INDO with IC50s of 300 to 700 nM. HEQD had activity only against Dd2 with an IC50 of 313 nM. In the lethal mouse malaria model Plasmodium berghei ANKA, only HEQD had activity at 20 mg/kg of body weight comparable to that of the parent quinine or quinidine drugs measured by parasite inhibition and 30-day survival. In addition, HEQ, HEQD, and HEAQ (IC50 ≥ 90 μM) have little to no human ether-à-go-go-related gene (hERG) channel inhibition expressed in CHO cells compared to HEAQD, quinine, and quinidine (hERG IC50s of 27, 42, and 4 μM, respectively). HEQD more closely resembled quinine in vitro and in vivo for Plasmodium inhibition and demonstrated little hERG channel inhibition, suggesting that further optimization and preclinical studies are warranted for this molecule.

  4. Antimalarial activity of nepodin isolated from Rumex crispus.

    Science.gov (United States)

    Lee, Keyong Ho; Rhee, Ki-Hyeong

    2013-04-01

    The purpose of this study is to define the antimalarial activity of Rumex crispus. To identify an active compound that is isolated from R. crispus, bioassay-based chromatographic fractionation and purification is carried out from 70 % ethanol extract of R. crispus; then, an active compound, nepodin, is identified by spectroscopic analysis. Anitmalarial activity is measured by PfNDH2 assay, cytotoxicity, and animal test. From NADH:quinone oxidoreductase enzyme (PfNDAH2) assay, nepodin exhibited significant IC50 values that were 0.74 ± 0.07 and 0.79 ± 0.06 μg/ml against P. falciparum chloroquine-sensitive (3D7) and P. falciparum chloroquine-resistant (S20), respectively. Nepodin showed a potential selective inhibition (SI index: ratio of 50 % cytotoxic concentration to 50 % effective anti-plasmodial concentration) of 161.6 and 151.4 against P. falciparum 3D7 and P. falciparum S20. In the animal test, all groups of nepodin treatment of 10, 50, and 250 mg/kg were active with a parasitemia suppression of 97.1 ± 3.3, 99.1 ± 3.7, and 99.1 ± 2.6 %, respectively. The survival time with nepodin treatment was increased by 14.6 ± 2.5, 16.2 ± 1.5, and 19.8 ± 1.7 days at each dose, respectively. This study newly identified the plant R. crispus containing nepodin, which is a potential antimalarial compound. It exhibited the inhibitory activity of PfNDH2 and prolonged the survival time on the group of nepodin treatment; moreover, it inhibited the parasitemia in the animal test.

  5. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  6. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity

    NARCIS (Netherlands)

    Rijpma, S.R.; Heuvel, J.J.; Velden, M. van der; Sauerwein, R.W.; Russel, F.G.; Koenderink, J.B.

    2014-01-01

    BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly

  7. The mechanisms of parasite clearance after antimalarial treatment of Plasmodium falciparum malaria

    NARCIS (Netherlands)

    Chotivanich, K.; Udomsangpetch, R.; Dondorp, A.; Williams, T.; Angus, B.; Simpson, J. A.; Pukrittayakamee, S.; Looareesuwan, S.; Newbold, C. I.; White, N. J.

    2000-01-01

    Studies were conducted to determine how malaria parasites are cleared from the blood after antimalarial treatment. Neither artesunate nor quinine decreased parasitized red cell deformability or increased antibody binding. In acute falciparum malaria, ring-infected erythrocyte surface antigen (RESA)

  8. Saleability of anti-malarials in private drug shops in Muheza, Tanzania

    DEFF Research Database (Denmark)

    Ringsted, Frank M; Massawe, Isolide S; Lemnge, Martha M

    2011-01-01

    prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. Results...... women depend on SP for Intermittent Preventive Treatment (IPTp) during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform...... a baseline study of the private market for anti-malarials in Muheza town, an area with widespread anti-malarial drug resistance, prior to the implementation of a provider training and accreditation programme that will allow accredited drug shops to sell subsidized ALu. Methods: All drug shops selling...

  9. Fake antimalarials in Southeast Asia are a major impediment to malaria control: multinational cross-sectional survey on the prevalence of fake antimalarials.

    Science.gov (United States)

    Dondorp, A M; Newton, P N; Mayxay, M; Van Damme, W; Smithuis, F M; Yeung, S; Petit, A; Lynam, A J; Johnson, A; Hien, T T; McGready, R; Farrar, J J; Looareesuwan, S; Day, N P J; Green, M D; White, N J

    2004-12-01

    To assess the prevalence of counterfeit antimalarial drugs in Southeast (SE) Asia. Cross-sectional survey. Pharmacies and shops selling antimalarial drugs in Myanmar (Burma), Lao PDR, Vietnam, Cambodia and Thailand. Proportion of artemisinin derivatives or mefloquine containing drugs of substandard quality. Of the 188 tablet packs purchased which were labelled as 'artesunate' 53% did not contain any artesunate. All counterfeit artesunate tablets were labelled as manufactured by 'Guilin Pharma', and refinements of the fake blisterpacks made them often hard to distinguish from their genuine counterparts. No other artemisinin derivatives were found to be counterfeited. Of the 44 mefloquine samples, 9% contained active ingredient. An alarmingly high proportion of antimalarial drugs bought in pharmacies and shops in mainland SE Asia are counterfeit, and the problem has increased significantly compared with our previous survey in 1999-2000. This is a serious threat to public health in the region.

  10. Self-Medication with Antibiotics and Antimalarials in the Community of Silte Zone, South Ethiopia

    Directory of Open Access Journals (Sweden)

    Nasir Tajure Wabe

    2012-10-01

    Full Text Available AIM: Self-medication with antibiotics and antimalarials occurs among the population in Ethiopian. We studied to estimate the prevalence of self-medication with antibiotics and antimalarials in Ethiopia and evaluate factors associated with self-medications. METHODS: A cross-sectional study was conducted on 405 households, selected from Silte Zone in South Ethiopia, using a random sampling technique by employing a pretested questionnaire. Data were analyzed using SPSS for windows version 16.0. Chi-square test was used to observe the association of variables. RESULT: The prevalence of self-medication with antibiotics/ antimalarials in this study was 14.5%. Twenty seven (6.7% participants were self medicated with antibiotics, 2.7% used antimalarials drugs while 21 (5.2% used both. Level of monthly income and educational status significantly influence pattern of antibiotics and antimalarials self medication (P<0.05.The top three diseases that led to self medication in this study were headache (38.5%, fever (35.9%, and cough (14.1%. Among self-medicated antibiotics, Amoxicillin (13.5% followed by Ciprofloxacin (8.5% were the most commonly used class of drug. From antimalarials chloroquine (10.1% were highly abused. The main source of antibiotics /antimalarials was pharmacies (59.0% followed by shops (Kiosks (17.9%. The majority (20.5% of the respondents practiced self medication to avoid waiting time at health facilities. CONCLUSION: The prevalence of self-medication with anti-biotic/ antimalarials in the study community was low. Self medication tended to be higher in people with a higher education and those on higher monthly incomes. The major reason for self-medication is found to be to avoid waiting time at health facility. Community pharmacies are the major source drugs. [TAF Prev Med Bull 2012; 11(5.000: 529-536

  11. Post-marketing surveillance of anti-malarial medicines used in Malawi

    OpenAIRE

    Chikowe, Ibrahim; Osei-Safo, Dorcas; Harrison, Jerry JEK; Konadu, Daniel Y; Addae-Mensah, Ivan

    2015-01-01

    Background The growing concern over the extent of anti-malarial medicine resistance in sub-Saharan Africa, driven largely by administration of sub-therapeutic doses derived from falsified and substandard medicines necessitates regular monitoring of the quality of these medicines to avert any potential public health disaster. This study aimed at determining the active pharmaceutical ingredient (API) content of anti-malarial medicines available in Malawi with respect to the manufacturers? label...

  12. The in vitro antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with mefloquine/artesunate.

    Science.gov (United States)

    Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2014-03-01

    Multidrug resistance Plasmodium falciparum is the major health problem in Thailand. Discovery and development of new antimalarial drugs with novel modes of action is urgently required. The aim of the present study was to investigate the antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with the standard antimalarial drugs mefloquine and artesunate in chloroquine sensitive (3D7) and chloroquine resistant (K1) P. falciparum clones in vitro. Median (range) IC50 (drug concentration which produces 50% parasite growth inhibition) values of the 9-hydroxycalabaxanthone, α-mangostin, artesunate and mefloquine for 3D7 vs K1 clones were 1.5 (0.9-2.1) vs 1.2 (1.1-1.6) μM, 17.9 (15.7.0-20.0) vs 9.7 (6.0-14.0) μM, 1.0 (0.4-3.0) vs 1.7 (1.0-2.5) nM, and 13.3 (11.1-13.3) vs 7.1 (6.7-12.2) nM, respectively. Analysis of isobologram and combination index (CI) of 9-hydroxycalabaxanthone with artesunate or mefloquine showed synergistic and indifference antimalarial interaction, respectively. α-mangostin-artesunate combination exhibited a slight antagonistic effect of antimalarial interaction, whereas α-mangostin and mefloquine combination showed indifference interaction in both clones. The combination of 9-hydroxycalabaxanthone with α-mangostin showed the synergistic antimalarial interaction in both clones.

  13. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network.

    Science.gov (United States)

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K; Rosenthal, Philip J

    2015-09-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. © The American Society of Tropical Medicine and Hygiene.

  14. A qualitative assessment of the challenges of WHO prequalification for anti-malarial drugs in China.

    Science.gov (United States)

    Huang, Yangmu; Pan, Ke; Peng, Danlu; Stergachis, Andy

    2018-04-03

    While China is a major manufacturer of artemisinin and its derivatives, it lags as a global leader in terms of the total export value of anti-malarial drugs as finished pharmaceutical products ready for marketing and use by patients. This may be due to the limited number of World Health Organization (WHO) prequalified anti-malarial drugs from China. Understanding the reasons for the slow progress of WHO prequalification (PQ) in China can help improve the current situation and may lead to greater efforts in malaria eradication by Chinese manufacturers. In-depth interviews were conducted in China between November 2014 and December 2016. A total of 26 key informants from central government agencies, pharmaceutical companies, universities, and research institutes were interviewed, all of which had current or previous experience overseeing or implementing anti-malarial research and development in China. Chinese anti-malarial drugs that lack WHO PQ are mainly exported for use in the African private market. High upfront costs with unpredictable benefits, as well as limited information and limited technical support on WHO PQ, were reported as the main barriers to obtain WHO PQ for anti-malarial drugs by respondents from Chinese pharmaceutical companies. Potential incentives identified by respondents included tax relief, human resource training and consultation, as well as other incentives related to drug approval, such as China's Fast Track Channel. Government support, as well as innovative incentives and collaboration mechanisms are needed for further adoption of WHO PQ for anti-malarial drugs in China.

  15. Comparison of antimalarial activity of Artemisia turanica extract with current drugs in vivo.

    Science.gov (United States)

    Taherkhani, Mahboubeh; Rustaiyan, Abdolhossein; Nahrevanian, Hossein; Naeimi, Sabah; Taherkhani, Tofigh

    2013-03-01

    The purpose of this study was to compare antimalarial activity of Artemisia turanica Krasch as Iranian flora with current antimalarial drugs against Plasmodium berghei in vivo in mice. Air-dried aerial parts of Iranian flora A. turanica were collected from Khorasan, northeastern Iran, extracted with Et2O/MeOH/Petrol and defatted. Toxicity of herbal extracts was assessed on male NMRI mice, and their antimalarial efficacy was compared with antimalarial drugs [artemether, chloroquine and sulfadoxinepyrimethamine (Fansidar)] on infected P. berghei animals. All the groups were investigated for parasitaemia, body weight, hepatomegaly, splenomegaly and anemia. The significance of differences was determined by Analysis of Variances (ANOVA) and Student's t-test using Graph Pad Prism software. The inhibitory effects of A. turanica extract on early decline of P. berghei parasitaemia highlights its antimalarial activity, however, this effect no longer can be observed in the late infection. This may be due to the metabolic process of A. turanica crude extract by mice and reduction of its concentration in the body. Crude extract of A. turanica represented its antisymptomatic effects by stabilization of body, liver and spleen weights. This study confirmed antimalarial effects of A. turanica extracts against murine malaria in vivo during early infection, however, there are more benefits on pathophysiological symptoms by this medication.

  16. Do pulmonary findings of granulomatosis with polyangiitis respond to anti-tuberculosis treatment?

    Science.gov (United States)

    Cansu, Döndü Üsküdar; Özbülbül, Nilgün Işıksalan; Akyol, Gülsüm; Arık, Deniz; Korkmaz, Cengiz

    2018-04-09

    Granulomatosis with polyangiitis (GPA) involves upper and lower respiratory tracts and kidneys. Lung involvement is among the most important organ involvements in GPA. GPA's lung involvement might be confused with other granulomatous conditions with lung involvement. In this report, we presented clinical features of two cases with GPA who had been diagnosed as tuberculosis (TBC) and well treated with anti-tuberculosis (anti-TBC) drugs. However, one of two cases had ear-nose-throat (ENT) manifestations before the diagnosis of TBC and her extrapulmonary findings related with GPA have added to clinical features in the following years. In the second case, the manifestations of GPA appeared after 13 months of anti-TBC treatment. We speculated that lung involvement in these cases may be due to GPA rather than TBC. Our aim was to highlight difficulties in the differential diagnosis between GPA and TBC and suggest the possible beneficial effect of anti-TBC drugs on the lung involvement due to GPA in light of the literature data.

  17. Protective Effect of Bicyclol on Anti-Tuberculosis Drug Induced Liver Injury in Rats

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-04-01

    Full Text Available The present study was performed to investigate the effect of bicyclol, a synthetic anti-hepatitis drug with anti-oxidative and anti-inflammatory properties, on anti-tuberculosis (anti-TB drug-induced liver injury and related mechanisms in rats. Bicyclol was given to rats by gavage 2 h before the oral administration of an anti-TB drug once a day for 30 days. Liver injury was evaluated by biochemical and histopathological examinations. Lipid peroxidation, mitochondrial function, and the activity of antioxidants were measured by spectrophotometric methods. Cytokines expression and CYP2E1 activity were determined by ELISA assay and liquid chromatography–tandem mass spectrometry (LC–MS/MS analysis. The expressions of hepatic CYP2E1 and hepatocyte growth factor (HGF were assessed by Western blotting. As a result, bicyclol significantly protected against anti-TB drug-induced liver injury by reducing the elevated serum aminotransferases levels and accumulation of hepatic lipids. Meanwhile, the histopathological changes were also attenuated in rats. The protective effect of bicyclol on anti-TB drug-induced hepatotoxicity was mainly due to its ability to attenuate oxidative stress, suppress the inflammatory cytokines and CYP2E1 expression, up-regulate the expression of HGF, and improve mitochondrial function. Furthermore, administration of bicyclol had no significant effect on the plasma pharmacokinetics of the anti-TB drug in rats.

  18. Correlates of default from anti-tuberculosis treatment: a case study using Kenya's electronic data system.

    Science.gov (United States)

    Sitienei, J; Kipruto, H; Mansour, O; Ndisha, M; Hanson, C; Wambu, R; Addona, V

    2015-09-01

    In 2012, the World Health Organization estimated that there were 120,000 new cases and 9500 deaths due to tuberculosis (TB) in Kenya. Almost a quarter of the cases were not detected, and the treatment of 4% of notified cases ended in default. To identify the determinants of anti-tuberculosis treatment default. Data from 2012 and 2013 were retrieved from a national case-based electronic data recording system. A comparison was made between new pulmonary TB patients for whom treatment was interrupted vs. those who successfully completed treatment. A total of 106,824 cases were assessed. Human immunodeficiency virus infection was the single most influential risk factor for default (aOR 2.7). More than 94% of patients received family-based directly observed treatment (DOT) and were more likely to default than patients who received DOT from health care workers (aOR 2.0). Caloric nutritional support was associated with lower default rates (aOR 0.89). Males were more likely to default than females (aOR 1.6). Patients cared for in the private sector were less likely to default than those in the public sector (aOR 0.86). Understanding the factors contributing to default can guide future program improvements and serve as a proxy to understanding the factors that constrain access to care among undetected cases.

  19. Attenuation of anti-tuberculosis therapy induced hepatotoxicity by Spirulina fusiformis, a candidate food supplement.

    Science.gov (United States)

    Martin, Sherry Joseph; Baskaran, Udhaya Lavinya; Vedi, Mahima; Sabina, Evan Prince

    2014-12-01

    Therapy using Isoniazid (INH) and Rifampicin (RIF) leads to induction of hepatotoxicity in some individuals undergoing anti-tuberculosis treatment. In this study, we assessed the effect of Spirulina fusiformis on INH and RIF induced hepatotoxicity in rats compared with hepatoprotective drug Silymarin. Induction of hepatotoxicity was measured by changes in the liver marker enzymes (aspartate transaminase, alanine transaminase, and alkaline phosphatase). The antioxidant status was also analyzed in liver tissue homogenate and plasma by measurement of superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, and lipid peroxidation levels. We also aimed to study the binding and interactions of the transcription factors Pregnane X Receptor (PXR) and Farnesoid X Receptor (FXR) with INH, RIF, and representative active compounds of Spirulina fusiformis by in silico methods. The administration of INH and RIF resulted in significant (p Spirulina fusiformis was seen to protect the parameters from significant changes upon challenge with INH and RIF in a dose-dependent manner. This was corroborated by histological examination of the liver. The results of the in silico analyses further support the wet lab results.

  20. Paradoxical Reaction of Tuberculosis in a Heart Transplant Recipient During Antituberculosis Therapy: A Case Report.

    Science.gov (United States)

    Wakamiya, A; Seguchi, O; Shionoiri, A; Kumai, Y; Kuroda, K; Nakajima, S; Yanase, M; Matsuda, S; Wada, K; Matsumoto, Y; Fukushima, S; Fujita, T; Kobayashi, J; Fukushima, N

    2018-04-01

    Tuberculous paradoxical reactions (PRs) are excessive immune reactions occurring after antituberculosis (TB) treatment and are commonly observed in immunocompromised hosts such as patients infected with the human immunodeficiency virus. We recently encountered a 63-year-old male heart transplant recipient who developed tuberculous PR after treatment for miliary TB. The patient had been receiving immunosuppressive therapy with cyclosporine and mycophenolate mofetil for over 15 years. The diagnosis of miliary TB was made based on the presence of intermittent fever and fatigue; thus, anti-TB treatments (isoniazid, levofloxacin, ethambutol, and pyrazinamide) were started, which led to rapid defervescence and regression of the granular shadow and pleural effusion. However, a new persistent fever and confused state developed 1 month after the anti-TB therapy was started. After excluding possible etiologies of the patient's symptom, a PR was suspected, and anti-TB drugs were continued; corticosteroids were added as anti-inflammatory agents. After that, he has shown a favorable course with long-term anti-TB chemotherapy. A PR should always be considered when the patients' symptoms of tuberculosis re-exacerbate after an appropriate anti-TB therapy. A PR commonly occurs in patients with various immunologic conditions including heart transplant recipients. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Antituberculosis drug resistance patterns in two regions of Turkey: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Oymak Sema F

    2002-12-01

    Full Text Available Abstract Backround The emergence of Mycobacterium tuberculosis strains resistant to antituberculosis agents has recently received increased attention owing largely to the dramatic outbreaks of multi drug resistance tuberculosis (MDR-TB. Methods Patients residing in Zonguldak and Kayseri provinces of Turkey with, pulmonary tuberculosis diagnosed between 1972 and 1999 were retrospectively identified. Drug susceptibility tests had been performed for isoniazid (INH, rifampin (RIF, streptomycin (SM, ethambutol (EMB and thiacetasone (TH after isolation by using the resistance proportion method. Results Total 3718 patients were retrospectively studied. In 1972–1981, resistance rates for to SM and INH were found to be 14.8% and 9.8% respectively (n: 2172. In 1982–1991 period, resistance rates for INH, SM, RIF, EMB and TH were 14.2%, 14.4%, 10.5%, 2.7% and 2.9% (n: 683, while in 1992–1999 period 14.4%, 21.1%, 10.6%, 2.4% and 3.7% respectively (n: 863. Resistance rates were highest for SM and INH in three periods. MDR-TB patients constituted 7.3% and 6.6% of 1982–1991 and 1992–1999 periods (p > 0.05. Conclusion This study demonstrates the importance of resistance rates for TB. Continued surveillance and immediate therapeutic decisions should be undertaken in order to prevent the dissemination of such resistant strains.

  2. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya

    Directory of Open Access Journals (Sweden)

    Rusk Andria

    2012-08-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. Methods To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Results Most of the medicine retailers surveyed (65% were able to identify artemether-lumefantrine (AL as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Conclusion Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could

  3. The role of the time-kill kinetics assay as part of a preclinical modeling framework for assessing the activity of anti-tuberculosis drugs.

    Science.gov (United States)

    Bax, Hannelore I; Bakker-Woudenberg, Irma A J M; de Vogel, Corné P; van der Meijden, Aart; Verbon, Annelies; de Steenwinkel, Jurriaan E M

    2017-07-01

    Novel treatment strategies for tuberculosis are urgently needed. Many different preclinical models assessing anti-tuberculosis drug activity are available, but it is yet unclear which combination of models is most predictive of clinical treatment efficacy. The aim of this study was to determine the role of our in vitro time kill-kinetics assay as an asset to a predictive preclinical modeling framework assessing anti-tuberculosis drug activity. The concentration- and time-dependent mycobacterial killing capacities of six anti-tuberculosis drugs were determined during exposure as single drugs or in dual, triple and quadruple combinations towards a Mycobacterium tuberculosis Beijing genotype strain and drug resistance was assessed. Streptomycin, rifampicin and isoniazid were most active against fast-growing M. tuberculosis. Isoniazid with rifampicin or high dose ethambutol were the only synergistic drug combinations. The addition of rifampicin or streptomycin to isoniazid prevented isoniazid resistance. In vitro ranking showed agreement with early bactericidal activity in tuberculosis patients for some but not all anti-tuberculosis drugs. The time-kill kinetics assay provides important information on the mycobacterial killing dynamics of anti-tuberculosis drugs during the early phase of drug exposure. As such, this assay is a valuable component of the preclinical modeling framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Systemic lymph node tuberculosis presenting with an aseptic psoas abscess caused by a paradoxical reaction after nine months of antituberculosis treatment: a case report.

    Science.gov (United States)

    Yamada, Gen; Nishikiori, Hirotaka; Fujii, Masaru; Inomata, Shin-Ichiro; Chiba, Hirofumi; Hirokawa, Naoki; Takahashi, Hiroki

    2013-03-14

    A paradoxical reaction during antituberculosis treatment is defined as the worsening of pre-existing tuberculosis lesions or the appearance of a new tuberculosis lesion in patients whose clinical symptoms improved with antituberculosis treatment. The median onset time to the development of a paradoxical response has been reported to be about 60 days after the start of treatment. We report the case of a patient with a paradoxical reaction presenting as a psoas abscess after nine months of antituberculosis treatment. To the best of our knowledge, this manifestation has not previously been reported. A 23-year-old Japanese man presented to our hospital with lower abdominal pain. Computed tomography showed that he had mediastinal and abdominal para-aortic lymph node swellings. Fluorine-18 fluorodeoxyglucose positron emission tomography showed hot spots in these lymph nodes and in his right cervical lymph node, suggesting a lymphoma. The examination of an abdominal lymph node biopsy specimen showed lymph node tuberculosis, so antituberculosis treatment was started. However, after nine months of treatment, he experienced right flank pain. Abdominal computed tomography showed a right psoas abscess and abdominal para-aortic lymph node swelling. The abscess was treated by percutaneous drainage. After repeated drainage, the psoas abscess subsided and disappeared. The purulent fluid yielded no microorganisms, suggesting a paradoxical reaction. Attention should be paid to paradoxical reactions occurring during antituberculosis treatment for systemic lymph node tuberculosis.

  5. Molecular characterization of Plasmodium falciparum uracil-DNA glycosylase and its potential as a new anti-malarial drug target

    OpenAIRE

    Suksangpleng, Thidarat; Leartsakulpanich, Ubolsree; Moonsom, Saengduen; Siribal, Saranya; Boonyuen, Usa; Wright, George E; Chavalitshewinkoon-Petmitr, Porntip

    2014-01-01

    Background Based on resistance of currently used anti-malarials, a new anti-malarial drug target against Plasmodium falciparum is urgently needed. Damaged DNA cannot be transcribed without prior DNA repair; therefore, uracil-DNA glycosylase, playing an important role in base excision repair, may act as a candidate for a new anti-malarial drug target. Methods Initially, the native PfUDG from parasite crude extract was partially purified using two columns, and the glycosylase activity was monit...

  6. The current status of antimalarial drug research with special reference to application of QSAR models.

    Science.gov (United States)

    Ojha, Probir Kumar; Roy, Kunal

    2015-01-01

    Malaria, the most virulent parasitic disease, has become a devastating health problem in tropical and subtropical regions, especially in Africa, due to favorable temperature and rainfall conditions for the development of the causative vector. Due to the spread of multidrug resistance to the marketed antimalarial drugs including the "magic bullet" artemisinin, discovery and development of new antimalarial drugs is one of the utmost challenges. Different government and non-government chemical regulatory authorities have recommended the application of non-animal, alternative techniques and in particular, in silico, methods in order to provide information about the basic physicochemical properties as well as the ecological and human health effects of chemicals before they reach into the market for public use. In this aspect, application of chemometric methods along with structure-based approaches may be useful for the design and discovery of new antimalarial compounds. The quantitative structureactivity relationship (QSAR) along with molecular docking and pharmacophore modeling techniques play a crucial role in the field of drug design. QSAR focuses on the chemical attributes influencing the activity and thereby allows synthesis of selective potential candidate molecules. In this communication, we have reviewed the QSAR reports along with some pharmacophore modeling and docking studies of antimalarial agents published during the year 2011 to 2014 and attempted to focus on the importance of physicochemical properties and structural features required for antimalarial activity of different chemical classes of compounds. Note that this is not an exhaustive review and all the given examples should be considered as the representative ones. The reader will gain an insight of the current status of QSAR and related in silico models developed for different classes of antimalarial compounds. This review suggests that combination of both ligand and structure-based drug designing

  7. ANTIMALARIAL COMPOUNDS FROM ENDOPHYTIC FUNGI OF BROTOWALI (Tinaspora crispa L

    Directory of Open Access Journals (Sweden)

    Elfita Elfita

    2011-07-01

    Full Text Available The term endophytic refers to a bacteria or a fungi microorganism that colonizes interior organs of plants, but does not have pathogenic effects on its host. In their symbiotic association, the host plant protects and feeds the endophytic, which ";in return"; produces bioactive metabolites to enhance the growth and compotitiveness of the host and to protect it from herbivores and plant pathogens. Plants with ethnobotanical history, for example brotowali (Tinaspora crispa L, are likely candidates to find bioactive compounds. Two alkaloids have been isolated from endophytic fungi of brotowali. The molecular structures of the isolated compounds were determined based on spectroscopic data, including UV, IR, NMR 1D and 2D spectrum. The compounds were determined as: 7- hydroxy-3,4,5-trimethyl-6-on-2,3,4,6-tetrahydroisoquinoline-8-carboxylic acid (1 and 2,5-dihydroxy-1-(hydroxymethylpyridin-4-on (2. The compound has antimalarial activity against Plasmodium falciparum 3D7, with IC50 values 0,129 µM and 0,127 µM.

  8. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine.

    Science.gov (United States)

    Bissinger, Rosi; Barking, Susanne; Alzoubi, Kousi; Liu, Guilai; Liu, Guoxing; Lang, Florian

    2015-01-01

    The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i), and ceramide. Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3- fluorescence, and ceramide abundance from specific antibody binding. A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 μg/ml), significantly decreased forward scatter (≥5 μg/ml), significantly increased ROS abundance (5 μg/ml), significantly increased [Ca2+]i (7.5 μg/ml) and significantly increased ceramide abundance (10 μg/ml). The up-regulation of annexin- V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance. © 2015 S. Karger AG, Basel.

  9. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    Science.gov (United States)

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. The timing of death in patients with tuberculosis who die during anti-tuberculosis treatment in Andhra Pradesh, South India

    Directory of Open Access Journals (Sweden)

    Jonnalagada Subbanna

    2011-12-01

    Full Text Available Abstract Background India has 2.0 million estimated tuberculosis (TB cases per annum with an estimated 280,000 TB-related deaths per year. Understanding when in the course of TB treatment patients die is important for determining the type of intervention to be offered and crucially when this intervention should be given. The objectives of the current study were to determine in a large cohort of TB patients in India:- i treatment outcomes including the number who died while on treatment, ii the month of death and iii characteristics associated with "early" death, occurring in the initial 8 weeks of treatment. Methods This was a retrospective study in 16 selected Designated Microscopy Centres (DMCs in Hyderabad, Krishna and Adilabad districts of Andhra Pradesh, South India. A review was performed of treatment cards and medical records of all TB patients (adults and children registered and placed on standardized anti-tuberculosis treatment from January 2005 to September 2009. Results There were 8,240 TB patients (5183 males of whom 492 (6% were known to have died during treatment. Case-fatality was higher in those previously treated (12% and lower in those with extra-pulmonary TB (2%. There was an even distribution of deaths during anti-tuberculosis treatment, with 28% of all patients dying in the first 8 weeks of treatment. Increasing age and new as compared to recurrent TB disease were significantly associated with "early death". Conclusion In this large cohort of TB patients, deaths occurred with an even frequency throughout anti-TB treatment. Reasons may relate to i the treatment of the disease itself, raising concerns about drug adherence, quality of anti-tuberculosis drugs or the presence of undetected drug resistance and ii co-morbidities, such as HIV/AIDS and diabetes mellitus, which are known to influence mortality. More research in this area from prospective and retrospective studies is needed.

  11. Factors associated with anti-tuberculosis medication adverse effects: a case-control study in Lima, Peru.

    Directory of Open Access Journals (Sweden)

    Kocfa Chung-Delgado

    Full Text Available BACKGROUND: Long-term exposure to anti-tuberculosis medication increases risk of adverse drug reactions and toxicity. The objective of this investigation was to determine factors associated with anti-tuberculosis adverse drug reactions in Lima, Peru, with special emphasis on MDR-TB medication, HIV infection, diabetes, age and tobacco use. METHODOLOGY AND RESULTS: A case-control study was performed using information from Peruvian TB Programme. A case was defined as having reported an anti-TB adverse drug reaction during 2005-2010 with appropriate notification on clinical records. Controls were defined as not having reported a side effect, receiving anti-TB therapy during the same time that the case had appeared. Crude, and age- and sex-adjusted models were calculated using odds ratios (OR and 95% confidence intervals (95%CI. A multivariable model was created to look for independent factors associated with side effect from anti-TB therapy. A total of 720 patients (144 cases and 576 controls were analyzed. In our multivariable model, age, especially those over 40 years (OR = 3.93; 95%CI: 1.65-9.35, overweight/obesity (OR = 2.13; 95%CI: 1.17-3.89, anemia (OR = 2.10; IC95%: 1.13-3.92, MDR-TB medication (OR = 11.1; 95%CI: 6.29-19.6, and smoking (OR = 2.00; 95%CI: 1.03-3.87 were independently associated with adverse drug reactions. CONCLUSIONS: Old age, anemia, MDR-TB medication, overweight/obesity status, and smoking history are independent risk factors associated with anti-tuberculosis adverse drug reactions. Patients with these risk factors should be monitored during the anti-TB therapy. A comprehensive clinical history and additional medical exams, including hematocrit and HIV-ELISA, might be useful to identify these patients.

  12. Hospitalized pediatric antituberculosis drug induced hepatotoxicity: Experience of an Indonesian referral hospital

    Directory of Open Access Journals (Sweden)

    Heda Melinda Nataprawira

    2017-05-01

    Full Text Available Objective: To determine the characteristics and risk factors of pediatric antituberculosis drug induced hepatotoxicity (ADIH in Dr. Hasan Sadikin Hospital, a referral hospital in West Java, Indonesia. Methods: Medical records of hospitalized pediatric ADIH from October 2010 to October 2015 were reviewed retrospectively through computer-based search. Descriptive data were presented as percentage. Analytical case-control study on characteristics of ADIH was conducted using Chi-square and Mann Whitney test. Results: Fifty (3.5% out of 1 424 pediatric TB patients developed ADIH; 20 (40% were boys and 30 (60% girls. More than half were under 5 years old and 33 (66% were malnourished. ADIH occured in 29 (58% cases treated for pulmonary TB, 15 (30% for extrapulmonary TB and 6 (12% for both; 34 cases (68% occured during the intensive phase. We identified hepatic comorbidities including CMV infection [1 (2%] and typhoid [1 (2%], and other diseases treated by hepatotoxic drugs such as chemotherapeutic drugs, antiepileptics, and antiretroviral drugs [9 (18%]. Case-control analysis of 50 ADIH cases and 100 TB controls without ADIH showed that the correlation between gender, age, type of TB, nutritional status and comorbidities to occurence of ADIH was statistically insignificant (P = 0.26, 0.765, 0.495, 0.534 9 and 0.336, respectively. Pediatric ADIH was treated using modified British Thoracic Society guidelines. Conclusions: Pediatric ADIH in our hospital is quite frequent, thus identifying risk factors and development of pediatric guideline is mandatory. Further study is needed to identify other risk factors such as genetic acetylator status.

  13. Anti-tuberculosis drug resistance in Bangladesh: reflections from the first nationwide survey.

    Science.gov (United States)

    Kamal, S M M; Hossain, A; Sultana, S; Begum, V; Haque, N; Ahmed, J; Rahman, T M A; Hyder, K A; Hossain, S; Rahman, M; Ahsan, Chowdhury R; Chowdhury, R A; Aung, K J M; Islam, A; Hasan, R; Van Deun, A

    2015-02-01

    To determine the prevalence of tuberculosis (TB) drug resistance in Bangladesh. Weighted cluster sampling among smear-positive cases, and standard culture and drug susceptibility testing on solid medium were used. Of 1480 patients enrolled during 2011, 12 falsified multidrug-resistant TB (MDR-TB) patients were excluded. Analysis included 1340 cases (90.5% of those enrolled) with valid results and known treatment antecedents. Of 1049 new cases, 12.3% (95%CI 9.3-16.1) had strains resistant to any of the first-line drugs tested, and 1.4% (95%CI 0.7-2.5) were MDR-TB. Among the 291 previously treated cases, this was respectively 43.2% (95%CI 37.1-49.5) and 28.5% (95%CI 23.5-34.1). History of previous anti-tuberculosis treatment was the only predictive factor for first-line drug resistance (OR 34.9). Among the MDR-TB patients, 19.2% (95%CI 11.3-30.5; exclusively previously treated) also showed resistance to ofloxacin. Resistance to kanamycin was not detected. Although MDR-TB prevalence was relatively low, transmission of MDR-TB may be increasing in Bangladesh. MDR-TB with fluoroquinolone resistance is rapidly rising. Integrating the private sector should be made high priority given the excessive proportion of MDR-TB retreatment cases in large cities. TB control programmes and donors should avoid applying undue pressure towards meeting global targets, which can lead to corruption of data even in national surveys.

  14. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant.

    Directory of Open Access Journals (Sweden)

    JunFeng Dong

    Full Text Available Reconstruction materials currently used in clinical for osteoarticular tuberculosis (TB are unsatisfactory due to a variety of reasons. Rifampicin (RFP is a well-known and highly effective first-line anti-tuberculosis (anti-TB drug. Poly-DL-lactide (PDLLA and nano-hydroxyapatite (nHA are two promising materials that have been used both for orthopedic reconstruction and as carriers for drug release. In this study we report the development of a novel anti-TB implant for osteoarticular TB reconstruction using a combination of RFP, PDLLA and nHA.RFP, PDLLA and nHA were used as starting materials to produce a novel anti-TB activity implant by the solvent evaporation method. After manufacture, the implant was characterized and its biodegradation and drug release profile were tested. The in vitro cytotoxicity of the implant was also evaluated in pre-osteoblast MC3T3-E1 cells using multiple methodologies.A RFP/PDLLA/nHA composite was successfully synthesized using the solvent evaporation method. The composite has a loose and porous structure with evenly distributed pores. The production process was steady and no chemical reaction occurred as proved by Fourier Transform Infrared Spectroscopy (FTIR and X-Ray Diffraction (XRD. Meanwhile, the composite blocks degraded and released drug for at least 12 weeks. Evaluation of in vitro cytotoxicity in MC3T3-E1 cells verified that the synthesized composite blocks did not affect cell growth and proliferation.It is feasible to manufacture a novel bioactive anti-TB RFP/PDLLA/nHA composite by the solvent evaporation method. The composite blocks showed appropriate properties such as degradation, drug release and biosafety to MC3T3-E1 cells. In conclusion, the novel composite blocks may have great potential for clinical applications in repairing bone defects caused by osteoarticular TB.

  15. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review.

    Science.gov (United States)

    Memvanga, Patrick B; Tona, Gaston L; Mesia, Gauthier K; Lusakibanza, Mariano M; Cimanga, Richard K

    2015-07-01

    Malaria is the most prevalent parasitic disease and the foremost cause of morbidity and mortality in the Democratic Republic of Congo. For the management of this disease, a large Congolese population recourses to traditional medicinal plants. To date the efficacy and safety of many of these plants have been validated scientifically in rodent malaria models. In order to generate scientific evidence of traditional remedies used in the Democratic Republic of Congo for the management of malaria, and show the potential of Congolese plants as a major source of antimalarial drugs, this review highlights the antiplasmodial and toxicological properties of the Congolese antimalarial plants investigated during the period of 1999-2014. In doing so, a useful resource for further complementary investigations is presented. Furthermore, this review may pave the way for the research and development of several available and affordable antimalarial phytomedicines. In order to get information on the different studies, a Google Scholar and PubMed literature search was performed using keywords (malaria, Congolese, medicinal plants, antiplasmodial/antimalarial activity, and toxicity). Data from non-indexed journals, Master and Doctoral dissertations were also collected. Approximately 120 extracts and fractions obtained from Congolese medicinal plants showed pronounced or good antiplasmodial activity. A number of compounds with interesting antiplasmodial properties were also isolated and identified. Some of these compounds constituted new scaffolds for the synthesis of promising antimalarial drugs. Interestingly, most of these extracts and compounds possessed high selective activity against Plasmodium parasites compared to mammalian cells. The efficacy and safety of several plant-derived products was confirmed in mice, and a good correlation was observed between in vitro and in vivo antimalarial activity. The formulation of several plant-derived products also led to some clinical trials

  16. Compliance with antimalarial chemoprophylaxis in German soldiers: a 6-year survey.

    Science.gov (United States)

    Frickmann, H; Schwarz, N G; Holtherm, H-U; Maassen, W; Vorderwülbecke, F; Erkens, K; Fischer, M; Morwinsky, T; Hagen, R M

    2013-04-01

    Since 1992, German soldiers have been deployed in areas where malaria is endemic. Antimalarial chemoprophylaxis (CP) is directed according to the assessed risk and is provided free of charge. Compliance is crucial if its effect is to be reliable. This study analysed compliance with directed CP in German soldiers as well as its determinants. Between 2003 and 2009, standardized questionnaire-based interviews were performed with 2,149 out of approximately 100,000 German soldiers who were deployed during this period in areas where malaria is endemic. The questionnaires dealt with information that the soldiers had received about malaria prior to their missions, with their adherence to mosquito-protective and antimalarial chemoprophylactic procedures, and their estimations of their individual level of exposure. About 1,308 out of 2,149 interviewed soldiers had been ordered to take CP, allowing for an assessment of the outcome parameter "CP-compliance". About 76.9 % out of 1,308 soldiers to whom regular CP was directed took it regularly. The exposure variables "age", "satisfaction with malaria counselling", "perceived threat due to insects or mosquitoes" and "use of insect repellents" were positively associated with compliance with directed antimalarial CP. The study confirms the findings of the French and US armies that even free-of-charge access to antimalarial medication will not lead to 100 % acceptance. The compliance problem is aggravated by the generally low age of deployed soldiers. Adequate counselling is crucial to increase adherence to antimalarial CP.

  17. ANTIMALARIALS PRESCRIPTION TO PATIENTS IN JOSINA MACHEL CENTRAL HOSPITAL. JANUARY-JULY 2014

    Directory of Open Access Journals (Sweden)

    Mateus Sebastião João Fernandes

    2015-07-01

    Full Text Available Malaria represents the main public health problem in Angola, being the leading cause of disease and death. The misuse of antimalarials can lead to an increase of drug resistance and undesired adverse reactions, among other issues, with a negative impact in patients and the National Health System. An observational, descriptive, cross-sectional study, of the Drug Use Study type, was conducted in patients with a confirmed diagnosis of malaria admitted at Josina Machel Central Hospital, to evaluate the quality of prescription of antimalarials. This prescription-indication study was conducted from January to July of 2014, in a sample of 151 patients admitted in the Medicine and Therapy Services. The adequacy of the prescription was assessed taking into account patients characteristics and the prescribed therapeutic regimen (drug, dose, posology and duration of treatment, using the therapeutic guidelines of the National Malaria Control Programme in Angola as reference. There was a high prevalence of inadequate prescriptions of antimalarials, which was observed in 70 out of 151 patients (46.4%. The inadequate prescription of antimalarials was more frequently observed in cases of complicated malaria and between patients admitted in the Medicine Services. The more frequent causes of antimalarials misuse were “unnecessary or inappropriate drug combinations” and “inadequate treatment”. The drugs more commonly misused were Quinine IV and Artemether IM.

  18. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II complexes

    Directory of Open Access Journals (Sweden)

    Mustapha C. Mandewale

    2018-02-01

    Full Text Available The quinoline hydrazone ligands were synthesized through multi-step reactions. The 2-hydroxy-3-formylquinoline derivatives (1a–1c were prepared from acetanilide derivatives as starting materials using Vilsmeier–Haack reaction. Then the condensation of 2-hydroxy-3-formylquinoline derivatives with hydrazide derivatives (2a–2c yielded quinoline hydrazone ligands (3a–3i. The synthesis of a new series of Zn(II complexes carried out by refluxing with these quinoline hydrazone ligands (3a–3i is reported. The molecular structures of the ligands (3a–3i and the Zn complexes were characterized by elemental analysis and spectral studies like FT-IR, 1H and 13C NMR, MS, UV–Visible and fluorescence. The preliminary results of antituberculosis study showed that most of the Zn(II complexes 4a–4i demonstrated very good antituberculosis activity while the ligands 3a–3i showed moderate activity. Among the tested compounds 4e and 4g were found to be most active with minimum inhibitory concentration (MIC of 8.00μM and 7.42 μM respectively against Mycobacterium tuberculosis (H37 RV strain ATCC No-27294 which is comparable to “first and second line” drugs used to treat tuberculosis.

  19. Polyneuropathy, anti-tuberculosis treatment and the role of pyridoxine in the HIV/AIDS era: a systematic review.

    Science.gov (United States)

    van der Watt, J J; Harrison, T B; Benatar, M; Heckmann, J M

    2011-06-01

    Tuberculosis (TB) is increasing in incidence in certain parts of the world, particularly where there is a co-epidemic of human immunodeficiency virus/acquired immune-deficiency syndrome (HIV/AIDS), and it is associated with a significant degree of morbidity and mortality. One of the most common complications of anti-tuberculosis treatment is the development of a painful isoniazid (INH) associated polyneuropathy (PN), which is preventable with adequate pyridoxine supplementation. As PN is also the most frequent neurological complication associated with HIV infection, subjects who are HIV and TB co-infected may be at increased risk of developing PN. In this review, we explore current knowledge of anti-tuberculosis drug associated PN focusing on INH and its relationship to pyridoxine, as well as the additional impact of antiretroviral treatment and TB-HIV co-infection. It is evident that guidelines established for the prevention and treatment of this problem differ between industrialised and developing countries, and that further research is needed to define the optimum dosing of pyridoxine supplementation in populations where there is a significant burden of TB and HIV.

  20. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds.

    Science.gov (United States)

    Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A

    2013-04-01

    Alcoholic extracts of 8 different types of seaweeds from Iran's Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml(-1)) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml(-1)). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml(-1), respectively). All extracts were inactive in antimalarial assay.

  1. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities.

    Science.gov (United States)

    Gorka, Alexander P; de Dios, Angel; Roepe, Paul D

    2013-07-11

    Historically, the most successful molecular target for antimalarial drugs has been heme biomineralization within the malarial parasite digestive vacuole. Heme released from catabolized host red blood cell hemoglobin is toxic, so malarial parasites crystallize heme to nontoxic hemozoin. For years it has been accepted that a number of effective quinoline antimalarial drugs (e.g., chloroquine, quinine, amodiaquine) function by preventing hemozoin crystallization. However, recent studies over the past decade have revealed a surprising molecular diversity in quinoline-heme molecular interactions. This diversity shows that even closely related quinoline drugs may have quite different molecular pharmacology. This paper reviews the molecular diversity and highlights important implications for understanding quinoline antimalarial drug resistance and for future drug design.

  2. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIP OF ANTIMALARIAL COMPOUND OF ARTEMISININ DERIVATIVES USING PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Paul Robert Martin Werfette

    2010-06-01

    Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation,  (;;   Keywords: QSAR, antimalarial, artemisinin, principal component regression

  3. Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Directory of Open Access Journals (Sweden)

    Mpimbaza Arthur

    2008-06-01

    Full Text Available Abstract Background New antimalarial regimens, including artemisinin-based combination therapies (ACTs, have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. Case description Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. Discussion and evaluation Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. Conclusion Although the World Health Organization has supported the development of

  4. Antimalarial plants used by indigenous people of the Upper Rio Negro in Amazonas, Brazil.

    Science.gov (United States)

    Kffuri, Carolina Weber; Lopes, Moisés Ahkʉtó; Ming, Lin Chau; Odonne, Guillaume; Kinupp, Valdely Ferreira

    2016-02-03

    This is the first intercultural report of antimalarial plants in this region. The aim of this study was to document the medicinal plants used against malaria by indigenous people in the Upper Rio Negro region and to review the literature on antimalarial activity and traditional use of the cited species. Participant observation, semi-structured interviews, and ethnobotanical walks were conducted with 89 informants in five indigenous communities between April 2010 and November 2013 to obtain information on the use of medicinal plants against malaria. We reviewed academic databases for papers published in scientific journals up to January 2014 in order to find works on ethnopharmacology, ethnobotany, and antimalarial activity of the species cited. Forty-six plant species belonging to 24 families are mentioned. Fabaceae (17.4%), Arecaceae (13.0%) and Euphorbiaceae (6.5%) account together for 36.9% of these species. Only seven plant species showed a relatively high consensus. Among the plant parts, barks (34.0%) and roots (28.0%) were the most widely used. Of the 46 species cited, 18 (39.1%) have already been studied for their antimalarial properties according to the literature, and 26 species (56.5%) have no laboratory essays on antimalarial activity. Local traditional knowledge of the use of antimalarials is still widespread in indigenous communities of the Upper Rio Negro, where 46 plants species used against malaria were recorded. Our studies highlight promising new plants for future studies: Glycidendron amazonicum, Heteropsis tenuispadix, Monopteryx uaucu, Phenakospermum guianensis, Pouteria ucuqui, Sagotia brachysepala and notably Aspidosperma schultesii, Ampelozizyphus amazonicus, Euterpe catinga, E. precatoria, Physalis angulata, Cocos nucifera and Swartzia argentea with high-use consensus. Experimental validation of these remedies may help in developing new drugs for malaria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Directory of Open Access Journals (Sweden)

    Eberlin Marcos N

    2011-05-01

    Full Text Available Abstract Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7 and -resistant (S20 strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4 and 50% methanolic (F5 fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  6. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  7. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790

  8. Antiprotozoal Activity of Buxus sempervirens and Activity-Guided Isolation of O-tigloylcyclovirobuxeine-B as the Main Constituent Active against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Julia B. Althaus

    2014-05-01

    Full Text Available Buxus sempervirens L. (European Box, Buxaceae has been used in ethnomedicine to treat malaria. In the course of our screening of plant extracts for antiprotozoal activity, a CH2Cl2 extract from leaves of B. sempervirens showed selective in vitro activity against Plasmodium falciparum (IC50 = 2.79 vs. 20.2 µg/mL for cytotoxicity against L6 rat cells. Separation of the extract by acid/base extraction into a basic and a neutral non-polar fraction led to a much more active and even more selective fraction with alkaloids while the fraction of non-polar neutral constituents was markedly less active than the crude extract. Thus, the activity of the crude extract could clearly be attributed to alkaloid constituents. Identification of the main triterpene-alkaloids and characterization of the complex pattern of this alkaloid fraction was performed by UHPLC/+ESI-QTOF-MS analyses. ESI-MS/MS target-guided larger scale preparative separation of the alkaloid fraction was performed by ‘spiral coil-countercurrent chromatography’. From the most active subfraction, the cycloartane alkaloid O-tigloylcyclovirobuxeine-B was isolated and evaluated for antiplasmodial activity which yielded an IC50 of 0.455 µg/mL (cytotoxicity against L6 rat cells: IC50 = 9.38 µg/mL. O-tigloylcyclovirobuxeine-B is thus most significantly responsible for the high potency of the crude extract.

  9. A new l-amino acid oxidase from Bothrops jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities.

    Science.gov (United States)

    Carone, Sante E I; Costa, Tássia R; Burin, Sandra M; Cintra, Adélia C O; Zoccal, Karina F; Bianchini, Francine J; Tucci, Luiz F F; Franco, João J; Torqueti, Maria R; Faccioli, Lúcia H; Albuquerque, Sérgio de; Castro, Fabíola A de; Sampaio, Suely V

    2017-10-01

    A new l-amino acid oxidase (LAAO) from Bothrops jararacussu venom (BjussuLAAO-II) was isolated by using a three-step chromatographic procedure based on molecular exclusion, hydrophobicity, and affinity. BjussuLAAO-II is an acidic enzyme with pI=3.9 and molecular mass=60.36kDa that represents 0.3% of the venom proteins and exhibits high enzymatic activity (4884.53U/mg/mim). We determined part of the primary sequence of BjussuLAAO-II by identifying 96 amino acids, from which 34 compose the N-terminal of the enzyme (ADDRNPLEECFRETDYEEFLEIARNGLSDTDNPK). Multiple alignment of the partial BjussuLAAO-II sequence with LAAOs deposited in the NCBI database revealed high similarity (95-97%) with other LAAOs isolated from Bothrops snake venoms. BjussuLAAO-II exerted a strong antiprotozoal effect against Leishmania amazonensis (IC 50 =4.56μg/mL) and Trypanosoma cruzi (IC 50 =4.85μg/mL). This toxin also induced cytotoxicity (IC 50 =1.80μg/mL) and apoptosis in MCF7 cells (a human breast adenocarcinoma cell line) by activating the intrinsic and extrinsic apoptosis pathways, but were not cytotoxic towards MCF10A cells (a non-tumorigenic human breast epithelial cell line). The results reported herein add important knowledge to the field of Toxinology, especially for the development of new therapeutic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Pharmacokinetics of Second-Line Antituberculosis Drugs after Multiple Administrations in Healthy Volunteers.

    Science.gov (United States)

    Park, Sang-In; Oh, Jaeseong; Jang, Kyungho; Yoon, Jangsoo; Moon, Seol Ju; Park, Jong Sun; Lee, Jae Ho; Song, Junghan; Jang, In-Jin; Yu, Kyung-Sang; Chung, Jae-Yong

    2015-08-01

    Therapeutic drug monitoring (TDM) of second-line antituberculosis drugs would allow for optimal individualized dosage adjustments and improve drug safety and therapeutic outcomes. To evaluate the pharmacokinetic (PK) characteristics of clinically relevant, multidrug treatment regimens and to improve the feasibility of TDM, we conducted an open-label, multiple-dosing study with 16 healthy subjects who were divided into two groups. Cycloserine (250 mg), p-aminosalicylic acid (PAS) (5.28 g), and prothionamide (250 mg) twice daily and pyrazinamide (1,500 mg) once daily were administered to both groups. Additionally, levofloxacin (750 mg) and streptomycin (1 g) once daily were administered to group 1 and moxifloxacin (400 mg) and kanamycin (1 g) once daily were administered to group 2. Blood samples for PK analysis were collected up to 24 h following the 5 days of drug administration. The PK parameters, including the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve during a dosing interval at steady state (AUCτ), were evaluated. The correlations between the PK parameters and the concentrations at each time point were analyzed. The mean Cmax and AUCτ, respectively, for each drug were as follows: cycloserine, 24.9 mg/liter and 242.3 mg · h/liter; PAS, 65.9 mg/liter and 326.5 mg · h/liter; prothionamide, 5.3 mg/liter and 22.1 mg · h/liter; levofloxacin, 6.6 mg/liter and 64.4 mg · h/liter; moxifloxacin, 4.7 mg/liter and 54.2 mg · h/liter; streptomycin, 42.0 mg/liter and 196.7 mg · h/liter; kanamycin, 34.5 mg/liter and 153.5 mg · h/liter. The results indicated that sampling at 1, 2.5, and 6 h postdosing is needed for TDM when all seven drugs are administered concomitantly. This study indicates that PK characteristics must be considered when prescribing optimal treatments for patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT02128308.). Copyright © 2015, American Society for

  11. Toxicidad hepática por medicamentos antituberculosos Hepatotoxicity induced by antituberculosis drugs

    Directory of Open Access Journals (Sweden)

    Isabel Eugenia Escobar Toledo

    2008-01-01

    a special challenge because its treatment requires the administration, during long periods, of drugs with the potential of inducing liver injury. In this article some aspects of hepatotoxicity induced by antituberculosis drugs are reviewed, namely: epidemiology, risk factors, mechanisms, clinical manifestations, diagnosis, treatment and follow-up.

  12. Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents.

    Science.gov (United States)

    Comer, Eamon; Beaudoin, Jennifer A; Kato, Nobutaka; Fitzgerald, Mark E; Heidebrecht, Richard W; Lee, Maurice duPont; Masi, Daniela; Mercier, Marion; Mulrooney, Carol; Muncipinto, Giovanni; Rowley, Ann; Crespo-Llado, Keila; Serrano, Adelfa E; Lukens, Amanda K; Wiegand, Roger C; Wirth, Dyann F; Palmer, Michelle A; Foley, Michael A; Munoz, Benito; Scherer, Christina A; Duvall, Jeremy R; Schreiber, Stuart L

    2014-10-23

    Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure-activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.

  13. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi

    Directory of Open Access Journals (Sweden)

    Dismas Baza

    2011-02-01

    Full Text Available Abstract Background Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Methods Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO, a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment of AS-AQ, quinine and other anti-malarials were calculated. Results Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9% compared to public (4.2% and NGO (0% outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu. Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu, private and NGO sectors (both US$1.61 or 2,000 FBu. Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors

  14. The ACTwatch project: methods to describe anti-malarial markets in seven countries.

    Science.gov (United States)

    Shewchuk, Tanya; O'Connell, Kathryn A; Goodman, Catherine; Hanson, Kara; Chapman, Steven; Chavasse, Desmond

    2011-10-31

    Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT) and malaria diagnostics including rapid diagnostic tests (RDTs). To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012.ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the project aims to disseminate findings widely for decision

  15. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Directory of Open Access Journals (Sweden)

    Chapman Steven

    2011-10-01

    Full Text Available Abstract Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT and malaria diagnostics including rapid diagnostic tests (RDTs. To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the

  16. Biotransformation and biocatalysis: roles and applications in the discovery of antimalarials.

    Science.gov (United States)

    Chigorimbo-Murefu, Nyaradzo T L; Njoroge, Mathew; Nzila, Alexis; Louw, Stefan; Masimirembwa, Collen; Chibale, Kelly

    2012-12-01

    Several strategies to discover new antimalarials have been proposed to augment and complement the conventional drug-discovery paradigm. One approach, which has not yet been fully exploited, is the use of drug biotransformation to identify new active molecules. This concept rests on the use of the biotransformation of drugs to their pharmacologically active metabolites. This approach has been used successfully in human chemotherapy, with the discovery and development of several metabolite-based drugs. This review looks at the contribution that biotransformations can play in antimalarial drug discovery.

  17. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain

    Science.gov (United States)

    Iwaniuk, Daniel P.; Whetmore, Eric D.; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C.; Roepe, Paul D.; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activity of several new 4-amino-and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of P. falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11–15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain. PMID:19703776

  18. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Science.gov (United States)

    2011-01-01

    Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT) and malaria diagnostics including rapid diagnostic tests (RDTs). To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the project aims to disseminate

  19. Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous Systems and Other Miscellaneous Mechanisms of Action

    OpenAIRE

    Mayer, Alejandro M. S.; Hamann, Mark T.

    2003-01-01

    During 2000 research on the pharmacology of marine chemicals involved investigators from Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Israel, Italy, Japan, the Netherlands, New Zealand, Phillipines, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, United Kingdom, and the United States. This current review, a sequel to the authors’ 1998 and 1999 reviews, classifies 68 peer-reviewed articles on the basis of the reported preclinical pharmacologic properties o...

  20. Marine peptides and their anti-infective activities.

    Science.gov (United States)

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-16

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present.

  1. Marine Peptides and Their Anti-Infective Activities

    Directory of Open Access Journals (Sweden)

    Hee Kyoung Kang

    2015-01-01

    Full Text Available Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish from 2006 to the present.

  2. Antimalarial activity of lactucin and lactucopicrin: sesquiterpene lactones isolated from Cichorium intybus L.

    Science.gov (United States)

    Bischoff, Theodore A; Kelley, Charles J; Karchesy, Yvette; Laurantos, Maria; Nguyen-Dinh, Phuc; Arefi, Abdul Ghafoor

    2004-12-01

    Folklore reports from Afghanistan prior to the wars described the use of aqueous root extracts of Cichorium intybus (L.) as a light-sensitive plant remedy for malaria. Preparative isolation and bioassay against HB3 clone of strain Honduras-1 of Plasmodium falciparum identified the previously known light-sensitive sesquiterpene lactones Lactucin and Lactucopicrin to be antimalarial compounds.

  3. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa.

    Science.gov (United States)

    Nayyar, Gaurvika M L; Breman, Joel G; Newton, Paul N; Herrington, James

    2012-06-01

    Poor-quality antimalarial drugs lead to drug resistance and inadequate treatment, which pose an urgent threat to vulnerable populations and jeopardise progress and investments in combating malaria. Emergence of artemisinin resistance or tolerance in Plasmodium falciparum on the Thailand-Cambodia border makes protection of the effectiveness of the drug supply imperative. We reviewed published and unpublished studies reporting chemical analyses and assessments of packaging of antimalarial drugs. Of 1437 samples of drugs in five classes from seven countries in southeast Asia, 497 (35%) failed chemical analysis, 423 (46%) of 919 failed packaging analysis, and 450 (36%) of 1260 were classified as falsified. In 21 surveys of drugs from six classes from 21 countries in sub-Saharan Africa, 796 (35%) of 2297 failed chemical analysis, 28 (36%) of 77 failed packaging analysis, and 79 (20%) of 389 were classified as falsified. Data were insufficient to identify the frequency of substandard (products resulting from poor manufacturing) antimalarial drugs, and packaging analysis data were scarce. Concurrent interventions and a multifaceted approach are needed to define and eliminate criminal production, distribution, and poor manufacturing of antimalarial drugs. Empowering of national medicine regulatory authorities to protect the global drug supply is more important than ever. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Strengthening of national capacity in implementation of antimalarial drug quality assurance in Thailand.

    Science.gov (United States)

    Vijaykadga, Saowanit; Cholpol, Sawat; Sitthimongkol, Saipin; Pawaphutanan, Anusorn; Pinyoratanachot, Arunya; Rojanawatsirivet, Chaiporn; Kovithvattanapong, Rojana; Thimasarn, Krongthong

    2006-01-01

    Substandard and counterfeit pharmaceutical products, including antimalarial drugs, appear to be widespread internationally and affect both the developing and developed countries. The aim of the study was to investigate the quality of antimalarial drugs, ie, artesunate (ART), chloroquine (CHL), mefloquine (MEF), quinine (QUI), sulfadoxine/pyrimethamine (S/P) and tetracycline (TT) obtained from the government sector and private pharmacies in 4 Thai provinces: Mae Hong Son, Kanchanaburi, Ranong, and Chanthaburi. Three hundred sixty-nine samples of 6 antimalarial drugs from 27 government hospitals, 27 malaria clinics, and 53 drugstores, were collected. Drug quality was assessed by simple disintegration test and semi-quantitative thin-layer chromatography in each province; 10% passed, 100% failed and doubtful samples were sent to be verified by high performance liquid chromatography (HPLC) at the Thai National Drug Analysis Laboratory, (NL). Fifteen point four percent of ART, 11.1% of CHL and 29.4% of QUI were substandard. Based on the finding, drug regulatory authorities in the country took appropriate action against violators to ensure that antimalarial drugs consumed by malaria patients are of good quality.

  5. In Vitro Chemosensitization of Plasmodium falciparum to Antimalarials by Verapamil and Probenecid▿

    OpenAIRE

    Masseno, Victor; Muriithi, Steven; Nzila, Alexis

    2009-01-01

    We tested the effect of probenecid and verapamil in chemosensitizing Plasmodium falciparum to 14 antimalarials using the multidrug-resistant strain V1S and the drug-sensitive 3D7. Verapamil chemosensitizes V1S to quinine and chloroquine. Interestingly, probenecid profoundly chemosensitizes V1S to piperaquine. Thus, probenecid could be used to increase piperaquine efficacy in vivo.

  6. In vitro chemosensitization of Plasmodium falciparum to antimalarials by verapamil and probenecid.

    Science.gov (United States)

    Masseno, Victor; Muriithi, Steven; Nzila, Alexis

    2009-07-01

    We tested the effect of probenecid and verapamil in chemosensitizing Plasmodium falciparum to 14 antimalarials using the multidrug-resistant strain V1S and the drug-sensitive 3D7. Verapamil chemosensitizes V1S to quinine and chloroquine. Interestingly, probenecid profoundly chemosensitizes V1S to piperaquine. Thus, probenecid could be used to increase piperaquine efficacy in vivo.

  7. Mass anti-malarial administration in western Cambodia: a qualitative study of factors affecting coverage

    NARCIS (Netherlands)

    Pell, Christopher; Tripura, Rupam; Nguon, Chea; Cheah, Phaikyeong; Davoeung, Chan; Heng, Chhouen; Dara, Lim; Sareth, Ma; Dondorp, Arjen; von Seidlein, Lorenz; Peto, Thomas J.

    2017-01-01

    Mass anti-malarial administration has been proposed as a key component of the Plasmodium falciparum malaria elimination strategy in the Greater Mekong sub-Region. Its effectiveness depends on high levels of coverage in the target population. This article explores the factors that influenced mass

  8. A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Cleydson Breno R. Santos

    2013-12-01

    Full Text Available The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs and molecular docking were used to investigate the interaction between ligands and the receptor (heme. Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE, the charge on the O11 oxygen atom (QO11, the torsion angle O1-O2-Fe-N2 (D2 and the maximum rate of R/Sanderson Electronegativity (RTe+. These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  9. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    International Nuclear Information System (INIS)

    Egan, J.A.Judith A.; Laseter, Anne G.; Filer, C.N.Crist N.

    2002-01-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3- 3 H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl- 3 H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [ 3 H] ethyl iodide

  10. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.A.Judith A.; Laseter, Anne G.; Filer, C.N.Crist N. E-mail: crist.filer@perkinelmer.com

    2002-09-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3-{sup 3}H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl-{sup 3}H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [{sup 3}H] ethyl iodide.

  11. Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads

    Directory of Open Access Journals (Sweden)

    Lucio H. Freitas-Junior

    2013-08-01

    Full Text Available Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cause severe manifestations and death; hence there is a need for P. vivax-directed research. Plants used in traditional medicine, namely Artemisia annua and Cinchona spp. are the sources of the antimalarial natural products artemisinin and quinine, respectively. Based on these compounds, semi-synthetic artemisinin-derivatives and synthetic quinoline antimalarials have been developed and are the most important drugs in the current therapeutic arsenal for combating malaria. In the Amazon region, where P. vivax predominates, there is a local tradition of using plant-derived preparations to treat malaria. Here, we review the current P. falciparum and P. vivax drug-sensitivity assays, focusing on challenges and perspectives of drug discovery for P. vivax, including tests against hypnozoites. We also present the latest findings of our group and others on the antiplasmodial and antimalarial chemical components from Amazonian plants that may be potential drug leads against malaria.

  12. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus

    DEFF Research Database (Denmark)

    Kuhn, A; Sigges, J; Biazar, C

    2014-01-01

    . Smoking behaviour was assessed by the EUSCLE Core Set Questionnaire in 838 patients and statistically analysed using an SPSS database. The results were correlated with the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) and the efficacy of antimalarial treatment. RESULTS: A high...

  13. The Discovery of Novel Antimalarial Compounds Enabled by QSAR-based Virtual Screening

    Science.gov (United States)

    Zhang, Liying; Fourches, Denis; Sedykh, Alexander; Zhu, Hao; Golbraikh, Alexander; Ekins, Sean; Clark, Julie; Connelly, Michele C.; Sigal, Martina; Hodges, Dena; Guiguemde, Armand; Guy, R. Kiplin; Tropsha, Alexander

    2013-01-01

    Quantitative structure–activity relationship (QSAR) models have been developed for a dataset of 3133 compounds defined as either active or inactive against P. falciparum. Since the dataset was strongly biased towards inactive compounds, different sampling approaches were employed to balance the ratio of actives vs. inactives, and models were rigorously validated using both internal and external validation approaches. The balanced accuracy for assessing the antimalarial activities of 70 external compounds was between 87% and 100% depending on the approach used to balance the dataset. Virtual screening of the ChemBridge database using QSAR models identified 176 putative antimalarial compounds that were submitted for experimental validation, along with 42 putative inactives as negative controls. Twenty five (14.2%) computational hits were found to have antimalarial activities with minimal cytotoxicity to mammalian cells, while all 42 putative inactives were confirmed experimentally. Structural inspection of confirmed active hits revealed novel chemical scaffolds, which could be employed as starting points to discover novel antimalarial agents. PMID:23252936

  14. Melidianolic acid A and B, new antimalarial acyclic diterpenes from Aphanamixis grandifolia.

    Science.gov (United States)

    Astulla, Adil; Hirasawa, Yusuke; Rahman, Abdul; Kusumawati, Idha; Ekasari, Wiwied; Widyawaruyanti, Aty; Zaini, Noor Cholies; Morita, Hiroshi

    2011-03-01

    Two new acyclic diterpenes, melidianolic acids A (1) and B (2), have been isolated from the bark of Aphanamixis grandifolia. Their structures were elucidated on the basis of spectroscopic and chemical methods. Melidianolic acids A (1) and B (2) showed antimalarial activity against Plasmodium falciparum 3D7 with IC50 of 6.1 and 7.3 microg/mL, respectively.

  15. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    Directory of Open Access Journals (Sweden)

    Jerapan Krungkrai

    2016-05-01

    Full Text Available Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  16. Assessing anti-malarial drug effects ex vivo using the haemozoin detection assay

    NARCIS (Netherlands)

    Rebelo, Maria; Tempera, Carolina; Fernandes, José F.; Grobusch, Martin P.; Hänscheid, Thomas

    2015-01-01

    In vitro sensitivity assays are crucial to detect and monitor drug resistance. Plasmodium falciparum has developed resistance to almost all anti-malarial drugs. Although different in vitro drug assays are available, some of their inherent characteristics limit their application, especially in the

  17. Self-medication with antibiotics and antimalarials in the community of Khartoum State, Sudan.

    Science.gov (United States)

    Awad, Abdelmoneim; Eltayeb, Idris; Matowe, Lloyd; Thalib, Lukman

    2005-08-12

    To estimate the prevalence of self medication with antibiotics and antimalarials in Khartoum State, Sudan and evaluate factors associated with self medication. A pre-tested questionnaire was used to collect data from a sample of 600 households, (1750 adult persons), selected from three cities in Khartoum State, Sudan, using a multistage stratified clustered sampling. One thousand two hundred and ninety three (73.9%) of the study population had used antibiotics or antimalarials without a prescription within one month prior to the study. Eight hundred and forty one (48.1%) of the respondents agreed that they have used antibiotics, 43.4% used antimalarials, while 17.5% used both. Self medication with either antibiotics/ antimalarials was found to be significantly associated with age, income, gender and level of education. Overall, self medication with any antibiotics or antimalarials was least common among the > or = 60 years compared to youngest age group (OR: 0.07; 0.04 -0.11) and most common among the female gender (OR: 1.8; 1.4 -2.4), the middle income group (OR: 3.7; 2.6-5.3) and the university graduates. Self medication with antibiotic was found to be significantly higher among females (OR: 1.5; 1.16-1.87), middle aged respondents aged 40-59 (OR: 2.1; 1.5-3.0) compared to younger respondents. Lower income and higher level of education was also found to be significantly associated with the increase risk of self medicating with antibiotic. Increase risk for self medication with antimalarials were, however, found to be significantly associated with male gender and younger age group of self-medication was financial constraints. The main source of medicines was the private pharmacies, which were regarded as a cheaper alternative to other primary healthcare sources. The prevalence of self-medication with antibiotics/antimalarials in Khartoum State, Sudan is alarmingly high. Self medication behaviour varies significantly with a number of socio-economic characteristics

  18. Synthesis and characterization of novel hydrazide-hydrazones and the study of their structure-antituberculosis activity.

    Science.gov (United States)

    Bedia, Koçyiğit-Kaymakçioğlu; Elçin, Oruç; Seda, Unsalan; Fatma, Kandemirli; Nathaly, Shvets; Sevim, Rollas; Dimoglo, Anatholy

    2006-11-01

    A series of hydrazide-hydrazones, based on a series of 4-substituted benzoic acid, were synthesized, and their structures were elucidated and screened for the antituberculosis activity against Mycobacterium tuberculosis H37Rv with the help of the BACTEC 460 radiometric system. Compound 3, 4-fluorobenzoic acid [((5-nitro)thiophen-2yl) methylene]hydrazide showed the highest inhibitory activity in this series. The search of pharmacophores was done by means of the Electronic-Topological Method (ETM). The model developed in this study is supposed to be applied to the design, preparation and screening of new compounds of similar structure in order to further test and optimize the model with the eventual goal of preparing new anti-tubercular agents.

  19. THE INFLUENCE OF ANTIRETROVIRAL AND ANTITUBERCULOSIS AGENTS ON THE BIOCHEMICAL AND HISTOPATHOLOGICAL INDICES OF LIVER FUNCTION IN RATS

    Directory of Open Access Journals (Sweden)

    O. O. Shevchuk

    2014-12-01

    Conclusions. Comparing with control group, repeated usage of TBS caused the prominent liver injury with cytolysis and cholestasis signs, decreasing of CYP3A and CYP2E1 isozymes activity and dysfunction of protein synthesis by the liver. ART (efavirenz and stavudine caused the elevation of transaminases activity with the increase of serum bilirubin level at the background of increase in cytochrome 450 isoforms 3A and 2E1 activities and total serum protein. The antiretroviral agents in case of simultaneous administration with the antituberculosis drugs diminished the hepatotoxic effects of first-line drugs for tuberculosis treatment which was confirmed by the study of liver histopathology. Such results of our experimental study give encouragement for further detailed clinical research of drug-drug interaction of both pharmacological groups due to the rising cases of HIV-associated tuberculosis in the whole world. KEY WORDS: Isoniazid, rifampicin, pyrazinamide, efavirenz, stavudine, liver, cytochrome P450.

  20. [The long controversy over anti-tuberculosis vaccination in Canada: the Calmette-Guerin bacillus (BCG), 1925-1975].

    Science.gov (United States)

    Malissard, P

    1998-01-01

    The focus of this article is the history of Canada's reception of Bacillus Calmette-Guerin (BCG), an anti-tuberculosis vaccine which has almost constantly been plagued with controversy. The article examines this vaccine NRCC sponsored introduction in 1925, which led to the creation of the Associate Committee on Tuberculosis Research, a committee almost unique for its acrimonious debates. It also analyzes the interests at stakes in the ultimate rejection of the BCG by the federal Department of Agriculture veterinary services and, with the exception of Quebec and Newfoundland, by almost all public health authorities in Canada. Based on sources never taped before, this paper sheds a light on the multiple ramifications of a little known episode of the Canadian public health history.

  1. Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-tuberculosis Lead Compounds from Natural Sources.

    Science.gov (United States)

    Grzelak, Edyta M; Hwang, Changhwa; Cai, Geping; Nam, Joo-Won; Choules, Mary P; Gao, Wei; Lankin, David C; McAlpine, James B; Mulugeta, Surafel G; Napolitano, José G; Suh, Joo-Won; Yang, Seung Hwan; Cheng, Jinhua; Lee, Hanki; Kim, Jin-Yong; Cho, Sang-Hyun; Pauli, Guido F; Franzblau, Scott G; Jaki, Birgit U

    2016-04-08

    While natural products constitute an established source of lead compounds, the classical iterative bioassay-guided isolation process is both time- and labor-intensive and prone to failing to identify active minor constituents. (HP)TLC-bioautography-MS/NMR, which combines cutting-edge microbiological, chromatographic, and spectrometric technologies, was developed to accelerate anti-tuberculosis (TB) drug discovery from natural sources by acquiring structural information at a very early stage of the isolation process. Using the avirulent, bioluminescent Mtb strain mc 2 7000 luxABCDE, three variations of bioautography were evaluated and optimized for sensitivity in detecting anti-TB agents, including established clinical agents and new leads with novel mechanisms of action. Several exemplary applications of this approach to microbial extracts demonstrate its potential as a routine method in anti-TB drug discovery from natural sources.

  2. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    Science.gov (United States)

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  3. Linking Murine and Human Plasmodium falciparum Challenge Models in a Translational Path for Antimalarial Drug Development

    Science.gov (United States)

    McCarthy, James S.; Marquart, Louise; Sekuloski, Silvana; Trenholme, Katharine; Elliott, Suzanne; Griffin, Paul; Rockett, Rebecca; O'Rourke, Peter; Sloots, Theo; Angulo-Barturen, Iñigo; Ferrer, Santiago; Jiménez-Díaz, María Belén; Martínez, María-Santos; Duparc, Stephan; Leroy, Didier; Wells, Timothy N. C.; Baker, Mark

    2016-01-01

    Effective progression of candidate antimalarials is dependent on optimal dosing in clinical studies, which is determined by a sound understanding of pharmacokinetics and pharmacodynamics (PK/PD). Recently, two important translational models for antimalarials have been developed: the NOD/SCID/IL2Rγ−/− (NSG) model, whereby mice are engrafted with noninfected and Plasmodium falciparum-infected human erythrocytes, and the induced blood-stage malaria (IBSM) model in human volunteers. The antimalarial mefloquine was used to directly measure the PK/PD in both models, which were compared to previously published trial data for malaria patients. The clinical part was a single-center, controlled study using a blood-stage Plasmodium falciparum challenge inoculum in volunteers to characterize the effectiveness of mefloquine against early malaria. The study was conducted in three cohorts (n = 8 each) using different doses of mefloquine. The characteristic delay in onset of action of about 24 h was seen in both NSG and IBSM systems. In vivo 50% inhibitory concentrations (IC50s) were estimated at 2.0 μg/ml and 1.8 μg/ml in the NSG and IBSM models, respectively, aligning with 1.8 μg/ml reported previously for patients. In the IBSM model, the parasite reduction ratios were 157 and 195 for the 10- and 15-mg/kg doses, within the range of previously reported clinical data for patients but significantly lower than observed in the mouse model. Linking mouse and human challenge models to clinical trial data can accelerate the accrual of critical data on antimalarial drug activity. Such data can guide large clinical trials required for development of urgently needed novel antimalarial combinations. (This trial was registered at the Australian New Zealand Clinical Trials Registry [http://anzctr.org.au] under registration number ACTRN12612000323820.) PMID:27044554

  4. Mass anti-malarial administration in western Cambodia: a qualitative study of factors affecting coverage.

    Science.gov (United States)

    Pell, Christopher; Tripura, Rupam; Nguon, Chea; Cheah, Phaikyeong; Davoeung, Chan; Heng, Chhouen; Dara, Lim; Sareth, Ma; Dondorp, Arjen; von Seidlein, Lorenz; Peto, Thomas J

    2017-05-19

    Mass anti-malarial administration has been proposed as a key component of the Plasmodium falciparum malaria elimination strategy in the Greater Mekong sub-Region. Its effectiveness depends on high levels of coverage in the target population. This article explores the factors that influenced mass anti-malarial administration coverage within a clinical trial in Battambang Province, western Cambodia. Qualitative data were collected through semi-structured interviews and focus group discussions with villagers, in-depth interviews with study staff, trial drop-outs and refusers, and observations in the communities. Interviews were audio-recorded, transcribed and translated from Khmer to English for qualitative content analysis using QSR NVivo. Malaria was an important health concern and villagers reported a demand for malaria treatment. This was in spite of a fall in incidence over the previous decade and a lack of familiarity with asymptomatic malaria. Participants generally understood the overall study aim and were familiar with study activities. Comprehension of the study rationale was however limited. After the first mass anti-malarial administration, seasonal health complaints that participants attributed to the anti-malarial as "side effects" contributed to a decrease of coverage in round two. Staff therefore adapted the community engagement approach, bringing to prominence local leaders in village meetings. This contributed to a subsequent increase in coverage. Future mass anti-malarial administration must consider seasonal disease patterns and the importance of local leaders taking prominent roles in community engagement. Further research is needed to investigate coverage in scenarios that more closely resemble implementation i.e. without participation incentives, blood sampling and free healthcare.

  5. Ameliorative antimalarial effects of the combination of rutin and swertiamarin on malarial parasites

    Directory of Open Access Journals (Sweden)

    Divya Shitlani

    2016-06-01

    Full Text Available Objective: To ameliorate the antimalarial activity via the combination of rutin (flavonoid and swertiamarin (glycoside. Methods: The antimalarial effects were assessed by in vitro and in vivo methodology. In vitro antiplasmodial activity was assessed by using Plasmodium falciparum cultured media and determined the IC 50 value of individual drugs and their combinations. In in vivo methodology, antimalarial effects of rutin, swertiamarin (200–280 mg/kg/day, p.o. and their combination in 1:1, 1:2 and 2:1 ratios were investigated early and established malaria infections using Swiss albino mice infected with Plasmodium berghei. Chloroquine phosphate (5 mg/kg/day, p.o. was used as the standard drug. Results: IC 50 values of the rutin and swertiamarin via in vitro study revealed (9.50 ± 0.29 µg/ mL and (8.17 ± 0.17 µg/mL respectively. Whereas, the combination in 1:1 ratio [IC50 of (5.51 ± 0.18 µg/mL] showed better antiplasmodial activity against Plasmodium falciparum. In vivo results showed that rutin and swertiamarin had chemosuppressant effects in a dose-dependent manner, whereas, combination in 1:1 ratio possessed potential antimalarial activity similar to chloroquine phosphate. The drug interaction between rutin and swertiamarin revealed the synergistic effect on 1:1 ratio and additive effect on 1:2 and 2:1 ratios. Conclusions: The results of the in vitro and in vivo study clearly indicate that the combination (1:1 of rutin and swertiamarin showed potential antimalarial activity rather than an individual of each and their combinations 1:2 and 2:1.

  6. Anti-malarial treatment outcomes in Ethiopia: a systematic review and meta-analysis.

    Science.gov (United States)

    Gebreyohannes, Eyob Alemayehu; Bhagavathula, Akshaya Srikanth; Seid, Mohammed Assen; Tegegn, Henok Getachew

    2017-07-03

    Ethiopia is among countries with a high malaria burden. There are several studies that assessed the efficacy of anti-malarial agents in the country and this systematic review and meta-analysis was performed to obtain stronger evidence on treatment outcomes of malaria from the existing literature in Ethiopia. A systematic literature search using the preferred reporting items for systematic review and meta-analysis (PRISMA) statement was conducted on studies from Pubmed, Google Scholar, and ScienceDirect databases to identify published and unpublished literature. Comprehensive meta-analysis software was used to perform all meta-analyses. The Cochrane Q and the I 2 were used to evaluate heterogeneity of studies. Random effects model was used to combine studies showing heterogeneity of Cochrane Q p  50. Twenty-one studies were included in the final analysis with a total number of 3123 study participants. Treatment outcomes were assessed clinically and parasitologically using World Health Organization guidelines. Adequate clinical and parasitological response was used to assess treatment success at the 28th day. Overall, a significant high treatment success of 92.9% (95% CI 89.1-96.6), p Ethiopia, but associated with high rates of adverse drug reactions (ADRs). However, these ADRs were not serious enough to discontinue anti-malarial treatment. The results of this study suggest that the current anti-malarial medications are effective and safe; however, greater priority should be placed on the discovery of new anti-malarial drugs to achieve successful outcomes as resistance seems inevitable since cases of anti-malarial drug resistance have been reported from other areas of the world.

  7. Bioactive compounds fractionated from endophyte Streptomyces SUK 08 with promising ex-vivo antimalarial activity

    Directory of Open Access Journals (Sweden)

    Noraziah Mohamad Zin

    2017-12-01

    Full Text Available Objective: To determine ex vivo antimalarial activity and cytotoxicity of endophytic Streptomyces SUK 08 as well as the main core structure fractionated from its crude extract. Methods: The activities of SUK 08 crude extract were evaluated by using the Plasmodium lactate dehydrogenase assay and synchronization test against rodent malaria parasite Plasmodium berghei, instead of human malarial parasite Plasmodium falciparum. The cytotoxicity of the crude extract was determined by MTT assay. The crude extract was analyzed by thin-layer chromatography and gas chromatography–mass spectrophotometry. Results: The ethyl acetate crude extract showed very promising antimalarial activity with IC50 of 1.25 mg/mL. The synchronization tests showed that ethyl acetate extraction could inhibit all stages of the Plasmodium life cycle, but it was most effective at the Plasmodium ring stage. On the basis of a MTT assay on Chang Liver cells, ethyl acetate and ethanol demonstrated IC50 values of >1.0 mg/mL. The IC50 of parasitemia at 5% and 30% for this extract was lower than chloroquine. Thin-layer chromatography, with 1: 9 ratio of ethyl acetate: hexane, was used to isolate several distinct compounds. Based on gas chromatography–mass spectrophotometry analysis, three core structures were identified as cyclohexane, butyl propyl ester, and 2,3-heptanedione. Structurally, these compounds were similar to currently available antimalarial drugs. Conclusions: The results suggest that compounds isolated from Streptomyces SUK 08 are viable antimalarial drug candidates that require further investigations. Keywords: Butyl–propyl–ester, Cyclohexane, 2,3-Heptanedione, Endophyte, Streptomyces, Antimalarial

  8. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica

    Directory of Open Access Journals (Sweden)

    Misael Chinchilla

    2012-06-01

    Full Text Available Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biológica Alberto Manuel Brenes (REBAMB, were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P. berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae; Xanthosoma undipes (Araceae; Iriartea deltoidea (Arecaceae; Neurolaena lobata (Asteraceae; Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae; Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae; Hampea appendiculata (Malvaceae; Ruagea glabra, Guarea glabra (Meliaceae; Psidium guajava (Myrtaceae; Bocconia frutescens (Papaveraceae; Piper friedrichsthalii (Piperaceae; Clematis dioica (Ranunculaceae; Prunus annularis (Rosaceae; Siparuna thecaphora (Siparunaceae; Solanum arboreum, Witheringia solanácea (Solanaceae; Ticodendrum incognitum (Ticodendraceae; Heliocarpus appendiculatus (Tiliaceae and Myriocarpa longipes (Urticaceae. We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9μg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  9. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  10. Time Trends in Sputum Mycobacterial Load and Two-Day Bactericidal Activity of Isoniazid-Containing Antituberculosis Therapies

    Science.gov (United States)

    De Jager, Veronique; van der Merwe, Lize; Venter, Amour; Donald, Peter R.

    2017-01-01

    ABSTRACT Recent early bactericidal activity (EBA) studies of isoniazid-based antituberculosis therapies have shown a lower EBA over the first two treatment days than in earlier years. To quantify this trend and evaluate factors contributing to it, we extracted individual data from 18 studies with a total of 182 participants using isoniazid-containing therapies between 1992 and 2015 at a single site and laboratory in Cape Town, South Africa. We recalculated EBA as the daily fall in CFU per milliliter sputum up to day 2 of therapy (EBA0–2) for individual patients and treatment groups and used mixed-effects linear models to investigate the correlation between pretreatment CFU, EBA0–2, and year of study. We found that mean pretreatment CFU and year of study accounted for 46% and 47%, respectively, of the variation in mean EBA0–2. Mean pretreatment CFU differed between the periods 1992 to 2001 and 2007 to 2015 by 0.92 log10 CFU (95% confidence interval [CI], 0.57 to 1.28; P < 0.0001). On average, pretreatment CFU dropped by 0.053 log10 CFU (95% CI, 0.029 to 0.076; P = 0.0004) and EBA0–2 by 0.012 log10 CFU (95% CI, 0.006 to 0.018; P = 0.001) per year. The EBA0–2 of isoniazid-based antituberculosis therapy is strongly correlated with baseline mycobacterial load and shows a declining trend over the past 2 decades. PMID:28137798

  11. Host Immune Responses Differ between M. africanum- and M. tuberculosis-Infected Patients following Standard Anti-tuberculosis Treatment.

    Directory of Open Access Journals (Sweden)

    Leopold D Tientcheu

    2016-05-01

    Full Text Available Epidemiological differences exist between Mycobacterium africanum (Maf- and Mycobacterium tuberculosis (Mtb-infected patients, but to date, contributing host factors have not been characterised. We analysed clinical outcomes, as well as soluble markers and gene expression profiles in unstimulated, and ESAT6/CFP-10-, whole-Maf- and Mtb-stimulated blood samples of 26 Maf- and 49 Mtb-HIV-negative tuberculosis patients before, and after 2 and 6 months of anti-tuberculosis therapy. Before treatment, both groups had similar clinical parameters, but differed in few cytokines concentration and gene expression profiles. Following treatment the body mass index, skinfold thickness and chest X-ray scores showed greater improvement in the Mtb- compared to Maf-infected patients, after adjusting for age, sex and ethnicity (p = 0.02; 0.04 and 0.007, respectively. In addition, in unstimulated blood, IL-12p70, IL12A and TLR9 were significantly higher in Maf-infected patients, while IL-15, IL-8 and MIP-1α were higher in Mtb-infected patients. Overnight stimulation with ESAT-6/CFP-10 induced significantly higher levels of IFN-γ and TNF-α production, as well as gene expression of CCL4, IL1B and TLR4 in Mtb- compared to Maf-infected patients. Our study confirms differences in clinical features and immune genes expression and concentration of proteins associated with inflammatory processes between Mtb- and Maf-infected patients following anti-tuberculosis treatment These findings have public health implications for treatment regimens, and biomarkers for tuberculosis diagnosis and susceptibility.

  12. Host Immune Responses Differ between M. africanum- and M. tuberculosis-Infected Patients following Standard Anti-tuberculosis Treatment

    Science.gov (United States)

    Tientcheu, Leopold D.; Haks, Mariëlle C.; Agbla, Schadrac C.; Sutherland, Jayne S.; Adetifa, Ifedayo M.; Donkor, Simon; Quinten, Edwin; Daramy, Mohammed; Antonio, Martin; Kampmann, Beate; Ottenhoff, Tom H. M.; Dockrell, Hazel M.; Ota, Martin O.

    2016-01-01

    Epidemiological differences exist between Mycobacterium africanum (Maf)- and Mycobacterium tuberculosis (Mtb)-infected patients, but to date, contributing host factors have not been characterised. We analysed clinical outcomes, as well as soluble markers and gene expression profiles in unstimulated, and ESAT6/CFP-10-, whole-Maf- and Mtb-stimulated blood samples of 26 Maf- and 49 Mtb-HIV-negative tuberculosis patients before, and after 2 and 6 months of anti-tuberculosis therapy. Before treatment, both groups had similar clinical parameters, but differed in few cytokines concentration and gene expression profiles. Following treatment the body mass index, skinfold thickness and chest X-ray scores showed greater improvement in the Mtb- compared to Maf-infected patients, after adjusting for age, sex and ethnicity (p = 0.02; 0.04 and 0.007, respectively). In addition, in unstimulated blood, IL-12p70, IL12A and TLR9 were significantly higher in Maf-infected patients, while IL-15, IL-8 and MIP-1α were higher in Mtb-infected patients. Overnight stimulation with ESAT-6/CFP-10 induced significantly higher levels of IFN-γ and TNF-α production, as well as gene expression of CCL4, IL1B and TLR4 in Mtb- compared to Maf-infected patients. Our study confirms differences in clinical features and immune genes expression and concentration of proteins associated with inflammatory processes between Mtb- and Maf-infected patients following anti-tuberculosis treatment These findings have public health implications for treatment regimens, and biomarkers for tuberculosis diagnosis and susceptibility. PMID:27192147

  13. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  14. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Science.gov (United States)

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  15. Preparation, characterization and in vitro release kinetics of polyaspartamide-based conjugates containing antimalarial and anticancer agents for combination therapy

    CSIR Research Space (South Africa)

    Aderibigbe, BA

    2016-09-01

    Full Text Available Malaria is treated by combination of two drugs in order to overcome drug resistance. Antimalarials have been found to be more effective by combining them with low doses of anticancer drugs. Polymer-drug conjugates containing aminoquinoline...

  16. Synthesis and evaluation of antimalarial activity of curcumin derivatives; Sintese e avaliacao da atividade antimalarica de compostos derivados da curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa [Universidade Federal de Juiz de Fora (UFSJ), MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla, E-mail: varotti@ufsj.edu.br [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil). Centro de Ciencias da Saude; and others

    2014-05-15

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC{sub 50} values ranging from 1.7 to 15.2 μg mL{sup -1}), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  17. Self-medication practices with antibiotics and antimalarials among Sudanese undergraduate university students.

    Science.gov (United States)

    Awad, Abdelmoneim I; Eltayeb, Idris B

    2007-07-01

    In many developing countries, up to 60-80% of health problems are self-medicated. To estimate the prevalence of self-medication with antibiotics and/or antimalarials and identify factors promoting such use among university students in Sudan. A descriptive cross-sectional study was performed, using a pretested questionnaire on a sample of 1300 students selected from 5 universities in Khartoum State, Sudan. Eight hundred ninety-one (79.5%; 95% CI 77.0 to 81.8) students from the study population had used antibiotics or antimalarials without a prescription within 1-2 months prior to the study. Four hundred ninety (55%; 95% CI 51.7 to 58.3) of the respondents stated that they had used antibiotics, 39 (4.4%; 95% CI 3.2 to 6.0) had used antimalarials, and 362 (40.6%; 95% CI 37.4 to 43.9) had used both. Overall, self-medication with antibiotics or antimalarials was significantly more common among students 21 years of age or older compared with those 20 years of age or younger (OR 1.55; 95% CI 1.15 to 2.09; p = 0.004) and among students attending private universities compared with those attending public universities (OR 1.42; 95% CI 1.04 to 1.95; p = 0.028). Self-medication with antibiotics followed a similar pattern, which was significantly more common among students 21 years of age or older (OR 1.36; 95% CI 1.03 to 1.81; p = 0.03) and private university respondents (OR 1.52; 95% CI 1.15 to 2.02; p = 0.003). Self-medication with antimalarials was found to be significantly less common among females (OR 0.76; 95% CI 0.59 to 0.97; p = 0.028) and higher among the 21 years or older age group (OR 1.84; 95% CI 1.42 to 2.40; p self-medication was the respondents' previous experiences with similar ailments. The main source of drugs was community pharmacies. The prevalence of self-medication with antibiotics/antimalarials among undergraduate university students in Khartoum State is high. Our findings highlight the need for planning interventions to promote the judicious use of

  18. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys.

    Science.gov (United States)

    Littrell, Megan; Gatakaa, Hellen; Phok, Sochea; Allen, Henrietta; Yeung, Shunmay; Chuor, Char Meng; Dysoley, Lek; Socheat, Duong; Spiers, Angus; White, Chris; Shewchuk, Tanya; Chavasse, Desmond; O'Connell, Kathryn A

    2011-10-31

    Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT). The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Most public outlets (85%) and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%), drug stores (14%), mobile providers (4%) and grocery stores (2%). Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61%) and private (42%) sectors. While data on the anti-malarial market shows favourable progress towards replacing

  19. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    Directory of Open Access Journals (Sweden)

    Littrell Megan

    2011-10-01

    Full Text Available Abstract Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT. The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85% and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%, drug stores (14%, mobile providers (4% and grocery stores (2%. Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61% and private (42% sectors. Conclusions While data on the anti-malarial

  20. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN

    Directory of Open Access Journals (Sweden)

    Barnes Karen I

    2010-12-01

    Full Text Available Abstract Background The Worldwide Antimalarial Resistance Network (WWARN is a global collaboration to support the objective that anyone affected by malaria receives effective and safe drug treatment. The Pharmacology module aims to inform optimal anti-malarial drug selection. There is an urgent need to define the drug exposure - effect relationship for most anti-malarial drugs. Few anti-malarials have had their therapeutic blood concentration levels defined. One of the main challenges in assessing safety and efficacy data in relation to drug concentrations is the comparability of data generated from different laboratories. To explain differences in anti-malarial pharmacokinetics in studies with different measurement laboratories it is necessary to confirm the accuracy of the assay methods. This requires the establishment of an external quality assurance process to assure results that can be compared. This paper describes this process. Methods The pharmacology module of WWARN has established a quality assurance/quality control (QA/QC programme consisting of two separate components: 1. A proficiency testing programme where blank human plasma spiked with certified reference material (CRM in different concentrations is sent out to participating bioanalytical laboratories. 2. A certified reference standard programme where accurately weighed amounts of certified anti-malarial reference standards, metabolites, and internal standards are sent to participating bioanalytical and in vitro laboratories. Conclusion The proficiency testing programme is designed as a cooperative effort to help participating laboratories assess their ability to carry out drug analysis, resolve any potential problem areas and to improve their results - and, in so doing, to improve the quality of anti-malarial pharmacokinetic data published and shared with WWARN. By utilizing the same source of standards for all laboratories, it is possible to minimize bias arising from poor

  1. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    OpenAIRE

    Hubbard Alan E; Dorsey Grant; Gupta Vinay; Rosenthal Philip J; Greenhouse Bryan

    2010-01-01

    Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary elec...

  2. Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam.

    Science.gov (United States)

    Jullian, V; Bourdy, G; Georges, S; Maurel, S; Sauvain, M

    2006-07-19

    Zanthoxylum rhoifolium bark (Rutaceae) is a medicinal plant, traditionally used in French Guiana to treat and prevent malaria. Bioassay-guided extractions of Zanthoxylum rhoifolium bark have shown that antiplasmodial activity is concentrated in the alkaloid fraction. Further fractionation of this extract has yielded seven benzophenanthridine alkaloids, dihydroavicine 1, dihydronitidine 2, oxyavicine 3, oxynitidine 4, fagaridine 5, avicine 6 and nitidine 7. Antimalarial activity of the last five compounds has been evaluated, and nitidine was the most potent, displaying an IC(50)<0.27microM against Plasmodium falciparum. Investigation of the traditional remedy, a trunk bark decoction in water, has shown that fagaridine 5, avicine 6 and nitidine 7 are also present in the decoction, therefore justifying the traditional use of Zanthoxylumrhoifolium bark as antimalarial.

  3. In vivo antimalarial efficacy of acetogenins, alkaloids and flavonoids enriched fractions from Annona crassiflora Mart.

    Science.gov (United States)

    Pimenta, Lúcia Pinheiro Santos; Garcia, Giani Martins; Gonçalves, Samuel Geraldo do Vale; Dionísio, Bárbara Lana; Braga, Erika Martins; Mosqueira, Vanessa Carla Furtado

    2014-01-01

    Annona crassiflora and Annonaceae plants are known to be used to treat malaria by traditional healers. In this work, the antimalarial efficacy of different fractions of A. crassiflora, particularly acetogenin, alkaloids and flavonoid-rich fractions, was determined in vivo using Plasmodium berghei-infected mice model and toxicity was accessed by brine shrimp assay. The A. crassiflora fractions were administered at doses of 12.5 mg/kg/day in a 4-day test protocol. The results showed that some fractions from woods were rich in acetogenins, alkaloids and terpenes, and other fractions from leaves were rich in alkaloids and flavonoids. The parasitaemia was significantly (p < 0.05, p < 0.001) reduced (57-75%) with flavonoid and alkaloid-rich leaf fractions, which also increased mean survival time of mice after treatment. Our results confirm the usage of this plant in folk medicine as an antimalarial remedy.

  4. In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India.

    Science.gov (United States)

    Bhat, G P; Surolia, N

    2001-10-01

    In an attempt to search for new antimalarial drugs, we studied plants used by traditional healers of southwest India to treat malaria. Aqueous and organic solvent extracts obtained from specific parts of the plants Swertia chirata, Carica papaya, and Citrus sinensis were tested on malaria strain Plasmodium falciparum FCK 2 in vitro. The temperatures of extraction were the same as that used by the traditional healers in their plant preparations. Visual evaluation of the antimalarial activity of the plant extracts on thin blood smears was followed by quantification of the activity by use of [35S]-methionine incorporation into parasite proteins to determine the value that inhibits 50% (IC50). Among the 3 plants tested, 2 had significant inhibitory effect on P. falciparum in vitro.

  5. In vitro antimalarial activity of vegetal extracts used in West African traditional medicine.

    Science.gov (United States)

    Benoit, F; Valentin, A; Pelissier, Y; Diafouka, F; Marion, C; Kone-Bamba, D; Kone, M; Mallie, M; Yapo, A; Bastide, J M

    1996-01-01

    Among strategies for the development of new antimalarials, a study of plants traditionally used in Africa against malaria has been pursued. Extracts obtained from the plants Azadirachta indica, Cinnamonum camphora, Lippia multiflora, Vernonia colorata, Guiera senegalensis, Combretum micranthum, and Ximenia americana, commonly used in Cote d'Ivoire by native healers for the treatment of malaria, were tested on two strains of Plasmodium falciparum: FcB1-Colombia (chloroquine-resistant) and F32-Tanzania (chloroquine-sensitive). Extracts were obtained after infusion and decoction, both techniques being used by most native healers. The antimalarial activities of the extracts were tested first by parasite 3H-hypoxanthine incorporation and second by visual evaluation of the activities of plant extracts on thin blood smears, which also permitted the determination of parasitic stages and parasite alteration. Among the seven plants tested, some had an apparent inhibitory effect on P. falciparum growth in vitro, while other seemed to be less efficient.

  6. Effect of antimalarial drugs on stimulation and interleukin 2 production of human lymphocytes

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Svenson, M; Theander, T G

    1987-01-01

    Effect of pyrimethamine, an antimalarial antifolate, and of mefloquine, chloroquine, and quinine, which belong to the quinoline group of antimalarials, on proliferation and interleukin 2 (IL-2) production of human lymphocytes was studied in vitro. Pyrimethamine at concentrations above therapeutic...... levels suppressed the lymphocytes' proliferation, but not their IL-2 production. All three quinolines suppressed the proliferation of lymphocytes, but not equally, with mefloquine having the strongest effect. Quinine suppressed the growth at therapeutic concentrations. The IL-2 production was suppressed...... at concentrations twice as high as those required to suppress lymphocyte proliferation. Addition of exogenous IL-2 only partially reversed the suppressive effect on lymphocyte proliferation. Delayed addition of the quinolines decreased their suppressive effect, but not completely. The mechanisms of action on human...

  7. A “reverse pharmacology” approach for developing an anti-malarial phytomedicine

    Directory of Open Access Journals (Sweden)

    Diakite Chiaka

    2011-03-01

    Full Text Available Abstract A “reverse pharmacology” approach to developing an anti-malarial phytomedicine was designed and implemented in Mali, resulting in a new standardized herbal anti-malarial after six years of research. The first step was to select a remedy for development, through a retrospective treatment-outcome study. The second step was a dose-escalating clinical trial that showed a dose-response phenomenon and helped select the safest and most efficacious dose. The third step was a randomized controlled trial to compare the phytomedicine to the standard first-line treatment. The last step was to identify active compounds which can be used as markers for standardization and quality control. This example of “reverse pharmacology” shows that a standardized phytomedicine can be developed faster and more cheaply than conventional drugs. Even if both approaches are not fully comparable, their efficiency in terms of public health and their complementarity should be thoroughly considered.

  8. Screening of the antimalarial activity of plants of the Cucurbitaceae family

    Directory of Open Access Journals (Sweden)

    Cláudia Zuany Amorim

    1991-01-01

    Full Text Available Crude ethanolic extracts (CEEs from two species of Cucurbitaceae, Cucurbita maxima and Momordica charantia (commonly called "abóbora moranga" and melão de São Caetano", respectively were assayed for antimalarial activity by the 4-d suppressive test. The CEE of dry C. maxima seeds showed strong antimalarial activity following oral administration (259 and 500 mg/kg, reducing by 50% the levels of parasistemia in Plasmodium berghey-infected mice. Treatment of normal animals with 500 mg/Kg of the extract three days before intravenous injection of P. berghei caused a significant 30% reduction in parasitemic levels. No effect was observed when the animals were treated with the CEE only on the day of inoculation. Oral administration of the CEE of dry M. charantia leaves adminstered orally was ineffective up to 500 mg/Kg in lowering the parasitemic levels of malarious mice.

  9. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas

    Science.gov (United States)

    Ekoue-Kovi, Kekeli; Yearick, Kimberly; Iwaniuk, Daniel P.; Natarajan, Jayakumar K.; Alumasa, John; de Dios, Angel C.; Roepe, Paul D.; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activities of more than 50 7-chloro-4-aminoquinolyl-derived sulfonamides 3-8 and 11-26, ureas 19-22, thioureas 23-26, and amides 27-54. Many of the CQ analogues prepared for this study showed submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strains of P. falciparum) and low resistance indices were obtained in most cases. Systematic variation of the side chain length and introduction of fluorinated aliphatic and aromatic termini revealed promising leads that overcome CQ resistance. In particular, sulfonamide 3 exhibiting a short side chain with a terminal dansyl moiety combined high antiplasmodial potency with a low resistance index and showed IC50‘s of 17.5 nM and 22.7 nM against HB3 and Dd2 parasites. PMID:19041248

  11. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  12. Detection of In Vitro Antimalarial Activity of Some Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    Shun Lai Ei; Hla Myat Mon; Khin Htay Myint

    2008-06-01

    In order to find out the novel effective antimalarials. six medicinal plants, namely Erythrina stricta Roxb. (Kathit), Luffa acutangula Roxb. (Thabut - Kja), Cordia rothii Roem. and Schult. (Thanet), Tribulus terrestris Linn. (Sule). Zizphus oenoplia Mill. (Paung - pe) and Mimusops elengi Roxb. (Khaye) were selected and tested for their antimalarial activity by using in vitro microdilution technique. According to the in vitro test results, Erythrina stricta Roxb. (Kathit) was found to possess significant suppressive effect on Plasmodium falciparum. With the serially diluted extract dosage concentrations ranging from 1.250 ng/ml to 40,000 ng/ml, the schizont suppressive percentage of Eryhrina stricta Roxb. (Kathi) was observed to be 19.57%, 35.44%, 55.18%, 96.04%,100% and 100% respectively

  13. Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam

    OpenAIRE

    Jullian, Valérie; Bourdy, Geneviève; Georges, S.; Maurel, Séverine; Sauvain, Michel

    2006-01-01

    Zanthoxylum rhoifolium bark (Rutaceae) is a medicinal plant, traditionally used in French Guiana to treat and prevent malaria. Bioassay-guided extractions of Zanthoxylum rhoifolium bark have shown that antiplasmodial activity is concentrated in the alkaloid fraction. Further fractionation of this extract has yielded seven benzophenanthridine alkaloids, dihydroavicine 1, dihydronitidine 2, oxyavicine 3, oxynitidine 4, fagaridine 5, avicine 6 and nitidine 7. Antimalarial activity of the last fi...

  14. Malaria healthcare policy change in Kenya: implications on sales and marketing of antimalarials.

    Science.gov (United States)

    Ngure, Peter K; Nyaoke, Lorraine; Minja, David

    2012-03-01

    Malaria healthcare policy change in Kenya aimed at improving the control of malaria but faced a number of challenges in implementation related to marketing of the drugs. This research investigated the effect of the change of the national malaria policy on drug sales and strategic marketing responses of antimalarial pharmaceutical companies in Kenya. A descriptive cross-sectional design was employed to describe the existing state of antimalarials market in Kenya after the change of the malaria healthcare policy. Policy change did result in an increase in the sales of Coartem®. Novartis Pharma recorded a 97% growth in sales of Coartem® between 2003 and 2004. However, this increase was not experienced by all the companies. Further, SPs (which had been replaced as first-line therapy for malaria) registered good sales. In most cases, these sales were higher than the sales of Coartem®. Generally, the sales contribution of SPs and generic antimalarial medicines exceeded that of Coartem® for most distributors. The most common change made to marketing strategies by distributors (62.5%) was to increase imports of antimalarials. A total of 40% of the manufacturers preferred to increase their budgetary allocation for marketing activities. In view of the fact that continued sale of SP drugs and limited availability of AL poses the risk of increasing the incidence of malaria in Kenya, it is therefore, recommended that pharmacy surveillance systems be strengthened to ensure drugs that have been rendered non-viable or that prescription-only medicines are not sold contrary to the national guidelines.

  15. Antimalarial drug utilization by women in Ethiopia: a knowledge-attitudes-practice study.

    OpenAIRE

    Yeneneh, H.; Gyorkos, T. W.; Joseph, L.; Pickering, J.; Tedla, S.

    1993-01-01

    A survey was undertaken between December 1991 and February 1992 to assess the knowledge, attitudes, and practices with respect to malaria of 300 women from six randomly selected rural communities in central Ethiopia. A total of 85% were able to recognize one or more of the common symptoms of the disease; however, the modes of transmission were generally misunderstood and only 23% believed that transmission could be prevented. More women preferred to obtain antimalarials from government clinic...

  16. ANTIMALARIAL DRUGS IN THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS: PAST, PRESENT, FUTURE

    Directory of Open Access Journals (Sweden)

    Tatyana Andreyevna Lisitsyna

    2010-01-01

    Full Text Available The data available in the literature on experience in using antimalarial drugs in the treatment of systemic lupus erythematosus are summarized. A major emphasis is placed on therapy with hydroxychlorochine (plaquenil versus chlorine. Possible mechanisms of action of the drug and its effect on the course of the disease itself and concomitant abnormalities are described. Data on the toxicity of the drug and its safe use in pregnancy and lactation are also discussed

  17. ANTIMALARIALS PRESCRIPTION TO PATIENTS IN JOSINA MACHEL CENTRAL HOSPITAL. JANUARY-JULY 2014

    OpenAIRE

    Mateus Sebastião João Fernandes; Boaventura Moura; Héctor Lara Fernández; Vladimir Calzadilla Moreira; Lúcia Gomes Fraga

    2015-01-01

    Malaria represents the main public health problem in Angola, being the leading cause of disease and death. The misuse of antimalarials can lead to an increase of drug resistance and undesired adverse reactions, among other issues, with a negative impact in patients and the National Health System. An observational, descriptive, cross-sectional study, of the Drug Use Study type, was conducted in patients with a confirmed diagnosis of malaria admitted at Josina Machel Central Hospital, to eva...

  18. ISOLATION AND PRESENCE OF ANTIMALARIAL ACTIVITIES OF MARINE SPONGE Xestospongia sp.

    OpenAIRE

    Murtihapsari Murtihapsari; Apriani Sulu Parubak; Bertha Mangallo; Wiwied Ekasari; Puji Budi Asih; Ayu Indah Lestari

    2013-01-01

    Plasmodium falciparum, the agent of malignant malaria, is one of mankind's most severe scourges, mainly in the tropic world. Efforts to develop preventive vaccines or remedial drugs are handicapped by the parasite's rapid evolution of drug resistance. Here, we presented an advance work on examination of antimalarial component from marine life of Xestospongia sp., the study is based on hexane extraction method. The premier result, we obtained five fractions. Among these five fractions, the fou...

  19. Preliminary assessment of medicinal plants used as antimalarials in the southeastern Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Caraballo Alejandro

    2004-01-01

    Full Text Available Eighteen species of medicinal plants used in the treatment of malaria in Bolívar State, Venezuela were recorded and they belonged to Compositae, Meliaceae, Anacardiaceae, Bixaceae, Boraginaceae, Caricaceae, Cucurbitaceae, Euphorbiaceae, Leguminosae, Myrtaceae, Phytolaccaceae, Plantaginaceae, Scrophulariaceae, Solanaceae and Verbenaceae families. Antimalarial plant activities have been linked to a range of compounds including anthroquinones, berberine, flavonoids, limonoids, naphthquinones, sesquiterpenes, quassinoids, indol and quinoline alkaloids.

  20. ANTIMALARIAL DRUGS IN THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS: PAST, PRESENT, FUTURE

    OpenAIRE

    Tatyana Andreyevna Lisitsyna; N M Kosheleva

    2010-01-01

    The data available in the literature on experience in using antimalarial drugs in the treatment of systemic lupus erythematosus are summarized. A major emphasis is placed on therapy with hydroxychlorochine (plaquenil) versus chlorine. Possible mechanisms of action of the drug and its effect on the course of the disease itself and concomitant abnormalities are described. Data on the toxicity of the drug and its safe use in pregnancy and lactation are also discussed

  1. In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10.

    Science.gov (United States)

    Baba, Mohd Shukri; Zin, Noraziah Mohamad; Hassan, Zainal Abidin Abu; Latip, Jalifah; Pethick, Florence; Hunter, Iain S; Edrada-Ebel, RuAngelie; Herron, Paul R

    2015-12-01

    Endophytic bacteria, such as Streptomyces, have the potential to act as a source for novel bioactive molecules with medicinal properties. The present study was aimed at assessing the antimalarial activity of crude extract isolated from various strains of actinobacteria living endophytically in some Malaysian medicinal plants. Using the four day suppression test method on male ICR strain mice, compounds produced from three strains of Streptomyces (SUK8, SUK10, and SUK27) were tested in vivo against Plasmodium berghei PZZ1/100 in an antimalarial screen using crude extracts at four different concentrations. One of these extracts, isolated from Streptomyces SUK10 obtained from the bark of Shorea ovalis tree, showed inhibition of the test organism and was further tested against P. berghei-infected mice for antimalarial activity at different concentrations. There was a positive relationship between the survival of the infected mouse group treated with 50 µg/kg body weight (bw) of ethyl acetate-SUK10 crude extract and the ability to inhibit the parasites growth. The parasite inhibition percentage for this group showed that 50% of the mice survived for more than 90 days after infection with the parasite. The nucleotide sequence and phylogenetic tree suggested that Streptomyces SUK10 may constitute a new species within the Streptomyces genus. As part of the drug discovery process, these promising finding may contribute to the medicinal and pharmaceutical field for malarial treatment.

  2. Resistance to antimalarial drugs: An endless world war against Plasmodium that we risk losing.

    Science.gov (United States)

    Severini, Carlo; Menegon, Michela

    2015-06-01

    The objective of this review was to describe the 'state of the art' of Plasmodium falciparum resistance to the main antimalarial drugs. A brief note on Plasmodium vivax is also included. Resistance of P. falciparum to the various antimalarials has a long history of hits and misses. During the last 60 years, the pace at which this parasite has developed resistance to antimalarial drugs has exceeded the pace at which new drugs have been developed. In the last decade, the introduction of artemisinin-based combination therapies (ACTs) as a first-line drug treatment for non-complicated P. falciparum malaria had led to extraordinary results in disease control, especially in sub-Saharan Africa. However, the emergence and spread of resistance to artemisinin in Southeast Asia jeopardise these results. In conclusion, the possible spread of artemisinin resistance in Africa should be considered as an epochal disaster. Copyright © 2015 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  3. Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin.

    Science.gov (United States)

    Elf, S; Lin, R; Xia, S; Pan, Y; Shan, C; Wu, S; Lonial, S; Gaddh, M; Arellano, M L; Khoury, H J; Khuri, F R; Lee, B H; Boggon, T J; Fan, J; Chen, J

    2017-01-12

    The oxidative pentose phosphate pathway (PPP) is crucial for cancer cell metabolism and tumor growth. We recently reported that targeting a key oxidative PPP enzyme, 6-phosphogluconate dehydrogenase (6PGD), using our novel small-molecule 6PGD inhibitors Physcion and its derivative S3, shows anticancer effects. Notably, humans with genetic deficiency of either 6PGD or another oxidative PPP enzyme, glucose-6-phosphate dehydrogenase, exhibit non-immune hemolytic anemia upon exposure to aspirin and various antimalarial drugs. Inspired by these clinical observations, we examined the anticancer potential of combined treatment with 6PGD inhibitors and antimalarial drugs. We found that stable knockdown of 6PGD sensitizes leukemia cells to antimalarial agent dihydroartemisinin (DHA). Combined treatment with DHA and Physcion activates AMP-activated protein kinase, leading to synergistic inhibition of human leukemia cell viability. Moreover, our combined therapy synergistically attenuates tumor growth in xenograft nude mice injected with human K562 leukemia cells and cell viability of primary leukemia cells from human patients, but shows minimal toxicity to normal hematopoietic cells in mice as well as red blood cells and mononucleocytes from healthy human donors. Our findings reveal the potential for combined therapy using optimized doses of Physcion and DHA as a novel antileukemia treatment without inducing hemolysis.

  4. Development in Assay Methods for in Vitro Antimalarial Drug Efficacy Testing: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Shweta Sinha

    2017-10-01

    Full Text Available The emergence and spread of drug resistance are the major challenges in malaria eradication mission. Besides various strategies laid down by World Health Organization, such as vector management, source reduction, early case detection, prompt treatment, and development of new diagnostics and vaccines, nevertheless the need for new and efficacious drugs against malaria has become a critical priority on the global malaria research agenda. At several screening stages, millions of compounds are screened (1,000–2,000,000 compounds per screening campaign, before pre-clinical trials to select optimum lead. Carrying out in vitro screening of antimalarials is very difficult as different assay methods are subject to numerous sources of variability across different laboratories around the globe. Despite this, in vitro screening is an essential part of antimalarial drug development as it enables to resource various confounding factors such as host immune response and drug–drug interaction. Therefore, in this article, we try to illustrate the basic necessity behind in vitro study and how new methods are developed and subsequently adopted for high-throughput antimalarial drug screening and its application in achieving the next level of in vitro screening based on the current approaches (such as stem cells.

  5. Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays.

    Science.gov (United States)

    Okokon, Jude E; Antia, Bassey S; Mohanakrishnan, Dinesh; Sahal, Dinkar

    2017-12-01

    Zea mays L. (Poacae) husk decoctions are traditionally used in the treatment of malaria by various tribes in Nigeria. To assess the antimalarial and antiplasmodial potentials of the husk extract and fractions on malaria parasites using in vivo and in vitro models. The ethanol husk extract and fractions (187-748 mg/kg, p.o.) of Zea mays were investigated for antimalarial activity against Plasmodium berghei using rodent (mice) malaria models and in vitro activity against chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using the SRBR green assay method. Median lethal dose and cytotoxic activities against HeLa and HEKS cells were also carried out. The GCMS analysis of the most active fraction was carried out. The husk extract (187-748 mg/kg, p.o.) with LD 50 of 1874.83 mg/kg was found to exert significant (p 100 μg/mL against both HeLa and HEKS cell lines. These results suggest that the husk extract/fractions of Zea mays possesses antimalarial and antiplasmodial activities and these justify its use in ethnomedicine to treat malaria infections.

  6. Collaborative health and enforcement operations on the quality of antimalarials and antibiotics in southeast Asia.

    Science.gov (United States)

    Yong, Yuk Lin; Plançon, Aline; Lau, Yen Hui; Hostetler, Dana M; Fernández, Facundo M; Green, Michael D; Sounvoravong, Sourisak; Nara, Suon; Boravann, Mam; Dumrong, Thitikornkovit; Bangsawan, Nurjaya; Low, Min Yong; Lim, Chin-Chin; Ai, Ruth Lee Choo; Newton, Paul N

    2015-06-01

    Counterfeit (or falsified) and substandard medicines pose a major public health risk. We describe the findings of Operation Storm I and II conducted in 2008-2009 to combat counterfeit medicines through partnership between national customs, Drug Regulatory Agencies (DRAs), and police in Cambodia, Indonesia, Laos, Myanmar, Singapore, Thailand, and Vietnam. Samples were obtained from seizures and market surveillance by national DRAs. Laboratory analysis using spectroscopic and chromatographic techniques and examination of packaging were performed. Ninety-three suspect antibiotics and 95 antimalarial samples were collected. Of the 93 antibiotics, 29 (31%) had % active pharmaceutical ingredient content (%API) 115% (including one counterfeit). Of the 95 antimalarials, 30 (32%) had %API 115% API (including one counterfeit). A significant minority of samples, antimalarials (13%) and antibiotics (15%), were collected in plastic bags with minimal or no labeling. Of 20 ampicillin samples, 13 (65%) contained INTERPOL), World Health Organization (WHO), and laboratories facilitated a platform for discussions and intelligence sharing, helping to improve each participating country's capacity to combat poor-quality medicines. © The American Society of Tropical Medicine and Hygiene.

  7. Microbial burden of some herbal antimalarials marketed at Elele, Rivers State.

    Science.gov (United States)

    Tatfeng, Y M; Olama, E H; Ojo, T O

    2009-12-30

    Herbal antimalarials still remain an alternative to our traditional communities who can not afford orthodox antimalarials. This study was aimed at investigating the microbial quality of six herbal antimalarials using standard microbiological methods. Of the six preparations analyzed, "schnapps", palm wine and water were the media of preparation; the water base preparations recorded higher microbial load. The mean microbial load was 159.5 × 10(5) cfu/ml and 217.4 × 10(2)cfu/ml in water and alcohol base preparations respectively. The microbial profile of the preparations showed that the schnapps base preparations were predominantly contaminated with Bacillus sp (Aerobic spore bearers) and Mucor spp. The palm wine preparation harboured Bacillus sp, yeasts and Mucor spp while the water base preparations had several isolates such as Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli 0157H7, Proteus mirabilis, Enterococcus feacalis, Serratia marcensces, Staph. aureus, Bacillus spp and Mucor spp. Conclusively, this study underlines the public health importance of these preparations given the high burden of such human pathogen as Ecoli O157H7, Ps aeruginosa, Stahp aureus, etc. in the preparations.

  8. Next-Generation Antimalarial Drugs: Hybrid Molecules as a New Strategy in Drug Design.

    Science.gov (United States)

    Muregi, Francis W; Ishih, Akira

    2010-02-01

    Malaria is a disease that affects nearly 40% of the global population, and chemotherapy remains the mainstay of its control strategy. The global malaria situation is increasingly being exacerbated by the emergence of drug resistance to most of the available antimalarials, necessitating search for novel drugs. A recent rational approach of antimalarial drug design characterized as "covalent bitherapy" involves linking two molecules with individual intrinsic activity into a single agent, thus packaging dual-activity into a single hybrid molecule. Current research in this field seems to endorse hybrid molecules as the next-generation antimalarial drugs. If the selective toxicity of hybrid prodrugs can be demonstrated in vivo with good bioavailability at the target site in the parasite, it would offer various advantages including dosage compliance, minimized toxicity, ability to design better drug combinations, and cheaper preclinical evaluation while achieving the ultimate object of delaying or circumventing the development of resistance. This review is focused on several hybrid molecules that have been developed, with particular emphasis on those deemed to have high potential for development for clinical use. Drug Dev Res 71: 20-32, 2010. © 2009 Wiley-Liss, Inc.

  9. The Effects of First-Line Anti-Tuberculosis Drugs on the Actions of Vitamin D in Human Macrophages.

    Science.gov (United States)

    Chesdachai, Supavit; Zughaier, Susu M; Hao, Li; Kempker, Russell R; Blumberg, Henry M; Ziegler, Thomas R; Tangpricha, Vin

    2016-12-01

    Tuberculosis (TB) is a major global health problem. Patients with TB have a high rate of vitamin D deficiency, both at diagnosis and during the course of treatment with anti-tuberculosis drugs. Although data on the efficacy of vitamin D supplementation on Mycobacterium tuberculosis (Mtb) clearance is uncertain from randomized controlled trials (RCTs), vitamin D enhances the expression of the anti-microbial peptide human cathelicidin (hCAP18) in cultured macrophages in vitro. One possible explanation for the mixed (primarily negative) results of RCTs examining vitamin D treatment in TB infection is that anti-TB drugs given to enrolled subjects may impact actions of vitamin D to enhance cathelicidin in macrophages. To address this hypothesis, human macrophage-like monocytic (THP-1) cells were treated with varying doses of first-line anti-tuberculosis drugs in the presence of the active form of vitamin D, 1N1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ). The expression of hCAP18 was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). 1,25(OH) 2 D 3 strongly induced expression of hCAP18 mRNA in THP-1 cells (fold-change from control). The combination of the standard 4-drug TB therapy (isoniazid, rifampicin, pyrazinamide and ethambutol) in the cultured THP-1 cells demonstrated a significant decrease of hCAP18 mRNA at the dosage of 10 ug/mL. In 31 subjects with newly diagnosed drug-sensitive TB randomized to either high-dose vitamin D 3 (1.2 million IU over 8 weeks, n=13) versus placebo (n=18), there was no change from baseline to week 8 in hCAP18 mRNA levels in peripheral blood mononuclear cells or in plasma concentrations of LL-37, the protein product of hCAP18.These data suggest that first-line anti-TB drugs may alter the vitamin D-dependent increase in hCAP18 and LL-37 human macrophages.

  10. THE QUESTIONS OF ALLERGY AND ANTI-TUBERCULOSIS IMMUNITY IN THE WORKS OF М.М. TSEHNOVITSER

    Directory of Open Access Journals (Sweden)

    Kuchma Y.U

    2014-10-01

    Full Text Available The mechanism of anti-tuberculosis immunity drew the attention of scientists since the established of the infectious nature of tuberculosis. The famous ukrainian microbiologist and immunologist M.M. Tsehnovitser in period from 1921 to 1940 years spent a lot of original experiments for elucidation of the role of allergy in the anti-tuberculosis immunity. M.M. Tsehnovitser believed that a common cause of infectious allergy is tuberculosis granuloma, which even at rest eliminated weakened microbes and their products in general lymphatic and blood stream of the body. In his experiments M.M. Tsehnovitser discovered: 1 When the body comes in contact with M.tuberculosisi formed tuberculosis centre. Infection meets local tissue reaction and in incubation period formed sensitization. In this state the body manifested as a natural susceptibility and resistance to infection. During this period organism going through the initial stage of allergy. 2. Meanwhile, the infectious process goes on and the M.tuberculosisi giving rise. The body reacts to this change in the formula blood - leukocytosis, monocytosis, eosinophilia. Tuberculosis focus represents a formed granuloma. This phase of tuberculosis infection accompanied by severe allergy. 3. Then there are two versions of the process. In the first case happened the generalization of tuberculosis infection. The blood reacts are leukopenia, monocytosis, eosinophilia and lymphocytosis due to toxic processes. In the second case M.tuberculosi multiplied only local in the granuloma and is not generalization of tuberculosis process. In this case, natural immunity is raised. There are allergy and positive anergy in later. 4. It is exclusively unique phenomenon for tuberculous process is the regression of the fire with his sterilization. This type of tuberculous process is in BCG-infection. In the source of infection observed complete resolution of pathological tissue, blood initially reacts slightly, but quickly comes

  11. Phytochemical Analysis, Antioxidant, Anti-Hyperglycemic and Antituberculosis Activities of Phylogenetically Related Garcinia mangostana (Mangosteen) and Garcinia hombroniana (Seashore Mangosteen)

    International Nuclear Information System (INIS)

    Jamila, N.; Kim, K.S.; Khan, A.A.; Khan, S.N

    2016-01-01

    Species of genus Garcinia belonging to family Clusiaceae are traditionally known for the treatment of ulcer, gonorrhea, leucorrhoea and abdominal pain. This genus is also reported to be a rich source of xanthones, benzophenones, flavonoids, biflavonoids and triterpenes showing significant pharmacological activities. Garcinia mangostana L. (mangosteen) and Garcinia hombroniana Pierre (seashore mangosteen) are evergreen tropical trees grown in Malaysia, Indonesia, Thailand and other tropical countries. The fruits of G. mangostana (queen of fruits), and roots and leaves decoction of G. hombroniana are commonly used for skin allergies, infections after childbirth, trauma and diarrhea. This study aimed to evaluate the bark and fruit extracts of G. mangostana and G. hombroniana for phytochemicals analysis, total phenolic and flavonoid contents, antioxidant, anti-hyperglycemic and antituberculosis activities. Total phenolic contents were evaluated by Folin-Ciocalteu reagent colorimetric method. For antioxidant activities, radical scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2-azino-bis-3-ethyl benzthiazoline-6-sulphonic acid (ABTS), and ferric ion reducing antioxidant power (FRAP) were used. Anti-hyperglycemic activity was determined using a-glucosidase and a-amylase enzymes. In quantitative phytochemical analysis, the extracts of G. mangostana showed significantly higher content of phenolics (3498.7 micro M GAE/g (gallic acid equivalent per gram), ethyl acetate; bark), carbohydrates (14.2 g/100g, aqueous; fruit) and reducing sugars (13.9 g/100g, aqueous; fruit). Also, in antioxidant activities, G. mangostana showed comparatively high activities with the ethyl acetate extract as the most potent showing IC50 2.78 micro g/ml in DPPH, 1.19 micro g/ml in ABTS, and 8742.7 micro M TE/g in FRAP assays. G. mangostana was also more potent in anti-hyperglycemic properties (IC50 182.9 micro g/ml, a-glucosidase, 247.8 micro g/ml, a-amylase) compared to G. hombroniana

  12. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity.

    Science.gov (United States)

    Rijpma, Sanna R; van den Heuvel, Jeroen J M W; van der Velden, Maarten; Sauerwein, Robert W; Russel, Frans G M; Koenderink, Jan B

    2014-09-13

    Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceuticals. In this study, a panel of well-established anti-malarial drugs which may affect drug plasma concentrations was tested for interactions with human ABC transport proteins. The interaction of chloroquine, quinine, artemisinin, mefloquine, lumefantrine, atovaquone, dihydroartemisinin and proguanil, with transport activity of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), bile salt export pump (BSEP) and multidrug resistance-associated proteins (MRP) 1-4 were analysed. The effect of the anti-malarials on the ATP-dependent uptake of radio-labelled substrates was measured in membrane vesicles isolated from HEK293 cells overexpressing the ABC transport proteins. A strong and previously undescribed inhibition of BCRP-mediated transport by atovaquone with a 50% inhibitory concentration (IC50) of 0.23 μM (95% CI 0.17-0.29 μM) and inhibition of P-gp-mediated transport by quinine with an IC50 of 6.8 μM (95% CI 5.9-7.8 μM) was observed. Furthermore, chloroquine and mefloquine were found to significantly inhibit P-gp-mediated transport. BCRP transport activity was significantly inhibited by all anti-malarials tested, whereas BSEP-mediated transport was not inhibited by any of the compounds. Both MRP1- and MRP3-mediated transport were significantly inhibited by mefloquine. Atovaquone and quinine significantly inhibit BCRP- and P-gp- mediated transport at concentrations within the clinically relevant prophylactic and therapeutic range. Co-administration of these established anti-malarials

  13. Post-marketing surveillance of anti-malarial medicines used in Malawi.

    Science.gov (United States)

    Chikowe, Ibrahim; Osei-Safo, Dorcas; Harrison, Jerry J E K; Konadu, Daniel Y; Addae-Mensah, Ivan

    2015-03-25

    The growing concern over the extent of anti-malarial medicine resistance in sub-Saharan Africa, driven largely by administration of sub-therapeutic doses derived from falsified and substandard medicines necessitates regular monitoring of the quality of these medicines to avert any potential public health disaster. This study aimed at determining the active pharmaceutical ingredient (API) content of anti-malarial medicines available in Malawi with respect to the manufacturers' label claim and pharmacopoeia specifications. Samples of anti-malarial medicines (112) collected from both licensed and unlicensed markets throughout Malawi were subjected to visual inspection of dosage form and packaging, and registration verification with the regulatory body. Basic (colourimetric) tests were employed to establish the presence and identity of the requisite APIs. Semi-quantitative thin layer chromatography (SQ-TLC) was employed as a quick assay for the verification of identity and estimation of the API content while HPLC assays were used to quantify the APIs. The results were compared with pharmacopoeia specifications and manufacturers' label claims. For combination therapies, a sample was considered to have failed if one or more of its component APIs did not meet pharmacopoeia specifications. There was 86.6% registration status and 100% compliance with visual inspection and basic tests confirming the presence of requisite APIs. The identification test was confirmed by the SQ-TLC assay. API quantification by HPLC assay however, showed that 88.4% (99/112) of the samples failed the quality tests due to the presence of either insufficient or excessive API. The results suggest the existence of substandard anti-malarial medicines in Malawi. The presence of both excessive and insufficient artemisinin-based and non-artemisinin-based API, clearly points to poor adherence to GMP and improper handling during storage or distribution. The country relies heavily on imported anti-malarial

  14. Sensitivity Pattern of Second Line Anti-Tuberculosis Drugs against Clinical Isolates of Multidrug Resistant Mycobacterium Tuberculosis

    International Nuclear Information System (INIS)

    Ghafoor, T.; Ikram, A.; Abbasi, S. A.; Zaman, G.; Ayyub, M.; Palomino, J. C.; Vandamme, P.; Martin, A.

    2015-01-01

    Objective:To determine the current sensitivity pattern of second line anti-tuberculosis drugs against clinical isolates of Multidrug Resistant Mycobacterium tuberculosis (MDR-TB). Study Design: A cross-sectional study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from November 2011 to April 2013. Methodology: Samples received during the study period were processed on BACTEC MGIT 960 system for Mycobacterium tuberculosis (MTB) culture followed by first line drugs susceptibility testing of culture proven MTB isolates. On the basis of resistance to rifampicin and isoniazid, 100 clinical isolates of MDR-TB were further subjected to susceptibility testing against amikacin (AMK), capreomycin (CAP), ofloxacin (OFL) and ethionamide (ETH) as per standard BACTEC MGIT 960 instructions. Results: Out of 100 MDR-TB isolates, 62% were from male patients and 38% from female patients. 97% were sensitive to AMK, 53% to OFL, 87% to CAP; and 87% were sensitive to ETH. Conclusion: The majority of the MDR-TB isolates showed excellent sensitivity against AMK, CAP and ETH. However, sensitivity of MDR-TB isolates against fluoroquinolones like OFL was not encouraging. (author)

  15. Directly-Observed Intermittent Therapy versus Unsupervised Daily Regimen during the Intensive Phase of Antituberculosis Therapy in HIV Infected Patients

    Directory of Open Access Journals (Sweden)

    Gerardo Alvarez-Uria

    2014-01-01

    Full Text Available The World Health Organization strongly recommends using daily antituberculosis therapy (ATT during the intensive phase for HIV infected patients. India has the highest burden of tuberculosis in the world, but HIV infected patients are still receiving intermittent ATT. In this study we compared the mortality in patients who received directly-observed intermittent ATT versus self-administered daily ATT with fixed dose combinations during the intensive phase in a context of freely available antiretroviral therapy. The study included 1460 patients, 343 in the intermittent ATT group and 1117 in the daily ATT group. Baseline covariates of the two groups were balanced using inverse probability of treatment weighting based on propensity score methods. In a sensitivity analysis, continuous variables (albumin, CD4 count, and age were modelled using restricted cubic smoothing splines. Compared with patients who received daily ATT, patients who received intermittent ATT had a 40% higher risk of mortality (1.4 hazard ratio; 95% confidence interval, 1.14–1.7. We estimated that the use of daily ATT could achieve a 10% absolute reduction in mortality at 12 months. Self-administered daily ATT was not associated with an increased risk of default from treatment. These results support the immediate implementation of daily ATT for HIV infected patients during the intensive phase in India.

  16. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities

    Science.gov (United States)

    El Zowalaty, Mohamed Ezzat; Hussein Al Ali, Samer Hassan; Husseiny, Mohamed I; Geilich, Benjamin M; Webster, Thomas J; Hussein, Mohd Zobir

    2015-01-01

    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe2+ and Fe3+ iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections. PMID:25995633

  17. Resistance to anti-tuberculosis drugs and practices in drug susceptibility testing in Moldova, 1995-1999.

    Science.gov (United States)

    Crudu, V; Arnadottir, Th; Laticevschi, D

    2003-04-01

    To evaluate practices in initial drug susceptibility testing (DST) in Moldova, anti-tuberculosis drug resistance and the implications for tuberculosis control. Retrospective record review in the national reference laboratory. Of 3463 cases, 57.1% were recorded as 'new' and 24.6% as 'retreatment' cases; previous treatment status was not recorded for 18.3%. Of the 'new' cases, 1655 were correctly classified according to international recommendations and 322 were misclassified. The number of cases increased from 443 in 1995 to 939 in 1999; the proportion of 'retreatment' increased from 17.4% to 35.5%, 'any drug resistance' from 20.3% to 41.6%, and 'multidrug resistance' from 2.7% to 11.2%. In 1998-1999, 'any drug resistance' and 'multidrug resistance' in 800 previously untreated cases were respectively 29.1% and 5.3%, and respectively 61.0% and 21.9% in 521 'retreatment' cases. Of a total of 216 'multidrug-resistant' cases in 1998-1999, 21.8% were reported resistant to ethambutol and 81.5% to streptomycin. Initial specimens for culture are frequently taken late, after the start of treatment, compromising their usefulness for case management or surveillance. Inadequate treatment has led to an increase in the number of cases, the proportion of previously treated cases and the prevalence of drug resistance. In 1998-1999, a high proportion of cases with 'multidrug resistance' were susceptible to ethambutol.

  18. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis.

    Science.gov (United States)

    Gülbay, Banu Eriş; Gürkan, Ozlem Ural; Yildiz, Oznur Akkoca; Onen, Zeynep Pinar; Erkekol, Ferda Oner; Baççioğlu, Ayşe; Acican, Turan

    2006-10-01

    Side effects of the most commonly used primary antituberculosis (anti-TB) drugs may be mild as well as fatal. The aim of this study was to evaluate the side effects of and the risk factors for developing side effects against anti-TB drugs. Records of 1149 patients with established tuberculosis who initially received anti-TB therapy were evaluated retrospectively. The major side effects, which resulted in a definitive termination from 1 or more drugs related to anti-TB therapy, and the risk factors associated with these side effects, were analyzed. Ninety-five patients (8.3%), constituting 104 cases in total, experienced side effects. Although the frequency of drug reactions were increased from 0.6% at ages side effects. While asymptomatic liver function disturbance was established in 56 of the patients (4.9%) with initiation of anti-TB therapy, the rate of hepatotoxicity was found to be 2.4% in this present study. No age or gender differences were observed among those who had hepatotoxicity and who had not. The major side effects were ototoxicity (1.7%), hepatotoxicity (0.8%), neuropsychiatric manifestations (0.7%), and hyperuricemia (0.6%). It must be remembered that severe side effects associated with anti-TB drugs were encountered with different frequencies especially among patients hospitalized for pulmonary tuberculosis, and these patients should be followed up by closer monitoring for side effects related to anti-TB drugs.

  19. Design and Stereochemical Research (DFT, ECD and Crystal Structure of Novel Bedaquiline Analogs as Potent Antituberculosis Agents

    Directory of Open Access Journals (Sweden)

    Yiding Geng

    2016-07-01

    Full Text Available A series of bedaquiline analogs containing H-bond donors were designed as anti-Mycobacterium tuberculosis drugs. A pair of diastereoisomers (R/S- and S/S-isomers was selected from these designed compounds for synthetic and stereochemical research. The title compounds were synthesized from chiral precursors for the first time and the absolute configurations (ACs were determined by electronic circular dichroism (ECD with quantum chemical calculations. Moreover, a single crystal of the S/S compound was obtained for X-ray diffraction analysis, and the crystal structure showed high consistency with the geometry, confirming the reliability of ACs obtained by ECD analyses and theoretical simulation. Furthermore, the effect of stereochemistry on the anti-tuberculosis activity was investigated. The MICs of the R/S- and S/S-isomers against Mycobacterium phlei 1180 are 9.6 and 32.1 μg·mL−1, respectively. Finally, molecular docking was carried out to evaluate the inhibitory nature and binding mode differences between diastereoisomers.

  20. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence

    Science.gov (United States)

    2014-01-01

    Background The counterfeiting of anti-malarials represents a form of attack on global public health in which fake and substandard anti-malarials serve as de facto weapons of mass destruction, particularly in resource-constrained endemic settings, where malaria causes nearly 660,000 preventable deaths and threatens millions of lives annually. It has been estimated that fake anti-malarials contribute to nearly 450,000 preventable deaths every year. This crime against humanity is often underestimated or ignored. This study attempts to describe and characterize the direct and indirect effects of counterfeit anti-malarials on public health, clinical care and socio-economic conditions. Methods A search was performed using key databases, WHO documents, and English language search engines. Of 262 potential articles that were identified using a fixed set of criteria, a convenience sample of 105 appropriate articles was selected for this review. Results Artemisinin-based combination therapy (ACT) is an important tool in the fight against malaria, but a sizable number of patients are unable to afford to this first-line treatment. Consequently, patients tend to procure cheaper anti-malarials, which may be fake or substandard. Forensic palynology reveals that counterfeits originate in Asia. Fragile drug regulations, ineffective law-enforcement agencies and corruption further burden ailing healthcare facilities. Substandard/fake anti-malarials can cause (a) economic sabotage; (b) therapeutic failure; (c) increased risk of the emergence and spread of resistant strains of Plasmodium falciparum and Plasmodium vivax; (d) an undermining of trust/confidence in healthcare stakeholders/systems; and, (e) serious side effects or death. Conclusion Combating counterfeit anti-malarials is a complex task due to limited resources and poor techniques for the detection and identification of fake anti-malarials. This situation calls for sustainable, global, scientific research and policy change

  1. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence.

    Science.gov (United States)

    Karunamoorthi, Kaliyaperumal

    2014-06-02

    The counterfeiting of anti-malarials represents a form of attack on global public health in which fake and substandard anti-malarials serve as de facto weapons of mass destruction, particularly in resource-constrained endemic settings, where malaria causes nearly 660,000 preventable deaths and threatens millions of lives annually. It has been estimated that fake anti-malarials contribute to nearly 450,000 preventable deaths every year. This crime against humanity is often underestimated or ignored. This study attempts to describe and characterize the direct and indirect effects of counterfeit anti-malarials on public health, clinical care and socio-economic conditions. A search was performed using key databases, WHO documents, and English language search engines. Of 262 potential articles that were identified using a fixed set of criteria, a convenience sample of 105 appropriate articles was selected for this review. Artemisinin-based combination therapy (ACT) is an important tool in the fight against malaria, but a sizable number of patients are unable to afford to this first-line treatment. Consequently, patients tend to procure cheaper anti-malarials, which may be fake or substandard. Forensic palynology reveals that counterfeits originate in Asia. Fragile drug regulations, ineffective law-enforcement agencies and corruption further burden ailing healthcare facilities. Substandard/fake anti-malarials can cause (a) economic sabotage; (b) therapeutic failure; (c) increased risk of the emergence and spread of resistant strains of Plasmodium falciparum and Plasmodium vivax; (d) an undermining of trust/confidence in healthcare stakeholders/systems; and, (e) serious side effects or death. Combating counterfeit anti-malarials is a complex task due to limited resources and poor techniques for the detection and identification of fake anti-malarials. This situation calls for sustainable, global, scientific research and policy change. Further, responsible stakeholders in

  2. Exploration of Scaffolds from Natural Products with Antiplasmodial Activities, Currently Registered Antimalarial Drugs and Public Malarial Screen Data

    Directory of Open Access Journals (Sweden)

    Samuel Egieyeh

    2016-01-01

    Full Text Available In light of current resistance to antimalarial drugs, there is a need to discover new classes of antimalarial agents with unique mechanisms of action. Identification of unique scaffolds from natural products with in vitro antiplasmodial activities may be the starting point for such new classes of antimalarial agents. We therefore conducted scaffold diversity and comparison analysis of natural products with in vitro antiplasmodial activities (NAA, currently registered antimalarial drugs (CRAD and malaria screen data from Medicine for Malaria Ventures (MMV. The scaffold diversity analyses on the three datasets were performed using scaffold counts and cumulative scaffold frequency plots. Scaffolds from the NAA were compared to those from CRAD and MMV. A Scaffold Tree was also generated for each of the datasets and the scaffold diversity of NAA was found to be higher than that of MMV. Among the NAA compounds, we identified unique scaffolds that were not contained in any of the other compound datasets. These scaffolds from NAA also possess desirable drug-like properties making them ideal starting points for antimalarial drug design considerations. The Scaffold Tree showed the preponderance of ring systems in NAA and identified virtual scaffolds, which may be potential bioactive compounds.

  3. Targetting the hemozoin synthesis pathway for antimalarial drug and detected by TEM (Transmission electron microscope)

    Science.gov (United States)

    Abbas, Jamilah; Artanti, Nina; Sundowo, Andini; Dewijanti, Indah Dwiatmi; Hanafi, Muhammad; Lisa, Syafrudin, Din

    2017-11-01

    Malaria is a major public health problem mainly due to the development of resistance by the most lethal causative parasite species, the alarming spread of drug resistance and limited number of effective drug available now. Therefore it is important to discover new antimalarial drug. Malaria is caused by a singlecelled parasite from the genus Plasmodium. Plasmodium falciparum parasite infect red blood cells, ingesting and degradation hemoglobin in the acidic food vacuola trough a sequential metabolic process involving multiple proteases. During these process, hemoglobin is utilized as the predominant source of nutrition. Proteolysis of hemoglobin yields amino acid for protein synthesis as well as toxic heme. Massive degradation of hemoglobin generates large amount of toxic heme. Malaria parasite has evolved a distinct mechanism for detoxification of heme through conversion into insoluble crystalline pigment, known as hemozoin (β hematoin). Hemozoin synthesis is an indispensable process for the parasite and is the target for action of several known antimalarial drug. TEM (Transmission Electron Microscope) technology for hemozoin formation in vitro assay was done in this research. Calophyllum aerophyllum Lauterb as medicinal plants was used as a source of antimalarial drug. Acetone extracts of C. lowii showed growth inhibition against parasite P. falciparum with IC50 = 5.2 µg/mL. Whereas from hexane, acetone and methanol fraction of C. aerophyllum showed growth inhibition with IC50 = 0.054, 0.055 and 0.0054 µg/mL respectively. New drug from Calophyllum might have potential compounds that have unique structures and mechanism of action which required to develop new drug for treatment of sensitive and drug resistant strain of malaria.

  4. Clarithromycin enhances the antimalarial efficacy of mefloquine via its increased bioavailability and disrupting P. falciparum apicoplast.

    Science.gov (United States)

    Gunjan, S; Singh, S K; Chauhan, B S; Pandey, S K; Ahmad, H; Dwivedi, A K; Tripathi, R

    2015-09-01

    Many important drugs like mefloquine are not being used because of the development of resistance and other related issues. In the present study, we aimed to control drug resistance by using combination therapy and tried to understand the mechanism involved. We have explored in vitro interaction of clarithromycin (CLTR), and mefloquine (MQ) against Pf3D7 and PfK1 strains. Bioavailability of MQ in parasitized RBC lysate was checked in the presence/absence of CLTR using HPLC method. Further tufA mRNA/protein expression was investigated to know the effect of both drugs on apicoplast by using qPCR and Western blotting. MQ and CLTR inhibited growth of Pf3D7 and PfK1. CLTR showed its delayed antimalarial effect by its low IC50 values in the second cycle which indicates its effect on apicoplast. Downregulation of tufA expression on both mRNA and protein level supports this hypothesis. MQ and CLTR showed synergism/additiveness (mean ∑FICs = 0.89 and 1.26) against Pf3D7 and PfK1 respectively. It is evidenced from HPLC data that CLTR might have reduced metabolism of MQ in Plasmodium falciparum, leading to increased levels of MQ to produce enhanced antimalarial activity. The metabolism of CLTR is also reduced may be due to competitive metabolism of MQ via CYP3A4. The present study reveals that broad spectrum biological activities (i.e. antimalarial and antiviral) of MQ can be saved by using suitable partner drug like CLTR. This study also shows that CLTR increases the concentration of MQ and disrupts the apicoplast. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  6. In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants

    Directory of Open Access Journals (Sweden)

    Adeleke Clement Adebajo

    2014-08-01

    Full Text Available Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected mice. The respective prophylactic and curative ED50 values of 189.4 and 174.5 mg/kg for N. latifolia and chemosuppressive ED50 value of 227.2 mg/kg for A. altilis showed that they were the best antimalarial herbal drugs. A 1.6-fold increase of the survival time given by the negative control was elicited by M. koenigii, thereby confirming its curative activity. Pyrimethamine with an ED50 of 0.5 ± 0.1 mg/kg for the prophylactic, and chloroquine with ED50 = 2.2 ± 0.1 and 2.2 ± 0.0 mg/kg for the chemosuppressive and curative tests, respectively, were significantly (p < 0.05 more active. Co-administrations of N. latifolia with the standard drugs significantly reduced their prophylactic, chemosuppressive and curative actions, possibly increasing the parasites’ resistance. Binary combinations of N. latifolia or M. koenigii with any of the other plants significantly increased the prophylactic and suppressive activities of their individual plants, respectively. Also, E. chlorantha with A. altilis or N. latifolia enhanced their respective prophylactic or curative activities, making these combinations most beneficial against malaria infections. Combinations of three and four extracts gave varied activities. Hence, the results justified the combinations of ethnomedicinal plants in antimalarial herbal remedies and showed the importance of the three in vivo models in establishing antimalarial activity.

  7. High content live cell imaging for the discovery of new antimalarial marine natural products.

    Science.gov (United States)

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  8. Antimalarial efficacy of nine medicinal plants traditionally used by the Karens of Andaman and Nicobar Islands, India

    Directory of Open Access Journals (Sweden)

    M. Punnam Chander

    2016-03-01

    Full Text Available The aim of this study was to assess the antimalarial activity of nine medicinal plants used by Karens of Andaman and Nicobar Islands, against Plasmodium falciparum chloroquine-sensitive MRC-2 isolate. The methanol extracts were obtained by cold percolation method and in vitro antimalarial activity was assessed using M-III method. The results indicated that out of nine plant species tested, four plants, viz., Z. spectabilis, S. wallichiana, C. pulcherrima and Amomum sp. demonstrated significant antimalarial activity (50% inhibitory concentration values were 5.5 ± 0.7, 12.0 ± 2.5, 14.6 ± 1.3 and 37.3 ± 2.5 μg/mL respectively with no toxicity effect on erythrocytes.

  9. HLA-DQ B1*0201 and A1*0102 alleles are not responsible of antituberculosis drugs induced hepatotoxicity risk in Spanish population

    Directory of Open Access Journals (Sweden)

    VIRGINIA LEIRO-FERNÁNDEZ

    2016-08-01

    Full Text Available Aims: To evaluate the role of HLA class II DQB1*0201 and DQA1*0102 in the risk of antituberculosis drug-induced hepatotoxicity in a cohort of tuberculosis patients of Caucasian origin from Spain.Methods: Matched case-control study including active tuberculosis (TB patients from Spain (Caucasian treated with first line antituberculosis drugs (ATD (Isoniazid, Rifampin and Pyrazinamide. Presence or absence HLA class II DQB1*0201 and DQA1*0102 alleles were compared between cases and controls.Results: We included 110 TB patients, 55 antituberculosis drug-induced hepatotoxicity (ATDH cases and 55 sex-matched controls. The analysis of the presence of HLADQB1*0201 and HLADQA*0102, did not show significative differences between both groups [presence of HLADQB1*0201 53.6% of cases vs 45.4% of controls, OR: 1.63 95% CI (0.62-4.52 p= 0.38; presence of HLADQA*0102 7.5% of cases vs 20% of controls OR: 0.36 95%CI (0.08-1.23, p=0.12]. After multivariate logistic regression analysis including in the model other potential risk factors of hepatotoxicity HLA class II DQB1*0201 and DQA1*0102 alleles were not found significantly associated with the risk of development ATD-induced hepatotoxicty.Results: We could not demonstrate an association between HLADQA1*0102 and HLADQB1*0201 with the risk of ATDH in this Caucasian population of Spanish origin.

  10. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    International Nuclear Information System (INIS)

    Rehman, F.U.; Khan, M.F.; Khan, G.M.; Khan, H.; Khan, I.U.

    2010-01-01

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  11. In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003

    Directory of Open Access Journals (Sweden)

    Mungthin Mathirut

    2005-08-01

    Full Text Available Abstract Background The Thai-Myanmar and Thai-Cambodia borders have been historically linked with the emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs. Indeed, the areas are often described as harbouring multi-drug resistant parasites. These areas of Thailand have experienced significant changes in antimalarial drug exposure patterns over the past decade. This study describes the in vitro antimalarial susceptibility patterns of 95 laboratory-adapted P. falciparum isolates, collected between 1998 and 2003,. Methods Ninety five P. falciparum isolates were collected from five sites in Thailand between 1998 and 2003. After laboratory adaptation to in vitro culture, the susceptibility of these parasites to a range of established antimalarial drugs (chloroquine [CQ], mefloquine [MQ], quinine [QN] and dihydroartemisinin [DHA] was determined by the isotopic microtest. Results Mefloquine (MQ sensitivity remained poorest in areas previously described as MQ-resistant areas. Sensitivity to MQ of parasites from this area was significantly lower than those from areas reported to harbour moderate (p = 0.002 of low level MQ resistance (p = 000001. Importantly for all drugs tested, there was a considerable range in absolute parasite sensitivities. There was a weak, but statistically positive correlation between parasite sensitivity to CQ and sensitivity to both QN and MQ and a positive correlation between MQ and QN. In terms of geographical distribution, parasites from the Thai-Cambodia were tended to be less sensitive to all drugs tested compared to the Thai-Myanmar border. Parasite sensitivity to all drugs was stable over the 6-year collection period with the exception of QN. Conclusion This study highlights the high degree of variability in parasite drug sensitivity in Thailand. There were geographical differences in the pattern of resistance which might reflect differences in drug usage in each area. In contrast to many

  12. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors

    Science.gov (United States)

    Urbán, Patricia; Estelrich, Joan; Adeva, Alberto; Cortés, Alfred; Fernàndez-Busquets, Xavier

    2011-12-01

    Paul Ehrlich's dream of a 'magic bullet' that would specifically destroy invading microbes is now a major aspect of clinical medicine. However, a century later, the implementation of this medical holy grail continues being a challenge in three main fronts: identifying the right molecular or cellular targets for a particular disease, having a drug that is effective against it, and finding a strategy for the efficient delivery of sufficient amounts of the drug in an active state exclusively to the selected targets. In a previous work, we engineered an immunoliposomal nanovector for the targeted delivery of its contents exclusively to Plasmodium falciparum-infected red blood cells [pRBCs]. In preliminary assays, the antimalarial drug chloroquine showed improved efficacy when delivered inside immunoliposomes targeted with the pRBC-specific monoclonal antibody BM1234. Because difficulties in determining the exact concentration of the drug due to its low amounts prevented an accurate estimation of the nanovector performance, here, we have developed an HPLC-based method for the precise determination of the concentrations in the liposomal preparations of chloroquine and of a second antimalarial drug, fosmidomycin. The results obtained indicate that immunoliposome encapsulation of chloroquine and fosmidomycin improves by tenfold the efficacy of antimalarial drugs. The targeting antibody used binds preferentially to pRBCs containing late maturation stages of the parasite. In accordance with this observation, the best performing immunoliposomes are those added to Plasmodium cultures having a larger number of late form-containing pRBCs. An average of five antibody molecules per liposome significantly improves in cell cultures the performance of immunoliposomes over non-functionalized liposomes as drug delivery vessels. Increasing the number of antibodies on the liposome surface correspondingly increases performance, with a reduction of 50% parasitemia achieved with

  13. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname.

    Science.gov (United States)

    Evans, Lawrence; Coignez, Veerle; Barojas, Adrian; Bempong, Daniel; Bradby, Sanford; Dijiba, Yanga; James, Makeida; Bretas, Gustavo; Adhin, Malti; Ceron, Nicolas; Hinds-Semple, Alison; Chibwe, Kennedy; Lukulay, Patrick; Pribluda, Victor

    2012-06-15

    Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector) and unlicensed facilities (informal sector) is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Quality issues were observed in 45 of 77 (58%) anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30) and 11% (5/47) respectively. A higher proportion of medicines sampled from the private sector 34% (11/32) failed quality control tests versus 16% (7/45) in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86%) were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. The findings of the studies in both countries point to significant problems with the quality of anti-malarial medicines

  14. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds.

    Science.gov (United States)

    Guantai, Eric M; Ncokazi, Kanyile; Egan, Timothy J; Gut, Jiri; Rosenthal, Philip J; Smith, Peter J; Chibale, Kelly

    2010-12-01

    A targeted series of chalcone and dienone hybrid compounds containing aminoquinoline and nucleoside templates was synthesized and evaluated for in vitro antimalarial activity. The Cu(I)-catalyzed cycloaddition of azides and terminal alkynes was applied as the hybridization strategy. Several chalcone-chloroquinoline hybrid compounds were found to be notably active, with compound 8b the most active, exhibiting submicromolar IC(50) values against the D10, Dd2 and W2 strains of Plasmodium falciparum. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Synthesis, biological evaluation, QSAR analysis, and molecular docking of chalcone derivatives for antimalarial activity

    Directory of Open Access Journals (Sweden)

    Jufrizal Syahri

    2017-01-01

    Full Text Available Objective: To synthesize chalcone derivatives and investigate their antimalarial activity toward chloroquine-sensitive Plasmodium falciparum 3D7 (Pf3D7 strain; to develop quantitative structureactivity relationships (QSAR model to estimate IC50 values for biological activity of antimalarial and compared to experimental measurement; and to determine the binding interactions of the most active compounds with targeting P. falciparum dihydrofolate reductase-thymidylate synthase using molecular docking simulation. Methods: Seven chalcone derivatives have been synthesized from substituted acetophenone and substituted benzaldehyde in ethanol with the presence of bases catalysis at reflux condition. The QSAR analysis was conducted by using Gaussian 09 software to predict IC50 value for antimalarial activity. The in vitro test was evaluated against the chloroquine-sensitive Pf3D7 strain. Finally, the docking studies were performed with the CDOCKER protocol under the receptor-ligand interaction section in Discovery Studio® 3.1 (Accelrys, Inc., San Diego, USA. Results: Among the synthesized chalcone, a prenylated chalcone 5c and an allylated chalcones 10a showed the best IC 50 values of 1.08 and 1.73 μg/mL respectively against Pf3D7 strain (1.37 and 2.33 μg/mL based on QSAR analysis. Comparison between the prediction of IC50 value generated from the QSAR and the outcome from an in vitro assay showed a similar result as seen from the r2 value (r2 = 0.99. The most active compound 5c was employed in the docking simulation to determine the potential binding interactions with active sites of P. falciparum dihydrofolate reductase-thymidylate synthase (protein data bank ID: 1J3I. The docking simulation study showed 5c bind well with Ala16, Ser108, Ile164, Trp48, and Phe58 which are the crucial interactions that could possibly interrupt the sequential catalysis reactions in the thymidylate cycle and subsequently prevent deoxythymidine monophosphate production

  16. Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp

    OpenAIRE

    Laurent, Dominique; Jullian, Valérie; Parenty, A.; Knibiehler, M.; Dorin, D.; Schmitt, S.; Lozach, O.; Lebouvier, N.; Frostin, M.; Alby, F.; Maurel, Séverine; Doerig, C.; Meijer, L.; Sauvain, Michel

    2006-01-01

    As part of our search for new antimalarial drugs, we have screened for inhibitors of Pfnek-1, a protein kinase of Plasmodium falciparum, in south Pacific marine sponges. On the basis of a preliminary screening, the ethanolic crude extract of a new species of Xestospongia collected in Vanuatu was selected for its promising activity. A bioassay-guided fractionation led us to isolate xestoquinone which inhibits Pfnek-1 with an IC50 around 1 mu M. Among a small panel of plasmodial protein kinases...

  17. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname

    Directory of Open Access Journals (Sweden)

    Evans Lawrence

    2012-06-01

    Full Text Available Abstract Background Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector and unlicensed facilities (informal sector is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. Methods To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Results Quality issues were observed in 45 of 77 (58% anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30 and 11% (5/47 respectively. A higher proportion of medicines sampled from the private sector 34% (11/32 failed quality control tests versus 16% (7/45 in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86% were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. Conclusions The findings of the studies in both countries point to

  18. Molecular Farming in Artemisia annua, a sustainable approach to improve anti-malarial drug production

    Directory of Open Access Journals (Sweden)

    Giuseppe ePulice

    2016-03-01

    Full Text Available Malaria is a parasite infection affecting millions of people worldwide. Even though progresses in prevention and treatment have been developed, 198 million cases of malaria occurred in 2013, resulting in 584000 estimated deaths. 90% of all malaria deaths occurred in Africa, mostly among children under the age of five. This article aims to review malaria’s history, epidemiology and current treatments, with a particular focus on the potential of molecular farming that use metabolic engineering in plants as effective anti-malarial solution. Malaria indeed represents an example of how a health problem on one hand, may eventually influence the proper development of a country due to the burden of the disease, and on the other hand, constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is here proposed as a sustainable alternative for the production not only of natural herbal repellents used for malaria prevention but also for the production of sustainable anti-malarial drugs like artemisinin used for primary parasite infection treatments.Artemisinin, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua plant. However, the low concentration of artemisinin in plant makes this molecule relatively expensive and difficult to meet the worldwide demand of Artemisinin Combination Therapies, especially for economically disadvantaged people in developing countries. The biosynthetic pathway of artemisinin, a process that only takes place in glandular secretory trichomes of A. annua, is relatively well elucidated, and significant efforts using plant genetic engineering have been made to increase the production of this compound. These include studies on diverse transcription factors, which all have been shown to regulate artemisinin genetic pathway and other biological processes. Therefore, genetic manipulation of these genes may be used as a cost-effective potential

  19. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del.

    Science.gov (United States)

    Sadiq, Muhammad Bilal; Tharaphan, Pattamon; Chotivanich, Kesinee; Tarning, Joel; Anal, Anil Kumar

    2017-07-18

    The emergence of drug resistant malaria is threatening our ability to treat and control malaria in the Southeast Asian region. There is an urgent need to develop novel and chemically diverse antimalarial drugs. This study aimed at evaluating the antimalarial and antioxidant potentials of Acacia nilotica plant extracts. The antioxidant activities of leaves, pods and bark extracts were determined by standard antioxidant assays; reducing power capacity, % lipid peroxidation inhibition and ferric reducing antioxidant power assay. The antimalarial activities of plant extracts against Plasmodium falciparum parasites were determined by the 48 h schizont maturation inhibition assay. Further confirmation of schizonticide activity of extracts was made by extending the incubation period up to 96 h after removing the plant extract residues from parasites culture. Inhibition assays were analyzed by dose-response modelling. In all antioxidant assays, leaves of A. nilotica showed higher antioxidant activity than pods and bark. Antimalarial IC 50 values of leaves, pods and bark extracts were 1.29, 4.16 and 4.28 μg/ml respectively, in the 48 h maturation assay. The IC 50 values determined for leaves, pods and bark extracts were 3.72, 5.41 and 5.32 μg/ml respectively, after 96 h of incubation. All extracts inhibited the development of mature schizont, indicating schizonticide activity against P. falciparum. A. nilotica extracts showed promising antimalarial and antioxidant effects. However, further investigation is needed to isolate and identify the active components responsible for the antimalarial and antioxidant effects.

  20. Understanding Private Sector Antimalarial Distribution Chains: A Cross-Sectional Mixed Methods Study in Six Malaria-Endemic Countries

    Science.gov (United States)

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Rueda, Sergio Torres; Kiefer, Sabine; O’Connell, Kathryn A.; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Chavasse, Desmond

    2014-01-01

    Background Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia). Methods and Findings We conducted nationally representative surveys of antimalarial wholesalers during 2009–2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4–6 steps between manufacturer and retailer; however, most likely pass through 2–3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important

  1. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    Directory of Open Access Journals (Sweden)

    Benjamin Palafox

    Full Text Available Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia.We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important antimalarial supply sources

  2. The Role of Polymerase Chain Reaction (PCR in Diagnosis of Spine Tuberculosis after Pre-operative Anti-tuberculosis Treatment

    Directory of Open Access Journals (Sweden)

    AH Rasit

    2011-03-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the role of polymerase chain reaction (PCR in the diagnosis of spinal tuberculosis after 2 weeks of preoperative anti-tuberculosis treatment and to compare PCR to the Löwenstein - Jensen Culture (LJC and histopathological examination (HPE methods. METHODS: Twenty-five patients were included in this study. Sixteen patients were diagnosed and treated for spinal tuberculosis based on clinical and radiological evidence. Nine patients were controls. The LJC method and HPE of the specimen were performed according to hospital protocol. PCR was performed using primer encoding insertion of sequences IS6110 for mycobacterium tuberculosis complex. Clinical findings and radiological features were the gold standard for comparison. RESULTS: PCR results were 15 positive and one negative. The sensitivity and specificity of PCR was 94% and 100% respectively (with 95% confidence interval [CI] 67% to 99% and 63% to 100%, respectively. HPE results showed 13 were positive and 3 negative in the spinal tuberculosis group; for the control group, all were negative. Sensitivity and specificity value of HPE was 82 % and 100% respectively (with 95% confidence interval [CI] 54% to 95% and 63% to 100%, respectively. Use of LJC showed only one was positive and 15 were negative in the spinal tuberculosis group whole all nine in the control group were negative. Sensitivity and specificity value of LJC was 6% and 100% respectively (with 95% confidence interval [CI] 0.3% to 32% and 63% to 100%, respectively. CONCLUSION: Our findings showed that the PCR for Mycobacterium tuberculosis is reliable as a method for diagnosis of spinal tuberculosis, even after of 2 weeks of anti-TB treatment, with an overall sensitivity of 94% and specificity of 100%.

  3. Early versus delayed initiation of antiretroviral therapy for Indian HIV-Infected individuals with tuberculosis on antituberculosis treatment.

    Science.gov (United States)

    Sinha, Sanjeev; Shekhar, Rahul C; Singh, Gurjeet; Shah, Nipam; Ahmad, Hafiz; Kumar, Narendra; Sharma, Surendra K; Samantaray, J C; Ranjan, Sanjai; Ekka, Meera; Sreenivas, Vishnu; Mitsuyasu, Ronald T

    2012-07-31

    For antiretroviral therapy (ART) naive human immunodeficiency virus (HIV) infected adults suffering from tuberculosis (TB), there is uncertainty about the optimal time to initiate highly active antiretroviral therapy (HAART) after starting antituberculosis treatment (ATT), in order to minimize mortality, HIV disease progression, and adverse events. In a randomized, open label trial at All India Institute of Medical Sciences, New Delhi, India, eligible HIV positive individuals with a diagnosis of TB were randomly assigned to receive HAART after 2-4 or 8-12 weeks of starting ATT, and were followed for 12 months after HAART initiation. Participants received directly observed therapy short course (DOTS) for TB, and an antiretroviral regimen comprising stavudine or zidovudine, lamivudine, and efavirenz. Primary end points were death from any cause, and progression of HIV disease marked by failure of ART. A total of 150 patients with HIV and TB were initiated on HAART: 88 received it after 2-4 weeks (early ART) and 62 after 8-12 weeks (delayed ART) of starting ATT. There was no significant difference in mortality between the groups after the introduction of HAART. However, incidence of ART failure was 31% in delayed versus 16% in early ART arm (p = 0.045). Kaplan Meier disease progression free survival at 12 months was 79% for early versus 64% for the delayed ART arm (p = 0.05). Rates of adverse events were similar. Early initiation of HAART for patients with HIV and TB significantly decreases incidence of HIV disease progression and has good tolerability. CTRI/2011/12/002260.

  4. Anti-Tuberculosis Bacteriophage D29 Delivery with a Vibrating Mesh Nebulizer, Jet Nebulizer, and Soft Mist Inhaler.

    Science.gov (United States)

    Carrigy, Nicholas B; Chang, Rachel Y; Leung, Sharon S Y; Harrison, Melissa; Petrova, Zaritza; Pope, Welkin H; Hatfull, Graham F; Britton, Warwick J; Chan, Hak-Kim; Sauvageau, Dominic; Finlay, Warren H; Vehring, Reinhard

    2017-10-01

    To compare titer reduction and delivery rate of active anti-tuberculosis bacteriophage (phage) D29 with three inhalation devices. Phage D29 lysate was amplified to a titer of 11.8 ± 0.3 log 10 (pfu/mL) and diluted 1:100 in isotonic saline. Filters captured the aerosolized saline D29 preparation emitted from three types of inhalation devices: 1) vibrating mesh nebulizer; 2) jet nebulizer; 3) soft mist inhaler. Full-plate plaque assays, performed in triplicate at multiple dilution levels with the surrogate host Mycobacterium smegmatis, were used to quantify phage titer. Respective titer reductions for the vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler were 0.4 ± 0.1, 3.7 ± 0.1, and 0.6 ± 0.3 log 10 (pfu/mL). Active phage delivery rate was significantly greater (p pfu/min) than for the jet nebulizer (5.4x10 4  ± 1.3x10 4 pfu/min). The soft mist inhaler delivered 4.6x10 6  ± 2.0x10 6 pfu per 11.6 ± 1.6 μL ex-actuator dose. Delivering active phage requires a prudent choice of inhalation device. The jet nebulizer was not a good choice for aerosolizing phage D29 under the tested conditions, due to substantial titer reduction likely occurring during droplet production. The vibrating mesh nebulizer is recommended for animal inhalation studies requiring large amounts of D29 aerosol, whereas the soft mist inhaler may be useful for self-administration of D29 aerosol.

  5. Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosis L,D-transpeptidase 2

    Directory of Open Access Journals (Sweden)

    Billones JB

    2016-03-01

    Full Text Available Junie B Billones,1,2 Maria Constancia O Carrillo,1 Voltaire G Organo,1 Stephani Joy Y Macalino,1 Jamie Bernadette A Sy,1 Inno A Emnacen,1 Nina Abigail B Clavio,1 Gisela P Concepcion31Office of the Vice President for Academic Affairs – Emerging Interdisciplinary Research Program: “Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines,” Department of Physical Sciences and Mathematics, College of Arts and Sciences, 2Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Manila, 3Marine Science Institute, University of the Philippines Diliman, Diliman, Quezon City, PhilippinesAbstract: Mycobacterium tuberculosis (Mtb the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme L,D-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl–arabinogalactan–peptidoglycan complex of Mtb. In this study, structure-based pharmacophore screening, molecular docking, and in silico toxicity evaluations were employed in screening compounds from a database of synthetic compounds. Out of the 4.5 million database compounds, 18 structures were identified as high-scoring, high-binding hits with very satisfactory absorption, distribution, metabolism, excretion, and toxicity properties. Two out of the 18 compounds were further subjected to in vitro bioactivity assays, with one exhibiting a good inhibitory activity against the Mtb H37Ra strain.Keywords: antituberculosis drug discovery, virtual screening, docking

  6. Quantification of rifapentine, a potent antituberculosis drug, from dried blood spot samples using liquid chromatographic-tandem mass spectrometric analysis.

    Science.gov (United States)

    Parsons, Teresa L; Marzinke, Mark A; Hoang, Thuy; Bliven-Sizemore, Erin; Weiner, Marc; Mac Kenzie, William R; Dorman, Susan E; Dooley, Kelly E

    2014-11-01

    The quantification of antituberculosis drug concentrations in multinational trials currently requires the collection of modest blood volumes, centrifugation, aliquoting of plasma, freezing, and keeping samples frozen during shipping. We prospectively enrolled healthy individuals into the Tuberculosis Trials Consortium Study 29B, a phase I dose escalation study of rifapentine, a rifamycin under evaluation in tuberculosis treatment trials. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying rifapentine in whole blood on dried blood spots (DBS) to facilitate pharmacokinetic/pharmacodynamic analyses in clinical trials. Paired plasma and whole-blood samples were collected by venipuncture, and whole blood was spotted on Whatman protein saver 903 cards. The methods were optimized for plasma and then validated for DBS. The analytical measuring range for quantification of rifapentine and its metabolite was 50 to 80,000 ng/ml in whole-blood DBS. The analyte was stable on the cards for 11 weeks with a desiccant at room temperature and protected from light. The method concordance for paired plasma and whole-blood DBS samples was determined after correcting for participant hematocrit or population-based estimates of bias from Bland-Altman plots. The application of either correction factor resulted in acceptable correlation between plasma and whole-blood DBS (Passing-Bablok regression corrected for hematocrit; y = 0.98x + 356). Concentrations of rifapentine may be determined from whole-blood DBS collected via venipuncture after normalization in order to account for the dilutional effects of red blood cells. Additional studies are focused on the application of this methodology to capillary blood collected by finger stick. The simplicity of processing, storage, shipping, and low blood volume makes whole-blood DBS attractive for rifapentine pharmacokinetic evaluations, especially in international and pediatric trials. Copyright © 2014

  7. Pharmacokinetics of the First-Line Antituberculosis Drugs in Ghanaian Children with Tuberculosis with or without HIV Coinfection.

    Science.gov (United States)

    Antwi, Sampson; Yang, Hongmei; Enimil, Anthony; Sarfo, Anima M; Gillani, Fizza S; Ansong, Daniel; Dompreh, Albert; Orstin, Antoinette; Opoku, Theresa; Bosomtwe, Dennis; Wiesner, Lubbe; Norman, Jennifer; Peloquin, Charles A; Kwara, Awewura

    2017-02-01

    Although human immunodeficiency virus (HIV) coinfection is the most important risk factor for a poor antituberculosis (anti-TB) treatment response, its effect on the pharmacokinetics of the first-line drugs in children is understudied. This study examined the pharmacokinetics of the four first-line anti-TB drugs in children with TB with and without HIV coinfection. Ghanaian children with TB on isoniazid, rifampin, pyrazinamide, and ethambutol for at least 4 weeks had blood samples collected predose and at 1, 2, 4, and 8 hours postdose. Drug concentrations were determined by validated liquid chromatography-mass spectrometry methods and pharmacokinetic parameters calculated using noncompartmental analysis. The area under the concentration-time curve from 0 to 8 h (AUC 0-8 ), maximum concentration (C max ), and apparent oral clearance divided by bioavailability (CL/F) for each drug were compared between children with and without HIV coinfection. Of 113 participants, 59 (52.2%) had HIV coinfection. The baseline characteristics were similar except that the coinfected patients were more likely to have lower weight-for-age and height-for-age Z scores (P children than in those with TB alone. In the multivariate analysis, drug dose and HIV coinfection jointly influenced the apparent oral clearance and AUC 0-8 for rifampin, pyrazinamide, and ethambutol. Isoniazid pharmacokinetics were not different by HIV coinfection status. HIV coinfection was associated with lower plasma exposure of three of the four first-line anti-TB drugs in children. Whether TB/HIV-coinfected children need higher dosages of rifampin, pyrazinamide, and ethambutol requires further investigation. (This study has been registered at ClinicalTrials.gov under identifier NCT01687504.). Copyright © 2017 American Society for Microbiology.

  8. Antimycobacterial and Anti-Inflammatory Activities of Substituted Chalcones Focusing on an Anti-Tuberculosis Dual Treatment Approach

    Directory of Open Access Journals (Sweden)

    Thatiana Lopes Biá Ventura

    2015-05-01

    Full Text Available Tuberculosis (TB remains a serious public health problem aggravated by the emergence of M. tuberculosis (Mtb strains resistant to multiple drugs (MDR. Delay in TB treatment, common in the MDR-TB cases, can lead to deleterious life-threatening inflammation in susceptible hyper-reactive individuals, encouraging the discovery of new anti-Mtb drugs and the use of adjunctive therapy based on anti-inflammatory interventions. In this study, a series of forty synthetic chalcones was evaluated in vitro for their anti-inflammatory and antimycobacterial properties and in silico for pharmacokinetic parameters. Seven compounds strongly inhibited NO and PGE2 production by LPS-stimulated macrophages through the specific inhibition of iNOS and COX-2 expression, respectively, with compounds 4 and 5 standing out in this respect. Four of the seven most active compounds were able to inhibit production of TNF-α and IL-1β. Chalcones that were not toxic to cultured macrophages were tested for antimycobacterial activity. Eight compounds were able to inhibit growth of the M. bovis BCG and Mtb H37Rv strains in bacterial cultures and in infected macrophages. Four of them, including compounds 4 and 5, were active against a hypervirulent clinical Mtb isolate as well. In silico analysis of ADMET properties showed that the evaluated chalcones displayed satisfactory pharmacokinetic parameters. In conclusion, the obtained data demonstrate that at least two of the studied chalcones, compounds 4 and 5, are promising antimycobacterial and anti-inflammatory agents, especially focusing on an anti-tuberculosis dual treatment approach.

  9. Photoreactivity of biologically active compounds. VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening.

    Science.gov (United States)

    Kristensen, S; Orsteen, A L; Sande, S A; Tønnesen, H H

    1994-10-01

    The drugs commonly used in the treatment of malaria are photochemically unstable. Several of these compounds accumulate in melanin-rich tissues and cause toxic reactions which may be light induced. As part of the screening of the photochemical properties and phototoxic capabilities of antimalarials, the in vitro interaction of eight antimalarials with melanin was studied. The dissociation constant for the drug-melanin complex and the relative number of binding sites on melanin were estimated for six of the drugs using a curve-fitting program. The reaction rate for the formation of the melanin-drug complex was determined, and the complexes were further characterized by zeta potential measurements.

  10. Factors determining anti-malarial drug use in a peri-urban population from malaria holoendemic region of western kenya

    Directory of Open Access Journals (Sweden)

    Abong'o Benard

    2010-10-01

    Full Text Available Abstract Background Interventions to reverse trends in malaria-related morbidity and mortality in Kenya focus on preventive strategies and drug efficacy. However, the pattern of use of anti-malarials in malaria-endemic populations, such as in western Kenya, is still poorly understood. It is critical to understand the patterns of anti-malarial drug use to ascertain that the currently applied new combination therapy to malaria treatment, will achieve sustained cure rates and protection against parasite resistance. Therefore, this cross-sectional study was designed to determine the patterns of use of anti-malarial drugs in households (n = 397 in peri-urban location of Manyatta-B sub-location in Kisumu in western Kenya. Methods Household factors, associated with the pattern of anti-malarials use, were evaluated. Using clusters, questionnaire was administered to a particular household member who had the most recent malaria episode (within Results Stratification of the type of anti-malarial drugs taken revealed that 37.0% used sulphadoxine/pyrimethamine (SP, 32.0% artemisinin-based combined therapy (ACT, 11.1% anti-pyretics, 7.3% chloroquine (CQ, 7.1% quinine, 2.5% amodiaquine (AQ, while 3.0% used others which were perceived as anti-malarials (cough syrups and antibiotics. In a regression model, it was demonstrated that age (P = 0.050, household size (P = 0.047, household head (P = 0.049, household source of income (P = 0.015, monthly income (P = 0.020, duration of use (P = 0.029, dosage of drugs taken (P = 0.036, and source of drugs (P = 0.005 significantly influenced anti-malarial drug use. Overall, 38.8% of respondents used drugs as recommended by the Ministry of Health. Conclusion This study demonstrates that consumers require access to correct and comprehensible information associated with use of drugs, including self-prescription. There is potential need by the Kenyan government to improve malaria care and decrease malaria-related morbidity and

  11. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Monica Escolà; Hansen, Martin; Krogh, Kristine A

    2014-01-01

    the available sample preparation strategies combined with liquid chromatographic (LC) analysis to determine antimalarials in whole blood, plasma and urine published over the last decade. Sample preparation can be done by protein precipitation, solid-phase extraction, liquid-liquid extraction or dilution. After...... LC separation, the preferred detection tool is tandem mass spectrometry (MS/MS) but other detection methods have been used e.g. UV, fluorescence and electrochemical detection. Major trends for sample preparation of the different groups of antimalarials for each matrix and its detection have been...

  12. Synthesis and antimalarial activity evaluation of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one derivatives

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Kumawat

    2016-09-01

    Full Text Available Some novel derivatives of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro antimalarial activity against chloroquine sensitive strain of Plasmodium falciparum (RKL-2 employing chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities towards the parasite in comparison to the standard. It was found that antimalarial activity of 3-(3-(7-chloroquinolin-4-ylaminopropyl-2-(4-bromophenyl-1,3-thiazinan-4-one was marginally superior than all the compounds evaluated.

  13. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    Directory of Open Access Journals (Sweden)

    Khodakarim Nastaran

    2010-05-01

    Full Text Available Abstract Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain and CY27 (chloroquine-sensitive strain, using the parasite lactate dehydrogenase (pLDH assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain. Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy, Solanum surattense (Burm.f. and Prosopis juliflora (Sw. showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time.

  14. Phytochemical screening and antimalarial activity of some plants traditionally used in Indonesia

    Directory of Open Access Journals (Sweden)

    Syamsudin Abdillah

    2015-06-01

    Full Text Available Objective: To evaluate ethanolic extracts of phytochemical screening, in vitro and in vivo antiplasmodial activities of 15 plants used as antimalarial in Sei Kepayang, North Sumatra. Methods: Extraction was done through maceration with 70% ethanol and screened against chemical content, in vitro test anti-plasmodium against Plasmodium falciparum 3D7 strain and in vivo test in mice infected Plasmodium berghei. Results: The results showed that the plant extract contained a group of saponins, flavonoids, alkaloids, quinone, sterols, triterpene, tannins and cumarine. However, extract of Momordica charantia, Carica papaya, Garcinia atroviridis, Alstonia scholaris, Smallanthus sonchifolia and Cassia siamea had strong anti-plasmodium activity both in vitro and in vivo. Conclusions: In vitro and in vivo antiplasmodial activities of 15 plants are used as antimalarial in Sei Kepayang, North Sumatra. All the plants have in vitro and in vivo anti-plasmodium activity except Orthosiphon stamineus and Luffa cylindrica (ED50 > 1 000 mg/kg body weight and IC50 > 100 μg/mL, respectively.

  15. Interventions to improve the use of antimalarials in south-east Asia: an overview.

    Science.gov (United States)

    Gomes, M; Wayling, S; Pang, L

    1998-01-01

    There are few drugs for malaria, and those which are available for use are subject to rapid development of resistance. Curiously, little effort has been made to improve drug use in malaria-endemic countries and to assess the benefits of such improvements. Advances can be made in public understanding of the value of ingesting a full regimen of antimalarials, in order to achieve complete cure, and in improving simple technologies (blister packaging) to achieve the same result. Better efforts can be made to reduce the availability of fake or substandard drugs in the marketplace. In this article, we describe the outcome of a concerted effort to improve drug compliance and drug quality in an area of multidrug resistance for malaria. These research efforts, guided by the Task Force for Improved Use of Antimalarials, characterized the problems in drug compliance in South-East Asia, and developed interventions to improve drug use in the various countries. Interventions involved drug packaging, public information campaigns, and assessments of drug quality. Results show that blister packaging worked best to improve drug compliance and that the increased cost of packaged medication did not limit its use. Drug quality was a major problem in unregulated countries and should be improved.

  16. Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance.

    Science.gov (United States)

    Carey, Maureen A; Papin, Jason A; Guler, Jennifer L

    2017-07-19

    Malaria remains a major public health burden and resistance has emerged to every antimalarial on the market, including the frontline drug, artemisinin. Our limited understanding of Plasmodium biology hinders the elucidation of resistance mechanisms. In this regard, systems biology approaches can facilitate the integration of existing experimental knowledge and further understanding of these mechanisms. Here, we developed a novel genome-scale metabolic network reconstruction, iPfal17, of the asexual blood-stage P. falciparum parasite to expand our understanding of metabolic changes that support resistance. We identified 11 metabolic tasks to evaluate iPfal17 performance. Flux balance analysis and simulation of gene knockouts and enzyme inhibition predict candidate drug targets unique to resistant parasites. Moreover, integration of clinical parasite transcriptomes into the iPfal17 reconstruction reveals patterns associated with antimalarial resistance. These results predict that artemisinin sensitive and resistant parasites differentially utilize scavenging and biosynthetic pathways for multiple essential metabolites, including folate and polyamines. Our findings are consistent with experimental literature, while generating novel hypotheses about artemisinin resistance and parasite biology. We detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps representing an incomplete transition to the metabolic state most appropriate for nutrient-rich blood. Using this systems biology approach, we identify metabolic shifts that arise with or in support of the resistant phenotype. This perspective allows us to more productively analyze and interpret clinical expression data for the identification of candidate drug targets for the treatment of resistant parasites.

  17. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Science.gov (United States)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  18. Patient Related Factors Affecting Adherence to Antimalarial Medication in an Urban Estate in Ghana

    Directory of Open Access Journals (Sweden)

    Alexandria O. Amponsah

    2015-01-01

    Full Text Available Our aim was to measure the adherence to Artemisinin based Combination Therapy and to determine patient related factors that affect adherence. Three hundred (300 patients receiving ACT treatment dispensed from the community pharmacy were randomly selected and followed up on the fourth day after the start of their three-day therapy to assess adherence. Adherence was measured by pill count. Quantitative interviews using a semistructured questionnaire were used to assess patients’ knowledge and beliefs on malaria and its treatment. Adherence levels to the ACTs were 57.3%. Patient related factors that affected adherence to ACTs were patients’ knowledge on the dosage (P=0.007; v=0.457, efficacy (P=0.009; v=0.377, and side effects (P=0.000; v=0.403 of the ACTs used for the management of malaria, patients’ awareness of the consequences of not completing the doses of antimalarial dispensed (P=0.001; v=0.309, and patients’ belief that “natural remedies are safer than medicines” and “prescribers place too much trust in medicines.” There was no significant relationship between adherence and patients’ knowledge on the causes, signs, and symptoms of malaria. There is the need for pharmacy staff to stress on these variables when counseling patients on antimalarials as these affect adherence levels.

  19. Antimalarial and cytotoxic activities of roots and fruits fractions of Astrodaucus persicus extract

    Directory of Open Access Journals (Sweden)

    Saied Goodarzi

    2017-12-01

    Full Text Available Objective(s:Astrodaucus persicus (Apiaceae is one of the two species of this genus which grows in different parts of Iran. Roots of this plant were rich in benzodioxoles and used as food additive or salad in Iran and near countries. The aim of present study was evaluation of antimalarial and cytotoxic effects of different fractions of A. persicus fruits and roots extracts. Materials and Methods: Ripe fruits and roots of A. persicuswere extracted and fractionated by hexane, chloroform, ethyl acetate and methanol, separately. Antimalarial activities of fractions were performed based on Plasmodium berghei suppressive test in mice model and percentage of parasitemia and suppression were determined for each sample. Cytotoxicity of fruits and roots fractions were investigated against human breast adenocarcinoma (MCF-7, colorectal carcinoma (SW480 and normal (L929 cell lines by MTT assay and IC50 of them were measured. Results: Hexane fraction of roots extract (RHE and ethyl acetate fraction of fruits extract (FEA of A. persicus demonstrated highest parasite inhibition (73.3 and 72.3%, respectively at 500 mg/kg/day which were significantly different from negative control group (P

  20. Evaluation of the use of Cocos nucifera as antimalarial remedy in Malaysian folk medicine.

    Science.gov (United States)

    Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela

    2011-04-12

    White flesh extract of Cocos nucifera (coconut) was studied to ascertain the ethnopharmacological standing of its antimalarial usage in Malaysian folk medicine. The crude methanol extract was investigated for phytochemical constituents and acute oral toxicity. Antimalarial activity of different extract doses of 50, 100, 200 and 400mg/kg were investigated in vivo against Plasmodium berghei (NK65) infections in mice during early, established and residual infections. Chloroquine (20mg/kg) and pyrimethamine (1.2mg/kg) were used as reference drugs. The results revealed that the extract contained some phytochemical constituents and is toxicologically safe by oral administration. The extract significantly reduced the parasitaemia by the 200 and 400mg/kg doses in the all three in vivo assessment assays. However, the extract did not significantly increase the survival time of the infected mice. The observed pharmacological activities suggest that the Malaysian folkloric medicinal application of Cocos nucifera has a pharmacological basis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Assessment of in vivo antimalarial activity of arteether and garlic oil combination therapy

    Directory of Open Access Journals (Sweden)

    Vathsala Palakkod Govindan

    2016-03-01

    Full Text Available The study evaluates in vivo antimalarial activity of arteether and garlic pearl oil combination in Plasmodium berghei-infected mouse model of malaria. 72 h (Day 3 post infection, at 2–4% parasitemia, mice were treated with single dose intramuscular injection of α-β arteether, at 750 μg, in combination with three 100 μL oral doses of garlic pearl oil on Day 3, Day 4 and Day 5. Following the treatment, 100% protection and survival of mice were observed. Inhibition of parasitemia in combination treated animals and protection during recrudescence interval of α-β arteether monotherapy was observed in Giemsa-stained blood smears. In addition, a striking increase in anti-parasite antibody IgG contributing protective immunity during the recrudescence phase was observed. These results correlate with western blot analysis, where sera from the recrudescence stage and later period of arteether and garlic oil combination treated animals found to interact with several parasite specific proteins as compared to controls. The present approach shows that arteether and garlic pearl oil combination provides complete protection in P. berghei-infected mice. Thus, for the first time, garlic pearl oil appears to be an ideal antimalarial candidate in artemisinin combination therapy.

  2. In Vitro and In Vivo Potentiation of Artemisinin and Synthetic Endoperoxide Antimalarial Drugs by Metalloporphyrins

    Science.gov (United States)

    Benoit-Vical, Françoise; Robert, Anne; Meunier, Bernard

    2000-01-01

    The in vitro potentiation of artemisinin by synthetic manganese porphyrin complexes has been recently reported (F. Benoit-Vical, A. Robert, and B. Meunier, Antimicrob. Agents Chemother. 43:2555–2558, 1999). Since the activity of artemisinin and synthetic antimalarial endoperoxides is related to their interaction with heme (S. R. Meshnick, A. Thomas, A. Ranz, C. M. Xu, and H. Z. Pan, Mol. Biochem. Parasitol. 49:181–190, 1991), an improvement of their efficiency may be expected in the presence of a synthetic metalloporphyrin having the same activating role as endogenous heme. With the aim to boost the activity of antimalarial endoperoxide drugs, we were thus led to evaluate the in vitro and in vivo potentiation of natural and synthetic drugs of this family by a nontoxic and cheap metalloporphyrin. The potentiation of artemisinin, β-artemether, and arteflene (Ro 42-1611) by synthetic heme models is reported. In vitro studies on the chloroquine-resistant Plasmodium falciparum FcB1-Columbia strain indicate a synergistic effect of the manganese complex of meso-tetrakis(4-sulfonatophenylporphyrin) (Mn-TPPS) on the activity of artemisinin or β-artemether, whereas this heme model has no influence on the activity of arteflene. A significant synergistic effect on rodent malaria was also observed in vivo between artemisinin and Mn-TPPS using Plasmodium vinckei petteri strain. PMID:10991867

  3. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model.

    Science.gov (United States)

    Bamunuarachchi, Gayan S; Ratnasooriya, Wanigasekara D; Premakumara, Sirimal; Udagama, Preethi V

    2013-12-01

    Artemisinin isolated from Artemisia annua is the most potent antimalarial drug against chloroquine-resistant Plasmodium falciparum malaria. Artemisia vulgaris, an invasive weed, is the only Artemisia species available in Sri Lanka. A pilot study was undertaken to investigate the antiparasitic activity of an A. vulgaris ethanolic leaf extract (AVELE) in a P. berghei ANKA murine malaria model that elicits pathogenesis similar to falciparum malaria. A 4-day suppressive and the curative assays determined the antiparasitic activity of AVELE using four doses (250, 500, 750 and 1000 mg/kg), Coartem® as the positive control and 5% ethanol as the negative control in male ICR mice infected with P. berghei. The 500, 750 and 1000 mg/kg doses of AVELE significantly (p ≤ 0.01) inhibited parasitaemia by 79.3, 79.6 and 87.3% respectively, in the 4-day suppressive assay, but not in the curative assay. Chronic administration of the high dose of AVELE ruled out overt signs of toxicity and stress as well as hepatotoxicity, renotoxicity and haematotoxicity. The oral administration of a crude ethonolic leaf extract of A. vulgaris is non-toxic and possesses potent antimalarial properties in terms of antiparasitic activity.

  4. Safety of antimalarial medications for use while scuba diving in malaria Endemic Regions.

    Science.gov (United States)

    Petersen, Kyle; Regis, David P

    2016-01-01

    Recreational diving occurs annually in areas of the world where malaria is endemic. The safety and efficacy of antimalarials for travelers in a hyperbaric environment is unknown. Of particular concern would be medications with adverse effects that could either mimic diving related illnesses such as barotrauma, decompression sickness (DCS) and gas toxicities, or increase the risk for such illnesses. We conducted a review of PubMed and Cochrane databases to determine rates of neurologic adverse effects or other effects from antimalarials that may be a problem in the diving environment. One case report was found on diving and mefloquine. Multiple case reports and clinical trials were found describing neurologic adverse effects of the major chemoprophylactic medications atovaquone/proguanil, chloroquine, doxycycline, mefloquine, and primaquine. Of the available literature, atovaquone/proguanil and doxycycline are most likely the safest agents and should be preferred; atovaquone/proguanil is superior due to reduced rates of sunburn in the marine environment. Primaquine also appears to be safe, but has reduced efficacy against P. falciparum ; mefloquine possesses the highest rate of neurologic side effects and therefore these agents should be limited to extreme cases of patients intolerant to other agents. Chloroquine appears unsafe in the hyperbaric environment and should be avoided. More studies are required to include database reviews of returned divers traveling to malaria endemic areas and randomized controlled trials in the hyperbaric environments.

  5. PS-15: a potent, orally active antimalarial from a new class of folic acid antagonists.

    Science.gov (United States)

    Canfield, C J; Milhous, W K; Ager, A L; Rossan, R N; Sweeney, T R; Lewis, N J; Jacobus, D P

    1993-07-01

    A new, orally-active inhibitor of dihydrofolic acid reductase (DHFR), PS-15 (N-(3-(2,4,5-trichlorophenoxy)propyloxy)-N'-(1-methylethyl)- imidocarbonimidic diamide hydrochloride), has significant activity against drug-resistant Plasmodium falciparum. It is not cross-resistant with other inhibitors of DHFR (e.g., pyrimethamine and cycloguanil). Although it bears similarities to proguanil, PS-15 represents a new antifolate class of drugs that we have named oxyguanils or hydroxylamine-derived biguanides. This compound displays intrinsic antimalarial activity and also is metabolized in vivo to WR99210, an extremely active triazine inhibitor of DHFR. When tested in vitro against drug-resistant clones of P. falciparum, PS-15 was more active than proguanil, and the putative metabolite, WR99210, was more active than the proguanil metabolite cycloguanil. The drug is also more active as well as less toxic than proguanil when administered orally to mice infected with P. berghei. When administered orally to Aotus monkeys infected with multidrug-resistant P. falciparum, PS-15 was more active than either proguanil or WR99210. In 1973, WR99210 underwent clinical trials for safety and tolerance in volunteers. The trials showed gastrointestinal intolerance and limited bioavailability; further development of the drug was abandoned. Because PS-15 has intrinsic antimalarial activity, is not cross-resistant with other DHFR inhibitors, and can be metabolized to WR99210 in vivo, oral administration of this new drug should circumvent the shortcomings and retain the advantages found with both proguanil and WR99210.

  6. Phytochemical Analysis and Antimalarial Activity Aqueous Extract of Lecaniodiscus cupanioides Root

    Directory of Open Access Journals (Sweden)

    Mikhail Olugbemiro Nafiu

    2013-01-01

    Full Text Available Root aqueous extract of Lecaniodiscus cupanioides was evaluated for antimalarial activity and analyzed for its phytochemical constituents. Twenty-four (24 albino mice were infected by intraperitoneal injection of standard inoculum of chloroquine sensitive Plasmodium berghei (NK 65. The animals were randomly divided into 6 groups of 3 mice each. Group 1 served as the control while groups II–IV were orally administered 50, 150, and 250 mg/kg body weights of extract. Groups 5 and 6 received 1.75 and 5 mg/kg of artesunate and chloroquine, respectively. The results of the phytochemical analysis showed the presence of alkaloids (2.37%, saponin (0.336, tannin (0.012 per cent, phenol (0.008 per cent, and anthraquinone (0.002 per cent. There was 100 per cent parasite inhibition in the chloroquine group and 70 per cent in the 50 mg/kg body weight on day 12, respectively. The mean survival time (MST, for the control group was 14 days, artesunate 16 days, and chloroquine 30 days, while the groups that received 50 and 250 mg/kg body weight recorded similar MST of 17 days and the 150 mg/kg body weight group recorded 19 days. The results obtained indicated that the aqueous extract of Lecaniodiscus cupanioides may provide an alternative antimalarial.

  7. The Effectiveness of Local Plants from Lom and Sawang Ethnics as Antimalarial Medicine

    Directory of Open Access Journals (Sweden)

    Henny Helmi

    2016-09-01

    Full Text Available Native people or ethnic societies that live in endemic malaria islands such as in Bangka Island and Belitung Island have used many medicinal plants to cure malaria. Leaves of kesembung (Scaevola taccada (Gaertn Roxb, roots of kebentak (Wikstroemia androsaemofolia Decne, and roots of medang mencena (Dapniphyllum laurinum (Benth are the examples. This research was aimed to investigate the present of some biochemical compound and evaluate the antimalarial activity of ethanol extract of the plants against Plasmodium falciparum 3D7 in vitro. The IC50 level was determined through visual observation under microscope over 5000 of giemsa-stained erythrocytes then analyzed by probit analysis. Results showed that kebentak root ethanol extract was effective to inhibit P. falciparum 3D7 with level 0.485 µg/mL. Furthermore, the IC50 level of kesembung leaves and medang root were 44.352 µg/mL and 1486.678 µg/mL respectively. Phytochemical test result showed that kebentak leaf ethanol crude extract contained triterpenoid, kesembung root contained phenol and tannins; moreover, medang root contained alkaloid, saponin, and triterpenoid.How to CiteHelmi, H., Afriyansyah, B. & Ekasari, W. (2016. The Effectiveness of Local Plants from Lom and Sawang Ethnics as Antimalarial Medicine. Biosaintifika: Journal of Biology & Biology Education, 8(2, 193-200. 

  8. Antimalarial drug toxicities in patients with cutaneous lupus and dermatomyositis: A retrospective cohort study.

    Science.gov (United States)

    Mittal, Lavanya; Zhang, Lingqiao; Feng, Rui; Werth, Victoria P

    2018-01-01

    Although existing evidence demonstrates the efficacy of antimalarials for rheumatic skin disease, the safety of these medications, and particularly quinacrine, remains debated. We investigated the toxicity risk associated with antimalarials in patients with cutaneous lupus erythematosus and dermatomyositis. A total of 532 patients (mean age, 52.29 years; sample composition by sex, 85.15% female vs 14.85% male) were selected from 2 databases on cutaneous lupus erythematosus (69.92%) and dermatomyositis (30.08%). Details regarding treatment and toxicities were extracted and 5 treatment courses were defined (ie, hydroxychloroquine [HCQ], chloroquine [CQ], quinacrine [Q], HCQ-Q combination therapy [HCQ-Q], and CQ-Q combination therapy [CQ-Q]). The hazard ratio for each major toxicity was estimated by using the Cox proportional hazard model to compare the different treatments with HCQ. The most common toxicities included cutaneous eruption, gastrointestinal upset, mucocutaneous dyspigmentation, neurologic toxicity, and retinopathy. The hazards of cutaneous eruption, gastrointestinal upset, and neurologic toxicities were lower with HCQ-Q than with HCQ; however, this may represent selection bias. Although there was increased retinopathy risk with CQ and CQ-Q versus with HCQ, retinopathy was not seen with Q. Retrospective analysis. With the exception of retinopathy, which was not seen with Q, the risks for other toxicities associated with Q monotherapy or combination treatment were not significantly different from those with HCQ. Published by Elsevier Inc.

  9. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.

    Science.gov (United States)

    Boss, Christoph; Aissaoui, Hamed; Amaral, Nathalie; Bauer, Aude; Bazire, Stephanie; Binkert, Christoph; Brun, Reto; Bürki, Cédric; Ciana, Claire-Lise; Corminboeuf, Olivier; Delahaye, Stephane; Dollinger, Claire; Fischli, Christoph; Fischli, Walter; Flock, Alexandre; Frantz, Marie-Céline; Girault, Malory; Grisostomi, Corinna; Friedli, Astrid; Heidmann, Bibia; Hinder, Claire; Jacob, Gael; Le Bihan, Amelie; Malrieu, Sophie; Mamzed, Saskia; Merot, Aurelien; Meyer, Solange; Peixoto, Sabrina; Petit, Nolwenn; Siegrist, Romain; Trollux, Julien; Weller, Thomas; Wittlin, Sergio

    2016-09-20

    More than 40 % of the world's population is at risk of being infected with malaria. Most malaria cases occur in the countries of sub-Saharan Africa, Central and South America, and Asia. Resistance to standard therapy, including artemisinin combinations, is increasing. There is an urgent need for novel antimalarials with new mechanisms of action. In a phenotypic screen, we identified a series of phenylalanine-based compounds that exhibit antimalarial activity via a new and yet unknown mechanism of action. Our optimization efforts culminated in the selection of ACT-451840 [(S,E)-N-(4-(4-acetylpiperazin-1-yl)benzyl)-3-(4-(tert-butyl)phenyl)-N-(1-(4-(4-cyanobenzyl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl)acrylamide] for clinical development. Herein we describe our optimization efforts from the screening hit to the potential drug candidate with respect to antiparasitic activity, drug metabolism and pharmacokinetics (DMPK) properties, and in vivo pharmacological efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluation of the Quality of Artemisinin-Based Antimalarial Medicines Distributed in Ghana and Togo

    Directory of Open Access Journals (Sweden)

    Dorcas Osei-Safo

    2014-01-01

    Full Text Available This study, conducted as part of our overall goal of regular pharmacovigilance of antimalarial medicines, reports on the quality of 132 artemisinin-based antimalarial medicines distributed in Ghana and Togo. Three methods were employed in the quality evaluation—basic (colorimetric tests for establishing the identity of the requisite active pharmaceutical ingredients (APIs, semi-quantitative TLC assay for the identification and estimation of API content, and HPLC assay for a more accurate quantification of API content. From the basic tests, only one sample totally lacked API. The HPLC assay, however, showed that 83.7% of the ACTs and 57.9% of the artemisinin-based monotherapies failed to comply with international pharmacopoeia requirements due to insufficient API content. In most of the ACTs, the artemisinin component was usually the insufficient API. Generally, there was a good correlation between the HPLC and SQ-TLC assays. The overall failure rates for both locally manufactured (77.3% and imported medicines (77.5% were comparable. Similarly the unregistered medicines recorded a slightly higher overall failure rate (84.7% than registered medicines (70.8%. Only two instances of possible cross-border exchange of medicines were observed and there was little difference between the medicine quality of collections from border towns and those from inland parts of both countries.

  11. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Science.gov (United States)

    2011-01-01

    Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal medicinal products already

  12. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Directory of Open Access Journals (Sweden)

    Wells Timothy NC

    2011-03-01

    Full Text Available Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal

  13. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica

    Directory of Open Access Journals (Sweden)

    Misael Chinchilla

    2012-06-01

    Full Text Available Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biológica Alberto Manuel Brenes (REBAMB, were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P. berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae; Xanthosoma undipes (Araceae; Iriartea deltoidea (Arecaceae; Neurolaena lobata (Asteraceae; Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae; Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae; Hampea appendiculata (Malvaceae; Ruagea glabra, Guarea glabra (Meliaceae; Psidium guajava (Myrtaceae; Bocconia frutescens (Papaveraceae; Piper friedrichsthalii (Piperaceae; Clematis dioica (Ranunculaceae; Prunus annularis (Rosaceae; Siparuna thecaphora (Siparunaceae; Solanum arboreum, Witheringia solanácea (Solanaceae; Ticodendrum incognitum (Ticodendraceae; Heliocarpus appendiculatus (Tiliaceae and Myriocarpa longipes (Urticaceae. We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9μg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  14. Substantially Higher and Earlier Occurrence of Anti-Tuberculosis Drug-Related Adverse Reactions in HIV Coinfected Tuberculosis Patients: A Matched-Cohort Study.

    Science.gov (United States)

    Matono, Takashi; Nishijima, Takeshi; Teruya, Katsuji; Morino, Eriko; Takasaki, Jin; Gatanaga, Hiroyuki; Kikuchi, Yoshimi; Kaku, Mitsuo; Oka, Shinichi

    2017-11-01

    Little information exists on the frequency, severity, and timing of first-line anti-tuberculosis drug-related adverse events (TB-AEs) in HIV-tuberculosis coinfected (HIV-TB) patients in the antiretroviral therapy (ART) era. This matched-cohort study included HIV-TB patients as cases and HIV-uninfected tuberculosis (non-HIV-TB) patients as controls. Tuberculosis was culture-confirmed in both groups. Cases were matched to controls in a 1:4 ratio on age, sex, and year of diagnosis. TB-AEs were defined as Grade 2 or higher requiring drug discontinuation/regimen change. From 2003 to 2015, 94 cases and 376 controls were analyzed (95% men, 98% Asians). Standard four-drug combination therapy was initiated in 91% of cases and 89% of controls (p = 0.45). Cases had a higher frequency of TB-AE [51% (48/94) vs. 10% (39/376), p tuberculosis treatment. HIV infection was an independent risk factor for TB-AEs in the multivariate Cox analysis [adjusted HR (aHR): 6.96; 95% confidence interval: 3.93-12.3]. TB-AEs occurred more frequently in HIV-TB than in non-HIV-TB patients, and were more severe. The majority of TB-AEs occurred within 4 weeks of initiating anti-tuberculosis treatment. Because TB-AEs may delay ART initiation, careful monitoring during this period is warranted in coinfected patients.

  15. Arrival of Imidazo[2,1-b]thiazole-5-carboxamides: Potent Anti-tuberculosis Agents That Target QcrB.

    Science.gov (United States)

    Moraski, Garrett C; Seeger, Natalie; Miller, Patricia A; Oliver, Allen G; Boshoff, Helena I; Cho, Sanghyun; Mulugeta, Surafel; Anderson, Jeffery R; Franzblau, Scott G; Miller, Marvin J

    2016-06-10

    Increasing interest in the potent anti-tuberculosis activity and the novel target (QcrB) of imidazo[1,2-a]pyridine-3-carboxamides encouraged extended structure-activity relationship studies of additional scaffolds. This study reports on the in vitro profiling of the imidazo[2,1-b]thiazole-5-carboxamides as a new promising class of anti-tuberculosis compounds endowed with nanomolar potency against replicating and drug-resistant Mycobacterium tuberculosis (Mtb) as well as low toxicity to VERO cells. Compounds 6, 16, and 17 had MIC values 100 μM. On-target selectivity of this series was confirmed by cross-resistance of specific QcrB mutants as well as the hypersusceptibility of a mutant with a functional gene deletion of the alternative cytochrome bd oxidase. Additionally, to demonstrate selectivity, three analogues (6, 15, 17) were broadly screened against a diverse set of eight strains of bacteria, including both Gram-positive and Gram-negative as well as six disease-causing non-tuberculosis mycobacteria. Finally, compounds 16 and 17 were found to be active in macrophages infected with Mtb.

  16. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

    Directory of Open Access Journals (Sweden)

    Kryzhanovsky D.G.

    2014-11-01

    Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

  17. Drug Development of the Antimalarial Agent Artemisinin: Total Synthesis, Analog Synthesis, and Structure-Activity Relationship Studies

    Science.gov (United States)

    1990-08-15

    jHoluenesulfonyl hydrazide in tetrahydrofuran (THF), solvolysis of the ketal group and subsequent hydrazone formation was observed. Under base...ARTEMISININ: TOTAL SYNTHESIS , ANALOG SYNTHESIS , AND STRUCTURE-ACTIVITY RELATIONSHIP STUDIES mc Mitchell A. Avery, Ph.D. SRI International...Antimalarial Agent Artemisinin: Total Synthesis , Analog Synthesis and Structure-Activity Relationship Studies 12 PERSONAL AUTHOR(S) Mitchell A

  18. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products

    Directory of Open Access Journals (Sweden)

    Alaíde Braga de Oliveira

    2009-08-01

    Full Text Available Malaria is still the most destructive and dangerous parasitic infection in many tropical and subtropical countries. The burden of this disease is getting worse, mainly due to the increasing resistance of Plasmodium falciparum against the widely available antimalarial drugs. There is an urgent need for new, more affordable and accessible antimalarial agents possessing original modes of action. Natural products have played a dominant role in the discovery of leads for the development of drugs to treat human diseases, and this fact anticipates that new antimalarial leads may certainly emerge from tropical plant sources. This present review covers most of the recently-published non-alkaloidal natural compounds from plants with antiplasmodial and antimalarial properties, belonging to the classes of terpenes, limonoids, flavonoids, chromones, xanthones, anthraquinones, miscellaneous and related compounds, besides the majority of papers describing antiplasmodial crude extracts published in the last five years not reviewed before. In addition, some perspectives and remarks on the development of new drugs and phytomedicines for malaria are succinctly discussed.

  19. Pharmacokinetics of First-Line Antituberculosis Drugs Using WHO Revised Dosage in Children With Tuberculosis With and Without HIV Coinfection.

    Science.gov (United States)

    Kwara, Awewura; Enimil, Anthony; Gillani, Fizza S; Yang, Hongmei; Sarfo, Anima M; Dompreh, Albert; Ortsin, Antoinette; Osei-Tutu, Lawrence; Kwarteng Owusu, Sandra; Wiesner, Lubbe; Norman, Jennifer; Kurpewski, Jaclynn; Peloquin, Charles A; Ansong, Daniel; Antwi, Sampson

    2016-12-01

    Pharmacokinetic data on the first-line antituberculosis drugs using the World Health Organization (WHO) revised dosages for children are limited. We investigated the pharmacokinetics of these drugs in children who were mostly treated with revised dosages. Children with tuberculosis on first-line therapy for at least 4 weeks had blood samples collected at predose, 1, 2, 4, and 8 hours postdose. Drug concentrations were determined by validated liquid chromatography mass spectrometry methods, and pharmacokinetic parameters were calculated using noncompartmental analysis. Factors associated with plasma peak concentration (C max ) and the area under the time-concentration curve 0-8 hours (AUC 0-8h ) of each drug was examined using univariate and multivariate analysis. Of the 62 children, 32 (51.6%) were male, 29 (46.8%) were younger than 5 years old, and 28 (45.2%) had human immunodeficiency virus (HIV) coinfection. Three patients had undetectable pyrazinamide and ethambutol concentrations. The median (interquartile range) AUC 0-8h for isoniazid was 17.7 (10.2-23.4) µg·h mL -1 , rifampin was 26.0 (15.3-36.1) µg·h mL -1 , pyrazinamide was 144.6 (111.5-201.2) µg·h mL -1 , and ethambutol was 6.7 (3.8-10.4) µg·h mL -1 . Of the children who received recommended weight-band dosages, 44/51 (86.3%), 46/56 (82.1%), 27/56 (48.2%), and 21/51 (41.2%) achieved target C max for isoniazid, pyrazinamide, ethambutol, and rifampin, respectively. In multivariate analysis, age, sex, HIV coinfection status, and drug dosage in milligrams per kilogram were associated with the drugs' plasma drug C max or AUC 0-8h . The revised dosages appeared to be adequate for isoniazid and pyrazinamide, but not for rifampin or ethambutol in this population. Higher dosages of rifampin and ethambutol than currently recommended may be required in most children. © The Author 2015. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society. All rights reserved. For

  20. Quinolinemethanol Antimalarials.

    Science.gov (United States)

    1974-12-01

    C, 11, N 6,-Cl!32 60 125- 126 C17111,11 3N20 C, H1 to give a yellow solid, which was recrystallized from EtOll as. S-Cl!3 64 9S8-99 CI7IIIIF3N 2O ,11...The ether wws 2-Pyridyl 4-Quinolyl ketiones (Table V).-To :tn ethereal distilled, antd [ie residuev wais recrystallized front ye ll ieldl rsolu il if n...isonitroso-3- chloro- acetanilide , cyclizing in cond H2 S04 (80°), and separating by fractional precipitation by u. 2-Methoxv-4’-chloroac 5-660-. Mp S- ; nmr

  1. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil.

    Science.gov (United States)

    Ferreira, Mariana C; Cantrell, Charles L; Wedge, David E; Gonçalves, Vívian N; Jacob, Melissa R; Khan, Shabana; Rosa, Carlos A; Rosa, Luiz H

    2017-10-01

    Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.

  2. Effects of anti-malarial drugs on the electrocardiographic QT interval modelled in the isolated perfused guinea pig heart system

    Directory of Open Access Journals (Sweden)

    Kotaki Hajime

    2010-11-01

    Full Text Available Abstract Background Concern over the potential cardiotoxicity of anti-malarial drugs inducing a prolonged electrocardiographic QT interval has resulted in the almost complete withdrawal from the market of one anti-malarial drug - halofantrine. The effects on the QT interval of four anti-malarial drugs were examined, using the guinea pig heart. Methods The guinea pig heart was isolated, mounted on a Langendorff apparatus, and was then perfused with pyruvate-added Klebs-Henseleit solutions containing graded concentrations of the four agents such as quinidine (0.15 - 1.2 μM, quinine (0.3 - 2.4 μM, halofantrine (0.1 - 2.0 μM and mefloquine (0.1 - 2.0 μM. The heart rate-corrected QaTc intervals were measured to evaluate drug-induced QT prolongation effects. Results Quinidine, quinine, and halofantrine prolonged the QaTc interval in a dose-dependent manner, whereas no such effect was found with mefloquine. The EC50 values for the QaTc prolongation effects, the concentration that gives a half-maximum effect, were quinidine Conclusions In this study, an isolated, perfused guinea pig heart system was constructed to assess the cardiotoxic potential of anti-malarial drugs. This isolated perfused guinea pig heart system could be used to test newly developed anti-malarial drugs for their inherent QT lengthening potential. More information is required on the potential variation in unbound drug concentrations in humans, and their role in cardiotoxicity.

  3. Diagnostic capacity and antimalarial availability in Papua New Guinea before the introduction of a revised national malaria treatment protocol.

    Science.gov (United States)

    Kurumop, Serah F; Pulford, Justin; Mueller, Ivo; Siba, Peter M; Hetzel, Manuel W

    2014-01-01

    Papua New Guinea (PNG) introduced a revised national malaria treatment protocol (NMTP) in late 2011. Successful implementation of the revised protocol requires all health facilities in PNG to have reliable access to microscopy or malaria rapid diagnostic kits as well as a reliable supply of all recommended first-line medications. This paper presents findings from a study that sought to assess the availability of microscopy, malaria rapid diagnostic kits and recommended first-line antimalarial medication in Papua New Guinean health facilities across the country before the introduction of the revised treatment protocol. A country-wide cross-sectional survey of 79 randomly selected health centres, health subcentres and aid posts. Data were collected via an interviewer-administered questionnaire completed with the officer in charge of participating health facilities. Overall, 15% of surveyed health facilities had unexpired rapid diagnostic test (RDT) in stock or working microscopy available. A recommended first-line antimalarial for uncomplicated malaria was available in 85% of health facilities. The preferred first-line antimalarial combination for treating severe malaria was present in 42% of health facilities, although 68% had the capacity to provide either the preferred or recommended substitute first-line medication for severe malaria. The total number of health workers employed in the 79 surveyed health facilities was 443, only 3 of whom were medical doctors. Our findings indicate that diagnostic capacity was low in Papua New Guinean health facilities before the introduction of the new NMTP and that access to recommended first-line antimalarial medication was variable. Substantial improvements in diagnostic capacity and antimalarial procurement and distribution will need to be made if the revised protocol is to be adhered to.

  4. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil

    Directory of Open Access Journals (Sweden)

    Mariana C Ferreira

    Full Text Available BACKGROUND Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae is threatened by extinction and is a promising target to recover endophytic fungi. OBJECTIVE The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. METHODS The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. FINDINGS Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. MAIN CONCLUSION Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the

  5. Simple field assays to check quality of current artemisinin-based antimalarial combination formulations.

    Directory of Open Access Journals (Sweden)

    Jean-Robert Ioset

    Full Text Available INTRODUCTION: Malaria continues to be one of the major public health problems in Africa, Asia and Latin America. Artemisinin derivatives (ARTs; artesunate, artemether, and dihydroartemisinin derived from the herb, Artemisia annua, are the most effective antimalarial drugs available providing rapid cures. The World Health Organisation (WHO has recommended that all antimalarials must be combined with an artemisinin component (artemisinin-based combination therapy; ACT for use as first line treatment against malaria. This class of drugs is now first-line policy in most malaria-endemic countries. Reports of ad hoc surveys from South East Asia show that up to 50% of the artesunate currently sold is counterfeit. Drug quality is rarely assessed in resource poor countries in part due to lack of dedicated laboratory facilities which are expensive to build, equip and maintain. With a view to address this unmet need we developed two novel colour reaction assays that can be used in the field to check the quality of ARTs. METHODS AND FINDINGS: Our assays utilise thin layer chromatography silica gel sheets and 2, 4 dinitrophenylhydrazine or 4-Benzoylamino-2, 5-dimethoxybenzenediazonium chloride hemi (zinc chloride salt as the reagents showing a pink or blue product respectively only in the presence ARTs. We are able to detect as low as 10% of ARTs in ACTs (WINTHROP--artesunate/amodiaquine, Coartem--artemether/lumefantrine and Duocortexcin--dihydroartemisinin/piperaquine. The assays have been validated extensively by testing eighty readily accessible and widely used drugs in malaria endemic countries. None of the other antimalarial drugs or a range of commonly used excipients, antiretroviral drugs or other frequently used drugs from the WHO essential drugs list such as analgesics or antibiotics are detected with our assays. CONCLUSIONS: Our two independent assays requiring no specialist training are specific, simple to use, rapid, robust, reproducible

  6. Simple field assays to check quality of current artemisinin-based antimalarial combination formulations.

    Science.gov (United States)

    Ioset, Jean-Robert; Kaur, Harparkash

    2009-09-30

    Malaria continues to be one of the major public health problems in Africa, Asia and Latin America. Artemisinin derivatives (ARTs; artesunate, artemether, and dihydroartemisinin) derived from the herb, Artemisia annua, are the most effective antimalarial drugs available providing rapid cures. The World Health Organisation (WHO) has recommended that all antimalarials must be combined with an artemisinin component (artemisinin-based combination therapy; ACT) for use as first line treatment against malaria. This class of drugs is now first-line policy in most malaria-endemic countries. Reports of ad hoc surveys from South East Asia show that up to 50% of the artesunate currently sold is counterfeit. Drug quality is rarely assessed in resource poor countries in part due to lack of dedicated laboratory facilities which are expensive to build, equip and maintain. With a view to address this unmet need we developed two novel colour reaction assays that can be used in the field to check the quality of ARTs. Our assays utilise thin layer chromatography silica gel sheets and 2, 4 dinitrophenylhydrazine or 4-Benzoylamino-2, 5-dimethoxybenzenediazonium chloride hemi (zinc chloride) salt as the reagents showing a pink or blue product respectively only in the presence ARTs. We are able to detect as low as 10% of ARTs in ACTs (WINTHROP--artesunate/amodiaquine, Coartem--artemether/lumefantrine and Duocortexcin--dihydroartemisinin/piperaquine). The assays have been validated extensively by testing eighty readily accessible and widely used drugs in malaria endemic countries. None of the other antimalarial drugs or a range of commonly used excipients, antiretroviral drugs or other frequently used drugs from the WHO essential drugs list such as analgesics or antibiotics are detected with our assays. Our two independent assays requiring no specialist training are specific, simple to use, rapid, robust, reproducible, inexpensive and, have successfully resulted in detecting two

  7. Methods for implementing a medicine outlet survey: lessons from the anti-malarial market

    Science.gov (United States)

    2013-01-01

    Background In recent years an increasing number of public investments and policy changes have been made to improve the availability, affordability and quality of medicines available to consumers in developing countries, including anti-malarials. It is important to monitor the extent to which these interventions are successful in achieving their aims using quantitative data on the supply side of the market. There are a number of challenges related to studying supply, including outlet sampling, gaining provider cooperation and collecting accurate data on medicines. This paper provides guidance on key steps to address these issues when conducting a medicine outlet survey in a developing country context. While the basic principles of good survey design and implementation are important for all surveys, there are a set of specific issues that should be considered when conducting a medicine outlet survey. Methods This paper draws on the authors’ experience of designing and implementing outlet surveys, including the lessons learnt from ACTwatch outlet surveys on anti-malarial retail supply, and other key studies in the field. Key lessons and points of debate are distilled around the following areas: selecting a sample of outlets; techniques for collecting and analysing data on medicine availability, price and sales volumes; and methods for ensuring high quality data in general. Results and conclusions The authors first consider the inclusion criteria for outlets, contrasting comprehensive versus more focused approaches. Methods for developing a reliable sampling frame of outlets are then presented, including use of existing lists, key informants and an outlet census. Specific issues in the collection of data on medicine prices and sales volumes are discussed; and approaches for generating comparable price and sales volume data across products using the adult equivalent treatment dose (AETD) are explored. The paper concludes with advice on practical considerations

  8. High adherence to antimalarials and antibiotics under integrated community case management of illness in children less than five years in eastern Uganda.

    Directory of Open Access Journals (Sweden)

    Joan N Kalyango

    Full Text Available BACKGROUND: Development of resistance to first line antimalarials led to recommendation of artemisinin based combination therapies (ACTs. High adherence to ACTs provided by community health workers (CHWs gave reassurance that community based interventions did not increase the risk of drug resistance. Integrated community case management of illnesses (ICCM is now recommended through which children will access both antibiotics and antimalarials from CHWs. Increased number of medicines has been shown to lower adherence. OBJECTIVE: To compare adherence to antimalarials alone versus antimalarials combined with antibiotics under ICCM in children less than five years. METHODS: A cohort study was nested within a cluster randomized trial that had CHWs treating children less than five years with antimalarials and antibiotics (intervention areas and CHWs treating children with antimalarials only (control areas. Children were consecutively sampled from the CHWs' registers in the control areas (667 children; and intervention areas (323 taking antimalarials only and 266 taking antimalarials plus antibiotics. The sampled children were visited at home on day one and four of treatment seeking. Adherence was assessed using self reports and pill counts. RESULTS: Adherence in the intervention arm to antimalarials alone and antimalarials plus antibiotics arm was similar (mean 99% in both groups but higher than adherence in the control arm (antimalarials only (mean 96%. Forgetfulness (38% was the most cited reason for non-adherence. At adjusted analysis: absence of fever (OR = 3.3, 95%CI =1.6-6.9, seeking care after two or more days (OR = 2.2, 95%CI = 1.3-3.7, not understanding instructions given (OR = 24.5, 95%CI = 2.7-224.5, vomiting (OR = 2.6, 95%CI = 1.2-5.5, and caregivers' perception that the child's illness was not severe (OR = 2.0, 95%CI = 1.1-3.8 were associated with non-adherence. CONCLUSIONS: Addition of antibiotics to antimalarials did not lower adherence

  9. Photoreactivity of biologically active compounds. VIII. Photosensitized polymerization of lens proteins by antimalarial drugs in vitro.

    Science.gov (United States)

    Kristensen, S; Wang, R H; Tønnesen, H H; Dillon, J; Roberts, J E

    1995-02-01

    The drugs commonly used in the treatment of malaria are photochemically unstable. Several of these compounds cause dermal and ocular toxic reactions that may be light induced. The in vitro photopolymerization of calf lens proteins in the presence of antimalarial drugs was studied as part of a screening of the photochemical properties and phototoxic capabilities of these compounds. The pseudo-first-order rate constant for the reaction was calculated, and related to the amount of light absorbed by the compounds in order to determine the relative photosensitizing effect of each drug. The reaction mechanisms were evaluated by adding a variety of quenchers to the reaction medium during irradiation. Based on the results obtained in this study and previous knowledge about the pharmacokinetic behavior of these compounds, several of the drugs investigated have to be considered as potential photosensitizers in the human lens, the retina and the skin.

  10. Phenylpropanoids and furanocoumarins as antibacterial and antimalarial constituents of the Bhutanese medicinal plant Pleurospermum amabile.

    Science.gov (United States)

    Wangchuk, Phurpa; Pyne, Stephen G; Keller, Paul A; Taweechotipatr, Malai; Kamchonwongpaisane, Sumalee

    2014-07-01

    With the objective of determining safety and verifying the traditional uses of the Bhutanese medicinal plant, Pleurospermum amabile Craib & W. W. Smith, we investigated its crude extracts and the isolated phytochemicals for their biological activities. Four phenylpropanoids [(E)-isomyristicin (1), (E)-isoapiol (2), methyl eugenol (3) and (E)-isoelemicin (4)] and six furanocoumarins [psoralen (5), bergapten (6), isoimperatorin (7), isopimpinellin (8), oxypeucedanin hydrate (9) and oxypeucedanin methanolate (10)] were isolated from this plant. Among the test samples, compound 10 showed weak antibacterial activity against Bacillus subtilis and best antimalarial activity against the Plasmodium falciparum strains, TM4/8.2 (chloroquine and antifolate sensitive) and K1CB1 (multidrug resistant). None of the test samples showed cytotoxicity. This study generated scientific data that support the traditional medical uses of the plant.

  11. The in vivo antimalarial activity of methylene blue combined with pyrimethamine, chloroquine and quinine

    Directory of Open Access Journals (Sweden)

    Giovanny Garavito

    2012-09-01

    Full Text Available The effectiveness of methylene blue (MB combined with pyrimethamine (PYR, chloroquine (CQ or quinine (Q was examined in a classical four-day suppressive test against a causative agent of rodent malaria, Plasmodium berghei. A marked potentiation was observed when MB was administered at a non-curative dose of 15 mg/kg/day in combination with PYR (0.19 mg/kg/day or Q (25 mg/kg/day. No synergy was found between MB (15 mg/Kg and CQ (0.75 mg/Kg. Our results suggest that the combination of MB with PYR or Q may improve the efficacy of these currently used antimalarial drugs.

  12. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    Science.gov (United States)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  13. Enhancement of the antimalarial efficacy of amodiaquine by chlorpheniramine in vivo

    Directory of Open Access Journals (Sweden)

    Akintunde Sowunmi

    2007-06-01

    Full Text Available Resistance in Plasmodium falciparum to amodiaquine (AQ can be reversed in vitro with with antihistaminic and tricyclic antidepressant compounds, but its significance in vivo is unclear. The present report presents the enhancement of the antimalarial efficacy of AQ by chlorpheniramine, an H1 receptor antagonist that reverses chloroquine (CQ resistance in vitro and enhances its efficacy in vivo, in five children who failed CQ and/or AQ treatment, and who were subsequently retreated and cured with a combination of AQ plus CP, despite the fact that parasites infecting the children harboured mutant pfcrtT76 and pfmdr1Y86 alleles associated with AQ resistance. This suggests a potential clinical appliation of the reversal phenomenon.

  14. ISOLATION AND PRESENCE OF ANTIMALARIAL ACTIVITIES OF MARINE SPONGE Xestospongia sp.

    Directory of Open Access Journals (Sweden)

    Murtihapsari Murtihapsari

    2013-12-01

    Full Text Available Plasmodium falciparum, the agent of malignant malaria, is one of mankind's most severe scourges, mainly in the tropic world. Efforts to develop preventive vaccines or remedial drugs are handicapped by the parasite's rapid evolution of drug resistance. Here, we presented an advance work on examination of antimalarial component from marine life of Xestospongia sp., the study is based on hexane extraction method. The premier result, we obtained five fractions. Among these five fractions, the fourth has the most potent inhibitory against the growth of P. falciparum 3D7 with an IC50: 7.13 µg/mL. A compiled spectrum analysis, FTIR, 1H-NMR and GC-MS, revealed that the fourth fraction consisted abundantly of two secondary metabolites such as flavonoids and triterpenoids. Finally, our results suggest a plausible structure rooted to the base of ibuprofen.

  15. Present development concerning antimalarial activity of phospholipid metabolism inhibitors with special reference to in vivo activity

    Directory of Open Access Journals (Sweden)

    Marie L. Ancelin

    1994-01-01

    Full Text Available The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50 against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain. This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50/ED50 but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral

  16. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols.

    Directory of Open Access Journals (Sweden)

    Juliana B R Corrêa Soares

    Full Text Available BACKGROUND: The parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis, which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group has demonstrated that heme crystallization into hemozoin (Hz within the S. mansoni gut is a major heme detoxification route with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we investigated the effects of three antimalarial compounds, quinine (QN, quinidine (QND and quinacrine (QCR in a murine schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections of QN, and QND (75 mg/kg/day from the 11(th to 17(th day after infection caused significant decreases in worm burden (39%-61% and egg production (42%-98%. Hz formation was significantly inhibited (40%-65% in female worms recovered from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms. CONCLUSIONS: The overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action of these compounds and points out the heme crystallization process as a

  17. Inhibition test of heme detoxification (ITHD as an approach for detecting antimalarial agents in medicinal plants

    Directory of Open Access Journals (Sweden)

    M. Mosaddegh

    2018-01-01

    Full Text Available Background and objectives: There are several methods to assess the in vitro capability of heme inhibitory activity of antimalarial compounds; most of them require some specific equipment or toxic substances and sometimes the needed materials are not accessible. Regarding the necessity and importance of optimizing and standardizing experimental conditions, the present study has intended to improve the in vitro assessment conditions of the β-hematin formation inhibitory activity for screening herbal samples. Methods: Hemin, tween 20, and samples (9:9:2 were incubated in different conditions including: hemin concentration (30, 60, and 120 µg/mL, duration (4, 24, 48, and 72 h, pH of buffer (3.6, 4, 4.4, 4.8, and 5, and temperature (37 and 60 °C in 96-well plates. Also, a total of 165 plant extracts and fractions were tested in the most suitable conditions. Results: The reaction time and the incubation temperature were determined as the critical factors. The effective conditions for β-hematin formation were found to be 60 °C after 24 h incubation. In this method, proper correlations with respect to negative (69% and positive (67% predictive values were obtained in comparison with the anti-plasmodial assay. Antimalarial activities of Pistacia atlantica, Myrtus communis, Pterocarya fraxinifolia, and Satureja mutica were found to correlate significantly with inhibition of the heme detoxification assay. Conclusion: These results support a rapid, simple and reliable approach for selecting and identifying a number of herbs for further related antimalaria investigations.

  18. FABRICATION AND EVALUATION OF SMART NANOCRYSTALS OF ARTEMISININ FOR ANTIMALARIAL AND ANTIBACTERIAL EFFICACY.

    Science.gov (United States)

    Shah, Syed Muhammad Hassan; Ullah, Farhat; Khan, Shahzeb; Shah, Syed Muhammad Mukarram; Isreb, Mohamad

    2017-01-01

    Background: Nanocrystals have the potential to substantially increase dissolution rate, solubility with subsequent enhanced bioavailability via the oral route of a range of poor water soluble drugs. Regardless of other issues, scale up of the batch size is the main issue associated with bottom up approach. Material and Methods: Smart nanocrystals of artemisinin (ARM) was produced relatively at large batch sizes (100, 200, 300 and 400ml) compared to our previously reported study by (Shah, et al., 2016). ARM nanosuspensions/nanocrystals were characterised using zeta sizer, SEM, TEM, DSC, PXRD and RP-HPLC. The nanosuspensions were finally subjected to in vitro antimalarial and antimicrobial activity. Results: The average particle size (PS) for 400 ml batches was 126.5 ±1.02 nm, and the polydispersity index (PI) was 0.194 ± 0.04. The saturation solubility of the ARM nanocrystals was substantially increased to (725.4± 2.0 μg/ml) compared to the raw ARM in water 177.4± 1.3 μg/ml and stabilizer solution (385.3± 2.0 μg/ml). The IC50 value of ARM nanosuspension against P. vivax was 65 and 21 folds lower than micronized 19.5 ng/mL and unprocessed drug (6.4 ng/mL) respectively. The ARM nanosuspension was found highly effective compared to unprocessed drug against all the tested microorganism except E. coli, Shigella and C. albican. Conclusion: The simple precipitation-ultrasonication approach was efficiently employed for fabrication of ARM nanosuspension to scale up the batch size. Similarly, the solubility, antimalarial potential and antimicrobial efficacy of ARM in the form of nanosuspension were significantly enhanced. Findings from this study can persuade research interest for further comprehensive studies using animals model. PMID:28480403

  19. In Vivo Antimalarial Activity of Annona muricata Leaf Extract in Mice Infected with Plasmodium berghei.

    Science.gov (United States)

    Somsak, Voravuth; Polwiang, Natsuda; Chachiyo, Sukanya

    2016-01-01

    Malaria is one of the most important infectious diseases in the world. The choice for the treatment is highly limited due to drug resistance. Hence, finding the new compounds to treat malaria is urgently needed. The present study was attempted to evaluate the antimalarial activity of the Annona muricata aqueous leaf extract in Plasmodium berghei infected mice. Aqueous leaf extract of A. muricata was prepared and tested for acute toxicity in mice. For efficacy test in vivo, standard 4-day suppressive test was carried out. ICR mice were inoculated with 10(7) parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection. The extracts (100, 500, and 1000 mg/kg) were then given orally by gavage once a day for 4 consecutive days. Parasitemia, percentage of inhibition, and packed cell volume were subsequently calculated. Chloroquine (10 mg/kg) was given to infected mice as positive control while untreated control was given only distilled water. It was found that A. muricata aqueous leaf extract at doses of 100, 500, and 1000 mg/kg resulted in dose dependent parasitemia inhibition of 38.03%, 75.25%, and 85.61%, respectively. Survival time was prolonged in infected mice treated with the extract. Moreover, no mortality to mice was observed with this extract up to a dose of 4000 mg/kg. In conclusion, the A. muricata aqueous leaf extract exerted significant antimalarial activity with no toxicity and prolonged survival time. Therefore, this extract might contain potential lead molecule for the development of a new drug for malaria treatment.

  20. In Vivo Antimalarial Activity and Mechanisms of Action of 4-Nerolidylcatechol Derivatives

    Science.gov (United States)

    Rocha e Silva, Luiz Francisco; Nogueira, Karla Lagos; Pinto, Ana Cristina da Silva; Katzin, Alejandro Miguel; Sussmann, Rodrigo A. C.; Muniz, Magno Perêa; Neto, Valter Ferreira de Andrade; Chaves, Francisco Célio Maia; Coutinho, Julia Penna; Lima, Emerson Silva; Krettli, Antoniana Ursine; Tadei, Wanderli Pedro

    2015-01-01

    4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated from Piper peltatum roots. O-Acylation or O-alkylation of compound 1 provides derivatives exhibiting improved stability and significant in vitro antiplasmodial activity. The aim of this work was to study the in vitro inhibition of hemozoin formation, inhibition of isoprenoid biosynthesis in Plasmodium falciparum cultures, and in vivo antimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibited in vitro hemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-3H]geranylgeranyl pyrophosphate, diester 2 significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone 8, menaquinone 4, and dolichol 12 in cultures of P. falciparum 3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol 12. P. falciparum in vitro protein synthesis was not affected by compounds 2 or 3. At oral doses of 50 mg per kg of body weight per day, compound 2 suppressed Plasmodium berghei NK65 in infected BALB/c mice by 44%. This in vivo result for derivative 2 represents marked improvement over that obtained previously for natural product 1. Compound 2 was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasma in vitro. However, it was detected after in vitro contact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential. PMID:25801563

  1. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance.

    Science.gov (United States)

    Warhurst, David C; Craig, John C; Raheem, K Saki

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications.

  2. Medicines informal market in Congo, Burundi and Angola: counterfeit and sub-standard antimalarials

    Directory of Open Access Journals (Sweden)

    Bertocchi Paola

    2007-02-01

    Full Text Available Abstract Background The presence of counterfeits and sub-standards in African medicines market is a dramatic problem that causes many deaths each year. The increase of the phenomenon of pharmaceutical counterfeiting is due to the rise of the illegal market and to the impossibility to purchase branded high cost medicines. Methods In this paper the results of a quality control on antimalarial tablet samples purchased in the informal market in Congo, Burundi and Angola are reported. The quality control consisted in the assay of active substance by means of validated liquid chromatographic methods, uniformity of mass determination, disintegration and dissolution tests. Moreover, a general evaluation on label and packaging characteristics was performed. Results The results obtained on thirty antimalarial tablet samples containing chloroquine, quinine, mefloquine, sulphadoxine and pyrimethamine showed the presence of different kinds of problems: a general problem concerning the packaging (loose tablets, packaging without Producer name, Producer Country and sometimes without expiry date; low content of active substance (in one sample; different, non-declared, active substance (in one sample; sub-standard technological properties and very low dissolution profiles (in about 50% of samples. This last property could affect the bioavailability and bioequivalence in comparison with branded products and could be related to the use of different excipients in formulation or bad storage conditions. Conclusion This paper evidences that the most common quality problem in the analysed samples appears to be the low dissolution profile. Here it is remarked that the presence of the right active substance in the right quantity is not a sufficient condition for a good quality drug. Dissolution test is not less important in a quality control and often evidences in vitro possible differences in therapeutic efficacy among drugs with the same active content. Dissolution

  3. Oregano: chemical analysis and evaluation of its antimalarial, antioxidant, and cytotoxic activities.

    Science.gov (United States)

    El Babili, Fatiha; Bouajila, Jalloul; Souchard, Jean Pierre; Bertrand, Cédric; Bellvert, Florian; Fouraste, Isabelle; Moulis, Claude; Valentin, Alexis

    2011-04-01

    GC-FID and GC-MS analysis of essential oil from oregano leaves (Origanum compactum) resulted in the identification of 46 compounds, representing more than 98% of the total composition. Carvacrol was the predominant compound (36.46%), followed by thymol (29.74%) and p-cymene (24.31%). Serial extractions with petroleum ether, ethyl acetate, ethanol, and water were performed on aerials parts of Origanum compactum. In these extracts, different chemical families were characterized: polyphenols (gallic acid equivalent 21.2 to 858.3 g/kg), tannins (catechin equivalent 12.4 to 510.3 g/kg), anthocyanins (cyanidin equivalent 0.38 to 5.63 mg/kg), and flavonoids (quercetin equivalent 14.5 to 54.7 g/kg). The samples (essential oil and extracts) were subjected to a screening for antioxidant (DPPH and ABTS assays) and antimalarial activities and against human breast cancer cells. The essential oil showed a higher antioxidant activity with an IC50=2±0.1 mg/L. Among the extracts, the aqueous extract had the highest antioxidant activity with an IC50=4.8±0.2 mg/L (DPPH assay). Concerning antimalarial activity, Origanum compactum essential oil and ethyl acetate extract showed the best results with an IC50 of 34 and 33 mg/mL, respectively. In addition, ethyl acetate extract (30 mg/L) and ethanol extract (56 mg/L) showed activity against human breast cancer cells (MCF7). The oregano essential oil was considered to be nontoxic.

  4. High-level semi-synthetic production of the potent antimalarial artemisinin.

    Science.gov (United States)

    Paddon, C J; Westfall, P J; Pitera, D J; Benjamin, K; Fisher, K; McPhee, D; Leavell, M D; Tai, A; Main, A; Eng, D; Polichuk, D R; Teoh, K H; Reed, D W; Treynor, T; Lenihan, J; Fleck, M; Bajad, S; Dang, G; Dengrove, D; Diola, D; Dorin, G; Ellens, K W; Fickes, S; Galazzo, J; Gaucher, S P; Geistlinger, T; Henry, R; Hepp, M; Horning, T; Iqbal, T; Jiang, H; Kizer, L; Lieu, B; Melis, D; Moss, N; Regentin, R; Secrest, S; Tsuruta, H; Vazquez, R; Westblade, L F; Xu, L; Yu, M; Zhang, Y; Zhao, L; Lievense, J; Covello, P S; Keasling, J D; Reiling, K K; Renninger, N S; Newman, J D

    2013-04-25

    In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.

  5. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei.

    Science.gov (United States)

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2013-06-01

    The essential oil from Cedrelopsis grevei leaves, an aromatic and medicinal plant from Madagascar, is widely used in folk medicine. Essential oil was characterized by GC-MS and quantified by GC-FID. Sixty-four components were identified. The major constituents were: (E)-β-farnesene (27.61%), δ-cadinene (14.48%), α-copaene (7.65%) and β-elemene (6.96%). The essential oil contained a complex mixture consisting mainly sesquiterpene hydrocarbons (83.42%) and generally sesquiterpenes (98.91%). The essential oil was tested cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum), antiinflammatory and antioxidant (ABTS and DPPH assays) activities. C. grevei essential oil was active against MCF-7 cell lines (IC50=21.5 mg/L), against P. falciparum, (IC50=17.5mg/L) and antiinflammatory (IC50=21.33 mg/L). The essential oil exhibited poor antioxidant activity against DPPH (IC50>1000 mg/L) and ABTS (IC50=110 mg/L) assays. A bibliographical review was carried out of all essential oils identified and tested with respect to antiplasmodial, anticancer and antiinflammatory activities. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial, anticancer and antiinflammatory). According to the obtained correlations, 1,4-cadinadiene (R(2)=0.61) presented a higher relationship with antimalarial activity. However, only (Z)-β-farnesene (R(2)=0.73) showed a significant correlation for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Antileishmanial, antimalarial and antimicrobial activities of the extract and isolated compounds from Austroplenckia populnea (Celastraceae).

    Science.gov (United States)

    Andrade, Sérgio F; da Silva Filho, Ademar A; de O Resende, Dimas; Silva, Márcio L A; Cunha, Wilson R; Nanayakkara, N P Dhammika; Bastos, Jairo Kenupp

    2008-01-01

    Austroplenckia populnea (Celastraceae), known as "marmelinho do campo", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial, antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC50 values of 0.7 microg mL(-1) and 5.5 microg mL(-1), respectively, while amphotericin B showed an IC50 value of 0.1 microg mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC50 value of 52 microg mL(-1), while compounds 2 and 3 displayed an IC50 value of 18 microg mL(-1) In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.

  7. The susceptibility of anti-tuberculosis drug-induced liver injury and chronic hepatitis C infection: A systematic review and meta-analysis.

    Science.gov (United States)

    Chang, Tien-En; Huang, Yi-Shin; Chang, Chih-Hao; Perng, Chin-Lin; Huang, Yi-Hsiang; Hou, Ming-Chih

    2018-02-01

    Anti-tuberculosis drug-induced liver injury (ATDILI) is a major safety concern in the treatment of tuberculosis (TB). The impact of chronic hepatitis C (CHC) infection on the risk of ATDILI is still controversial. We aimed to assess the influence of CHC infection on ATDILI through a systematic review and meta-analysis. We systemically reviewed all English-language literature in the major medical databases with the subject search terms "anti-tuberculosis drug-induced liver injury" and "anti-tuberculosis drug-induced hepatotoxicity". We then performed a systematic review and meta-analysis of the papers relevant to hepatitis C in qualified publications. A total of 14 studies were eligible for analysis, which included 516 cases with ATDILI and 4301 controls without ATDILI. The pooled odds ratio (OR) of all studies for CHC infection to ATDILI was 3.21 (95% confidence interval (CI): 2.30-4.49). Subgroup analysis revealed that the CHC carriers had a higher risk of ATDILI than those without CHC both in Asians (OR = 2.96, 95% CI: 1.79-4.90) and Caucasians (OR = 4.07, 95% CI: 2.70-6.14), in those receiving standard four combination anti-TB therapy (OR = 2.94, 95% CI: 1.95-4.41) and isoniazid monotherapy (OR = 4.18, 95% CI: 2.36-7.40), in those with a strict definition of DILI (serum alanine aminotransferase [ALT] > 5 upper limit of normal value [ULN], OR = 2.59, 95% CI: 1.58-4.25) and a loose definition of DILI (ALT > 2 or 3 ULN, OR = 4.34, 95% CI: 2.96-6.37), and in prospective studies (OR = 4.16, 95% CI: 2.93-5.90) and case-control studies (OR = 2.43, 95% CI: 1.29-4.58). This meta-analysis suggests that CHC infection may increase the risk of ATDILI. Regular liver tests are mandatory for CHC carriers under anti-TB therapy. Copyright © 2017. Published by Elsevier Taiwan LLC.

  8. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part I. Evaluation of the antimalarial activity of plants used by the Chacobo Indians.

    Science.gov (United States)

    Muñoz, V; Sauvain, M; Bourdy, G; Callapa, J; Bergeron, S; Rojas, I; Bravo, J A; Balderrama, L; Ortiz, B; Gimenez, A; Deharo, E

    2000-02-01

    Thirty extracts of plants traditionally used by the Chacobos, a native community living in the Amazonian part of Bolivia, were screened in vitro and/or in vivo for antimalarial activity. Two of the four species designated as antimalarial, Geissospermum laeve and Maquira coriacea, displayed rather good activity, corroborating their traditional uses. However, they did show a rather high toxicity in vivo. Among twelve species used to cure symptoms relevant to malaria, five showed good activity: Apuleia leiocarpa, Bauhinia guianensis, Nectandra cuspidata, Sparattanthelium amazonum, Tanaecium jaroba. Two species, Qualea paraensis and Sclerolobium aff. guianense, used to treat scabies, showed interesting antimalarial activity in vivo; three other species (Iryanthera laevis, Prunus amplifolia, Pterocarpus aff. amazonum) used for various medicinal purposes, apparently not related with a Plasmodium infection, also showed antimalarial activity. Finally, one species (Derris amazonica) used as a piscicide displayed good in vitro activity, in the same way as one Annonaceae, Guatteria aff. schomburgkiana, used for construction purposes.

  9. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing

    DEFF Research Database (Denmark)

    Genina, Natalja; Boetker, Johan Peter; Colombo, Stefano

    2017-01-01

    The design and production of an oral dual-compartmental dosage unit (dcDU) was examined in vitro and in vivo with the purpose of physically isolating and modulating the release profile of an anti-tuberculosis drug combination. Rifampicin (RIF) and isoniazid (ISO) are first line combination drugs...... for treatment of tuberculosis (TB) that negatively interact with each other upon simultaneous release in acidic environment. The dcDUs were designed in silico by computer aided design (CAD) and fabricated in two steps; first three-dimensional (3D) printing of the outer structure, followed by hot-melt extrusion...... (HME) of the drug-containing filaments. The structure of the fabricated dcDUs was visualized by scanning electron microscopy (SEM). The 3D printed compartmentalized shells were loaded with filaments containing active pharmaceutical ingredient (API) and selectively sealed to modulate drug dissolution...

  10. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  11. Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition.

    Science.gov (United States)

    Kim, Ju-Hwa; Choi, Ae-Ran; Kim, Yong Kee; Yoon, Sungpil

    2013-11-22

    The purpose of this study was to identify conditions that will increase the sensitivity of resistant cancer cells to anti-mitotic drugs. Currently, atovaquine (ATO), chloroquine (CHL), primaquine (PRI), mefloquine (MEF), artesunate (ART), and doxycycline (DOY) are the most commonly used anti-malarial drugs. Herein, we tested whether anti-malarial drugs can sensitize drug-resistant KBV20C cancer cells. None of the six tested anti-malarial drugs was found to better sensitize the drug-resistant cells compared to the sensitive KB cells. With an exception of DOY, all other anti-malarial drugs tested could sensitize both KB and KBV20C cells to a similar extent, suggesting that anti-malarial drugs could be used for sensitive as well as resistant cancer cells. Furthermore, we examined the effects of anti-malarial drugs in combination with an antimitotic drug, vinblastine (VIN) on the sensitisation of resistant KBV20C cells. Using viability assay, microscopic observation, assessment of cleaved PARP, and Hoechst staining, we identified that two anti-malarial drugs, PRI and MEF, highly sensitized KBV20C-resistant cells to VIN treatment. Moreover, PRI- or MEF-induced sensitisation was not observed in VIN-treated sensitive KB parent cells, suggesting that the observed effect is specific to resistant cancer cells. We demonstrated that the PRI and MEF sensitisation mechanism mainly depends on the inhibition of p-glycoprotein (P-gp). Our findings may contribute to the development of anti-malarial drug-based combination therapies for patients resistant to anti-mitotic drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. In Vivo Antimalarial Activity of the Solvent Fractions of Fruit Rind and Root of Carica papaya Linn (Caricaceae) against Plasmodium berghei in Mice

    Science.gov (United States)

    Kebebe, Dereje; Mulisa, Eshetu; Gashe, Fanta

    2017-01-01

    Background Currently, antimalarial drug resistance poses a serious challenge. This stresses the need for newer antimalarial compounds. Carica papaya is used traditionally and showed in vitro antimalarial activity. This study attempted to evaluate in vivo antimalarial activity of C. papaya in mice. Methods In vivo antimalarial activity of solvent fractions of the plant was carried out against early P. berghei infection in mice. Parasitemia, temperature, PCV, and body weight of mice were recorded. Windows SPSS version 16 (one-way ANOVA followed by Tukey's post hoc test) was used for data analysis. Results The pet ether and chloroform fractions of C. papaya fruit rind and root produced a significant (p papaya fruit rind in the highest dose (400 mg/kg/day). Only 400 mg/kg/day dose of chloroform fraction of C. papaya root exhibited a parasite suppression effect (48.11%). But, methanol fraction of the plant parts produced less chemosuppressive effect. Conclusion Pet ether fraction of C. papaya fruit rind had the highest antimalarial activity and could be a potential source of lead compound. Further study should be done to show the chemical and metabolomic profile of active ingredients. PMID:29391947

  13. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    Science.gov (United States)

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. Spicigera, Asteraceae

    Directory of Open Access Journals (Sweden)

    Fariba H. Afshar

    2011-12-01

    Full Text Available Artemisia species (Asteraceae, widespread throughout the world, are a group of important medicinal plants. The extracts of two medicinal plants of this genus, Artemisia scoparia Waldst. & Kit. and A. spicigera C. Koch, were evaluated for potential antimalarial, free-radical-scavenging and insecticidal properties, using the heme biocrystallisation and inhibition assay, the DPPH assay and the contact toxicity bioassay using the pest Tribolium castaneum, respectively. The methanol extracts of both species showed strong free-radical-scavenging activity and the RC50 values were 0.0317 and 0.0458 mg/mL, respectively, for A. scoparia and A. spicigera. The dichloromethane extracts of both species displayed a moderate level of potential antimalarial activity providing IC50 at 0.778 and 0.999 mg/mL for A. scoparia and A. spicigera, respectively. Both species of Artemisia showed insecticidal properties. However, A. spicigera was more effective than A. scoparia.

  15. Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

    Directory of Open Access Journals (Sweden)

    Kirti Mishra

    2011-01-01

    Full Text Available Andrographolide (AND, the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS, andrographolide (AND, and curcumin (CUR were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND was found synergistic with curcumin (CUR and addictively interactive with artesunate (AS. In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%, compared to the control (81%, but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.

  16. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    Science.gov (United States)

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  18. Mestizos with systemic lupus erythematosus develop renal disease early while antimalarials retard its appearance: data from a Latin American cohort.

    Science.gov (United States)

    Pons-Estel, G J; Alarcón, G S; Burgos, P I; Hachuel, L; Boggio, G; Wojdyla, D; Nieto, R; Alvarellos, A; Catoggio, L J; Guibert-Toledano, M; Sarano, J; Massardo, L; Vásquez, G M; Iglesias-Gamarra, A; Lavras Costallat, L T; Da Silva, N A; Alfaro, J L; Abadi, I; Segami, M I; Huerta, G; Cardiel, M H; Pons-Estel, B A

    2013-08-01

    The objective of this paper is to assess the predictors of time-to-lupus renal disease in Latin American patients. Systemic lupus erythematosus (SLE) patients (n = 1480) from Grupo Latino Americano De Estudio de Lupus (GLADEL's) longitudinal inception cohort were studied. Endpoint was ACR renal criterion development after SLE diagnosis (prevalent cases excluded). Renal disease predictors were examined by univariable and multivariable Cox proportional hazards regression analyses. Antimalarials were considered time dependent in alternative analyses. Of the entire cohort, 265 patients (17.9%) developed renal disease after entering the cohort. Of them, 88 (33.2%) developed persistent proteinuria, 44 (16.6%) cellular casts and 133 (50.2%) both; 233 patients (87.9%) were women; mean (± SD) age at diagnosis was 28.0 (11.9) years; 12.2% were African-Latin Americans, 42.5% Mestizos, and 45.3% Caucasians (p = 0.0016). Mestizo ethnicity (HR 1.61, 95% CI 1.19-2.17), hypertension (HR 3.99, 95% CI 3.02-5.26) and SLEDAI at diagnosis (HR 1.04, 95% CI 1.01-1.06) were associated with a shorter time-to-renal disease occurrence; antimalarial use (HR 0.57, 95% CI 0.43-0.77), older age at onset (HR 0.90, 95% CI 0.85-0.95, for every five years) and photosensitivity (HR 0.74, 95% CI 0.56-0.98) were associated with a longer time. Alternative model results were consistent with the antimalarial protective effect (HR 0.70, 95% CI 0.50-0.99). Our data strongly support the fact that Mestizo patients are at increased risk of developing renal disease early while antimalarials seem to delay the appearance of this SLE manifestation. These data have important implications for the treatment of these patients regardless of their geographic location.

  19. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant

    OpenAIRE

    Haidara, Mahamane; Haddad, Mohamed; Denou, Adama; Marti, Guillaume; Bourgeade-Delmas, Sandra; Sanogo, Rokia; Bourdy, Geneviève; Aubouy, Agnès

    2018-01-01

    Background Plasmodium falciparum malaria is still one of the most deadly pathology worldwide. Efficient treatment is jeopardized by parasite resistance to artemisinin and its derivatives, and by poor access to treatment in endemic regions. Anti-malarial traditional remedies still offer new tracks for identifying promising antiplasmodial molecules, and a way to ensure that all people have access to care. The present study aims to validate the traditional use of Terminalia macroptera, a Malian ...

  20. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant

    OpenAIRE

    Haidara, M.; Haddad, Mohamed; Denou, A.; Marti, G.; Bourgeade-Delmas, Sandra; Sanogo, R.; Bourdy, Geneviève; Aubouy, Agnès

    2018-01-01

    Background: Plasmodium falciparum malaria is still one of the most deadly pathology worldwide. Efficient treatment is jeopardized by parasite resistance to artemisinin and its derivatives, and by poor access to treatment in endemic regions. Anti-malarial traditional remedies still offer new tracks for identifying promising antiplasmodial molecules, and a way to ensure that all people have access to care. The present study aims to validate the traditional use of Terminalia macroptera, a Malian...

  1. In vitro and in vivo antimalarial potential of oleoresin obtained from Copaifera reticulata Ducke (Fabaceae) in the Brazilian Amazon rainforest.

    Science.gov (United States)

    de Souza, Giovana A G; da Silva, Nazaré C; de Souza, Juarez; de Oliveira, Karen R M; da Fonseca, Amanda L; Baratto, Leopoldo C; de Oliveira, Elaine C P; Varotti, Fernando de Pilla; Moraes, Waldiney P

    2017-01-15

    In view of the wide variety of the flora of the Amazon region, many plants have been studied in the search for new antimalarial agents. Copaifera reticulata is a tree distributed throughout the Amazon region which contains an oleoresin rich in sesquiterpenes and diterpenes with β-caryophyllene as the major compound. The oleoresin has demonstrated antiparasitic activity against Leishmania amazonensis. Because of this previously reported activity, this oleoresin would be expected to also have antimalarial activity. In this study we evaluated the in vitro and in vivo antimalarial potential of C. reticulata oleoresin. In vitro assays were done using P. falciparum W2 and 3D7 strains and the human fibroblast cell line 26VA Wi-4. For in vivo analysis, BALB/c mice were infected with approximately 10 6 erythrocytes parasitized by P. berghei and their parasitemia levels were observed over 7 days of treatment with C. reticulata; hematological and biochemical parameters were analyzed at the end of experiment. The oleoresin of C. reticulata containing the sesquiterpenes β-caryophyllene (41.7%) and β-bisabolene (18.6%) was active against the P. falciparum W2 and 3D7 strains (IC 50  = 1.66 and 2.54 µg/ml, respectively) and showed low cytotoxicity against the 26VA Wi-4 cell line (IC 50  > 100 µg/ml). The C. reticulata oleoresin reduced the parasitemia levels of infected animals and doses of 200 and 100 mg/kg/day reached a rate of parasitemia elimination resembling that obtained with artemisinin 100 mg/kg/day. In addition, treatment with oleoresin improved the hypoglycemic, hematologic, hepatic and renal parameters of the infected animals. The oleoresin of C. reticulata has antimalarial properties and future investigations are necessary to elucidate its mechanism of action. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Making the most of clinical data: reviewing the role of pharmacokinetic-pharmacodynamic models of anti-malarial drugs.

    Science.gov (United States)

    Simpson, Julie A; Zaloumis, Sophie; DeLivera, Alysha M; Price, Ric N; McCaw, James M

    2014-09-01

    Mechanistic within-host models integrating blood anti-malarial drug concentrations with the parasite-time profile provide a valuable decision tool for determining dosing regimens for anti-malarial treatments, as well as a formative component of population-level drug resistance models. We reviewed published anti-malarial pharmacokinetic-pharmacodynamic models to identify the challenges for these complex models where parameter estimation from clinical field data is limited. The inclusion of key pharmacodynamic processes in the mechanistic structure adopted varies considerably. These include the life cycle of the parasite within the red blood cell, the action of the anti-malarial on a specific stage of the life cycle, and the reduction in parasite growth associated with immunity. With regard to estimation of the pharmacodynamic parameters, the majority of studies simply compared descriptive summaries of the simulated outputs to published observations of host and parasite responses from clinical studies. Few studies formally estimated the pharmacodynamic parameters within a rigorous statistical framework using observed individual patient data. We recommend three steps in the development and evaluation of these models. Firstly, exploration through simulation to assess how the different parameters influence the parasite dynamics. Secondly, application of a simulation-estimation approach to determine whether the model parameters can be estimated with reasonable precision based on sampling designs that mimic clinical efficacy studies. Thirdly, fitting the mechanistic model to the clinical data within a Bayesian framework. We propose that authors present the model both schematically and in equation form and give a detailed description of each parameter, including a biological interpretation of the parameter estimates.

  3. Comparative embryotoxicity of different antimalarial peroxides: in vitro study using the rat whole embryo culture model (WEC).

    Science.gov (United States)

    Longo, Monica; Zanoncelli, Sara; Brughera, Marco; Colombo, Paolo; Wittlin, Sergio; Vennerstrom, Jonathan L; Moehrle, Joerg; Craft, J Carl

    2010-12-01

    Three groups of compounds: (i) active peroxides (artemisinin and arterolene), (ii) inactive non-peroxidic derivatives (deoxyartemisinin and carbaOZ277) and (iii) inactive peroxide (OZ381) were tested by WEC system to provide insights into the relationship between chemical structure and embryotoxic potential, and to assess the relationship between embryotoxicity and antimalarial activity. Deoxyartemisinin, OZ381 and carbaOZ277 did not affect rat embryonic development. Artemisinin and arterolane affected primarily nucleated red blood cells (RBCs), inducing anemia and subsequent tissue damage in rat embryos, with NOELs for RBC damage at 0.1 and 0.175μg/mL, respectively. These data support the idea that only active antimalarial peroxides are able to interfere with normal embryonic development. In an attempt to establish whether and to what extent activity as antimalarials and embryotoxicity can be divorced, IC(50)s for activity in Plasmodium falciparum strains and the NOELs for RBCs were compared. From this comparison, arterolane showed a better safety margin than artemisinin. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2011-04-01

    Full Text Available The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (∼ 1 SNP/kb, and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS, searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.

  5. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Directory of Open Access Journals (Sweden)

    Chance Michael L

    2011-08-01

    Full Text Available Abstract Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP. Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr-C59R and dihydropteroate synthase (dhps-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9. The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum

  6. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications.

    Science.gov (United States)

    Mubjer, Reem A; Adeel, Ahmed A; Chance, Michael L; Hassan, Amir A

    2011-08-21

    This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP). Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt)-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr)-C59R and dihydropteroate synthase (dhps)-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum parasites from Yemen. Mutant pfcrtT76 is highly prevalent but it

  7. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study.

    Science.gov (United States)

    Ley, Benedikt; Alam, Mohammad Shafiul; Thriemer, Kamala; Hossain, Mohammad Sharif; Kibria, Mohammad Golam; Auburn, Sarah; Poirot, Eugenie; Price, Ric N; Khan, Wasif Ali

    2016-01-01

    The Bangladeshi national treatment guidelines for uncomplicated malaria follow WHO recommendations but without G6PD testing prior to primaquine administration. A prospective observational study was conducted to assess the efficacy of the current antimalarial policy. Patients with uncomplicated malaria, confirmed by microscopy, attending a health care facility in the Chittagong Hill Tracts, Bangladesh, were treated with artemether-lumefantrine (days 0-2) plus single dose primaquine (0.75mg/kg on day2) for P. falciparum infections, or with chloroquine (days 0-2) plus 14 days primaquine (3.5mg/kg total over 14 days) for P. vivax infections. Hb was measured on days 0, 2 and 9 in all patients and also on days 16 and 30 in patients with P. vivax infection. Participants were followed for 30 days. The study was registered with the clinical trials website (NCT02389374). Between September 2014 and February 2015 a total of 181 patients were enrolled (64% P. falciparum, 30% P. vivax and 6% mixed infections). Median parasite clearance times were 22.0 (Interquartile Range, IQR: 15.2-27.3) hours for P. falciparum, 20.0 (IQR: 9.5-22.7) hours for P. vivax and 16.6 (IQR: 10.0-46.0) hours for mixed infections. All participants were afebrile within 48 hours, two patients with P. falciparum infection remained parasitemic at 48 hours. No patient had recurrent parasitaemia within 30 days. Adjusted male median G6PD activity was 7.82U/gHb. One male participant (1/174) had severe G6PD deficiency (G6PD deficiency (10-60% activity). The Hb nadir occurred on day 2 prior to primaquine treatment in P. falciparum and P. vivax infected patients; mean fractional fall in Hb was -8.8% (95%CI -6.7% to -11.0%) and -7.4% (95%CI: -4.5 to -10.4%) respectively. The current antimalarial policy remains effective. The prevalence of G6PD deficiency was low. Main contribution to haemolysis in G6PD normal individuals was attributable to acute malaria rather than primaquine administration. ClinicalTrials.gov NCT

  8. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study.

    Directory of Open Access Journals (Sweden)

    Benedikt Ley

    Full Text Available The Bangladeshi national treatment guidelines for uncomplicated malaria follow WHO recommendations but without G6PD testing prior to primaquine administration. A prospective observational study was conducted to assess the efficacy of the current antimalarial policy.Patients with uncomplicated malaria, confirmed by microscopy, attending a health care facility in the Chittagong Hill Tracts, Bangladesh, were treated with artemether-lumefantrine (days 0-2 plus single dose primaquine (0.75mg/kg on day2 for P. falciparum infections, or with chloroquine (days 0-2 plus 14 days primaquine (3.5mg/kg total over 14 days for P. vivax infections. Hb was measured on days 0, 2 and 9 in all patients and also on days 16 and 30 in patients with P. vivax infection. Participants were followed for 30 days. The study was registered with the clinical trials website (NCT02389374.Between September 2014 and February 2015 a total of 181 patients were enrolled (64% P. falciparum, 30% P. vivax and 6% mixed infections. Median parasite clearance times were 22.0 (Interquartile Range, IQR: 15.2-27.3 hours for P. falciparum, 20.0 (IQR: 9.5-22.7 hours for P. vivax and 16.6 (IQR: 10.0-46.0 hours for mixed infections. All participants were afebrile within 48 hours, two patients with P. falciparum infection remained parasitemic at 48 hours. No patient had recurrent parasitaemia within 30 days. Adjusted male median G6PD activity was 7.82U/gHb. One male participant (1/174 had severe G6PD deficiency (<10% activity, five participants (5/174 had mild G6PD deficiency (10-60% activity. The Hb nadir occurred on day 2 prior to primaquine treatment in P. falciparum and P. vivax infected patients; mean fractional fall in Hb was -8.8% (95%CI -6.7% to -11.0% and -7.4% (95%CI: -4.5 to -10.4% respectively.The current antimalarial policy remains effective. The prevalence of G6PD deficiency was low. Main contribution to haemolysis in G6PD normal individuals was attributable to acute malaria rather

  9. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  10. Malaria overdiagnosis and subsequent overconsumption of antimalarial drugs in Angola: Consequences and effects on human health.

    Science.gov (United States)

    Manguin, Sylvie; Foumane, Vincent; Besnard, Patrick; Fortes, Filomeno; Carnevale, Pierre

    2017-07-01

    Microscopic blood smear examinations done in health centers of Angola demonstrated a large overdiagnosis of malaria cases with an average rate of errors as high as 85%. Overall 83% of patients who received Coartem ® had an inappropriate treatment. Overestimated malaria diagnosis was noticed even when specific symptoms were part of the clinical observation, antimalarial treatments being subsequently given. Then, malaria overdiagnosis has three main consequences, (i) the lack of data reliability is of great concern, impeding epidemiological records and evaluation of the actual influence of operations as scheduled by the National Malaria Control Programme; (ii) the large misuse of antimalarial drug can increase the selective pressure for resistant strain and can make a false consideration of drug resistant P. falciparum crisis; and (iii) the need of strengthening national health centers in term of human, with training in microscopy, and equipment resources to improve malaria diagnosis with a large scale use of rapid diagnostic tests associated with thick blood smears, backed up by a "quality control" developed by the national health authorities. Monitoring of malaria cases was done in three Angolan health centers of Alto Liro (Lobito town) and neighbor villages of Cambambi and Asseque (Benguéla Province) to evaluate the real burden of malaria. Carriers of Plasmodium among patients of newly-borne to 14 years old, with or without fever, were analyzed and compared to presumptive malaria cases diagnosed in these health centers. Presumptive malaria cases were diagnosed six times more than the positive thick blood smears done on the same children. In Alto Liro health center, the percentage of diagnosis error reached 98%, while in Cambambi and Asseque it was of 79% and 78% respectively. The percentage of confirmed malaria cases was significantly higher during the dry (20.2%) than the rainy (13.2%) season. These observations in three peripheral health centers confirmed what

  11. Evidence on anti-malarial and diagnostic markets in Cambodia to guide malaria elimination strategies and policies.

    Science.gov (United States)

    Phok, Sochea; Lek, Dysoley

    2017-04-25

    Understanding Cambodia's anti-malarial and diagnostic landscape in 2015 is critical for informing and monitoring strategies and policies as Cambodia moves forward with national efforts to eliminate malaria. The aim of this paper is to present timely and key findings on the public and private sector anti-malarial and diagnostic landscape in Cambodia. This evidence can serve as a baseline benchmark for guiding implementation of national strategies as well as other regional initiatives to address malaria elimination activities. From August 17th to October 1st, 2015, a cross sectional, nationally-representative malaria outlet survey was conducted in Cambodia. A census of all public and private outlets with potential to distribute malaria testing and/or treatment was conducted among 180 communes. An audit was completed for all anti-malarials, malaria rapid diagnostic tests (RDT) and microscopy. A total of 26,664 outlets were screened, and 1303 outlets were eligible and interviewed. Among all screened outlets in the public sector, 75.9% of public health facilities and 67.7% of community health workers stocked both malaria diagnostic testing and a first-line artemisinin-based combination therapy (ACT). Among anti-malarial-stocking private sector outlets, 64.7% had malaria blood testing available, and 70.9% were stocking a first-line ACT. Market share data illustrate that most of the anti-malarials were sold or distributed through the private sector (58.4%), including itinerant drug vendors (23.4%). First-line ACT accounted for the majority of the market share across the public and private sectors (90.3%). Among private sector outlets stocking any anti-malarial, the proportion of outlets with a first-line ACT or RDT was higher among outlets that had reportedly received one or more forms of 'support' (e.g. reportedly received training in the previous year on malaria diagnosis [RDT and/or microscopy] and/or the national treatment guidelines for malaria) compared to outlets

  12. SMS for Life: a pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology

    Science.gov (United States)

    2010-01-01

    Background Maintaining adequate supplies of anti-malarial medicines at the health facility level in rural sub-Saharan Africa is a major barrier to effective management of the disease. Lack of visibility of anti-malarial stock levels at the health facility level is an important contributor to this problem. Methods A 21-week pilot study, 'SMS for Life', was undertaken during 2009-2010 in three districts of rural Tanzania, involving 129 health facilities. Undertaken through a collaborative partnership of public and private institutions, SMS for Life used mobile telephones, SMS messages and electronic mapping technology to facilitate provision of comprehensive and accurate stock counts from all health facilities to each district management team on a weekly basis. The system covered stocks of the four different dosage packs of artemether-lumefantrine (AL) and quinine injectable. Results Stock count data was provided in 95% of cases, on average. A high response rate (≥ 93%) was maintained throughout the pilot. The error rate for composition of SMS responses averaged 7.5% throughout the study; almost all errors were corrected and messages re-sent. Data accuracy, based on surveillance visits to health facilities, was 94%. District stock reports were accessed on average once a day. The proportion of health facilities with no stock of one or more anti-malarial medicine (i.e. any of the four dosages of AL or quinine injectable) fell from 78% at week 1 to 26% at week 21. In Lindi Rural district, stock-outs were eliminated by week 8 with virtually no stock-outs thereafter. During the study, AL stocks increased by 64% and quinine stock increased 36% across the three districts. Conclusions The SMS for Life pilot provided visibility of anti-malarial stock levels to support more efficient stock management using simple and widely available SMS technology, via a public-private partnership model that worked highly effectively. The SMS for Life system has the potential to alleviate

  13. Pro-oxidant properties of indolone-N-oxides in relation to their antimalarial properties.

    Science.gov (United States)

    Yen, Nguyen Thi Hoang; Ibrahim, Hany; Reybier, Karine; Perio, Pierre; Souard, Florence; Najahi, Ennaji; Fabre, Paul-Louis; Nepveu, Francoise

    2013-09-01

    Indolone-N-oxides (INODs) are bioreducible and possess remarkable anti-malarial activities in the low nanomolar range in vitro against different Plasmodium falciparum (P. falciparum) strains and in vivo. INODs have an original mechanism of action: they damage the host cell membrane without affecting non-parasitized erythrocytes. These molecules produce a redox signal which activates SYK tyrosine kinases and induces a hyperphosphorylation of AE1 (band 3, erythrocyte membrane protein). The present work aimed to understand the early stages of the biochemical interactions of these compounds with some erythrocyte components from which the redox signal could originate. The interactions were studied in a biomimetic model and compared with those of chloroquine and artemisinin. The results showed that INODs i) do not enter the coordination sphere of the metal in the heme iron complex as does chloroquine; ii) do not generate iron-dependent radicals as does artemisinin; iii) generate stable free radical adducts after reduction at one electron; iv) cannot trap free radicals after reduction. These results confirm that the bioactivity of INODs does not lie in their spin-trapping properties but rather in their pro-oxidant character. This property may be the initiator of the redox signal which activates SYK tyrosine kinases. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Reverse pharmacology for developing an anti-malarial phytomedicine. The example of Argemone mexicana

    Directory of Open Access Journals (Sweden)

    Claudia Simoes-Pires

    2014-12-01

    Reverse pharmacology, also called bedside-to-bench, is a research approach based on the traditional knowledge and relates to reversing the classical laboratory to clinic pathway to a clinic to laboratory practice. It is a trans-disciplinary approach focused on traditional knowledge, experimental observations and clinical experiences. This paper is an overview of the reverse pharmacology approach applied to the decoction of Argemone mexicana, used as an antimalarial traditional medicine in Mali. A. mexicana appeared as the most effective traditional medicine for the treatment of uncomplicated falciparum malaria in Mali, and the clinical efficacy of the decoction was comparable to artesunate–amodiaquine as previously published. Four stages of the reverse pharmacology process will be described here with a special emphasis on the results for stage 4. Briefly, allocryptopine, protopine and berberine were isolated through bioguided fractionation, and had their identity confirmed by spectroscopic analysis. The three alkaloids showed antiparasitic activity in vitro, of which allocryptopine and protopine were selective towards Plasmodium falciparum. Furthermore, the amount of the three active alkaloids in the decoction was determined by quantitative NMR, and preliminary in vivo assays were conducted. On the basis of these results, the reverse pharmacology approach is discussed and further pharmacokinetic studies appear to be necessary in order to determine whether these alkaloids can be considered as phytochemical markers for quality control and standardization of an improved traditional medicine made with this plant.

  15. Antimalarial activity of selected Sudanese medicinal plants with emphasis to Maytenus senegalensis

    International Nuclear Information System (INIS)

    Idris, Ahmed El Tahir Mohamed

    1998-03-01

    The aim of the present study is to identify and characterize the antimalrial agents from traitional Sudanese medicinal plants. 49 plants parts representing 26 species from 15 families were extracted and screened for their in vitro antimalrial activity using P. falciparum strain 3D7 which is chloroquine sensitive and Dd2 strain which is chloroquine resistant and pyrimethamine sensitive.The plant species investigated exhibited diverse botanical families. They includes Annonaceae, Aristolochiaceae, Asteraceae, Balantiaceae, Caesalpiniceae, Celasteraceae, Cucurbitaceae, Fabaceae, Graminae, Meliaceae, Myrtaceae, Polygonaceae, Rubiaceae, Rutaceae, and simaroubaceae. The evaluation of these plants for their antimalarial activity and their effect on lymphocyte proliferation was carried out. 57 extracts were tested on the chloroquine sensitive strain (3D7). Where 34 extracts (59%) exhibited significant activity against 3D7 with IC 50 values ≤ 50 μ g/ml. While 21 extracts (57%) showed antimalrial activities with IC 50 values ≤ 50 μ g/ml on Dd2. 13 extracts (22%) and ten extracts (18%) only showed an activity with IC 50 values ≤ 5 μ g/ml on 3 D7 and Dd2, respectively. The activities of some plant extracts, which affected 3D7 strain, were measured using the radiolabelled ( 3 H) hypoxanthine method and microscopical count. 15 plant extracts (48%) from 32 showed IC 50 values ≤ 50 μ g/ml against 3D7 strain using the radiolabelled hypoxanthine methods and only 5 extracts (16%) showed IC 50 values ≤ 5 μ g/ml against 3D7. Most of the extracts screened had a low effect on lymphocyte proliferation (IC 50 values >100 μ g/ml), where as Sonochous cornatus, Balanites aegyptiaca, Tamarindus indica, Acacia nilotica, Annona squamosa, Eucalyptus globulus and Cassia tora enhanced lymphocyte proliferation. liquid-liquid partition of methanolic preparation of Acacia nilotica seeds and husk showed that the ethylacetate phase possessed the highest activity against both 3D7 and Dd2

  16. Use of refractometry and colorimetry as field methods to rapidly assess antimalarial drug quality.

    Science.gov (United States)

    Green, Michael D; Nettey, Henry; Villalva Rojas, Ofelia; Pamanivong, Chansapha; Khounsaknalath, Lamphet; Grande Ortiz, Miguel; Newton, Paul N; Fernández, Facundo M; Vongsack, Latsamy; Manolin, Ot

    2007-01-04

    The proliferation of counterfeit and poor-quality drugs is a major public health problem; especially in developing countries lacking adequate resources to effectively monitor their prevalence. Simple and affordable field methods provide a practical means of rapidly monitoring drug quality in circumstances where more advanced techniques are not available. Therefore, we have evaluated refractometry, colorimetry and a technique combining both processes as simple and accurate field assays to rapidly test the quality of the commonly available antimalarial drugs; artesunate, chloroquine, quinine, and sulfadoxine. Method bias, sensitivity, specificity and accuracy relative to high-performance liquid chromatographic (HPLC) analysis of drugs collected in the Lao PDR were assessed for each technique. The HPLC method for each drug was evaluated in terms of assay variability and accuracy. The accuracy of the combined method ranged from 0.96 to 1.00 for artesunate tablets, chloroquine injectables, quinine capsules, and sulfadoxine tablets while the accuracy was 0.78 for enterically coated chloroquine tablets. These techniques provide a generally accurate, yet simple and affordable means to assess drug quality in resource-poor settings.

  17. Antimalarial drug utilization by women in Ethiopia: a knowledge-attitudes-practice study.

    Science.gov (United States)

    Yeneneh, H; Gyorkos, T W; Joseph, L; Pickering, J; Tedla, S

    1993-01-01

    A survey was undertaken between December 1991 and February 1992 to assess the knowledge, attitudes, and practices with respect to malaria of 300 women from six randomly selected rural communities in central Ethiopia. A total of 85% were able to recognize one or more of the common symptoms of the disease; however, the modes of transmission were generally misunderstood and only 23% believed that transmission could be prevented. More women preferred to obtain antimalarials from government clinics rather than from private drug shops, mission clinics, unofficial suppliers of injections, open markets, or from leftover sources. Under-5-year-olds were identified as the most malaria-vulnerable group and given priority for treatment; severity of illness was the principal determinant in seeking treatment. Decisions about treatment were generally made jointly by both parents. Knowledge about the transmissibility of malaria decreased with increasing distance from a health unit (odds ratio: 0.48; 95% confidence interval: 0.27, 0.86). A logistic regression analysis indicated that literacy and village were the most important variables associated with knowledge about preventing malaria.

  18. Mass administration of the antimalarial drug mefloquine to Guantánamo detainees: a critical analysis.

    Science.gov (United States)

    Nevin, Remington L

    2012-10-01

    Recently, evidence has emerged from an unusual form of mass drug administration practised among detainees held at US Naval Station Guantánamo Bay, Cuba ('Guantánamo'), ostensibly as a public health measure. Mefloquine, an antimalarial drug originally developed by the US military, whose use is associated with a range of severe neuropsychiatric adverse effects, was administered at treatment doses to detainees immediately upon their arrival at Guantánamo, prior to laboratory testing for malaria and irrespective of symptoms of disease. In this analysis, the history of mefloquine's development is reviewed and the indications for its administration at treatment doses are discussed. The stated rationale for the use of mefloquine among Guantánamo detainees is then evaluated in the context of accepted forms of population-based malaria control. It is concluded that there was no plausible public health indication for the use of mefloquine at Guantánamo and that based on prevailing standards of care, the clinical indications for its use are decidedly unclear. This analysis suggests the troubling possibility that the use of mefloquine at Guantánamo may have been motivated in part by knowledge of the drug's adverse effects, and points to a critical need for further investigation to resolve unanswered questions regarding the drug's potentially inappropriate use. Published 2012. This article is a US Government work and is in the public domain in the USA.

  19. Study on the developmental toxicity of combined artesunate and mefloquine antimalarial drugs on rats.

    Science.gov (United States)

    Boareto, Ana Cláudia; Müller, Juliane Centeno; de Araujo, Samanta Luiza; Lourenço, Ana Carolina; Lourenço, Emerson Luiz Botelho; Gomes, Caroline; Minatovicz, Bruna; Lombardi, Natália; Paumgartten, Francisco Roma; Dalsenter, Paulo Roberto

    2012-12-01

    Antimalarial drug combinations containing artemisinins (ACTs) have become first choice therapies for Plasmodium falciparum malaria. Data on safety of ACTs in pregnancy are limited and no previous study has been conducted on the developmental toxicity of artesunate-mefloquine combinations on the first trimester of gestation. To evaluate the developmental toxicity of an artesunate/mefloquine combination, pregnant rats were treated orally with artesunate (15 and 40 mg/kg bwt/day), mefloquine (30 and 80 mg/kg bwt/day) and artesunate/mefloquine (15/30 and 40/80 mg/kg bwt/day) on gestation days 9-11. Dams were C-sectioned on day 20, and their uteri and fetuses removed and examined for soft tissue and skeleton abnormalities. Artesunate increased embryolethality and the incidence of limb long bone malformations on the absence of overt maternal toxicity. Mefloquine (80 mg/kg bwt/day) was maternally toxic and enhanced fetal variations. Combination of artesunate and mefloquine did not enhance their toxicity compared to the toxicity observed after its separate administration. Embryotoxicity of artesunate was apparently attenuated when it is co-administered with mefloquine. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Bibliometric Analysis of Worldwide Publications on Antimalarial Drug Resistance (2006–2015

    Directory of Open Access Journals (Sweden)

    Waleed M. Sweileh

    2017-01-01

    Full Text Available Background. In response to international efforts to control and eradicate malaria, we designed this study to give a bibliometric overview of research productivity in antimalarial drug resistance (AMDR. Methods. Keywords related to AMDR were used to retrieve relevant literature using Scopus database. Results. A total of 976 publications with an h-index of 63 were retrieved. The number of publications showed a noticeable increase starting in the early 1990s. The USA was the most productive country with 337 publications equivalent to one-third of worldwide publications in this field. More than two-thirds of publications by the USA (236, 70.03% were made by international collaboration. Of the top ten productive countries, two countries were from Mekong subregion, particularly Thailand and Cambodia. The Malaria Journal was the most productive journal (136, 13.93% in this field. Mahidol University (80, 8.20% in Thailand was the most productive institution. Seven articles in the top-ten list were about artemisinin resistance in Plasmodium falciparum, one was about chloroquine resistance, one was about sulfadoxine-pyrimethamine resistance, and the remaining one was about general multidrug resistance. Conclusion. Eradication and control of AMDR require continuing research activity to help international health organizations identify spots that require an immediate action to implement appropriate measures.

  1. A simple and inexpensive haemozoin-based colorimetric method to evaluate anti-malarial drug activity.

    Science.gov (United States)

    Men, Tran Thanh; Huy, Nguyen Tien; Trang, Dai Thi Xuan; Shuaibu, Mohammed Nasir; Hirayama, Kenji; Kamei, Kaeko

    2012-08-09

    The spread of drug resistance in malaria parasites and the limited number of effective drugs for treatment indicates the need for new anti-malarial compounds. Current assays evaluating drugs against Plasmodium falciparum require expensive materials and equipment, thus limiting the search for new drugs, particularly in developing countries. This study describes an inexpensive procedure that is based on the advantage of a positive correlation between the haemozoin level of infected erythrocytes and parasite load. The relationship between parasitaemia and the haemozoin level of infected erythrocytes was investigated after converting haemozoin into monomeric haem. The 50% inhibitory concentration (IC50) values of chloroquine, quinine, artemisinin, quinidine and clotrimazole against P. falciparum K1 and 9A strains were determined using the novel assay method. The haemozoin of parasites was extracted and converted into monomeric haem, allowing the use of a colorimeter to efficiently and rapidly measure the growth of the parasites. There was a strong and direct linear relationship between the absorbance of haem converted from haemozoin and the percentage of the parasite (R2 = 0.9929). Furthermore, the IC50 values of drugs were within the range of the values previously reported. The haemozoin-based colorimetric assay can be considered as an alternative, simple, robust, inexpensive and convenient method, making it applicable in developing countries.

  2. Resistance of Plamodium falciparum to Antimalarial Drugs in Zaragoza (Antioquia, Colombia, 1998

    Directory of Open Access Journals (Sweden)

    Silvia Blair-Trujillo

    2002-04-01

    Full Text Available Plasmodium falciparum sensitivity to chloroquine (CHL, amodiaquine (AMO and sulfadoxine/pyrimethamine (SDX/PYR was assessed in vivo and in vitro in a representative sample from the population of Zaragoza in El Bajo Cauca region (Antioquia-Colombia. There were 94 patients with P. falciparum evaluated. For the in vivo test the patients were followed by clinical examination and microscopy, during 7 days. The in vitro test was performed following the recommendations of the World Health Organization. The in vivo prevalence of resistance to CHL was 67%, to AMO 3% and to SDX/PYR 9%. The in vitro test showed sensitivity to all antimalarials evaluated. Concordance for CHL between the in vivo and in vitro tests was 33%. For AMO and SDX/PYR, the concordance was 100%. We conclude that a high percentage of patients are resistant to CHL (in vivo. A high rate of intestinal parasitism might explain in part, the differences observed between the in vivo and the in vitro results. Therefore, new policies and treatment regimens should be proposed for the treatment of the infection in the region. Nationwide studies assessing the degree of resistance are needed.

  3. Antimalarial Evaluation of the Chemical Constituents of Hairy Root Culture of Bixa orellana L.

    Directory of Open Access Journals (Sweden)

    Bo Zhai

    2014-01-01

    Full Text Available Over 216 million malaria cases are reported annually worldwide and about a third of these cases, primarily children under the age of five years old, will not survive the infection. Despite this significant world health impact, only a limited number of therapeutic agents are currently available. The lack of scaffold diversity poses a threat in the event that multi-drug–resistant strains emerge. Terrestrial natural products have provided a major source of chemical diversity for starting materials in many FDA approved drugs over the past century. Bixa orellana L. is a popular plant used in South America for the treatment of malaria. In search of new potential therapeutic agents, the chemical constituents of a selected hairy root culture line of Bixa orellana L. were characterized utilizing NMR and mass spectrometry methods, followed by its biological evaluation against malaria strains 3D7 and K1. The crude extract and its isolated compounds demonstrated EC50 values in the micromolar range. Herein, we report our findings on the chemical constituents of Bixa orellana L. from hairy roots responsible for the observed antimalarial activity.

  4. Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration

    Directory of Open Access Journals (Sweden)

    Miguel Quiliano

    2016-12-01

    Full Text Available Synthesis of new 1-aryl-3-substituted propanol derivatives followed by structure-activity relationship, in silico drug-likeness, cytotoxicity, genotoxicity, in silico metabolism, in silico pharmacophore modeling, and in vivo studies led to the identification of compounds 22 and 23 with significant in vitro antiplasmodial activity against drug sensitive (D6 IC50 ≤ 0.19 μM and multidrug resistant (FCR-3 IC50 ≤ 0.40 μM and C235 IC50 ≤ 0.28 μM strains of Plasmodium falciparum. Adequate selectivity index and absence of genotoxicity was also observed. Notably, compound 22 displays excellent parasitemia reduction (98 ± 1%, and complete cure with all treated mice surviving through the entire period with no signs of toxicity. One important factor is the agreement between in vitro potency and in vivo studies. Target exploration was performed; this chemotype series exhibits an alternative antimalarial mechanism.

  5. Pharmacokinetic study and bioavailability of a novel synthetic trioxane antimalarial compound 97/63 in rats.

    Science.gov (United States)

    Kushwaha, Hari Narayan; Mohan, Neel Kamal; Sharma, Ashok Kumar; Singh, Shio Kumar

    2014-01-01

    Single dose pharmacokinetics study of 97/63 (IND191710, 2004), a trioxane antimalarial developed by Central Drug Research Institute, Lucknow, India, was studied in rats following intravenous and oral administration. Serum samples were analysed by HPLC-UV assay. Separation was achieved on a RP-18 column attached with a guard using acetonitrile : phosphate buffer (70 : 30% v/v) with UV detector at wavelength 244 nm. Serum samples were extracted with n-hexane. Two-compartment model without lag time and first-order elimination rate was considered to be the best fit to explain the generated oral and intravenous data. Method was sensitive with limit of quantification of 10 ng mL(-1). Recovery was >74%. Terminal half-life and area under curve (AUC) after administering single oral (72 mg kg(-1)) and intravenous (18 mg kg(-1)) doses were 10.61 h, 10.57 h, and 1268.97 ng h mL(-1), 2025.75 ng h mL(-1), respectively. After oral dose, 97/63 was rapidly absorbed attaining maximum concentration 229.24 ng mL(-1) at 1 h. Bioavailability of 97/63 was ~16%. The lower bioavailability of drug may be due to poor solubility and first-pass metabolism and can be improved by prodrug formation of 97/63.

  6. Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp.

    Science.gov (United States)

    Laurent, Dominique; Jullian, Valérie; Parenty, Arnaud; Knibiehler, Martine; Dorin, Dominique; Schmitt, Sophie; Lozach, Olivier; Lebouvier, Nicolas; Frostin, Maryvonne; Alby, Frédéric; Maurel, Séverine; Doerig, Christian; Meijer, Laurent; Sauvain, Michel

    2006-07-01

    As part of our search for new antimalarial drugs, we have screened for inhibitors of Pfnek-1, a protein kinase of Plasmodium falciparum, in south Pacific marine sponges. On the basis of a preliminary screening, the ethanolic crude extract of a new species of Xestospongia collected in Vanuatu was selected for its promising activity. A bioassay-guided fractionation led us to isolate xestoquinone which inhibits Pfnek-1 with an IC(50) around 1 microM. Among a small panel of plasmodial protein kinases, xestoquinone showed modest protein kinase inhibitory activity toward PfPK5 and no activity toward PfPK7 and PfGSK-3. Xestoquinone showed in vitro antiplasmodial activity against a FCB1 P. falciparum strain with an IC(50) of 3 microM and a weak selectivity index (SI 7). Xestoquinone exhibited a weak in vivo activity at 5mg/kg in Plasmodium berghei NK65 infected mice and was toxic at higher doses.

  7. Peptide deformylase: a new target in antibacterial, antimalarial and anticancer drug discovery.

    Science.gov (United States)

    Sangshetti, Jaiprakash N; Khan, Firoz A Kalam; Shinde, Devanand B

    2015-01-01

    Peptide deformylase (PDF) is a class of metalloenzyme responsible for catalyzing the removal of the N-formyl group from N-terminal methionine following translation. PDF inhibitors are moving into new phase of drug development. Initially, PDF was considered as an important target in antibacterial drug discovery; however genome database searches have revealed PDF-like sequences in parasites (P. falciparum) and human, widening the utility of this target in antimalarial and anticancer drug discovery along with antibacterial. Using structural and mechanistic information together with high throughput screening, several types of chemical classes of PDF inhibitors with improved efficacy and specificity have been identified. Various drugs like, GSK-1322322 (Phase II), BB-83698 (Phase I), and LBM-415 (Phase I) have entered into clinical developments. Developments in the field have prompted us to review the current aspects of PDFs, especially their structures, different classes of PDF inhibitors, and molecular modeling studies. In nut shell, this review enlightens PDF as a versatile target along with its inhibitors and future perspectives of different PDF inhibitors.

  8. Cytotoxic and Antimalarial Amaryllidaceae Alkaloids from the Bulbs of Lycoris radiata

    Directory of Open Access Journals (Sweden)

    Bin Hao

    2013-02-01

    Full Text Available Phytochemical investigation of the 80% ethanol extract of the bulbs of Lycoris radiata resulted in the isolation of five new Amaryllidaceae alkaloids: (+-5,6-dehydrolycorine (1, (+-3α,6β-diacetyl-bulbispermine (2, (+-3α-hydroxy-6β-acetyl- bulbispermine (3, (+-8,9-methylenedioxylhomolycorine-N-oxide (5, and 5,6-dihydro-5- methyl-2-hydroxyphenanthridine (7, together with two known compounds, (+-3α-methoxy- 6β-acetylbulbispermine (4 and (+-homolycorine- N-oxide (6. Structural elucidation of all the compounds were performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC NMR spectroscopy, in addition to high resolution mass spectrometry. Alkaloid 1 showed potent cytotoxicity against astrocytoma and glioma cell lines (CCF-STTG1, CHG-5, SHG-44, and U251, as well as HL-60, SMMC-7721, and W480 cell lines with IC50 values of 9.4–11.6 μM. Additonally, compound 1 exhibited antimalarial activity with IC50 values of 2.3 μM for D-6 strain and 1.9 μM for W-2 strain of Plasmodium falciparum.

  9. Risk of Serious Infection for Patients with Systemic Lupus Erythematosus Starting Glucocorticoids with or without Antimalarials.

    Science.gov (United States)

    Herrinton, Lisa J; Liu, Liyan; Goldfien, Robert; Michaels, M Alex; Tran, Trung N

    2016-08-01

    To compare serious infection risk for systemic lupus erythematosus (SLE) patients starting glucocorticoids (GC), antimalarials (AM), or their combination. We conducted a new-user, historical cohort study, Kaiser Permanente Northern California, 1997-2013. Cox proportional hazards analysis was used to calculate adjusted HR and 95% CI. The study included 3030 patients with SLE followed an average of 4 years. Compared with patients starting AM without GC (9 infections/1461 patient-yrs), the HR for the risk of infection was 3.9 (95% CI 1.7-9.2) for those starting GC ≤ 15 mg/day without AM (14 infections/252 patient-yrs), while it was 0.0 (0 infections/128 patient-yrs) for those starting the combination. We split the 14 patients with a serious infection and with GC 15 mg/day (reflecting more severe SLE), the risk of infection was nearly the same for the combination of GC and AM (9 infections/135 patient-yrs) and GC alone (41 infections/460 patient-yrs), but the combination users had evidence of more severe disease. Patients with SLE had a 6- to 7-fold greater risk of serious infection than the general population. Our findings suggest that the benefits of AM treatment for SLE may extend to preventing serious infections. Although the study included > 3000 patients, the statistical power to examine GC dosages < 15 mg/day was poor.

  10. Antimalarials as a risk factor for elevated muscle enzymes in systemic lupus erythematosus.

    Science.gov (United States)

    Tselios, K; Gladman, D D; Su, Jiandong; Urowitz, M B

    2016-04-01

    To investigate the relationship between antimalarials (AM) and elevated muscle enzymes in systemic lupus erythematosus (SLE). 325 lupus patients with abnormal creatine phosphokinase (CPK) for at least two consecutive clinic visits were enrolled; 54 patients on statins/fibrates (n = 43) and/or active myositis (n = 14) were excluded. The control group consisted of 1453 lupus patients with no CPK elevation during follow-up. Descriptive statistics and Cox regression analyses were performed, p risk for CPK elevation. Black race was associated with higher CPK (HR = 2.941), whereas female gender was protective (HR = 0.697). 203 patients were followed for 7.3 ± 5.6 years; 49.8% had persistent and 14.8% intermittent CPK elevation, while in 35.4% CPK was normalized. Clinical proximal muscle weakness developed in 5/203 patients. Chronic AM use is a potential risk factor for muscle enzyme elevation in SLE patients. CPK abnormalities persist in almost two thirds of the patients, but this remains mainly a biochemical finding, evolving to clinical myopathy in about 2.5%. © The Author(s) 2015.

  11. The search for natural bioactive compounds through a multidisciplinary approach in Bolivia. Part II. Antimalarial activity of some plants used by Mosetene indians.

    Science.gov (United States)

    Muñoz, V; Sauvain, M; Bourdy, G; Callapa, J; Rojas, I; Vargas, L; Tae, A; Deharo, E

    2000-02-01

    Forty-six different species collected in the Mosetene ethnia, dwelling in the Andean Piedmont of Bolivia, were screened for antimalarial properties. Thirty-three extracts were screened for antimalarial activity in vitro on Plasmodium falciparum chloroquine resistant strain (Indo), and forty-seven extracts were evaluated in vivo on the rodent malaria P. vinckei petteri 279BY. Only two plants are specifically used in combination by the Mosetene against malaria attack (Hymenachne donacifolia and Tesseria integrifolia), but they did not display any activity in vivo at 1000 mg/kg. The in vivo most active extracts were Swietenia macrophylla bark, Trema micrantha bark and Triplaris americana bark, not all of them were used for antimalarial purposes by the Mosetene. The following extracts were moderately active: Jacaratia digitata inner bark and Momordica charantia aerial part (both traditionally used as febrifuge), Kalanchoe pinnate aerial part (used in inflammatory processes), Lunania parviflora twigs and leaves, Phyllanthus acuminatus (used as piscicide), Tynanthus schumannianus fruit (used against diarrhoea), Triumfetta semitrilobata (used as febrifuge, to alleviate kidney and gynecological pain) and finally Solanum mammosum fruit (used against scabies). We present here the results of this screening, emphazing on the in vivo antimalarial activity of the selected plants. The antimalarial in vivo activity of the selected species, in relation with their traditional Mosetene use is then discussed.

  12. In vitro and in vivo antimalarial activity and cytotoxicity of extracts, fractions and a substance isolated from the Amazonian plant Tachia grandiflora (Gentianaceae

    Directory of Open Access Journals (Sweden)

    Luiz Francisco Rocha e Silva

    2013-06-01

    Full Text Available Tachia sp. are used as antimalarials in the Amazon Region and in vivo antimalarial activity of a Tachia sp. has been previously reported. Tachia grandiflora Maguire and Weaver is an Amazonian antimalarial plant and herein its cytotoxicity and antimalarial activity were investigated. Spectral analysis of the tetraoxygenated xanthone decussatin and the iridoid aglyone amplexine isolated, respectively, from the chloroform fractions of root methanol and leaf ethanol extracts was performed. In vitro inhibition of the growth of Plasmodium falciparum Welch was evaluated using optical microscopy on blood smears. Crude extracts of leaves and roots were inactive in vitro. However, chloroform fractions of the root and leaf extracts [half-maximal inhibitory concentration (IC50 = 10.5 and 35.8 µg/mL, respectively] and amplexine (IC50= 7.1 µg/mL were active in vitro. Extracts and fractions were not toxic to type MRC-5 human fibroblasts (IC50> 50 µg/mL. Water extracts of the roots of T. grandiflora administered by mouth were the most active extracts in the Peters 4-day suppression test in Plasmodium berghei-infected mice. At 500 mg/kg/day, these extracts exhibited 45-59% inhibition five to seven days after infection. T. grandiflora infusions, fractions and isolated substance have potential as antimalarials.

  13. Peculiarities in cases of spina bifida cystica managed recently in south-east Nigeria: could antimalarial drugs be a major but unrecognized etiologic factor?

    Science.gov (United States)

    Emejulu, Jude-Kennedy C; Okwaraoha, Blaise Ogedi

    2011-01-01

    Spina bifida is a long-known disease arising from the incomplete fusion of the caudal neuropore in the first month of intrauterine life. It is thought to have a multifactorial etiology, the most important of which is folic acid deficiency. In evaluating its etiology, the role of antifolate agents like antimalarial drugs is rarely given a strong mention. This is a 44-month prospective study of consecutive cases of spina bifida cystica presenting to the Neurosurgery Unit of Nnamdi Azikiwe University Teaching Hospital, Nnewi, South-East Nigeria. Data collection was with a structured proforma from presentation, and collation done with Microsoft Excel broadsheet and data analysis with SPSS and χ2 test. A total of 41 cases of spina bifida were attended to within the period, with 92.7% cases of spina bifida cystica. Most presented by >12-24 months, with a consistent history of maternal ingestion of antimalarial drugs during the first trimester of pregnancy. Spina bifida cystica was diagnosed mostly in children whose mothers ingested antimalarial drugs during the first trimester of gestation. There may be a need to critically evaluate the contribution of antimalarial drugs to the etiopathogenesis of this malformation and develop safer antimalarial treatment in pregnancy. Copyright © 2012 S. Karger AG, Basel.

  14. Evaluation of patterns of liver toxicity in patients on antiretroviral and anti-tuberculosis drugs: a prospective four arm observational study in ethiopian patients.

    Directory of Open Access Journals (Sweden)

    Getnet Yimer

    Full Text Available OBJECTIVES: To evaluate the incidence, type, severity and predictors of antiretroviral and/or anti-tuberculosis drugs induced liver injury (DILI. METHODS: A total of 1,060 treatment naive patients were prospectively enrolled into four treatment groups: HIV patients receiving efavirenz based HAART alone (Arm-1; TB-HIV co-infected patients with CD4≤200 cells/μL, receiving concomitant rifampicin based anti-TB and efavirenz based HAART (Arm-2; TB-HIV co-infected patients with CD4>200 cells/μL, receiving anti-TB alone (Arm-3; TB patients taking rifampicin based anti-TB alone (Arm-4. Liver enzyme levels were monitored at baseline, 1st, 2nd, 4th, 8th, 12th and 24th weeks during treatment. CD4 and HIV viral load was measured at baseline, 24th and 48th weeks. Data were analyzed using multivariate Cox Proportional Hazards Model. RESULTS: A total of 159 patients (15% developed DILI with severity grades 1, 2, 3 and 4 of 53.5%, 32.7%, 11.3% and 2.5% respectively. The incidence of cholestatic, hepatocellular or mixed pattern was 61%, 15% and 24%, respectively. Incidence of DILI was highest in Arm-2 (24.2%>Arm-3 (10.8%>Arm-1 (8.8%>Arm-4 (2.9%. Concomitant anti-TB-HIV therapy increased the risk of DILI by 10-fold than anti-TB alone (p<0.0001. HIV co-infection increased the risk of anti-TB DILI by 4-fold (p = 0.004. HAART associated DILI was 3-fold higher than anti-TB alone, (p = 0.02. HAART was associated with cholestatic and grade 1 DILI whereas anti-TB therapy was associated with hepatocellular and grade ≥ 2. Treatment type, lower CD4, platelet, hemoglobin, higher serum AST and direct bilirubin levels at baseline were significant DILI predictors. There was no effect of DILI on immunologic recovery or virologic suppression rate of HAART. CONCLUSION: HAART associated DILI is mainly cholestatic and mild whereas hepatocellular or mixed pattern with high severity grade is more common in anti-tuberculosis DILI. TB-HIV co-infection, disease severity

  15. Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance.

    Directory of Open Access Journals (Sweden)

    Miriam Bobadilla-del Valle

    2015-09-01

    Full Text Available Mycobacterium tuberculosis causes the majority of tuberculosis (TB cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City.Data on mycobacterial isolates from human clinical samples were retrieved from the laboratory's database for the 2000-2014 period. Susceptibility to first-line drugs: rifampin, isoniazid, streptomycin (STR and ethambutol was determined. We identified 1,165 isolates, 73.7% were M. tuberculosis and 26.2%, M. bovis. Among pulmonary samples, 16.6% were M. bovis. The proportion of M. bovis isolates significantly increased from 7.8% in 2000 to 28.4% in 2014 (X(2trend, p<0.001. Primary STR resistance was higher among M. bovis compared with M. tuberculosis isolates (10.9% vs.3.4%, p<0.001. Secondary multidrug resistance (MDR rates were 38.5% and 34.4% for M. bovis and M. tuberculosis, respectively (p = 0.637. A rising trend of primary STR monoresistance was observed for both species (3.4% in 2000-2004 vs. 7.6% in 2010-2014; p = 0.02.There is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance.

  16. A call for using natural compounds in the development of new antimalarial treatments – an introduction

    Directory of Open Access Journals (Sweden)

    Deharo Eric

    2011-03-01

    Full Text Available Abstract Natural compounds, mostly from plants, have been the mainstay of traditional medicine for thousands of years. They have also been the source of lead compounds for modern medicine, but the extent of mining of natural compounds for such leads decreased during the second half of the 20th century. The advantage of natural compounds for the development of drugs derives from their innate affinity for biological receptors. Natural compounds have provided the best anti-malarials known to date. Recent surveys have identified many extracts of various organisms (mostly plants as having antiplasmodial activity. Huge libraries of fractionated natural compounds have been screened with impressive hit rates. Importantly, many cases are known where the crude biological extract is more efficient pharmacologically than the most active purified compound from this extract. This could be due to synergism with other compounds present in the extract, that as such have no pharmacological activity. Indeed, such compounds are best screened by cell-based assay where all potential targets in the cell are probed and possible synergies identified. Traditional medicine uses crude extracts. These have often been shown to provide many concoctions that deal better with the overall disease condition than with the causative agent itself. Traditional medicines are used by ~80 % of Africans as a first response to ailment. Many of the traditional medicines have demonstrable anti-plasmodial activities. It is suggested that rigorous evaluation of traditional medicines involving controlled clinical trials in parallel with agronomical development for more reproducible levels of active compounds could improve the availability of drugs at an acceptable cost and a source of income in malaria endemic countries.

  17. Low-cost, high-speed identification of counterfeit antimalarial drugs on paper.

    Science.gov (United States)

    Koesdjojo, Myra T; Wu, Yuanyuan; Boonloed, Anukul; Dunfield, Elizabeth M; Remcho, Vincent T

    2014-12-01

    With the emergence of artesunate antimalarial counterfeiting in Southeast Asia and sub-Saharan Africa, we present the production of a rapid, inexpensive and simple colorimetric-based testing kit for the detection of counterfeit artesunate in order to preserve life and prevent the development of multi-drug resistant malaria. The kit works based on paper microfluidics which offer several advantages over conventional microfluidics, and has great potential to generate inexpensive, easy-to-use, rapid and disposable diagnostic devices. Here, we have developed a colorimetric assay that is specific to artesunate and turns yellow upon addition of the sample. The test can be done within minutes, and allows for a semi-quantitative analysis of the artesunate tablets by comparing the developed yellow color on the paper test to a color-coded key chart that comes with the kit. A more accurate and precise analysis is done by utilizing a color analyzer on an iPhone camera that measures the color intensity of the developed color on the paper chip. A digital image of the chip was taken and analyzed by measuring the average gray intensity of the color developed on the paper circle. A plot of the artesunate concentration versus the average gray scale intensity was generated. Results show that the intensity of the yellow color developed on the paper test was consistent and proportional to the amount of artesunate present in the sample. With artesunate concentrations ranging from 0.0 to 20mg/mL, a linear calibration plot was obtained with a detection limit of 0.98 mg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mutation in the Plasmodium falciparum CRT Protein Determines the Stereospecific Activity of Antimalarial Cinchona Alkaloids

    Science.gov (United States)

    Griffin, Carol E.; Hoke, Jonathan M.; Samarakoon, Upeka; Duan, Junhui; Mu, Jianbing; Ferdig, Michael T.; Warhurst, David C.

    2012-01-01

    The Cinchona alkaloids are quinoline aminoalcohols that occur as diastereomer pairs, typified by (−)-quinine and (+)-quinidine. The potency of (+)-isomers is greater than the (−)-isomers in vitro and in vivo against Plasmodium falciparum malaria parasites. They may act by the inhibition of heme crystallization within the parasite digestive vacuole in a manner similar to chloroquine. Earlier studies showed that a K76I mutation in the digestive vacuole-associated protein, PfCRT (P. falciparum chloroquine resistance transporter), reversed the normal potency order of quinine and quinidine toward P. falciparum. To further explore PfCRT-alkaloid interactions in the malaria parasite, we measured the in vitro susceptibility of eight clonal lines of P. falciparum derived from the 106/1 strain, each containing a unique pfcrt allele, to four Cinchona stereoisomer pairs: quinine and quinidine; cinchonidine and cinchonine; hydroquinine and hydroquinidine; 9-epiquinine and 9-epiquinidine. Stereospecific potency of the Cinchona alkaloids was associated with changes in charge and hydrophobicity of mutable PfCRT amino acids. In isogenic chloroquine-resistant lines, the IC50 ratio of (−)/(+) CA pairs correlated with side chain hydrophobicity of the position 76 residue. Second-site PfCRT mutations negated the K76I stereospecific effects: charge-change mutations C72R or Q352K/R restored potency patterns similar to the parent K76 line, while V369F increased susceptibility to the alkaloids and nullified stereospecific differences between alkaloid pairs. Interactions between key residues of the PfCRT channel/transporter with (−) and (+) alkaloids are stereospecifically determined, suggesting that PfCRT binding plays an important role in the antimalarial activity of quinine and other Cinchona alkaloids. PMID:22869567

  19. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors.

    Science.gov (United States)

    Golden, Encouse B; Cho, Hee-Yeon; Hofman, Florence M; Louie, Stan G; Schönthal, Axel H; Chen, Thomas C

    2015-03-01

    Chloroquine (CQ) is a quinoline-based drug widely used for the prevention and treatment of malaria. More recent studies have provided evidence that this drug may also harbor antitumor properties, whereby CQ possesses the ability to accumulate in lysosomes and blocks the cellular process of autophagy. Therefore, the authors of this study set out to investigate whether CQ analogs, in particular clinically established antimalaria drugs, would also be able to exert antitumor properties, with a specific focus on glioma cells. Toward this goal, the authors treated different glioma cell lines with quinine (QN), quinacrine (QNX), mefloquine (MFQ), and hydroxychloroquine (HCQ) and investigated endoplasmic reticulum (ER) stress-induced cell death, autophagy, and cell death. All agents blocked cellular autophagy and exerted cytotoxic effects on drug-sensitive and drug-resistant glioma cells with varying degrees of potency (QNX > MFQ > HCQ > CQ > QN). Furthermore, all quinoline-based drugs killed glioma cells that were highly resistant to temozolomide (TMZ), the current standard of care for patients with glioma. The cytotoxic mechanism involved the induction of apoptosis and ER stress, as indicated by poly(ADP-ribose) polymerase (PARP) cleavage and CHOP/GADD153. The induction of ER stress and resulting apoptosis could be confirmed in the in vivo setting, in which tumor tissues from animals treated with quinoline-based drugs showed increased expression of CHOP/GADD153, along with elevated TUNEL staining, a measure of apoptosis. Thus, the antimalarial compounds investigated in this study hold promise as a novel class of autophagy inhibitors for the treatment of newly diagnosed TMZ-sensitive and recurrent TMZ-resistant gliomas.

  20. Disturbance in hemoglobin metabolism and in vivo antimalarial activity of azole antimycotics

    Directory of Open Access Journals (Sweden)

    Juan Ricardo Rodrigues

    2011-02-01

    Full Text Available Plasmodium parasites degrade host hemoglobin to obtain free amino acids, essential for protein synthesis. During this event, free toxic heme moieties crystallize spontaneously to produce a non-toxic pigment called hemozoin or ß-hematin. In this context, a group of azole antimycotics, clotrimazole (CTZ, ketoconazole (KTZ and fluconazole (FCZ, were investigated for their abilities to inhibit ß-hematin synthesis (IßHS and hemoglobin proteolysis (IHbP in vitro. The ß-hematin synthesis was recorded by spectrophotometry at 405 nm and the hemoglobin proteolysis was determined by SDS-PAGE 12.5%, followed by densitometric analysis. Compounds were also assayed in vivo in a malaria murine model. CTZ and KTZ exhibited the maximal effects inhibiting both biochemical events, showing inhibition of β-hematin synthesis (IC50 values of 12.4 ± 0.9 µM and 14.4 ± 1.4 µM respectively and inhibition of hemoglobin proteolysis (80.1 ± 2.0% and 55.3 ± 3.6%, respectively. There is a broad correlation to the in vivo results, especially CTZ, which reduced the parasitemia (%P of infected-mice at 4th day post-infection significantly compared to non-treated controls (12.4 ± 3.0% compared to 26.6 ± 3.7%, p = 0.014 and prolonged the survival days post-infection. The results indicated that the inhibition of the hemoglobin metabolism by the azole antimycotics could be responsible for their antimalarial effect.

  1. A new double-antibody sandwich ELISA targeting Plasmodium falciparum aldolase to evaluate anti-malarial drug sensitivity

    Directory of Open Access Journals (Sweden)

    Brun Reto

    2009-10-01

    Full Text Available Abstract Background The standard in vitro test to assess anti-malarial activity of chemical compounds is the [3H]hypoxanthine incorporation assay. It is a radioactivity-based method to measure DNA replication of Plasmodium in red blood cells. The method is highly reproducible, however, the handling of radioactive material is costly, hazardous and requires the availability of appropriate technology and trained staff. Several other ways to evaluate in vitro anti-malarial activity do exist, all with their own assets and limitations. Methods The newly developed double-antibody sandwich ELISA described here is based on the properties of a non-overlapping pair of monoclonal antibodies directed against Plasmodium falciparum aldolase. This glycolytic enzyme possesses some unique nucleotide sequences compared to the human isoenzymes and has been highly conserved through evolution. Out of twenty possibilities, the most sensitive antibody pair was selected and used to quantitatively detect parasite aldolase in infected blood lysates. Results A total of 34 compounds with anti-malarial activity were tested side-by-side by ELISA and the [3H]hypoxanthine incorporation assay. The novel ELISA provided IC50s closely paralleling those from the radioactivity-based assay (R = 0.99, p Conclusion The newly developed ELISA presents several advantages over the comparative method, the [3H]hypoxanthine incorporation assay. The assay is highly reproducible, less hazardous (involves no radioactivity and requires little and cheap technical equipment. Relatively unskilled personnel can conduct this user-friendly assay. All this makes it attractive to be employed in resource-poor laboratories.

  2. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    Science.gov (United States)

    2010-01-01

    Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL) vs. dihydroartemisinin-piperaquine (DP) performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Results Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66) and poor agreement in Apac (kappa = 0.24). Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5). However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03). Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Conclusions Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission, gel electrophoresis

  3. In Vivo Antimalarial Effects of Iranian Flora Artemisia khorassanica against Plasmodium berghei and Pharmacochemistry of its Natural Components

    Directory of Open Access Journals (Sweden)

    M Amini

    2010-02-01

    Full Text Available "nBackground: The aim of this study was to evaluate the antimalarial effects of Iranian flora Artemisia khorassanica against Plasmodium berghei in vivo and pharmacochemistry of its natural components."nMethods: The aerial parts of Iranian flora A. khorasanica were collected at flowering stage from Khorassan Province, northeastern Iran in 2008. They were air-dried at room temperature; powder was macerated in methanol and the extract defatted in refrigerator, filtered, diluted with water, then eluted with n-hexane and finally non-polar components were identified through Gas Chromatography and Mass Spectroscopy (GC-MS. Toxicity of herbal extracts was assessed on naïve NMRI mice, and its anti-malarial efficacy was investigated on infected Plasmodium berghei animals. This is the first ap­plication on A. khorssanica extract for treatment of murine malaria. The significance of differences was determined by Analysis of Variances (ANOVA and Student's t-test using Graph Pad Prism Software."nResults: The herbal extract was successfully tested in vivo for its anti-plasmodial activity through ar­temisin composition, which is widely used as a standard malaria treatment."nConclusion: Although, this study confirmed less anti-malarial effects of A. khorssanica against mur­ine malaria in vivo, how­ever there are some evidences on reducing pathophysiology by this medica­tion. In complementary assay, major components were detected by GC-MS analysis in herbal extract including chrysanthe­none (7.8%, palmitic acid (7.4% and cis-thujone (5.8%.  The most retention indices of the compo­nent are given as n-eicosane, palmitic acid and n-octadecane.

  4. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda.

    Science.gov (United States)

    Gupta, Vinay; Dorsey, Grant; Hubbard, Alan E; Rosenthal, Philip J; Greenhouse, Bryan

    2010-01-15

    Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL) vs. dihydroartemisinin-piperaquine (DP) performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66) and poor agreement in Apac (kappa = 0.24). Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5). However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03). Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission, gel electrophoresis appears adequate to estimate comparative

  5. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    Directory of Open Access Journals (Sweden)

    Hubbard Alan E

    2010-01-01

    Full Text Available Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL vs. dihydroartemisinin-piperaquine (DP performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Results Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66 and poor agreement in Apac (kappa = 0.24. Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5. However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03. Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Conclusions Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission

  6. Monitoring the efficacy of antimalarial medicines in India via sentinel sites: Outcomes and risk factors for treatment failure.

    Science.gov (United States)

    Mishra, Neelima; Srivastava, Bina; Bharti, Ram Suresh; Rana, Roma; Kaitholia, Kamlesh; Anvikar, Anupkumar R; Das, Manoj Kumar; Ghosh, Susanta K; Bhatt, Rajendra M; Tyagi, Prajesh K; Dev, Vas; Phookan, Sobhan; Wattal, Suman Lata; Sonal, Gagan Singh; Dhariwal, Akshay Chand; Valecha, Neena

    2016-01-01

    To combat the problem of antimalarial drug resistance, monitoring the changes in drug efficacy over time through periodic surveillance is essential. Since 2009, systematic and continuous monitoring is being done through nationwide sentinel site system. Potential early warning signs like partner drug resistance markers were also monitored in the clinical samples from the study areas. A total of 1864 patients with acute uncomplicated malaria were enrolled in therapeutic efficacy studies of artesunate plus sulphadoxine-pyrimethamine (AS+SP) for Plasmodium falciparum; those infected with P. vivax were given chloroquine (CQ). Polymerase chain reaction (PCR) was used to distinguish post-treatment reinfection from treatment failures. Isolates of P. falciparum were also analysed for dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr) gene mutations. Overall, 1687 (91.7%) patients completed the follow-up. In most of the falciparum patients the parasitaemia was cleared within 24 h of treatment, except 12 patients who remained parasite positive after 72 h. Presence of dhfr and dhps quintuple mutation was observed predominantly in treatment failure samples. A daily dose of artesunate of 95% cases in all the sentinel sites except in Northeastern region (NE). Chloroquine remained 100% efficacious in case of P. vivax infections. Till 2012, India's national antimalarial drug resistance monitoring system proved highly efficacious and safe towards first-line antimalarials used in the country, except in Northeastern region where a decline in efficacy of AS+SP has been observed. This led to change in first-line treatment for P. falciparum to artemether-lumefantrine in Northeastern region.

  7. Screening of Kenyan medicinal plants for antimalarial effects on Plasmodium falciparum in vitror. Final report for the period 15 December 1993 - 31 December 1994

    International Nuclear Information System (INIS)

    Ofulla, A.V.O.

    1995-01-01

    The antimalarial activities of extracts of Albizia gummifera and Aspilia mossambicensis against culture adapted isolates of Plasmodium falciparum were evaluated using an in citro 3 H-hypoxanthine uptake technique. Chloroquine was used as a standard antimalarial drug for comparison with the plant extracts. The plant extracts showed various levels of activities (expressed as 50% inhibitory concentration (IC 50 s) in ug/ml of test culture) against P. falciparum in vitro, with Al gummifera showing the highest activity (eman IC 50 of 5.98 ± 2.9 SD, n=6), followed by A. mossambicensis (mean IC 50 73.36 ± 59.3 SD, n=18). The mean antimalarial activity of chloroquine (in ug/ml) was 0.037 (± 0.04 SD, n=10), far higher than that of the plant extracts. (author). 5 refs, 2 tabs

  8. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents.

    Science.gov (United States)

    Devender, Nalmala; Gunjan, Sarika; Chhabra, Stuti; Singh, Kartikey; Pasam, Venkata Reddy; Shukla, Sanjeev K; Sharma, Abhisheak; Jaiswal, Swati; Singh, Sunil Kumar; Kumar, Yogesh; Lal, Jawahar; Trivedi, Arun Kumar; Tripathi, Renu; Tripathi, Rama Pati

    2016-02-15

    In a quest to discover new drugs, we have synthesized a series of novel β-amino alcohol grafted 1,2,3-triazoles and screened them for their in vitro antiplasmodial and in vivo antimalarial activity. Among them, compounds 16 and 25 showed potent activity against chloroquine-sensitive (Pf3D7) strain with IC50 of 0.87 and 0.3 μM respectively, while compounds 7 and 13 exhibited better activity in vitro than the reference drug against chloroquine-resistance strain (PfK1) with IC50 of 0.5 μM each. Compound 25 showed 86.8% in vivo antimalarial efficacy with favorable pharmacokinetic parameters. Mechanistic studies divulged that potent compounds significantly boosted p53 protein levels to exhibit the antimalarial activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development

    Directory of Open Access Journals (Sweden)

    Zaloumis Sophie

    2012-08-01

    Full Text Available Abstract Background Mechanistic within-host models relating blood anti-malarial drug concentrations with the parasite-time profile help in assessing dosing schedules and partner drugs for new anti-malarial treatments. A comprehensive simulation study to assess the utility of a stage-specific pharmacokinetic-pharmacodynamic (PK-PD model for predicting within-host parasite response was performed. Methods Three anti-malarial combination therapies were selected: artesunate-mefloquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine. The PK-PD model included parameters to represent the concentration-time profiles of both drugs, the initial parasite burden and distribution across the parasite life cycle, and the parasite multiplication factor due to asexual reproduction. The model also included the maximal killing rate of each drug, and the blood drug concentration associated with half of that killing effect (in vivo EC50, derived from the in vitro IC50, the extent of binding to 0.5% Albumax present in the in vitro testing media, and the drugs plasma protein binding and whole blood to plasma partitioning ratio. All stochastic simulations were performed using a Latin-Hypercube-Sampling approach. Results The simulations demonstrated that the proportion of patients cured was highly sensitive to the in vivo EC50 and the maximal killing rate of the partner drug co-administered with the artemisinin derivative. The in vivo EC50 values that corresponded to on average 95% of patients cured were much higher than the adjusted values derived from the in vitro IC50. The proportion clinically cured was not strongly influenced by changes in the parameters defining the age distribution of the initial parasite burden (mean age of 4 to 16 hours and the parasite multiplication factor every life cycle (ranging from 8 to 12 fold/cycle. The median parasite clearance times, however, lengthened as the standard deviation of the initial parasite burden increased (i

  10. Prices and mark-ups on antimalarials: evidence from nationally representative studies in six malaria-endemic countries.

    Science.gov (United States)

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Torres Rueda, Sergio; Kiefer, Sabine; O'Connell, Kate; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Poyer, Stephen; Chavasse, Desmond

    2016-03-01

    The private for-profit sector is an important source of treatment for malaria. However, private patients face high prices for the recommended treatment for uncomplicated malaria, artemisinin combination therapies (ACTs), which makes them more likely to receive cheaper, less effective non-artemisinin therapies (nATs). This study seeks to better understand consumer antimalarial prices by documenting and exploring the pricing behaviour of retailers and wholesalers. Using data collected in 2009-10, we present survey estimates of antimalarial retail prices, and wholesale- and retail-level price mark-ups from six countries (Benin, Cambodia, the Democratic Republic of Congo, Nigeria, Uganda and Zambia), along with qualitative findings on factors affecting pricing decisions. Retail prices were lowest for nATs, followed by ACTs and artemisinin monotherapies (AMTs). Retailers applied the highest percentage mark-ups on nATs (range: 40% in Nigeria to 100% in Cambodia and Zambia), whereas mark-ups on ACTs (range: 22% in Nigeria to 71% in Zambia) and AMTs (range: 22% in Nigeria to 50% in Uganda) were similar in magnitude, but lower than those applied to nATs. Wholesale mark-ups were generally lower than those at retail level, and were similar across antimalarial categories in most countries. When setting prices wholesalers and retailers commonly considered supplier prices, prevailing market prices, product availability, product characteristics and the costs related to transporting goods, staff salaries and maintaining a property. Price discounts were regularly used to encourage sales and were sometimes used by wholesalers to reward long-term customers. Pricing constraints existed only in Benin where wholesaler and retailer mark-ups are regulated; however, unlicensed drug vendors based in open-air markets did not adhere to the pricing regime. These findings indicate that mark-ups on antimalarials are reasonable. Therefore, improving ACT affordability would be most readily

  11. Biflavonoid fraction from Garcinia kola seed ameliorates hormonal imbalance and testicular oxidative damage by anti-tuberculosis drugs in Wistar rats.

    Science.gov (United States)

    Kehinde, Aderemi; Adefisan, Adedoyin; Adebayo, Olayinka; Adaramoye, Oluwatosin

    2016-06-01

    Tuberculosis (TB) is a global health problem. The effects of anti-TB drugs on male reproductive system have not been properly evaluated. We investigated the effects of anti-TB drugs on testicular antioxidant indices, sperm characteristics and hormonal levels in rats, and the protective role of kolaviron (KV), a biflavonoid from Garcinia kola seed. Twenty-eight male Wistar rats were assigned into four groups and orally treated with corn oil (control), anti-TB drugs [4-Tabs=isoniazid (5 mg/kg), rifampicin (10 mg/kg), pyrazinamide (15 mg/kg) and ethambutol (15 mg/kg) in combination], anti-TB drugs +KV and KV alone (200 mg/kg). Anti-TB drugs and KV were given three times per week for 8 weeks. In vitro, reducing power, inhibition of lipid peroxidation (LPO), diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging effects of KV were examined. KV at 10, 20, 50 and 100 μg/mL showed strong reducing potential and effectively scavenged DPPH and OH radicals in a concentration-dependent manner. Furthermore, KV significantly inhibited LPO in rats' liver homogenate. In vivo, administration of 4-Tabs caused a significant (phormone and testosterone. Co-administration of KV with 4-Tabs normalized body weight, enhanced antioxidant system and improved sperm characteristics. Kolaviron protects male reproductive system from oxidative damage by anti-tuberculosis drugs via the antioxidative mechanism.

  12. First findings on the seroepidemiology of human paragonimosis at the anti-tuberculosis centre of Divo, Republic of Ivory Coast (West Africa

    Directory of Open Access Journals (Sweden)

    Aka N.A.

    2008-06-01

    Full Text Available An epidemiological study was carried out in 2004-2005 at the anti-tuberculosis centre of Divo (Ivory Coast to collect sera from patients who consulted for tuberculosis suspicion and to estimate the seroprevalence of human paragonimosis in the context of a systematic screening. No Paragonimus egg was found in the stools and/or sputa of the 167 persons investigated. In contrast, 41 sera were ascertained with antibodies against Paragonimus africanus using ELISA testing. As the optical density (OD values related to seropositive findings were found under 0.6 (the minimal OD to detect an active paragonimosis, the above antibody titres might originate from patients in chronic or in convalescent stages, or might result of cross reactions with trematodes. Concomitantly, dissection of local crabs (Callinectes marginatus demonstrated the presence of Paragonimus metacercariae in six out of 34 examined. The parasite burdens in crabs ranged from two to 35 cysts with a mean diameter of 302 μm. In Ivory Coast, the locality of Divo must be considered an at-risk zone in reason of the presence of anti-Paragonimus antibodies in several human sera and the presence of infected crabs at the local market.

  13. [Therapeutic outcomes of anti-tuberculosis treatment in the context of HIV-tuberculosis co-infection: Cohort of Kabinda Center in Kinshasa, Democratic Republic of Congo].

    Science.gov (United States)

    Akilimali, P Z; Tshilumbu, J M K; Mavila, A K; Kaba, D K

    2015-12-01

    The study aimed to determine the clinical forms of tuberculosis and therapeutic outcome of anti-tuberculosis treatment in the context of HIV-tuberculosis co-infection. A retrospective cohort of 120 HIV-positive patients with tuberculosis and 297 HIV-negative patients with tuberculosis attending the Kabinda Center was followed from 2010 to June, 30th 2013. The logistic regression model identified the determinants of a defavorable outcome after initiation of tuberculostatics. The proportion of female patients was higher in the co-infected group compared with the non-co-infected group (60.8% versus 42.7%, P<0.001). HIV-seropositive patients had more forms of pulmonary smear-negative (39.2% versus 25.3%, P<0.002) and extra-pulmonary (38% versus 35%, P<0.002) tuberculosis than HIV-negative patients. HIV-positive serology (OR: 3.13, 95%CI: 1.72-5.69) and age of patients more than 41 years (OR: 3.15, 95%CI: 1.36-7.29) were associated with an unfavorable outcome. This study highlights the usefulness of a systematically determining immunological status in co-infected patients and a timely and systematic ARV treatment, together with early diagnosis of tuberculosis. It also emphasizes the importance of adherence to support measures in order to improve tuberculosis treatment outcomes in co-infected patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Optimal Duration of Daily Antituberculosis Therapy before Switching to DOTS Intermittent Therapy to Reduce Mortality in HIV Infected Patients: A Duration-Response Analysis Using Restricted Cubic Splines.

    Science.gov (United States)

    Alvarez-Uria, Gerardo; Pakam, Raghavakalyan; Midde, Manoranjan; Naik, Praveen Kumar

    2014-01-01

    Compared with thrice-weekly intermittent antituberculosis therapy (ATT), the use of daily ATT during the intensive phase has shown improved survival in HIV infected patients with tuberculosis. However, the optimal duration of daily ATT before initiating intermittent ATT is not well known. In this study, we analysed the mortality of HIV-related tuberculosis according to the duration of daily ATT before switching to thrice-weekly ATT in patients who completed at least two months of treatment in an HIV cohort study. Statistical analysis was performed using Cox proportional hazard models. To relax the linearity assumption in regression models and to allow for a flexible interpretation of the relationship between duration of daily ATT and mortality, continuous variables were modelled using restricted cubic splines. The study included 520 HIV infected patients with tuberculosis and 8,724.3 person-months of follow-up. The multivariable analysis showed that the mortality risk was inversely correlated with the duration of daily ATT before switching to intermittent therapy during the first 30 days of ATT but, after approximately 30 days of treatment, differences were not statistically significant. The results of this study suggest that daily ATT should be given for at least 30 days before switching to intermittent ATT in HIV infected patients with tuberculosis.

  15. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    Directory of Open Access Journals (Sweden)

    Rosa A. S. Couto

    2016-06-01

    Full Text Available Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs for the voltammetric detection of the anti-tuberculosis (anti-TB drug ethambutol (ETB. The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV and square wave voltammetry (SWV techniques. Electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples.

  16. Computer-aided drug design of capuramycin analogues as anti-tuberculosis antibiotics by 3D-QSAR and molecular docking

    Directory of Open Access Journals (Sweden)

    Jin Yuanyuan

    2017-12-01

    Full Text Available Capuramycin and a few semisynthetic derivatives have shown potential as anti-tuberculosis antibiotics.To understand their mechanism of action and structureactivity relationships a 3D-QSAR and molecular docking studies were performed. A set of 52 capuramycin derivatives for the training set and 13 for the validation set was used. A highly predictive MFA model was obtained with crossvalidated q2 of 0.398, and non-cross validated partial least-squares (PLS analysis showed a conventional r2 of 0.976 and r2pred of 0.839. The model has an excellent predictive ability. Combining the 3D-QSAR and molecular docking studies, a number of new capuramycin analogs with predicted improved activities were designed. Biological activity tests of one analog showed useful antibiotic activity against Mycobacterium smegmatis MC2 155 and Mycobacterium tuberculosis H37Rv. Computer-aided molecular docking and 3D-QSAR can improve the design of new capuramycin antimycobacterial antibiotics.

  17. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing.

    Science.gov (United States)

    Genina, Natalja; Boetker, Johan Peter; Colombo, Stefano; Harmankaya, Necati; Rantanen, Jukka; Bohr, Adam

    2017-12-28

    The design and production of an oral dual-compartmental dosage unit (dcDU) was examined in vitro and in vivo with the purpose of physically isolating and modulating the release profile of an anti-tuberculosis drug combination. Rifampicin (RIF) and isoniazid (ISO) are first line combination drugs for treatment of tuberculosis (TB) that negatively interact with each other upon simultaneous release in acidic environment. The dcDUs were designed in silico by computer aided design (CAD) and fabricated in two steps; first three-dimensional (3D) printing of the outer structure, followed by hot-melt extrusion (HME) of the drug-containing filaments. The structure of the fabricated dcDUs was visualized by scanning electron microscopy (SEM). The 3D printed compartmentalized shells were loaded with filaments containing active pharmaceutical ingredient (API) and selectively sealed to modulate drug dissolution. The drug release profile of the dcDUs was characterized by pH-transfer dissolution in vitro and pharmacokinetics studies in rats, and resulted in modified release of the APIs from the dcDUs as compared to the free filaments. Furthermore, the selective physical sealing of the compartments resulted in an effective retardation of the in vitro API release. The findings of this study support the development of controllable-by-design dcDU systems for combination therapies to enable efficient therapeutic translation of oral dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reduction of anti-malarial consumption after rapid diagnostic tests implementation in Dar es Salaam: a before-after and cluster randomized controlled study

    Directory of Open Access Journals (Sweden)

    Swai Ndeniria

    2011-04-01

    Full Text Available Abstract Background Presumptive treatment of all febrile patients with anti-malarials leads to massive over-treatment. The aim was to assess the effect of implementing malaria rapid diagnostic tests (mRDTs on prescription of anti-malarials in urban Tanzania. Methods The design was a prospective collection of routine statistics from ledger books and cross-sectional surveys before and after intervention in randomly selected health facilities (HF in Dar es Salaam, Tanzania. The participants were all clinicians and their patients in the above health facilities. The intervention consisted of training and introduction of mRDTs in all three hospitals and in six HF. Three HF without mRDTs were selected as matched controls. The use of routine mRDT and treatment upon result was advised for all patients complaining of fever, including children under five years of age. The main outcome measures were: (1 anti-malarial consumption recorded from routine statistics in ledger books of all HF before and after intervention; (2 anti-malarial prescription recorded during observed consultations in cross-sectional surveys conducted in all HF before and 18 months after mRDT implementation. Results Based on routine statistics, the amount of artemether-lumefantrine blisters used post-intervention was reduced by 68% (95%CI 57-80 in intervention and 32% (9-54 in control HF. For quinine vials, the reduction was 63% (54-72 in intervention and an increase of 2.49 times (1.62-3.35 in control HF. Before-and-after cross-sectional surveys showed a similar decrease from 75% to 20% in the proportion of patients receiving anti-malarial treatment (Risk ratio 0.23, 95%CI 0.20-0.26. The cluster randomized analysis showed a considerable difference of anti-malarial prescription between intervention HF (22% and control HF (60% (Risk ratio 0.30, 95%CI 0.14-0.70. Adherence to test result was excellent since only 7% of negative patients received an anti-malarial. However, antibiotic

  19. Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    2011-01-01

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigerien