WorldWideScience

Sample records for antimalarial antiprotozoal antituberculosis

  1. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Alejandro M. S. Mayer

    2017-08-01

    Full Text Available The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.

  2. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    Science.gov (United States)

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  3. Antiprotozoal compounds from Asparagus africanus

    DEFF Research Database (Denmark)

    Oketch-Rabah, H A; Dossaji, S F; Christensen, S B

    1997-01-01

    Two antiprotozoal compounds have been isolated from the roots of Asparagus africanus Lam. (Liliaceae), a new sapogenin, 2 beta, 12 alpha-dihydroxy-(25R)-spirosta-4,7-dien-3-one (1), which was named muzanzagenin, and the lignan (+)-nyasol (2), (Z)-(+)-4,4'-(3-ethenyl-1-propene-1,3-diyl)-bisphenol.......Two antiprotozoal compounds have been isolated from the roots of Asparagus africanus Lam. (Liliaceae), a new sapogenin, 2 beta, 12 alpha-dihydroxy-(25R)-spirosta-4,7-dien-3-one (1), which was named muzanzagenin, and the lignan (+)-nyasol (2), (Z)-(+)-4,4'-(3-ethenyl-1-propene-1,3-diyl...

  4. Discovery and Evaluation of Thiazinoquinones as Anti-Protozoal Agents

    Directory of Open Access Journals (Sweden)

    Marcel Kaiser

    2013-09-01

    Full Text Available Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2 to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM and Plasmodium falciparum (K1 dual drug resistant strain (IC50 3.3 μM while exhibiting low levels of cytotoxicity (L6, IC50 167 μM. A series of C-7 amide and Δ2(3 analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM, and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively, while Δ2(3-phenethylamide 8e (IC50 0.67 μM, SI 78 exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM combined with excellent selectivity (SI 560–4000. In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively.

  5. Antiprotozoal activity of extracts of Elaeodendron trichotomum ...

    African Journals Online (AJOL)

    Background: Chagas disease, amebiasis, giardiasis and trichomoniasis represent a serious health problem in Latin America. The drugs employed to treat these illnesses produce important side effects and resistant strains have appeared. The present study was aimed to evaluate the antiprotozoal activity of leaves, stem ...

  6. On peroxide antimalarials

    Directory of Open Access Journals (Sweden)

    IGOR OPSENICA

    2007-12-01

    Full Text Available Several dicyclohexylidene tetraoxanes were prepared in order to gain a further insight into structure–activity relationship of this kind of antimalarials. The tetraoxanes 2–5, obtained as a cis/trans mixture, showed pronounced antimalarial activity against Plasmodium falciparum chloroquine susceptible D6, chloroquine resistant W2 and multidrug-resistant TM91C235 (Thailand strains. They have better than or similar activity to the corresponding desmethyl dicyclohexylidene derivatives. Two chimeric endoperoxides with superior antimalarial activity to the natural product ascaridole were also synthesized.

  7. Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents.

    Science.gov (United States)

    Biftu, Tesfaye; Feng, Dennis; Fisher, Michael; Liang, Gui-Bai; Qian, Xiaoxia; Scribner, Andrew; Dennis, Richard; Lee, Shuliang; Liberator, Paul A; Brown, Chris; Gurnett, Anne; Leavitt, Penny S; Thompson, Donald; Mathew, John; Misura, Andrew; Samaras, Samantha; Tamas, Tamas; Sina, Joseph F; McNulty, Kathleen A; McKnight, Crystal G; Schmatz, Dennis M; Wyvratt, Matthew

    2006-05-01

    Compounds 10a (IC50 110 pM) and 21 (IC50 40 pM) are the most potent inhibitors of Eimeria tenella cGMP-dependent protein kinase activity reported to date and are efficacious in the in vivo antiparasitic assay when administered to chickens at 12.5 and 6.25 ppm levels in the feed. However, both compounds are positive in the Ames microbial mutagenesis assay which precludes them from further development as antiprotozoal agents in the absence of negative lifetime rodent carcinogenicity studies.

  8. Biodegradable polymeric nanoformulation based on the antiprotozoal canthin-6-one

    International Nuclear Information System (INIS)

    Arias, José L.; Cebrián-Torrejón, Gerardo; Poupon, Erwan; Fournet, Alain; Couvreur, Patrick

    2011-01-01

    The efficacy of antiprotozoal agents against intracellular infections is very often limited by an almost negligible access to the cellular level where the pathogens are hidden. As a result, high doses of the chemotherapy agents are needed to be administered, but the great incidence of severe adverse drug effects generally leads to pharmacotherapy failure. To enhance the pharmacological effect of the antiprotozoal and antifungal canthin-6-one, loading into biodegradable poly(octylcyanoacrylate) nanoparticles has been considered. The preparation of canthin-6-one nanoformulation (average size ≈170 nm) has been performed by a single-absorption procedure with high drug loading and little burst release as determined by RP-HPLC. Further characterization of this nanoformulation has been carry out by electrophoretic measurements, analysis of the surface thermodynamics of the nanoparticles, and 1 H-NMR analysis. Nanoparticles loaded with canthin-6-one were characterized by a significant hydrophobicity and a great surface electrical charge under physiological conditions. These are two key physicochemical factors determining recognition by the reticuloendothelial system, resulting in a fast intracellular uptake by infected phagocytes. It is expected that this nanoformulation offers potential applications for an efficient canthin-6-one delivery to intracellular infections.

  9. The safety of antituberculosis medications during breastfeeding.

    Science.gov (United States)

    Tran, J H; Montakantikul, P

    1998-12-01

    Most antituberculosis drugs appear to be safe for use with breastfeeding. These agents are excreted in breast milk at relatively small concentrations. No adverse effects have been reported to date. The percentages of the therapeutic dose of antituberculosis agents that potentially may be delivered to the nursing infants range from 0.05% to 28%. Currently isoniazid, rifampin, ethambutol, streptomycin (first-line agents), kanamycin and cycloserine (second-line agents) are the only agents considered by the AAP to be compatible with breastfeeding. Unfortunately, there are still no clear data on the safety of pyrazinamide, ethionamide, and capreomycin during breastfeeding. If the mother chooses to breastfeed, it may be prudent to examine the infant for signs and symptoms of toxicity. In infants requiring treatment with antituberculosis agents, it is important to use therapeutic doses since drug concentrations in breast milk are not adequate as effective therapy for treatment or prevention. However, dosing at the lower end of the therapeutic range should be prescribed (i.e., 10 mg/kg/day of isoniazid) to decrease the risk of toxicity.

  10. Marine products with anti-protozoal activity: a review.

    Science.gov (United States)

    García, Marley; Monzote, Lianet

    2014-01-01

    The marine organisms are a rich source of varied natural products with unique functionality. A variety of natural products of new molecular structures with diverse biological activities have been reported from marine flora and fauna for treatment and/or prevention of human diseases. The present review briefly illustrates current status of marine products as antiprotozoal agents. The in vitro and in vivo studies of marine algae, invertebrates and micro-organism against different protozoa parasites are included. The marine products studied, according to international criterions for selection of more promisory products in the different models reported, demonstrated their potentialities as antiprozoal agents. Herein, the interest of scientific community to search new alternatives from marine environment has been demonstrated.

  11. Antibacterial and antiprotozoal effect of Artemisia annua extracts

    DEFF Research Database (Denmark)

    Ivarsen, E.; Fretté, X. C.; Engberg, R. M.

    2012-01-01

    be banned in the EU. Extracts of aerial parts of Artemisia annua (AA) showed antimicrobial activity in overnight cultures of CP strains isolated from diseased broilers. The hexane extract (HEX) gave the strongest inhibition (MIC=185ppm) while the dichloromethane extract (DCM) gave a weaker inhibition (MIC......=270ppm). The dietary incorporation of HEX reduced the population of CP and the severity of the associated small intestinal lesions (P>0.05) in broilers when applying a NE disease model. The antibacterial compounds from HEX and DCM, chrysosplenol and ponticaepoxide, were isolated. This is the first...... report of activity against CP for these compounds. HEX, DCM and artemisinin were also tested against HM. The two latter showed highest antiprotozoal effect in vitro (MLC=1.0mg/ml and IC50=1.3mg/ml respectively), and were tested in vivo in infected poultry. However, no effect against HM at the given...

  12. Hepatotoxicity with antituberculosis drugs: the risk factors

    International Nuclear Information System (INIS)

    Mahmood, K.; Samo, A.H.; Jairamani, K.L.; Talib, A.

    2007-01-01

    To assess the severity and frequency of hepatotoxicity caused by different antituberculosis (ATT) drugs and to evaluate whether concurrence of risk factors influence the antituberculosis drug induced hepatotoxicity. This prospective cohort study was conducted in Medical Unit-V and OPD department of Civil Hospital Karachi from July 2004 to July 2005. A total of 339 patients diagnosed of active tuberculosis infection with normal pretreatment liver function were monitored clinically as well as biochemically. Their data were collected on proforma and patients were treated with Isoniazid, Rifampicin and Pyrazinamide. Duration after which derangement in function, if any, occurred and time taken for normalization was noted. Treatment was altered as needed, with exclusion of culprit drug. Finally data was analyzed by SPSS version 10.0. ATT induced hepatotoxicity was seen in 67 (19.76%) out of 339 patients. Females were more affected as compared to males (26.3% vs. 19.7%). BMI (kg/m2) of 91% of diseased group were less than 18.5 (p<0.01) most of them were anemic having low albumin level suggestive of lean body mass. Hepatotoxicity was more severe in AFB smear positive patients. Concomitant use of alcohol, paracetamol and low serum cholesterol were proved as predisposing factors. Isoniazid (37 patients (55.21%), p<0.01) was the main culprit followed by Rifampicin (23 patients, 34.21%) and Pyrazinamide (7 patients, 10.5%). Most of the patients (61%) developed the hepatotoxicity within two weeks of starting antituberculosis therapy with mild to moderate alteration in ALT and AST. ATT-induced hepatitis is significantly more frequent and more severe in patients with hepatotoxicity risk factors. (author)

  13. Absolute configuration and antiprotozoal activity of minquartynoic acid

    DEFF Research Database (Denmark)

    Rasmussen, H B; Christensen, Søren Brøgger; Kvist, L P

    2000-01-01

    Minquartynoic acid (1) was isolated as an antimalarial and antileishmanial constituent of the Peruvian tree Minquartia guianensis and its absolute configuration at C-17 established to be (+)-S through conversion to the known (+)-(S)-17-hydroxystearic acid (2) and confirmed using Mosher's method....

  14. [Management of adverse effects with antituberculosis chemotherapy].

    Science.gov (United States)

    Tsuyuguchi, Kazunari; Wada, Masako

    2011-02-01

    Tuberculosis has now become a curable disease with chemotherapy. So it is natural that the present issues in tuberculosis management are focused on how to complete standard chemotherapy. In this context, management of adverse effects constitutes an essential part of antituberculosis chemotherapy, as well as directly observed therapy. In this symposium, discussions were held about three major subjects on this issue. First, hepatotoxicity develops frequently and has sometimes fatal outcome, which makes it the most problematic adverse effect. "Management of hepatotoxicity during antituberculosis chemotherapy" was published by the Japanese Society for Tuberculosis (JST) in 2006. Dr. Shinsho Yoshiba evaluated this recommendation and pointed out that the criteria for discontinuation of drug based on AST, ALT and bilirubin levels is too sensitive and the concept of predicting fulminant hepatic failure (FHF) is lacking. He stressed the importance of monitoring serum prothrombin time for predicting FHF. Next, allergic drug reaction such as fever or skin rash often causes distress, although rarely fatal. As isoniazid (INH) and rifampicin (RFP) are key drugs for the cure, readministration of these drugs is often attempted by desensitization therapy. "Recommendation about desensitization therapy of antituberculosis drugs" was also published by JST in 1997. Dr. Yoshihiro Kobashi reported high success rates of 79 percent for INH and 75 percent for RFP according to this recommendation. He also reported correlated factor with the success, such as the longer period from the discontinuation to the desensitization therapy and lower doses of drugs at starting desensitization. Finally, we sometimes experience transient worsening of radiographical findings and general symptoms during antituberculosis chemotherapy. This is presumed to be due to allergic reaction to dead bacilli without requiring discontinuation of the drug. Differential diagnosis includes drug-induced pneumonia requring

  15. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers...

  16. Quantitative Structure ‒ Antiprotozoal Activity Relationships of Sesquiterpene Lactones

    Directory of Open Access Journals (Sweden)

    Reto Brun

    2009-06-01

    Full Text Available Prompted by results of our previous studies where we found high activity of some sesquiterpene lactones (STLs against Trypanosoma brucei rhodesiense (which causes East African sleeping sickness, we have now conducted a structure-(in-vitro-activity study on a set of 40 STLs against T. brucei rhodesiense, T. cruzi, Leishmania donovani and Plasmodium falciparum. Furthermore, cytotoxic activity against L6 rat skeletal myoblast cells was assessed. Some of the compounds possess high activity, especially against T. brucei (e.g. helenalin and some of its esters with IC50-values of 0.05-0.1 µM, which is about 10 times lower than their cytotoxic activity. It was found that all investigated antiprotozoal activities are significantly correlated with cytotoxicity and the major determinants for activity are a,b-unsaturated structural elements, also known to be essential for other biological activities of STLs. It was observed, however, that certain compounds are considerably more toxic against protozoa than against mammalian cells while others are more cytotoxic than active against the protozoa. A comparative QSAR analysis was therefore undertaken, in order to discern the antiparasitic activity of STLs against T. brucei and cytotoxicity. Both activities were found to depend to a large extent on the same structural elements and molecular properties. The observed variance in the biological data can be explained in terms of subtle variations in the relative influences of various molecular descriptors.

  17. ANTIPROTOZOAL ACTIVITY OF EXTRACTS OF ELAEODENDRON TRICHOTOMUM (CELASTRACEAE).

    Science.gov (United States)

    Roca-Mézquita, Carolina; Graniel-Sabido, Manlio; Moo-Puc, Rosa E; Leon-Déniz, Lorena V; Gamboa-León, Rubí; Arjona-Ruiz, Carely; Tun-Garrido, Juan; Mirón-López, Gumersindo; Mena-Rejón, Gonzalo J

    2016-01-01

    Chagas disease, amebiasis, giardiasis and trichomoniasis represent a serious health problem in Latin America. The drugs employed to treat these illnesses produce important side effects and resistant strains have appeared. The present study was aimed to evaluate the antiprotozoal activity of leaves, stem bark and root bark of Elaeodendron trichotomum , a celastraceus, that is used in Mexico as an anti-infective in febrile-type diseases. Dichloromethane and methanol extracts of leaves, bark and roots of Elaeodendron trichotomum were tested against Entamoeba histolytica , Giardia lamblia , Trichomonas vaginalis , and Trypanosoma cruzi . A quantitative HPLC analysis of pristimerin and tingenone was performed. The dichloromethane extract of roots was active against E. histolytica , G. lamblia , T. vaginalis , and T. cruzi , at IC50's of 0.80, 0.44, 0.46, and 2.68 μg/mL, respectively. The HPLC analysis revealed the presence of tingenone (3.84%) and pristimerin (0.14%). The dichloromethane extract of the roots bark showed significant activity against all screened protozoa.

  18. Antimalarial Activity of Azadipeptide Nitriles

    OpenAIRE

    Löser, Reik; Gut, Jiri; Rosenthal, Philip J.; Frizler, Maxim; Gütschow, Michael; Andrews, Katherine T.

    2009-01-01

    Azadipeptide nitriles – novel cysteine protease inhibitors – display structure-dependent antimalarial activity against both chloroquine-sensitive and chloroquine-resistant lines of cultured Plasmodium falciparum malaria parasites. Inhibition of parasite’s haemoglobin-degrading cysteine proteases was also investigated, revealing the azadipeptide nitriles as potent inhibitors of falcipain-2 and -3. A correlation between the cysteine protease-inhibiting activity and the antimalarial potential of...

  19. Antimalarial drug quality in Africa.

    Science.gov (United States)

    Amin, A A; Kokwaro, G O

    2007-10-01

    There are several reports of sub-standard and counterfeit antimalarial drugs circulating in the markets of developing countries; we aimed to review the literature for the African continent. A search was conducted in PubMed in English using the medical subject headings (MeSH) terms: 'Antimalarials/analysis'[MeSH] OR 'Antimalarials/standards'[MeSH] AND 'Africa'[MeSH]' to include articles published up to and including 26 February 2007. Data were augmented with reports on the quality of antimalarial drugs in Africa obtained from colleagues in the World Health Organization. We summarized the data under the following themes: content and dissolution; relative bioavailability of antimalarial products; antimalarial stability and shelf life; general tests on pharmaceutical dosage forms; and the presence of degradation or unidentifiable impurities in formulations. The search yielded 21 relevant peer-reviewed articles and three reports on the quality of antimalarial drugs in Africa. The literature was varied in the quality and breadth of data presented, with most bioavailability studies poorly designed and executed. The review highlights the common finding in drug quality studies that (i) most antimalarial products pass the basic tests for pharmaceutical dosage forms, such as the uniformity of weight for tablets, (ii) most antimalarial drugs pass the content test and (iii) in vitro product dissolution is the main problem area where most drugs fail to meet required pharmacopoeial specifications, especially with regard to sulfadoxine-pyrimethamine products. In addition, there are worryingly high quality failure rates for artemisinin monotherapies such as dihydroartemisinin (DHA); for instance all five DHA sampled products in one study in Nairobi, Kenya, were reported to have failed the requisite tests. There is an urgent need to strengthen pharmaceutical management systems such as post-marketing surveillance and the broader health systems in Africa to ensure populations in the

  20. Synthesis of marine-derived 3-alkylpyridinium alkaloids with potent antiprotozoal activity

    NARCIS (Netherlands)

    Rodenko, B.; Al-Salabi, M.I.; Teka, I.A.; Ho, W.; El-Sabbagh, N.; Ali, J.A.M.; Ibrahim, H.M.S.; Wanner, M.J.; Koomen, G.J.; de Koning, H.P.

    2011-01-01

    Given the pressing need for new antiprotozoal drugs without cross-resistance with current (failing) chemotherapy, we have explored 3-tridecylpyridinium alkaloids (3TPAs), derivatives of viscosamine, as antiparasitic agents. We have developed a simple synthetic route toward viscosamine and related

  1. Antiprotozoal Activity of α,β-Unsaturated δ-Lactones: Promising ...

    African Journals Online (AJOL)

    The parasite resistance and side effects of drugs used to treat protozoal diseases have led to the search for new therapies, both natural and synthetic. Studies have shown that various α,β-unsaturated δ-lactones displayed high antiprotozoal activity and thus are promising compounds for new drug discovery and ...

  2. Antimalarial Activity of Plant Metabolites.

    Science.gov (United States)

    Pan, Wen-Hui; Xu, Xin-Ya; Shi, Ni; Tsang, Siu Wai; Zhang, Hong-Jie

    2018-05-06

    Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum . As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002) reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  3. Antimalarial Activity of Plant Metabolites

    Directory of Open Access Journals (Sweden)

    Wen-Hui Pan

    2018-05-01

    Full Text Available Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum. As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002 reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  4. Antimalarial drug induced decrease in creatinine clearance

    NARCIS (Netherlands)

    Landewé, R. B.; Vergouwen, M. S.; Goeei The, S. G.; van Rijthoven, A. W.; Breedveld, F. C.; Dijkmans, B. A.

    1995-01-01

    To confirm the antimalarial drug induced increase of creatinine to determine the factors contributing to this effect. Patients with rheumatoid arthritis (RA) (n = 118) who have used or still use antimalarials (chloroquine or hydroxychloroquine). Serum creatinines prior to antimalarials and serum

  5. Pyrimidines in antimalarial drug design

    CSIR Research Space (South Africa)

    Moleele, SS

    2008-09-01

    Full Text Available of the routes attempted are shown in Scheme 1. Pyrimidines In Antimalarial Drug Design S S Moleele1, D Gravestock1, A L Rousseau1, R L Van Zyl2 1Discovery Chemistry, CSIR, Biosciences, Private Bag X2, Modderfontein, 1645, South Africa; SMoleele@csir.co.za 2...

  6. National anti-tuberculosis drug resistance study in Tanzania

    NARCIS (Netherlands)

    Chonde, T. M.; Basra, D.; Mfinanga, S. G. M.; Range, N.; Lwilla, F.; Shirima, R. P.; van Deun, A.; Zignol, M.; Cobelens, F. G.; Egwaga, S. M.; van Leth, F.

    2010-01-01

    OBJECTIVE: To assess the prevalence of anti-tuberculosis drug resistance in a national representative sample of tuberculosis (TB) patients in Tanzania according to recommended methodology. DESIGN: Cluster survey, with 40 clusters sampled proportional to size, of notified TB patients from all

  7. Antiprotozoal and antimicrobial compounds from the plant pathogen Septoria pistaciarum.

    Science.gov (United States)

    Kumarihamy, Mallika; Khan, Shabana I; Jacob, Melissa; Tekwani, Babu L; Duke, Stephen O; Ferreira, Daneel; Nanayakkara, N P Dhammika

    2012-05-25

    Four new 1,4-dihydroxy-5-phenyl-2-pyridinone alkaloids, 17-hydroxy-N-(O-methyl)septoriamycin A (1), 17-acetoxy-N-(O-methyl)septoriamycin A (2), 13-(S)-hydroxy-N-(O-methyl)septoriamycin A (3), and 13-(R)-hydroxy-N-(O-methyl)septoriamycin A (4), together with the known compounds (+)-cercosporin (5), (+)-14-O-acetylcercosporin (6), (+)-di-O-acetylcercosporin (7), lumichrome, and brassicasterol, were isolated from an ethyl acetate extract of a culture medium of Septoria pistaciarum. Methylation of septoriamycin A (8) with diazomethane yielded three di-O-methyl analogues, two of which existed as mixtures of rotamers. We previously reported antimalarial activity of septoriamycin A. This compound also exhibited significant activity against Leishmania donovani promastigotes. Compounds 5-7 showed moderate in vitro activity against L. donovani promastigotes and chloroquine-sensitive (D6) and -resistant (W2) strains of Plasmodium falciparum, whereas compound 5 was fairly active against methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus. Compounds 5-7 also displayed moderate phytotoxic activity against both a dicot (lettuce, Lactuca sativa) and a monocot (bentgrass, Agrostis stolonifera) and cytotoxicity against a panel of cell lines.

  8. The role of exogenous risk factors of antituberculosis treatment failure

    OpenAIRE

    LESNIC, EVELINA; USTIAN, AURELIA; POP, CARMEN MONICA

    2016-01-01

    Background and aim The Republic of Moldova reports the highest incidence of tuberculosis and the lowest treatment success rate among European region countries. In most of the patients the antituberculosis treatment failure is correlated with social risk factors (low socio-economical state, epidemiological danger characteristics) and biological factors (young age, male sex, physiological conditions, associated diseases). Clinical factors (advanced forms of tuberculosis, chronic evolution, immu...

  9. In vivo anti-malarial activity of hydroalcoholic extracts from ...

    African Journals Online (AJOL)

    Administrator

    There is, thus, the need to initiate further in-depth investigation by using different experimental ... antiprotozoal compounds, a sapogenin (muzanzagenin) and lignan ((+) .... The microscope had an. Ehrlich's ... 100 red blood cells per field.

  10. Adverse Reactions to Antituberculosis Drugs in Iranian Tuberculosis Patients

    Directory of Open Access Journals (Sweden)

    Aliasghar Farazi

    2014-01-01

    Full Text Available Background. Antituberculosis multidrug regimens have been associated with increased incidence of adverse drug reactions (ADRs. This study aimed to determine the incidence and associated factors of ADRs due to antituberculosis therapy. Methods. This is a retrospective cross-sectional study on tuberculosis patients who were treated in tuberculosis clinics in Markazi province in Iran. The information contained in the medical files was extracted and entered into the questionnaire. Data was descriptively analyzed by using statistical package for social sciences (SPSS 18. Results. A total of 940 TB patients of 1240 patients’ medical records available in 10 medical offices were included in this study. Of the 563 ADRs found in this study, 82.4% were considered minor reactions and 17.6% were major reactions. No death from antituberculosis ADR was observed. We found that the risk of major ADRs was higher in females (P  value=0.0241, age >50 y (P  value=0.0223, coinfection with HIV (P  value=0.0323, smoking (P  value=0.002, retreatment TB (P  value=0.0203, and comorbidities (P  value=0.0005. Conclusions. This study showed that severe side effects of anti-TB drugs are common in patients who have risk factors of ADRs and they should be followed up by close monitoring.

  11. Antimalarial drugs in pregnancy: a review

    NARCIS (Netherlands)

    Nosten, François; McGready, Rose; d'Alessandro, Umberto; Bonell, Ana; Verhoeff, Francine; Menendez, Clara; Mutabingwa, Thenonest; Brabin, Bernard

    2006-01-01

    In this review we examine the available information on the safety of antimalarials in pregnancy, from both animal and human studies. The antimalarials that can be used in pregnancy include (1) chloroquine, (2) amodiaquine, (3) quinine, (4) azithromycin, (5) sulfadoxine-pyrimethamine, (6) mefloquine,

  12. Some Pharmacological Aspects of Antimalarial Drugs

    African Journals Online (AJOL)

    1974-06-15

    Jun 15, 1974 ... Some Pharmacological Aspects of Antimalarial. Drugs. D.BOTHA. SUMMARY. A short review is given of antimalarial drugs currently in use. S. Air. Med. l., 48, 1263 (1974). CLASSIFICATION. The chemotherapy of malaria may be conveniently classi- fied as (i) casual prophylaxis; (ii) suppressive treatment;.

  13. Recent developments in the antiprotozoal and anticancer activities of the 2-alkynoic fatty acids

    Science.gov (United States)

    Carballeira, Néstor M.

    2013-01-01

    The 2-alkynoic fatty acids are an interesting group of synthetic compounds that display antimycobacterial, antifungal, anticancer, and pesticidal activities but their antiprotozoal activity has received little attention until recently. In this review we have summarized our present knowledge of the biomedical potential of the 2-hexadecynoic acid (2-HDA) and 2-octadecynoic acid (2-ODA) together with several mechanistic pieces of work attesting to the fact that these compounds, and their metabolites, are good fatty acid biosynthesis inhibitors. The antiprotozoal activity of 2-HDA and 2-ODA against Leishmania donovani and Plasmodium falciparum, parasites responsible for visceral leishmaniasis and malaria, respectively, is also reviewed. The evidence obtained so far supports the fact that these fatty acids are good inhibitors of the L. donovani DNA topoisomerase IB enzyme (LdTopIB) and the potency of LdTopIB inhibition is chain length dependent. We also demonstrate the generality of the antiprotozoal activity of 2-HDA and 2-ODA against P. falciparum, and review our present knowledge of their inhibition of key P. falciparum enzymes such as PfFabZ, PfFabG, and PfFabI together with some possible modes of inhibition. Recent research by our group has also demonstrated that 2-ODA displays antineoplastic activity, specifically against the neuroblastoma SH-SY5Y cell line via lactate dehydrogenase (LDH) release, which is a cell death mechanism principally associated to necrosis. This is the first comprehensive review of the medicinal chemistry of this interesting group of acetylenic fatty acids. PMID:23727443

  14. Recent developments in the antiprotozoal and anticancer activities of the 2-alkynoic fatty acids.

    Science.gov (United States)

    Carballeira, Néstor M

    2013-01-01

    The 2-alkynoic fatty acids are an interesting group of synthetic compounds that display antimycobacterial, antifungal, anticancer, and pesticidal activities but their antiprotozoal activity has received little attention until recently. In this review we have summarized our present knowledge of the biomedical potential of the 2-hexadecynoic acid (2-HDA) and 2-octadecynoic acid (2-ODA) together with several mechanistic pieces of work attesting to the fact that these compounds, and their metabolites, are good fatty acid biosynthesis inhibitors. The antiprotozoal activity of 2-HDA and 2-ODA against Leishmania donovani and Plasmodium falciparum, parasites responsible for visceral leishmaniasis and malaria, respectively, is also reviewed. The evidence obtained so far supports the fact that these fatty acids are good inhibitors of the L. donovani DNA topoisomerase IB enzyme (LdTopIB) and the potency of LdTopIB inhibition is chain length dependent. We also demonstrate the generality of the antiprotozoal activity of 2-HDA and 2-ODA against P. falciparum, and review our present knowledge of their inhibition of key P. falciparum enzymes such as PfFabZ, PfFabG, and PfFabI together with some possible modes of inhibition. Recent research by our group has also demonstrated that 2-ODA displays antineoplastic activity, specifically against the neuroblastoma SH-SY5Y cell line via lactate dehydrogenase (LDH) release, which is a cell death mechanism principally associated to necrosis. This is the first comprehensive review of the medicinal chemistry of this interesting group of acetylenic fatty acids. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Antimalarial natural products: a review

    Directory of Open Access Journals (Sweden)

    Faraz Mojab

    2012-03-01

    Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures.

  16. The Tropical Brown Alga Lobophora variegata: A Source of Antiprotozoal Compounds

    Science.gov (United States)

    Cantillo-Ciau, Zulema; Moo-Puc, Rosa; Quijano, Leovigildo; Freile-Pelegrín, Yolanda

    2010-01-01

    Lobophora variegata, a brown alga collected from the coast of the Yucatan peninsula, Mexico, was studied for antiprotozoal activity against Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The whole extract showed the highest activity against T. vaginalis, with an IC50 value of 3.2 μg/mL. For the fractions, the best antiprotozoal activity was found in non-polar fractions. The chloroform fraction of the extract contained a major sulfoquinovosyldiacylglycerol (SQDG), identified as 1-O-palmitoyl-2-O-myristoyl-3-O-(6‴-sulfo-α-d-quinovopyranosyl)-glycerol (1), together with small amounts of 1,2-di-O-palmitoyl-3-O-(6‴-sulfo-α-d-quinovopyranosyl)-glycerol (2) and a new compound identified as 1-O-palmitoyl-2-O-oleoyl-3-O-(6‴-sulfo-α-d-quinovopyranosyl)-glycerol (3). Their structures were elucidated on the basis of chemical and enzymatic hydrolysis and careful analysis of FAB-MS and NMR spectroscopic data. This is the first report on the isolation of SQDGs from L. variegata. The mixture of 1–3 showed good activity against E. histolytica and moderate activity against T. vaginalis with IC50s of 3.9 and 8.0 μg/mL, respectively, however, the activity of 1–3 is not as effective as metronidazole. These results afford ground information for the potential use of the whole extract and fractions of this species in protozoal infections. PMID:20479979

  17. The role of exogenous risk factors of antituberculosis treatment failure.

    Science.gov (United States)

    Lesnic, Evelina; Ustian, Aurelia; Pop, Carmen Monica

    2016-01-01

    The Republic of Moldova reports the highest incidence of tuberculosis and the lowest treatment success rate among European region countries. In most of the patients the antituberculosis treatment failure is correlated with social risk factors (low socio-economical state, epidemiological danger characteristics) and biological factors (young age, male sex, physiological conditions, associated diseases). Clinical factors (advanced forms of tuberculosis, chronic evolution, immune disturbances), therapeutic factors (treatment errors and interruptions, individualized regimens) and administrative factors (drug interruption in supply, suboptimal treatment quality) prevail in regions with defficient in health care delivery. The association of risk factors has a higher impact than the severity of one risk factor. The risk factor assessment is very important before initiation of the treatment, for establishing the plan of risk reduction measures for increasing the success rate. The aim of the study was to determine the impact of exogenous risk factors on antituberculosis treatment failure. The study was conducted on 201 patients with pulmonary tuberculosis and treatment failure and 105 patients with pulmonary tuberculosis who successfully finished the antituberculosis treatment. Selected cases were investigated according national standards. The treatment failure occurred in patients belonging to socially disadvantaged groups, patients with harmful habits (alcohol abuse, drug use, active smoking), patients from infectious clusters. Migration, homelessness and detention releasing imperil the quality of treatment, thus predisposing to the treatment failure. Social, educational support and the substitutive therapy and withdrawal techniques (tobacco, alcohol, psycho-active substances) must be implemented in the high risk groups in order to diminish the risk of treatment failure and to increase the treatment success rate. The study of exogenous risk factors in vulnerable groups

  18. Synthesis and antituberculosis activity of new fatty acid amides.

    Science.gov (United States)

    D'Oca, Caroline Da Ros Montes; Coelho, Tatiane; Marinho, Tamara Germani; Hack, Carolina Rosa Lopes; Duarte, Rodrigo da Costa; da Silva, Pedro Almeida; D'Oca, Marcelo Gonçalves Montes

    2010-09-01

    This work reports the synthesis of new fatty acid amides from C16:0, 18:0, 18:1, 18:1 (OH), and 18:2 fatty acids families with cyclic and acyclic amines and demonstrate for the first time the activity of these compounds as antituberculosis agents against Mycobacterium tuberculosis H(37)Rv, M. tuberculosis rifampicin resistance (ATCC 35338), and M. tuberculosis isoniazid resistance (ATCC 35822). The fatty acid amides derivate from ricinoleic acid were the most potent one among a series of tested compounds, with a MIC 6.25 microg/mL for resistance strains. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Suppression of adoptive antituberculosis immunity by normal recipient animals

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1983-01-01

    Adoptive immunity is poorly expressed in normal syngeneic mice. This phenomenon was studied by using experimental antituberculosis immunity as a model system representing pure cell-mediated immunity. Expression of adoptive immunity was facilitated by pretreating recipients with sublethal ionizing radiation (500 rads) or high doses (200 mg/kg) of cyclophosphamide or by using adult thymectomized, lethally irradiated, bone-marrow-reconstituted (TXB) mice. Adult thymectomy was less effective, and a low dose of cyclophosphamide (20 mg/kg) was completely ineffective. The beneficial effect of sublethal irradiation was reduced over time; it persisted for 4 weeks and was absent after 8 weeks. Attempts to restore the suppressed state of normal mice to sublethally irradiated mice by using normal spleen or thymus cells did not succeed. Even in rats, which express adoptive antituberculosis immunity without immunosuppressive treatment, the use of sublethally irradiated or TXB recipients potentiated adoptive immunity. It was concluded that suppression of adoptive immunization in normal recipient mice is mediated predominantly, if not exclusively, by T lymphocytes that are sensitive to a number of immunosuppressive agents. The suppressor cells are long-lived and can be regenerated from precursors that are resistant to 500 but not to 900 rads of ionizing radiation

  20. Interactions of DB75, a Novel Antimalarial Agent, with Other Antimalarial Drugs In Vitro▿

    OpenAIRE

    Purfield, Anne E.; Tidwell, Richard R.; Meshnick, Steven R.

    2008-01-01

    Pafuramidine is a novel orally active antimalarial. To identify a combination partner, we measured the in vitro antimalarial activities of the active metabolite, DB75, with amodiaquine, artemisinin, atovaquone, azithromycin, chloroquine, clindamycin, mefloquine, piperaquine, pyronaridine, tafenoquine, and tetracycline. None of the drugs tested demonstrated antagonistic or synergistic activity in combination with pafuramidine.

  1. Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives.

    Science.gov (United States)

    Guillon, Jean; Cohen, Anita; Gueddouda, Nassima Meriem; Das, Rabindra Nath; Moreau, Stéphane; Ronga, Luisa; Savrimoutou, Solène; Basmaciyan, Louise; Monnier, Alix; Monget, Myriam; Rubio, Sandra; Garnerin, Timothée; Azas, Nadine; Mergny, Jean-Louis; Mullié, Catherine; Sonnet, Pascal

    2017-12-01

    Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC 50 in the μM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure-activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.

  2. The Tropical Brown Alga Lobophora variegata: A Source of Antiprotozoal Compounds

    Directory of Open Access Journals (Sweden)

    Zulema Cantillo-Ciau

    2010-04-01

    Full Text Available Lobophora variegata, a brown alga collected from the coast of the Yucatan peninsula, Mexico, was studied for antiprotozoal activity against Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The whole extract showed the highest activity against T. vaginalis, with an IC50 value of 3.2 mg/mL. For the fractions, the best antiprotozoal activity was found in non-polar fractions. The chloroform fraction of the extract contained a major sulfoquinovosyldiacylglycerol (SQDG, identified as 1-O-palmitoyl-2-O-myristoyl-3-O-(6´´´-sulfo-a-D-quinovopyranosyl-glycerol (1, together with small amounts of 1,2-di-O-palmitoyl-3-O-(6´´´-sulfo-a-D-quinovopyranosyl-glycerol (2 and a new compound identified as 1-O-palmitoyl-2-O-oleoyl-3-O-(6´´´-sulfo-a-D-quinovopyranosyl-glycerol (3. Their structures were elucidated on the basis of chemical and enzymatic hydrolysis and careful analysis of FAB-MS and NMR spectroscopic data. This is the first report on the isolation of SQDGs from L. variegata. The mixture of 1–3 showed good activity against E. histolytica and moderate activity against T. vaginalis with IC50s of 3.9 and 8.0 mg/mL, respectively, however, the activity of 1–3 is not as effective as metronidazole. These results afford ground information for the potential use of the whole extract and fractions of this species in protozoal infections.

  3. Antituberculosis Drug-Induced Liver Injury with Autoimmune Features: Facing Diagnostic and Treatment Challenges

    Directory of Open Access Journals (Sweden)

    Maria Adriana Rangel

    2017-01-01

    Full Text Available The authors present a case report of antituberculosis drug-induced liver injury that offered diagnostic challenges (namely, the possibility of drug-induced autoimmune hepatitis and treatment difficulties.

  4. Neurocysticercosis as an important differential of paradoxical response during antituberculosis therapy in HIV-negative patient

    Directory of Open Access Journals (Sweden)

    Rivonirina Andry Rakotoarivelo

    2011-12-01

    Full Text Available Neurocysticercosis can simulate a paradoxical response during antituberculosis therapy with neurological ailments. We report the case of a 31 year-old-man, treated for tuberculous meningitis who developed neurological deficit after nine weeks of early antituberculous therapy. The diagnosis of neurocysticercosis was confirmed by CT scan and cerebrospinal fluid analysis. Neurocysticercosis should be sought as an important differential of paradoxical response during antituberculosis therapy.

  5. Synergistic In Vitro Antimalarial Activity of Omeprazole and Quinine

    OpenAIRE

    Skinner-Adams, T.; Davis, T. M. E.

    1999-01-01

    Previous studies have shown that the proton pump inhibitor omeprazole has antimalarial activity in vitro. The interactions of omeprazole with commonly used antimalarial drugs were assessed in vitro. Omeprazole and quinine combinations were synergistic; however, chloroquine and omeprazole combinations were antagonistic. Artemisinin drugs had additive antimalarial activities with omeprazole.

  6. Anticancer Effect of AntiMalarial Artemisinin Compounds | Das ...

    African Journals Online (AJOL)

    A PubMed search of about 127 papers on anti‑cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. ... Keywords: Anticancer agents, Antimalarials, Antitumor activity, Artemisinins, Novel chemotherapy ...

  7. Antimalarial Drug: From its Development to Deface.

    Science.gov (United States)

    Barik, Tapan Kumar

    2015-01-01

    Wiping out malaria is now the global concern as about three billion people are at risk of malaria infection globally. Despite of extensive research in the field of vaccine development for malaria, till now, no effective vaccine is available for use and hence only antimalarial drugs remain our best hope for both treatment and prevention of malaria. However, emergence and spread of drug resistance has been a major obstacle for the success of malaria elimination globally. This review will summarize the information related to antimalarial drugs, drug development strategies, drug delivery through nanoparticles, few current issues like adverse side effects of most antimalarial drugs, non availability of drugs in the market and use of fake/poor quality drugs that are hurdles to malaria control. As we don't have any other option in the present scenario, we have to take care of the existing tools and make them available to almost all malaria affected area.

  8. ANTITUBERCULOSIS DRUG DOSAGE FORMS: RANGE, KEY BENEFITS AND PROSPECTS OF TECHNOLOGICAL IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    M. E. Kim

    2016-01-01

    Full Text Available Interest to research in the development of new formulations of antituberculosis drugs due to the high incidence of tuberculosis in the Republic of Kazakhstan and the Russian Federation nowadays, including with acquired drug resistance. The reason for the development of acquired drug resistance is to interrupt the treatment of patients is the high toxicity of antituberculosis drugs. The improving the efficiency of antituberculosis therapy remains one of the most pressing.The aim this study was to review the dosage forms of antituberculosis drugs currently used and the ways to improve them.Methods. The study was conducted on the basis of scientific analysis (eLibrary database, PubMed, Cyberleninca, patent (kzpatents, reference (Klifar, Drugs register and technical literature.Results. It was revealed that the antituberculosis drugs are available in the form of tablets, capsules, granules for oral use and injection solutions. The advantages and disadvantages of oral dosage forms of antituberculosis drugs: tablets, capsules, granules, syrups, suspensions are described. The importance of the development and implementation in practice of pediatric formulations of antituberculosis drugs is mentioned. The state of current research inhaled formulations for the treatment of tuberculosis is described. The prospects of directional inhalation exposure by immobilization of antituberculosis drugs in liposomes, niosomes, nanocapsules, micelles, micro- and nanoparticles are mentioned. The prospect of the rectal formulations use is described. The increase in interest in the molecular encapsulation of medicinal substances with cyclodextrins in connection with the possibility of increasing the bioavailability of active ingredients, reduce the harmful effects on the gastrointestinal tract, extension, elimination of interaction of incompatible components in combination preparations, the protection of unstable substances is

  9. Antiprotozoal activity of extracts and isolated triterpenoids of 'carnauba' (Copernicia prunifera) wax from Brazil.

    Science.gov (United States)

    de Almeida, Buana C; Araújo, Bruno Q; Carvalho, Adonias A; Freitas, Sâmya Danielle L; Maciel, Dayany da S Alves; Ferreira, Ari José S; Tempone, Andre G; Martins, Ligia F; Alexandre, Tatiana R; Chaves, Mariana H; Lago, João Henrique G

    2016-12-01

    'Carnauba' wax is a natural product obtained from the processing of the powder exuded from Copernicia prunifera (Miller) H. E. Moore (Arecaceae). This material is widely used in the Brazilian folk medicine, including the treatment of rheumatism and syphilis. To investigate the antiprotozoal activity of hexane and EtOH extracts from the 'carnauba' wax as well as from the isolated compounds from the bioactive extracts. Two different samples of 'carnauba' (C. prunifera) waxes - types 1 and 4 - were individually extracted using hexane (EH) and EtOH (EE). Aliquots of hexane (type 1 - EH-1 and EH-4) and EtOH (type 4 - EE-1 and EE-4) extracts were tested against promastigote (2-200 μg/mL in DMSO during 48 h at 24 °C) and amastigote (3-150 μg/mL in DMSO during 120 h at 37 °C) forms of Leishmania infantum as well as against trypomastigote (3-150 μg/mL in DMSO during 24 h at 37 °C) forms of Trypanosoma cruzi. Bioactive extracts EH-1 and EE-4 were subjected to a bioactivity-guided fractionation to afford three dammarane-type triterpenoids (1-3). The in vitro antiprotozoal activities of the obtained compounds were evaluated as described above. Additionally, the cytotoxicity activity of compounds 1-3 against mammalian conjunctive cells (NCTC - 2-200 μg/mL in DMSO during 48 h at 37 °C) was determined. From the bioactive hexane and EtOH extracts from the 'carnauba' (C. prunifera) wax, were isolated three dammarane-type triterpenoids: (24R*)-methyldammar-25-ene-3β,20-diol (carnaubadiol, 1), (24R*)-methyldammara-20,25-dien-3-one (2) and (24R*)-methyldammara-20,25-dien-3α-ol (3). These compounds were identified based on the analysis of NMR and MS spectroscopic data. Compounds 1-3 were effective against the intracellular amastigotes of L. infantum, with IC 50 values ranging from 8 to 52 μM, while compounds 1 and 3 displayed activity against trypomastigote forms of T. cruzi with IC 50 values of 15 and 35 μM, respectively. The mammalian

  10. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies.

    Science.gov (United States)

    Ashok, Penta; Ganguly, Swastika; Murugesan, Sankaranarayanan

    2014-11-01

    The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru).

    Science.gov (United States)

    Vásquez-Ocmín, Pedro; Cojean, Sandrine; Rengifo, Elsa; Suyyagh-Albouz, Soulaf; Amasifuen Guerra, Carlos A; Pomel, Sébastien; Cabanillas, Billy; Mejía, Kember; Loiseau, Philippe M; Figadère, Bruno; Maciuk, Alexandre

    2018-01-10

    In the Peruvian Amazon, the use of medicinal plants is a common practice. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point for this work was a set of interviews of people living in rural communities from the Peruvian Amazon about their uses of plants. Protozoan diseases are a public health issue in the Amazonian communities, who partly cope with it by using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help identify new antiprotozoal compounds. to inventory and validate the use of medicinal plants by rural people of Loreto region. Rural mestizos were interviewed about traditional medication of parasite infections with medicinal plants. Ethnopharmacological surveys were undertaken in two villages along Iquitos-Nauta road (Loreto region, Peru), namely 13 de Febrero and El Dorado communities. Forty-six plants were collected according to their traditional use for the treatment of parasitic diseases, 50 ethanolic extracts (different parts for some of the plants) were tested in vitro on Plasmodium falciparum (3D7 sensitive strain and W2 chloroquine resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Cytotoxic assessment (HUVEC cells) of the active extracts was performed. Two of the most active plants were submitted to preliminary bioguided fractionation to ascertain and explore their activities. From the initial plants list, 10 were found to be active on P. falciparum, 15 on L. donovani and 2 on the three parasites. The ethanolic extract from Costus curvibracteatus (Costaceae) leaves and Grias neuberthii (Lecythidaceae) bark showed strong in vitro activity on P. falciparum (sensitive and resistant strain) and L. donovani and moderate activity on T. brucei gambiense. The Amazonian forest communities in Peru represents a source of knowledge on the use of medicinal plants. In this work

  12. Parasite-Mediated Degradation of Synthetic Ozonide Antimalarials Impacts In Vitro Antimalarial Activity.

    Science.gov (United States)

    Giannangelo, Carlo; Stingelin, Lukas; Yang, Tuo; Tilley, Leann; Charman, Susan A; Creek, Darren J

    2018-03-01

    The peroxide bond of the artemisinins inspired the development of a class of fully synthetic 1,2,4-trioxolane-based antimalarials, collectively known as the ozonides. Similar to the artemisinins, heme-mediated degradation of the ozonides generates highly reactive radical species that are thought to mediate parasite killing by damaging critical parasite biomolecules. We examined the relationship between parasite dependent degradation and antimalarial activity for two ozonides, OZ277 (arterolane) and OZ439 (artefenomel), using a combination of in vitro drug stability and pulsed-exposure activity assays. Our results showed that drug degradation is parasite stage dependent and positively correlates with parasite load. Increasing trophozoite-stage parasitemia leads to substantially higher rates of degradation for both OZ277 and OZ439, and this is associated with a reduction in in vitro antimalarial activity. Under conditions of very high parasitemia (∼90%), OZ277 and OZ439 were rapidly degraded and completely devoid of activity in trophozoite-stage parasite cultures exposed to a 3-h drug pulse. This study highlights the impact of increasing parasite load on ozonide stability and in vitro antimalarial activity and should be considered when investigating the antimalarial mode of action of the ozonide antimalarials under conditions of high parasitemia. Copyright © 2018 American Society for Microbiology.

  13. Poisoning by anti-malarial drugs

    African Journals Online (AJOL)

    had taken chloroquine: no other anti-malarial drugs were involved [1]. ... and angio-oedema have been described. Itching without a ... 15mg/L the risk of permanent visual damage and cardiac dysrhythmias is ... to use an alternative method.

  14. Antimalarial Drugs for Pediatrics - Prescribing and Dispensing ...

    African Journals Online (AJOL)

    Purpose: To assess dispensing and prescribing practices with regard to antimalarial drugs for pediatrics in private pharmacies and public hospitals in Dar es Salaam, Tanzania. Methods: This was a cross-sectional, descriptive study that assessed the knowledge and practice of 200 drug dispensers in the private community ...

  15. Antimalarial sesquiterpene lactones from oncosiphon piluliferum

    CSIR Research Space (South Africa)

    Pillay, P

    2006-02-01

    Full Text Available for the treatment of malaria. Through this consortium, an indigenous plant, Oncosiphon piluliferum, was identified as a potential source of new antimalarial drugs. Bio-assay-guided fractionation based on in vitro antiplasmodial activity led to the isolation of five...

  16. Bifurcatriol, a New Antiprotozoal Acyclic Diterpene from the Brown Alga Bifurcaria bifurcata

    Directory of Open Access Journals (Sweden)

    Vangelis Smyrniotopoulos

    2017-08-01

    Full Text Available Linear diterpenes that are commonly found in brown algae are of high chemotaxonomic and ecological importance. This study reports bifurcatriol (1, a new linear diterpene featuring two stereogenic centers isolated from the Irish brown alga Bifurcaria bifurcata. The gross structure of this new natural product was elucidated based on its spectroscopic data (IR, 1D and 2D-NMR, HRMS. Its absolute configuration was identified by experimental and computational vibrational circular dichroism (VCD spectroscopy, combined with the calculation of 13C-NMR chemical shielding constants. Bifurcatriol (1 was tested for in vitro antiprotozoal activity towards a small panel of parasites (Plasmodium falciparum, Trypanosoma brucei rhodesiense, T. cruzi, and Leishmania donovani and cytotoxicity against mammalian primary cells. The highest activity was exerted against the malaria parasite P. falciparum (IC50 value 0.65 μg/mL with low cytotoxicity (IC50 value 56.6 μg/mL. To our knowledge, this is the first successful application of VCD and DP4 probability analysis of the calculated 13C-NMR chemical shifts for the simultaneous assignment of the absolute configuration of multiple stereogenic centers in a long-chain acyclic natural product.

  17. Search for Antiprotozoal Activity in Herbal Medicinal Preparations; New Natural Leads against Neglected Tropical Diseases

    Directory of Open Access Journals (Sweden)

    Núria Llurba Montesino

    2015-08-01

    Full Text Available Sleeping sickness, Chagas disease, Leishmaniasis, and Malaria are infectious diseases caused by unicellular eukaryotic parasites (“protozoans”. The three first mentioned are classified as Neglected Tropical Diseases (NTDs by the World Health Organization and together threaten more than one billion lives worldwide. Due to the lack of research interest and the high increase of resistance against the existing treatments, the search for effective and safe new therapies is urgently required. In view of the large tradition of natural products as sources against infectious diseases [1,2], the aim of the present study is to investigate the potential of legally approved and marketed herbal medicinal products (HMPs as antiprotozoal agents. Fifty-eight extracts from 53 HMPs on the German market were tested by a Multiple-Target-Screening (MTS against parasites of the genera Leishmania, Trypanosoma, and Plasmodium. Sixteen HMPs showed in vitro activity against at least one of the pathogens (IC50 < 10 µg/mL. Six extracts from preparations of Salvia, Valeriana, Hypericum, Silybum, Arnica, and Curcuma exhibited high activity (IC50 < 2.5 µg/mL. They were analytically characterized by UHPLC/ESI-QqTOF-MSMS and the activity-guided fractionation of the extracts with the aim to isolate and identify the active compounds is in progress.

  18. Solid phase synthesis and antiprotozoal evaluation of di- and trisubstituted 5'-carboxamidoadenosine analogues.

    Science.gov (United States)

    Rodenko, Boris; Detz, Remko J; Pinas, Victorine A; Lambertucci, Catia; Brun, Reto; Wanner, Martin J; Koomen, Gerrit-Jan

    2006-03-01

    The rapid increase of resistance to drugs commonly used in the treatment of tropical diseases such as malaria and African sleeping sickness calls for the prompt development of new safe and efficacious drugs. The pathogenic protozoan parasites lack the capability of synthesising purines de novo and they take up preformed purines from their host through various transmembrane transporters. Adenosine derivatives constitute a class of potential therapeutics due to their selective internalisation by these transporters. Automated solid-phase synthesis can speed up the process of lead finding and we pursued the solid-phase synthesis of di- and trisubstituted 5'-carboxamidoadenosine derivatives by using a safety-catch approach. While efforts with Kenner's sulfonamide linker remained fruitless, successful application of the hydrazide safety-catch linker allowed the construction of two representative combinatorial libraries. Their antiprotozoal evaluation identified two compounds with promising activity: N(6)-benzyl-5'-N-phenylcarboxamidoadenosine with an IC(50) value of 0.91 microM against Trypanosoma brucei rhodesiense and N(6)-diphenylethyl-5'-phenylcarboxamidoadenosine with an IC(50) value of 1.8 microM against chloroquine resistant Plasmodium falciparum.

  19. Classifying new anti-tuberculosis drugs: rationale and future perspectives

    Directory of Open Access Journals (Sweden)

    Simon Tiberi

    2017-03-01

    Full Text Available The classification of anti-tuberculosis (TB drugs is important as it helps the clinician to build an appropriate anti-TB regimen for multidrug-resistant (MDR and extensively drug-resistant (XDR TB cases that do not fulfil the criteria for the shorter MDR-TB regimen. The World Health Organization (WHO has recently approved a revision of the classification of new anti-TB drugs based on current evidence on each drug. In the previous WHO guidelines, the choice of drugs was based on efficacy and toxicity in a step-down manner, from group 1 first-line drugs and groups 2–5 second-line drugs, to group 5 drugs with potentially limited efficacy or limited clinical evidence. In the revised WHO classification, exclusively aimed at managing drug-resistant cases, medicines are again listed in hierarchical order from group A to group D. In parallel, a possible future classification is independently proposed. The aim of this viewpoint article is to describe the evolution in WHO TB classification (taking into account an independently proposed new classification and recent changes in WHO guidance, while commenting on the differences between them. The latest evidence on the ex-group 5 drugs is also discussed.

  20. Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis.

    Science.gov (United States)

    Brossier, F; Sougakoff, W

    2017-09-01

    Molecular methods predict drug resistance several weeks before phenotypic methods and enable rapid implementation of appropriate therapeutic treatment. We aimed to detail the most representative molecular tools used in routine practice for the rapid detection of resistance to antituberculosis drugs among Mycobacterium tuberculosis strains. The molecular diagnosis of resistance to antituberculosis drugs in clinical samples or from in vitro cultures is based on the detection of the most common mutations in the genes involved in the development of resistance in M. tuberculosis strains (encoding either protein targets of antibiotics, or antibiotic activating enzymes) by commercial molecular kits or by sequencing. Three hypotheses could explain the discrepancies between the genotypic results and the phenotypic drug susceptibility testing results: a low percentage of resistant mutants precluding the detection by genotypic methods on the primary culture; a low level of resistance not detected by phenotypic testing; and other resistance mechanisms not yet characterized. Molecular methods have varying sensitivity with regards to detecting antituberculosis drug resistance; that is why phenotypic susceptibility testing methods are mandatory for detecting antituberculosis drug-resistant isolates that have not been detected by molecular methods. The questionable ability of existing phenotypic and genotypic drug susceptibility testing to properly classify strains as susceptible or resistant, and at what level of resistance, was raised for several antituberculosis agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future.

    Science.gov (United States)

    Pasipanodya, Jotam; Gumbo, Tawanda

    2011-01-01

    Antimicrobial pharmacokinetic-pharmacodynamic (PK/PD) science and clinical trial simulations have not been adequately applied to the design of doses and dose schedules of antituberculosis regimens because many researchers are skeptical about their clinical applicability. We compared findings of preclinical PK/PD studies of current first-line antituberculosis drugs to findings from several clinical publications that included microbiologic outcome and pharmacokinetic data or had a dose-scheduling design. Without exception, the antimicrobial PK/PD parameters linked to optimal effect were similar in preclinical models and in tuberculosis patients. Thus, exposure-effect relationships derived in the preclinical models can be used in the design of optimal antituberculosis doses, by incorporating population pharmacokinetics of the drugs and MIC distributions in Monte Carlo simulations. When this has been performed, doses and dose schedules of rifampin, isoniazid, pyrazinamide, and moxifloxacin with the potential to shorten antituberculosis therapy have been identified. In addition, different susceptibility breakpoints than those in current use have been identified. These steps outline a more rational approach than that of current methods for designing regimens and predicting outcome so that both new and older antituberculosis agents can shorten therapy duration.

  2. Successful drug desensitization in patients with delayed-type allergic reactions to anti-tuberculosis drugs

    Directory of Open Access Journals (Sweden)

    Krittaecho Siripassorn

    2018-03-01

    Full Text Available Objective: To evaluate the outcomes of anti-tuberculosis drug desensitization. Methods: This was a retrospective study. Inclusion criteria were as follows: age >18 years, documented tuberculosis infection, a previous cutaneous allergic reaction to anti-tuberculosis drugs, and having undergone drug desensitization between January 2003 and March 2014. The definition of allergic reaction to anti-tuberculosis drugs included (1 a temporal relationship between drug use and the allergic reaction; (2 improvement in the allergic reaction after drug withdrawal; (3 recurrence of the allergic reaction after reintroduction of only the offending drug; and (4 absence of other causes. Results: A total of 19 desensitization procedures were performed. The drugs used for these procedures were isoniazid (n = 7, rifampicin (n = 6, or ethambutol (n = 6. Of note, severe allergic reactions (Stevens–Johnson syndrome (n = 4, erythema multiforme (n = 3, and drug rash with eosinophilia and systemic syndrome (n = 1 were included. All patients underwent resolution of the previous allergic reactions before desensitization. The median duration of desensitization was 18 days. The success rate was 78.9%. The allergic reactions following failed desensitization were not severe; most were maculopapular rashes. Conclusions: The desensitization protocol for anti-tuberculosis drugs was associated with a high success rate, and the individuals who failed desensitization experienced mild allergic reactions. Keywords: Desensitization, Antituberculosis, Steven-Johnson syndrome, Allergic drug reaction, Tolerance induction, Drug allergy

  3. Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds.

    Science.gov (United States)

    Pérez-González, Mariana Z; Gutiérrez-Rebolledo, Gabriel A; Yépez-Mulia, Lilián; Rojas-Tomé, Irma S; Luna-Herrera, Julieta; Jiménez-Arellanes, María A

    2017-05-01

    Cnidoscolus chayamansa is a medicinal and edible plant known as Chaya, is commonly used as an anti-inflammatory, antiprotozoal, antibacterial agent and as a remedy for respiratory illness, gastrointestinal disorders, and vaginal infections related with the inflammation process. In this paper, we describe the plant's phytochemical analysis and biological activities (antimycobacterial, antibacterial, antiprotozoal, and anti-inflammatory properties) of the CHCl 3 :MeOH (1:1) leaves extract and isolated compounds, as well as the acute and sub-acute toxic effects. Chemical identification of isolated compounds was performed by 1 H- and 13 C NMR spectra data. In vitro antibacterial and antimycobacterial activities were determined by disc diffusion and MABA assays, respectively; antiprotozoal test by means of the sub-culture test. Topical and systemic anti-inflammatory effects were tested by TPA and carrageenan assay on BALB/c mice. Moretenol, moretenyl acetate, kaempferol-3,7-dimethyl ether, and 5-hydroxy-7-3',4'-trimethoxyflavanone were the main compounds isolated. The CHCl 3 :MeOH extract showed antiprotozoal (IC 50 ≤65.29μg/mL), antimycobacterial (MIC≤50μg/mL), and anti-inflammatory activities (ED 50 =1.66mg/ear and 467.73mg/kg), but was inactive against the bacterial strains tested. The LD 50 for extract was >2g/kg. In the sub-acute toxicity test, the extract was administered at 1g/kg for 28days and did not cause lethality or any alteration in hematological and biochemical parameters; in addition, liver, kidney, and spleen histological analysis exhibited no structural changes. Moretenol and moretenyl acetate showed MIC=25μg/mL against Mycobacterium tuberculosis H37Rv and against four monoresistant strains of M. tuberculosis H37Rv. Both compounds exhibited moderate activity against Entamoeba histolytica and Giardia lamblia (IC 50 ≤71.70μg/mL). Kaempferol-3,7-dimethyl ether and 5-hydroxy-7-3',4'-trimethoxy-flavanone were more active than the extract against E

  4. Anti-tuberculosis lupane-type isoprenoids from Syzygium guineense Wild DC. (Myrtaceae stem bark

    Directory of Open Access Journals (Sweden)

    I.A. Oladosu

    2017-12-01

    Full Text Available Plant derived isoprenoids commonly called terpenoids, are not only useful as chemosytemic markers but are increasingly attracting attention in the development of newer drugs for the treatment of multi-drug resistant tuberculosis. Anti-tuberculosis activity guided solvent fractionation and chromatographic separation of the chloroform extract of S. guineense stem bark resulted in the isolation of two bioactive 3-β-hydroxylupane-type isoprenoids: betulinic acid methylenediol ester (1 (MIC; 0.15 mg/mL and betulinic acid (2 (MIC; 0.60 mg/mL. The structures of the isolated compounds were elucidated using spectroscopic techniques. The antituberculosis assay was done using the Mycobacterium Growth Indicator Tube (MGIT method. This is the first report of the isolation of the anti-tuberculosis constituents of S. guineense and its potentials for the development of drug leads for the treatment of tuberculosis thus validating its ethno-medicinal uses.

  5. Targeted delivery of anti-tuberculosis drugs to macrophages: targeting mannose receptors

    Science.gov (United States)

    Filatova, L. Yu; Klyachko, N. L.; Kudryashova, E. V.

    2018-04-01

    The development of systems for targeted delivery of anti-tuberculosis drugs is a challenge of modern biotechnology. Currently, these drugs are encapsulated in a variety of carriers such as liposomes, polymers, emulsions and so on. Despite successful in vitro testing of these systems, virtually no success was achieved in vivo, because of low accessibility of the foci of infection located in alveolar macrophage cells. A promising strategy for increasing the efficiency of therapeutic action of anti-tuberculosis drugs is to encapsulate the agents into mannosylated carriers targeting the mannose receptors of alveolar macrophages. The review addresses the methods for modification of drug substance carriers, such as liposomes and biodegradable polymers, with mannose residues. The use of mannosylated carriers to deliver anti-tuberculosis agents increases the drug circulation time in the blood stream and increases the drug concentration in alveolar macrophage cells. The bibliography includes 113 references.

  6. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids

    Directory of Open Access Journals (Sweden)

    Birgit Viira

    2016-06-01

    Full Text Available Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  7. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    Science.gov (United States)

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-06-29

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  8. Adverse reactions to antituberculosis drugs in Manguinhos, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Glauciene Santana Damasceno

    2013-01-01

    Full Text Available OBJECTIVES: This study aimed to characterize and estimate the frequency of adverse reactions to antituberculosis drugs in the population treated at the Centro de Saúde Escola Germano Sinval Faria, a primary health care clinic in Manguinhos, Rio de Janeiro City, and to explore the relationship between adverse drug reactions and some of the patients' demographic and health characteristics. METHODS: This descriptive study was conducted via patient record review of incident cases between 2004 and 2008. RESULTS: Of the 176 patients studied, 41.5% developed one or more adverse reactions to antituberculosis drugs, totaling 126 occurrences. The rate of adverse reactions to antituberculosis drugs was higher among women, patients aged 50 years or older, those with four or more comorbidities, and those who used five or more drugs. Of the total reactions, 71.4% were mild. The organ systems most affected were as follows: the gastrointestinal tract (29.4%, the skin and appendages (21.4%, and the central and peripheral nervous systems (14.3%. Of the patients who experienced adverse reactions to antituberculosis drugs, 65.8% received no drug treatment for their adverse reactions, and 4.1% had one of the antituberculosis drugs suspended because of adverse reactions. "Probable reactions" (75% predominated over "possible reactions" (24%. In the study sample, 64.3% of the reactions occurred during the first two months of treatment, and most (92.6% of the reactions were ascribed to the combination of rifampicin + isoniazid + pyrazinamide (Regimen I. A high dropout rate from tuberculosis treatment (24.4% was also observed. CONCLUSION: This study suggests a high rate of adverse reactions to antituberculosis drugs.

  9. Synthetic Antimalarial Maculopathy: A Case Report

    Directory of Open Access Journals (Sweden)

    Aziz El Ouaf

    2017-04-01

    Full Text Available Antimalarial drug-induced retinopathy was first described in the 1950s. Screening for preclinical poisoning prevents evolution to irreversible maculopathy. We discuss, through the case of maculopathy with antimalarial (AM revealed by progressive bilateral decrease in vision in a patient with lupus, the modalities of monitoring patients treated with AM and the management of a potential intoxication. All authors stress the need for clinical and paraclinical ophthalmological monitoring regularly to detect early signs of impaired retinal function at a reversible stage. Indeed, at a more severe retinal intoxication, impaired visual function remains irreversible and can lead to blindness. A full ophthalmologic assessment is necessary before starting long course treatment with AM, possibly coupled with additional tests (central visual field, colour vision and/or electrophysiological examinations.

  10. Lead optimization of antimalarial propafenone analogues.

    Science.gov (United States)

    Lowes, David; Pradhan, Anupam; Iyer, Lalitha V; Parman, Toufan; Gow, Jason; Zhu, Fangyi; Furimsky, Anna; Lemoff, Andrew; Guiguemde, W Armand; Sigal, Martina; Clark, Julie A; Wilson, Emily; Tang, Liang; Connelly, Michele C; Derisi, Joseph L; Kyle, Dennis E; Mirsalis, Jon; Guy, R Kiplin

    2012-07-12

    Previously reported studies identified analogues of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are nontoxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges.

  11. Short synthesis and antimalarial activity of fagaronine

    OpenAIRE

    Rivaud, M.; Mendoza, A.; Sauvain, Michel; Valentin, A.; Jullian, Valérie

    2012-01-01

    Herein, we report a new synthesis of fagaronine 1, inspired by the synthesis reported by Luo for nornitidine. The in vitro biological activity of fagaronine against malaria on several chloroquine-sensitive and resistant Plasmodium falciparum strains was confirmed, and the selectivity index compared to mammalian cells was calculated. Fagaronine was found to have very good antimalarial activity in vivo, comparable to the activity of the reference compound chloroquine. Therefore, fagaronine appe...

  12. Naturally occurring cobalamins have antimalarial activity.

    Science.gov (United States)

    Chemaly, Susan M; Chen, Chien-Teng; van Zyl, Robyn L

    2007-05-01

    The acquisition of resistance by malaria parasites towards existing antimalarials has necessitated the development of new chemotherapeutic agents. The effect of vitamin B(12) derivatives on the formation of beta-haematin (synthetic haemozoin) was determined under conditions similar to those in the parasitic food vacuole (using chloroquine, a known inhibitor of haemozoin formation for comparison). Adenosylcobalamin (Ado-cbl), methylcobalamin (CH(3)-cbl) and aquocobalamin (H(2)O-cbl) were approximately forty times more effective inhibitors of beta-haematin formation than chloroquine, cyanocobalamin (CN-cbl) was slightly more inhibitory than chloroquine, while dicyanocobinamide had no effect. It is proposed that the cobalamins exert their inhibitory effect on beta-haematin formation by pi-interactions of their corrin ring with the Fe(III)-protoporphyrin ring and by hydrogen-bonding using their 5,6-dimethylbenzimidazole/ribose/sugar side-chain. The antimalarial activity for the cobalamins (Ado-cbl>CH(3)-cbl>H(2)O-cbl>CN-cbl) was found to be less than that for chloroquine or quinine. Ado-cbl, CH(3)-cbl and CN-cbl do not accumulate in the parasite food vacuole by pH trapping, but H(2)O-cbl does. Unlike humans, the malaria parasite has only one enzyme that uses cobalamin as a cofactor, namely methionine synthase, which is important for growth and metabolism. Thus cobalamins in very small amounts are necessary for Plasmodium falciparum growth but in larger amounts they display antimalarial properties.

  13. Aspidosperma species as sources of antimalarials. Part III. A review of traditional use and antimalarial activity.

    Science.gov (United States)

    de Paula, Renata Cristina; Dolabela, Maria Fâni; de Oliveira, Alaíde Braga

    2014-03-01

    Several plant species belonging to the genus Aspidosperma are traditionally used in Brazil and other Meso- and South American countries for the treatment of malaria and fevers. These traditional uses were motivation for this review. A literature survey completed for this review has identified scientific bibliographical references to the use of 24 Aspidosperma species to treat malaria/fevers and to 19 species that have had their extracts and/or alkaloids evaluated, with good results, for in vitro and/or in vivo antimalarial activity. Indole alkaloids are typical constituents of Aspidosperma species. However, only 20 out of more than 200 known indole alkaloids isolated from this genus have been assayed for antimalarial activity. These data support the potential of Aspidosperma species as sources of antimalarials and the importance of research aimed at validating their use in the treatment of human malaria. Georg Thieme Verlag KG Stuttgart · New York.

  14. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview.

    Science.gov (United States)

    Fan, Yi-Lei; Cheng, Xiang-Wei; Wu, Jian-Bing; Liu, Min; Zhang, Feng-Zhi; Xu, Zhi; Feng, Lian-Shun

    2018-02-25

    Malaria remains one of the most deadly infectious diseases globally. Considering the growing spread of resistance, development of new and effective antimalarials remains an urgent priority. Quinolones, which are emerged as one of the most important class of antibiotics in the treatment of various bacterial infections, showed potential in vitro antiplasmodial and in vivo antimalarial activities, making them promising candidates for the chemoprophylaxis and treatment of malaria. This review presents the current progresses and applications of quinolone-based derivatives as potential antimalarials to pave the way for the development of new antimalarials. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. ent-Pimarane and ent-Kaurane Diterpenes from Aldama discolor (Asteraceae and Their Antiprotozoal Activity

    Directory of Open Access Journals (Sweden)

    Mauro S. Nogueira

    2016-09-01

    Full Text Available Aldama discolor (syn.Viguiera discolor is an endemic Asteraceae from the Brazilian “Cerrado”, which has not previously been investigated for its chemical constituents and biological activity. Diterpenes are common secondary metabolites found in Aldama species, some of which have been reported to present potential antiprotozoal and antimicrobial activities. In this study, the known ent-3-α-hydroxy-kaur-16-en-18-ol (1, as well as three new diterpenes, namely, ent-7-oxo-pimara-8,15-diene-18-ol (2, ent-2S,4S-2-19-epoxy-pimara-8(3,15-diene-7β-ol (3 and ent-7-oxo-pimara-8,15-diene-3β-ol (4, were isolated from the dichloromethane extract of A. discolor leaves and identified by means of MS and NMR. The compounds were assayed in vitro against Trypanosoma brucei rhodesiense, T. cruzi and Leishmania donovani, Plasmodium falciparum and also tested for cytotoxicity against mammalian cells (L6 cell line. The ent-kaurane 1 showed significant in vitro activity against both P. falciparum (IC 50 = 3.5 μ M and L. donovani (IC 50 = 2.5 μ M and ent-pimarane 2 against P. falciparum (IC 50 = 3.8 μ M. Both compounds returned high selectivity indices (SI >10 in comparison with L6 cells, which makes them interesting candidates for in vivo tests. In addition to the diterpenes, the sesquiterpene lactone budlein A (5, which has been reported to possess a strong anti-T. b. rhodesiense activity, was identified as major compound in the A. discolor extract and explains its high activity against this parasite (100% growth inhibition at 2 μ g/mL.

  16. ent-Pimarane and ent-Kaurane Diterpenes from Aldama discolor (Asteraceae) and Their Antiprotozoal Activity.

    Science.gov (United States)

    Nogueira, Mauro S; Da Costa, Fernando B; Brun, Reto; Kaiser, Marcel; Schmidt, Thomas J

    2016-09-15

    Aldama discolor (syn.Viguiera discolor) is an endemic Asteraceae from the Brazilian "Cerrado", which has not previously been investigated for its chemical constituents and biological activity. Diterpenes are common secondary metabolites found in Aldama species, some of which have been reported to present potential antiprotozoal and antimicrobial activities. In this study, the known ent-3-α-hydroxy-kaur-16-en-18-ol (1), as well as three new diterpenes, namely, ent-7-oxo-pimara-8,15-diene-18-ol (2), ent-2S,4S-2-19-epoxy-pimara-8(3),15-diene-7β-ol (3) and ent-7-oxo-pimara-8,15-diene-3β-ol (4), were isolated from the dichloromethane extract of A. discolor leaves and identified by means of MS and NMR. The compounds were assayed in vitro against Trypanosoma brucei rhodesiense, T. cruzi and Leishmania donovani, Plasmodium falciparum and also tested for cytotoxicity against mammalian cells (L6 cell line). The ent-kaurane 1 showed significant in vitro activity against both P. falciparum (IC 50 = 3.5 μ M) and L. donovani (IC 50 = 2.5 μ M) and ent-pimarane 2 against P. falciparum (IC 50 = 3.8 μ M). Both compounds returned high selectivity indices (SI >10) in comparison with L6 cells, which makes them interesting candidates for in vivo tests. In addition to the diterpenes, the sesquiterpene lactone budlein A (5), which has been reported to possess a strong anti-T. b. rhodesiense activity, was identified as major compound in the A. discolor extract and explains its high activity against this parasite (100% growth inhibition at 2 μ g/mL).

  17. A 37-year-old woman presenting with impaired visual function during antituberculosis drug therapy: a case report

    Directory of Open Access Journals (Sweden)

    Ayanniyi Abdulkabir A

    2011-07-01

    Full Text Available Abstract Introduction Combination antituberculosis drug therapy remains the mainstay of treating tuberculosis. Unfortunately, antituberculosis drugs produce side effects including (toxic impaired visual function, which may be irreversible. We report a case of antituberculosis-drug-induced impaired visual function that was reversed following early detection and attention. Case presentation A 37-year-old Yoruba woman, weighing 48 kg, presented to our facility with impaired visual functions and mild sensory polyneuropathy in about the fourth month of antituberculosis treatment. Her therapy comprised ethambutol 825 mg, isoniazid 225 mg, rifampicin 450 mg, and pyrazinamide 1200 mg. Her visual acuity was 6/60 in her right eye and 1/60 in her left eye. She had sluggish pupils, red-green dyschromatopsia, hyperemic optic discs and central visual field defects. Her intraocular pressure was 14 mmHg. Her liver and kidney functions were essentially normal. Screening for human immunodeficiency virus was not reactive. Her impaired visual function improved following prompt diagnosis and attention, including the discontinuation of medication. Conclusions The ethambutol and isoniazid in antituberculosis medication are notorious for causing impaired visual function. The diagnosis of ocular toxicity from antituberculosis drugs should never be delayed, and should be possible with the patient's history and simple but basic eye examinations and tests. Tight weight-based antituberculosis therapy, routine peri-therapy visual function monitoring towards early detection of impaired function, and prompt attention will reduce avoidable ocular morbidity.

  18. Ginger for Prevention of Antituberculosis-induced Gastrointestinal Adverse Reactions Including Hepatotoxicity: A Randomized Pilot Clinical Trial.

    Science.gov (United States)

    Emrani, Zahra; Shojaei, Esphandiar; Khalili, Hossein

    2016-06-01

    In this study, the potential benefits of ginger in preventing antituberculosis drug-induced gastrointestinal adverse reactions including hepatotoxicity have been evaluated in patients with tuberculosis. Patients in the ginger and placebo groups (30 patients in each group) received either 500 mg ginger (Zintoma)(®) or placebo one-half hour before each daily dose of antituberculosis drugs for 4 weeks. Patients' gastrointestinal complaints (nausea, vomiting, dyspepsia, and abdominal pain) and antituberculosis drug-induced hepatotoxicity were recorded during the study period. In this cohort, nausea was the most common antituberculosis drug-induced gastrointestinal adverse reactions. Forty eight (80%) patients experienced nausea. Nausea was more common in the placebo than the ginger group [27 (90%) vs 21 (70%), respectively, p = 0.05]. During the study period, 16 (26.7%) patients experienced antituberculosis drug-induced hepatotoxicity. Patients in the ginger group experienced less, but not statistically significant, antituberculosis drug-induced hepatotoxicity than the placebo group (16.7% vs 36.7%, respectively, p = 0.07). In conclusion, ginger may be a potential option for prevention of antituberculosis drug-induced gastrointestinal adverse reactions including hepatotoxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Antiprotozoal Activity against Entamoeba histolytica of Plants Used in Northeast Mexican Traditional Medicine. Bioactive Compounds from Lippia graveolens and Ruta chalepensis

    Directory of Open Access Journals (Sweden)

    Ramiro Quintanilla-Licea

    2014-12-01

    Full Text Available Amoebiasis caused by Entamoeba histolytica is associated with high morbidity and mortality is becoming a major public health problem worldwide, especially in developing countries. Because of the side-effects and the resistance that pathogenic protozoa build against the standard antiparasitic drugs, e.g., metronidazole, much recent attention has been paid to plants used in traditional medicine around the world in order to find new antiprotozoal agents. We collected 32 plants used in Northeast Mexican traditional medicine and the methanolic extracts of these species were screened for antiprotozoal activity against E. histolytica trophozoites using in vitro tests. Only 18 extracts showed a significant inhibiting activity and among them six plant extracts showed more than 80% growth inhibition against E. histolytica at a concentration of 150 µg/mL and the IC50 values of these extracts were determined. Lippia graveolens Kunth and Ruta chalepensis Pers. showed the more significant antiprotozoal activity (91.54% and 90.50% growth inhibition at a concentration of 150 µg/mL with IC50 values of 59.14 and 60.07 µg/mL, respectively. Bioassay-guided fractionation of the methanolic extracts from these two plants afforded carvacrol (1 and chalepensin (2, respectively, as bioactive compounds with antiprotozoal activity.

  20. Profile of Antituberculosis Use in Community Pharmacist of Bandung City 2008–2010

    Directory of Open Access Journals (Sweden)

    Sofa D. Alfian

    2012-12-01

    Full Text Available Infectious disease is still a major disease in developing countries such as in Indonesia. As one of the health care providers which has privilege to distribute antibiotics, it is very important to control the use of antibiotics in pharmacy. The aim of this study is to conduct a profile of anti-tuberculosis use, in all pharmacies in Bandung during the period from 2008–2010. This study was performed using an observational method and retrospective approach. In this study we applied the Anatomical Therapeutic Chemical/Defined Daily Dose (ATC/DDD and Drug Utilization 90 % (DU90% method. The result showed that the use of antituberculosis tends to decrease. During the period from 2008 to 2010, the use of antituberculosis decreased by 17,783 and 169,416 DDD/1000 inhabitants in 2009 and 2010, respectively. It can be concluded that the totaluse of antituberculosis in all pharmacies in Bandung during the period from 2008 to 2010 tends to decrease.

  1. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    Science.gov (United States)

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  2. Availability, price and affordability of anti-tuberculosis drugs in Europe: a TBNET survey

    NARCIS (Netherlands)

    Günther, Gunar; Gomez, Gabriela B.; Lange, Christoph; Rupert, Stephan; van Leth, Frank; Andrejak, Claire; Pieridou-Bagatzouni, Despo; Anderson, Aase Bengard; Bojovic, Olivera; Bothamley, Graham; Bruchfeld, Judith; Codecasa, Luigi R.; Danilovits, Manfred; Davidaviciene, Edita; Dalemo, Paulina; Dimopoulos, Giorgos; Duarte, Raquel; Hafizi, Hasan; Horvath, Ildiko; Eyuboglu, Fusun; Ibraim, Elmira; Jankovic, Mateja; Kan, Boris; Kopecka, Emilia; Kruczak, Katarzyna; Kutsyna, Galyna; de lange, Wiel; Leimane, Vaira; Mack, Ulrich; Manzano, Juan Ruiz; Markova, Roumania; McDonald, Colm; McLaughlin, Anne-Marie; Mulliqi, Gjyle; Muylle, Inge; Pesut, Dragica; Polcova, Veronika; Rumetshofer, Rudolf; Rusu, Doina; Skrahina, Alena; Spiric, Nicolina; Solovic, Ivan; Svetina-Sorli, Petra; Vasakova, Martina; Vasankari, Tuula; Viiklepp, Piret; Wirz, Gil; Zakoska, Maja; Zellweger, Jean-Pierre

    2015-01-01

    Data on availability and cost of anti-tuberculosis (TB) drugs in relation to affordability at national level are scarce. We performed a cross-sectional study on availability and cost of anti-TB drugs at major TB-reference centres in 37 European countries. Costs of standardised treatment regimens

  3. TIPdb: A Database of Anticancer, Antiplatelet, and Antituberculosis Phytochemicals from Indigenous Plants in Taiwan

    Directory of Open Access Journals (Sweden)

    Ying-Chi Lin

    2013-01-01

    Full Text Available The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.

  4. TIPdb: a database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan.

    Science.gov (United States)

    Lin, Ying-Chi; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng; Tung, Chun-Wei

    2013-01-01

    The unique geographic features of Taiwan are attributed to the rich indigenous and endemic plant species in Taiwan. These plants serve as resourceful bank for biologically active phytochemicals. Given that these plant-derived chemicals are prototypes of potential drugs for diseases, databases connecting the chemical structures and pharmacological activities may facilitate drug development. To enhance the utility of the data, it is desirable to develop a database of chemical compounds and corresponding activities from indigenous plants in Taiwan. A database of anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan was constructed. The database, TIPdb, is composed of a standardized format of published anticancer, antiplatelet, and antituberculosis phytochemicals from indigenous plants in Taiwan. A browse function was implemented for users to browse the database in a taxonomy-based manner. Search functions can be utilized to filter records of interest by botanical name, part, chemical class, or compound name. The structured and searchable database TIPdb was constructed to serve as a comprehensive and standardized resource for anticancer, antiplatelet, and antituberculosis compounds search. The manually curated chemical structures and activities provide a great opportunity to develop quantitative structure-activity relationship models for the high-throughput screening of potential anticancer, antiplatelet, and antituberculosis drugs.

  5. Gelation Behavior of 5-Chloro-8-hydroxyquinoline, an Antituberculosis Agent in Aqueous Alcohol Solutions

    Directory of Open Access Journals (Sweden)

    Jukka Korpela

    2012-09-01

    Full Text Available It was shown that 5-chloro-8-hydroxyquinoline, an antituberculosis agent, gels aqueous alcohol solutions efficiently. Thermal stability and gel-to-sol transition temperature of 1% gel in CD3OD/D2O (2:1 was studied by 1H-NMR. Fibrous structures of four xerogels have been characterized by scanning electron microscope.

  6. Quality specifications for antituberculosis fixed dose combination products / A-M. Redelinghuys

    OpenAIRE

    Redelinghuys, Anne-Marie

    2006-01-01

    Objective: The World Health Organization (WHO) requested the Research Institute for Industrial Pharmacy, at the North-West University, Potchefstroom, South Africa, to develop monographs for anti-tuberculosis products for The International Pharmacopoeia (IntPh). These included monographs for rifampicin capsules; rifampicin tablets; isoniazid and ethambutol hydrochloride tablets; rifampicin and isoniazid tablets; rifampicin, isoniazid and pyrazinamide tablets; and rifampicin, iso...

  7. Antimalarial Anthrone and Chromone from the Leaf Latex of Aloe ...

    African Journals Online (AJOL)

    In Ethiopian traditional medicine, the leaf latex of Aloe debranan Chrstian is used for the treatment of several diseases including malaria. In an ongoing search for effective, safe and cheap antimalarial agents from plants, the leaf latex of A. debrana was tested for its in vivo antimalarial activity, in a 4-day suppressive assay ...

  8. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  9. In vivo Antimalarial Activity of Methanol and Water Extracts of ...

    African Journals Online (AJOL)

    Conclusions: The possible active compounds responsible for the observed chemosupression may be flavonoids, terpeneoids and anthraquinones which are present in the extract. This is the first report on the in vivo antimalarial activity of E. thorifolium. Keywords: Antimalarial, Eryngium thorifolium, Plasmodium berghei, ...

  10. Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure.

    Directory of Open Access Journals (Sweden)

    Eva Ramos-Morales

    Full Text Available The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS. The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001. The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39% and lower butyrate (-32% and lower ammonia concentration (-64% than the extracts incubated separately. HBS caused a decrease in butyrate (-45% and an increase in propionate (+43% molar proportions. However, the decrease in ammonia concentration (-42% observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05. It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an

  11. Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure

    Science.gov (United States)

    de la Fuente, Gabriel; Nash, Robert J.; Braganca, Radek; Duval, Stephane; Bouillon, Marc E.; Lahmann, Martina; Newbold, C. Jamie

    2017-01-01

    The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (Pstevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (Pstevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal

  12. Mycobacterium tuberculosis specific CD8(+ T cells rapidly decline with antituberculosis treatment.

    Directory of Open Access Journals (Sweden)

    Melissa R Nyendak

    Full Text Available Biomarkers associated with response to therapy in tuberculosis could have broad clinical utility. We postulated that the frequency of Mycobacterium tuberculosis (Mtb specific CD8(+ T cells, by virtue of detecting intracellular infection, could be a surrogate marker of response to therapy and would decrease during effective antituberculosis treatment.We sought to determine the relationship of Mtb specific CD4(+ T cells and CD8(+ T cells with duration of antituberculosis treatment.We performed a prospective cohort study, enrolling between June 2008 and August 2010, of HIV-uninfected Ugandan adults (n = 50 with acid-fast bacillus smear-positive, culture confirmed pulmonary TB at the onset of antituberculosis treatment and the Mtb specific CD4(+ and CD8(+ T cell responses to ESAT-6 and CFP-10 were measured by IFN-γ ELISPOT at enrollment, week 8 and 24.There was a significant difference in the Mtb specific CD8(+ T response, but not the CD4(+ T cell response, over 24 weeks of antituberculosis treatment (p<0.0001, with an early difference observed at 8 weeks of therapy (p = 0.023. At 24 weeks, the estimated Mtb specific CD8(+ T cell response decreased by 58%. In contrast, there was no significant difference in the Mtb specific CD4(+ T cell during the treatment. The Mtb specific CD4(+ T cell response, but not the CD8(+ response, was negatively impacted by the body mass index.Our data provide evidence that the Mtb specific CD8(+ T cell response declines with antituberculosis treatment and could be a surrogate marker of response to therapy. Additional research is needed to determine if the Mtb specific CD8(+ T cell response can detect early treatment failure, relapse, or to predict disease progression.

  13. Terahertz absorption spectra of commonly used antimalarial drugs

    Science.gov (United States)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-03-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  14. Terahertz absorption spectra of commonly used antimalarial drugs

    Science.gov (United States)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-06-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  15. QSAR modeling and chemical space analysis of antimalarial compounds

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  16. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  17. Antimalarial properties of imipramine and amitriptyline

    International Nuclear Information System (INIS)

    Dutta, P.; Siegel, L.; Pinto, J.; Meshnick, S.

    1986-01-01

    This laboratory has previously demonstrated that imipramine (IM) and amitriptyline (AM), inhibit the conversion of riboflavin to its coenzymic derivatives. Several other laboratories have shown that dietary riboflavin deficiency is protective against malarial infection. In the present investigation, the authors determined whether IM and AM exert antimalarial effects similar to that of riboflavin deficiency, as they have hypothesized. In addition, they evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of P. falciparum (FCR3) in the absence or presence of these drugs (80 μM) was measured by incubating parasitized erythrocytes for 48 h in RPMI 1640 medium. Parasitemia was determined by counting erythrocyte smears and monitoring ( 3 H)hypoxanthine uptake. With no drug, parasitemia was 20.3 +/- 5.3%, whereas in the presence of IM and AM, parasitemia was reduced to 7.3 +/- 0.8% and 13.6 +/- 2.8%, respectively. The uptake of ( 3 H)hypoxanthine was reduced to 47 +/- 3.6% and 54 +/- 2.9% of control by IM and AM, respectively. Assays of hemolysis were conducted by incubating 0.5% RBC suspension in NaCl-Tris buffer for 3 h at 37 0 C with variable concentrations of drugs and/or FP (1-7 μM). Both drugs at 10 to 100 μM significantly enhanced hemolysis induced by FP. No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, IM and AM, possess substantial antimalarial properties, thereby supporting the hypothesis that drugs which interfere with riboflavin metabolism should also provide protection against malaria

  18. Anticancer Properties of Distinct Antimalarial Drug Classes

    Science.gov (United States)

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  19. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  20. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody; Coll, Francesc; McNerney, Ruth; Ascher, David; Pires, Douglas; Furnham, Nick; Coeck, Nele; Hill-Cawthorne, Grant; Nair, Mridul; Mallard, Kim; Ramsay, Andrew; Campino, Susana; Hibberd, Martin; Pain, Arnab; Rigouts, Leen; Clark, Taane

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure

  1. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial.

    Science.gov (United States)

    Kikuchi, Haruhisa; Horoiwa, Seiko; Kasahara, Ryota; Hariguchi, Norimitsu; Matsumoto, Makoto; Oshima, Yoshiteru

    2014-04-09

    Febrifugine, a quinazoline alkaloid isolated from Dichroa febrifuga roots, shows powerful antimalarial activity against Plasmodium falciparum. Although the use of ferifugine as an antimalarial drug has been precluded because of its severe side effects, its potent antimalarial activity has stimulated medicinal chemists to pursue its derivatives instead, which may provide valuable leads for novel antimalarial drugs. In the present study, we synthesized new derivatives of febrifugine and evaluated their in vitro and in vivo antimalarial activities to develop antimalarials that are more effective and safer. As a result, we proposed tetrahydroquinazoline-type derivative as a safe and effective antimalarial candidate. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Chitosan-based nanocarriers for antimalarials

    Science.gov (United States)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  3. Antimalarial activity of the terpene nerolidol.

    Science.gov (United States)

    Saito, Alexandre Y; Marin Rodriguez, Adriana A; Menchaca Vega, Danielle S; Sussmann, Rodrigo A C; Kimura, Emília A; Katzin, Alejandro M

    2016-12-01

    Malaria, an infectious disease that kills more than 438,000 people per year worldwide, is a major public health problem. The emergence of strains resistant to conventional therapeutic agents necessitates the discovery of new drugs. We previously demonstrated that various substances, including terpenes, have antimalarial activity in vitro and in vivo. Nerolidol is a sesquiterpene present as an essential oil in several plants that is used in scented products and has been approved by the US Food and Drug Administration as a food-flavouring agent. In this study, the antimalarial activity of nerolidol was investigated in a mouse model of malaria. Mice were infected with Plasmodium berghei ANKA and were treated with 1000 mg/kg/dose nerolidol in two doses delivered by the oral or inhalation route. In mice treated with nerolidol, parasitaemia was inhibited by >99% (oral) and >80% (inhalation) until 14 days after infection (P  0.05). The toxicity of nerolidol administered by either route was not significant, whilst genotoxicity was observed only at the highest dose tested. These results indicate that combined use of nerolidol and other drugs targeting different points of the same isoprenoid pathway may be an effective treatment for malaria. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Malaria and antimalarial plants in Roraima, Brazil.

    Science.gov (United States)

    Milliken, W

    1997-01-01

    One of the numerous problems created by the gold rush which took place in northern Brazil (Roraima State) at the end of the 1980s was a severe epidemic of malaria amongst the indigenous peoples of the region. Worst hit were the Yanomami Indians, who had lived in almost total isolation prior to this event. The problem has been exacerbated by the development of chloroquine-resistant strains of Plasmodium falciparum. In an effort to identify viable alternatives to dependence on western medicine for malaria treatment, a survey was carried out on the local plant species (wild and cultivated) used for this purpose in Roraima. Fieldwork was carried out amongst seven indigenous peoples, as well as with the non-indigenous settlers. Over 90 species were collected, many of which have been cited as used for treatment of malaria and fevers elsewhere. Knowledge of antimalarial plants was found to vary greatly between the communities, and in some cases there was evidence of recent experimentation. Initial screening of plant extracts has shown a high incidence of significant antimalarial activity amongst the species collected.

  5. In vitro and in vivo assessment of newer quinoxaline-oxadiazole hybrids as antimicrobial and antiprotozoal agents.

    Science.gov (United States)

    Patel, Navin B; Patel, Jignesh N; Purohit, Amit C; Patel, Vatsal M; Rajani, Dhanji P; Moo-Puc, Rosa; Lopez-Cedillo, Julio Cesar; Nogueda-Torres, Benjamin; Rivera, Gildardo

    2017-09-01

    A new series of N-(substituted-phenyl)-2-[5-(quinoxalin-2-yloxymethyl)-[1,3,4] oxadiazol-2-ylsulfanyl]-acetamides (5a-o) was designed and synthesised from the parent compound 2-hydroxy quinoxaline (1) through a multistep reaction sequence and was characterised by spectral and elemental analyses. All of the compounds synthesised were evaluated for their antimicrobial and antiprotozoal activities. The results revealed that quinoxaline-based 1,3,4-oxadiazoles displayed promising antibacterial, antifungal and anti-Trypanosoma cruzi activities compared with reference drugs, particularly the lead compound 5l in a short-term in vivo model in T. cruzi. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Antimalarial Activity of C-10 Substituted Triazolyl Artemisinin.

    Science.gov (United States)

    Park, Gab-Man; Park, Hyun; Oh, Sangtae; Lee, Seokjoon

    2017-12-01

    We synthesized C-10 substituted triazolyl artemisinins by the Huisgen cycloaddition reaction between dihydroartemisinins (2) and variously substituted 1, 2, 3-triazoles (8a-8h). The antimalarial activities of 32 novel artemisinin derivatives were screened against a chloroquine-resistant parasite. Among them, triazolyl artemisinins with electron-withdrawing groups showed stronger antimalarial activities than those shown by the derivatives having electron-donating groups. In particularly, m-chlorotriazolyl artemisinin (9d-12d) showed antimalarial activity equivalent to that of artemisinin and could be a strong drug candidate.

  7. Synthesis and antimalarial evaluation of novel isocryptolepine derivatives.

    Science.gov (United States)

    Whittell, Louise R; Batty, Kevin T; Wong, Rina P M; Bolitho, Erin M; Fox, Simon A; Davis, Timothy M E; Murray, Paul E

    2011-12-15

    A series of mono- and di-substituted analogues of isocryptolepine have been synthesized and evaluated for in vitro antimalarial activity against chloroquine sensitive (3D7) and resistant (W2mef) Plasmodium falciparum and for cytotoxicity (3T3 cells). Di-halogenated compounds were the most potent derivatives and 8-bromo-2-chloroisocryptolepine displayed the highest selectivity index (106; the ratio of cytotoxicity (IC(50)=9005 nM) to antimalarial activity (IC(50)=85 nM)). Our evaluation of novel isocryptolepine compounds has demonstrated that di-halogenated derivatives are promising antimalarial lead compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Potent Plasmodium falciparum gametocytocidal activity of diaminonaphthoquinones, lead antimalarial chemotypes identified in an antimalarial compound screen.

    Science.gov (United States)

    Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

    2015-03-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Evolutionary ARMS Race: Antimalarial Resistance Molecular Surveillance.

    Science.gov (United States)

    Prosser, Christiane; Meyer, Wieland; Ellis, John; Lee, Rogan

    2018-04-01

    Molecular surveillance of antimalarial drug resistance markers has become an important part of resistance detection and containment. In the current climate of multidrug resistance, including resistance to the global front-line drug artemisinin, there is a consensus to upscale molecular surveillance. The most salient limitation to current surveillance efforts is that skill and infrastructure requirements preclude many regions. This includes sub-Saharan Africa, where Plasmodium falciparum is responsible for most of the global malaria disease burden. New molecular and data technologies have emerged with an emphasis on accessibility. These may allow surveillance to be conducted in broad settings where it is most needed, including at the primary healthcare level in endemic countries, and extending to the village health worker. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Synthesis and Biological Evaluation of Novel 2-Methoxypyridylamino-Substituted Riminophenazine Derivatives as Antituberculosis Agents

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhang

    2014-04-01

    Full Text Available Clofazimine, a member of the riminophenazine class, is one of the few antibiotics that are still active against multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis. However, the clinical utility of this agent is limited by its undesirable physicochemical properties and skin pigmentation potential. With the goal of maintaining potent antituberculosis activity while improving physicochemical properties and lowering skin pigmentation potential, a series of novel riminophenazine derivatives containing a 2-methoxypyridylamino substituent at the C-2 position of the phenazine nucleus were designed and synthesized. These compounds were evaluated for antituberculosis activity against M. tuberculosis H37Rv and screened for cytotoxicity. Riminophenazines bearing a 3-halogen- or 3,4-dihalogen-substituted phenyl group at the N-5 position exhibited potent antituberculosis activity, with MICs ranging from 0.25~0.01 μg/mL. The 3,4-dihalogen- substituted compounds displayed low cytotoxicity, with IC50 values greater than 64 μg/mL. Among these riminophenazines, compound 15 exhibited equivalent in vivo efficacy against M. tuberculosis infection and reduced skin discoloration potential in an experimental mouse infection model as compared to clofazimine. Compound 15, as compared to clofazimine, also demonstrated improved physicochemical properties and pharmacokinetic profiles with a short half-life and less drug tissue accumulation. This compound is being evaluated as a potential drug candidate for the treatment of multidrug resistant tuberculosis.

  11. Validation of an ultra-fast UPLC-UV method for the separation of antituberculosis tablets.

    Science.gov (United States)

    Nguyen, Dao T-T; Guillarme, Davy; Rudaz, Serge; Veuthey, Jean-Luc

    2008-04-01

    A simple method using ultra performance LC (UPLC) coupled with UV detection was developed and validated for the determination of antituberculosis drugs in combined dosage form, i. e. isoniazid (ISN), pyrazinamide (PYR) and rifampicin (RIF). Drugs were separated on a short column (2.1 mm x 50 mm) packed with 1.7 mum particles, using an elution gradient procedure. At 30 degrees C, less than 2 min was necessary for the complete separation of the three antituberculosis drugs, while the original USP method was performed in 15 min. Further improvements were obtained with the combination of UPLC and high temperature (up to 90 degrees C), namely HT-UPLC, which allows the application of higher mobile phase flow rates. Therefore, the separation of ISN, PYR and RIF was performed in less than 1 min. After validation (selectivity, trueness, precision and accuracy), both methods (UPLC and HT-UPLC) have proven suitable for the routine quality control analysis of antituberculosis drugs in combined dosage form. Additionally, a large number of samples per day can be analysed due to the short analysis times.

  12. Cure of tuberculosis despite serum concentrations of antituberculosis drugs below published reference ranges.

    Science.gov (United States)

    Meloni, Monica; Corti, Natascia; Müller, Daniel; Henning, Lars; Gutteck, Ursula; von Braun, Amrei; Weber, Rainer; Fehr, Jan

    2015-01-01

    Therapeutic target serum concentrations of first-line antituberculosis drugs have not been well defined in clinical studies in tuberculosis (TB) patients. We retrospectively investigated the estimated maximum serum concentrations (eC max) of antituberculosis drugs and clinical outcome of TB patients with therapeutic drug monitoring performed between 2010-2012 at our institution, and follow-up until March 2014. The eC max was defined as the highest serum concentration during a sampling period (2, 4 and 6 hours after drug ingestion). We compared the results with published eC max values, and categorised them as either "within reference range", "low eC max", or "very low eC max".Low/very low eC max-levels were defined as follows: isoniazid 2-3/max levels were classified as "low" or "very low". The eC max was below the relevant reference range in 80% of isoniazid, 95% of rifampicin, 30% of pyrazinamide, and 30% of ethambutol measurements. All but one patient were cured of tuberculosis. Although many antituberculosis drug serum concentrations were below the widely used reference ranges, 16 of 17 patients were cured of tuberculosis. These results challenge the use of the published reference ranges for therapeutic drug monitoring.

  13. Extent and origin of resistance to antituberculosis drugs in the Netherlands, 1993 to 2011.

    Science.gov (United States)

    Ruesen, C; van Gageldonk-Lafeber, A B; de Vries, G; Erkens, C G; van Rest, J; Korthals Altes, H; de Neeling, H; Kamst, M; van Soolingen, D

    2014-03-20

    The elimination of tuberculosis (TB) is threatened by an apparent increase in the level of resistance in Mycobacterium tuberculosis. In the Netherlands, where the majority of TB patients are migrants, resistance may also be increasing. We conducted a retrospective study, using 18,294 M. tuberculosis isolates from TB cases notified between 1993 and 2011. We investigated the trends in antituberculosis drug resistance, focusing on the country of birth of the patients and whether resistance had developed during treatment or was the result of transmission of resistant M. tuberculosis strains. For both scenarios, we determined whether this had happened in or outside the Netherlands. Antituberculosis drug resistance was found in 13% of all cases analysed and showed an increasing trend among patients who had been born in the Netherlands (pNetherlands or before 1993 (when DNA fingerprinting was not systematically performed), in some cases (n=45), resistance was acquired in the Netherlands. We conclude that antituberculosis drug resistance is increasing in the Netherlands, mostly related to migration from high TB-incidence countries, but also to domestic acquisition.

  14. The fourth national anti-tuberculosis drug resistance survey in Viet Nam.

    Science.gov (United States)

    Nhung, N V; Hoa, N B; Sy, D N; Hennig, C M; Dean, A S

    2015-06-01

    Viet Nam's Fourth National Anti-Tuberculosis Drug Resistance Survey was conducted in 2011. To determine the prevalence of resistance to the four main first-line anti-tuberculosis drugs in Viet Nam. Eighty clusters were selected using a probability proportion to size approach. Drug susceptibility testing (DST) against the four main first-line anti-tuberculosis drugs was performed. A total of 1629 smear-positive tuberculosis (TB) patients were eligible for culture. Of these, DST results were available for 1312 patients, including 1105 new TB cases, 195 previously treated TB cases and 12 cases with an unknown treatment history. The proportion of cases with resistance to any drug was 32.7% (95%CI 29.1-36.5) among new cases and 54.2% (95%CI 44.3-63.7) among previously treated cases. The proportion of multidrug-resistant TB (MDR-TB) cases was 4.0% (95%CI 2.5-5.4) in new cases and 23.3 (95%CI 16.7-29.9) in previously treated cases. The fourth drug resistance survey in Viet Nam found that the proportion of MDR-TB among new and previously treated cases was not significantly different from that in the 2005 survey. The National TB Programme should prioritise the detection and treatment of MDR-TB to reduce transmission of MDR-TB in the community.

  15. original article antimalarial use and the associated factors in rural

    African Journals Online (AJOL)

    boaz

    This study was set out to find out the pattern of antimalarial drug use in a Nigerian rural community following the aggressive price subsidy ... facilities in South-East Nigeria also showed that only .... descriptive statistics in the analysis command,.

  16. Synthesis and evaluation of antimalarial activity of curcumin derivatives

    International Nuclear Information System (INIS)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla

    2014-01-01

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC 50 values ranging from 1.7 to 15.2 μg mL -1 ), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  17. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.

    Science.gov (United States)

    Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann

    2013-11-15

    Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Research Article Antimalarial Drugs for Pediatrics - Prescribing and ...

    African Journals Online (AJOL)

    Erah

    2011-03-23

    Mar 23, 2011 ... is a need to institute measures to ensure rational prescribing, dispensing and use of antimalarial drugs in pediatrics. ... facilities, strategies to control behaviour in the private sector are ..... changes were implemented in 2006 in.

  19. Augmentation of the Differentiation Response to Antitumor Antimalarials

    National Research Council Canada - National Science Library

    Rahim, Rayhana

    2003-01-01

    .... We have shown that the quinoline antimalarials chloroquine (CO) and hydroxychioroquine (HCQ) inhibit proliferation and induce differentiation in breast cancer cell lines without toxicity to normal MCF-10A cells...

  20. Anticancer Effect of AntiMalarial Artemisinin Compounds

    African Journals Online (AJOL)

    Artemisinin is a naturally occurring antimalarial showing anticancer properties. ..... Artemisinins usually promote apoptosis rather than necrosis in most cases ... artemisinin-mediated inhibition of vascular endothelial growth factor C (VEGF-C).

  1. Acridine and Acridinones: Old and New Structures with Antimalarial Activity

    OpenAIRE

    Valdés, Aymé Fernández-Calienes

    2011-01-01

    Since emergence of chloroquine-resistant Plasmodium falciparum and reports of parasite resistance to alternative drugs, there has been renewed interest in the antimalarial activity of acridines and their congeners, the acridinones. This article presents literature compilation of natural acridinone alkaloids and synthetic 9-substituted acridines, acridinediones, haloalcoxyacridinones and 10-N-substituted acridinones with antimalarial activity. The review also provides an outlook to antimalaria...

  2. Ferroquine and its derivatives: new generation of antimalarial agents.

    Science.gov (United States)

    Wani, Waseem A; Jameel, Ehtesham; Baig, Umair; Mumtazuddin, Syed; Hun, Lee Ting

    2015-08-28

    Malaria has been teasing human populations from a long time. Presently, several classes of antimalarial drugs are available in market, but the issues of toxicity, lower efficacy and the resistance by malarial parasites have decreased their overall therapeutic indices. Thus, the search for new promising antimalarials continues, however, the battle against malaria is far from over. Ferroquine is a derivative of chloroquine with antimalarial properties. It is the most successful of the chloroquine derivatives. Not only ferroquine, but also its derivatives have shown promising potential as antimalarials of clinical interest. Presently, much research is dedicated to the development of ferroquine derivatives as safe alternatives to antimalarial chemotherapy. The present article describes the structural, chemical and biological features of ferroquine. Several classes of ferroquine derivatives including hydroxyferroquines, trioxaferroquines, chloroquine-bridged ferrocenophanes, thiosemicarbazone derivatives, ferrocene dual conjugates, 4-N-substituted derivatives, and others have been discussed. Besides, the mechanism of action of ferroquine has been discussed. A careful observation has been made into pharmacologically significant ferroquine derivatives with better or equal therapeutic effects to that of chloroquine and ferroquine. A brief discussion of the toxicities of ferroquine derivatives has been made. Finally, efforts have been made to discuss the current challenges and future perspectives of ferroquine-based antimalarial drug development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Plants as antimalarial agents in Sub-Saharan Africa.

    Science.gov (United States)

    Chinsembu, Kazhila C

    2015-12-01

    Although the burden of malaria is decreasing, parasite resistance to current antimalarial drugs and resistance to insecticides by vector mosquitoes threaten the prospects of malaria elimination in endemic areas. Corollary, there is a scientific departure to discover new antimalarial agents from nature. Because the two antimalarial drugs quinine and artemisinin were discovered through improved understanding of the indigenous knowledge of plants, bioprospecting Sub-Saharan Africa's enormous plant biodiversity may be a source of new and better drugs to treat malaria. This review analyses the medicinal plants used to manage malaria in Sub-Saharan Africa. Chemical compounds with antiplasmodial activity are described. In the Sub-Saharan African countries cited in this review, hundreds of plants are used as antimalarial remedies. While the number of plant species is not exhaustive, plants used in more than one country probably indicate better antimalarial efficacy and safety. The antiplasmodial data suggest an opportunity for inventing new antimalarial drugs from Sub-Saharan-African flora. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Antimalarial activity of plumbagin in vitro and in animal models.

    Science.gov (United States)

    Sumsakul, Wiriyaporn; Plengsuriyakarn, Tullayakorn; Chaijaroenkul, Wanna; Viyanant, Vithoon; Karbwang, Juntra; Na-Bangchang, Kesara

    2014-01-12

    Plumbagin is the major active constituent in several plants including Plumbago indica Linn. (root). This compound has been shown to exhibit a wide spectrum of biological and pharmacological activities. The present study aimed to evaluate the in vitro and in vivo antimalarial activity of plumbagin including its acute and subacute toxicity in mice. In vitro antimalarial activity of plumbagin against K1 and 3D7 Plasmodium falciparum clones were assessed using SYBR Green I based assay. In vivo antimalarial activity was investigated in Plasmodium berghei-infected mouse model (a 4-day suppressive test). Plumbagin exhibited promising antimalarial activity with in vitro IC50 (concentration that inhibits parasite growth to 50%) against 3D7 chloroquine-sensitive P. falciparum and K1 chloroquine-resistant P. falciparum clones of 580 (270-640) and 370 (270-490) nM, respectively. Toxicity testing indicated relatively low toxicity at the dose levels up to 100 (single oral dose) and 25 (daily doses for 14 days) mg/kg body weight for acute and subacute toxicity, respectively. Chloroquine exhibited the most potent antimalarial activity in mice infected with P. berghei ANKA strain with respect to its activity on the reduction of parasitaemia on day 4 and the prolongation of survival time. Plumbagin at the dose of 25 mg/kg body weight given for 4 days was safe and produced weak antimalarial activity. Chemical derivatization of the parent compound or preparation of modified formulation is required to improve its systemic bioavailability.

  5. Immunomodulating and Antiprotozoal Effects of Different Extracts of the Oyster Culinary-Medicinal Mushroom Pleurotus ostreatus (Higher Basidiomycetes) Against Coccidiosis in Broiler.

    Science.gov (United States)

    Ullah, Muhammad Irfan; Akhtar, Masood; Iqbal, Zafar; Shahid, Muhammad; Awais, Mian Muhammad

    2015-01-01

    The culinary-medicinal oyster mushroom Pleurotus ostreatus, procured from local sources, was processed for hot water and methanolic extraction. Extracts obtained were subjected to proximate analysis to determine the amount of crude protein, crude fiber, ash, ether, and nitrogen-free extracts. These extracts were evaluated for immunomodulating and antiprotozoal effects against coccidiosis in a broiler. Cellular immune investigation revealed significantly higher (P 0.05) findings were observed in investigations of lymphoid organs. Antiprotozoal studies revealed a significantly higher (P < 0.05) percentage of protection against coccidiosis in groups administered P. ostreatus extracts when compared with controls. Moreover, lesion scoring and oocysts per gram of droppings observed in the control group were significantly higher (P < 0.05) compared with those in groups administered hot water and methanolic extracts of P. ostreatus. Results concluded that hot water and methanolic extracts of P. ostreatus had strong immune-enhancing activities. Further, these extracts also had excellent antiprotozoal activities against coccidiosis in a broiler.

  6. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Mònica Escolà; Hansen, Martin; Krogh, Kristine A

    2014-01-01

    Abstract Antimalarial drugs commonly referred to as antimalarials , include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, eg the drug ...

  7. World Antimalarial Resistance Network (WARN IV: Clinical pharmacology

    Directory of Open Access Journals (Sweden)

    Gbotosho Grace O

    2007-09-01

    Full Text Available Abstract A World Antimalarial Resistance Network (WARN database has the potential to improve the treatment of malaria, through informing current drug selection and use and providing a prompt warning of when treatment policies need changing. This manuscript outlines the contribution and structure of the clinical pharmacology component of this database. The determinants of treatment response are multi-factorial, but clearly providing adequate blood concentrations is pivotal to curing malaria. The ability of available antimalarial pharmacokinetic data to inform optimal dosing is constrained by the small number of patients studied, with even fewer (if any studies conducted in the most vulnerable populations. There are even less data relating blood concentration data to the therapeutic response (pharmacodynamics. By pooling all available pharmacokinetic data, while paying careful attention to the analytical methodologies used, the limitations of small (and thus underpowered individual studies may be overcome and factors that contribute to inter-individual variability in pharmacokinetic parameters defined. Key variables for pharmacokinetic studies are defined in terms of patient (or study subject characteristics, the formulation and route of administration of the antimalarial studied, the sampling and assay methodology, and the approach taken to data analysis. Better defining these information needs and criteria of acceptability of pharmacokinetic-pharmacodynamic (PK-PD studies should contribute to improving the quantity, relevance and quality of these studies. A better understanding of the pharmacokinetic properties of antimalarials and a more clear definition of what constitutes "therapeutic drug levels" would allow more precise use of the term "antimalarial resistance", as it would indicate when treatment failure is not caused by intrinsic parasite resistance but is instead the result of inadequate drug levels. The clinical pharmacology component

  8. Reappraisal of Antimalarials in Interferonopathies: New Perspectives for Old Drugs.

    Science.gov (United States)

    Piscianz, Elisa; Cuzzoni, Eva; Sharma, Rajan; Tesser, Alessandra; Sapra, Pooja; Tommasini, Alberto

    2017-09-11

    The story of antimalarials as antinflammatory drugs dates back several centuries. Chinin, the extract of the Cinchona bark, has been exploited since the 18th century for its antimalarial and antifebrile properties. Later, during the Second World War, the broad use of antimalarials allowed arguing their antirheumatic effect on soldiers. Since then, these drugs have been broadly used to treat Systemic Lupus Erythematosus, but, only recently, have the molecular mechanisms of action been partly clarified. Inhibitory action on vacuole function and trafficking has been considered for decades the main mechanism of the action of antimalarials, affecting the activation of phagocytes and dendritic cells. In addition, chloroquine is also known as a potent inhibitor of autophagy, providing another possible explanation of its antinflammatory action. However, much attention has been recently devoted to the action of antimalarials on the so-called cGAS-STING pathway leading from the sensing of cytoplasmic nucleic acids to the production of type I interferons. This pathway is a fundamental mechanism of host defence, since it is able to detect microbial DNA and induce the type I interferon-mediated immune response. Of note, genetic defects in the degradation of nucleic acids lead to inappropriate cGAS-STING activation and inflammation. These disorders, called type I interferonopathies, represent a valuable model to study the antinflammatory potential of antimalarials. We will discuss possible development of antimalarials to improve the treatment of type I interferonopathies and likely multifactorial disorders characterised by interferon inflammation, such as Systemic Lupus Erythematosus. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Human serum albumin binding of certain antimalarials

    Science.gov (United States)

    Marković, Olivera S.; Cvijetić, Ilija N.; Zlatović, Mario V.; Opsenica, Igor M.; Konstantinović, Jelena M.; Terzić Jovanović, Nataša V.; Šolaja, Bogdan A.; Verbić, Tatjana Ž.

    2018-03-01

    Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37 °C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.

  10. A population-based case-control study of the safety of oral anti-tuberculosis drug treatment during pregnancy

    DEFF Research Database (Denmark)

    Czeizel, A.E.; Rockenbauer, M.; Olsen, J.

    2001-01-01

    OUTCOME MEASURES: Congenital abnormalities in newborn infants and fetuses diagnosed prenatally during the second and third trimesters, and postnatally from birth to the age of one year. RESULTS: Of 38,151 controls, 29 (0.08%) were exposed to anti-tuberculosis drug treatment during pregnancy......OBJECTIVE: To study the human teratogenic potential of isoniazid and other anti-tuberculosis drug treatment during pregnancy. DESIGN AND SETTING: Cases from a large population-based dataset at the Hungarian Case-Control Surveillance of Congenital Abnormalities, and controls from the National Birth...... Registry, between 1980 and 1996. Information on all oral anti-tuberculosis drug treatments during pregnancy was medically recorded. STUDY PARTICIPANTS: Women who had newborns or fetuses with congenital abnormalities (case group), and women who had babies with no congenital abnormality (control group). MAIN...

  11. Benefits of a Pharmacology Antimalarial Reference Standard and Proficiency Testing Program Provided by the Worldwide Antimalarial Resistance Network (WWARN)

    Science.gov (United States)

    Lourens, Chris; Lindegardh, Niklas; Barnes, Karen I.; Guerin, Philippe J.; Sibley, Carol H.; White, Nicholas J.

    2014-01-01

    Comprehensive assessment of antimalarial drug resistance should include measurements of antimalarial blood or plasma concentrations in clinical trials and in individual assessments of treatment failure so that true resistance can be differentiated from inadequate drug exposure. Pharmacometric modeling is necessary to assess pharmacokinetic-pharmacodynamic relationships in different populations to optimize dosing. To accomplish both effectively and to allow comparison of data from different laboratories, it is essential that drug concentration measurement is accurate. Proficiency testing (PT) of laboratory procedures is necessary for verification of assay results. Within the Worldwide Antimalarial Resistance Network (WWARN), the goal of the quality assurance/quality control (QA/QC) program is to facilitate and sustain high-quality antimalarial assays. The QA/QC program consists of an international PT program for pharmacology laboratories and a reference material (RM) program for the provision of antimalarial drug standards, metabolites, and internal standards for laboratory use. The RM program currently distributes accurately weighed quantities of antimalarial drug standards, metabolites, and internal standards to 44 pharmacology, in vitro, and drug quality testing laboratories. The pharmacology PT program has sent samples to eight laboratories in four rounds of testing. WWARN technical experts have provided advice for correcting identified problems to improve performance of subsequent analysis and ultimately improved the quality of data. Many participants have demonstrated substantial improvements over subsequent rounds of PT. The WWARN QA/QC program has improved the quality and value of antimalarial drug measurement in laboratories globally. It is a model that has potential to be applied to strengthening laboratories more widely and improving the therapeutics of other infectious diseases. PMID:24777099

  12. Antimalarial drug policy in India: past, present & future.

    Science.gov (United States)

    Anvikar, Anupkumar R; Arora, Usha; Sonal, G S; Mishra, Neelima; Shahi, Bharatendu; Savargaonkar, Deepali; Kumar, Navin; Shah, Naman K; Valecha, Neena

    2014-02-01

    The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17 th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions.

  13. Antimalarial drug policy in India: Past, present & future

    Directory of Open Access Journals (Sweden)

    Anupkumar R Anvikar

    2014-01-01

    Full Text Available The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17 th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions.

  14. Quinoline hybrids and their antiplasmodial and antimalarial activities.

    Science.gov (United States)

    Hu, Yuan-Qiang; Gao, Chuan; Zhang, Shu; Xu, Lei; Xu, Zhi; Feng, Lian-Shun; Wu, Xiang; Zhao, Feng

    2017-10-20

    Malaria, in particular infection with P. falciparum (the most lethal of the human malaria parasite species, responsible for nearly one million deaths every year), is one of the most devastating and common infectious disease throughout the world. Beginning with quinine, quinoline containing compounds have long been used in clinical treatment of malaria and remained the mainstays of chemotherapy against malaria. The emergence of P. falciparum strains resistant to almost all antimalarials prompted medicinal chemists and biologists to study their effective replacement with an alternative mechanism of action and new molecules. Combination with variety of quinolines and other active moieties may increase the antiplasmodial and antimalarial activities and reduce the side effects. Thus, hybridization is a very attractive strategy to develop novel antimalarials. This review aims to summarize the recent advances towards the discovery of antiplasmodial and antimalarial hybrids including quinoline skeleton to provide an insight for rational designs of more active and less toxic quinoline hybrids antimalarials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra

    Directory of Open Access Journals (Sweden)

    Louis Maes

    2012-12-01

    Full Text Available Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellular amastigotes of Leishmania infantum and for antitrypanosomal activity against intracellular amastigotes of Trypanosoma cruzi and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined against MRC-5 fibroblasts. Selective activity was obtained for Punica protopunica against Plasmodium (IC50 2.2 µg/mL while Eureiandra balfourii and Hypoestes pubescens displayed activity against the three kinetoplastid parasites (IC50 < 10 µg/mL. Acridocarpus socotranus showed activity against T. brucei and T. cruzi (IC50 3.5 and 8.4 µg/mL. Ballochia atrovirgata, Dendrosicycos socotrana, Dracaena cinnabari and Euphorbia socotrana displayed non-specific inhibition of the parasites related to high cytotoxicity.

  16. Assessment of anti-protozoal activity of plants traditionally used in Ecuador in the treatment of leishmaniasis.

    Science.gov (United States)

    Gachet, María Salomé; Lecaro, Javier Salazar; Kaiser, Marcel; Brun, Reto; Navarrete, Hugo; Muñoz, Ricardo A; Bauer, Rudolf; Schühly, Wolfgang

    2010-03-02

    For the assessment of the in vitro anti-protozoal potential of plants traditionally used in Ecuador in the treatment of leishmaniasis, a combined approach based on interviews with healers as well as a literature search was carried out. From three regions of Ecuador, 256 local healers called "Agents of Traditional Medicine" (ATMs) were interviewed about their knowledge of the use of plants to treat and heal the illness recognized by the ATMs as leishmaniasis. From literature sources, 14 plants were identified as being used in the treatment of leishmaniasis. Subsequently, plant material was collected from a representative selection of 39 species. A total of 140 extracts were screened in vitro against Leishmania donovani, Plasmodium falciparum, Trypanosoma brucei rhodesiense and Trypanosoma cruzi. Additionally, these extracts were evaluated for their anti-microbial activities using five gram-positive and -negative bacteria as well as Candida albicans. The survey resulted in 431 use-records for 145 plant-taxa used for the treatment of leishmaniasis. The 10 most frequently reported taxa accounted for 37.7% of all records. In the case of leishmaniasis, activity was observed for Elephantopus mollis, Minquartia guianensis, Bocconia integrifolia, Gouania lupuloides, Scoparia dulcis, an as-yet-unidentified species of Piper and Brugmansia. For the leaves of M. guianensis and the twigs and bark of G. lupuloides a good selectivity index (SI) was found. IC(50) values and the SI of active plant extracts are presented. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  17. SPECIFIC FEATURES OF ANTI-TUBERCULOSIS CHEMOTHERAPY TOLERANCE IN THE LIGHT OF PSYCHOLOGICAL STATUS OF PATIENTS

    Directory of Open Access Journals (Sweden)

    N. V. Zolotova

    2017-01-01

    Full Text Available Specific features of psychological state were studied in 295 pulmonary tuberculosis patients with satisfactory tolerance to anti-tuberculosis medications and 75 patients poorly tolerating the treatment.Before the treatment start the patients who later demonstrated adverse reactions to treatment were diagnosed with more intense neurotic and hypochondriac personal features, destructive reactions and higher level of emotional tension and frustration – all the above promote dysregulation of the host adaptation. The research demonstrated the need to consider psychological aspects when studying the tolerance to anti-tuberculosis chemotherapy. 

  18. Antimalarial activity of methanolic leaf extract of Piper betle L.

    Science.gov (United States)

    Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela

    2010-12-28

    The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  19. Cajachalcone: An Antimalarial Compound from Cajanus cajan Leaf Extract

    Directory of Open Access Journals (Sweden)

    E. O. Ajaiyeoba

    2013-01-01

    Full Text Available Cajanus cajan L, a member of the family Fabaceae, was identified from the Nigerian antimalarial ethnobotany as possessing antimalarial properties. The bioassay-guided fractionation of the crude methanol extract of C. cajan leaves was done in vitro using the multiresistant strain of Plasmodium falciparum (K1 in the parasite lactate dehydrogenase assay. Isolation of compound was achieved by a combination of chromatographic techniques, while the structure of the compound was elucidated by spectroscopy. This led to the identification of a cajachalcone, 2′,6′-dihydroxy-4-methoxy chalcone, as the biologically active constituent from the ethyl acetate fraction. Cajachalcone had an IC50 value of 2.0 μg/mL (7.4 μM and could be a lead for anti-malarial drug discovery.

  20. Quinine conjugates and quinine analogues as potential antimalarial agents.

    Science.gov (United States)

    Jones, Rachel A; Panda, Siva S; Hall, C Dennis

    2015-06-05

    Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. The interaction of x-rays and antimalarials

    International Nuclear Information System (INIS)

    Geoghegan, D.S.; Skinner-Adams, T.; Davis, T.M.E.

    2001-01-01

    Full text: The radiation sensitivity of malaria parasites has three potential clinical applications, namely i) to prevent the transmission of malaria by blood transfusion, ii) as adjunctive therapy when a radioactive isotope is complexed to a conventional antimalarial drug, and iii) to attenuate the pathogenicity of specific parasite stages as part of the development of a vaccine. In the first two applications, detailed information relating to parasite radiosensitivity and the interaction of ionising radiation with antimalarials is of vital importance because dosimetry must allow for the exposure of normal cells. Malaria parasite cultures (Plasmodium falciparum) were exposed to a logarithmic series of concentrations of antimalarial agents and irradiated using a Siemens Stabilipan orthovoltage radiotherapy unit. The irradiation was performed at room temperature and ambient oxygen concentration. Control samples were also irradiated. The DNA synthesis in each culture was measured 48 hours post irradiation by using a 3 H-hypoxanthine incorporation assay. The antimalarials studied are: artesunate, quinine, retinol and chloroquine. The radiosensitivity of Plasmodium falciparum is not dependent on the strain of parasite with the dose required to inhibit 50% of DNA synthesis (ID 50 ) equal to 24.7 ± 3.0 Gy. This applies equally for the drug resistant and drug sensitive strains studied. Because the measured radiosensitivity is dependent on the sera oxygen concentration, the reported value for the ID 50 may not apply in hypoxic situations. The interaction of ionising radiation with the antimalarials shows synergy with retinol and choloquine, additivity with quinine and slight antagonism with artesunate. Radionuclide therapy may emerge as a novel treatment for malaria. If this does occur, then, although all strains appear to be equally radiosensitive, care must be taken when combining ionising radiation with existing antimalarials for the treatment of malaria. Copyright

  2. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  3. The antimalarial drug quinine interferes with serotonin biosynthesis and action

    DEFF Research Database (Denmark)

    Islahudin, Farida; Tindall, Sarah M.; Mellor, Ian R.

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmit......The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor...... tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells....

  4. Quinoline-Based Hybrid Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Xhamla Nqoro

    2017-12-01

    Full Text Available The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

  5. Cytokine Polymorphisms, Their Influence and Levels in Brazilian Patients with Pulmonary Tuberculosis during Antituberculosis Treatment

    Directory of Open Access Journals (Sweden)

    Eliana Peresi

    2013-01-01

    Full Text Available Cytokines play an essential role during active tuberculosis disease and cytokine genes have been described in association with altered cytokine levels. Therefore, the aim of this study was to verify if IFNG, IL12B, TNF, IL17A, IL10, and TGFB1 gene polymorphisms influence the immune response of Brazilian patients with pulmonary tuberculosis (PTB at different time points of antituberculosis treatment (T1, T2, and T3. Our results showed the following associations: IFNG +874 T allele and IFNG +2109 A allele with higher IFN-γ levels; IL12B +1188 C allele with higher IL-12 levels; TNF −308 A allele with higher TNF-α plasma levels in controls and mRNA levels in PTB patients at T1; IL17A A allele at rs7747909 with higher IL-17 levels; IL10 −819 T allele with higher IL-10 levels; and TGFB1 +29 CC genotype higher TGF-β plasma levels in PTB patients at T2. The present study suggests that IFNG +874T/A, IFNG +2109A/G, IL12B +1188A/C, IL10 −819C/T, and TGFB1 +21C/T are associated with differential cytokine levels in pulmonary tuberculosis patients and may play a role in the initiation and maintenance of acquired cellular immunity to tuberculosis and in the outcome of the active disease while on antituberculosis treatment.

  6. PROPOSAL OF ANTI-TUBERCULOSIS REGIMENS BASED ON SUSCEPTIBILITY TO ISONIAZID AND RIFAMPICIN

    Science.gov (United States)

    Mendoza-Ticona, Alberto; Moore, David AJ; Alarcón, Valentina; Samalvides, Frine; Seas, Carlos

    2014-01-01

    Objective To elaborate optimal anti-tuberculosis regimens following drug susceptibility testing (DST) to isoniazid (H) and rifampicin (R). Design 12 311 M. tuberculosis strains (National Health Institute of Peru 2007-2009) were classified in four groups according H and R resistance. In each group the sensitivity to ethambutol (E), pirazinamide (Z), streptomycin (S), kanamycin (Km), capreomycin (Cm), ciprofloxacin (Cfx), ethionamide (Eto), cicloserine (Cs) and p-amino salicilic acid (PAS) was determined. Based on resistance profiles, domestic costs, and following WHO guidelines, we elaborated and selected optimal putative regimens for each group. The potential efficacy (PE) variable was defined as the proportion of strains sensitive to at least three or four drugs for each regimen evaluated. Results Selected regimes with the lowest cost, and highest PE of containing 3 and 4 effective drugs for TB sensitive to H and R were: HRZ (99,5%) and HREZ (99,1%), respectively; RZECfx (PE=98,9%) and RZECfxKm (PE=97,7%) for TB resistant to H; HZECfx (96,8%) and HZECfxKm (95,4%) for TB resistant to R; and EZCfxKmEtoCs (82.9%) for MDR-TB. Conclusion Based on resistance to H and R it was possible to select anti-tuberculosis regimens with high probability of success. This proposal is a feasible alternative to tackle tuberculosis in Peru where the access to rapid DST to H and R is improving progressively. PMID:23949502

  7. Genetic polymorphisms of N-acetyltransferase 2 & susceptibility to antituberculosis drug-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Surendra K Sharma

    2016-01-01

    Full Text Available Background & objectives: The N-acetyltransferase 2 (NAT2 gene encodes an enzyme which both activates and deactivates arylamine and other drugs and carcinogens. This study was aimed to investigate the role of NAT2 gene polymorphism in anti-tuberculosis drug-induced hepatotoxicity (DIH. Methods: In this prospective study, polymerase chain reaction-restriction fragment length polymorphism results for NAT2 gene were compared between 185 tuberculosis patients who did not develop DIH and 105 tuberculosis patients who developed DIH while on anti-tuberculosis drugs. Results: Frequency of slow-acetylator genotype was commonly encountered and was not significantly different between DIH (82.8% and non-DIH (77.2% patients. However, the genotypic distribution of variant NAT2FNx015/FNx017 amongst slow-acetylator genotypes was significantly higher in DIH (56% group as compared to non-DIH (39% group (odds ratio 2.02; P=0.006. Interpretation & conclusions: The present study demonstrated no association between NAT2 genotype and DIH in the north Indian patients with tuberculosis.

  8. Anti-tuberculosis medication-induced oculogyric crisis and the importance of proper history taking

    Directory of Open Access Journals (Sweden)

    Wong LH

    2017-10-01

    Full Text Available Lin Ho Wong,1 Endean Tan2 1University College Cork, Cork, Ireland; 2Tan Tock Seng Hospital, Singapore Abstract: Oculogyric crisis (OGC, frequently caused by medications such as antiemetics, antidepressants, and anti-epileptics, is an acute dystonic reaction of the ocular muscles. It consists of wide-staring gaze (lasting variably from seconds to minutes, seizures, and a widely-opened mouth. To date, there have been no reports of anti-tuberculosis medications such as rifampicin, isoniazid, pyrazinamide or ethambutol inducing OGC. It is of utmost importance to recognize this adverse reaction, which could be incorrectly diagnosed as an anaphylactic-like reaction. In this paper, we highlight a case of a 66-year-old Indian man who presented with OGC induced by anti-tuberculosis medications which was initially suspected to be an anaphylactic reaction and was subsequently halted with the administration of diphenhydramine. Keywords: oculogyric crisis, tuberculosis, rifampicin, isoniazid, ethambutol, adverse drug reaction 

  9. Fresh Air and Good Food: Children and the Anti-Tuberculosis Campaign in the Netherlands c.1900-1940

    Science.gov (United States)

    Bakker, Nelleke

    2010-01-01

    As elsewhere in the Western world, between 1900 and 1940 the anti-tuberculosis campaign in the Netherlands produced a wide range of initiatives to promote child health. In each of these the social and the medical were linked, as the hygienic "mood" was encouraged by a child-saving ethos that focused upon the poor. In this article the…

  10. Meta-Analysis of Clinical Studies Supports the Pharmacokinetic Variability Hypothesis for Acquired Drug Resistance and Failure of Antituberculosis Therapy

    OpenAIRE

    Pasipanodya, Jotam G.; Srivastava, Shashikant; Gumbo, Tawanda

    2012-01-01

    Laboratory studies have questioned nonadherence as a cause of antituberculosis drug failure and propose that between-patient pharmacokinetic variability may be the cause. This meta-analysis provides clinical evidence that pharmacokinetic variability of isoniazid alone leads to worse microbiological failure, relapse, and acquired drug resistance.

  11. Incidence, clinical features and impact on anti-tuberculosis treatment of anti-tuberculosis drug induced liver injury (ATLI in China.

    Directory of Open Access Journals (Sweden)

    Penghui Shang

    Full Text Available Anti-tuberculosis drug induced liver injury (ATLI is emerging as a significant threat to tuberculosis control in China, though limited data is available about the burden of ATLI at population level. This study aimed to estimate the incidence of ATLI, to better understand its clinical features, and to evaluate its impact on anti-tuberculosis (TB treatment in China.In a population-based prospective study, we monitored 4,304 TB patients receiving directly observed treatment strategy (DOTS treatment, and found that 106 patients developed ATLI with a cumulative incidence of 2.55% (95% Confidence Interval [CI], 2.04%-3.06%. Nausea, vomiting and anorexia were the top three most frequently observed symptoms. There were 35 (33.02% ATLI patients with no symptoms, including 8 with severe hepatotoxicity. Regarding the prognosis of ATLI, 84 cases (79.25% recovered, 18 (16.98% improved, 2 (1.89% failed to respond to the treatment with continued elevation of serum alanine aminotransferase, and 2 (1.89% died as result of ATLI. Of all the ATLI cases, 74 (69.81% cases changed their anti-TB treatment, including 4 (3.77% cases with medication administration change, 21 (19.81% cases with drugs replacement, 54 (50.94% cases with therapy interruption, and 12 (11.32% cases who discontinued therapy. In terms of treatment outcomes, 53 (51.46% cases had TB cured in time, 48 (46.60% cases had therapy prolonged, and 2 (1.94% cases died. Compared with non-ATLI patients, ATLI patients had a 9.25-fold (95%CI, 5.69-15.05 risk of unsuccessful anti-TB treatment outcomes and a 2.11-fold (95%CI, 1.23-3.60 risk of prolonged intensive treatment phase.ATLI could considerably impact the outcomes of anti-TB treatment. Given the incidence of ATLI and the size of TB population in China, the negative impact is substantial. Therefore, more research and efforts are warranted in order to enhance the diagnosis and the prevention of ATLI.

  12. Bioguided investigation of the antimalarial activities of Trema orientalis

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-28

    Oct 28, 2015 ... Article Number: 3F00A6755934. ISSN 1684-5315 ... License 4.0 · International License ... extract was analyzed using thin layer chromatography (TLC) plates,. Merck .... makes it a viable candidate in the search for antimalarial.

  13. Antimalarial Activity of Methanolic Leaf Extract of Piper betle L.

    Directory of Open Access Journals (Sweden)

    Adel A. Amran

    2010-12-01

    Full Text Available The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50–400 mg/kg was investigated for its antimalarial activity against Plasmodium berghei (NK65 during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05 schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  14. In vivo Antimalarial Activity of Methanol and Water Extracts of ...

    African Journals Online (AJOL)

    review of the plants of the American continent with antimalarial ... dried at room temperature and ground into fine powder using a ball mill .... substance in a liquid is determined by ... In addition, ionic compounds are generally most soluble in ...

  15. QSAR models for anti-malarial activity of 4-aminoquinolines.

    Science.gov (United States)

    Masand, Vijay H; Toropov, Andrey A; Toropova, Alla P; Mahajan, Devidas T

    2014-03-01

    In the present study, predictive quantitative structure - activity relationship (QSAR) models for anti-malarial activity of 4-aminoquinolines have been developed. CORAL, which is freely available on internet (http://www.insilico.eu/coral), has been used as a tool of QSAR analysis to establish statistically robust QSAR model of anti-malarial activity of 4-aminoquinolines. Six random splits into the visible sub-system of the training and invisible subsystem of validation were examined. Statistical qualities for these splits vary, but in all these cases, statistical quality of prediction for anti-malarial activity was quite good. The optimal SMILES-based descriptor was used to derive the single descriptor based QSAR model for a data set of 112 aminoquinolones. All the splits had r(2)> 0.85 and r(2)> 0.78 for subtraining and validation sets, respectively. The three parametric multilinear regression (MLR) QSAR model has Q(2) = 0.83, R(2) = 0.84 and F = 190.39. The anti-malarial activity has strong correlation with presence/absence of nitrogen and oxygen at a topological distance of six.

  16. Natural cocoa as diet-mediated antimalarial prophylaxis.

    Science.gov (United States)

    Addai, F K

    2010-05-01

    The Maya of Central America are credited with the first consumption of cocoa and maintaining its ancient Olmec name kakawa translated in English as "God Food", in recognition of its multiple health benefits. The legend of cocoa is receiving renewed attention in recent years, on account of epidemiological and scientific studies that support its cardiovascular health benefits. Increasing numbers of scientific reports corroborating cocoa's antiquated reputation as health food persuaded this author to promote regular consumption of cocoa in Ghana since 2004. Cocoa is readily available in Ghana; the country is the second largest producer accounting for 14% of the world's output. Numerous anecdotal reports of reduced episodic malaria in people who daily drink natural unsweetened cocoa beverage prompted a search for scientific mechanisms that possibly account for cocoa's antimalarial effects. This paper presents the outcome as a hypothesis. Internet search for literature on effects of cocoa's ingredients on malaria parasites and illness using a variety of search tools. Evidential literature suggests five mechanisms that possibly underpin cocoa's anecdotal antimalarial effects. (i) Increased availability of antioxidants in plasma, (ii) membrane effects in general and erythrocyte membrane in particular, (iii) increased plasma levels of nitric oxide, (iv) antimalarial activity of cocoa flavanoids and their derivatives, and (v) boosted immune system mediated by components of cocoa including cocoa butter, polyphenols, magnesium, and zinc. A hypothesis is formulated that cocoa offers a diet-mediated antimalarial prophylaxis; and an additional novel tool in the fight against the legendary scourge.

  17. Factors contributing to antimalarial drug resistance in Rachuonyo ...

    African Journals Online (AJOL)

    Qualitative and quantitative data were collected among 380 respondents including health care providers, people seeking malaria treatment and Community Own Resource (CORPs), from 47 registered health facilities. The study revealed that all health facilities were using general-purpose trucks to transport antimalarial ...

  18. Antimalarial activity of selected Ethiopian medicinal plants in mice

    Directory of Open Access Journals (Sweden)

    Eshetu M. Bobasa

    2018-02-01

    Full Text Available Context: Parasites are the leading killers in subtropical areas of which malaria took the lion share from protozoan diseases. Measuring the impact of antimalarial drug resistance is difficult, and the impact may not be recognized until it is severe, especially in high transmission areas. Aims: To evaluate the in vivo antimalarial activities of hydroalcoholic extracts of the roots of Piper capense and Adhatoda schimperiana, against Plasmodium berghei in mice. Methods: Four-day suppressive and curative test animal models were used to explore the antimalarial activities of the plants. 200, 400, and 600 mg/kg of each plant extract was administered to check the activities versus vehicle administered mice. Mean survival time and level of parasitemia were the major variables employed to compare the efficacy vs. negative control. Results: In both models the 400 and 600 mg/kg doses of Adhatoda schimperiana and the 600 mg/kg dose Piper capense. showed significant parasitemia suppression and increased in mean survival time at p≤0.05. The middle dose of Piper capense had a border line inhibition where the extracts were considered active when parasitemia was reduced by ≥ 30%. Conclusions: The hydroalcoholic extracts of the roots of Adhatoda schimperiana and Piper capense possess moderate antimalarial activities, which prove its traditional claims. Thus, further studies should be done to isolate the active constituents for future use in the modern drug discovery.

  19. Antimalarial prescribing patterns in state hospitals and selected ...

    African Journals Online (AJOL)

    slowdown of progression to resistance could be achieved by improving prescribing practice, drug quality, and patient compliance. Objective: To determine the antimalarial prescribing pattern and to assess rational prescribing of chloroquine by prescribers in government hospitals and parastatals in Lagos State. Methods: ...

  20. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives.

    Science.gov (United States)

    Vijayaraghavan, Shilpa; Mahajan, Supriya

    2017-04-15

    A series of 4-anilinoquinoline triazine derivatives were designed, synthesized and screened for in vivo antimalarial activity against a chloroquine-sensitive strain of Plasmodium berghei. The compounds were further subjected to in vitro antimalarial activity against chloroquine-resistant W2 strain of Plasmodium falciparum and β-haematin inhibition studies. All the compounds exhibited in vivo antimalarial activity better than that shown by the standard drug, chloroquine. Twelve out of fifteen compounds showed better inhibition than that of chloroquine against chloroquine-resistant W2 strain of Plasmodium falciparum. Ten compounds showed β-haematin inhibition, better than that of chloroquine, with IC 50 values in the range of 18-25µM. One compound, 3k, was found to be better than artemisinin against W2 strain of Plasmodium falciparum and also displayed the best β-haematin inhibitory activity, thereby becoming eligible to be explored as a potential lead for antimalarial chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    Science.gov (United States)

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Safety and Tolerability Profile of Artemisinin-Based Antimalarial ...

    African Journals Online (AJOL)

    The WHO in 2001 advocated artemisinin- based antimalarial combination therapy (ACT), which was adopted by Nigeria in 2005. The objective of this study was to characterize the safety and tolerability profile of the ACTs in adult patients with uncomplicated malaria. A descriptive longitudinal study was conducted in the ...

  3. CNS adverse events associated with antimalarial agents. Fact or fiction?

    NARCIS (Netherlands)

    Phillips-Howard, P. A.; ter Kuile, F. O.

    1995-01-01

    CNS adverse drug events are dramatic, and case reports have influenced clinical opinion on the use of antimalarials. Malaria also causes CNS symptoms, thus establishing causality is difficult. CNS events are associated with the quinoline and artemisinin derivatives. Chloroquine, once considered too

  4. Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Karène Urgin

    2017-01-01

    Full Text Available With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N-arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal -N(Me2 or -N(Et2 in different positions (ortho, meta and para on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N-arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para-position of the substituent remains the most favourable position on the benzyl chain and the carbamate -NHBoc was found active both in vitro (42 nM versus 29 nM for plasmodione and in vivo in Plasmodium berghei-infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.

  5. Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties.

    Science.gov (United States)

    Urgin, Karène; Jida, Mouhamad; Ehrhardt, Katharina; Müller, Tobias; Lanzer, Michael; Maes, Louis; Elhabiri, Mourad; Davioud-Charvet, Elisabeth

    2017-01-19

    With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N -arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal - N (Me)₂ or - N (Et)₂ in different positions ( ortho , meta and para) on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N -arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para -position of the substituent remains the most favourable position on the benzyl chain and the carbamate - N HBoc was found active both in vitro (42 nM versus 29 nM for plasmodione) and in vivo in Plasmodium berghei -infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.

  6. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc

    2015-05-27

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing.

  7. Sale of anti-tuberculosis drugs through private pharmacies: a cross sectional study in Kerala, India.

    Directory of Open Access Journals (Sweden)

    Binoo Divakaran

    2011-03-01

    Full Text Available

    Background: Private health care providers are largely the first point of contact for Tuberculosis (TB patients, who either undergo treatment from private practitioners or buy medicines on their own from private pharmacies. Aims: This study assessed the availability, sale and magnitude of anti-tuberculosis drugs dispensing through private pharmacies.

    Methodology: The present cross sectional study was conducted among private pharmacies located along the national highway from Thalassery to Payyannur in the Kannur district of Kerala, India. A total of 38 private pharmacies located along the national highway were included.

    Results: The duration that anti–TB drugs had been on sale showed that 74.3% of pharmacies had started to sell these drugs only less than ten years ago. The majority (82.9% of the private pharmacies received up to 5 prescriptions for anti-TB drugs weekly. Out of the total of 35 pharmacies selling these drugs, 22 (62.9% reported an increase in their sales. Nearly 82% of those pharmacies that reported an increase in the sale of anti-TB drugs were selling these drugs for less than the past ten years.

    Conclusions: The current study shows that a large number of tuberculosis patients are still approaching private pharmacies for anti-tuberculosis drugs. This tendency has to be completely stopped and needs properly planned strategies to encourage private pharmacies to participate actively in the DOTS (Direct Observation Treatment Short course program of the Government, by providing them attractive alternative incentives

  8. Incidence of antituberculosis-drug-induced hepatotoxicity and associated risk factors among tuberculosis patients in Dawro Zone, South Ethiopia: A cohort study

    OpenAIRE

    Wondwossen Abera,; Waqtola Cheneke,; Gemeda Abebe,

    2016-01-01

    Background: Antituberculosis drugs cause hepatotoxicity in some individuals leading to acute liver failure, which results in death. Such phenomena limit the clinical use of drugs, contributing to treatment failure that possibly causes drug resistance. Furthermore, associated risk factors for the development of antituberculosis-drug-induced hepatotoxicity (anti-TB-DIH) are found to be controversial among different study findings. Methods: A prospective cohort study was conducted from May 20...

  9. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group.

    Science.gov (United States)

    González, Miguel A; Clark, Julie; Connelly, Michele; Rivas, Fatima

    2014-11-15

    The abietane-type diterpenoid (+)-ferruginol, a bioactive compound isolated from New Zealand's Miro tree (Podocarpus ferruginea), displays relevant pharmacological properties, including antimicrobial, cardioprotective, anti-oxidative, anti-plasmodial, leishmanicidal, anti-ulcerogenic, anti-inflammatory and anticancer. Herein, we demonstrate that ferruginol (1) and some phthalimide containing analogues 2-12 have potential antimalarial activity. The compounds were evaluated against malaria strains 3D7 and K1, and cytotoxicity was measured against a mammalian cell line panel. A promising lead, compound 3, showed potent activity with an EC50 = 86 nM (3D7 strain), 201 nM (K1 strain) and low cytotoxicity in mammalian cells (SI>290). Some structure-activity relationships have been identified for the antimalarial activity in these abietane analogues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Synthesis and antimalarial evaluation of prodrugs of novel fosmidomycin analogues.

    Science.gov (United States)

    Faísca Phillips, Ana Maria; Nogueira, Fátima; Murtinheira, Fernanda; Barros, Maria Teresa

    2015-01-01

    The continuous development of drug resistance by Plasmodium falciparum, the agent responsible for the most severe forms of malaria, creates the need for the development of novel drugs to fight this disease. Fosmidomycin is an effective antimalarial and potent antibiotic, known to act by inhibiting the enzyme 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), essential for the synthesis of isoprenoids in eubacteria and plasmodia, but not in humans. In this study, novel constrained cyclic prodrug analogues of fosmidomycin were synthesized. One, in which the hydroxamate function is incorporated into a six-membered ring, was found have higher antimalarial activity than fosmidomycin against the chloroquine and mefloquine resistant P. falciparum Dd2 strain. In addition, it showed very low cytotoxicity against cultured human cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. In vitro antimalarial activity of Calophyllum bicolor and hemozoin crystals observed by Transmission Electron Microscope (TEM)

    OpenAIRE

    Abbas Jamilah

    2018-01-01

    Objective : In continuation of our antimalarial candidate drug discovery program on Indonesia medicinal plants especially from stem bark of Calophyllum bicolor. Metode : We extracted of bioactive crude extract with hexane, acetone and methanol from stem bark of Calophyllum bicolor and evaluated their antimalarial activity by using parasite Plasmodium falciparum in vitro. Results: Methanol fraction showed most active and potent antimalarial activity dose dependent in in vitro experiments with ...

  12. From crystal to compound: structure-based antimalarial drug discovery.

    Science.gov (United States)

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  13. Lead Optimization of Anti-Malarial Propafenone Analogs

    Science.gov (United States)

    Lowes, David; Pradhan, Anupam; Iyer, Lalitha V.; Parman, Toufan; Gow, Jason; Zhu, Fangyi; Furimsky, Anna; Lemoff, Andrew; Guiguemde, W. Armand; Sigal, Martina; Clark, Julie A.; Wilson, Emily; Tang, Liang; Connelly, Michele C.; DeRisi, Joseph L.; Kyle, Dennis E.; Mirsalis, Jon; Guy, R. Kiplin

    2015-01-01

    Previously reported studies identified analogs of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are non-toxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges. PMID:22708838

  14. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  15. Antimalarial Bioavailability and Disposition of Artesunate in Acute Falciparum Malaria

    OpenAIRE

    Newton, Paul; Suputtamongkol, Yupin; Teja-Isavadharm, Paktiya; Pukrittayakamee, Sasithon; Navaratnam, V; Bates, Imelda; White, Nicholas

    2000-01-01

    The pharmacokinetic properties of oral and intravenous artesunate (2 mg/kg of body weight) were studied in 19 adult patients with acute uncomplicated Plasmodium falciparum malaria by using a randomized crossover design. A sensitive bioassay was used to measure the antimalarial activity in plasma which results from artesunate and its principal metabolite, dihydroartemisinin. The oral study was repeated with 15 patients during convalescence. The mean absolute oral bioavailability of the antimal...

  16. In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics.

    Science.gov (United States)

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones.

    Science.gov (United States)

    Sarkar, Souvik; Siddiqui, Asim A; Saha, Shubhra J; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S; Nag, Shiladitya; Adhikari, Susanta; Bandyopadhyay, Uday

    2016-07-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs.

    Science.gov (United States)

    O'Neill, Paul M; Ward, Stephen A; Berry, Neil G; Jeyadevan, J Prince; Biagini, Giancarlo A; Asadollaly, Egbaleh; Park, B Kevin; Bray, Patrick G

    2006-01-01

    A broad overview is presented describing the current knowledge and the ongoing research concerning the 4-aminoquinolines (4AQ) as chemotherapeutic antimalarial agents. Included are discussions of mechanism of action, structure activity relationships (SAR), chemistry, metabolism and toxicity and parasite resistance mechanisms. In discussions of SAR, particular emphasis has been given to activity versus chloroquine resistant strains of Plasmodium falciparum. Promising new lead compounds undergoing development are described and an overview of physicochemical properties of chloroquine and amodiaquine analogues is also included.

  19. Patients with secondary amenorrhea due to tuberculosis endometritis towards the induced anti-tuberculosis drug category 1.

    Science.gov (United States)

    Perdhana, Raditya; Sutrisno, Sutrisno; Sugiri, Yani Jane; Baktiyani, Siti Candra Windu; Wiyasa, Arsana

    2016-01-01

    Tuberculosis (TB) is a disease which can affect various organs, including human's genital organs such as the endometrium. Tuberculosis endometritis can cause clinical symptoms of secondary amenorrhea and infertility. Infertility in genital TB caused by the involvement of the endometrium. The case presentation is 33-year-old woman from dr. Saiful Anwar Public Hospital to consult that she has not menstruated since 5 years ago (28 years old). The diagnosis was done by performing a clinical examination until the diagnosis of secondary amenorrhea due to tuberculosis endometritis is obtained. A treatment by using category I of anti-tuberculosis drugs was done for 6 months, afterward an Anatomical Pathology observation found no signs of the tuberculosis symptoms. Based on that, patient, who was diagnosed to have secondary amenorrhea due to tuberculosis endometritis, has no signs of tuberculosis process after being treated by using category I of anti-tuberculosis drugs for 6 months.

  20. POTENCY OF THE INDONESIAN MEDICINAL PLANTS AS ANTIMALARIAL DRUGS

    Directory of Open Access Journals (Sweden)

    Subeki Subeki

    2012-12-01

    Full Text Available The Indonesian traditional herbal medicine has been practiced for many centuries in Indonesia to treat malaria diseases. Although modern medicine is becoming increasingly important, herbal medicine is still very popular. In order to select raw material for preparation of safety herbal medicines, forty five medicinal plants have been tested for acute toxicity in mouse at a dose 715 mg/kg body weight. The extracts of Asclepias curassavica leave, Alstonia scholaris leave, Decospermum fruticosum leave, Elaocarpus petiolatus bark, Elaocarpus parvifolius bark, Eurycoma longifolia root, Garcinia rigida bark, Nephelium lappaceum bark, Pentaspodan motleyi leave, Picrasma javanica leave, Phyllanthus niruri whole, Quassia indica leave, Syzygium pycnanthum bark, Tetrasera scandens leave, Cratoxylum glaucum bark, Sandoricum emarginatum bark, Mallotus paniculatus leave, Microcos ovatolanceolata bark, Poikilospermum suaveolens leave, Fibraurea chloroleuea leave, Tetrasera scandens root, and Timonius billitonensis bark showed toxicity with mortality level of 20-100%. The remaining 32 plant extracts were not toxic at dose tested. The toxic plant species should be considered in the preparation of herbal medicines. Of the safety extracts were tested for their antimalarial activity against Plasmodium berghei in vivo at a dose 715 mg/kg body weight. Extract of Carica papaya leave was most active than other plant extracts with parasitemia 1.13%, while control showed 17.21%. More research is needed to scientifically prove efficacy and to identity antimalarial constituents in the plant extracts. Key words: Indonesian medicinal plant, jamu, toxicity, antimalarial activity, Plasmodium berghei.

  1. Antimalarial Activity of Acetylenic Thiophenes from Echinops hoehnelii Schweinf

    Directory of Open Access Journals (Sweden)

    Helen Bitew

    2017-11-01

    Full Text Available Malaria is one of the world’s most severe endemic diseases and due to the emergence of resistance to the currently available medicines, the need for new targets and relevant antimalarial drugs remains acute. The crude extract, four solvent fractions and two isolated compounds from the roots of Echinops hoehnelii were tested for their antimalarial activity using the standard four-day suppressive method in Plasmodium berghei-infected mice. The 80% methanol extract exhibited suppression of 4.6%, 27.8%, 68.5% and 78.7% at dose of 50, 100, 200 and 400 mg/kg respectively. The dichloromethane fraction displayed chemosuppression of 24.9, 33.5 and 43.0% dose of 100, 200 and 400 mg/kg of body weight. Five acetylenicthiophenes were isolated from the dichloromethane fraction of which 5-(penta-1,3-diynyl-2-(3,4-dihydroxybut-1-ynyl-thiophene decreased the level of parasitaemia by 43.2% and 50.2% while 5-(penta-1,3-diynyl-2-(3-chloro-4-acetoxy-but-1-yn-thiophene suppressed by 18.8% and 32.7% at 50 and 100 mg/kg, respectively. The study confirmed the traditional claim of the plant to treat malaria and could be used as a new lead for the development of antimalarial drugs.

  2. Antimalarial Activity of Cocos nucifera Husk Fibre: Further Studies

    Directory of Open Access Journals (Sweden)

    J. O. Adebayo

    2013-01-01

    Full Text Available In this study, the antimalarial and toxicity potentials of husk fibre extracts of five Nigerian varieties of Cocos nucifera were evaluated in vitro. The only active extract fraction, West African Tall (WAT ethyl acetate extract fraction, was then evaluated for its phytochemical constituents, antimalarial and toxicity potentials at varying doses (31.25–500 mg/kg body weight using various organ function indices. The results revealed that WAT ethyl acetate extract fraction (WATEAEF contained alkaloids, tannins, and flavonoids and was active against Plasmodium falciparum W2 strain maintained in continuous culture, with a selectivity index of 30.3. The same extract fraction was active in vivo against Plasmodium berghei NK65, causing more than 50% reduction in parasitaemia on days 4 and 6 after inoculation at various doses administered. WATEAEF did not significantly alter (P>0.05 function indices of the liver and cardiovascular system at all doses administered but significantly increased (P<0.05 plasma creatinine concentration at 250 and 500 mg/Kg body weight compared to controls. The results of this study suggest that WATEAEF possesses antimalarial activity and may not adversely affect normal liver function nor predispose subjects to cardiovascular diseases but may impair normal kidney function at higher doses. Further studies are underway to isolate the active principles.

  3. Smoking behavior and beliefs about the impact of smoking on anti-tuberculosis treatment among health care workers.

    Science.gov (United States)

    Magee, M J; Darchia, L; Kipiani, M; Chakhaia, T; Kempker, R R; Tukvadze, N; Berg, C J; Blumberg, H M

    2017-09-01

    Tuberculosis (TB) health care facilities throughout Georgia. To describe smoking behaviors among health care workers (HCWs) at TB facilities and determine HCWs' knowledge and beliefs regarding the impact of tobacco use on anti-tuberculosis treatment. Cross-sectional survey from May to December 2014 in Georgia. Adult HCWs (age 18 years) at TB facilities were eligible. We administered a 60-question anonymous survey about tobacco use and knowledge of the effect of smoking on anti-tuberculosis treatment. Of the 431 HCWs at TB facilities who participated, 377 (87.5%) were female; the median age was 50 years (range 20-77). Overall, 59 (13.7%) HCWs were current smokers and 35 (8.1%) were past smokers. Prevalence of current smoking was more common among physicians than among nurses (18.6% vs. 7.9%, P tuberculosis treatment, and only 25.3% of physicians/nurses received formal training in smoking cessation approaches. Physicians who smoked were significantly more likely to believe that smoking does not impact anti-tuberculosis treatment than non-smoking physicians (aOR 5.11, 95%CI 1.46-17.90). Additional education about the effect of smoking on TB treatment outcomes is needed for staff of TB health care facilities in Georgia. Nurses and physicians need more training about smoking cessation approaches for patients with TB.

  4. N-Cinnamoylation of Antimalarial Classics: Effects of Using Acyl Groups Other than Cinnamoyl toward Dual-Stage Antimalarials.

    Science.gov (United States)

    Gomes, Ana; Machado, Marta; Lobo, Lis; Nogueira, Fátima; Prudêncio, Miguel; Teixeira, Cátia; Gomes, Paula

    2015-08-01

    In a follow-up study to our reports of N-cinnamoylated chloroquine and quinacrine analogues as promising dual-stage antimalarial leads with high in vitro potency against both blood-stage Plasmodium falciparum and liver-stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N-acylated analogues were synthesized, and their activities against blood- and liver-stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N-acylated analogues were found to be somewhat less active and more cytotoxic than their N-cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood-stage drug-sensitive and drug-resistant P. falciparum, and significant in vitro liver-stage activity against P. berghei. Therefore, it is demonstrated that simple N-acylated surrogates of classical antimalarial drugs are promising dual-stage antimalarial leads. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. In Vivo Antimalarial Activity of Solvent Fractions of the Leaves of ...

    African Journals Online (AJOL)

    Increasing resistance of Plasmodium falciparum to almost all the available antimalarial drugs urges a search for newer antimalarial drugs. Justicia schimperiana Hochst. Ex Nees is traditionally used for the treatment of malaria and a study conducted previously on the crude leaf extract confirmed that the plant is endowed ...

  6. Mechanochemical Synthesis, In vivo Anti-malarial and Safety Evaluation of Amodiaquine-zinc Complex

    Directory of Open Access Journals (Sweden)

    Arise Rotimi Olusanya

    2017-09-01

    Full Text Available So far, some prospective metal-based anti-malarial drugs have been developed. The mechanochemical synthesis and characterization of Zn (II complex with amodiaquine and its anti-malarial efficacy on Plasmodium berghei-infected mice and safety evaluation were described in this study.

  7. Estimated Under-Five Deaths Associated with Poor-Quality Antimalarials in Sub-Saharan Africa

    Science.gov (United States)

    Renschler, John P.; Walters, Kelsey M.; Newton, Paul N.; Laxminarayan, Ramanan

    2015-01-01

    Many antimalarials sold in sub-Saharan Africa are poor-quality (falsified, substandard, or degraded), and the burden of disease caused by this problem is inadequately quantified. In this article, we estimate the number of under-five deaths caused by ineffective treatment of malaria associated with consumption of poor-quality antimalarials in 39 sub-Saharan countries. Using Latin hypercube sampling our estimates were calculated as the product of the number of private sector antimalarials consumed by malaria-positive children in 2013; the proportion of private sector antimalarials consumed that were of poor-quality; and the case fatality rate (CFR) of under-five malaria-positive children who did not receive appropriate treatment. An estimated 122,350 (interquartile range [IQR]: 91,577–154,736) under-five malaria deaths were associated with consumption of poor-quality antimalarials, representing 3.75% (IQR: 2.81–4.75%) of all under-five deaths in our sample of 39 countries. There is considerable uncertainty surrounding our results because of gaps in data on case fatality rates and prevalence of poor-quality antimalarials. Our analysis highlights the need for further investigation into the distribution of poor-quality antimalarials and the need for stronger surveillance and regulatory efforts to prevent the sale of poor-quality antimalarials. PMID:25897068

  8. Comparison of oral artesunate and dihydroartemisinin antimalarial bioavailabilities in acute falciparum malaria

    NARCIS (Netherlands)

    Newton, Paul N.; van Vugt, Michele; Teja-Isavadharm, Paktiya; Siriyanonda, Duangsuda; Rasameesoroj, Maneerat; Teerapong, Pramote; Ruangveerayuth, Ronatrai; Slight, Thra; Nosten, Francois; Suputtamongkol, Yupin; Looareesuwan, Sornchai; White, Nicholas J.

    2002-01-01

    Plasma antimalarial activity following oral artesunate or dihydroartemisinin (DHA) treatment was measured by a bioassay in 18 patients with uncomplicated falciparum malaria. The mean antimalarial activity in terms of the bioavailability of DHA relative to that of artesunate did not differ

  9. In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria.

    Science.gov (United States)

    Nondo, Ramadhani S O; Erasto, Paul; Moshi, Mainen J; Zacharia, Abdallah; Masimba, Pax J; Kidukuli, Abdul W

    2016-01-01

    Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L.) Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 × 10(7) erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day) and solvent (5 mL/kg/day) were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s). In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria.

  10. In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria

    Directory of Open Access Journals (Sweden)

    Ramadhani SO Nondo

    2016-01-01

    Full Text Available Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L. Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 Χ 10 7 erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day and solvent (5 mL/kg/day were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s. In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria.

  11. [Compliance of antituberculosis therapy among ex-inmates in the Madrid area].

    Science.gov (United States)

    Fernández De La Hoz, K; Fernández, S; Ordobás, M; Gómez, P; Fernández, M; Arce, A

    2001-10-01

    The inmate population is not a tight compartment without communication with the community but there is a flow of persons and thus of health problems. The high incidence of tuberculosis among inmates is therefore of concern for the Public Health System. The outcomes of antituberculosis treatment among ex-inmates released from prison in 1987 in the Madrid Area were evaluated and compared with those who remained in jail on treatment. Individuals who met the case definition of tuberculosis were included in the study. The outcome was defined as the individual status one year after the beginning of therapy. To determine the association between the study variables with outcome, odds ratios (OR) with their 95% confidence intervals were used. The Chi2 test was used to determine the statistical significance. Differences between outcomes of individuals in the two groups were observed: 69.7% of inmates had completed their therapy compared with 20.5% of ex-inmates. Treatment had to be prolonged in 15.2% of inmates compared with 46.2% in ex-inmates. The only predictor associated with therapy completion one year after the beginning was imprisonment, as OR for not having completed therapy for ex-inmates was almost 13 times higher (OR=12.94; 95% IC, 3.38-13.10) than those in jail. Special strategies should be developed that assure clinical cure of persons with factors related to non-compliance.

  12. Correlates of default from anti-tuberculosis treatment: a case study using Kenya's electronic data system.

    Science.gov (United States)

    Sitienei, J; Kipruto, H; Mansour, O; Ndisha, M; Hanson, C; Wambu, R; Addona, V

    2015-09-01

    In 2012, the World Health Organization estimated that there were 120,000 new cases and 9500 deaths due to tuberculosis (TB) in Kenya. Almost a quarter of the cases were not detected, and the treatment of 4% of notified cases ended in default. To identify the determinants of anti-tuberculosis treatment default. Data from 2012 and 2013 were retrieved from a national case-based electronic data recording system. A comparison was made between new pulmonary TB patients for whom treatment was interrupted vs. those who successfully completed treatment. A total of 106,824 cases were assessed. Human immunodeficiency virus infection was the single most influential risk factor for default (aOR 2.7). More than 94% of patients received family-based directly observed treatment (DOT) and were more likely to default than patients who received DOT from health care workers (aOR 2.0). Caloric nutritional support was associated with lower default rates (aOR 0.89). Males were more likely to default than females (aOR 1.6). Patients cared for in the private sector were less likely to default than those in the public sector (aOR 0.86). Understanding the factors contributing to default can guide future program improvements and serve as a proxy to understanding the factors that constrain access to care among undetected cases.

  13. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania

    Directory of Open Access Journals (Sweden)

    Mfaume Saidi M

    2008-12-01

    Full Text Available Abstract Background A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. Methods Description of the implementation process of a national anti-tuberculosis drug resistance survey in Tanzania, in relation to the study protocol and Standard Operating Procedures. Results Factors contributing positively to the implementation of the survey were a continuous commitment of the key stakeholders, the existence of a well organized National Tuberculosis Programme, and a detailed design of cluster-specific arrangements for rapid sputum transportation. Factors contributing negatively to the implementation were a long delay between training and actual survey activities, limited monitoring of activities, and an unclear design of the data capture forms leading to difficulties in form-filling. Conclusion Careful preparation of the survey, timing of planned activities, a strong emphasis on data capture tools and data management, and timely supervision are essential for a proper implementation of a national drug resistance survey.

  14. Implementation of a national anti-tuberculosis drug resistance survey in Tanzania.

    Science.gov (United States)

    Chonde, Timothy M; Doulla, Basra; van Leth, Frank; Mfinanga, Sayoki G M; Range, Nyagosya; Lwilla, Fred; Mfaume, Saidi M; van Deun, Armand; Zignol, Matteo; Cobelens, Frank G; Egwaga, Saidi M

    2008-12-30

    A drug resistance survey is an essential public health management tool for evaluating and improving the performance of National Tuberculosis control programmes. The current manuscript describes the implementation of the first national drug resistance survey in Tanzania. Description of the implementation process of a national anti-tuberculosis drug resistance survey in Tanzania, in relation to the study protocol and Standard Operating Procedures. Factors contributing positively to the implementation of the survey were a continuous commitment of the key stakeholders, the existence of a well organized National Tuberculosis Programme, and a detailed design of cluster-specific arrangements for rapid sputum transportation. Factors contributing negatively to the implementation were a long delay between training and actual survey activities, limited monitoring of activities, and an unclear design of the data capture forms leading to difficulties in form-filling. Careful preparation of the survey, timing of planned activities, a strong emphasis on data capture tools and data management, and timely supervision are essential for a proper implementation of a national drug resistance survey.

  15. Therapeutic drug monitoring of isoniazid and rifampicin during anti-tuberculosis treatment in Auckland, New Zealand.

    Science.gov (United States)

    Maze, M J; Paynter, J; Chiu, W; Hu, R; Nisbet, M; Lewis, C

    2016-07-01

    There is uncertainty as to the optimal therapeutic concentrations of anti-tuberculosis drugs to achieve cure. To characterise the use of therapeutic drug monitoring (TDM), and identify risk factors and outcomes for those with concentrations below the drug interval. Patients treated for tuberculosis (TB) who had rifampicin (RMP) or isoniazid (INH) concentrations measured between 1 January 2005 and 31 December 2012 were studied retrospectively. Matched concentrations and drug dosing time were assessed according to contemporary regional drug intervals (RMP > 6 μmol/l, INH > 7.5 μmol/l) and current international recommendations (RMP > 10 μmol/l, INH > 22 μmol/l). Outcomes were assessed using World Health Organization criteria. Of 865 patients, 121 had concentrations of either or both medications. RMP concentrations were within the regional drug intervals in 106/114 (93%) and INH in 91/100 (91%). Concentrations were within international drug intervals for RMP in 76/114 (67%) and INH in 53/100 (53%). Low weight-based dose was the only statistically significant risk factor for concentrations below the drug interval. Of the 35 patients with low concentrations, 21 were cured, 9 completed treatment and 5 transferred out. There were no relapses during follow-up (mean 66.5 months). There were no clinically useful characteristics to guide use of TDM. Many patients had concentrations below international therapeutic intervals, but were successfully treated.

  16. Packaging BCG: standardizing an anti-tuberculosis vaccine in interwar Europe.

    Science.gov (United States)

    Bonah, Christian

    2008-06-01

    Using the example of the anti-tuberculosis vaccine BCG during the 1920s and 1930s, this article asks how a labile laboratory-modified bacteria was transformed into a genuine standard vaccine packaged and commercialized as a pharmaceutical product. At the center of the analysis lies the notion of standardization inquiring why and how a local laboratory process with standard operating procedures (SOPs) reached its limits and was transformed when the product faced international distribution. Moving from Paul Ehrlich's initial technological notion of Wertbestimmung referring to a practice physiologically testing the effects of ill-defined antitoxins, the concept of standardization is extended to pharmaceutical and economical meanings implying quality control for biological therapeutic agents produced by a variety of industrial entrepreneurs. Following the request for product uniformity, two ways to maintain levels of compatibility and commonality are depicted opposing SOPs and end-product control. Furthermore, standardization is understood as a spiral, never ending process where progressive transformation of the vaccine in its production and medical uses periodically recreated the necessity of standardization. Developments analyzed are thus understood as a stabilization process aligning laboratory settings, products, and practices with medical theories and practices through technical, bureaucratic, and organizational systems. A paradox of the analysis is that standardization as a historical phenomenon and moment in the history of drug development was initially linked to a problem of under-determination of what was to be standardized and to a knowledge gap before it could become a central concept for quality control.

  17. Paradoxical Reaction of Tuberculosis in a Heart Transplant Recipient During Antituberculosis Therapy: A Case Report.

    Science.gov (United States)

    Wakamiya, A; Seguchi, O; Shionoiri, A; Kumai, Y; Kuroda, K; Nakajima, S; Yanase, M; Matsuda, S; Wada, K; Matsumoto, Y; Fukushima, S; Fujita, T; Kobayashi, J; Fukushima, N

    2018-04-01

    Tuberculous paradoxical reactions (PRs) are excessive immune reactions occurring after antituberculosis (TB) treatment and are commonly observed in immunocompromised hosts such as patients infected with the human immunodeficiency virus. We recently encountered a 63-year-old male heart transplant recipient who developed tuberculous PR after treatment for miliary TB. The patient had been receiving immunosuppressive therapy with cyclosporine and mycophenolate mofetil for over 15 years. The diagnosis of miliary TB was made based on the presence of intermittent fever and fatigue; thus, anti-TB treatments (isoniazid, levofloxacin, ethambutol, and pyrazinamide) were started, which led to rapid defervescence and regression of the granular shadow and pleural effusion. However, a new persistent fever and confused state developed 1 month after the anti-TB therapy was started. After excluding possible etiologies of the patient's symptom, a PR was suspected, and anti-TB drugs were continued; corticosteroids were added as anti-inflammatory agents. After that, he has shown a favorable course with long-term anti-TB chemotherapy. A PR should always be considered when the patients' symptoms of tuberculosis re-exacerbate after an appropriate anti-TB therapy. A PR commonly occurs in patients with various immunologic conditions including heart transplant recipients. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The role of the time-kill kinetics assay as part of a preclinical modeling framework for assessing the activity of anti-tuberculosis drugs.

    Science.gov (United States)

    Bax, Hannelore I; Bakker-Woudenberg, Irma A J M; de Vogel, Corné P; van der Meijden, Aart; Verbon, Annelies; de Steenwinkel, Jurriaan E M

    2017-07-01

    Novel treatment strategies for tuberculosis are urgently needed. Many different preclinical models assessing anti-tuberculosis drug activity are available, but it is yet unclear which combination of models is most predictive of clinical treatment efficacy. The aim of this study was to determine the role of our in vitro time kill-kinetics assay as an asset to a predictive preclinical modeling framework assessing anti-tuberculosis drug activity. The concentration- and time-dependent mycobacterial killing capacities of six anti-tuberculosis drugs were determined during exposure as single drugs or in dual, triple and quadruple combinations towards a Mycobacterium tuberculosis Beijing genotype strain and drug resistance was assessed. Streptomycin, rifampicin and isoniazid were most active against fast-growing M. tuberculosis. Isoniazid with rifampicin or high dose ethambutol were the only synergistic drug combinations. The addition of rifampicin or streptomycin to isoniazid prevented isoniazid resistance. In vitro ranking showed agreement with early bactericidal activity in tuberculosis patients for some but not all anti-tuberculosis drugs. The time-kill kinetics assay provides important information on the mycobacterial killing dynamics of anti-tuberculosis drugs during the early phase of drug exposure. As such, this assay is a valuable component of the preclinical modeling framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations

    Science.gov (United States)

    Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  20. N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads.

    Science.gov (United States)

    Pérez, Bianca C; Teixeira, Cátia; Albuquerque, Inês S; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Prudêncio, Miguel; Gomes, Paula

    2013-01-24

    The control of malaria is challenged by drug resistance, and new antimalarial drugs are needed. New drug discovery efforts include consideration of hybrid compounds as potential multitarget antimalarials. Previous work from our group has demonstrated that hybrid structures resulting from cinnamic acid conjugation with heterocyclic moieties from well-known antimalarials present improved antimalarial activity. Now, we report the synthesis and SAR analysis of an expanded series of cinnamic acid derivatives displaying remarkably high activities against both blood- and liver-stage malaria parasites. Two compounds judged most promising, based on their in vitro activity and druglikeness according to the Lipinski rules and Veber filter, were active in vivo against blood-stage rodent malaria parasites. Therefore, the compounds reported represent a new entry as promising dual-stage antimalarial leads.

  1. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents.

    Science.gov (United States)

    Gayam, Venkatareddy; Ravi, Subban

    2017-07-28

    A novel series of cinnamoylated chloroquine hybrid analogues were synthesized and evaluated as antimalarial agents. The trans cinnamic acid derivatives (3-8) were synthesized by utilizing substituted aldehydes and malanoic acid in DMF catalysed by DABCO. The final cinnamoylated chloroquine analogues (9-14) were synthesized by utilizing DCC coupling reagent. The amido chloroquine (17) was prepared from acid (16) and compound 2 in benzene using SOCl 2 as chlorinating agent. The corresponding ester (15) was prepared from 2-hydroxy acetophenone and 2-bromoacetates in actonitrile in presence of K 2 CO 3  as base followed by basic hydrolysis. The preparation of amide based chloroquine-chalcone analogues (18-22), were obtained by the combination of amido chloroquine (17) and aldehydes in 10% aq. KOH in methanol at room temperature. Further we prepared epichlorohydrin based chloroquine-chalcone analogues (25-28), by reacting the epoxide (24a, 24b and 24c) with 2 and methelenedioxy aniline. In vitro antimalarial activity against chloroquine sensitive strain 3D7, chloroquine resistant strain K1 of P. falciparum and in vitro cytotoxicity of compounds using VERO cell line was carried out. The synthesized molecules showed significant in vitro antimalarial activity especially against CQ resistant strain (K1). Among tested compounds, 13, 9 and 10 were found to be the most potent compounds of the series with IC 50 value of 44.06, 48.04 and 59.37 nM against chloroquine resistant K1 strain. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Stevens-Johnson syndrome associated with Malarone antimalarial prophylaxis.

    Science.gov (United States)

    Emberger, Michael; Lechner, Arno Michael; Zelger, Bernhard

    2003-07-01

    To the best of our knowledge, Stevens-Johnson syndrome (SJS) has not been reported previously as an adverse reaction to Malarone, which is a combination of atovaquone and proguanil hydrochloride used for antimalarial prophylaxis and therapy. We describe a 65-year-old patient who had SJS with typical clinical and histopathological findings associated with the use of Malarone prophylaxis for malaria. This report should alert physicians to this severe cutaneous reaction, and Malarone should be added to the list of drugs that can potentially cause SJS.

  3. Substandard anti-malarial drugs in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sie Ali

    2008-05-01

    Full Text Available Abstract Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers and illicit (market and street vendors, shops sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50% chloroquine, 10/77 (13% pyrimethamine-sulphadoxine, 9/77 (12% quinine, 6/77 (8% amodiaquine, 9/77 (12% artesunate, and 4/77 (5% artemether-lumefantrine. 32/77 (42% drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6% and 27/30 (90.0% samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the

  4. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    Directory of Open Access Journals (Sweden)

    Dea Shahinas

    2013-02-01

    Full Text Available Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.

  5. Anti-tuberculosis treatment defaulting: an analysis of perceptions and interactions in Chiapas, Mexico Abandono del tratamiento antituberculosis: un análisis de percepciones e interacciones en Chiapas, México

    Directory of Open Access Journals (Sweden)

    Ivett Reyes-Guillén

    2008-06-01

    Full Text Available OBJECTIVE: To analyze the perceptions and interactions of the actors involved in anti-tuberculosis treatment, and to explore their influence in treatment defaulting in Los Altos region of Chiapas, Mexico. MATERIAL AND METHODS: From November 2002 to August 2003, in-depth interviews were administered to patients with PTB, patients' family members, institutional physicians, community health coordinators, and traditional medicine practitioners. RESULTS: We found different perceptions about PTB between patients and their families and among health personnel, as well as communication barriers between actors. Defaulting is considered to be mainly due to the treatment's adverse effects. CONCLUSIONS: It is necessary to conduct research and interventions in the studied area with the aim of changing perceptions, improving sensitization, quality and suitability of management of patients with PTB in a multicultural context, and promoting collaboration between institutional and traditional medicine.OBJETIVO: Analizar percepciones e interacciones entre actores involucrados en el tratamiento antituberculosis y su influencia en el abandono del tratamiento en los Altos de Chiapas, México. MATERIAL Y MÉTODOS: De noviembre 2002 a agosto 2003, se realizaron entrevistas a profundidad a pacientes con TBP, familiares, médicos institucionales, coordinadores comunitarios de salud y médicos tradicionales. RESULTADOS: Se encontraron diferentes percepciones entre los pacientes y sus familiares, respecto a las del personal de salud, así como barreras de comunicación entre los distintos actores. Los efectos adversos del tratamiento antituberculosis, son consideradas como una de las principales causas de su abandono. CONCLUSIONES: Es necesario que en la región estudiada se realicen investigaciones e intervenciones encaminadas a: cambiar percepciones y mejorar la sensibilidad, calidad y adecuación del manejo de pacientes con TBP en contextos multiculturales, así como

  6. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Wanna; Chaijaroenkul; Artitiya; Thiengsusuk; Kanchana; Rungsihirunrat; Stephen; Andrew; Ward; Kesara; Na-Bangchang

    2014-01-01

    Objective:To investigate possible protein targets for antimalarial activity of Garcina mangostana Linn.(G.mangostana)(pericarp)in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry(LC/MS/MS).Methods:3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G.mangostana Linn.(pericarp)at the concentrations of 12μg/mL(1C50level:concentration that inhibits parasite growth by 50%)and 30μg/mL(1C90level:concentration that inhibits parasite growth by 90%)for 12 h.Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.Results:At the IC50concentration,about 82%of the expressed parasite proteins were matched with the control(non-exposed),while at the IC90concentration,only 15%matched proteins were found.The selected protein spots from parasite exposed to the plant extract at the concentration of 12μg/mL were identified as eneymes that play role in glycolysis pathway,i.e.,phosphoglyeerate mutase putative,L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase,and fruetose-bisphosphate aldolase/phosphoglyeerate kinase.The proteosome was found in parasite exposed to 30μg/mL of the extract.Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G.mangostana Linn.(pericarp).

  7. Antimalarials and the fight against malaria in Brazil.

    Science.gov (United States)

    Carmargo, Luiz Ma; de Oliveira, Saulo; Basano, Sergio; Garcia, Célia Rs

    2009-08-01

    Malaria, known as the "fevers," has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea) from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named "Jesuits' powder." Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira-Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients.

  8. Plants of the Annonaceae traditionally used as antimalarials: a review

    Directory of Open Access Journals (Sweden)

    Gina Frausin

    2014-01-01

    Full Text Available Species of the Annonaceae family are used all over the tropics in traditional medicine in tropical regions for the treatment of malaria and other illnesses. Phytochemical studies of this family have revealed chemical components which could offer new alternatives for the treatment and control of malaria. Searches in scientific reference sites (SciFinder Scholar, Scielo, PubMed, ScienceDirect and ISI Web of Science and a bibliographic literature search for species of Annonaceae used traditionally to treat malaria and fever were carried out. This family contains 2,100 species in 123 genera. We encountered 113 articles reporting medicinal use of one or more species of this family including 63 species in 27 genera with uses as antimalarials and febrifuges. Even though the same species of Annonaceae are used by diverse ethnic groups, different plant parts are often chosen for applications, and diverse methods of preparation and treatment are used. The ethanol extracts of Polyalthia debilis and Xylopia aromatica proved to be quite active against Plasmodium falciparum in vitro (median inhibition concentration, IC50 < 1.5 µg/mL. Intraperitoneal injection of Annickia chlorantha aqueous extracts (cited as Enantia chlorantha cleared chloroquine-resistant Plasmodium yoelii nigeriensis from the blood of mice in a dose-dependant manner. More phytochemical profiles of Annonaceous species are required; especially information on the more commonly distributed antimalarial compounds in this family.

  9. Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives.

    Science.gov (United States)

    Shiraki, Hiroaki; Kozar, Michael P; Melendez, Victor; Hudson, Thomas H; Ohrt, Colin; Magill, Alan J; Lin, Ai J

    2011-01-13

    In an attempt to separate the antimalarial activity of tafenoquine (3) from its hemolytic side effects in glucose-6-phosphate dehydrogenase (G6PD) deficiency patients, a series of 5-aryl-8-aminoquinoline derivatives was prepared and assessed for antimalarial activities. The new compounds were found metabolically stable in human and mouse microsomal preparations, with t(1/2) > 60 min, and were equal to or more potent than primaquine (2) and 3 against Plasmodium falciparum cell growth. The new agents were more active against the chloroquine (CQ) resistant clone than to the CQ-sensitive clone. Analogues with electron donating groups showed better activity than those with electron withdrawing substituents. Compounds 4bc, 4bd, and 4be showed comparable therapeutic index (TI) to that of 2 and 3, with TI ranging from 5 to 8 based on IC(50) data. The new compounds showed no significant causal prophylactic activity in mice infected with Plasmodium berghei sporozoites, but are substantially less toxic than 2 and 3 in mouse tests.

  10. Factors associated with anti-tuberculosis medication adverse effects: a case-control study in Lima, Peru.

    Science.gov (United States)

    Chung-Delgado, Kocfa; Revilla-Montag, Alejandro; Guillen-Bravo, Sonia; Velez-Segovia, Eduardo; Soria-Montoya, Andrea; Nuñez-Garbin, Alexandra; Silva-Caso, Wilmer; Bernabe-Ortiz, Antonio

    2011-01-01

    Long-term exposure to anti-tuberculosis medication increases risk of adverse drug reactions and toxicity. The objective of this investigation was to determine factors associated with anti-tuberculosis adverse drug reactions in Lima, Peru, with special emphasis on MDR-TB medication, HIV infection, diabetes, age and tobacco use. A case-control study was performed using information from Peruvian TB Programme. A case was defined as having reported an anti-TB adverse drug reaction during 2005-2010 with appropriate notification on clinical records. Controls were defined as not having reported a side effect, receiving anti-TB therapy during the same time that the case had appeared. Crude, and age- and sex-adjusted models were calculated using odds ratios (OR) and 95% confidence intervals (95%CI). A multivariable model was created to look for independent factors associated with side effect from anti-TB therapy. A total of 720 patients (144 cases and 576 controls) were analyzed. In our multivariable model, age, especially those over 40 years (OR = 3.93; 95%CI: 1.65-9.35), overweight/obesity (OR = 2.13; 95%CI: 1.17-3.89), anemia (OR = 2.10; IC95%: 1.13-3.92), MDR-TB medication (OR = 11.1; 95%CI: 6.29-19.6), and smoking (OR = 2.00; 95%CI: 1.03-3.87) were independently associated with adverse drug reactions. Old age, anemia, MDR-TB medication, overweight/obesity status, and smoking history are independent risk factors associated with anti-tuberculosis adverse drug reactions. Patients with these risk factors should be monitored during the anti-TB therapy. A comprehensive clinical history and additional medical exams, including hematocrit and HIV-ELISA, might be useful to identify these patients.

  11. Factors associated with anti-tuberculosis medication adverse effects: a case-control study in Lima, Peru.

    Directory of Open Access Journals (Sweden)

    Kocfa Chung-Delgado

    Full Text Available BACKGROUND: Long-term exposure to anti-tuberculosis medication increases risk of adverse drug reactions and toxicity. The objective of this investigation was to determine factors associated with anti-tuberculosis adverse drug reactions in Lima, Peru, with special emphasis on MDR-TB medication, HIV infection, diabetes, age and tobacco use. METHODOLOGY AND RESULTS: A case-control study was performed using information from Peruvian TB Programme. A case was defined as having reported an anti-TB adverse drug reaction during 2005-2010 with appropriate notification on clinical records. Controls were defined as not having reported a side effect, receiving anti-TB therapy during the same time that the case had appeared. Crude, and age- and sex-adjusted models were calculated using odds ratios (OR and 95% confidence intervals (95%CI. A multivariable model was created to look for independent factors associated with side effect from anti-TB therapy. A total of 720 patients (144 cases and 576 controls were analyzed. In our multivariable model, age, especially those over 40 years (OR = 3.93; 95%CI: 1.65-9.35, overweight/obesity (OR = 2.13; 95%CI: 1.17-3.89, anemia (OR = 2.10; IC95%: 1.13-3.92, MDR-TB medication (OR = 11.1; 95%CI: 6.29-19.6, and smoking (OR = 2.00; 95%CI: 1.03-3.87 were independently associated with adverse drug reactions. CONCLUSIONS: Old age, anemia, MDR-TB medication, overweight/obesity status, and smoking history are independent risk factors associated with anti-tuberculosis adverse drug reactions. Patients with these risk factors should be monitored during the anti-TB therapy. A comprehensive clinical history and additional medical exams, including hematocrit and HIV-ELISA, might be useful to identify these patients.

  12. The timing of death in patients with tuberculosis who die during anti-tuberculosis treatment in Andhra Pradesh, South India

    Directory of Open Access Journals (Sweden)

    Jonnalagada Subbanna

    2011-12-01

    Full Text Available Abstract Background India has 2.0 million estimated tuberculosis (TB cases per annum with an estimated 280,000 TB-related deaths per year. Understanding when in the course of TB treatment patients die is important for determining the type of intervention to be offered and crucially when this intervention should be given. The objectives of the current study were to determine in a large cohort of TB patients in India:- i treatment outcomes including the number who died while on treatment, ii the month of death and iii characteristics associated with "early" death, occurring in the initial 8 weeks of treatment. Methods This was a retrospective study in 16 selected Designated Microscopy Centres (DMCs in Hyderabad, Krishna and Adilabad districts of Andhra Pradesh, South India. A review was performed of treatment cards and medical records of all TB patients (adults and children registered and placed on standardized anti-tuberculosis treatment from January 2005 to September 2009. Results There were 8,240 TB patients (5183 males of whom 492 (6% were known to have died during treatment. Case-fatality was higher in those previously treated (12% and lower in those with extra-pulmonary TB (2%. There was an even distribution of deaths during anti-tuberculosis treatment, with 28% of all patients dying in the first 8 weeks of treatment. Increasing age and new as compared to recurrent TB disease were significantly associated with "early death". Conclusion In this large cohort of TB patients, deaths occurred with an even frequency throughout anti-TB treatment. Reasons may relate to i the treatment of the disease itself, raising concerns about drug adherence, quality of anti-tuberculosis drugs or the presence of undetected drug resistance and ii co-morbidities, such as HIV/AIDS and diabetes mellitus, which are known to influence mortality. More research in this area from prospective and retrospective studies is needed.

  13. Nanoparticles as Antituberculosis Drugs Carriers: Effect on Activity Against Mycobacterium tuberculosis in Human Monocyte-Derived Macrophages

    International Nuclear Information System (INIS)

    Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B.

    2000-01-01

    This is the first report evaluating the nanoparticle delivery system for three antituberculosis drugs: isoniazid, rifampin, and streptomycin. The typical particle size is 250 nm. We studied accumulation of these drugs in human monocytes as well as their antimicrobial activity against Mycobacterium tuberculosis residing in human monocyte-derived macrophages. Nanoparticle encapsulation increased the intracellular accumulation (cell-association) of all three tested drugs, but it enhanced the antimicrobial activity of isoniazid and streptomycin only. On the other hand, the activity of encapsulated rifampin against intracellular bacteria was not higher than that of the free drug

  14. Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals.

    Science.gov (United States)

    Weaver, Abigail A; Reiser, Hannah; Barstis, Toni; Benvenuti, Michael; Ghosh, Debarati; Hunckler, Michael; Joy, Brittney; Koenig, Leah; Raddell, Kellie; Lieberman, Marya

    2013-07-02

    Reports of low-quality pharmaceuticals have been on the rise in the past decade, with the greatest prevalence of substandard medicines in developing countries, where lapses in manufacturing quality control or breaches in the supply chain allow substandard medicines to reach the marketplace. Here, we describe inexpensive test cards for fast field screening of pharmaceutical dosage forms containing beta lactam antibiotics or combinations of the four first-line antituberculosis (TB) drugs. The devices detect the active pharmaceutical ingredients (APIs) ampicillin, amoxicillin, rifampicin, isoniazid, ethambutol, and pyrazinamide and also screen for substitute pharmaceuticals, such as acetaminophen and chloroquine that may be found in counterfeit pharmaceuticals. The tests can detect binders and fillers such as chalk, talc, and starch not revealed by traditional chromatographic methods. These paper devices contain 12 lanes, separated by hydrophobic barriers, with different reagents deposited in the lanes. The user rubs some of the solid pharmaceutical across the lanes and dips the edge of the paper into water. As water climbs up the lanes by capillary action, it triggers a library of different chemical tests and a timer to indicate when the tests are completed. The reactions in each lane generate colors to form a "color bar code" which can be analyzed visually by comparison with standard outcomes. Although quantification of the APIs is poor compared with conventional analytical methods, the sensitivity and selectivity for the analytes is high enough to pick out suspicious formulations containing no API or a substitute API as well as formulations containing APIs that have been "cut" with inactive ingredients.

  15. The pharmacokinetics of enteral antituberculosis drugs in patients requiring intensive care.

    Science.gov (United States)

    Koegelenberg, C F N; Nortje, A; Lalla, U; Enslin, A; Irusen, E M; Rosenkranz, B; Seifart, H I; Bolliger, C T

    2013-04-05

    There is a paucity of data on the pharmacokinetics of fixed-dose combination enteral antituberculosis treatment in critically ill patients. To establish the pharmacokinetic profile of a fixed-dose combination of rifampicin, isoniazid, pyrazinamide and ethambutol given according to weight via a nasogastric tube to patients admitted to an intensive care unit (ICU). We conducted a prospective, observational study on 10 patients (mean age 32 years, 6 male) admitted to an ICU and treated for tuberculosis (TB). Serum concentrations of the drugs were determined at eight predetermined intervals over 24 hours by means of high-performance liquid chromatography. The therapeutic maximum plasma concentration (Cmax) for rifampicin at time to peak concentration was achieved in only 4 patients, whereas 2 did not achieve therapeutic Cmax for isoniazid. No patient reached sub-therapeutic Cmax for pyrazinamide (6 were within and 4 above therapeutic range). Three patients reached sub-therapeutic Cmax for ethambutol, and 6 patients were within and 1 above the therapeutic range. Patients with a sub-therapeutic rifampicin level had a higher mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score (p=0.03) and a lower estimated glomerular filtration rate (GFR) (p=0.03). A fixed-dose combination tablet, crushed and mixed with water, given according to weight via a nasogastric tube to patients with TB admitted to an ICU resulted in sub-therapeutic rifampicin plasma concentrations in the majority of patients, whereas the other drugs had a more favourable pharmacokinetic profile. Patients with a sub-therapeutic rifampicin concentration had a higher APACHE II score and a lower estimated GFR, which may contribute to suboptimal outcomes in critically ill patients. Studies in other settings have reported similar proportions of patients with 'sub-therapeutic' rifampicin concentrations.

  16. Physico-chemical characterization antituberculosis thioacetazone: Vapor pressure, solubility and lipophilicity

    International Nuclear Information System (INIS)

    Sharapova, Angelica; Ol'khovich, Marina; Blokhina, Svetlana; Perlovich, German

    2017-01-01

    Highlights: • Vapor pressures of antituberculosis thioacetazone were determined by transpiration method. • Solubilities of the TAZ in four modeling solvents were measured at different temperatures. • Temperature dependence of octanol/buffer pH 7.4 partition coefficients was obtained. • Thermodynamics parameters of solubility, sublimation, solvation and transfer were calculated. - Abstract: Vapor pressure of thioacetazone (TAZ) has been determined in the temperature range of 404.15–429.15 K by the transpiration method. The obtained data were used to calculate the standard molar enthalpy of sublimation that was found to be 164.1 kJ/mol at T = 298.15 K. The drug solubility was measured at seven temperatures from 288.15 to 318.15 K in modeling solvents: octanol, hexane and aqueous buffers pH 2.0 and 7.4 by the saturation shake-flask method by using spectrophotometric analysis. It has been found that TAZ has poor solubility in hexane and buffer solutions and limited solubility in octanol. The experimental data were well correlated by van’t Hoff and modified Apelblat equations. A temperature dependence of TAZ partition coefficient in the octanol/buffer pH 7.4 system has been derived. The partition coefficient value in this system (logP = 1.82) refers to the optimal interval for oral absorption drugs. The thermodynamic parameters of sublimation, solubility, solvation and transfer have been determined based on experimental data. The dominant effect of enthalpy and entropy contributions to the Gibbs energy of the investigated processes has been revealed.

  17. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant.

    Directory of Open Access Journals (Sweden)

    JunFeng Dong

    Full Text Available Reconstruction materials currently used in clinical for osteoarticular tuberculosis (TB are unsatisfactory due to a variety of reasons. Rifampicin (RFP is a well-known and highly effective first-line anti-tuberculosis (anti-TB drug. Poly-DL-lactide (PDLLA and nano-hydroxyapatite (nHA are two promising materials that have been used both for orthopedic reconstruction and as carriers for drug release. In this study we report the development of a novel anti-TB implant for osteoarticular TB reconstruction using a combination of RFP, PDLLA and nHA.RFP, PDLLA and nHA were used as starting materials to produce a novel anti-TB activity implant by the solvent evaporation method. After manufacture, the implant was characterized and its biodegradation and drug release profile were tested. The in vitro cytotoxicity of the implant was also evaluated in pre-osteoblast MC3T3-E1 cells using multiple methodologies.A RFP/PDLLA/nHA composite was successfully synthesized using the solvent evaporation method. The composite has a loose and porous structure with evenly distributed pores. The production process was steady and no chemical reaction occurred as proved by Fourier Transform Infrared Spectroscopy (FTIR and X-Ray Diffraction (XRD. Meanwhile, the composite blocks degraded and released drug for at least 12 weeks. Evaluation of in vitro cytotoxicity in MC3T3-E1 cells verified that the synthesized composite blocks did not affect cell growth and proliferation.It is feasible to manufacture a novel bioactive anti-TB RFP/PDLLA/nHA composite by the solvent evaporation method. The composite blocks showed appropriate properties such as degradation, drug release and biosafety to MC3T3-E1 cells. In conclusion, the novel composite blocks may have great potential for clinical applications in repairing bone defects caused by osteoarticular TB.

  18. Hospitalized pediatric antituberculosis drug induced hepatotoxicity: Experience of an Indonesian referral hospital

    Directory of Open Access Journals (Sweden)

    Heda Melinda Nataprawira

    2017-05-01

    Full Text Available Objective: To determine the characteristics and risk factors of pediatric antituberculosis drug induced hepatotoxicity (ADIH in Dr. Hasan Sadikin Hospital, a referral hospital in West Java, Indonesia. Methods: Medical records of hospitalized pediatric ADIH from October 2010 to October 2015 were reviewed retrospectively through computer-based search. Descriptive data were presented as percentage. Analytical case-control study on characteristics of ADIH was conducted using Chi-square and Mann Whitney test. Results: Fifty (3.5% out of 1 424 pediatric TB patients developed ADIH; 20 (40% were boys and 30 (60% girls. More than half were under 5 years old and 33 (66% were malnourished. ADIH occured in 29 (58% cases treated for pulmonary TB, 15 (30% for extrapulmonary TB and 6 (12% for both; 34 cases (68% occured during the intensive phase. We identified hepatic comorbidities including CMV infection [1 (2%] and typhoid [1 (2%], and other diseases treated by hepatotoxic drugs such as chemotherapeutic drugs, antiepileptics, and antiretroviral drugs [9 (18%]. Case-control analysis of 50 ADIH cases and 100 TB controls without ADIH showed that the correlation between gender, age, type of TB, nutritional status and comorbidities to occurence of ADIH was statistically insignificant (P = 0.26, 0.765, 0.495, 0.534 9 and 0.336, respectively. Pediatric ADIH was treated using modified British Thoracic Society guidelines. Conclusions: Pediatric ADIH in our hospital is quite frequent, thus identifying risk factors and development of pediatric guideline is mandatory. Further study is needed to identify other risk factors such as genetic acetylator status.

  19. Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio.

    Science.gov (United States)

    Chaparro, María Jesús; Calderón, Félix; Castañeda, Pablo; Fernández-Alvaro, Elena; Gabarró, Raquel; Gamo, Francisco Javier; Gómez-Lorenzo, María G; Martín, Julio; Fernández, Esther

    2018-04-13

    Malaria remains a major global health problem. In 2015 alone, more than 200 million cases of malaria were reported, and more than 400,000 deaths occurred. Since 2010, emerging resistance to current front-line ACTs (artemisinin combination therapies) has been detected in endemic countries. Therefore, there is an urgency for new therapies based on novel modes of action, able to relieve symptoms as fast as the artemisinins and/or block malaria transmission. During the past few years, the antimalarial community has focused their efforts on phenotypic screening as a pragmatic approach to identify new hits. Optimization efforts on several chemical series have been successful, and clinical candidates have been identified. In addition, recent advances in genetics and proteomics have led to the target deconvolution of phenotypic clinical candidates. New mechanisms of action will also be critical to overcome resistance and reduce attrition. Therefore, a complementary strategy focused on identifying well-validated targets to start hit identification programs is essential to reinforce the clinical pipeline. Leveraging published data, we have assessed the status quo of the current antimalarial target portfolio with a focus on the blood stage clinical disease. From an extensive list of reported Plasmodium targets, we have defined triage criteria. These criteria consider genetic, pharmacological, and chemical validation, as well as tractability/doability, and safety implications. These criteria have provided a quantitative score that has led us to prioritize those targets with the highest probability to deliver successful and differentiated new drugs.

  20. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria.

    Science.gov (United States)

    White, Nicholas J; Duong, Tran T; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T; Pertel, Peter; Leong, F Joel

    2016-09-22

    KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P. falciparum malaria. (Funded by Novartis and

  1. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II complexes

    Directory of Open Access Journals (Sweden)

    Mustapha C. Mandewale

    2018-02-01

    Full Text Available The quinoline hydrazone ligands were synthesized through multi-step reactions. The 2-hydroxy-3-formylquinoline derivatives (1a–1c were prepared from acetanilide derivatives as starting materials using Vilsmeier–Haack reaction. Then the condensation of 2-hydroxy-3-formylquinoline derivatives with hydrazide derivatives (2a–2c yielded quinoline hydrazone ligands (3a–3i. The synthesis of a new series of Zn(II complexes carried out by refluxing with these quinoline hydrazone ligands (3a–3i is reported. The molecular structures of the ligands (3a–3i and the Zn complexes were characterized by elemental analysis and spectral studies like FT-IR, 1H and 13C NMR, MS, UV–Visible and fluorescence. The preliminary results of antituberculosis study showed that most of the Zn(II complexes 4a–4i demonstrated very good antituberculosis activity while the ligands 3a–3i showed moderate activity. Among the tested compounds 4e and 4g were found to be most active with minimum inhibitory concentration (MIC of 8.00μM and 7.42 μM respectively against Mycobacterium tuberculosis (H37 RV strain ATCC No-27294 which is comparable to “first and second line” drugs used to treat tuberculosis.

  2. Evidence-Based Design of Fixed-Dose Combinations: Principles and Application to Pediatric Anti-Tuberculosis Therapy.

    Science.gov (United States)

    Svensson, Elin M; Yngman, Gunnar; Denti, Paolo; McIlleron, Helen; Kjellsson, Maria C; Karlsson, Mats O

    2018-05-01

    Fixed-dose combination formulations where several drugs are included in one tablet are important for the implementation of many long-term multidrug therapies. The selection of optimal dose ratios and tablet content of a fixed-dose combination and the design of individualized dosing regimens is a complex task, requiring multiple simultaneous considerations. In this work, a methodology for the rational design of a fixed-dose combination was developed and applied to the case of a three-drug pediatric anti-tuberculosis formulation individualized on body weight. The optimization methodology synthesizes information about the intended use population, the pharmacokinetic properties of the drugs, therapeutic targets, and practical constraints. A utility function is included to penalize deviations from the targets; a sequential estimation procedure was developed for stable estimation of break-points for individualized dosing. The suggested optimized pediatric anti-tuberculosis fixed-dose combination was compared with the recently launched World Health Organization-endorsed formulation. The optimized fixed-dose combination included 15, 36, and 16% higher amounts of rifampicin, isoniazid, and pyrazinamide, respectively. The optimized fixed-dose combination is expected to result in overall less deviation from the therapeutic targets based on adult exposure and substantially fewer children with underexposure (below half the target). The development of this design tool can aid the implementation of evidence-based formulations, integrating available knowledge and practical considerations, to optimize drug exposures and thereby treatment outcomes.

  3. Tetraoxane-pyrimidine nitrile hybrids as dual stage antimalarials.

    Science.gov (United States)

    Oliveira, Rudi; Guedes, Rita C; Meireles, Patrícia; Albuquerque, Inês S; Gonçalves, Lídia M; Pires, Elisabete; Bronze, Maria Rosário; Gut, Jiri; Rosenthal, Philip J; Prudêncio, Miguel; Moreira, Rui; O'Neill, Paul M; Lopes, Francisca

    2014-06-12

    The use of artemisinin or other endoperoxides in combination with other drugs is a strategy to prevent development of resistant strains of Plasmodium parasites. Our previous work demonstrated that hybrid compounds, comprising endoperoxides and vinyl sulfones, were capable of high activity profiles comparable to artemisinin and chloroquine while acting through two distinct mechanisms of action: oxidative stress and falcipain inhibition. In this study, we adapted this approach to a novel class of falcipain inhibitors: peptidomimetic pyrimidine nitriles. Pyrimidine tetraoxane hybrids displayed potent nanomolar activity against three strains of Plasmodium falciparum and falcipain-2, combined with low cytotoxicity. In vivo, a decrease in parasitemia and an increase in survival of mice infected with Plasmodium berghei was observed when compared to control. All tested compounds combined good blood stage activity with significant effects on liver stage parasitemia, a most welcome feature for any new class of antimalarial drug.

  4. Triterpenes from Minquartia guianensis (Olacaceae) and in vitro antimalarial activity

    Energy Technology Data Exchange (ETDEWEB)

    Cursino, Lorena Mayara de Carvalho; Nunez, Cecilia Veronica [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Lab. de Bioprospeccao e Biotecnologia; Paula, Renata Cristina de; Nascimento, Maria Fernanda Alves do [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos; Santos, Pierre Alexandre dos, E-mail: cecilia@inpa.gov.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Fac. de Ciencias Farmaceuticas

    2012-07-01

    Minquartia guianensis, popularly known as acariquara, was phytochemically investigated. The following triterpenes were isolated from the dichloromethane extract of leaves: lupen-3-one (1), taraxer-3-one (2) and oleanolic acid (3). The dichloromethane extract of branches yielded the triterpene 3{beta}-methoxy-lup-20(29)-ene (4). The chemical structures were characterized by NMR data. Plant extracts, substance 3, squalene (5) and taraxerol (6), (5 and 6 previously isolated), were evaluated by in vitro assay against chloroquine resistant Plasmodium falciparum. The dichloromethane extract of leaves and the three triterpenes assayed have shown partial activity. Thus, these results demonstrated that new potential antimalarial natural products can be found even in partially active extracts. (author)

  5. Plants of the American continent with antimalarial activity

    Directory of Open Access Journals (Sweden)

    Ingrid R. Mariath

    Full Text Available Malaria is a human parasitic disease caused by protozoa species of the Plasmodium genus. This disease has affected populations of the tropical and subtropical regions. About 500 million new cases occur annually on the world and therefore it is considered an emerging disease of important public health problem. In this context, the natural products as vegetables species have their bioactive molecules as targets for pharmacological, toxicological and phytochemical studies towards the development of more effective medicines for the treatment of many diseases. So this work intends to aid the researchers in the study of natural products to the treatment of malaria. In this review, 476 plants of the American continent were related for the antimalarial activity and of these vegetables species 198 were active and 278 inactive for some type of Plasmodium when they were evaluated through of in vitro or in vivo bioassays models.

  6. 2,3,8-Trisubstituted Quinolines with Antimalarial Activity.

    Science.gov (United States)

    Martinez, Pablo D G; Krake, Susann H; Poggi, Maitia L; Campbell, Simon F; Willis, Paul A; Dias, Luiz C

    2018-01-01

    Combination therapy drugs are considered a fundamental way to control malaria as it mimimizes the risk of emergence of resistance to the individual partner drugs. Consequently, this type of therapy constitutes a driving force for the discovery of new drugs with different modes of action, since this will provide options for combining different drugs to achieve the optimum antimalarial treatment. In this context, a 2,3,8-trisubstitued quinoline compound was found in a high throughput screen (HTS) to show an excellent inhibition of P. falciparum NF54 (IC50 = 22 nM) and low cytotoxicity. We performed a detailed evaluation of the substituents to improve the metabolic stability and solubility liabilities of the original hit and identified derivatives with enhanced physicochemical and/or PK properties and that maintained biological activity. However the high potency was not retained on testing against drug resistant plasmodium strains.

  7. 2,3,8-Trisubstituted Quinolines with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    PABLO D.G. MARTINEZ

    2018-05-01

    Full Text Available ABSTRACT Combination therapy drugs are considered a fundamental way to control malaria as it mimimizes the risk of emergence of resistance to the individual partner drugs. Consequently, this type of therapy constitutes a driving force for the discovery of new drugs with different modes of action, since this will provide options for combining different drugs to achieve the optimum antimalarial treatment. In this context, a 2,3,8-trisubstitued quinoline compound was found in a high throughput screen (HTS to show an excellent inhibition of P. falciparum NF54 (IC50 = 22 nM and low cytotoxicity. We performed a detailed evaluation of the substituents to improve the metabolic stability and solubility liabilities of the original hit and identified derivatives with enhanced physicochemical and/or PK properties and that maintained biological activity. However the high potency was not retained on testing against drug resistant plasmodium strains.

  8. Triterpenes from Minquartia guianensis (Olacaceae) and in vitro antimalarial activity

    International Nuclear Information System (INIS)

    Cursino, Lorena Mayara de Carvalho; Nunez, Cecilia Veronica; Paula, Renata Cristina de; Nascimento, Maria Fernanda Alves do; Santos, Pierre Alexandre dos

    2012-01-01

    Minquartia guianensis, popularly known as acariquara, was phytochemically investigated. The following triterpenes were isolated from the dichloromethane extract of leaves: lupen-3-one (1), taraxer-3-one (2) and oleanolic acid (3). The dichloromethane extract of branches yielded the triterpene 3β-methoxy-lup-20(29)-ene (4). The chemical structures were characterized by NMR data. Plant extracts, substance 3, squalene (5) and taraxerol (6), (5 and 6 previously isolated), were evaluated by in vitro assay against chloroquine resistant Plasmodium falciparum. The dichloromethane extract of leaves and the three triterpenes assayed have shown partial activity. Thus, these results demonstrated that new potential antimalarial natural products can be found even in partially active extracts. (author)

  9. Perspective for the reproduction of antimalarial drugs in Brazil

    Directory of Open Access Journals (Sweden)

    Benjamin Gilbert

    1992-01-01

    Full Text Available The appears to be no chemical manufacture of antimalarial drugs is Brazil. Technology at laboratory process level has been developed for chloroquine, mefloquine, pyrimethamine and cycloquanil, but not perfected nor scaled-up, largely for economic reasons and market uncertainty. Development of primaquine has been contracted but it will run into the same difficulty. Manufacturing capacity for sulfadoxine was registred in the SDI by Roche. A project to produce artemisinine and its derivates is under way at UNICAMP-CPQBA but is hampered by low content in the plant. Proguanil could be produced easily, but apparently no attempt has been made to do so. Quinine is imported on a large scale mostly for softdrink production. Since malarial treatment falls largely within responsability of the Government health authorities, manufacture of drugs in Brazil will depend on an assured medium-term purchase order made to a potential local manufacturer, since competition in the world market is scarcelyviable at the present moment.

  10. Synthesis of chiral chloroquine and its analogues as antimalarial agents.

    Science.gov (United States)

    Sinha, Manish; Dola, Vasanth R; Soni, Awakash; Agarwal, Pooja; Srivastava, Kumkum; Haq, Wahajul; Puri, Sunil K; Katti, Seturam B

    2014-11-01

    In this investigation, we describe a new approach to chiral synthesis of chloroquine and its analogues. All tested compounds displayed potent activity against chloroquine sensitive as well as chloroquine resistant strains of Plasmodium falciparum in vitro and Plasmodium yoelii in vivo. Compounds S-13 b, S-13c, S-13 d and S-13 i displayed excellent in vitro antimalarial activity with an IC50 value of 56.82, 60.41, 21.82 and 7.94 nM, respectively, in the case of resistant strain. Furthermore, compounds S-13a, S-13c and S-13 d showed in vivo suppression of 100% parasitaemia on day 4 in the mouse model against Plasmodium yoelii when administered orally. These results underscore the application of synthetic methodology and need for further lead optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    Directory of Open Access Journals (Sweden)

    Ghosh A

    2014-11-01

    Full Text Available Aparajita Ghosh,1 Tanushree Banerjee,2 Suman Bhandary,1 Avadhesha Surolia31Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; 2Department of Biotechnology, University of Pune, Pune, India; 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore, IndiaAim: The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods: Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results: The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 µM was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 µM. Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion: Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria

  12. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways

    Science.gov (United States)

    Allman, Erik L.; Painter, Heather J.; Samra, Jasmeet; Carrasquilla, Manuela

    2016-01-01

    The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field. PMID:27572391

  13. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  14. Lead optimization of 3-carboxyl-4(1H)-quinolones to deliver orally bioavailable antimalarials.

    Science.gov (United States)

    Zhang, Yiqun; Clark, Julie A; Connelly, Michele C; Zhu, Fangyi; Min, Jaeki; Guiguemde, W Armand; Pradhan, Anupam; Iyer, Lalitha; Furimsky, Anna; Gow, Jason; Parman, Toufan; El Mazouni, Farah; Phillips, Margaret A; Kyle, Dennis E; Mirsalis, Jon; Guy, R Kiplin

    2012-05-10

    Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multidrug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has explored the preliminary structural optimization of 4(1H)-quinolone ester derivatives, a new series of antimalarials related to the endochins. Herein, we report the lead optimization of 4(1H)-quinolones with a focus on improving both antimalarial potency and bioavailability. These studies led to the development of orally efficacious antimalarials including quinolone analogue 20g, a promising candidate for further optimization.

  15. Synthesis and evaluation of 1-amino-6-halo-β-carbolines as antimalarial and antiprion agents.

    Science.gov (United States)

    Thompson, Mark J; Louth, Jennifer C; Little, Susan M; Jackson, Matthew P; Boursereau, Yohan; Chen, Beining; Coldham, Iain

    2012-04-01

    Malaria is one of the world's most devastating parasitic diseases, causing almost one million deaths each year. Growing resistance to classical antimalarial drugs, such as chloroquine, necessitates the discovery of new therapeutic agents for successful control of this global disease. Here, we report the synthesis of some 6-halo-β-carbolines as analogues of the potent antimalarial natural product, manzamine A, retaining its heteroaromatic core whilst providing compounds with much improved synthetic accessibility. Two compounds displayed superior activity to chloroquine itself against a resistant Plasmodium falciparum strain, identifying them as promising leads for future development. Furthermore, in line with previous reports of similarities in antimalarial and antiprion effects of aminoaryl-based antimalarial agents, the 1-amino-β-carboline libraries were also found to possess significant bioactivity against a prion-infected cell line. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A new l-amino acid oxidase from Bothrops jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities.

    Science.gov (United States)

    Carone, Sante E I; Costa, Tássia R; Burin, Sandra M; Cintra, Adélia C O; Zoccal, Karina F; Bianchini, Francine J; Tucci, Luiz F F; Franco, João J; Torqueti, Maria R; Faccioli, Lúcia H; Albuquerque, Sérgio de; Castro, Fabíola A de; Sampaio, Suely V

    2017-10-01

    A new l-amino acid oxidase (LAAO) from Bothrops jararacussu venom (BjussuLAAO-II) was isolated by using a three-step chromatographic procedure based on molecular exclusion, hydrophobicity, and affinity. BjussuLAAO-II is an acidic enzyme with pI=3.9 and molecular mass=60.36kDa that represents 0.3% of the venom proteins and exhibits high enzymatic activity (4884.53U/mg/mim). We determined part of the primary sequence of BjussuLAAO-II by identifying 96 amino acids, from which 34 compose the N-terminal of the enzyme (ADDRNPLEECFRETDYEEFLEIARNGLSDTDNPK). Multiple alignment of the partial BjussuLAAO-II sequence with LAAOs deposited in the NCBI database revealed high similarity (95-97%) with other LAAOs isolated from Bothrops snake venoms. BjussuLAAO-II exerted a strong antiprotozoal effect against Leishmania amazonensis (IC 50 =4.56μg/mL) and Trypanosoma cruzi (IC 50 =4.85μg/mL). This toxin also induced cytotoxicity (IC 50 =1.80μg/mL) and apoptosis in MCF7 cells (a human breast adenocarcinoma cell line) by activating the intrinsic and extrinsic apoptosis pathways, but were not cytotoxic towards MCF10A cells (a non-tumorigenic human breast epithelial cell line). The results reported herein add important knowledge to the field of Toxinology, especially for the development of new therapeutic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Antiprotozoal Activity of Buxus sempervirens and Activity-Guided Isolation of O-tigloylcyclovirobuxeine-B as the Main Constituent Active against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Julia B. Althaus

    2014-05-01

    Full Text Available Buxus sempervirens L. (European Box, Buxaceae has been used in ethnomedicine to treat malaria. In the course of our screening of plant extracts for antiprotozoal activity, a CH2Cl2 extract from leaves of B. sempervirens showed selective in vitro activity against Plasmodium falciparum (IC50 = 2.79 vs. 20.2 µg/mL for cytotoxicity against L6 rat cells. Separation of the extract by acid/base extraction into a basic and a neutral non-polar fraction led to a much more active and even more selective fraction with alkaloids while the fraction of non-polar neutral constituents was markedly less active than the crude extract. Thus, the activity of the crude extract could clearly be attributed to alkaloid constituents. Identification of the main triterpene-alkaloids and characterization of the complex pattern of this alkaloid fraction was performed by UHPLC/+ESI-QTOF-MS analyses. ESI-MS/MS target-guided larger scale preparative separation of the alkaloid fraction was performed by ‘spiral coil-countercurrent chromatography’. From the most active subfraction, the cycloartane alkaloid O-tigloylcyclovirobuxeine-B was isolated and evaluated for antiplasmodial activity which yielded an IC50 of 0.455 µg/mL (cytotoxicity against L6 rat cells: IC50 = 9.38 µg/mL. O-tigloylcyclovirobuxeine-B is thus most significantly responsible for the high potency of the crude extract.

  18. Simultaneous determination of some antiprotozoal drugs in different combined dosage forms by mean centering of ratio spectra and multivariate calibration with model updating methods

    Directory of Open Access Journals (Sweden)

    Abdelaleem Eglal A

    2012-04-01

    Full Text Available Abstract Background Metronidazole (MET and Diloxanide Furoate (DF, act as antiprotozoal drugs, in their ternary mixtures with Mebeverine HCl (MEH, an effective antispasmodic drug. This work concerns with the development and validation of two simple, specific and cost effective methods mainly for simultaneous determination of the proposed ternary mixture. In addition, the developed multivariate calibration model has been updated to determine Metronidazole benzoate (METB in its binary mixture with DF in Dimetrol® suspension. Results Method (I is the mean centering of ratio spectra spectrophotometric method (MCR that depends on using the mean centered ratio spectra in two successive steps that eliminates the derivative steps and therefore the signal to noise ratio is enhanced. The developed MCR method has been successfully applied for determination of MET, DF and MEH in different laboratory prepared mixtures and in tablets. Method (II is the partial least square (PLS multivariate calibration method that has been optimized for determination of MET, DF and MEH in Dimetrol ® tablets and by updating the developed model, it has been successfully used for prediction of binary mixtures of DF and Metronidazole Benzoate ester (METB in Dimetrol ® suspension with good accuracy and precision without reconstruction of the calibration set. Conclusion The developed methods have been validated; accuracy, precision and specificity were found to be within the acceptable limits. Moreover results obtained by the suggested methods showed no significant difference when compared with those obtained by reported methods. Graphical Abstract

  19. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  20. LIMITED ELEVATIONS IN ANTITUBERCULOSIS DRUG-INDUCED SERUM ALANINE AMINOTRANSFERASE (ALT) LEVELS IN A COHORT OF NIGERIANS ON TREATMENT FOR PULMONARY TUBERCULOSIS AND HIV INFECTION IN YENAGOA

    NARCIS (Netherlands)

    Ikuabe, Peter Ogie; Ebuenyi, Ikenna Desmond; Harry, Tubonye Clement

    2015-01-01

    BACKGROUND: This study, undertaken in a major tertiary hospital in the Niger Delta region of Nigeria was designed to examine the incidence of elevation in serum alanine aminotransference (ALT) in our patients who were on treatment for HIV/AIDS with some of them on antituberculosis drugs. METHOD:

  1. Plasma vitamins and essential trace elements in newly diagnosed pulmonary tuberculosis patients and at different durations of anti-tuberculosis chemotherapy

    Directory of Open Access Journals (Sweden)

    V.F. Edem

    2015-07-01

    This study concluded that there is micronutrient (Fe, Zn, Cu, Vit A, C, D and E malnutrition in tuberculosis patients at diagnosis and throughout the duration (6 months of chemotherapy. Supplementation with vitamins and zinc is advised within the first 4 months of commencing anti-tuberculosis chemotherapy.

  2. Pharmacokinetics of Second-Line Antituberculosis Drugs after Multiple Administrations in Healthy Volunteers.

    Science.gov (United States)

    Park, Sang-In; Oh, Jaeseong; Jang, Kyungho; Yoon, Jangsoo; Moon, Seol Ju; Park, Jong Sun; Lee, Jae Ho; Song, Junghan; Jang, In-Jin; Yu, Kyung-Sang; Chung, Jae-Yong

    2015-08-01

    Therapeutic drug monitoring (TDM) of second-line antituberculosis drugs would allow for optimal individualized dosage adjustments and improve drug safety and therapeutic outcomes. To evaluate the pharmacokinetic (PK) characteristics of clinically relevant, multidrug treatment regimens and to improve the feasibility of TDM, we conducted an open-label, multiple-dosing study with 16 healthy subjects who were divided into two groups. Cycloserine (250 mg), p-aminosalicylic acid (PAS) (5.28 g), and prothionamide (250 mg) twice daily and pyrazinamide (1,500 mg) once daily were administered to both groups. Additionally, levofloxacin (750 mg) and streptomycin (1 g) once daily were administered to group 1 and moxifloxacin (400 mg) and kanamycin (1 g) once daily were administered to group 2. Blood samples for PK analysis were collected up to 24 h following the 5 days of drug administration. The PK parameters, including the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve during a dosing interval at steady state (AUCτ), were evaluated. The correlations between the PK parameters and the concentrations at each time point were analyzed. The mean Cmax and AUCτ, respectively, for each drug were as follows: cycloserine, 24.9 mg/liter and 242.3 mg · h/liter; PAS, 65.9 mg/liter and 326.5 mg · h/liter; prothionamide, 5.3 mg/liter and 22.1 mg · h/liter; levofloxacin, 6.6 mg/liter and 64.4 mg · h/liter; moxifloxacin, 4.7 mg/liter and 54.2 mg · h/liter; streptomycin, 42.0 mg/liter and 196.7 mg · h/liter; kanamycin, 34.5 mg/liter and 153.5 mg · h/liter. The results indicated that sampling at 1, 2.5, and 6 h postdosing is needed for TDM when all seven drugs are administered concomitantly. This study indicates that PK characteristics must be considered when prescribing optimal treatments for patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT02128308.). Copyright © 2015, American Society for

  3. Toxicidad hepática por medicamentos antituberculosos Hepatotoxicity induced by antituberculosis drugs

    Directory of Open Access Journals (Sweden)

    Isabel Eugenia Escobar Toledo

    2008-01-01

    a special challenge because its treatment requires the administration, during long periods, of drugs with the potential of inducing liver injury. In this article some aspects of hepatotoxicity induced by antituberculosis drugs are reviewed, namely: epidemiology, risk factors, mechanisms, clinical manifestations, diagnosis, treatment and follow-up.

  4. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    OpenAIRE

    Huthmacher, Carola; Hoppe, Andreas; Bulik, Sascha; Holzh?tter, Hermann-Georg

    2010-01-01

    Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicte...

  5. Antimalarial activity of Garcinia mangostana L rind and its synergistic effect with artemisinin in vitro.

    Science.gov (United States)

    Tjahjani, Susy

    2017-02-28

    Malaria especially falciparum malaria still causes high morbidity and mortality in tropical countries. Several factors have been linked to this situation and the most important one is the rapid spread of parasite resistance to the currently available antimalarials, including artemisinin. Artemisinin is the main component of the currently recommended antimalarial, artemisinin based combination therapy (ACT), and it is a free radical generating antimalarial. Garcinia mangostana L (mangosteen) rind contain a lot of xanthone compounds acting as an antioxidant and exhibited antimalarial activity. The aim of this study was to evaluate the antimalarial activity of mangosteen rind extract and its fractions and their interaction with artemisinin against the 3D7 clone of Plasmodium falciparum in vitro. Dry ripe mangosteen rind was extracted with ethanol followed by fractionation with hexane, ethylacetate, buthanol, and water consecutively to get ethanol extract, hexane, athylacetate, buthanol, and water fractions. Each of these substances was diluted in DMSO and examined for antimalarial activity either singly or in combination with artemisinin in vitro against Plasmodium falciparum 3D7 clone. Synergism between these substances with artemisinin was evaluated according to certain formula to get the sum of fractional inhibitory concentration 50 (∑FIC 50 ). Analysis of the parasite growth in vitro indicated that IC 50 of these mangosteen rind extract, hexane, ethylacetate, buthanol, and water fraction ranged from 0.41 to > 100 μg/mL. All of the ∑FIC50 were antimalarial activity of the extract and fractions of G.mangostana L rind and its synergistic effect with artemisinin. Further study using lead compound(s) isolated from extract and fractions should be performed to identify more accurately their mechanism of antimalarial activities.

  6. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain

    OpenAIRE

    Iwaniuk, Daniel P.; Whetmore, Eric D.; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C.; Roepe, Paul D.; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activity of several new 4-amino-and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of P. falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11–15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain st...

  7. Comparison of antimalarial activity of Artemisia turanica extract with current drugs in vivo.

    Science.gov (United States)

    Taherkhani, Mahboubeh; Rustaiyan, Abdolhossein; Nahrevanian, Hossein; Naeimi, Sabah; Taherkhani, Tofigh

    2013-03-01

    The purpose of this study was to compare antimalarial activity of Artemisia turanica Krasch as Iranian flora with current antimalarial drugs against Plasmodium berghei in vivo in mice. Air-dried aerial parts of Iranian flora A. turanica were collected from Khorasan, northeastern Iran, extracted with Et2O/MeOH/Petrol and defatted. Toxicity of herbal extracts was assessed on male NMRI mice, and their antimalarial efficacy was compared with antimalarial drugs [artemether, chloroquine and sulfadoxinepyrimethamine (Fansidar)] on infected P. berghei animals. All the groups were investigated for parasitaemia, body weight, hepatomegaly, splenomegaly and anemia. The significance of differences was determined by Analysis of Variances (ANOVA) and Student's t-test using Graph Pad Prism software. The inhibitory effects of A. turanica extract on early decline of P. berghei parasitaemia highlights its antimalarial activity, however, this effect no longer can be observed in the late infection. This may be due to the metabolic process of A. turanica crude extract by mice and reduction of its concentration in the body. Crude extract of A. turanica represented its antisymptomatic effects by stabilization of body, liver and spleen weights. This study confirmed antimalarial effects of A. turanica extracts against murine malaria in vivo during early infection, however, there are more benefits on pathophysiological symptoms by this medication.

  8. Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Mariana Conceição Souza

    2015-06-01

    Full Text Available A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3 inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.

  9. 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents.

    Science.gov (United States)

    de Souza, Nicolli Bellotti; Carmo, Arturene M L; Lagatta, Davi C; Alves, Márcio José Martins; Fontes, Ana Paula Soares; Coimbra, Elaine Soares; da Silva, Adilson David; Abramo, Clarice

    2011-07-01

    The high incidence of malaria and drug-resistant strains of Plasmodium have turned this disease into a problem of major health importance. One of the approaches used to control it is to search for new antimalarial agents, such as quinoline derivates. This class of compounds composes a broad group of antimalarial agents, which are largely employed, and inhibits the formation of β-haematin (malaria pigment), which is lethal to the parasite. More specifically, 4-aminoquinoline derivates represent potential sources of antimalarials, as the example of chloroquine, the most used antimalarial worldwide. In order to assess antimalarial activity, 12 4-aminoquinoline derived drugs were obtained and some of these derivatives were used to obtain platinum complexes platinum (II). These compounds were tested in vivo in a murine model and revealed remarkable inhibition of parasite multiplication values, whose majority ranged from 50 to 80%. In addition they were not cytotoxic. Thus, they may be object of further research for new antimalarial agents. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Pattern of the Antimalarials Prescription during Pregnancy in Bangui, Central African Republic

    Directory of Open Access Journals (Sweden)

    Alexandre Manirakiza

    2011-01-01

    Full Text Available Introduction. The aim of this study was to identify the antimalarials prescribed during the pregnancy and to document their timing. Method. From June to September 2009, a survey was conducted on 565 women who gave birth in the Castors maternity in Bangui. The antenatal clinics cards were checked in order to record the types of antimalarials prescribed during pregnancy according to gestational age. Results. A proportion of 28.8% ANC cards contained at least one antimalarial prescription. The commonest categories of antimalarials prescribed were: quinine (56.7%, artemisinin-based combinations (26.8% and artemisinin monotherapy (14.4%. Among the prescriptions that occurred in the first trimester of pregnancy, artemisinin-based combinations and artemisinin monotherapies represented the proportions of (10.9% and (13.3%. respectively. Conclusion. This study showed a relatively high rate (>80% of the recommended antimalarials prescription regarding categories of indicated antimalarials from national guidelines. But, there is a concern about the prescription of the artemisinin derivatives in the first trimester of pregnancy, and the prescription of artemisinin monotherapy. Thus, the reinforcement of awareness activities of health care providers on the national malaria treatment during pregnancy is suggested.

  11. Pattern of the Antimalarials Prescription during Pregnancy in Bangui, Central African Republic

    Science.gov (United States)

    Manirakiza, Alexandre; Soula, Georges; Laganier, Remi; Klement, Elise; Djallé, Djibrine; Methode, Moyen; Madji, Nestor; Heredeïbona, Luc Salva; Le Faou, Alain; Delmont, Jean

    2011-01-01

    Introduction. The aim of this study was to identify the antimalarials prescribed during the pregnancy and to document their timing. Method. From June to September 2009, a survey was conducted on 565 women who gave birth in the Castors maternity in Bangui. The antenatal clinics cards were checked in order to record the types of antimalarials prescribed during pregnancy according to gestational age. Results. A proportion of 28.8% ANC cards contained at least one antimalarial prescription. The commonest categories of antimalarials prescribed were: quinine (56.7%), artemisinin-based combinations (26.8%) and artemisinin monotherapy (14.4%). Among the prescriptions that occurred in the first trimester of pregnancy, artemisinin-based combinations and artemisinin monotherapies represented the proportions of (10.9%) and (13.3%). respectively. Conclusion. This study showed a relatively high rate (>80%) of the recommended antimalarials prescription regarding categories of indicated antimalarials from national guidelines. But, there is a concern about the prescription of the artemisinin derivatives in the first trimester of pregnancy, and the prescription of artemisinin monotherapy. Thus, the reinforcement of awareness activities of health care providers on the national malaria treatment during pregnancy is suggested. PMID:22312567

  12. A qualitative assessment of the challenges of WHO prequalification for anti-malarial drugs in China.

    Science.gov (United States)

    Huang, Yangmu; Pan, Ke; Peng, Danlu; Stergachis, Andy

    2018-04-03

    While China is a major manufacturer of artemisinin and its derivatives, it lags as a global leader in terms of the total export value of anti-malarial drugs as finished pharmaceutical products ready for marketing and use by patients. This may be due to the limited number of World Health Organization (WHO) prequalified anti-malarial drugs from China. Understanding the reasons for the slow progress of WHO prequalification (PQ) in China can help improve the current situation and may lead to greater efforts in malaria eradication by Chinese manufacturers. In-depth interviews were conducted in China between November 2014 and December 2016. A total of 26 key informants from central government agencies, pharmaceutical companies, universities, and research institutes were interviewed, all of which had current or previous experience overseeing or implementing anti-malarial research and development in China. Chinese anti-malarial drugs that lack WHO PQ are mainly exported for use in the African private market. High upfront costs with unpredictable benefits, as well as limited information and limited technical support on WHO PQ, were reported as the main barriers to obtain WHO PQ for anti-malarial drugs by respondents from Chinese pharmaceutical companies. Potential incentives identified by respondents included tax relief, human resource training and consultation, as well as other incentives related to drug approval, such as China's Fast Track Channel. Government support, as well as innovative incentives and collaboration mechanisms are needed for further adoption of WHO PQ for anti-malarial drugs in China.

  13. Incidence and risk factors of major toxicity associated to first-line antituberculosis drugs for latent and active tuberculosis during a period of 10 years

    Directory of Open Access Journals (Sweden)

    Ana Tavares e Castro

    2015-05-01

    Full Text Available Introduction: Adverse drug reactions (ADR to first-line antituberculosis drugs are frequent and have important implications that may affect the effectiveness of treatment and course of tuberculosis (TB. Material and methods: Retrospective data analysis of clinical records and national registration forms from patients with ADR to first line antituberculosis that occurred between 2004 and 2013 at a Portuguese Pulmonology Diagnostic Centre, and from a case–control population matched by sex, age and year of initiation of treatment. Results: Of the 764 patients treated with antituberculosis drugs, 55 (52.7% male, 92.7% European, mean age 50.8 ± 19.5 years had at least one severe ADR and six had a second ADR, for a total of 61 events. The most frequent ADR were hepatotoxicity (86.9%, rash (8.2% and others, such as ocular toxicity, gastrointestinal intolerance and angioedema (4.9%. Isoniazid, alone or in combination, was the antituberculosis drug most associated to toxicity. Due to ADR, treatment time changed an average of 1.0 ± 2.6 months (range −3.4 to 10.6. There was no correlation between age or gender and the overall incidence of ADR although we found a significant association between younger age and an increased risk of hepatotoxicity (P = 0.035. There was also a statistically significant relationship between ADR and diabetes mellitus (P = 0.042 but not for other comorbidities or multi-resistant TB risk factors. Conclusions: This study found a high frequency of ADR with strong impact on subsequent therapeutic orientation. What seems to be of particular interest is the relationship between ADR and diabetes mellitus and the increased frequency of hepatotoxicity in younger patients. Keywords: Tuberculosis, Adverse reaction, Antituberculosis, Treatment

  14. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya

    Directory of Open Access Journals (Sweden)

    Rusk Andria

    2012-08-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. Methods To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Results Most of the medicine retailers surveyed (65% were able to identify artemether-lumefantrine (AL as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Conclusion Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could

  15. Ex Vivo Activity of Endoperoxide Antimalarials, Including Artemisone and Arterolane, against Multidrug-Resistant Plasmodium falciparum Isolates from Cambodia

    Science.gov (United States)

    2014-10-01

    OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone...Prescribed by ANSI Std Z39-18 Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone and Arterolane, against Multidrug-Resistant...potent antimalarial activity (2, 3). Despite having a rapid mecha- nism of action, artemisinin resistance eventually emerged and was first detected

  16. Marine Peptides and Their Anti-Infective Activities

    Directory of Open Access Journals (Sweden)

    Hee Kyoung Kang

    2015-01-01

    Full Text Available Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish from 2006 to the present.

  17. Modelling the impact of antimalarial quality on the transmission of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Aleisha R. Brock

    2017-05-01

    Full Text Available Background: The use of poor quality antimalarial medicines, including the use of non-recommended medicines for treatment such as sulfadoxine-pyrimethamine (SP monotherapy, undermines malaria control and elimination efforts. Furthermore, the use of subtherapeutic doses of the active ingredient(s can theoretically promote the emergence and transmission of drug resistant parasites. Methods: We developed a deterministic compartmental model to quantify the impact of antimalarial medicine quality on the transmission of SP resistance, and validated it using sensitivity analysis and a comparison with data from Kenya collected in 2006. We modelled human and mosquito population dynamics, incorporating two Plasmodium falciparum subtypes (SP-sensitive and SP-resistant and both poor quality and good quality (artemether-lumefantrine antimalarial use. Findings: The model predicted that an increase in human malaria cases, and among these, an increase in the proportion of SP-resistant infections, resulted from an increase in poor quality SP antimalarial use, whether it was full- or half-dose SP monotherapy. Interpretation: Our findings suggest that an increase in poor quality antimalarial use predicts an increase in the transmission of resistance. This highlights the need for stricter control and regulation on the availability and use of poor quality antimalarial medicines, in order to offer safe and effective treatments, and work towards the eradication of malaria. Keywords: Deterministic compartmental model, Falsified antimalarial medicine, Substandard antimalarial treatments, Antimalarial quality, Plasmodium falciparum malaria, Drug resistance

  18. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    Science.gov (United States)

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.

  19. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  20. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  1. A Diverse Family of Host-Defense Peptides (Piscidins Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Directory of Open Access Journals (Sweden)

    Scott A Salger

    Full Text Available Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis. In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3 show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7 primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5 have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  2. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Science.gov (United States)

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  3. Design, Synthesis and Biological Evaluation of 2-(2-Amino-5(6-nitro-1H-benzimidazol-1-yl-N-arylacetamides as Antiprotozoal Agents

    Directory of Open Access Journals (Sweden)

    Emanuel Hernández-Núñez

    2017-04-01

    Full Text Available Parasitic diseases are a public health problem affecting millions of people worldwide. One of the scaffolds used in several drugs for the treatment of parasitic diseases is the benzimidazole moiety, a heterocyclic aromatic compound. This compound is a crucial pharmacophore group and is considered a privileged structure in medicinal chemistry. In this study, the benzimidazole core served as a model for the synthesis of a series of 2-(2-amino-5(6-nitro-1H-benzimidazol-1-yl-N-arylacetamides 1–8 as benznidazole analogues. The in silico pharmacological results calculated with PASS platform exhibited chemical structures highly similar to known antiprotozoal drugs. Compounds 1–8 when evaluated in silico for acute toxicity by oral dosing, were less toxic than benznidazole. The synthesis of compounds 1–8 were carried out through reaction of 5(6-nitro-1H-benzimidazol-2-amine (12 with 2-chlroactemides 10a–h, in the presence of K2CO3 and acetonitrile as solvent, showing an inseparable mixture of two regioisomers with the -NO2 group in position 5 or 6 with chemical yields of 60 to 94%. The prediction of the NMR spectra of molecule 1 coincided with the experimental chemical displacements of the regioisomers. Comparisons between the NMR prediction and the experimental data revealed that the regioisomer endo-1,6-NO2 predominated in the reaction. The in vitro antiparasitic activity of these compounds on intestinal unicellular parasites (Giardia intestinalis and Entamoeba histolytica and a urogenital tract parasite (Trichomonas vaginalis were tested. Compound 7 showed an IC50 of 3.95 μM and was 7 time more active against G. intestinalis than benznidazole. Compounds 7 and 8 showed 4 times more activity against T. vaginalis compared with benznidazole.

  4. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    Science.gov (United States)

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2015-07-01

    Full Text Available Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml, significantly decreased forward scatter (≥5 µg/ml, significantly increased ROS abundance (5 µg/ml, significantly increased [Ca2+]i (7.5 µg/ml and significantly increased ceramide abundance (10 µg/ml. The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.

  6. Antimalarial pyrido[1,2-a]benzimidazoles.

    Science.gov (United States)

    Ndakala, Albert J; Gessner, Richard K; Gitari, Patricia W; October, Natasha; White, Karen L; Hudson, Alan; Fakorede, Foluke; Shackleford, David M; Kaiser, Marcel; Yeates, Clive; Charman, Susan A; Chibale, Kelly

    2011-07-14

    A novel class of antimalarial pyrido[1,2-a]benzimidazoles were synthesized and evaluated for antiplasmodial activity and cytotoxicity following hits identified from screening commercially available compound collections. The most active of these, TDR86919 (4c), showed improved in vitro activity vs the drug-resistant K1 strain of Plasmodium falciparum relative to chloroquine (IC(50) = 0.047 μM v 0.17 μM); potency was retained against a range of drug-sensitive and drug-resistant strains, with negligible cytotoxicity against the mammalian (L-6) cell line (selectivity index of >600). 4c and several close analogues (as HCl or mesylate salts) showed significant efficacy in P. berghei infected mice following both intraperitoneal (ip) and oral (po) administration, with >90% inhibition of parasitemia, accompanied by an increase in the mean survival time (MSD). The pyrido[1,2-a]benzimidazoles appeared to be relatively slow acting in vivo compared to chloroquine, and metabolic stability of the alkylamino side chain was identified as a key issue in influencing in vivo activity.

  7. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review.

    Science.gov (United States)

    Memvanga, Patrick B; Tona, Gaston L; Mesia, Gauthier K; Lusakibanza, Mariano M; Cimanga, Richard K

    2015-07-01

    Malaria is the most prevalent parasitic disease and the foremost cause of morbidity and mortality in the Democratic Republic of Congo. For the management of this disease, a large Congolese population recourses to traditional medicinal plants. To date the efficacy and safety of many of these plants have been validated scientifically in rodent malaria models. In order to generate scientific evidence of traditional remedies used in the Democratic Republic of Congo for the management of malaria, and show the potential of Congolese plants as a major source of antimalarial drugs, this review highlights the antiplasmodial and toxicological properties of the Congolese antimalarial plants investigated during the period of 1999-2014. In doing so, a useful resource for further complementary investigations is presented. Furthermore, this review may pave the way for the research and development of several available and affordable antimalarial phytomedicines. In order to get information on the different studies, a Google Scholar and PubMed literature search was performed using keywords (malaria, Congolese, medicinal plants, antiplasmodial/antimalarial activity, and toxicity). Data from non-indexed journals, Master and Doctoral dissertations were also collected. Approximately 120 extracts and fractions obtained from Congolese medicinal plants showed pronounced or good antiplasmodial activity. A number of compounds with interesting antiplasmodial properties were also isolated and identified. Some of these compounds constituted new scaffolds for the synthesis of promising antimalarial drugs. Interestingly, most of these extracts and compounds possessed high selective activity against Plasmodium parasites compared to mammalian cells. The efficacy and safety of several plant-derived products was confirmed in mice, and a good correlation was observed between in vitro and in vivo antimalarial activity. The formulation of several plant-derived products also led to some clinical trials

  8. Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum

    Science.gov (United States)

    Langer, Christine; Goodman, Christopher D.; McFadden, Geoffrey I.

    2013-01-01

    Most current antimalarials for treatment of clinical Plasmodium falciparum malaria fall into two broad drug families and target the food vacuole of the trophozoite stage. No antimalarials have been shown to target the brief extracellular merozoite form of blood-stage malaria. We studied a panel of 12 drugs, 10 of which have been used extensively clinically, for their invasion, schizont rupture, and growth-inhibitory activity using high-throughput flow cytometry and new approaches for the study of merozoite invasion and early intraerythrocytic development. Not surprisingly, given reported mechanisms of action, none of the drugs inhibited merozoite invasion in vitro. Pretreatment of erythrocytes with drugs suggested that halofantrine, lumefantrine, piperaquine, amodiaquine, and mefloquine diffuse into and remain within the erythrocyte and inhibit downstream growth of parasites. Studying the inhibitory activity of the drugs on intraerythrocytic development, schizont rupture, and reinvasion enabled several different inhibitory phenotypes to be defined. All drugs inhibited parasite replication when added at ring stages, but only artesunate, artemisinin, cycloheximide, and trichostatin A appeared to have substantial activity against ring stages, whereas the other drugs acted later during intraerythrocytic development. When drugs were added to late schizonts, only artemisinin, cycloheximide, and trichostatin A were able to inhibit rupture and subsequent replication. Flow cytometry proved valuable for in vitro assays of antimalarial activity, with the free merozoite population acting as a clear marker for parasite growth inhibition. These studies have important implications for further understanding the mechanisms of action of antimalarials, studying and evaluating drug resistance, and developing new antimalarials. PMID:23318799

  9. Modulation of Antimalarial Activity at a Putative Bisquinoline Receptor In Vivo Using Fluorinated Bisquinolines.

    Science.gov (United States)

    Fielding, Alistair J; Lukinović, Valentina; Evans, Philip G; Alizadeh-Shekalgourabi, Said; Bisby, Roger H; Drew, Michael G B; Male, Verity; Del Casino, Alessio; Dunn, James F; Randle, Laura E; Dempster, Nicola M; Nahar, Lutfun; Sarker, Satyajit D; Cantú Reinhard, Fabián G; de Visser, Sam P; Dascombe, Mike J; Ismail, Fyaz M D

    2017-05-17

    Antimalarials can interact with heme covalently, by π⋅⋅⋅π interactions or by hydrogen bonding. Consequently, the prototropy of 4-aminoquinolines and quinoline methanols was investigated by using quantum mechanics. Calculations showed mefloquine protonated preferentially at the piperidine and was impeded at the endocyclic nitrogen because of electronic rather than steric factors. In gas-phase calculations, 7-substituted mono- and bis-4-aminoquinolines were preferentially protonated at the endocyclic quinoline nitrogen. By contrast, compounds with a trifluoromethyl substituent on both the 2- and 8-positions, reversed the order of protonation, which now favored the exocyclic secondary amine nitrogen at the 4-position. Loss of antimalarial efficacy by CF 3 groups simultaneously occupying the 2- and 8-positions was recovered if the CF 3 group occupied the 7-position. Hence, trifluoromethyl groups buttressing the quinolinyl nitrogen shifted binding of antimalarials to hematin, enabling switching from endocyclic to the exocyclic N. Both theoretical calculations (DFT calculations: B3LYP/BS1) and crystal structure of (±)-trans-N 1 ,N 2 -bis-(2,8-ditrifluoromethylquinolin-4-yl)cyclohexane-1,2-diamine were used to reveal the preferred mode(s) of interaction with hematin. The order of antimalarial activity in vivo followed the capacity for a redox change of the iron(III) state, which has important implications for the future rational design of 4-aminoquinoline antimalarials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors.

    Science.gov (United States)

    Hou, X; Chen, X; Zhang, M; Yan, A

    2016-01-01

    Plasmodium falciparum, the most fatal parasite that causes malaria, is responsible for over one million deaths per year. P. falciparum dihydroorotate dehydrogenase (PfDHODH) has been validated as a promising drug development target for antimalarial therapy since it catalyzes the rate-limiting step for DNA and RNA biosynthesis. In this study, we investigated the quantitative structure-activity relationships (QSAR) of the antimalarial activity of PfDHODH inhibitors by generating four computational models using a multilinear regression (MLR) and a support vector machine (SVM) based on a dataset of 255 PfDHODH inhibitors. All the models display good prediction quality with a leave-one-out q(2) >0.66, a correlation coefficient (r) >0.85 on both training sets and test sets, and a mean square error (MSE) antimalarial activity. The models are capable of predicting inhibitors' antimalarial activity and the molecular descriptors for building the models could be helpful in the development of new antimalarial drugs.

  11. Evaluation of spiropiperidine hydantoins as a novel class of antimalarial agents.

    Science.gov (United States)

    Meyers, Marvin J; Anderson, Elizabeth J; McNitt, Sarah A; Krenning, Thomas M; Singh, Megh; Xu, Jing; Zeng, Wentian; Qin, Limei; Xu, Wanwan; Zhao, Siting; Qin, Li; Eickhoff, Christopher S; Oliva, Jonathan; Campbell, Mary A; Arnett, Stacy D; Prinsen, Michael J; Griggs, David W; Ruminski, Peter G; Goldberg, Daniel E; Ding, Ke; Liu, Xiaorong; Tu, Zhengchao; Tortorella, Micky D; Sverdrup, Francis M; Chen, Xiaoping

    2015-08-15

    Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease β-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 μM and 0.099 μM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis and evaluation of antimalarial properties of novel 4-aminoquinoline hybrid compounds.

    Science.gov (United States)

    Fisher, Gillian M; Tanpure, Rajendra P; Douchez, Antoine; Andrews, Katherine T; Poulsen, Sally-Ann

    2014-10-01

    Pharmacophore hybridization has recently been employed in the search for antimalarial lead compounds. This approach chemically links two pharmacophores, each with their own antimalarial activity and ideally with different modes of action, into a single hybrid molecule with the goal to improve therapeutic properties. In this paper, we report the synthesis of novel 7-chloro-4-aminoquinoline/primary sulfonamide hybrid compounds. The chlorinated 4-aminoquinoline scaffold is the core structure of chloroquine, an established antimalarial drug, while the primary sulfonamide functional group has a proven track record of efficacy and safety in many clinically used drugs and was recently shown to exhibit some antimalarial activity. The activity of the hybrid compounds was determined against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains. While the hybrid compounds had lower antimalarial activity when compared to chloroquine, they demonstrated a number of interesting structure-activity relationship (SAR) trends including the potential to overcome the resistance profile of chloroquine. © 2014 John Wiley & Sons A/S.

  13. Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity.

    Science.gov (United States)

    Ke, Hangjun; Morrisey, Joanne M; Qu, Shiwei; Chantarasriwong, Oraphin; Mather, Michael W; Theodorakis, Emmanuel A; Vaidya, Akhil B

    2017-01-01

    Caged Garcinia xanthones (CGXs) constitute a family of natural products that are produced by tropical/subtropical trees of the genus Garcinia CGXs have a unique chemical architecture, defined by the presence of a caged scaffold at the C ring of a xanthone moiety, and exhibit a broad range of biological activities. Here we show that synthetic CGXs exhibit antimalarial activity against Plasmodium falciparum, the causative parasite of human malaria, at the intraerythrocytic stages. Their activity can be substantially improved by attaching a triphenylphosphonium group at the A ring of the caged xanthone. Specifically, CR135 and CR142 were found to be highly effective antimalarial inhibitors, with 50% effective concentrations as low as ∼10 nM. CGXs affect malaria parasites at multiple intraerythrocytic stages, with mature stages (trophozoites and schizonts) being more vulnerable than immature rings. Within hours of CGX treatment, malaria parasites display distinct morphological changes, significant reduction of parasitemia (the percentage of infected red blood cells), and aberrant mitochondrial fragmentation. CGXs do not, however, target the mitochondrial electron transport chain, the target of the drug atovaquone and several preclinical candidates. CGXs are cytotoxic to human HEK293 cells at the low micromolar level, which results in a therapeutic window of around 150-fold for the lead compounds. In summary, we show that CGXs are potent antimalarial compounds with structures distinct from those of previously reported antimalarial inhibitors. Our results highlight the potential to further develop Garcinia natural product derivatives as novel antimalarial agents. Copyright © 2016 American Society for Microbiology.

  14. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity.

    Science.gov (United States)

    Sadashiva, Maralinganadoddi P; Gowda, Raghavendra; Wu, Xianzhu; Inamdar, Gajanan S; Kuzu, Omer F; Rangappa, Kanchugarakoppal S; Robertson, Gavin P; Gowda, D Channe

    2015-08-01

    Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission

    NARCIS (Netherlands)

    Kuhen, K.L.; Chatterjee, A.K.; Rottmann, M.; Gagaring, K.; Borboa, R.; Buenviaje, J.; Chen, Z.; Francek, C.; Wu, T.; Nagle, A.; Barnes, S.W.; Plouffe, D.; Lee, M.C.; Fidock, D.A.; Graumans, W.; Vegte, M.G. van de; Gemert, G.J.A. van; Wirjanata, G.; Sebayang, B.; Marfurt, J.; Russell, B.; Suwanarusk, R.; Price, R.N.; Nosten, F.; Tungtaeng, A.; Gettayacamin, M.; Sattabongkot, J.; Taylor, J.; Walker, J.R.; Tully, D.; Patra, K.P.; Flannery, E.L.; Vinetz, J.M.; Renia, L.; Sauerwein, R.W.; Winzeler, E.A.; Glynne, R.J.; Diagana, T.T.

    2014-01-01

    Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have

  16. Assessing the quality of anti-malarial drugs from Gabonese pharmacies using the MiniLab®: a field study

    NARCIS (Netherlands)

    Visser, Benjamin J.; Meerveld-Gerrits, Janneke; Kroon, Daniëlle; Mougoula, Judith; Vingerling, Rieke; Bache, Emmanuel; Boersma, Jimmy; van Vugt, Michèle; Agnandji, Selidji T.; Kaur, Harparkash; Grobusch, Martin P.

    2015-01-01

    Recent studies alluded to the alarming scale of poor anti-malarial drug quality in malaria-endemic countries, but also illustrated the major geographical gaps in data on anti-malarial drug quality from endemic countries. Data are particularly scarce from Central Africa, although it carries the

  17. Blood schizontocidal activity of methylene blue in combination with antimalarials against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Garavito G.

    2007-06-01

    Full Text Available Methylene blue (MB is the oldest synthetic antimalarial. It is not used anymore as antimalarial but should be reconsidered. For this purpose we have measured its impact on both chloroquine sensitive and resistant Plasmodium strains. We showed that around 5 nM of MB were able to inhibit 50% of the parasite growth in vitro and that late rings and early trophozoites were the most sensitive stages; while early rings, late trophozoites and schizonts were less sensitive. Drug interaction study following fractional inhibitory concentrations (FIC method showed antagonism with amodiaquine, atovaquone, doxycycline, pyrimethamine; additivity with artemether, chloroquine, mefloquine, primaquine and synergy with quinine. These results confirmed the interest of MB that could be integrated in a new low cost antimalarial combination therapy.

  18. Synthesis and in vivo antimalarial activity of novel naphthoquine derivatives with linear/cyclic structured pendants.

    Science.gov (United States)

    Tang, Ling; Bei, Zhuchun; Song, Yabin; Xu, Likun; Wang, Hong; Zhang, Dongna; Dou, Yuanyuan; Lv, Kai; Wang, Hongquan

    2017-07-01

    Naphthoquine (NQ) was discovered by our institute as an antimalarial candidate in 1980s, and currently employed as an artemisinin-based combination therapy partner drug. Resistance to NQ was found in mouse model in laboratory, and might emerge in future as widely used. We herein report the design and synthesis of NQ derivatives by replacing t-butyl moiety with linear/cyclic structured pendants. All the target compounds 6a-l and intermediates 5a-h were tested for their in vivo antimalarial activity against Plasmodium berghei K173 strain in mice. Compounds 6a and 6j were found to have a comparable or slightly more potent activity (the 50% effective dose [ED 50 ], which is required to decrease parasitemia by 50%: 0.38-0.43 mg/kg) than NQ (ED 50 : 0.48 mg/kg). The newly designed compounds 6a and 6j might be promising antimalarial candidates for further research.

  19. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs.

    Science.gov (United States)

    Helgren, Travis R; Sciotti, Richard J; Lee, Patricia; Duffy, Sandra; Avery, Vicky M; Igbinoba, Osayawemwen; Akoto, Matthew; Hagen, Timothy J

    2015-01-15

    A series of novel aminoalkylated quercetin analogs, prepared via the Mannich reaction of various primary and secondary amines with formaldehyde, were tested for antimalarial activity. The compounds were screened against three drug resistant malarial strains (D6, C235 and W2) and were found to exhibit sub-micromolar activity across all three strains (0.065-13.0μM). The structure-activity relationship determined from the antimalarial activity data suggests the inclusion of phenethyl amine sidechains on the quercetin scaffolding is necessary for potent activity. Additionally, the most active compounds ((5) and (6)) were tested for both early and late stage anti-gametocytocidal activity. Finally, the antimalarial activity data were utilized to construct comparative molecular field analysis (CoMFA) models to be used for further compound refinement. Copyright © 2014 Elqsevier Ltd. All rights reserved.

  20. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIP OF ANTIMALARIAL COMPOUND OF ARTEMISININ DERIVATIVES USING PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Paul Robert Martin Werfette

    2010-06-01

    Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation,  (;;   Keywords: QSAR, antimalarial, artemisinin, principal component regression

  1. Synthesis and Evaluation of Some New Isoquine Analogues for Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Chandra Nath Saha

    2009-01-01

    Full Text Available Amodiaquine is a 4-aminoquinoline antimalarial that can cause adverse side effects including hepatic and haematological toxicity. The drug toxicity involves the formation of an electrophilic metabolite, amodiaquine quinoneimine (AQQI, which binds to cellular macromolecules leading to hepatotoxicity and agranulocytosis. Interchange of the 3ʼ hydroxyl and the 4ʼ Mannich side-chain function of amodiaquine provides an amodiaquine regioisomer (isoquine that cannot form toxic quinoneimine metabolites. By a simple two-step procedure, four isoquine analogues were synthesized and subsequently evaluated against the chloroquine sensitive RKL-2 strain of Plasmodium falciparum in vitro. All synthesized analogues demonstrated differential level of antimalarial activity against the test strain. However, no compound was found to exhibit better antimalarial property as compared to chloroquine.

  2. Synthesis and biological evaluation of febrifugine analogues as potential antimalarial agents.

    Science.gov (United States)

    Zhu, Shuren; Zhang, Quan; Gudise, Chandrashekar; Wei, Lai; Smith, Erika; Zeng, Yuling

    2009-07-01

    Febrifugine is an alkaloid isolated from Dichroa febrifuga Lour as the active component against Plasmodium falciparum. Adverse side effects have precluded febrifugine as a potential clinical drug. In this study novel febrifugine analogues were designed and synthesized. Lower toxicity was achieved by reducing or eliminating the tendency of forming chemically reactive and toxic intermediates and metabolites. Synthesized compounds were evaluated for acute toxicity and in vitro and in vivo antimalarial efficacy. Some compounds are much less toxic than the natural product febrifugine and existing antimalarial drug chloroquine and are expected to possess wide therapeutic windows. These compounds, as well as the underlying design rationale, may find usefulness in the discovery and development of new antimalarial drugs.

  3. Optimization of 2-Anilino 4-Amino Substituted Quinazolines into Potent Antimalarial Agents with Oral in Vivo Activity.

    Science.gov (United States)

    Gilson, Paul R; Tan, Cyrus; Jarman, Kate E; Lowes, Kym N; Curtis, Joan M; Nguyen, William; Di Rago, Adrian E; Bullen, Hayley E; Prinz, Boris; Duffy, Sandra; Baell, Jonathan B; Hutton, Craig A; Jousset Subroux, Helene; Crabb, Brendan S; Avery, Vicky M; Cowman, Alan F; Sleebs, Brad E

    2017-02-09

    Novel antimalarial therapeutics that target multiple stages of the parasite lifecycle are urgently required to tackle the emerging problem of resistance with current drugs. Here, we describe the optimization of the 2-anilino quinazoline class as antimalarial agents. The class, identified from publicly available antimalarial screening data, was optimized to generate lead compounds that possess potent antimalarial activity against P. falciparum parasites comparable to the known antimalarials, chloroquine and mefloquine. During the optimization process, we defined the functionality necessary for activity and improved in vitro metabolism and solubility. The resultant lead compounds possess potent activity against a multidrug resistant strain of P. falciparum and arrest parasites at the ring phase of the asexual stage and also gametocytogensis. Finally, we show that the lead compounds are orally efficacious in a 4 day murine model of malaria disease burden.

  4. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    Science.gov (United States)

    Ghosh, Aparajita; Banerjee, Tanushree; Bhandary, Suman; Surolia, Avadhesha

    2014-01-01

    Aim The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 μM) was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 μM). Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria as a test system. PMID:25484584

  5. Small Molecule Screen for Candidate Antimalarials Targeting Plasmodium Kinesin-5*

    Science.gov (United States)

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J.

    2014-01-01

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable “next generation” target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are “druggable.” One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease. PMID:24737313

  6. A new in vivo screening paradigm to accelerate antimalarial drug discovery.

    Directory of Open Access Journals (Sweden)

    María Belén Jiménez-Díaz

    Full Text Available The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR, which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0 of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1 or induce parasite clearance (PRR >1 with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a

  7. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    Science.gov (United States)

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  8. A New In Vivo Screening Paradigm to Accelerate Antimalarial Drug Discovery

    Science.gov (United States)

    Jiménez-Díaz, María Belén; Viera, Sara; Ibáñez, Javier; Mulet, Teresa; Magán-Marchal, Noemí; Garuti, Helen; Gómez, Vanessa; Cortés-Gil, Lorena; Martínez, Antonio; Ferrer, Santiago; Fraile, María Teresa; Calderón, Félix; Fernández, Esther; Shultz, Leonard D.; Leroy, Didier; Wilson, David M.; García-Bustos, José Francisco; Gamo, Francisco Javier; Angulo-Barturen, Iñigo

    2013-01-01

    The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR), which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0) of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1) or induce parasite clearance (PRR >1) with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally) in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a feasible task

  9. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Directory of Open Access Journals (Sweden)

    Eberlin Marcos N

    2011-05-01

    Full Text Available Abstract Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7 and -resistant (S20 strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4 and 50% methanolic (F5 fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  10. Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Directory of Open Access Journals (Sweden)

    Mpimbaza Arthur

    2008-06-01

    Full Text Available Abstract Background New antimalarial regimens, including artemisinin-based combination therapies (ACTs, have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. Case description Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. Discussion and evaluation Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. Conclusion Although the World Health Organization has supported the development of

  11. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi.

    Science.gov (United States)

    Amuasi, John H; Diap, Graciela; Blay-Nguah, Samuel; Boakye, Isaac; Karikari, Patrick E; Dismas, Baza; Karenzo, Jeanne; Nsabiyumva, Lievin; Louie, Karly S; Kiechel, Jean-René

    2011-02-10

    Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ) as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO) retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO), a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO) medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment) of AS-AQ, quinine and other anti-malarials were calculated. Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9%) compared to public (4.2%) and NGO (0%) outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu) for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu). Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu), private and NGO sectors (both US$1.61 or 2,000 FBu). Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors, whereas, it was equivalent to 1.5 days worth

  12. The ACTwatch project: methods to describe anti-malarial markets in seven countries.

    Science.gov (United States)

    Shewchuk, Tanya; O'Connell, Kathryn A; Goodman, Catherine; Hanson, Kara; Chapman, Steven; Chavasse, Desmond

    2011-10-31

    Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT) and malaria diagnostics including rapid diagnostic tests (RDTs). To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012.ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the project aims to disseminate findings widely for decision

  13. Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents.

    Science.gov (United States)

    Comer, Eamon; Beaudoin, Jennifer A; Kato, Nobutaka; Fitzgerald, Mark E; Heidebrecht, Richard W; Lee, Maurice duPont; Masi, Daniela; Mercier, Marion; Mulrooney, Carol; Muncipinto, Giovanni; Rowley, Ann; Crespo-Llado, Keila; Serrano, Adelfa E; Lukens, Amanda K; Wiegand, Roger C; Wirth, Dyann F; Palmer, Michelle A; Foley, Michael A; Munoz, Benito; Scherer, Christina A; Duvall, Jeremy R; Schreiber, Stuart L

    2014-10-23

    Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure-activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.

  14. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives.

    Science.gov (United States)

    Bhat, Hans Raj; Singh, Udaya Pratap; Thakur, Anjali; Kumar Ghosh, Surajit; Gogoi, Kabita; Prakash, Anil; Singh, Ramendra K

    2015-10-01

    A series of novel hybrid 4-aminoquinoline 1,3,5-triazine derivatives was synthesized in a five-steps reaction and evaluated for their in vitro antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-2) strains of Plasmodium falciparum. Entire synthetic derivatives showed higher antimalarial activity on the sensitive strain while two compounds, viz., 9a and 9c displayed good activity against both the strains of P. falciparum. The observed activity was further substantiated by docking study on both wild and qradruple mutant type P. falciparum dihydrofolate reductase-thymidylate synthase (pf-DHFR-TS). Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain.

    Science.gov (United States)

    Iwaniuk, Daniel P; Whetmore, Eric D; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian

    2009-09-15

    We report the synthesis and in vitro antimalarial activity of several new 4-amino- and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of Plasmodium falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11-15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain.

  16. A nationwide survey of the quality of antimalarials in retail outlets in Tanzania.

    Science.gov (United States)

    Kaur, Harparkash; Goodman, Catherine; Thompson, Eloise; Thompson, Katy-Anne; Masanja, Irene; Kachur, S Patrick; Abdulla, Salim

    2008-01-01

    Retail pharmaceutical products are commonly used to treat fever and malaria in sub-Saharan African countries. Small scale studies have suggested that poor quality antimalarials are widespread throughout the region, but nationwide data are not available that could lead to generalizable conclusions about the extent to which poor quality drugs are available in African communities. This study aimed to assess the quality of antimalarials available from retail outlets across mainland Tanzania. We systematically purchased samples of oral antimalarial tablets from retail outlets across 21 districts in mainland Tanzania in 2005. A total of 1080 antimalarial formulations were collected including 679 antifol antimalarial samples (394 sulfadoxine/pyrimethamine and 285 sulfamethoxypyrazine/pyrimethamine), 260 amodiaquine samples, 63 quinine samples, and 51 artemisinin derivative samples. A systematic subsample of 304 products was assessed for quality by laboratory based analysis to determine the amount of the active ingredient and dissolution profile by following the published United States Pharmacopoeia (USP) monogram for the particular tablet being tested. Products for which a published analytical monogram did not exist were assessed on amount of active ingredient alone. Overall 38 or 12.2% of the samples were found to be of poor quality. Of the antifolate antimalarial drugs tested 13.4% were found to be of poor quality by dissolution and content analysis using high-performance liquid chromatography (HPLC). Nearly one quarter (23.8%) of quinine tablets did not comply within the tolerance limits of the dissolution and quantification analysis. Quality of amodiaquine drugs was relatively better but still unacceptable as 7.5% did not comply within the tolerance limits of the dissolution analysis. Formulations of the artemisinin derivatives all contained the stated amount of active ingredient when analysed using HPLC alone. Substandard antimalarial formulations were widely

  17. A nationwide survey of the quality of antimalarials in retail outlets in Tanzania.

    Directory of Open Access Journals (Sweden)

    Harparkash Kaur

    Full Text Available Retail pharmaceutical products are commonly used to treat fever and malaria in sub-Saharan African countries. Small scale studies have suggested that poor quality antimalarials are widespread throughout the region, but nationwide data are not available that could lead to generalizable conclusions about the extent to which poor quality drugs are available in African communities. This study aimed to assess the quality of antimalarials available from retail outlets across mainland Tanzania.We systematically purchased samples of oral antimalarial tablets from retail outlets across 21 districts in mainland Tanzania in 2005. A total of 1080 antimalarial formulations were collected including 679 antifol antimalarial samples (394 sulfadoxine/pyrimethamine and 285 sulfamethoxypyrazine/pyrimethamine, 260 amodiaquine samples, 63 quinine samples, and 51 artemisinin derivative samples. A systematic subsample of 304 products was assessed for quality by laboratory based analysis to determine the amount of the active ingredient and dissolution profile by following the published United States Pharmacopoeia (USP monogram for the particular tablet being tested. Products for which a published analytical monogram did not exist were assessed on amount of active ingredient alone. Overall 38 or 12.2% of the samples were found to be of poor quality. Of the antifolate antimalarial drugs tested 13.4% were found to be of poor quality by dissolution and content analysis using high-performance liquid chromatography (HPLC. Nearly one quarter (23.8% of quinine tablets did not comply within the tolerance limits of the dissolution and quantification analysis. Quality of amodiaquine drugs was relatively better but still unacceptable as 7.5% did not comply within the tolerance limits of the dissolution analysis. Formulations of the artemisinin derivatives all contained the stated amount of active ingredient when analysed using HPLC alone.Substandard antimalarial formulations were

  18. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Directory of Open Access Journals (Sweden)

    Chapman Steven

    2011-10-01

    Full Text Available Abstract Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT and malaria diagnostics including rapid diagnostic tests (RDTs. To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the

  19. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Science.gov (United States)

    2011-01-01

    Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT) and malaria diagnostics including rapid diagnostic tests (RDTs). To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the project aims to disseminate

  20. The Effects of First-Line Anti-Tuberculosis Drugs on the Actions of Vitamin D in Human Macrophages.

    Science.gov (United States)

    Chesdachai, Supavit; Zughaier, Susu M; Hao, Li; Kempker, Russell R; Blumberg, Henry M; Ziegler, Thomas R; Tangpricha, Vin

    2016-12-01

    Tuberculosis (TB) is a major global health problem. Patients with TB have a high rate of vitamin D deficiency, both at diagnosis and during the course of treatment with anti-tuberculosis drugs. Although data on the efficacy of vitamin D supplementation on Mycobacterium tuberculosis (Mtb) clearance is uncertain from randomized controlled trials (RCTs), vitamin D enhances the expression of the anti-microbial peptide human cathelicidin (hCAP18) in cultured macrophages in vitro. One possible explanation for the mixed (primarily negative) results of RCTs examining vitamin D treatment in TB infection is that anti-TB drugs given to enrolled subjects may impact actions of vitamin D to enhance cathelicidin in macrophages. To address this hypothesis, human macrophage-like monocytic (THP-1) cells were treated with varying doses of first-line anti-tuberculosis drugs in the presence of the active form of vitamin D, 1N1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ). The expression of hCAP18 was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). 1,25(OH) 2 D 3 strongly induced expression of hCAP18 mRNA in THP-1 cells (fold-change from control). The combination of the standard 4-drug TB therapy (isoniazid, rifampicin, pyrazinamide and ethambutol) in the cultured THP-1 cells demonstrated a significant decrease of hCAP18 mRNA at the dosage of 10 ug/mL. In 31 subjects with newly diagnosed drug-sensitive TB randomized to either high-dose vitamin D 3 (1.2 million IU over 8 weeks, n=13) versus placebo (n=18), there was no change from baseline to week 8 in hCAP18 mRNA levels in peripheral blood mononuclear cells or in plasma concentrations of LL-37, the protein product of hCAP18.These data suggest that first-line anti-TB drugs may alter the vitamin D-dependent increase in hCAP18 and LL-37 human macrophages.

  1. Phytochemical Analysis, Antioxidant, Anti-Hyperglycemic and Antituberculosis Activities of Phylogenetically Related Garcinia mangostana (Mangosteen) and Garcinia hombroniana (Seashore Mangosteen)

    International Nuclear Information System (INIS)

    Jamila, N.; Kim, K.S.; Khan, A.A.; Khan, S.N

    2016-01-01

    Species of genus Garcinia belonging to family Clusiaceae are traditionally known for the treatment of ulcer, gonorrhea, leucorrhoea and abdominal pain. This genus is also reported to be a rich source of xanthones, benzophenones, flavonoids, biflavonoids and triterpenes showing significant pharmacological activities. Garcinia mangostana L. (mangosteen) and Garcinia hombroniana Pierre (seashore mangosteen) are evergreen tropical trees grown in Malaysia, Indonesia, Thailand and other tropical countries. The fruits of G. mangostana (queen of fruits), and roots and leaves decoction of G. hombroniana are commonly used for skin allergies, infections after childbirth, trauma and diarrhea. This study aimed to evaluate the bark and fruit extracts of G. mangostana and G. hombroniana for phytochemicals analysis, total phenolic and flavonoid contents, antioxidant, anti-hyperglycemic and antituberculosis activities. Total phenolic contents were evaluated by Folin-Ciocalteu reagent colorimetric method. For antioxidant activities, radical scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2-azino-bis-3-ethyl benzthiazoline-6-sulphonic acid (ABTS), and ferric ion reducing antioxidant power (FRAP) were used. Anti-hyperglycemic activity was determined using a-glucosidase and a-amylase enzymes. In quantitative phytochemical analysis, the extracts of G. mangostana showed significantly higher content of phenolics (3498.7 micro M GAE/g (gallic acid equivalent per gram), ethyl acetate; bark), carbohydrates (14.2 g/100g, aqueous; fruit) and reducing sugars (13.9 g/100g, aqueous; fruit). Also, in antioxidant activities, G. mangostana showed comparatively high activities with the ethyl acetate extract as the most potent showing IC50 2.78 micro g/ml in DPPH, 1.19 micro g/ml in ABTS, and 8742.7 micro M TE/g in FRAP assays. G. mangostana was also more potent in anti-hyperglycemic properties (IC50 182.9 micro g/ml, a-glucosidase, 247.8 micro g/ml, a-amylase) compared to G. hombroniana

  2. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines.

    Science.gov (United States)

    McIlleron, Helen; Rustomjee, Roxana; Vahedi, Mahnaz; Mthiyane, Thuli; Denti, Paolo; Connolly, Catherine; Rida, Wasima; Pym, Alexander; Smith, Peter J; Onyebujoh, Philip C

    2012-06-01

    Reduced antituberculosis drug concentrations may contribute to unfavorable treatment outcomes among HIV-infected patients with more advanced immune suppression, and few studies have evaluated pharmacokinetics of the first-line antituberculosis drugs in such patients given fixed-dose combination tablets according to international guidelines using weight bands. In this study, pharmacokinetics were evaluated in 60 patients on 4 occasions during the first month of antituberculosis therapy. Multilevel linear mixed-effects regression analysis was used to examine the effects of age, sex, weight, drug dose/kilogram, CD4(+) lymphocyte count, treatment schedule (5 versus 7 days/week), and concurrent antiretrovirals (efavirenz plus lamivudine plus zidovudine) on the area under the concentration-time curve from 0 to 12 h (AUC(0-12)) of the respective antituberculosis drugs and to compare AUC(0-12)s at day 8, day 15, and day 29 with the day 1 AUC(0-12). Median (range) age, weight, and CD4(+) lymphocyte count were 32 (18 to 47) years, 55.2 (34.4 to 98.7) kg, and 252 (12 to 500)/μl. For every 10-kg increase in body weight, the predicted day 29 AUC(0-12) increased by 14.1% (95% confidence interval [CI], 7.5, 20.8), 14.1% (95% CI, -0.7, 31.1), 6.1% (95% CI, 2.7, 9.6) and 6.0% (95% CI, 0.8, 11.3) for rifampin, isoniazid, pyrazinamide, and ethambutol, respectively. Males had day 29 AUC(0-12)s 19.3% (95% CI, 3.6, 35.1) and 14.0% (95% CI, 5.6, 22.4) lower than females for rifampin and pyrazinamide, respectively. Level of immune suppression and concomitant antiretrovirals had little effect on the concentrations of the antituberculosis agents. As they had reduced drug concentrations, it is important to review treatment responses in patients in the lower weight bands and males to inform future treatment guidelines, and revision of doses in these patients should be considered.

  3. Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity.

    Science.gov (United States)

    Vyas, V K; Qureshi, G; Ghate, M; Patel, H; Dalai, S

    2016-06-01

    Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere-Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.

  4. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase

    NARCIS (Netherlands)

    Paquet, T.; Manach, C.; Cabrera, D.G.; Younis, Y.; Henrich, P.P.; Abraham, T.S.; Lee, M.C.; Basak, R.; Ghidelli-Disse, S.; Lafuente-Monasterio, M.J.; Bantscheff, M.; Ruecker, A.; Blagborough, A.M.; Zakutansky, S.E.; Zeeman, A.M.; White, K.L.; Shackleford, D.M.; Mannila, J.; Morizzi, J.; Scheurer, C.; Angulo-Barturen, I.; Martinez, M.S.; Ferrer, S.; Sanz, L.M.; Gamo, F.J.; Reader, J.; Botha, M.; Dechering, K.J.; Sauerwein, R.W.; Tungtaeng, A.; Vanachayangkul, P.; Lim, C.S.; Burrows, J.; Witty, M.J.; Marsh, K.C.; Bodenreider, C.; Rochford, R.; Solapure, S.M.; Jimenez-Diaz, M.B.; Wittlin, S.; Charman, S.A.; Donini, C.; Campo, B.; Birkholtz, L.M.; Hanson, K.K.; Drewes, G.; Kocken, C.H.; Delves, M.J.; Leroy, D.; Fidock, D.A.; Waterson, D.; Street, L.J.; Chibale, K

    2017-01-01

    As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with

  5. Strengthening of national capacity in implementation of antimalarial drug quality assurance in Thailand.

    Science.gov (United States)

    Vijaykadga, Saowanit; Cholpol, Sawat; Sitthimongkol, Saipin; Pawaphutanan, Anusorn; Pinyoratanachot, Arunya; Rojanawatsirivet, Chaiporn; Kovithvattanapong, Rojana; Thimasarn, Krongthong

    2006-01-01

    Substandard and counterfeit pharmaceutical products, including antimalarial drugs, appear to be widespread internationally and affect both the developing and developed countries. The aim of the study was to investigate the quality of antimalarial drugs, ie, artesunate (ART), chloroquine (CHL), mefloquine (MEF), quinine (QUI), sulfadoxine/pyrimethamine (S/P) and tetracycline (TT) obtained from the government sector and private pharmacies in 4 Thai provinces: Mae Hong Son, Kanchanaburi, Ranong, and Chanthaburi. Three hundred sixty-nine samples of 6 antimalarial drugs from 27 government hospitals, 27 malaria clinics, and 53 drugstores, were collected. Drug quality was assessed by simple disintegration test and semi-quantitative thin-layer chromatography in each province; 10% passed, 100% failed and doubtful samples were sent to be verified by high performance liquid chromatography (HPLC) at the Thai National Drug Analysis Laboratory, (NL). Fifteen point four percent of ART, 11.1% of CHL and 29.4% of QUI were substandard. Based on the finding, drug regulatory authorities in the country took appropriate action against violators to ensure that antimalarial drugs consumed by malaria patients are of good quality.

  6. Trends in pregnancy outcomes in Malawian adolescents receiving antimalarial and hematinic supplements

    NARCIS (Netherlands)

    Msyamboza, Kelias; Savage, Emma; Kalanda, Gertrude; Kazembe, Peter; Gies, Sabine; d'Alessandro, Umberto; Brabin, Bernard J.

    2010-01-01

    Objective. To describe pregnancy outcomes of adolescent and adult primigravidae receiving antimalarials and hematinic supplementation and compare findings with a survey in this area a decade earlier. Design. Cross-sectional surveys in intervention and control sites. Setting. Community, antenatal and

  7. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus

    DEFF Research Database (Denmark)

    Kuhn, A; Sigges, J; Biazar, C

    2014-01-01

    . Smoking behaviour was assessed by the EUSCLE Core Set Questionnaire in 838 patients and statistically analysed using an SPSS database. The results were correlated with the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) and the efficacy of antimalarial treatment. RESULTS: A high...

  8. A SAR and QSAR study of new artemisinin compounds with antimalarial activity.

    Science.gov (United States)

    Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T

    2013-12-30

    The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  9. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.A.Judith A.; Laseter, Anne G; Filer, C.N.Crist N. E-mail: crist.filer@perkinelmer.com

    2002-09-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3-{sup 3}H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl-{sup 3}H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [{sup 3}H] ethyl iodide.

  10. A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Cleydson Breno R. Santos

    2013-12-01

    Full Text Available The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs and molecular docking were used to investigate the interaction between ligands and the receptor (heme. Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE, the charge on the O11 oxygen atom (QO11, the torsion angle O1-O2-Fe-N2 (D2 and the maximum rate of R/Sanderson Electronegativity (RTe+. These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  11. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica

    DEFF Research Database (Denmark)

    Valsaraj, R; Pushpangadan, P; Smitt, U W

    1997-01-01

    A bioactivity-guided fractionation of an extract of Terminalia bellerica fruit rind led to the isolation of two new lignans named termilignan (1) and thannilignan (2), together with 7-hydroxy-3',4'-(methylenedioxy)flavan (3) and anolignan B (4). All four compounds possessed demonstrable anti-HIV-......, antimalarial, and antifungal activity in vitro....

  12. Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439).

    Science.gov (United States)

    Dong, Yuxiang; Wang, Xiaofang; Kamaraj, Sriraghavan; Bulbule, Vivek J; Chiu, Francis C K; Chollet, Jacques; Dhanasekaran, Manickam; Hein, Christopher D; Papastogiannidis, Petros; Morizzi, Julia; Shackleford, David M; Barker, Helena; Ryan, Eileen; Scheurer, Christian; Tang, Yuanqing; Zhao, Qingjie; Zhou, Lin; White, Karen L; Urwyler, Heinrich; Charman, William N; Matile, Hugues; Wittlin, Sergio; Charman, Susan A; Vennerstrom, Jonathan L

    2017-04-13

    Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pK a and lower log D 7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, additional functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D 7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.

  13. In vivo antimalarial activity of a labdane diterpenoid from the leaves of Otostegia integrifolia Benth.

    Science.gov (United States)

    Endale, Abyot; Bisrat, Daniel; Animut, Abebe; Bucar, Franz; Asres, Kaleab

    2013-12-01

    In Ethiopian traditional medicine, the leaves of Otostegia integrifolia Benth. are used for the treatment of several diseases including malaria. In an ongoing search for effective, safe and cheap antimalarial agents from plants, the 80% methanol leaf extract O. integrifolia was tested for its in vivo antimalarial activity, in a 4-day suppressive assay against Plasmodium berghei. Activity-guided fractionation of this extract which showed potent antiplasmodial activity resulted in the isolation of a labdane diterpenoid identified as otostegindiol. Otostegindiol displayed a significant (P antimalarial activity at doses of 25, 50 and 100 mg/kg with chemosuppression values of 50.13, 65.58 and 73.16%, respectively. Acute toxicity studies revealed that the crude extract possesses no toxicity in mice up to a maximum dose of 5000 mg/kg suggesting the relative safety of the plant when administered orally. The results of the present study indicate that otostegindiol is among the antimalarial principles in this medicinal plant, and further support claims for the traditional medicinal use of the plant for the treatment of malaria. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Potentiation of antimalarial activity of arteether in combination with Vetiver root extract.

    Science.gov (United States)

    Dhawan, Sangeeta; Gunjan, Sarika; Pal, Anirban; Tripathi, Renu

    2016-05-01

    In malaria, development of resistance towards artemisinin derivatives has urged the need for new drugs or new drug combinations to tackle the drug resistant malaria. We studied the fresh root extract of Vetiver zizanioides (Linn.) Nash (VET) with a CDRI-CIMAP antimalarial α/β arteether (ART) together for their antimalarial potential. Our results showed additive to synergistic antimalarial activity of VET and ART with sum fractional inhibitory concentrations Σ FICs 1.02 ± 0.24 and 1.12 ± 0.32 for chloroquine sensitive (CQS) and chloroquine resistant (CQR) strain of Plasmodium falciparum (William H. Welch), respectively. Further, these combinations were explored against multidrug resistant rodent malaria parasite i.e. P. yoelii nigeriensis. Analysis of in vivo interaction of ART and VET showed that 10 mg/kg x 5 days of ART with 1000 mg/kg of VET x 5 days cured 100% mice infected with MDR parasite, while the same dose of ART could produce only up to 30% cure and VET fraction was not curative at all. Synergism/additiveness, found between VET and ART is reported for the first time. The curative dose of ART in the combination was reduced to its one fourth, and thus limits the side effects, if any. Although antimalarial potential of ART was enhanced by VET, action mechanism of later needs to be elucidated in detail.

  15. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NARCIS (Netherlands)

    Baragana, B.; Hallyburton, I.; Lee, M.C.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Martinez, M.S.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jimenez-Diaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H.

    2015-01-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial

  16. Gracilioethers A-C, Antimalarial Metabolites from the Marine Sponge Agelas gracilis

    NARCIS (Netherlands)

    Ueoka, R.; Nakao, Y.; Kawatsu, S.; Yaegashi, J.; Matsumoto, Y.; Matsunaga, S.; Furihata, K; van Soest, R.W.M.; Fusetani, N.

    2009-01-01

    Three new antiprotozoan compounds, gracilioethers A−C (1−3), have been isolated from the marine sponge Agelas gracilis. Their structures were elucidated on the basis of spectroscopic and chemical methods. Gracilioethers A−C showed antimalarial activity against Plasmodium falciparum with IC50 values

  17. Antimalarial activity of Syzygium guineense during early and established Plasmodium infection in rodent models.

    Science.gov (United States)

    Tadesse, Solomon Asmamaw; Wubneh, Zewdu Birhanu

    2017-01-05

    In Ethiopia, the leaves of Syzygium guineense have been found useful for the prevention and cure of malaria, and demonstrated antiplasmodial activity in vitro. Nevertheless, no scientific study has been conducted to confirm its antimalarial activity in vivo. Therefore, the objective of the study was to evaluate the antimalarial effect of Syzygium guineense leaf extract in mice. Inoculation of the study mice was carried out by using the malaria parasite, Plasmodium berghei. The plant extract was prepared at 200, 400 and 600 mg/kg. Chloroquine and distilled water was administered to the positive and negative control groups respectively. Parameters like parasitaemia, survival time and body weight were determined following standard tests (4-day suppressive, Rane's and repository tests). Syzygium guineense crude leaf extract displayed considerable (p activity in both the repository and curative tests. The extract also prevented body weight loss and prolonged survival date of mice significantly (P antimalarial activity in mice. The test substance was found to be safe with no observable signs of toxicity in the study mice. The results of the present work confirmed the in vitro antiplasmodial finding and traditional claims in vivo in mice. Therefore, Syzygium guineense could be regarded as a potential source to develop safe, effective and affordable antimalarial agent.

  18. Novel series of 1,2,4-trioxane derivatives as antimalarial agents.

    Science.gov (United States)

    Rudrapal, Mithun; Chetia, Dipak; Singh, Vineeta

    2017-12-01

    Among three series of 1,2,4-trioxane derivatives, five compounds showed good in vitro antimalarial activity, three compounds of which exhibited better activity against P. falciparum resistant (RKL9) strain than the sensitive (3D7) one. Two best compounds were one from aryl series and the other from heteroaryl series with IC 50 values of 1.24 µM and 1.24 µM and 1.06 µM and 1.17 µM, against sensitive and resistant strains, respectively. Further, trioxane derivatives exhibited good binding affinity for the P. falciparum cysteine protease falcipain 2 receptor (PDB id: 3BPF) with well defined drug-like and pharmacokinetic properties based on Lipinski's rule of five with additional physicochemical and ADMET parameters. In view of having antimalarial potential, 1,2,4-trioxane derivative(s) reported herein may be useful as novel antimalarial lead(s) in the discovery and development of future antimalarial drug candidates as P. falciparum falcipain 2 inhibitors against resistant malaria.

  19. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    International Nuclear Information System (INIS)

    Egan, J.A.Judith A.; Laseter, Anne G.; Filer, C.N.Crist N.

    2002-01-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3- 3 H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl- 3 H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [ 3 H] ethyl iodide

  20. Evaluation of In-vivo Antimalarial Activity of Methanol Leaf Extract of ...

    African Journals Online (AJOL)

    Abstract. Purpose: To evaluate the in-vivo antimalarial activity of the methanol extract of the leaves of Glyphaea brevis in ... alternative malarial drugs, with novel modes of action [4]. ... The mean lethal dose of the three fractions. (ethylacetate ...

  1. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Arezoo Rafiee Parhizgar

    2017-03-01

    Full Text Available Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ and amodiaquine (AQ, have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the other hand, AQ is an effective antimalarial drug which its usage has been restricted due to hepatic and hematological toxicities. The significance of the quinoline ring at quinoline-based antimalarial drugs has prompted research centers and pharmaceutical companies to focus on the design and synthesis of new analogues of these drugs, especially CQ and AQ analogues. Accordingly, various derivatives have been synthesized and evaluated in vitro and in vivo against the resistant strains of the malaria parasite to solve the problem of drug resistance. Also, the pharmacokinetic properties of these compounds have been evaluated to augment their efficacy and diminish their toxicity. Some of these analogues are currently in clinical and preclinical development. Consequently, the recent researches showed yet 4-aminoquinoline scaffold is active moiety in new compounds with antiplasmodial activity. Hence, the aim of this review article is to introduce of the novel synthetic analogues of CQ and AQ, which may constitute the next generation of antimalarial drugs with the 4-aminoquinoline scaffold.

  2. N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity.

    Science.gov (United States)

    Gomes, Ana; Pérez, Bianca; Albuquerque, Inês; Machado, Marta; Prudêncio, Miguel; Nogueira, Fátima; Teixeira, Cátia; Gomes, Paula

    2014-02-01

    Plasmodium falciparum, the causative agent of the most lethal form of malaria, is becoming increasingly resistant to most available drugs. A convenient approach to combat parasite resistance is the development of analogues of classical antimalarial agents, appropriately modified in order to restore their relevance in antimalarial chemotherapy. Following this line of thought, the design, synthesis and in vitro evaluation of N-cinnamoylated quinacrine surrogates, 9-(N-cinnamoylaminobutyl)-amino-6-chloro-2-methoxyacridines, is reported. The compounds were found to be highly potent against both blood-stage P.falciparum, chloroquine-sensitive 3D7 (IC50 =17.0-39.0 nM) and chloroquine-resistant W2 and Dd2 strains (IC50 =3.2-41.2 and 27.1-131.0 nM, respectively), and liver-stage P.berghei (IC50 =1.6-4.9 μM) parasites. These findings bring new hope for the possible future "rise of a fallen angel" in antimalarial chemotherapy, with a potential resurgence of quinacrine-related compounds as dual-stage antimalarial leads. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis and exploration of novel curcumin analogues as anti-malarial agents.

    Science.gov (United States)

    Mishra, Satyendra; Karmodiya, Krishanpal; Surolia, Namita; Surolia, Avadhesha

    2008-03-15

    Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.

  4. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review.

    Science.gov (United States)

    Parhizgar, Arezoo Rafiee; Tahghighi, Azar

    2017-03-01

    Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the other hand, AQ is an effective antimalarial drug which its usage has been restricted due to hepatic and hematological toxicities. The significance of the quinoline ring at quinoline-based antimalarial drugs has prompted research centers and pharmaceutical companies to focus on the design and synthesis of new analogues of these drugs, especially CQ and AQ analogues. Accordingly, various derivatives have been synthesized and evaluated in vitro and in vivo against the resistant strains of the malaria parasite to solve the problem of drug resistance. Also, the pharmacokinetic properties of these compounds have been evaluated to augment their efficacy and diminish their toxicity. Some of these analogues are currently in clinical and preclinical development. Consequently, the recent researches showed yet 4-aminoquinoline scaffold is active moiety in new compounds with antiplasmodial activity. Hence, the aim of this review article is to introduce of the novel synthetic analogues of CQ and AQ, which may constitute the next generation of antimalarial drugs with the 4-aminoquinoline scaffold.

  5. Evaluation of in vivo antimalarial activity of the ethanolic leaf extracts ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Plasmodium berghei berghei in mice was evaluated. ... indicated in the consistent increase in weight and slight increase in the PCV ... Key words: Chromolaena odorata, Cymbopogon citratus, anti-malarial .... This was prepared by determining both the percentage parasitaemia and the ..... Malaria vaccine: Multiple targets.

  6. Deployment of ACT antimalarials for treatment of malaria: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Leslie Toby

    2008-12-01

    Full Text Available Abstract Following a long period when the effectiveness of existing mono-therapies for antimalarials was steadily declining with no clear alternative, most malaria-endemic countries in Africa and Asia have adopted artemisinin combination therapy (ACT as antimalarial drug policy. Several ACT drugs exist and others are in the pipeline. If properly targeted, they have the potential to reduce mortality from malaria substantially. The major challenge now is to get the drugs to the right people. Current evidence suggests that most of those who need the drugs do not get them. Simultaneously, a high proportion of those who are given antimalarials do not in fact have malaria. Financial and other barriers mean that, in many settings, the majority of those with malaria, particularly the poorest, do not access formal healthcare, so the provision of free antimalarials via this route has only limited impact. The higher cost of ACT creates a market for fake drugs. Addressing these problems is now a priority. This review outlines current evidence, possible solutions and research priorities.

  7. Sensitivity Pattern of Second Line Anti-Tuberculosis Drugs against Clinical Isolates of Multidrug Resistant Mycobacterium Tuberculosis

    International Nuclear Information System (INIS)

    Ghafoor, T.; Ikram, A.; Abbasi, S. A.; Zaman, G.; Ayyub, M.; Palomino, J. C.; Vandamme, P.; Martin, A.

    2015-01-01

    Objective:To determine the current sensitivity pattern of second line anti-tuberculosis drugs against clinical isolates of Multidrug Resistant Mycobacterium tuberculosis (MDR-TB). Study Design: A cross-sectional study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from November 2011 to April 2013. Methodology: Samples received during the study period were processed on BACTEC MGIT 960 system for Mycobacterium tuberculosis (MTB) culture followed by first line drugs susceptibility testing of culture proven MTB isolates. On the basis of resistance to rifampicin and isoniazid, 100 clinical isolates of MDR-TB were further subjected to susceptibility testing against amikacin (AMK), capreomycin (CAP), ofloxacin (OFL) and ethionamide (ETH) as per standard BACTEC MGIT 960 instructions. Results: Out of 100 MDR-TB isolates, 62% were from male patients and 38% from female patients. 97% were sensitive to AMK, 53% to OFL, 87% to CAP; and 87% were sensitive to ETH. Conclusion: The majority of the MDR-TB isolates showed excellent sensitivity against AMK, CAP and ETH. However, sensitivity of MDR-TB isolates against fluoroquinolones like OFL was not encouraging. (author)

  8. Suboptimal Antituberculosis Drug Concentrations and Outcomes in Small and HIV-Coinfected Children in India: Recommendations for Dose Modifications.

    Science.gov (United States)

    Guiastrennec, Benjamin; Ramachandran, Geetha; Karlsson, Mats O; Kumar, A K Hemanth; Bhavani, Perumal Kannabiran; Gangadevi, N Poorana; Swaminathan, Soumya; Gupta, Amita; Dooley, Kelly E; Savic, Radojka M

    2017-12-16

    This work aimed to evaluate the once-daily antituberculosis treatment as recommended by the new Indian pediatric guidelines. Isoniazid, rifampin, and pyrazinamide concentration-time profiles and treatment outcome were obtained from 161 Indian children with drug-sensitive tuberculosis undergoing thrice-weekly dosing as per previous Indian pediatric guidelines. The exposure-response relationships were established using a population pharmacokinetic-pharmacodynamic approach. Rifampin exposure was identified as the unique predictor of treatment outcome. Consequently, children with low body weight (4-7 kg) and/or HIV infection, who displayed the lowest rifampin exposure, were associated with the highest probability of unfavorable treatment (therapy failure, death) outcome (P unfavorable ). Model-based simulation of optimized (P unfavorable ≤ 5%) rifampin once-daily doses were suggested per treatment weight band and HIV coinfection status (33% and 190% dose increase, respectively, from the new Indian guidelines). The established dose-exposure-response relationship could be pivotal in the development of future pediatric tuberculosis treatment guidelines. © 2017, The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  9. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    Directory of Open Access Journals (Sweden)

    Komal Kalani

    Full Text Available Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  10. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    Directory of Open Access Journals (Sweden)

    Shen S

    2015-06-01

    Full Text Available Shuo Shen, Shu-Zhi Liu, Yu-Shi Zhang, Mao-Bo Du, Ai-Hua Liang, Li-Hua Song, Zu-Guang Ye Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China Abstract: Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data

  11. Bioactive compounds fractionated from endophyte Streptomyces SUK 08 with promising ex-vivo antimalarial activity

    Directory of Open Access Journals (Sweden)

    Noraziah Mohamad Zin

    2017-12-01

    Full Text Available Objective: To determine ex vivo antimalarial activity and cytotoxicity of endophytic Streptomyces SUK 08 as well as the main core structure fractionated from its crude extract. Methods: The activities of SUK 08 crude extract were evaluated by using the Plasmodium lactate dehydrogenase assay and synchronization test against rodent malaria parasite Plasmodium berghei, instead of human malarial parasite Plasmodium falciparum. The cytotoxicity of the crude extract was determined by MTT assay. The crude extract was analyzed by thin-layer chromatography and gas chromatography–mass spectrophotometry. Results: The ethyl acetate crude extract showed very promising antimalarial activity with IC50 of 1.25 mg/mL. The synchronization tests showed that ethyl acetate extraction could inhibit all stages of the Plasmodium life cycle, but it was most effective at the Plasmodium ring stage. On the basis of a MTT assay on Chang Liver cells, ethyl acetate and ethanol demonstrated IC50 values of >1.0 mg/mL. The IC50 of parasitemia at 5% and 30% for this extract was lower than chloroquine. Thin-layer chromatography, with 1: 9 ratio of ethyl acetate: hexane, was used to isolate several distinct compounds. Based on gas chromatography–mass spectrophotometry analysis, three core structures were identified as cyclohexane, butyl propyl ester, and 2,3-heptanedione. Structurally, these compounds were similar to currently available antimalarial drugs. Conclusions: The results suggest that compounds isolated from Streptomyces SUK 08 are viable antimalarial drug candidates that require further investigations. Keywords: Butyl–propyl–ester, Cyclohexane, 2,3-Heptanedione, Endophyte, Streptomyces, Antimalarial

  12. Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide.

    Science.gov (United States)

    Ugwu, D I; Okoro, U C; Ukoha, P O; Okafor, S; Ibezim, A; Kumar, N M

    2017-07-28

    Sulphonamides and carboxamides have shown large number of pharmacological properties against different types of diseases among which is malaria. Twenty four new carboxamide derivatives bearing benzenesulphonamoyl alkanamides were synthesized and investigated for their in silico and in vitro antimalarial and antioxidant properties. The substituted benzenesulphonyl chlorides (1a-c) were treated with various amino acids (2a-h) to obtain the benzenesulphonamoyl alkanamides (3a-x) which were subsequently treated with benzoyl chloride to obtain the N-benzoylated derivatives (5a-f, i-n and q-v). Further reactions of the N-benzoylated derivatives or proline derivatives with 4-aminoacetophenone (6) using boric acid as a catalyst gave the sulphonamide carboxamide derivatives (7a-x) in excellent yields. The in vitro antimalarial studies showed that all synthesized compounds had antimalarial property. Compound 7k, 7c, 7l, 7s, and 7j had mean MIC value of 0.02, 0.03, 0.05, 0.06 and 0.08 μM respectively comparable with chloroquine 0.06 μM. Compound 7c was the most potent antioxidant agent with IC 50 value of 0.045 mM comparable with 0.34 mM for ascorbic acid. In addition to the successful synthesis of the target molecules using boric acid catalysis, the compounds were found to have antimalarial and antioxidant activities comparable with known antimalarial and antioxidant drugs. The class of compounds reported herein have the potential of reducing oxidative stress arising from malaria parasite and chemotherapeutic agent used in the treatment of malaria. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica

    Directory of Open Access Journals (Sweden)

    Misael Chinchilla

    2012-06-01

    Full Text Available Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biológica Alberto Manuel Brenes (REBAMB, were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P. berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae; Xanthosoma undipes (Araceae; Iriartea deltoidea (Arecaceae; Neurolaena lobata (Asteraceae; Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae; Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae; Hampea appendiculata (Malvaceae; Ruagea glabra, Guarea glabra (Meliaceae; Psidium guajava (Myrtaceae; Bocconia frutescens (Papaveraceae; Piper friedrichsthalii (Piperaceae; Clematis dioica (Ranunculaceae; Prunus annularis (Rosaceae; Siparuna thecaphora (Siparunaceae; Solanum arboreum, Witheringia solanácea (Solanaceae; Ticodendrum incognitum (Ticodendraceae; Heliocarpus appendiculatus (Tiliaceae and Myriocarpa longipes (Urticaceae. We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9μg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  14. Ameliorative antimalarial effects of the combination of rutin and swertiamarin on malarial parasites

    Directory of Open Access Journals (Sweden)

    Divya Shitlani

    2016-06-01

    Full Text Available Objective: To ameliorate the antimalarial activity via the combination of rutin (flavonoid and swertiamarin (glycoside. Methods: The antimalarial effects were assessed by in vitro and in vivo methodology. In vitro antiplasmodial activity was assessed by using Plasmodium falciparum cultured media and determined the IC 50 value of individual drugs and their combinations. In in vivo methodology, antimalarial effects of rutin, swertiamarin (200–280 mg/kg/day, p.o. and their combination in 1:1, 1:2 and 2:1 ratios were investigated early and established malaria infections using Swiss albino mice infected with Plasmodium berghei. Chloroquine phosphate (5 mg/kg/day, p.o. was used as the standard drug. Results: IC 50 values of the rutin and swertiamarin via in vitro study revealed (9.50 ± 0.29 µg/ mL and (8.17 ± 0.17 µg/mL respectively. Whereas, the combination in 1:1 ratio [IC50 of (5.51 ± 0.18 µg/mL] showed better antiplasmodial activity against Plasmodium falciparum. In vivo results showed that rutin and swertiamarin had chemosuppressant effects in a dose-dependent manner, whereas, combination in 1:1 ratio possessed potential antimalarial activity similar to chloroquine phosphate. The drug interaction between rutin and swertiamarin revealed the synergistic effect on 1:1 ratio and additive effect on 1:2 and 2:1 ratios. Conclusions: The results of the in vitro and in vivo study clearly indicate that the combination (1:1 of rutin and swertiamarin showed potential antimalarial activity rather than an individual of each and their combinations 1:2 and 2:1.

  15. Mass anti-malarial administration in western Cambodia: a qualitative study of factors affecting coverage.

    Science.gov (United States)

    Pell, Christopher; Tripura, Rupam; Nguon, Chea; Cheah, Phaikyeong; Davoeung, Chan; Heng, Chhouen; Dara, Lim; Sareth, Ma; Dondorp, Arjen; von Seidlein, Lorenz; Peto, Thomas J

    2017-05-19

    Mass anti-malarial administration has been proposed as a key component of the Plasmodium falciparum malaria elimination strategy in the Greater Mekong sub-Region. Its effectiveness depends on high levels of coverage in the target population. This article explores the factors that influenced mass anti-malarial administration coverage within a clinical trial in Battambang Province, western Cambodia. Qualitative data were collected through semi-structured interviews and focus group discussions with villagers, in-depth interviews with study staff, trial drop-outs and refusers, and observations in the communities. Interviews were audio-recorded, transcribed and translated from Khmer to English for qualitative content analysis using QSR NVivo. Malaria was an important health concern and villagers reported a demand for malaria treatment. This was in spite of a fall in incidence over the previous decade and a lack of familiarity with asymptomatic malaria. Participants generally understood the overall study aim and were familiar with study activities. Comprehension of the study rationale was however limited. After the first mass anti-malarial administration, seasonal health complaints that participants attributed to the anti-malarial as "side effects" contributed to a decrease of coverage in round two. Staff therefore adapted the community engagement approach, bringing to prominence local leaders in village meetings. This contributed to a subsequent increase in coverage. Future mass anti-malarial administration must consider seasonal disease patterns and the importance of local leaders taking prominent roles in community engagement. Further research is needed to investigate coverage in scenarios that more closely resemble implementation i.e. without participation incentives, blood sampling and free healthcare.

  16. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    Science.gov (United States)

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  17. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Directory of Open Access Journals (Sweden)

    Newton Paul N

    2011-12-01

    Full Text Available Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA containing paracetamol (acetaminophen, counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems.

  18. The Effect of Dosing Regimens on the Antimalarial Efficacy of Dihydroartemisinin-Piperaquine: A Pooled Analysis of Individual Patient Data

    NARCIS (Netherlands)

    Achan, Jane; Adam, Ishag; Arinaitwe, Emmanuel; Ashley, Elizabeth A.; Awab, Ghulam Rahim; Ba, Mamadou S.; Barnes, Karen I.; Bassat, Quique; Borrmann, Steffen; Bousema, Teun; Dahal, Prabin; D' Alessandro, Umberto; Davis, Timothy M. E.; Dondorp, Arjen M.; Dorsey, Grant; Drakeley, Chris J.; Fanello, Caterina I.; Faye, Babacar; Flegg, Jennifer A.; Gaye, Oumar; Gething, Peter W.; González, Raquel; Guerin, Philippe J.; Hay, Simon I.; Hien, Tran T.; Janssens, Bart; Kamya, Moses R.; Karema, Corine; Karunajeewa, Harin A.; Kone, Moussa; Lell, Bertrand; Marsh, Kevin; Mayxay, Mayfong; Menéndez, Clara; Mens, Petra F.; Meremikwu, Martin; Moreira, Clarissa; Mueller, Ivo; Nabasumba, Carolyn; Nambozi, Michael; Ndiaye, Jean-Louis; Newton, Paul N.; Nguyen, Thuy-Nhien; Nosten, Francois; Nsanzabana, Christian; Omar, Sabah A.; Ouédraogo, Jean-Bosco; Penali, Louis K.; Pene, Mbaye; van Vugt, Michele

    2013-01-01

    Background: Dihydroartemisinin-piperaquine (DP) is increasingly recommended for antimalarial treatment in many endemic countries; however, concerns have been raised over its potential under dosing in young children. We investigated the influence of different dosing schedules on DP's clinical

  19. Preparation, characterization and in vitro release kinetics of polyaspartamide-based conjugates containing antimalarial and anticancer agents for combination therapy

    CSIR Research Space (South Africa)

    Aderibigbe, BA

    2016-09-01

    Full Text Available Malaria is treated by combination of two drugs in order to overcome drug resistance. Antimalarials have been found to be more effective by combining them with low doses of anticancer drugs. Polymer-drug conjugates containing aminoquinoline...

  20. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials▿

    Science.gov (United States)

    Creek, Darren J.; Charman, William N.; Chiu, Francis C. K.; Prankerd, Richard J.; Dong, Yuxiang; Vennerstrom, Jonathan L.; Charman, Susan A.

    2008-01-01

    The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study. PMID:18268087

  1. Synthesis and evaluation of antimalarial activity of curcumin derivatives; Sintese e avaliacao da atividade antimalarica de compostos derivados da curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa [Universidade Federal de Juiz de Fora (UFSJ), MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla, E-mail: varotti@ufsj.edu.br [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil). Centro de Ciencias da Saude; others, and

    2014-05-15

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC{sub 50} values ranging from 1.7 to 15.2 μg mL{sup -1}), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  2. Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp3)-H Arylation.

    Science.gov (United States)

    Maetani, Micah; Zoller, Jochen; Melillo, Bruno; Verho, Oscar; Kato, Nobutaka; Pu, Jun; Comer, Eamon; Schreiber, Stuart L

    2017-08-16

    The development of new antimalarial therapeutics is necessary to address the increasing resistance to current drugs. Bicyclic azetidines targeting Plasmodium falciparum phenylalanyl-tRNA synthetase comprise one promising new class of antimalarials, especially due to their activities against three stages of the parasite's life cycle, but a lengthy synthetic route to these compounds may affect the feasibility of delivering new therapeutic agents within the cost constraints of antimalarial drugs. Here, we report an efficient synthesis of antimalarial compound BRD3914 (EC 50 = 15 nM) that hinges on a Pd-catalyzed, directed C(sp 3 )-H arylation of azetidines at the C3 position. This newly developed protocol exhibits a broad substrate scope and provides access to valuable, stereochemically defined building blocks. BRD3914 was evaluated in P. falciparum-infected mice, providing a cure after four oral doses.

  3. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    Directory of Open Access Journals (Sweden)

    Littrell Megan

    2011-10-01

    Full Text Available Abstract Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT. The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85% and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%, drug stores (14%, mobile providers (4% and grocery stores (2%. Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61% and private (42% sectors. Conclusions While data on the anti-malarial

  4. [Application of near infrared spectroscopy in rapid and simultaneous determination of essential components in five varieties of anti-tuberculosis tablets].

    Science.gov (United States)

    Teng, Le-sheng; Wang, Di; Song, Jia; Zhang, Yi-bo; Guo, Wei-liang; Teng, Li-rong

    2008-08-01

    Since 1980s, tuberculosis has become increasingly serious. Rifampicin tablets, isoniazide tablets, pyrazinamide tablets, rifampicin and isoniazide tablets and rifampicin isoniazide and pyrazinamide tablets are currently relatively efficacious antituberculosis drugs. In the present paper, near infrared spectroscopy (NIRS) with partial least squares (PLS) was applied to the simultaneous determination of rifampicin (RMP), isoniazide (INH) and pyrazinamide (PZA) contents in 5 varieties of anti-tuberculosis tablets. As the results showed, all of the models for the determination of RMP, INH and PZA contents applied the original NIR spectra. The most efficacious wavelength range for the determination of RMP contents was 1981-2195 nm, it was 1540-1717 nm and 2086-2197 nm for the determination of INH contents, and it was 1460-1537 nm, 1956-2022 nm and 2268-2393 nm for determination of PZA contents. The root mean square error of the calibration set obtained by cross-validation (RMSECV) of the optimum models for the quantitative analysis of RMP, INH and PZA contents was 0.0494, 0.0257 and 0.0307, respectively. Using these optimum models for the determination of RMP, INH and PZA contents in prediction set, the root mean square error of prediction set (RMSEP) was 0.0182, 0.0166 and 0.0134, respectively. The correlation coefficient (r(p)) between the predicted values and actual values was 0.9864, 0.9989 and 0.9993, respectively. These results demonstrated that this method was precise and reliable, and is significative for in situ measurement and the on-line quality control for anti-tuberculosis tablets production.

  5. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN

    Directory of Open Access Journals (Sweden)

    Barnes Karen I

    2010-12-01

    Full Text Available Abstract Background The Worldwide Antimalarial Resistance Network (WWARN is a global collaboration to support the objective that anyone affected by malaria receives effective and safe drug treatment. The Pharmacology module aims to inform optimal anti-malarial drug selection. There is an urgent need to define the drug exposure - effect relationship for most anti-malarial drugs. Few anti-malarials have had their therapeutic blood concentration levels defined. One of the main challenges in assessing safety and efficacy data in relation to drug concentrations is the comparability of data generated from different laboratories. To explain differences in anti-malarial pharmacokinetics in studies with different measurement laboratories it is necessary to confirm the accuracy of the assay methods. This requires the establishment of an external quality assurance process to assure results that can be compared. This paper describes this process. Methods The pharmacology module of WWARN has established a quality assurance/quality control (QA/QC programme consisting of two separate components: 1. A proficiency testing programme where blank human plasma spiked with certified reference material (CRM in different concentrations is sent out to participating bioanalytical laboratories. 2. A certified reference standard programme where accurately weighed amounts of certified anti-malarial reference standards, metabolites, and internal standards are sent to participating bioanalytical and in vitro laboratories. Conclusion The proficiency testing programme is designed as a cooperative effort to help participating laboratories assess their ability to carry out drug analysis, resolve any potential problem areas and to improve their results - and, in so doing, to improve the quality of anti-malarial pharmacokinetic data published and shared with WWARN. By utilizing the same source of standards for all laboratories, it is possible to minimize bias arising from poor

  6. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    OpenAIRE

    Hubbard Alan E; Dorsey Grant; Gupta Vinay; Rosenthal Philip J; Greenhouse Bryan

    2010-01-01

    Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary elec...

  7. EFFICACY OF REMAXOL AND ADEMETHIONINE IN EXPERIMENTAL LIVER DAMAGE CAUSED BY A COMBINATION OF RESERVE-SERIES ANTITUBERCULOSIS DRUGS AND ALCOHOL

    Directory of Open Access Journals (Sweden)

    D. S. Sukhanov

    2014-01-01

    Full Text Available The hepatic and endothelial protective effects of remaxol and S-adenosyl-L-methionine were studied on 24 male rats with liver damage caused by reserve-series antituberculosis drugs in combination with alcohol. The test agents were found to have a unilateral hepatoprotective effect in decreasing the blood levels of triglycerides, bilirubin, and alkaline phosphatase with a concurrent significant reduction in the manifestations of hyaline-drop and hydropic dystrophy of hepatocytes. Remaxol and ademethionine have the same endothelial protective activity manifested as normalization of an endothelium-dependent vasodilation response and endothelial dysfunction coefficient.

  8. Anti-Tuberculosis Bacteriophage D29 Delivery with a Vibrating Mesh Nebulizer, Jet Nebulizer, and Soft Mist Inhaler.

    Science.gov (United States)

    Carrigy, Nicholas B; Chang, Rachel Y; Leung, Sharon S Y; Harrison, Melissa; Petrova, Zaritza; Pope, Welkin H; Hatfull, Graham F; Britton, Warwick J; Chan, Hak-Kim; Sauvageau, Dominic; Finlay, Warren H; Vehring, Reinhard

    2017-10-01

    To compare titer reduction and delivery rate of active anti-tuberculosis bacteriophage (phage) D29 with three inhalation devices. Phage D29 lysate was amplified to a titer of 11.8 ± 0.3 log 10 (pfu/mL) and diluted 1:100 in isotonic saline. Filters captured the aerosolized saline D29 preparation emitted from three types of inhalation devices: 1) vibrating mesh nebulizer; 2) jet nebulizer; 3) soft mist inhaler. Full-plate plaque assays, performed in triplicate at multiple dilution levels with the surrogate host Mycobacterium smegmatis, were used to quantify phage titer. Respective titer reductions for the vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler were 0.4 ± 0.1, 3.7 ± 0.1, and 0.6 ± 0.3 log 10 (pfu/mL). Active phage delivery rate was significantly greater (p pfu/min) than for the jet nebulizer (5.4x10 4  ± 1.3x10 4 pfu/min). The soft mist inhaler delivered 4.6x10 6  ± 2.0x10 6 pfu per 11.6 ± 1.6 μL ex-actuator dose. Delivering active phage requires a prudent choice of inhalation device. The jet nebulizer was not a good choice for aerosolizing phage D29 under the tested conditions, due to substantial titer reduction likely occurring during droplet production. The vibrating mesh nebulizer is recommended for animal inhalation studies requiring large amounts of D29 aerosol, whereas the soft mist inhaler may be useful for self-administration of D29 aerosol.

  9. Early versus delayed initiation of antiretroviral therapy for Indian HIV-Infected individuals with tuberculosis on antituberculosis treatment.

    Science.gov (United States)

    Sinha, Sanjeev; Shekhar, Rahul C; Singh, Gurjeet; Shah, Nipam; Ahmad, Hafiz; Kumar, Narendra; Sharma, Surendra K; Samantaray, J C; Ranjan, Sanjai; Ekka, Meera; Sreenivas, Vishnu; Mitsuyasu, Ronald T

    2012-07-31

    For antiretroviral therapy (ART) naive human immunodeficiency virus (HIV) infected adults suffering from tuberculosis (TB), there is uncertainty about the optimal time to initiate highly active antiretroviral therapy (HAART) after starting antituberculosis treatment (ATT), in order to minimize mortality, HIV disease progression, and adverse events. In a randomized, open label trial at All India Institute of Medical Sciences, New Delhi, India, eligible HIV positive individuals with a diagnosis of TB were randomly assigned to receive HAART after 2-4 or 8-12 weeks of starting ATT, and were followed for 12 months after HAART initiation. Participants received directly observed therapy short course (DOTS) for TB, and an antiretroviral regimen comprising stavudine or zidovudine, lamivudine, and efavirenz. Primary end points were death from any cause, and progression of HIV disease marked by failure of ART. A total of 150 patients with HIV and TB were initiated on HAART: 88 received it after 2-4 weeks (early ART) and 62 after 8-12 weeks (delayed ART) of starting ATT. There was no significant difference in mortality between the groups after the introduction of HAART. However, incidence of ART failure was 31% in delayed versus 16% in early ART arm (p = 0.045). Kaplan Meier disease progression free survival at 12 months was 79% for early versus 64% for the delayed ART arm (p = 0.05). Rates of adverse events were similar. Early initiation of HAART for patients with HIV and TB significantly decreases incidence of HIV disease progression and has good tolerability. CTRI/2011/12/002260.

  10. The Role of Polymerase Chain Reaction (PCR in Diagnosis of Spine Tuberculosis after Pre-operative Anti-tuberculosis Treatment

    Directory of Open Access Journals (Sweden)

    AH Rasit

    2011-03-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the role of polymerase chain reaction (PCR in the diagnosis of spinal tuberculosis after 2 weeks of preoperative anti-tuberculosis treatment and to compare PCR to the Löwenstein - Jensen Culture (LJC and histopathological examination (HPE methods. METHODS: Twenty-five patients were included in this study. Sixteen patients were diagnosed and treated for spinal tuberculosis based on clinical and radiological evidence. Nine patients were controls. The LJC method and HPE of the specimen were performed according to hospital protocol. PCR was performed using primer encoding insertion of sequences IS6110 for mycobacterium tuberculosis complex. Clinical findings and radiological features were the gold standard for comparison. RESULTS: PCR results were 15 positive and one negative. The sensitivity and specificity of PCR was 94% and 100% respectively (with 95% confidence interval [CI] 67% to 99% and 63% to 100%, respectively. HPE results showed 13 were positive and 3 negative in the spinal tuberculosis group; for the control group, all were negative. Sensitivity and specificity value of HPE was 82 % and 100% respectively (with 95% confidence interval [CI] 54% to 95% and 63% to 100%, respectively. Use of LJC showed only one was positive and 15 were negative in the spinal tuberculosis group whole all nine in the control group were negative. Sensitivity and specificity value of LJC was 6% and 100% respectively (with 95% confidence interval [CI] 0.3% to 32% and 63% to 100%, respectively. CONCLUSION: Our findings showed that the PCR for Mycobacterium tuberculosis is reliable as a method for diagnosis of spinal tuberculosis, even after of 2 weeks of anti-TB treatment, with an overall sensitivity of 94% and specificity of 100%.

  11. Early versus delayed initiation of antiretroviral therapy for Indian HIV-Infected individuals with tuberculosis on antituberculosis treatment

    Directory of Open Access Journals (Sweden)

    Sinha Sanjeev

    2012-07-01

    Full Text Available Abstract Background For antiretroviral therapy (ART naive human immunodeficiency virus (HIV infected adults suffering from tuberculosis (TB, there is uncertainty about the optimal time to initiate highly active antiretroviral therapy (HAART after starting antituberculosis treatment (ATT, in order to minimize mortality, HIV disease progression, and adverse events. Methods In a randomized, open label trial at All India Institute of Medical Sciences, New Delhi, India, eligible HIV positive individuals with a diagnosis of TB were randomly assigned to receive HAART after 2-4 or 8-12 weeks of starting ATT, and were followed for 12 months after HAART initiation. Participants received directly observed therapy short course (DOTS for TB, and an antiretroviral regimen comprising stavudine or zidovudine, lamivudine, and efavirenz. Primary end points were death from any cause, and progression of HIV disease marked by failure of ART. Findings A total of 150 patients with HIV and TB were initiated on HAART: 88 received it after 2-4 weeks (early ART and 62 after 8-12 weeks (delayed ART of starting ATT. There was no significant difference in mortality between the groups after the introduction of HAART. However, incidence of ART failure was 31% in delayed versus 16% in early ART arm (p = 0.045. Kaplan Meier disease progression free survival at 12 months was 79% for early versus 64% for the delayed ART arm (p = 0.05. Rates of adverse events were similar. Interpretation Early initiation of HAART for patients with HIV and TB significantly decreases incidence of HIV disease progression and has good tolerability. Trial registration CTRI/2011/12/002260

  12. Synthesis and biological evaluation of some novel pyrido[1,2-a]pyrimidin-4-ones as antimalarial agents.

    Science.gov (United States)

    Mane, Uttam R; Mohanakrishnan, D; Sahal, Dinkar; Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2014-05-22

    Novel pyrido[1,2-a]pyrimidin-4-ones have been synthesized and evaluated for their antimalarial activity by SYBR Green I assay against erythrocytic stages of chloroquine (CQ) sensitive Pf 3D7 strain. The antimalarial screening of 42 different compounds revealed that 3-Fluorobenzyl(4-oxo-4H-pyrido [1,2-a]pyrimidin-3-yl)carbamate (21, IC50 value 33 μM) and 4-Oxo-N-[4-(trifluoromethyl)benzyl]-4H-pyrido[1,2-a]pyrimidine-3-carboxamide (37, IC50 value 37 μM) showed moderate antimalarial activity. Cytotoxicity study was performed against mammalian cell line (Huh-7) by using the MTT assay for the moderately active compounds. Structural activity relationship (SAR) studies displayed that B-ring unsubstituted pyrido[1,2-a]pyrimidine scaffold is responsible for the antimalarial activities of the evaluated derivatives. This SAR based antimalarial screening supported that pyrido[1,2-a]pyrimidin-4-one can be considered as a lead heterocyclic structure for further development of more potent derivatives for antimalarial activity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. A short synthesis and biological evaluation of potent and nontoxic antimalarial bridged bicyclic beta-sulfonyl-endoperoxides.

    Science.gov (United States)

    Bachi, Mario D; Korshin, Edward E; Hoos, Roland; Szpilman, Alex M; Ploypradith, Poonsakdi; Xie, Suji; Shapiro, Theresa A; Posner, Gary H

    2003-06-05

    The syntheses and in vitro antimalarial screening of 50 bridged, bicyclic endoperoxides of types 9-13 are reported. In contrast to antimalarial trioxanes of the artemisinin family, but like yingzhaosu A and arteflene, the peroxide function of compounds 9-13 is contained in a 2,3-dioxabicyclo[3.3.1]nonane system 6. Peroxides 9 and 10 (R(1) = OH) are readily available through a multicomponent, sequential, free-radical reaction involving thiol-monoterpenes co-oxygenation (a TOCO reaction). beta-Sulfenyl peroxides 9 and 10 (R(1) = OH) are converted into beta-sulfinyl and beta-sulfonyl peroxides of types 11-13 by controlled S-oxidation and manipulation of the tert-hydroxyl group through acylation, alkylation, or dehydration followed by selective hydrogenation. Ten enantiopure beta-sulfonyl peroxides of types 12 and 13 exhibit in vitro antimalarial activity comparable to that of artemisinin (IC(50) = 6-24 nM against Plasmodium falciparum NF54). In vivo testing of a few selected peroxides against Plasmodium berghei N indicates that the antimalarial efficacies of beta-sulfonyl peroxides 39a, 46a, 46b, and 50a are comparable to those of some of the best antimalarial drugs and are higher than artemisinin against chloroquine-resistant Plasmodium yoelii ssp. NS. In view of the nontoxicity of beta-sulfonyl peroxides 39a, 46a, and 46b in mice, at high dosing, these compounds are regarded as promising antimalarial drug candidates.

  14. Antiprotozoal activity of Neurolaena lobata.

    Science.gov (United States)

    Berger, I; Passreiter, C M; Cáceres, A; Kubelka, W

    2001-06-01

    Extracts, fractions and sesquiterpene lactones from Neurolaena lobata (L.) R. Br. (Asteraceae), a traditional medicinal plant from Guatemala, were tested in vitro against Leishmania spp. promastigotes, Trypanosoma cruzi trypomastigotes and epimastigotes and Trichomonas vaginalis trophozoites. The ethanol extract inhibited the parasite growth of L. mexicana, T. cruzi and T. vaginalis significantly. The pure germacranolides 1 and a mixture of 2 and 3, isolated from the ethonal extract, were highly active against L. mexicana and T. cruzi. Copyright 2001 John Wiley & Sons, Ltd.

  15. Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake

    Directory of Open Access Journals (Sweden)

    Carmen E Contreras

    2004-03-01

    Full Text Available The evaluation of new antimalarial agents using older methods of monitoring sensitivity to antimalarial drugs are laborious and poorly suited to discriminate stage-specific activity. We used flow cytometry to study the effect of established antimalarial compounds, cysteine protease inhibitors, and a quinolone against asexual stages of Plasmodium falciparum. Cultured P. falciparum parasites were treated for 48 h with different drug concentrations and the parasitemia was determined by flow cytometry methods after DNA staining with propidium iodide. P. falciparum erythrocytic life cycle stages were readily distinguished by flow cytometry. Activities of established and new antimalarial compounds measured by flow cytometry were equivalent to results obtained with microscopy and metabolite uptake assays. The antimalarial activity of all compounds was higher against P. falciparum trophozoite stages. Advantages of flow cytometry analysis over traditional assays included higher throughput for data collection, insight into the stage-specificity of antimalarial activity avoiding use of radioactive isotopes.

  16. 4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle.

    Science.gov (United States)

    Roberts, Bracken F; Zheng, Yongsheng; Cleaveleand, Jacob; Lee, Sukjun; Lee, Eunyoung; Ayong, Lawrence; Yuan, Yu; Chakrabarti, Debopam

    2017-04-01

    Drugs against malaria are losing their effectiveness because of emerging drug resistance. This underscores the need for novel therapeutic options for malaria with mechanism of actions distinct from current antimalarials. To identify novel pharmacophores against malaria we have screened compounds containing structural features of natural products that are pharmacologically relevant. This screening has identified a 4-nitro styrylquinoline (SQ) compound with submicromolar antiplasmodial activity and excellent selectivity. SQ exhibits a cellular action distinct from current antimalarials, acting early on malaria parasite's intraerythrocytic life cycle including merozoite invasion. The compound is a fast-acting parasitocidal agent and also exhibits curative property in the rodent malaria model when administered orally. In this report, we describe the synthesis, preliminary structure-function analysis, and the parasite developmental stage specific action of the SQ scaffold. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  18. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    Science.gov (United States)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  20. Screening of the antimalarial activity of plants of the Cucurbitaceae family

    Directory of Open Access Journals (Sweden)

    Cláudia Zuany Amorim

    1991-01-01

    Full Text Available Crude ethanolic extracts (CEEs from two species of Cucurbitaceae, Cucurbita maxima and Momordica charantia (commonly called "abóbora moranga" and melão de São Caetano", respectively were assayed for antimalarial activity by the 4-d suppressive test. The CEE of dry C. maxima seeds showed strong antimalarial activity following oral administration (259 and 500 mg/kg, reducing by 50% the levels of parasistemia in Plasmodium berghey-infected mice. Treatment of normal animals with 500 mg/Kg of the extract three days before intravenous injection of P. berghei caused a significant 30% reduction in parasitemic levels. No effect was observed when the animals were treated with the CEE only on the day of inoculation. Oral administration of the CEE of dry M. charantia leaves adminstered orally was ineffective up to 500 mg/Kg in lowering the parasitemic levels of malarious mice.

  1. New concepts in antimalarial use and mode of action in dermatology.

    Science.gov (United States)

    Kalia, Sunil; Dutz, Jan P

    2007-01-01

    Although chloroquine, hydroxychloroquine and quinacrine were originally developed for the treatment of malaria, these medications have been used to treat skin disease for over 50 years. Recent clinical data have confirmed the usefulness of these medications for the treatment of lupus erythematosus. Current research has further enhanced our understanding of the pharmacologic mechanisms of action of these drugs involving inhibition of endosomal toll-like receptor (TLR) signaling limiting B cell and dendritic cell activation. With this understanding, the use of these medications in dermatology is broadening. This article highlights the different antimalarials used within dermatology through their pharmacologic properties and mechanism of action, as well as indicating their clinical uses. In addition, contraindications, adverse effects, and possible drug interactions of antimalarials are reviewed.

  2. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues.

    Science.gov (United States)

    Cunico, Wilson; Cechinel, Cleber A; Bonacorso, Helio G; Martins, Marcos A P; Zanatta, Nilo; de Souza, Marcus V N; Freitas, Isabela O; Soares, Rodrigo P P; Krettli, Antoniana U

    2006-02-01

    The antimalarial activity of chloroquine-pyrazole analogues, synthesized from the reaction of 1,1,1-trifluoro-4-methoxy-3-alken-2-ones with 4-hydrazino-7-chloroquinoline, has been evaluated in vitro against a chloroquine resistant Plasmodium falciparum clone. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]hypoxanthine in comparison to controls with no drugs. All but one of the eight (4,5-dihydropyrazol-1-yl) chloroquine 2 derivatives tested showed a significant activity in vitro, thus, are a promising new class of antimalarials. The three most active ones were also tested in vivo against Plasmodium berghei in mice. However, the (pyrazol-1-yl) chloroquine 3 derivatives were mostly inactive, suggesting that the aromatic functionality of the pyrazole ring was critical.

  3. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas.

    Science.gov (United States)

    Ekoue-Kovi, Kekeli; Yearick, Kimberly; Iwaniuk, Daniel P; Natarajan, Jayakumar K; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activities of more than 50 7-chloro-4-aminoquinolyl-derived sulfonamides 3-8 and 11-26, ureas 19-22, thioureas 23-26, and amides 27-54. Many of the CQ analogues prepared for this study showed submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strains of Plasmodium falciparum) and low resistance indices were obtained in most cases. Systematic variation of the side chain length and introduction of fluorinated aliphatic and aromatic termini revealed promising leads that overcome CQ resistance. In particular, sulfonamide 3 exhibiting a short side chain with a terminal dansyl moiety combined high antiplasmodial potency with a low resistance index and showed IC(50)s of 17.5 and 22.7 nM against HB3 and Dd2 parasites.

  4. Detection of In Vitro Antimalarial Activity of Some Myanmar Medicinal Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ei, Shun Lai; Mon, Hla Myat; Myint, Khin Htay

    2008-06-15

    In order to find out the novel effective antimalarials. six medicinal plants, namely Erythrina stricta Roxb. (Kathit), Luffa acutangula Roxb. (Thabut - Kja), Cordia rothii Roem. and Schult. (Thanet), Tribulus terrestris Linn. (Sule). Zizphus oenoplia Mill. (Paung - pe) and Mimusops elengi Roxb. (Khaye) were selected and tested for their antimalarial activity by using in vitro microdilution technique. According to the in vitro test results, Erythrina stricta Roxb. (Kathit) was found to possess significant suppressive effect on Plasmodium falciparum. With the serially diluted extract dosage concentrations ranging from 1.250 ng/ml to 40,000 ng/ml, the schizont suppressive percentage of Eryhrina stricta Roxb. (Kathi) was observed to be 19.57%, 35.44%, 55.18%, 96.04%,100% and 100% respectively.

  5. Detection of In Vitro Antimalarial Activity of Some Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    Shun Lai Ei; Hla Myat Mon; Khin Htay Myint

    2008-06-01

    In order to find out the novel effective antimalarials. six medicinal plants, namely Erythrina stricta Roxb. (Kathit), Luffa acutangula Roxb. (Thabut - Kja), Cordia rothii Roem. and Schult. (Thanet), Tribulus terrestris Linn. (Sule). Zizphus oenoplia Mill. (Paung - pe) and Mimusops elengi Roxb. (Khaye) were selected and tested for their antimalarial activity by using in vitro microdilution technique. According to the in vitro test results, Erythrina stricta Roxb. (Kathit) was found to possess significant suppressive effect on Plasmodium falciparum. With the serially diluted extract dosage concentrations ranging from 1.250 ng/ml to 40,000 ng/ml, the schizont suppressive percentage of Eryhrina stricta Roxb. (Kathi) was observed to be 19.57%, 35.44%, 55.18%, 96.04%,100% and 100% respectively

  6. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Directory of Open Access Journals (Sweden)

    Swain Bijay K

    2009-02-01

    Full Text Available Abstract Background Herbal extracts of Andrographis paniculata (AP and Hedyotis corymbosa (HC are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20 and resistant (MRC-pf-303 strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50 of AP (7.2 μg/ml was found better than HC (10.8 μg/ml. Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC and their individual synergism with curcumin (AP+CUR, HC+CUR were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs.

  7. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Science.gov (United States)

    Mishra, Kirti; Dash, Aditya P; Swain, Bijay K; Dey, Nrisingha

    2009-01-01

    Background Herbal extracts of Andrographis paniculata (AP) and Hedyotis corymbosa (HC) are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20) and resistant (MRC-pf-303) strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50) of AP (7.2 μg/ml) was found better than HC (10.8 μg/ml). Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC) and their individual synergism with curcumin (AP+CUR, HC+CUR) were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs. PMID:19216765

  8. Malaria healthcare policy change in Kenya: implications on sales and marketing of antimalarials.

    Science.gov (United States)

    Ngure, Peter K; Nyaoke, Lorraine; Minja, David

    2012-03-01

    Malaria healthcare policy change in Kenya aimed at improving the control of malaria but faced a number of challenges in implementation related to marketing of the drugs. This research investigated the effect of the change of the national malaria policy on drug sales and strategic marketing responses of antimalarial pharmaceutical companies in Kenya. A descriptive cross-sectional design was employed to describe the existing state of antimalarials market in Kenya after the change of the malaria healthcare policy. Policy change did result in an increase in the sales of Coartem®. Novartis Pharma recorded a 97% growth in sales of Coartem® between 2003 and 2004. However, this increase was not experienced by all the companies. Further, SPs (which had been replaced as first-line therapy for malaria) registered good sales. In most cases, these sales were higher than the sales of Coartem®. Generally, the sales contribution of SPs and generic antimalarial medicines exceeded that of Coartem® for most distributors. The most common change made to marketing strategies by distributors (62.5%) was to increase imports of antimalarials. A total of 40% of the manufacturers preferred to increase their budgetary allocation for marketing activities. In view of the fact that continued sale of SP drugs and limited availability of AL poses the risk of increasing the incidence of malaria in Kenya, it is therefore, recommended that pharmacy surveillance systems be strengthened to ensure drugs that have been rendered non-viable or that prescription-only medicines are not sold contrary to the national guidelines.

  9. Preliminary assessment of medicinal plants used as antimalarials in the southeastern Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Caraballo Alejandro

    2004-01-01

    Full Text Available Eighteen species of medicinal plants used in the treatment of malaria in Bolívar State, Venezuela were recorded and they belonged to Compositae, Meliaceae, Anacardiaceae, Bixaceae, Boraginaceae, Caricaceae, Cucurbitaceae, Euphorbiaceae, Leguminosae, Myrtaceae, Phytolaccaceae, Plantaginaceae, Scrophulariaceae, Solanaceae and Verbenaceae families. Antimalarial plant activities have been linked to a range of compounds including anthroquinones, berberine, flavonoids, limonoids, naphthquinones, sesquiterpenes, quassinoids, indol and quinoline alkaloids.

  10. Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals.

    Science.gov (United States)

    Shibi, Indira G; Aswathy, Lilly; Jisha, Radhakrishnan S; Masand, Vijay H; Gajbhiye, Jayant M

    2016-01-01

    Malaria parasites show resistance to most of the antimalarial drugs and hence developing antimalarials which can act on multitargets rather than a single target will be a promising strategy of drug design. Here we report a new approach by which virtual screening of 292 unique phytochemicals present in 72 traditionally important herbs is used for finding out inhibitors of plasmepsin-2 and falcipain-2 for antimalarial activity against P. falciparum. Initial screenings of the selected molecules by Random Forest algorithm model of Weka using the bioassay datasets AID 504850 and AID 2302 screened 120 out of the total 292 phytochemicals to be active against the targets. Toxtree scan cautioned 21 compounds to be either carcinogenic or mutagenic and were thus removed for further analysis. Out of the remaining 99 compounds, only 46 compounds offered drug-likeness as per the 'rule of five' criteria. Out of ten antimalarial drug targets, only two target proteins such as 3BPF and 3PNR of falcipain-2 and 1PFZ and 2BJU of plasmepsin-2 are selected as targets. The potential binding of the selected 46 compounds to the active sites of these four targets was analyzed using MOE software. The docked conformations and the interactions with the binding pocket residues of the target proteins were understood by 'Ligplot' analysis. It has been found that 8 compounds are dual inhibitors of falcipain-2 and plasmepsin-2, with the best binding energies. Compound 117 (6aR, 12aS)-12a-Hydroxy-9-methoxy-2,3-dimethylenedioxy-8-prenylrotenone (Usaratenoid C) present in the plant Millettia usaramensis showed maximum molecular docking score.

  11. Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity.

    Science.gov (United States)

    Levatić, Jurica; Pavić, Kristina; Perković, Ivana; Uzelac, Lidija; Ester, Katja; Kralj, Marijeta; Kaiser, Marcel; Rottmann, Matthias; Supek, Fran; Zorc, Branka

    2018-02-25

    Primaquine (PQ) is a commonly used drug that can prevent the transmission of Plasmodium falciparum malaria, however toxicity limits its use. We prepared five groups of PQ derivatives: amides 1a-k, ureas 2a-k, semicarbazides 3a,b, acylsemicarbazides 4a-k and bis-ureas 5a-v, and evaluated them for antimalarial activity in vitro against the erythrocytic stage of P. falciparum NF54. Particular substituents, such as trityl (in 2j and 5r) and methoxybenzhydryl (in 3b and 5v) were associated with a favorable cytotoxicity-to-activity ratio. To systematically link structural features of PQ derivatives to antiplasmodial activity, we performed a quantitative structure-activity relationship (QSAR) study using the Support Vector Machines machine learning method. This yielded a highly accurate statistical model (R 2  = 0.776 in cross-validation), which was used to prioritize novel candidate compounds. Seven novel PQ-ureidoamides 10a-g were synthesized and evaluated for activity, highlighting the benzhydryl ureidoamides 10e and 10f derived from p-chlorophenylglycine. Further experiments on human cell lines revealed that 10e and 10f are an order of magnitude less toxic than PQ in vitro while having antimalarial activity indistinguishable from PQ. The toxicity profile of novel compounds 10 toward human cells was particularly favorable when the glucose-6-phosphate dehydrogenase (G6PD) was inhibited, while toxicity of PQ was exacerbated by G6PD inhibition. Our work therefore highlights promising lead compounds for the development of effective antimalarial drugs that may also be safer for G6PD-deficient patients. In addition, we provide computational inferences of antimalarial activity and cytotoxicity for thousands of PQ-like molecular structures. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays.

    Science.gov (United States)

    Okokon, Jude E; Antia, Bassey S; Mohanakrishnan, Dinesh; Sahal, Dinkar

    2017-12-01

    Zea mays L. (Poacae) husk decoctions are traditionally used in the treatment of malaria by various tribes in Nigeria. To assess the antimalarial and antiplasmodial potentials of the husk extract and fractions on malaria parasites using in vivo and in vitro models. The ethanol husk extract and fractions (187-748 mg/kg, p.o.) of Zea mays were investigated for antimalarial activity against Plasmodium berghei using rodent (mice) malaria models and in vitro activity against chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using the SRBR green assay method. Median lethal dose and cytotoxic activities against HeLa and HEKS cells were also carried out. The GCMS analysis of the most active fraction was carried out. The husk extract (187-748 mg/kg, p.o.) with LD 50 of 1874.83 mg/kg was found to exert significant (p antimalarial activity against P. berghei infection in suppressive, prophylactive and curative tests. The crude extract and fractions also exerted prominent activity against both chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of P. falciparum with the ethyl acetate fraction exerting the highest activity with IC 50 values of 9.31 ± 0.46 μg/mL (Pf 3D7) and 3.69 ± 0.66 μg/mL (Pf INDO). The crude extract and fractions were not cytotoxic to the two cell lines tested with IC 50 values of >100 μg/mL against both HeLa and HEKS cell lines. These results suggest that the husk extract/fractions of Zea mays possesses antimalarial and antiplasmodial activities and these justify its use in ethnomedicine to treat malaria infections.

  13. Antimalarial peroxides: the first intramolecular 1,2,4,5-tetraoxane

    Directory of Open Access Journals (Sweden)

    BOGDAN A. SOLAJA

    2002-07-01

    Full Text Available An intramolecular steroidal 1,2,4,5-tetraoxane has been synthesised in six steps starting from methyl 3-oxo-7a,12a-diacetoxy-5b-cholan-24-oate. The synthesised 1,2,4,5-tetraoxane has moderate in vitro antimalarial activity against P. falciparum strains (IC50 (D6 = 0.35 mg/mL; IC50 (W2 = 0.29 mg/mL.

  14. Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues

    OpenAIRE

    Bianca C Perez; Iva Fernandes; Nuno Mateus; Catia Teixeira; Paula Gomes

    2013-01-01

    Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines t...

  15. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review

    OpenAIRE

    Arezoo Rafiee Parhizgar; Azar Tahghighi

    2017-01-01

    Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the othe...

  16. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials.

    Science.gov (United States)

    Conroy, Trent; Guo, Jin T; Elias, Nabiha; Cergol, Katie M; Gut, Jiri; Legac, Jennifer; Khatoon, Lubna; Liu, Yang; McGowan, Sheena; Rosenthal, Philip J; Hunt, Nicholas H; Payne, Richard J

    2014-12-26

    Analogues of the natural product gallinamide A were prepared to elucidate novel inhibitors of the falcipain cysteine proteases. Analogues exhibited potent inhibition of falcipain-2 (FP-2) and falcipain-3 (FP-3) and of the development of Plasmodium falciparum in vitro. Several compounds were equipotent to chloroquine as inhibitors of the 3D7 strain of P. falciparum and maintained potent activity against the chloroquine-resistant Dd2 parasite. These compounds serve as promising leads for the development of novel antimalarial agents.

  17. The Antimalarial Effect of Curcumin Is Mediated by the Inhibition of Glycogen Synthase Kinase-3β.

    Science.gov (United States)

    Ali, Amatul Hamizah; Sudi, Suhaini; Basir, Rusliza; Embi, Noor; Sidek, Hasidah Mohd

    2017-02-01

    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.

  18. A genome wide association study of Plasmodium falciparum susceptibility to 22 antimalarial drugs in Kenya.

    Directory of Open Access Journals (Sweden)

    Jason P Wendler

    Full Text Available Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs.Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set.Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.

  19. How patients take malaria treatment: a systematic review of the literature on adherence to antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    Katia Bruxvoort

    Full Text Available BACKGROUND: High levels of patient adherence to antimalarial treatment are important in ensuring drug effectiveness. To achieve this goal, it is important to understand levels of patient adherence, and the range of study designs and methodological challenges involved in measuring adherence and interpreting results. Since antimalarial adherence was reviewed in 2004, there has been a major expansion in the use of artemisinin-based combination therapies (ACTs in the public sector, as well as initiatives to make them more widely accessible through community health workers and private retailers. These changes and the large number of recent adherence studies raise the need for an updated review on this topic. OBJECTIVE: We conducted a systematic review of studies reporting quantitative results on patient adherence to antimalarials obtained for treatment. RESULTS: The 55 studies identified reported extensive variation in patient adherence to antimalarials, with many studies reporting very high adherence (90-100% and others finding adherence of less than 50%. We identified five overarching approaches to assessing adherence based on the definition of adherence and the methods used to measure it. Overall, there was no clear pattern in adherence results by approach. However, adherence tended to be higher among studies where informed consent was collected at the time of obtaining the drug, where patient consultations were directly observed by research staff, and where a diagnostic test was obtained. CONCLUSION: Variations in reported adherence may reflect factors related to patient characteristics and the nature of their consultation with the provider, as well as methodological variations such as interaction between the research team and patients before and during the treatment. Future studies can benefit from an awareness of the impact of study procedures on adherence outcomes, and the identification of improved measurement methods less dependent on self-report.

  20. How patients take malaria treatment: a systematic review of the literature on adherence to antimalarial drugs.

    Science.gov (United States)

    Bruxvoort, Katia; Goodman, Catherine; Kachur, S Patrick; Schellenberg, David

    2014-01-01

    High levels of patient adherence to antimalarial treatment are important in ensuring drug effectiveness. To achieve this goal, it is important to understand levels of patient adherence, and the range of study designs and methodological challenges involved in measuring adherence and interpreting results. Since antimalarial adherence was reviewed in 2004, there has been a major expansion in the use of artemisinin-based combination therapies (ACTs) in the public sector, as well as initiatives to make them more widely accessible through community health workers and private retailers. These changes and the large number of recent adherence studies raise the need for an updated review on this topic. We conducted a systematic review of studies reporting quantitative results on patient adherence to antimalarials obtained for treatment. The 55 studies identified reported extensive variation in patient adherence to antimalarials, with many studies reporting very high adherence (90-100%) and others finding adherence of less than 50%. We identified five overarching approaches to assessing adherence based on the definition of adherence and the methods used to measure it. Overall, there was no clear pattern in adherence results by approach. However, adherence tended to be higher among studies where informed consent was collected at the time of obtaining the drug, where patient consultations were directly observed by research staff, and where a diagnostic test was obtained. Variations in reported adherence may reflect factors related to patient characteristics and the nature of their consultation with the provider, as well as methodological variations such as interaction between the research team and patients before and during the treatment. Future studies can benefit from an awareness of the impact of study procedures on adherence outcomes, and the identification of improved measurement methods less dependent on self-report.

  1. Antimalarial Activity of Orally Administered Curcumin Incorporated in Eudragit®-Containing Liposomes

    Directory of Open Access Journals (Sweden)

    Elisabet Martí Coma-Cros

    2018-05-01

    Full Text Available Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes or the water-soluble dextrin Nutriose® FM06 (Eudragit-nutriosomes. Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg−1·day−1, only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii-infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.

  2. Muddled mechanisms: recent progress towards antimalarial target identification [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rachel L. Edwards

    2016-10-01

    Full Text Available In the past decade, malaria rates have plummeted as a result of aggressive infection control measures and the adoption of artemisinin-based combination therapies (ACTs. However, a potential crisis looms ahead. Treatment failures to standard antimalarial regimens have been reported in Southeast Asia, and devastating consequences are expected if resistance spreads to the African continent. To prevent a potential public health emergency, the antimalarial arsenal must contain therapeutics with novel mechanisms of action (MOA. An impressive number of high-throughput screening (HTS campaigns have since been launched, identifying thousands of compounds with activity against one of the causative agents of malaria, Plasmodium falciparum. Now begins the difficult task of target identification, for which studies are often tedious, labor intensive, and difficult to interpret. In this review, we highlight approaches that have been instrumental in tackling the challenges of target assignment and elucidation of the MOA for hit compounds. Studies that apply these innovative techniques to antimalarial target identification are described, as well as the impact of the data in the field.

  3. Development in Assay Methods for in Vitro Antimalarial Drug Efficacy Testing: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Shweta Sinha

    2017-10-01

    Full Text Available The emergence and spread of drug resistance are the major challenges in malaria eradication mission. Besides various strategies laid down by World Health Organization, such as vector management, source reduction, early case detection, prompt treatment, and development of new diagnostics and vaccines, nevertheless the need for new and efficacious drugs against malaria has become a critical priority on the global malaria research agenda. At several screening stages, millions of compounds are screened (1,000–2,000,000 compounds per screening campaign, before pre-clinical trials to select optimum lead. Carrying out in vitro screening of antimalarials is very difficult as different assay methods are subject to numerous sources of variability across different laboratories around the globe. Despite this, in vitro screening is an essential part of antimalarial drug development as it enables to resource various confounding factors such as host immune response and drug–drug interaction. Therefore, in this article, we try to illustrate the basic necessity behind in vitro study and how new methods are developed and subsequently adopted for high-throughput antimalarial drug screening and its application in achieving the next level of in vitro screening based on the current approaches (such as stem cells.

  4. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.

    Science.gov (United States)

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M; Ruecker, Andrea; Kumar, T R Santha; Rubiano, Kelly; Ferreira, Pedro E; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P; Ng, Caroline L; Murithi, James M; Corey, Victoria C; Duffy, Sandra; Lieberman, Ori J; Veiga, M Isabel; Sinden, Robert E; Alano, Pietro; Delves, Michael J; Lee Sim, Kim; Winzeler, Elizabeth A; Egan, Timothy J; Hoffman, Stephen L; Avery, Vicky M; Fidock, David A

    2017-10-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.

  5. Antimalarial Activity of the Chemical Constituents of the Leaf Latex of Aloe pulcherrima Gilbert and Sebsebe.

    Science.gov (United States)

    Teka, Tekleab; Bisrat, Daniel; Yeshak, Mariamawit Yonathan; Asres, Kaleab

    2016-10-28

    Malaria is one of the three major global public health threats due to a wide spread resistance of the parasites to the standard antimalarial drugs. Considering this growing problem, the ethnomedicinal approach in the search for new antimalarial drugs from plant sources has proven to be more effective and inexpensive. The leaves of Aloe pulcherrima Gilbert and Sebsebe, an endemic Ethiopian plant, are locally used for the treatment of malaria and other infectious diseases. Application of the leaf latex of A. pulcherrima on preparative silica gel TLC led to the isolation of two C -glycosylated anthrones, identified as nataloin ( 1 ) and 7-hydroxyaloin ( 2 ) by spectroscopic techniques (UV, IR, ¹H- and 13 C-NMR, HR-ESIMS). Both the latex and isolated compounds displayed antimalarial activity in a dose-independent manner using a four-day suppressive test, with the highest percent suppression of 56.2% achieved at 200 mg/kg/day for 2 . The results indicate that both the leaf latex of A. pulcherrima and its two major constituents are endowed with antiplasmodial activities, which support the traditional use of the leaves of the plant for the treatment of malaria.

  6. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity

    Science.gov (United States)

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M.; Ruecker, Andrea; Kumar, T.R. Santha; Rubiano, Kelly; Ferreira, Pedro E.; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P.; Ng, Caroline L.; Murithi, James M.; Corey, Victoria C.; Duffy, Sandra; Lieberman, Ori J.; Veiga, M. Isabel; Sinden, Robert E.; Alano, Pietro; Delves, Michael J.; Sim, Kim Lee; Winzeler, Elizabeth A.; Egan, Timothy J.; Hoffman, Stephen L.; Avery, Vicky M.; Fidock, David A.

    2017-01-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress P. berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR/Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 as a determinant of parasite resistance to HHQs. Hemoglobin and heme fractionation assays suggest a mode of action that results in reduced hemozoin levels and might involve inhibition of host hemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs including lumefantrine, confirming that HHQs have a different mode of action than other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria. PMID:28808258

  7. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    Science.gov (United States)

    Vaidya, Akhil B.; Morrisey, Joanne M.; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M.; Otto, Thomas D.; Spillman, Natalie J.; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F.; Price, Ric N.; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A.; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W.

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  8. High Accumulation and In Vivo Recycling of the New Antimalarial Albitiazolium Lead to Rapid Parasite Death.

    Science.gov (United States)

    Wein, Sharon; Taudon, Nicolas; Maynadier, Marjorie; Tran Van Ba, Christophe; Margout, Delphine; Bordat, Yann; Fraisse, Laurent; Wengelnik, Kai; Cerdan, Rachel; Bressolle-Gomeni, Françoise; Vial, Henri J

    2017-08-01

    Albitiazolium is the lead compound of bisthiazolium choline analogues and exerts powerful in vitro and in vivo antimalarial activities. Here we provide new insight into the fate of albitiazolium in vivo in mice and how it exerts its pharmacological activity. We show that the drug exhibits rapid and potent activity and has very favorable pharmacokinetic and pharmacodynamic properties. Pharmacokinetic studies in Plasmodium vinckei -infected mice indicated that albitiazolium rapidly and specifically accumulates to a great extent (cellular accumulation ratio, >150) in infected erythrocytes. Unexpectedly, plasma concentrations and the area under concentration-time curves increased by 15% and 69% when mice were infected at 0.9% and 8.9% parasitemia, respectively. Albitiazolium that had accumulated in infected erythrocytes and in the spleen was released into the plasma, where it was then available for another round of pharmacological activity. This recycling of the accumulated drug, after the rupture of the infected erythrocytes, likely extends its pharmacological effect. We also established a new viability assay in the P. vinckei -infected mouse model to discriminate between fast- and slow-acting antimalarials. We found that albitiazolium impaired parasite viability in less than 6 and 3 h at the ring and late stages, respectively, while parasite morphology was affected more belatedly. This highlights that viability and morphology are two parameters that can be differentially affected by a drug treatment, an element that should be taken into account when screening new antimalarial drugs. Copyright © 2017 American Society for Microbiology.

  9. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    Science.gov (United States)

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Synthesis and evaluation of 7-substituted 4-aminoquinoline analogues for antimalarial activity.

    Science.gov (United States)

    Hwang, Jong Yeon; Kawasuji, Takashi; Lowes, David J; Clark, Julie A; Connelly, Michele C; Zhu, Fangyi; Guiguemde, W Armand; Sigal, Martina S; Wilson, Emily B; Derisi, Joseph L; Guy, R Kiplin

    2011-10-27

    We previously reported that substituted 4-aminoquinolines with a phenyl ether substituent at the 7-position of the quinoline ring and the capability of intramolecular hydrogen bonding between the protonated amine on the side chain and a hydrogen bond acceptor on the amine's alkyl substituents exhibited potent antimalarial activity against the multidrug resistant strain P. falciparum W2. We employed a parallel synthetic method to generate diaryl ether, biaryl, and alkylaryl 4-aminoquinoline analogues in the background of a limited number of side chain variations that had previously afforded potent 4-aminoquinolines. All subsets were evaluated for their antimalarial activity against the chloroquine-sensitive strain 3D7 and the chloroquine-resistant K1 strain as well as for cytotoxicity against mammalian cell lines. While all three arrays showed good antimalarial activity, only the biaryl-containing subset showed consistently good potency against the drug-resistant K1 strain and good selectivity with regard to mammalian cytotoxicity. Overall, our data indicate that the biaryl-containing series contains promising candidates for further study.

  11. Role of Quinone Reductase 2 in the Antimalarial Properties of Indolone-Type Derivatives

    Directory of Open Access Journals (Sweden)

    Laure-Estelle Cassagnes

    2017-01-01

    Full Text Available Indolone-N-oxides have antiplasmodial properties against Plasmodium falciparum at the erythrocytic stage, with IC50 values in the nanomolar range. The mechanism of action of indolone derivatives involves the production of free radicals, which follows their bioreduction by an unknown mechanism. In this study, we hypothesized that human quinone reductase 2 (hQR2, known to act as a flavin redox switch upon binding to the broadly used antimalarial chloroquine, could be involved in the activity of the redox-active indolone derivatives. Therefore, we investigated the role of hQR2 in the reduction of indolone derivatives. We analyzed the interaction between hQR2 and several indolone-type derivatives by examining enzymatic kinetics, the substrate/protein complex structure with X-ray diffraction analysis, and the production of free radicals with electron paramagnetic resonance. The reduction of each compound in cells overexpressing hQR2 was compared to its reduction in naïve cells. This process could be inhibited by the specific hQR2 inhibitor, S29434. These results confirmed that the anti-malarial activity of indolone-type derivatives was linked to their ability to serve as hQR2 substrates and not as hQR2 inhibitors as reported for chloroquine, leading to the possibility that substrate of hQR2 could be considered as a new avenue for the design of new antimalarial compounds.

  12. Microbial burden of some herbal antimalarials marketed at Elele, Rivers State.

    Science.gov (United States)

    Tatfeng, Y M; Olama, E H; Ojo, T O

    2009-12-30

    Herbal antimalarials still remain an alternative to our traditional communities who can not afford orthodox antimalarials. This study was aimed at investigating the microbial quality of six herbal antimalarials using standard microbiological methods. Of the six preparations analyzed, "schnapps", palm wine and water were the media of preparation; the water base preparations recorded higher microbial load. The mean microbial load was 159.5 × 10(5) cfu/ml and 217.4 × 10(2)cfu/ml in water and alcohol base preparations respectively. The microbial profile of the preparations showed that the schnapps base preparations were predominantly contaminated with Bacillus sp (Aerobic spore bearers) and Mucor spp. The palm wine preparation harboured Bacillus sp, yeasts and Mucor spp while the water base preparations had several isolates such as Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli 0157H7, Proteus mirabilis, Enterococcus feacalis, Serratia marcensces, Staph. aureus, Bacillus spp and Mucor spp. Conclusively, this study underlines the public health importance of these preparations given the high burden of such human pathogen as Ecoli O157H7, Ps aeruginosa, Stahp aureus, etc. in the preparations.

  13. Substantially Higher and Earlier Occurrence of Anti-Tuberculosis Drug-Related Adverse Reactions in HIV Coinfected Tuberculosis Patients: A Matched-Cohort Study.

    Science.gov (United States)

    Matono, Takashi; Nishijima, Takeshi; Teruya, Katsuji; Morino, Eriko; Takasaki, Jin; Gatanaga, Hiroyuki; Kikuchi, Yoshimi; Kaku, Mitsuo; Oka, Shinichi

    2017-11-01

    Little information exists on the frequency, severity, and timing of first-line anti-tuberculosis drug-related adverse events (TB-AEs) in HIV-tuberculosis coinfected (HIV-TB) patients in the antiretroviral therapy (ART) era. This matched-cohort study included HIV-TB patients as cases and HIV-uninfected tuberculosis (non-HIV-TB) patients as controls. Tuberculosis was culture-confirmed in both groups. Cases were matched to controls in a 1:4 ratio on age, sex, and year of diagnosis. TB-AEs were defined as Grade 2 or higher requiring drug discontinuation/regimen change. From 2003 to 2015, 94 cases and 376 controls were analyzed (95% men, 98% Asians). Standard four-drug combination therapy was initiated in 91% of cases and 89% of controls (p = 0.45). Cases had a higher frequency of TB-AE [51% (48/94) vs. 10% (39/376), p tuberculosis treatment. HIV infection was an independent risk factor for TB-AEs in the multivariate Cox analysis [adjusted HR (aHR): 6.96; 95% confidence interval: 3.93-12.3]. TB-AEs occurred more frequently in HIV-TB than in non-HIV-TB patients, and were more severe. The majority of TB-AEs occurred within 4 weeks of initiating anti-tuberculosis treatment. Because TB-AEs may delay ART initiation, careful monitoring during this period is warranted in coinfected patients.

  14. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

    Directory of Open Access Journals (Sweden)

    Kryzhanovsky D.G.

    2014-11-01

    Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

  15. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay.

    Science.gov (United States)

    Linares, María; Viera, Sara; Crespo, Benigno; Franco, Virginia; Gómez-Lorenzo, María G; Jiménez-Díaz, María Belén; Angulo-Barturen, Íñigo; Sanz, Laura María; Gamo, Francisco-Javier

    2015-11-05

    The emergence of Plasmodium falciparum resistance to artemisinins threatens to undermine the effectiveness of artemisinin-based combination anti-malarial therapy. Developing suitable drugs to replace artemisinins requires the identification of new compounds that display rapid parasite killing kinetics. However, no current methods fully meet the requirements to screen large compound libraries for candidates with such properties. This study describes the development and validation of an in vitro parasite viability fast assay for identifying rapidly parasiticidal anti-malarial drugs. Parasite killing kinetics were determined by first culturing unlabelled erythrocytes with P. falciparum in the presence of anti-malarial drugs for 24 or 48 h. After removing the drug, samples were added to erythrocytes pre-labelled with intracellular dye to allow their subsequent identification. The ability of viable parasites to re-establish infection in labelled erythrocytes could then be detected by two-colour flow cytometry after tagging of parasite DNA. Thus, double-stained erythrocytes (with the pre-labelled intracellular dye and the parasite DNA dye) result only after establishment of new infections by surviving parasites. The capacity of the test anti-malarial drugs to eliminate viable parasites within 24 or 48 h could, therefore, be determined. The parasite viability fast assay could be completed within 48 h following drug treatment and distinguished between rapidly parasiticidal anti-malarial drugs versus those acting more slowly. The assay was validated against ten standard anti-malarial agents with known properties and results correlated well with established methods. An abbreviated assay, suitable for adaption to medium-high throughput screening, was validated and applied against a set of 20 compounds retrieved from the publically available Medicines for Malaria Venture 'Malaria Box'. The quantification of new infections to determine parasite viability offers important

  16. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.

    Science.gov (United States)

    Wicht, Kathryn J; Combrinck, Jill M; Smith, Peter J; Egan, Timothy J

    2015-08-15

    A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against Plasmodium falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5000 commercially available compounds (Aldrich(CPR)) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence.

    Science.gov (United States)

    Karunamoorthi, Kaliyaperumal

    2014-06-02

    The counterfeiting of anti-malarials represents a form of attack on global public health in which fake and substandard anti-malarials serve as de facto weapons of mass destruction, particularly in resource-constrained endemic settings, where malaria causes nearly 660,000 preventable deaths and threatens millions of lives annually. It has been estimated that fake anti-malarials contribute to nearly 450,000 preventable deaths every year. This crime against humanity is often underestimated or ignored. This study attempts to describe and characterize the direct and indirect effects of counterfeit anti-malarials on public health, clinical care and socio-economic conditions. A search was performed using key databases, WHO documents, and English language search engines. Of 262 potential articles that were identified using a fixed set of criteria, a convenience sample of 105 appropriate articles was selected for this review. Artemisinin-based combination therapy (ACT) is an important tool in the fight against malaria, but a sizable number of patients are unable to afford to this first-line treatment. Consequently, patients tend to procure cheaper anti-malarials, which may be fake or substandard. Forensic palynology reveals that counterfeits originate in Asia. Fragile drug regulations, ineffective law-enforcement agencies and corruption further burden ailing healthcare facilities. Substandard/fake anti-malarials can cause (a) economic sabotage; (b) therapeutic failure; (c) increased risk of the emergence and spread of resistant strains of Plasmodium falciparum and Plasmodium vivax; (d) an undermining of trust/confidence in healthcare stakeholders/systems; and, (e) serious side effects or death. Combating counterfeit anti-malarials is a complex task due to limited resources and poor techniques for the detection and identification of fake anti-malarials. This situation calls for sustainable, global, scientific research and policy change. Further, responsible stakeholders in

  18. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

    Science.gov (United States)

    Plouffe, David; Brinker, Achim; McNamara, Case; Henson, Kerstin; Kato, Nobutaka; Kuhen, Kelli; Nagle, Advait; Adrián, Francisco; Matzen, Jason T.; Anderson, Paul; Nam, Tae-gyu; Gray, Nathanael S.; Chatterjee, Arnab; Janes, Jeff; Yan, S. Frank; Trager, Richard; Caldwell, Jeremy S.; Schultz, Peter G.; Zhou, Yingyao; Winzeler, Elizabeth A.

    2008-01-01

    The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities. PMID:18579783

  19. The susceptibility of anti-tuberculosis drug-induced liver injury and chronic hepatitis C infection: A systematic review and meta-analysis.

    Science.gov (United States)

    Chang, Tien-En; Huang, Yi-Shin; Chang, Chih-Hao; Perng, Chin-Lin; Huang, Yi-Hsiang; Hou, Ming-Chih

    2018-02-01

    Anti-tuberculosis drug-induced liver injury (ATDILI) is a major safety concern in the treatment of tuberculosis (TB). The impact of chronic hepatitis C (CHC) infection on the risk of ATDILI is still controversial. We aimed to assess the influence of CHC infection on ATDILI through a systematic review and meta-analysis. We systemically reviewed all English-language literature in the major medical databases with the subject search terms "anti-tuberculosis drug-induced liver injury" and "anti-tuberculosis drug-induced hepatotoxicity". We then performed a systematic review and meta-analysis of the papers relevant to hepatitis C in qualified publications. A total of 14 studies were eligible for analysis, which included 516 cases with ATDILI and 4301 controls without ATDILI. The pooled odds ratio (OR) of all studies for CHC infection to ATDILI was 3.21 (95% confidence interval (CI): 2.30-4.49). Subgroup analysis revealed that the CHC carriers had a higher risk of ATDILI than those without CHC both in Asians (OR = 2.96, 95% CI: 1.79-4.90) and Caucasians (OR = 4.07, 95% CI: 2.70-6.14), in those receiving standard four combination anti-TB therapy (OR = 2.94, 95% CI: 1.95-4.41) and isoniazid monotherapy (OR = 4.18, 95% CI: 2.36-7.40), in those with a strict definition of DILI (serum alanine aminotransferase [ALT] > 5 upper limit of normal value [ULN], OR = 2.59, 95% CI: 1.58-4.25) and a loose definition of DILI (ALT > 2 or 3 ULN, OR = 4.34, 95% CI: 2.96-6.37), and in prospective studies (OR = 4.16, 95% CI: 2.93-5.90) and case-control studies (OR = 2.43, 95% CI: 1.29-4.58). This meta-analysis suggests that CHC infection may increase the risk of ATDILI. Regular liver tests are mandatory for CHC carriers under anti-TB therapy. Copyright © 2017. Published by Elsevier Taiwan LLC.

  20. Antimalarial efficacy of nine medicinal plants traditionally used by the Karens of Andaman and Nicobar Islands, India

    Directory of Open Access Journals (Sweden)

    M. Punnam Chander

    2016-03-01

    Full Text Available The aim of this study was to assess the antimalarial activity of nine medicinal plants used by Karens of Andaman and Nicobar Islands, against Plasmodium falciparum chloroquine-sensitive MRC-2 isolate. The methanol extracts were obtained by cold percolation method and in vitro antimalarial activity was assessed using M-III method. The results indicated that out of nine plant species tested, four plants, viz., Z. spectabilis, S. wallichiana, C. pulcherrima and Amomum sp. demonstrated significant antimalarial activity (50% inhibitory concentration values were 5.5 ± 0.7, 12.0 ± 2.5, 14.6 ± 1.3 and 37.3 ± 2.5 μg/mL respectively with no toxicity effect on erythrocytes.

  1. Characterization of primaquine imidazolidin-4-ones with antimalarial activity by electrospray ionization-ion trap mass spectrometry

    Science.gov (United States)

    Vale, Nuno; Moreira, Rui; Gomes, Paula

    2008-02-01

    The extensive characterization by electrospray ionization-ion trap mass spectrometry (ESI-MSn) of 20 imidazolidin-4-ones derived from the antimalarial primaquine was well obtained. These compounds are being under investigation as potential antimalarials, as they have been previously found to be active against rodent P. berghei malaria and to be highly stable under physiological conditions. Experiments by collision-induced dissociation (CID) in the nozzle-skimmer region or by tandem-MS have shown the title compounds to be remarkably stable. Mechanisms are proposed to explain the major fragmentations observed in ESI-MSn experiments. Overall, this work represents an unprecedented contribution to a deeper insight into imidazolidin-4-one antimalarials based on a classic 8-aminoquinolinic scaffold. Data herein reported and discussed may be an useful guide for future studies on therapeutically relevant molecules possessing either the 8-aminoquinoline or the imidazolidin-4-one motifs.

  2. Discovery of novel alkylated (bis)urea and (bis)thiourea polyamine analogues with potent antimalarial activities.

    Science.gov (United States)

    Verlinden, Bianca K; Niemand, Jandeli; Snyman, Janette; Sharma, Shiv K; Beattie, Ross J; Woster, Patrick M; Birkholtz, Lyn-Marie

    2011-10-13

    A series of alkylated (bis)urea and (bis)thiourea polyamine analogues were synthesized and screened for antimalarial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. All analogues showed growth inhibitory activity against P. falciparum at less than 3 μM, with the majority having effective IC(50) values in the 100-650 nM range. Analogues arrested parasitic growth within 24 h of exposure due to a block in nuclear division and therefore asexual development. Moreover, this effect appears to be cytotoxic and highly selective to malaria parasites (>7000-fold lower IC(50) against P. falciparum) and is not reversible by the exogenous addition of polyamines. With this first report of potent antimalarial activity of polyamine analogues containing 3-7-3 or 3-6-3 carbon backbones and substituted terminal urea- or thiourea moieties, we propose that these compounds represent a structurally novel class of antimalarial agents.

  3. High content live cell imaging for the discovery of new antimalarial marine natural products

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2012-01-01

    Full Text Available Abstract Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.

  4. High content live cell imaging for the discovery of new antimalarial marine natural products.

    Science.gov (United States)

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  5. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  6. In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants

    Directory of Open Access Journals (Sweden)

    Adeleke Clement Adebajo

    2014-08-01

    Full Text Available Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected mice. The respective prophylactic and curative ED50 values of 189.4 and 174.5 mg/kg for N. latifolia and chemosuppressive ED50 value of 227.2 mg/kg for A. altilis showed that they were the best antimalarial herbal drugs. A 1.6-fold increase of the survival time given by the negative control was elicited by M. koenigii, thereby confirming its curative activity. Pyrimethamine with an ED50 of 0.5 ± 0.1 mg/kg for the prophylactic, and chloroquine with ED50 = 2.2 ± 0.1 and 2.2 ± 0.0 mg/kg for the chemosuppressive and curative tests, respectively, were significantly (p < 0.05 more active. Co-administrations of N. latifolia with the standard drugs significantly reduced their prophylactic, chemosuppressive and curative actions, possibly increasing the parasites’ resistance. Binary combinations of N. latifolia or M. koenigii with any of the other plants significantly increased the prophylactic and suppressive activities of their individual plants, respectively. Also, E. chlorantha with A. altilis or N. latifolia enhanced their respective prophylactic or curative activities, making these combinations most beneficial against malaria infections. Combinations of three and four extracts gave varied activities. Hence, the results justified the combinations of ethnomedicinal plants in antimalarial herbal remedies and showed the importance of the three in vivo models in establishing antimalarial activity.

  7. Targetting the hemozoin synthesis pathway for antimalarial drug and detected by TEM (Transmission electron microscope)

    Science.gov (United States)

    Abbas, Jamilah; Artanti, Nina; Sundowo, Andini; Dewijanti, Indah Dwiatmi; Hanafi, Muhammad; Lisa, Syafrudin, Din

    2017-11-01

    Malaria is a major public health problem mainly due to the development of resistance by the most lethal causative parasite species, the alarming spread of drug resistance and limited number of effective drug available now. Therefore it is important to discover new antimalarial drug. Malaria is caused by a singlecelled parasite from the genus Plasmodium. Plasmodium falciparum parasite infect red blood cells, ingesting and degradation hemoglobin in the acidic food vacuola trough a sequential metabolic process involving multiple proteases. During these process, hemoglobin is utilized as the predominant source of nutrition. Proteolysis of hemoglobin yields amino acid for protein synthesis as well as toxic heme. Massive degradation of hemoglobin generates large amount of toxic heme. Malaria parasite has evolved a distinct mechanism for detoxification of heme through conversion into insoluble crystalline pigment, known as hemozoin (β hematoin). Hemozoin synthesis is an indispensable process for the parasite and is the target for action of several known antimalarial drug. TEM (Transmission Electron Microscope) technology for hemozoin formation in vitro assay was done in this research. Calophyllum aerophyllum Lauterb as medicinal plants was used as a source of antimalarial drug. Acetone extracts of C. lowii showed growth inhibition against parasite P. falciparum with IC50 = 5.2 µg/mL. Whereas from hexane, acetone and methanol fraction of C. aerophyllum showed growth inhibition with IC50 = 0.054, 0.055 and 0.0054 µg/mL respectively. New drug from Calophyllum might have potential compounds that have unique structures and mechanism of action which required to develop new drug for treatment of sensitive and drug resistant strain of malaria.

  8. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis Harms.

    Science.gov (United States)

    Aldulaimi, Omar; Uche, Fidelia I; Hameed, Hamza; Mbye, Haddijatou; Ullah, Imran; Drijfhout, Falko; Claridge, Timothy D W; Horrocks, Paul; Li, Wen-Wu

    2017-02-23

    A decoction of the bark of Cylicodiscus gabunensis Harms is used as a traditional medicine in the treatment of malaria in Nigeria. This study aims to validate the antimalarial potency of this decoction in vitro against Plasmodium falciparum and define potential bioactive constituents within the C. gabunensis bark. A bioassay-guided separation and fractionation protocol was applied to C. gabunensis extracts, exploiting the use of a Malaria Sybr Green I Fluorescence assay method to monitor antiproliferative effects on parasites as well as define 50% inhibition concentrations. Spectroscopic techniques, including GC-MS, TOF LC-MS and 1 H NMR were used to identify phytochemicals present in bioactive fractions. Analogues of gallic acid were synthesized de novo to support the demonstration of the antimalarial action of phenolic acids identified in C. gabunensis bark. In vitro cytotoxicity of plant extracts, fractions and gallate analogues was evaluated against the HepG2 cell line. The antimalarial activity of ethanolic extracts of C. gabunensis bark was confirmed in vitro, with evidence for phenolic acids, primarily gallic acid and close analogues such as ethyl gallate, likely providing this effect. Further fractionation produced the most potent fraction with a 50% inhibitory concentration of 4.7µg/ml. Spectroscopic analysis, including 1 H NMR, LC-MS and GC-MS analysis of this fraction and its acid hydrolyzed products, indicated the presence of conjugates of gallic acid with oligosaccharides. The extracts/fractions and synthetic alkyl and alkenyl gallates showed moderate selectivity against P. falciparum. These results support the use of the bark of C. gabunensis as a traditional medicine in the treatment of human malaria, with phenolic acid oligosaccharide complexes evident in the most bioactive fractions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies.

    Science.gov (United States)

    Pingaew, Ratchanok; Prachayasittikul, Veda; Worachartcheewan, Apilak; Nantasenamat, Chanin; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2015-10-20

    A novel series of 1,4-naphthoquinones (33-44) tethered by open and closed chain sulfonamide moieties were designed, synthesized and evaluated for their cytotoxic and antimalarial activities. All quinone-sulfonamide derivatives displayed a broad spectrum of cytotoxic activities against all of the tested cancer cell lines including HuCCA-1, HepG2, A549 and MOLT-3. Most quinones (33-36 and 38-43) exerted higher anticancer activity against HepG2 cell than that of the etoposide. The open chain analogs 36 and 42 were shown to be the most potent compounds. Notably, the restricted sulfonamide analog 38 with 6,7-dimethoxy groups exhibited the most potent antimalarial activity (IC₅₀ = 2.8 μM). Quantitative structure-activity relationships (QSAR) study was performed to reveal important chemical features governing the biological activities. Five constructed QSAR models provided acceptable predictive performance (Rcv 0.5647-0.9317 and RMSEcv 0.1231-0.2825). Four additional sets of structurally modified compounds were generated in silico (34a-34d, 36a-36k, 40a-40d and 42a-42k) in which their activities were predicted using the constructed QSAR models. A comprehensive discussion of the structure-activity relationships was made and a set of promising compounds (i.e., 33, 36, 38, 42, 36d, 36f, 42e, 42g and 42f) was suggested for further development as anticancer and antimalarial agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Antimalarial efficacy of Albizia lebbeck (Leguminosae against Plasmodium falciparum in vitro & P. berghei in vivo

    Directory of Open Access Journals (Sweden)

    Shagun Kalia

    2015-01-01

    Full Text Available Background & objectives: Albizia lebbeck Benth. (Leguminosae has long been used in Indian traditional medicine. The current study was designed to test antimalarial activity of ethanolic bark extract of A. lebbeck (EBEAL. Methods: EBEAL was prepared by soxhlet extraction and subjected to phytochemical analysis. The extract was evaluated for its in vitro antimalarial activity against Plasmodium falciparum chloroquine (CQ sensitive (MRC2 and CQ resistant (RKL9 strains. Cytotoxicity (CC 50 of extract against HeLa cells was evaluated. Median lethal dose (LD 50 was determined to assess safety of EBEAL in BALB/c mice. Schizonticidal (100-1000 mg/kg and preventive (100-750 mg/kg activities of EBEAL were evaluated against P. berghei. Curative activity (100-750 mg/kg of extract was also evaluated. Results: Phytochemical screening revealed presence of alkaloids, flavonoids, phenols, saponins, terpenes and phytosterols. The extract exhibited IC 50 of 8.2 µg/ml (MRC2 and 5.1 µg/ml (RKL9. CC 50 of extract on HeLa cell line was calculated to be >1000 µg/ml. EBEAL showed selectivity indices (SI of >121.9 and >196.07 against MRC2 and RKL9 strains of P. falciparum, respectively. LD 50 of EBEAL was observed to be >5 g/kg. Dose-dependent chemosuppression was observed with significant ( p100 mg/kg. Significant (P<0.001 curative and repository activities were exhibited by 750 mg/kg concentration of extract on D7. Interpretation & conclusions: The present investigation reports antiplasmodial efficacy of EBEAL in vitro against P. falciparum as evident by high SI values. ED 50 of <100 mg/kg against P. berghei categorizes EBEAL as active antimalarial. Further studies need to be done to exploit its antiplasmodial activity further.

  11. Antimalarial efficacy of Albizia lebbeck (Leguminosae) against Plasmodium falciparum in vitro & P. berghei in vivo.

    Science.gov (United States)

    Kalia, Shagun; Walter, Neha Sylvia; Bagai, Upma

    2015-12-01

    Albizia lebbeck Benth. (Leguminosae) has long been used in Indian traditional medicine. The current study was designed to test antimalarial activity of ethanolic bark extract of A. lebbeck (EBEAL). EBEAL was prepared by soxhlet extraction and subjected to phytochemical analysis. The extract was evaluated for its in vitro antimalarial activity against Plasmodium falciparum chloroquine (CQ) sensitive (MRC2) and CQ resistant (RKL9) strains. Cytotoxicity (CC 50 ) of extract against HeLa cells was evaluated. Median lethal dose (LD 50 ) was determined to assess safety of EBEAL in BALB/c mice. Schizonticidal (100-1000 mg/kg) and preventive (100-750 mg/kg) activities of EBEAL were evaluated against P. berghei. Curative activity (100-750 mg/kg) of extract was also evaluated. Phytochemical screening revealed presence of alkaloids, flavonoids, phenols, saponins, terpenes and phytosterols. The extract exhibited IC 50 of 8.2 µg/ml (MRC2) and 5.1 µg/ml (RKL9). CC 50 of extract on HeLa cell line was calculated to be >1000 µg/ml. EBEAL showed selectivity indices (SI) of >121.9 and >196.07 against MRC2 and RKL9 strains of P. falciparum, respectively. LD 50 of EBEAL was observed to be >5 g/kg. Dose-dependent chemosuppression was observed with significant ( p50 >100 mg/kg. Significant (P50 mg/kg concentration of extract on D7. The present investigation reports antiplasmodial efficacy of EBEAL in vitro against P. falciparum as evident by high SI values. ED 50 of <100 mg/kg against P. berghei categorizes EBEAL as active antimalarial. Further studies need to be done to exploit its antiplasmodial activity further.

  12. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    Directory of Open Access Journals (Sweden)

    Benjamin Palafox

    Full Text Available Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia.We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important antimalarial supply sources

  13. Evaluation of the ex vivo antimalarial activity of organotin (IV) ethylphenyldithiocarbamate on erythrocytes infected with Plasmodium berghei NK 65.

    Science.gov (United States)

    Awang, Normah; Jumat, Hafizah; Ishak, Shafariatul Akmar; Kamaludin, Nurul Farahana

    2014-06-01

    Malaria is the most destructive and dangerous parasitic disease. The commonness of this disease is getting worse mainly due to the increasing resistance of Plasmodium falciparum against antimalarial drugs. Therefore, the search for new antimalarial drug is urgently needed. This study was carried out to evaluate the effects of dibutyltin (IV) ethylphenyldithiocarbamate (DBEP), diphenyltin (IV) ethylphenyldithiocarbamate (DPEP) and triphenyltin (IV) ethylphenyldithiocarbamate (TPEP) compounds as antimalarial agents. These compounds were evaluated against erythrocytes infected with Plasmodium berghei NK65 via ex vivo. Organotin (IV) ethylphenyldithiocarbamate, [R(n)Sn(C9H10NS2)(4-n)] with R = C4H9 and C6H5 for n = 2; R = C6H5 for n = 3 is chemically synthesised for its potential activities. pLDH assay was employed for determination of the concentration that inhibited 50% of the Plasmodium's activity (IC50) after 24 h treatment at concentration range of 10-0.0000001 mg mL(-1). Plasmodium berghei NK65 was cultured in vitro to determine the different morphology of trophozoite and schizont. Only DPEP and TPEP compounds have antimalarial activity towards P. berghei NK65 at IC50 0.094±0.011 and 0.892±0.088 mg mL(-1), respectively. The IC50 of DPEP and TPEP were lowest at 30% parasitemia with IC50 0.001±0.00009 and 0.0009±0.0001 mg mL(-1), respectively. In vitro culture showed that TPEP was effective towards P. berghei NK65 in trophozoite and schizont morphology with IC50 0.0001±0.00005 and 0.00009±0.00003 μg mL(-1), respectively. In conclusion, DPEP and TPEP have antimalarial effect on erythrocytes infected with P. berghei NK65 and have potential as antimalarial and schizonticidal agents.

  14. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    Science.gov (United States)

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Rueda, Sergio Torres; Kiefer, Sabine; O'Connell, Kathryn A; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Chavasse, Desmond

    2014-01-01

    Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia). We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important antimalarial supply sources. The structure

  15. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del.

    Science.gov (United States)

    Sadiq, Muhammad Bilal; Tharaphan, Pattamon; Chotivanich, Kesinee; Tarning, Joel; Anal, Anil Kumar

    2017-07-18

    The emergence of drug resistant malaria is threatening our ability to treat and control malaria in the Southeast Asian region. There is an urgent need to develop novel and chemically diverse antimalarial drugs. This study aimed at evaluating the antimalarial and antioxidant potentials of Acacia nilotica plant extracts. The antioxidant activities of leaves, pods and bark extracts were determined by standard antioxidant assays; reducing power capacity, % lipid peroxidation inhibition and ferric reducing antioxidant power assay. The antimalarial activities of plant extracts against Plasmodium falciparum parasites were determined by the 48 h schizont maturation inhibition assay. Further confirmation of schizonticide activity of extracts was made by extending the incubation period up to 96 h after removing the plant extract residues from parasites culture. Inhibition assays were analyzed by dose-response modelling. In all antioxidant assays, leaves of A. nilotica showed higher antioxidant activity than pods and bark. Antimalarial IC 50 values of leaves, pods and bark extracts were 1.29, 4.16 and 4.28 μg/ml respectively, in the 48 h maturation assay. The IC 50 values determined for leaves, pods and bark extracts were 3.72, 5.41 and 5.32 μg/ml respectively, after 96 h of incubation. All extracts inhibited the development of mature schizont, indicating schizonticide activity against P. falciparum. A. nilotica extracts showed promising antimalarial and antioxidant effects. However, further investigation is needed to isolate and identify the active components responsible for the antimalarial and antioxidant effects.

  16. Elucidating antimalarial drug targets/mode-of-action by application of system biology technologies

    CSIR Research Space (South Africa)

    Becker, J

    2008-11-01

    Full Text Available targets/mode-of-action by application of systems biology technologies J BECKER, L MTWISHA, B CRAMPTON AND D MANCAMA CSIR Biosciences, PO Box 395, Pretoria, 0001, South Africa Email: JBecker@csir.co.za – www.csir.co.za INTRODUCTION Malaria is one... The objective of this study was to use systems biology tools to unravel the drug target/mode-of-action (MoA) of an antimalarial drug (cyclohexylamine) with a known drug target/MoA, by analysing differential expression profiles of drug treated vs untreated...

  17. Effect of Antimalarial Drugs on Plasmodia Cell-Free Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Ana Ferreras

    2002-04-01

    Full Text Available A cell-free system from Plasmodium falciparum able to translate endogenous mRNA was used to determine the effect of artemisinin, chloroquine and primaquine on the protein synthesis mechanism of the parasite. The antimalarial drugs did not inhibit the incorporation of [³H] methionine into parasite proteins even at concentrations higher than the ones found to strongly inhibit the parasite growth. Results clearly indicate that these compounds do not have a direct effect on protein synthesis activity of P. falciparum coded by endogenous mRNA.

  18. Synthesis and antimalarial evaluation of some 4-quinazolinone derivatives based on febrifugine

    Directory of Open Access Journals (Sweden)

    Debanjan Sen

    2010-01-01

    Full Text Available A series of 2-substituted and 2,3-substituted quinazolin -4(3H-one derivatives were designed and synthesized based on the structure of febrifugine. The structures of the new compounds were confirmed by spectral analysis. The in vivo biological activity test results indicated that those compounds exhibited antimalarial activities against Plasmodium berghei in mice, at a dose of 5 mg/kg. Compared to Chloroquine and Artemisinin, these compounds have the advantages of shorter synthetic routes and consequently are highly cost effective in nature.

  19. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    International Nuclear Information System (INIS)

    Rehman, F.U.; Khan, M.F.; Khan, G.M.; Khan, H.; Khan, I.U.

    2010-01-01

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  20. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, F U; Khan, M F; Khan, G M; Khan, H [Gomal University, D.I. Khan (Pakistan). Dept. of Faculty of Pharmacy; Khan, I U [University of Peshawar (Pakistan). Dept. of Faculty of Pharmacy

    2010-08-15

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  1. Generation of radicals and antimalarial activity of dispiro-1,2,4-trioxolanes

    Science.gov (United States)

    Denisov, E. T.; Denisova, T. G.

    2013-01-01

    The kinetic schemes of the intramolecular oxidation of radicals generated from substituted dispiro-1,2,4-trioxolanes (seven compounds) in the presence of Fe2+ and oxygen were built. Each radical reaction was defined in terms of enthalpy, activation energy, and rate constant. The kinetic characteristics were calculated by the intersecting parabolas method. The competition between the radical reactions was considered. The entry of radicals generated by each compound into the volume was calculated. High antimalarial activity was found for 1,2,4-trioxolanes, which generated hydroxyl radicals. The structural features of trioxolanes responsible for the generation of hydroxyl radicals were determined.

  2. In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003

    Directory of Open Access Journals (Sweden)

    Mungthin Mathirut

    2005-08-01

    Full Text Available Abstract Background The Thai-Myanmar and Thai-Cambodia borders have been historically linked with the emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs. Indeed, the areas are often described as harbouring multi-drug resistant parasites. These areas of Thailand have experienced significant changes in antimalarial drug exposure patterns over the past decade. This study describes the in vitro antimalarial susceptibility patterns of 95 laboratory-adapted P. falciparum isolates, collected between 1998 and 2003,. Methods Ninety five P. falciparum isolates were collected from five sites in Thailand between 1998 and 2003. After laboratory adaptation to in vitro culture, the susceptibility of these parasites to a range of established antimalarial drugs (chloroquine [CQ], mefloquine [MQ], quinine [QN] and dihydroartemisinin [DHA] was determined by the isotopic microtest. Results Mefloquine (MQ sensitivity remained poorest in areas previously described as MQ-resistant areas. Sensitivity to MQ of parasites from this area was significantly lower than those from areas reported to harbour moderate (p = 0.002 of low level MQ resistance (p = 000001. Importantly for all drugs tested, there was a considerable range in absolute parasite sensitivities. There was a weak, but statistically positive correlation between parasite sensitivity to CQ and sensitivity to both QN and MQ and a positive correlation between MQ and QN. In terms of geographical distribution, parasites from the Thai-Cambodia were tended to be less sensitive to all drugs tested compared to the Thai-Myanmar border. Parasite sensitivity to all drugs was stable over the 6-year collection period with the exception of QN. Conclusion This study highlights the high degree of variability in parasite drug sensitivity in Thailand. There were geographical differences in the pattern of resistance which might reflect differences in drug usage in each area. In contrast to many

  3. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname

    Directory of Open Access Journals (Sweden)

    Evans Lawrence

    2012-06-01

    Full Text Available Abstract Background Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector and unlicensed facilities (informal sector is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. Methods To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Results Quality issues were observed in 45 of 77 (58% anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30 and 11% (5/47 respectively. A higher proportion of medicines sampled from the private sector 34% (11/32 failed quality control tests versus 16% (7/45 in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86% were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. Conclusions The findings of the studies in both countries point to

  4. Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues.

    Science.gov (United States)

    Pérez, Bianca C; Fernandes, Iva; Mateus, Nuno; Teixeira, Cátia; Gomes, Paula

    2013-12-15

    Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines tested. Hence, N-cinnamoyl-chloroquine analogues are a good start towards development of affordable antitumor leads. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname.

    Science.gov (United States)

    Evans, Lawrence; Coignez, Veerle; Barojas, Adrian; Bempong, Daniel; Bradby, Sanford; Dijiba, Yanga; James, Makeida; Bretas, Gustavo; Adhin, Malti; Ceron, Nicolas; Hinds-Semple, Alison; Chibwe, Kennedy; Lukulay, Patrick; Pribluda, Victor

    2012-06-15

    Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector) and unlicensed facilities (informal sector) is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Quality issues were observed in 45 of 77 (58%) anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30) and 11% (5/47) respectively. A higher proportion of medicines sampled from the private sector 34% (11/32) failed quality control tests versus 16% (7/45) in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86%) were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. The findings of the studies in both countries point to significant problems with the quality of anti-malarial medicines

  6. Saleability of anti-malarials in private drug shops in Muheza, Tanzania

    DEFF Research Database (Denmark)

    Ringsted, Frank M; Massawe, Isolide S; Lemnge, Martha M

    2011-01-01

    women depend on SP for Intermittent Preventive Treatment (IPTp) during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform...... practice, the saleability of ACT was negligible. SP was best-selling, and use was not reserved for IPTp, as stipulated in the national anti-malarial policy. It is a major reason for concern that such drug-pressure in the community equals de facto intermittent presumptive treatment. In an area where SP drug...

  7. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  8. Photoreactivity of biologically active compounds. VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening.

    Science.gov (United States)

    Kristensen, S; Orsteen, A L; Sande, S A; Tønnesen, H H

    1994-10-01

    The drugs commonly used in the treatment of malaria are photochemically unstable. Several of these compounds accumulate in melanin-rich tissues and cause toxic reactions which may be light induced. As part of the screening of the photochemical properties and phototoxic capabilities of antimalarials, the in vitro interaction of eight antimalarials with melanin was studied. The dissociation constant for the drug-melanin complex and the relative number of binding sites on melanin were estimated for six of the drugs using a curve-fitting program. The reaction rate for the formation of the melanin-drug complex was determined, and the complexes were further characterized by zeta potential measurements.

  9. Access to artemisinin-combination therapy (ACT) and other anti-malarials: national policy and markets in Sierra Leone.

    Science.gov (United States)

    Amuasi, John H; Diap, Graciela; Nguah, Samuel Blay; Karikari, Patrick; Boakye, Isaac; Jambai, Amara; Lahai, Wani Kumba; Louie, Karly S; Kiechel, Jean-Rene

    2012-01-01

    Malaria remains the leading burden of disease in post-conflict Sierra Leone. To overcome the challenge of anti-malarial drug resistance and improve effective treatment, Sierra Leone adopted artemisinin-combination therapy artesunate-amodiaquine (AS+AQ) as first-line treatment for uncomplicated P. falciparum malaria. Other national policy anti-malarials include artemether-lumefantrine (AL) as an alternative to AS+AQ, quinine and artemether for treatment of complicated malaria; and sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment (IPTp). This study was conducted to evaluate access to national policy recommended anti-malarials. A cross-sectional survey of 127 medicine outlets (public, private and NGO) was conducted in urban and rural areas. The availability on the day of the survey, median prices, and affordability policy and available non-policy anti-malarials were calculated. Anti-malarials were stocked in 79% of all outlets surveyed. AS+AQ was widely available in public medicine outlets; AL was only available in the private and NGO sectors. Quinine was available in nearly two-thirds of public and NGO outlets and over one-third of private outlets. SP was widely available in all outlets. Non-policy anti-malarials were predominantly available in the private outlets. AS+AQ in the public sector was widely offered for free. Among the anti-malarials sold at a cost, the same median price of a course of AS+AQ (US$1.56), quinine tablets (US$0.63), were found in both the public and private sectors. Quinine injection had a median cost of US$0.31 in the public sector and US$0.47 in the private sector, while SP had a median cost of US$0.31 in the public sector compared to US$ 0.63 in the private sector. Non-policy anti-malarials were more affordable than first-line AS+AQ in all sectors. A course of AS+AQ was affordable at nearly two days' worth of wages in both the public and private sectors.

  10. Synthesis and antimalarial activity evaluation of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one derivatives

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Kumawat

    2016-09-01

    Full Text Available Some novel derivatives of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro antimalarial activity against chloroquine sensitive strain of Plasmodium falciparum (RKL-2 employing chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities towards the parasite in comparison to the standard. It was found that antimalarial activity of 3-(3-(7-chloroquinolin-4-ylaminopropyl-2-(4-bromophenyl-1,3-thiazinan-4-one was marginally superior than all the compounds evaluated.

  11. Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance.

    Science.gov (United States)

    Bobadilla-del Valle, Miriam; Torres-González, Pedro; Cervera-Hernández, Miguel Enrique; Martínez-Gamboa, Areli; Crabtree-Ramirez, Brenda; Chávez-Mazari, Bárbara; Ortiz-Conchi, Narciso; Rodríguez-Cruz, Luis; Cervantes-Sánchez, Axel; Gudiño-Enríquez, Tomasa; Cinta-Severo, Carmen; Sifuentes-Osornio, José; Ponce de León, Alfredo

    2015-09-01

    Mycobacterium tuberculosis causes the majority of tuberculosis (TB) cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City. Data on mycobacterial isolates from human clinical samples were retrieved from the laboratory's database for the 2000-2014 period. Susceptibility to first-line drugs: rifampin, isoniazid, streptomycin (STR) and ethambutol was determined. We identified 1,165 isolates, 73.7% were M. tuberculosis and 26.2%, M. bovis. Among pulmonary samples, 16.6% were M. bovis. The proportion of M. bovis isolates significantly increased from 7.8% in 2000 to 28.4% in 2014 (X(2)trend, ptuberculosis isolates (10.9% vs.3.4%, ptuberculosis, respectively (p = 0.637). A rising trend of primary STR monoresistance was observed for both species (3.4% in 2000-2004 vs. 7.6% in 2010-2014; p = 0.02). There is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance.

  12. Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance

    Science.gov (United States)

    Bobadilla-del Valle, Miriam; Torres-González, Pedro; Cervera-Hernández, Miguel Enrique; Martínez-Gamboa, Areli; Crabtree-Ramirez, Brenda; Chávez-Mazari, Bárbara; Ortiz-Conchi, Narciso; Rodríguez-Cruz, Luis; Cervantes-Sánchez, Axel; Gudiño-Enríquez, Tomasa; Cinta-Severo, Carmen; Sifuentes-Osornio, José; Ponce de León, Alfredo

    2015-01-01

    Background Mycobacterium tuberculosis causes the majority of tuberculosis (TB) cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City. Methodology/Principal Findings Data on mycobacterial isolates from human clinical samples were retrieved from the laboratory’s database for the 2000–2014 period. Susceptibility to first-line drugs: rifampin, isoniazid, streptomycin (STR) and ethambutol was determined. We identified 1,165 isolates, 73.7% were M. tuberculosis and 26.2%, M. bovis. Among pulmonary samples, 16.6% were M. bovis. The proportion of M. bovis isolates significantly increased from 7.8% in 2000 to 28.4% in 2014 (X 2 trend, ptuberculosis isolates (10.9% vs.3.4%, ptuberculosis, respectively (p = 0.637). A rising trend of primary STR monoresistance was observed for both species (3.4% in 2000–2004 vs. 7.6% in 2010–2014; p = 0.02). Conclusions/Significance There is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance. PMID:26421930

  13. Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance.

    Science.gov (United States)

    Carey, Maureen A; Papin, Jason A; Guler, Jennifer L

    2017-07-19

    Malaria remains a major public health burden and resistance has emerged to every antimalarial on the market, including the frontline drug, artemisinin. Our limited understanding of Plasmodium biology hinders the elucidation of resistance mechanisms. In this regard, systems biology approaches can facilitate the integration of existing experimental knowledge and further understanding of these mechanisms. Here, we developed a novel genome-scale metabolic network reconstruction, iPfal17, of the asexual blood-stage P. falciparum parasite to expand our understanding of metabolic changes that support resistance. We identified 11 metabolic tasks to evaluate iPfal17 performance. Flux balance analysis and simulation of gene knockouts and enzyme inhibition predict candidate drug targets unique to resistant parasites. Moreover, integration of clinical parasite transcriptomes into the iPfal17 reconstruction reveals patterns associated with antimalarial resistance. These results predict that artemisinin sensitive and resistant parasites differentially utilize scavenging and biosynthetic pathways for multiple essential metabolites, including folate and polyamines. Our findings are consistent with experimental literature, while generating novel hypotheses about artemisinin resistance and parasite biology. We detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps representing an incomplete transition to the metabolic state most appropriate for nutrient-rich blood. Using this systems biology approach, we identify metabolic shifts that arise with or in support of the resistant phenotype. This perspective allows us to more productively analyze and interpret clinical expression data for the identification of candidate drug targets for the treatment of resistant parasites.

  14. The Effectiveness of Local Plants from Lom and Sawang Ethnics as Antimalarial Medicine

    Directory of Open Access Journals (Sweden)

    Henny Helmi

    2016-09-01

    Full Text Available Native people or ethnic societies that live in endemic malaria islands such as in Bangka Island and Belitung Island have used many medicinal plants to cure malaria. Leaves of kesembung (Scaevola taccada (Gaertn Roxb, roots of kebentak (Wikstroemia androsaemofolia Decne, and roots of medang mencena (Dapniphyllum laurinum (Benth are the examples. This research was aimed to investigate the present of some biochemical compound and evaluate the antimalarial activity of ethanol extract of the plants against Plasmodium falciparum 3D7 in vitro. The IC50 level was determined through visual observation under microscope over 5000 of giemsa-stained erythrocytes then analyzed by probit analysis. Results showed that kebentak root ethanol extract was effective to inhibit P. falciparum 3D7 with level 0.485 µg/mL. Furthermore, the IC50 level of kesembung leaves and medang root were 44.352 µg/mL and 1486.678 µg/mL respectively. Phytochemical test result showed that kebentak leaf ethanol crude extract contained triterpenoid, kesembung root contained phenol and tannins; moreover, medang root contained alkaloid, saponin, and triterpenoid.How to CiteHelmi, H., Afriyansyah, B. & Ekasari, W. (2016. The Effectiveness of Local Plants from Lom and Sawang Ethnics as Antimalarial Medicine. Biosaintifika: Journal of Biology & Biology Education, 8(2, 193-200. 

  15. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Directory of Open Access Journals (Sweden)

    Huthmacher Carola

    2010-08-01

    Full Text Available Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte. Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.

  16. PS-15: a potent, orally active antimalarial from a new class of folic acid antagonists.

    Science.gov (United States)

    Canfield, C J; Milhous, W K; Ager, A L; Rossan, R N; Sweeney, T R; Lewis, N J; Jacobus, D P

    1993-07-01

    A new, orally-active inhibitor of dihydrofolic acid reductase (DHFR), PS-15 (N-(3-(2,4,5-trichlorophenoxy)propyloxy)-N'-(1-methylethyl)- imidocarbonimidic diamide hydrochloride), has significant activity against drug-resistant Plasmodium falciparum. It is not cross-resistant with other inhibitors of DHFR (e.g., pyrimethamine and cycloguanil). Although it bears similarities to proguanil, PS-15 represents a new antifolate class of drugs that we have named oxyguanils or hydroxylamine-derived biguanides. This compound displays intrinsic antimalarial activity and also is metabolized in vivo to WR99210, an extremely active triazine inhibitor of DHFR. When tested in vitro against drug-resistant clones of P. falciparum, PS-15 was more active than proguanil, and the putative metabolite, WR99210, was more active than the proguanil metabolite cycloguanil. The drug is also more active as well as less toxic than proguanil when administered orally to mice infected with P. berghei. When administered orally to Aotus monkeys infected with multidrug-resistant P. falciparum, PS-15 was more active than either proguanil or WR99210. In 1973, WR99210 underwent clinical trials for safety and tolerance in volunteers. The trials showed gastrointestinal intolerance and limited bioavailability; further development of the drug was abandoned. Because PS-15 has intrinsic antimalarial activity, is not cross-resistant with other DHFR inhibitors, and can be metabolized to WR99210 in vivo, oral administration of this new drug should circumvent the shortcomings and retain the advantages found with both proguanil and WR99210.

  17. Antimalarial and cytotoxic activities of roots and fruits fractions of Astrodaucus persicus extract

    Directory of Open Access Journals (Sweden)

    Saied Goodarzi

    2017-12-01

    Full Text Available Objective(s:Astrodaucus persicus (Apiaceae is one of the two species of this genus which grows in different parts of Iran. Roots of this plant were rich in benzodioxoles and used as food additive or salad in Iran and near countries. The aim of present study was evaluation of antimalarial and cytotoxic effects of different fractions of A. persicus fruits and roots extracts. Materials and Methods: Ripe fruits and roots of A. persicuswere extracted and fractionated by hexane, chloroform, ethyl acetate and methanol, separately. Antimalarial activities of fractions were performed based on Plasmodium berghei suppressive test in mice model and percentage of parasitemia and suppression were determined for each sample. Cytotoxicity of fruits and roots fractions were investigated against human breast adenocarcinoma (MCF-7, colorectal carcinoma (SW480 and normal (L929 cell lines by MTT assay and IC50 of them were measured. Results: Hexane fraction of roots extract (RHE and ethyl acetate fraction of fruits extract (FEA of A. persicus demonstrated highest parasite inhibition (73.3 and 72.3%, respectively at 500 mg/kg/day which were significantly different from negative control group (P

  18. Safety of antimalarial medications for use while scuba diving in malaria Endemic Regions.

    Science.gov (United States)

    Petersen, Kyle; Regis, David P

    2016-01-01

    Recreational diving occurs annually in areas of the world where malaria is endemic. The safety and efficacy of antimalarials for travelers in a hyperbaric environment is unknown. Of particular concern would be medications with adverse effects that could either mimic diving related illnesses such as barotrauma, decompression sickness (DCS) and gas toxicities, or increase the risk for such illnesses. We conducted a review of PubMed and Cochrane databases to determine rates of neurologic adverse effects or other effects from antimalarials that may be a problem in the diving environment. One case report was found on diving and mefloquine. Multiple case reports and clinical trials were found describing neurologic adverse effects of the major chemoprophylactic medications atovaquone/proguanil, chloroquine, doxycycline, mefloquine, and primaquine. Of the available literature, atovaquone/proguanil and doxycycline are most likely the safest agents and should be preferred; atovaquone/proguanil is superior due to reduced rates of sunburn in the marine environment. Primaquine also appears to be safe, but has reduced efficacy against P. falciparum ; mefloquine possesses the highest rate of neurologic side effects and therefore these agents should be limited to extreme cases of patients intolerant to other agents. Chloroquine appears unsafe in the hyperbaric environment and should be avoided. More studies are required to include database reviews of returned divers traveling to malaria endemic areas and randomized controlled trials in the hyperbaric environments.

  19. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.

    Science.gov (United States)

    Boss, Christoph; Aissaoui, Hamed; Amaral, Nathalie; Bauer, Aude; Bazire, Stephanie; Binkert, Christoph; Brun, Reto; Bürki, Cédric; Ciana, Claire-Lise; Corminboeuf, Olivier; Delahaye, Stephane; Dollinger, Claire; Fischli, Christoph; Fischli, Walter; Flock, Alexandre; Frantz, Marie-Céline; Girault, Malory; Grisostomi, Corinna; Friedli, Astrid; Heidmann, Bibia; Hinder, Claire; Jacob, Gael; Le Bihan, Amelie; Malrieu, Sophie; Mamzed, Saskia; Merot, Aurelien; Meyer, Solange; Peixoto, Sabrina; Petit, Nolwenn; Siegrist, Romain; Trollux, Julien; Weller, Thomas; Wittlin, Sergio

    2016-09-20

    More than 40 % of the world's population is at risk of being infected with malaria. Most malaria cases occur in the countries of sub-Saharan Africa, Central and South America, and Asia. Resistance to standard therapy, including artemisinin combinations, is increasing. There is an urgent need for novel antimalarials with new mechanisms of action. In a phenotypic screen, we identified a series of phenylalanine-based compounds that exhibit antimalarial activity via a new and yet unknown mechanism of action. Our optimization efforts culminated in the selection of ACT-451840 [(S,E)-N-(4-(4-acetylpiperazin-1-yl)benzyl)-3-(4-(tert-butyl)phenyl)-N-(1-(4-(4-cyanobenzyl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl)acrylamide] for clinical development. Herein we describe our optimization efforts from the screening hit to the potential drug candidate with respect to antiparasitic activity, drug metabolism and pharmacokinetics (DMPK) properties, and in vivo pharmacological efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Heme polymerization inhibition activity (HPIA) assay of synthesized xanthone derivative as antimalarial compound

    Science.gov (United States)

    Fitriastuti, Dhina; Jumina, Priatmoko

    2017-03-01

    Xanthone is a phenolic secondary metabolite of Garcinia and Calophyllum herbs which has been clinically proven to display anti malaria activity. In the present paper, 2,3,4-trihydroxy-5-methyl xanthone which has been synthesized from gallic acid and o-cresol in Eaton's reagent was tested for its activity as antimalarial. Thus, HPIA assay of the synthesized xanthones was successfully conducted. The HPIA assay was carried out towards the xanthone, chloroquine diphosphate as positive control and distilled water as negative control in various concentration. The samples were reacted with hematin (ferriprotoporphyrin IX hydroxide) and the absorbance of the precipitate was observed by using Elisa reader. The results of HPIA assay showed that 2,3,4-trihydroxy-5-methyl xanthone and chloroquine have IC50 values of 0.755 and 1.462 mg/mL or 2.92 and 4.57 mM, respectively. 2,3,4-Trihydroxy-5-methyl xanthone displayed better antimalarial activity than chloroquine.

  1. Evaluation of the Quality of Artemisinin-Based Antimalarial Medicines Distributed in Ghana and Togo

    Directory of Open Access Journals (Sweden)

    Dorcas Osei-Safo

    2014-01-01

    Full Text Available This study, conducted as part of our overall goal of regular pharmacovigilance of antimalarial medicines, reports on the quality of 132 artemisinin-based antimalarial medicines distributed in Ghana and Togo. Three methods were employed in the quality evaluation—basic (colorimetric tests for establishing the identity of the requisite active pharmaceutical ingredients (APIs, semi-quantitative TLC assay for the identification and estimation of API content, and HPLC assay for a more accurate quantification of API content. From the basic tests, only one sample totally lacked API. The HPLC assay, however, showed that 83.7% of the ACTs and 57.9% of the artemisinin-based monotherapies failed to comply with international pharmacopoeia requirements due to insufficient API content. In most of the ACTs, the artemisinin component was usually the insufficient API. Generally, there was a good correlation between the HPLC and SQ-TLC assays. The overall failure rates for both locally manufactured (77.3% and imported medicines (77.5% were comparable. Similarly the unregistered medicines recorded a slightly higher overall failure rate (84.7% than registered medicines (70.8%. Only two instances of possible cross-border exchange of medicines were observed and there was little difference between the medicine quality of collections from border towns and those from inland parts of both countries.

  2. Biomimetic synthesis, antimicrobial, antileishmanial and antimalarial activities of euglobals and their analogues.

    Science.gov (United States)

    Bharate, Sandip B; Bhutani, Kamlesh K; Khan, Shabana I; Tekwani, Babu L; Jacob, Melissa R; Khan, Ikhlas A; Singh, Inder Pal

    2006-03-15

    In the present communication, naturally occurring phloroglucinol-monoterpene adducts, euglobals G1-G4 (3b/a and 4a/b) and 16 new analogues (13a/b-18a/b and 19-22) were synthesized by biomimetic approach. These synthetic compounds differ from natural euglobals in the nature of monoterpene and acyl functionality. All of these compounds were evaluated for their antibacterial, antifungal, antileishmanial and antimalarial activities. Analogue 17b possessed good antibacterial activity against methicillin-resistant Staphylococcus aureus, while analogues 19-22 possessed potent antifungal activity against Candida glabrata with IC50s ranging from 1.5 to 2.5 microg/mL. Euglobals along with all synthesized analogues exhibited antileishmanial activity. Amongst these, euglobal G2 (3a), G3 (4a) and analogues 13a and 14a showed potent antileishmanial activity with IC50s ranging from 2.8 to 3.9 microg/mL. Analogue 16a possessed antimalarial activity against chloroquine sensitive D6 clone of Plasmodium falciparum. None of the compounds showed toxicity against mammalian kidney fibroblasts (vero cells) upto the concentration of 4.76 microg/ml.

  3. QSAR studies of some side chain modified 7-chloro-4-aminoquinolines as antimalarial agents

    Directory of Open Access Journals (Sweden)

    Nitendra K. Sahu

    2014-11-01

    Full Text Available The quantitative structure–activity relationship (QSAR analyses were carried out for a series of new side chain modified 4-amino-7-chloroquinolines to find out the structural requirements of their antimalarial activities against both chloroquine sensitive (HB3 and resistant (Dd2 Plasmodium falciparum strain. The statistically significant best 2D QSAR models for Dd2, having correlation coefficient (r2 = 0.9188 and cross validated squared correlation coefficient (q2 = 0.8349 with external predictive ability (pred_r2 = 0.7258 and for HB3, having r2 = 0.9024, q2 = 0.8089 and pred_r2 = 0.7463 were developed by multiple linear regression coupled with genetic algorithm (GA–MLR and stepwise (SW–MLR forward algorithm, respectively. The results of the present study may be useful on the designing of more potent analogues as antimalarial agents.

  4. A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimalarial compounds.

    Science.gov (United States)

    Bajsa, Joanna; Singh, Kshipra; Nanayakkara, Dhammika; Duke, Stephen Oscar; Rimando, Agnes Mamaril; Evidente, Antonio; Tekwani, Babu Lal

    2007-09-01

    The apicomplexan parasites pathogens such as Plasmodium spp. possess an apicoplast, a plastid organelle similar to those of plants. The apicoplast has some essential plant-like metabolic pathways and processes, making these parasites susceptible to inhibitors of these functions. The main objective of this paper is to determine if phytotoxins with plastid target sites are more likely to be good antiplasmodial compounds than are those with other modes of action. The antiplasmodial activities of some compounds with established phytotoxic action were determined in vitro on a chloroquine (CQ) sensitive (D6, Sierra Leone) strain of Plasmodium falciparum. In this study, we provide in vitro activities of almost 50 such compounds, as well as a few phytoalexins against P. falciparum. Endothall, anisomycin, and cerulenin had sufficient antiplasmodial action to be considered as new lead antimalarial structures. Some derivatives of fusicoccin possessed markedly improved antiplasmodial action than the parent compound. Our results suggest that phytotoxins with plastid targets may not necessarily be better antiplasmodials than those that act at other molecular sites. The herbicides, phytotoxins and the phytoalexins reported here with significant antiplasmodial activity may be useful probes for identification of new antimalarial drug targets and may also be used as new lead structures for new antiplasmodial drug discovery.

  5. Phytochemical Analysis and Antimalarial Activity Aqueous Extract of Lecaniodiscus cupanioides Root

    Directory of Open Access Journals (Sweden)

    Mikhail Olugbemiro Nafiu

    2013-01-01

    Full Text Available Root aqueous extract of Lecaniodiscus cupanioides was evaluated for antimalarial activity and analyzed for its phytochemical constituents. Twenty-four (24 albino mice were infected by intraperitoneal injection of standard inoculum of chloroquine sensitive Plasmodium berghei (NK 65. The animals were randomly divided into 6 groups of 3 mice each. Group 1 served as the control while groups II–IV were orally administered 50, 150, and 250 mg/kg body weights of extract. Groups 5 and 6 received 1.75 and 5 mg/kg of artesunate and chloroquine, respectively. The results of the phytochemical analysis showed the presence of alkaloids (2.37%, saponin (0.336, tannin (0.012 per cent, phenol (0.008 per cent, and anthraquinone (0.002 per cent. There was 100 per cent parasite inhibition in the chloroquine group and 70 per cent in the 50 mg/kg body weight on day 12, respectively. The mean survival time (MST, for the control group was 14 days, artesunate 16 days, and chloroquine 30 days, while the groups that received 50 and 250 mg/kg body weight recorded similar MST of 17 days and the 150 mg/kg body weight group recorded 19 days. The results obtained indicated that the aqueous extract of Lecaniodiscus cupanioides may provide an alternative antimalarial.

  6. Differential effects on angiogenesis of two antimalarial compounds, dihydroartemisinin and artemisone: Implications for embryotoxicity

    International Nuclear Information System (INIS)

    D'Alessandro, Sarah; Gelati, Maurizio; Basilico, Nicoletta; Parati, Eugenio Agostino; Haynes, Richard K.; Taramelli, Donatella

    2007-01-01

    Artemisinin derivatives are highly effective and well-tolerated antimalarial drugs that now form the basis of antimalarial combination therapies recommended by the World Health Organization. Although not yet reported to be a problem in clinical use, neurotoxicity and embryotoxicity are displayed by the compound class in in vitro and in vivo experimental models, in particular by dihydroartemisinin, the main metabolite of all current clinical artemisinins. Embryotoxicity appears to be connected with defective angiogenesis and vasculogenesis in certain stages of embryo development. This may prevent the use of artemisinin derivatives in malaria during pregnancy, when both mother and fetus are at high risk of death. Artemisone is a novel 10-alkylamino derivative which is not metabolised to dihydroartemisinin. It was selected as a clinical drug candidate on the basis of its high efficacy against Plasmodium falciparum in vitro and its lack of detectable neurotoxicity in both in vitro and in vivo screens. Here we describe the results of a comparative study of the anti-angiogenic properties of both artemisone and dihydroartemisinin in different model systems. We evaluated the proliferation of human endothelial cells and their migration on a fibronectin matrix, the sprouting of new vessels from rat aorta sections grown in collagen and the production of pro-angiogenic cytokines such as vascular endothelial growth factor (VEGF) and interleukin-8 (CXCL-8). The data show that artemisone is significantly less anti-angiogenic than dihydroartemisinin in all the experimental models, suggesting that it will be safer to use than the current clinical artemisinins during pregnancy

  7. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    Directory of Open Access Journals (Sweden)

    Khodakarim Nastaran

    2010-05-01

    Full Text Available Abstract Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain and CY27 (chloroquine-sensitive strain, using the parasite lactate dehydrogenase (pLDH assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain. Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy, Solanum surattense (Burm.f. and Prosopis juliflora (Sw. showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time.

  8. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    Science.gov (United States)

    2010-01-01

    Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain) and CY27 (chloroquine-sensitive strain), using the parasite lactate dehydrogenase (pLDH) assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain). Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy), Solanum surattense (Burm.f.) and Prosopis juliflora (Sw.) showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml) and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time. PMID:20462416

  9. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles.

    Science.gov (United States)

    Marrelli, Mauro Toledo; Brotto, Marco

    2016-11-02

    Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.

  10. Phytochemical screening and antimalarial activity of some plants traditionally used in Indonesia

    Directory of Open Access Journals (Sweden)

    Syamsudin Abdillah

    2015-06-01

    Full Text Available Objective: To evaluate ethanolic extracts of phytochemical screening, in vitro and in vivo antiplasmodial activities of 15 plants used as antimalarial in Sei Kepayang, North Sumatra. Methods: Extraction was done through maceration with 70% ethanol and screened against chemical content, in vitro test anti-plasmodium against Plasmodium falciparum 3D7 strain and in vivo test in mice infected Plasmodium berghei. Results: The results showed that the plant extract contained a group of saponins, flavonoids, alkaloids, quinone, sterols, triterpene, tannins and cumarine. However, extract of Momordica charantia, Carica papaya, Garcinia atroviridis, Alstonia scholaris, Smallanthus sonchifolia and Cassia siamea had strong anti-plasmodium activity both in vitro and in vivo. Conclusions: In vitro and in vivo antiplasmodial activities of 15 plants are used as antimalarial in Sei Kepayang, North Sumatra. All the plants have in vitro and in vivo anti-plasmodium activity except Orthosiphon stamineus and Luffa cylindrica (ED50 > 1 000 mg/kg body weight and IC50 > 100 μg/mL, respectively.

  11. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials.

    Science.gov (United States)

    Love, Melissa S; Millholland, Melanie G; Mishra, Satish; Kulkarni, Swapnil; Freeman, Katie B; Pan, Wenxi; Kavash, Robert W; Costanzo, Michael J; Jo, Hyunil; Daly, Thomas M; Williams, Dewight R; Kowalska, M Anna; Bergman, Lawrence W; Poncz, Mortimer; DeGrado, William F; Sinnis, Photini; Scott, Richard W; Greenbaum, Doron C

    2012-12-13

    Plasmodium falciparum pathogenesis is affected by various cell types in the blood, including platelets, which can kill intraerythrocytic malaria parasites. Platelets could mediate these antimalarial effects through human defense peptides (HDPs), which exert antimicrobial effects by permeabilizing membranes. Therefore, we screened a panel of HDPs and determined that human platelet factor 4 (hPF4) kills malaria parasites inside erythrocytes by selectively lysing the parasite digestive vacuole (DV). PF4 rapidly accumulates only within infected erythrocytes and is required for parasite killing in infected erythrocyte-platelet cocultures. To exploit this antimalarial mechanism, we tested a library of small, nonpeptidic mimics of HDPs (smHDPs) and identified compounds that kill P. falciparum by rapidly lysing the parasite DV while sparing the erythrocyte plasma membrane. Lead smHDPs also reduced parasitemia in a murine malaria model. Thus, identifying host molecules that control parasite growth can further the development of related molecules with therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Directory of Open Access Journals (Sweden)

    Wells Timothy NC

    2011-03-01

    Full Text Available Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal

  13. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica

    Directory of Open Access Journals (Sweden)

    Misael Chinchilla

    2012-06-01

    Full Text Available Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biológica Alberto Manuel Brenes (REBAMB, were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P. berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae; Xanthosoma undipes (Araceae; Iriartea deltoidea (Arecaceae; Neurolaena lobata (Asteraceae; Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae; Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae; Hampea appendiculata (Malvaceae; Ruagea glabra, Guarea glabra (Meliaceae; Psidium guajava (Myrtaceae; Bocconia frutescens (Papaveraceae; Piper friedrichsthalii (Piperaceae; Clematis dioica (Ranunculaceae; Prunus annularis (Rosaceae; Siparuna thecaphora (Siparunaceae; Solanum arboreum, Witheringia solanácea (Solanaceae; Ticodendrum incognitum (Ticodendraceae; Heliocarpus appendiculatus (Tiliaceae and Myriocarpa longipes (Urticaceae. We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9μg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  14. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial.

    Science.gov (United States)

    Phyo, Aung Pyae; Jittamala, Podjanee; Nosten, François H; Pukrittayakamee, Sasithon; Imwong, Mallika; White, Nicholas J; Duparc, Stephan; Macintyre, Fiona; Baker, Mark; Möhrle, Jörg J

    2016-01-01

    Artefenomel (OZ439) is a novel synthetic trioxolane with improved pharmacokinetic properties compared with other antimalarial drugs with the artemisinin pharmacophore. Artefenomel has been generally well tolerated in volunteers at doses up to 1600 mg and is being developed as a partner drug in an antimalarial combination treatment. We investigated the efficacy, tolerability, and pharmacokinetics of artefenomel at different doses in patients with Plasmodium falciparum or Plasmodium vivax malaria. This phase 2a exploratory, open-label trial was done at the Hospital for Tropical Diseases, Bangkok, and the Shoklo Malaria Research Unit in Thailand. Adult patients with acute, uncomplicated P falciparum or P vivax malaria received artefenomel in a single oral dose (200 mg, 400 mg, 800 mg, or 1200 mg). The first cohort received 800 mg. Testing of a new dose of artefenomel in a patient cohort was decided on after safety and efficacy assessment of the preceding cohort. The primary endpoint was the natural log parasite reduction per 24 h. Definitive oral treatment was given at 36 h. This trial is registered with ClinicalTrials.gov, number NCT01213966. Between Oct 24, 2010, and May 25, 2012, 82 patients were enrolled (20 in each of the 200 mg, 400 mg, and 800 mg cohorts, and 21 in the 1200 mg cohort). One patient withdrew consent (before the administration of artefenomel) but there were no further dropouts. The parasite reduction rates per 24 h ranged from 0·90 to 1·88 for P falciparum, and 2·09 to 2·53 for P vivax. All doses were equally effective in both P falciparum and P vivax malaria, with median parasite clearance half-lives of 4·1 h (range 1·3-6·7) to 5·6 h (2·0-8·5) for P falciparum and 2·3 h (1·2-3·9) to 3·2 h (0·9-15·0) for P vivax. Maximum plasma concentrations, dose-proportional to 800 mg, occurred at 4 h (median). The estimated elimination half-life was 46-62 h. No serious drug-related adverse effects were reported; other adverse effects were

  15. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum.

    Science.gov (United States)

    Qidwai, Tabish; Yadav, Dharmendra K; Khan, Feroz; Dhawan, Sangeeta; Bhakuni, R S

    2012-01-01

    This work presents the development of quantitative structure activity relationship (QSAR) model to predict the antimalarial activity of artemisinin derivatives. The structures of the molecules are represented by chemical descriptors that encode topological, geometric, and electronic structure features. Screening through QSAR model suggested that compounds A24, A24a, A53, A54, A62 and A64 possess significant antimalarial activity. Linear model is developed by the multiple linear regression method to link structures to their reported antimalarial activity. The correlation in terms of regression coefficient (r(2)) was 0.90 and prediction accuracy of model in terms of cross validation regression coefficient (rCV(2)) was 0.82. This study indicates that chemical properties viz., atom count (all atoms), connectivity index (order 1, standard), ring count (all rings), shape index (basic kappa, order 2), and solvent accessibility surface area are well correlated with antimalarial activity. The docking study showed high binding affinity of predicted active compounds against antimalarial target Plasmepsins (Plm-II). Further studies for oral bioavailability, ADMET and toxicity risk assessment suggest that compound A24, A24a, A53, A54, A62 and A64 exhibits marked antimalarial activity comparable to standard antimalarial drugs. Later one of the predicted active compound A64 was chemically synthesized, structure elucidated by NMR and in vivo tested in multidrug resistant strain of Plasmodium yoelii nigeriensis infected mice. The experimental results obtained agreed well with the predicted values.

  16. The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites.

    Science.gov (United States)

    Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael; Davioud-Charvet, Elisabeth

    2016-09-01

    Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Pharmacological effects of primaquine ureas and semicarbazides on the central nervous system in mice and antimalarial activity in vitro.

    Science.gov (United States)

    Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka

    2016-02-01

    New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  18. Possible artefacts in the in vitro determination of antimalarial activity of natural products that incorporate into lipid bilayer

    DEFF Research Database (Denmark)

    Ziegler, Hanne Lindvig; Jensen, Thomas Høgh; Christensen, Jette

    2002-01-01

    Dehydroabietinol isolated from Hyptis suaveolens (L.) Poit. was found to inhibit growth of chloroquine-sensitive as well as chloroquine-resistant strains of Plasmodium falciparum cultivated in erythrocytes in vitro (IC 50 26-27 microM). However, erythrocytes exposed to dehydroabietinol were trans...... be generally used to support claims of antimalarial effects of apolar natural products....

  19. Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice.

    Science.gov (United States)

    Muluye, Abrham Belachew; Melese, Eshetie; Adinew, Getnet Mequanint

    2015-10-15

    Resistances to currently available drugs and insecticides, significant drug toxicities and costs and lack of vaccines currently complicated the treatment of malaria. A continued search for safe, effective and affordable plant-based antimalarial agents thus becomes crucial and vital in the face of these difficulties. The aim of the study was to evaluate the antimalarial activity of 80 % methanolic extract of the seeds of Brassica nigra against Plasmodium berghei infection in mice. Chloroquine sensitive Plasmodium berghei (ANKA strain) was used to test the antimalarial activity of the extract. In suppressive and prophylactic models, Swiss albino male mice were randomly grouped into five groups of five mice each. Group I mice were treated with the vehicle, group II, III and IV were treated with 100, 200, and 400 mg/kg of the extract, respectively and the last group (V) mice were treated with chloroquine (10 mg/kg). The level of parasitemia, survival time and variation in weight of mice were used to determine the antimalarial activity of the extract. Chemosuppressive activities produced by the extract of the seeds of Brassica nigra were 21.88, 50.00 (P activities were 17.42, 21.21 and 53.79 % (P activities and the plant may contain biologically active principles which are relevant in the treatment and prophylaxis of malaria, thus supporting further studies of the plant for its active components.

  20. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products

    Directory of Open Access Journals (Sweden)

    Alaíde Braga de Oliveira

    2009-08-01

    Full Text Available Malaria is still the most destructive and dangerous parasitic infection in many tropical and subtropical countries. The burden of this disease is getting worse, mainly due to the increasing resistance of Plasmodium falciparum against the widely available antimalarial drugs. There is an urgent need for new, more affordable and accessible antimalarial agents possessing original modes of action. Natural products have played a dominant role in the discovery of leads for the development of drugs to treat human diseases, and this fact anticipates that new antimalarial leads may certainly emerge from tropical plant sources. This present review covers most of the recently-published non-alkaloidal natural compounds from plants with antiplasmodial and antimalarial properties, belonging to the classes of terpenes, limonoids, flavonoids, chromones, xanthones, anthraquinones, miscellaneous and related compounds, besides the majority of papers describing antiplasmodial crude extracts published in the last five years not reviewed before. In addition, some perspectives and remarks on the development of new drugs and phytomedicines for malaria are succinctly discussed.

  1. Effects of the anti-malarial compound cryptolepine and its analogues in human lymphocytes and sperm in the Comet assay.

    Science.gov (United States)

    Gopalan, Rajendran C; Emerce, Esra; Wright, Colin W; Karahalil, Bensu; Karakaya, Ali E; Anderson, Diana

    2011-12-15

    Malaria is a mosquito-borne infectious disease caused by the genus Plasmodium. It causes one million deaths per year in African children under the age of 5 years. There is an increasing development of resistance of malarial parasites to chloroquine and other currently used anti-malarial drugs. Some plant products such as the indoloquinoline alkaloid cryptolepine have been shown to have potent activity against P. falciparum in vitro. On account of its toxicity, cryptolepine is not suitable for use as an antimalarial drug but a number of analogues of cryptolepine have been synthesised in an attempt to find compounds that have reduced cytotoxicity and these have been investigated in the present study in human sperm and lymphocytes using the Comet assay. The results suggest that cryptolepine and the analogues cause DNA damage in lymphocytes, but appear to have no effect on human sperm at the assessed doses. In the context of antimalarial drug development, the data suggest that all cryptolepine compounds and in particular 2,7-dibromocryptolepine cause DNA damage and therefore may not be suitable for pre clinical development as antimalarial agents. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Monica Escolà; Hansen, Martin; Krogh, Kristine A

    2014-01-01

    the available sample preparation strategies combined with liquid chromatographic (LC) analysis to determine antimalarials in whole blood, plasma and urine published over the last decade. Sample preparation can be done by protein precipitation, solid-phase extraction, liquid-liquid extraction or dilution. After...

  3. Secondary metabolites from the sponges Aplysina fistularis and Dysidea sp. and the antituberculosis activity of 11-Ketofistularin-3; Metabolitos secundarios das esponjas Aplysina fistularis e Dysidea sp. e atividade antituberculose da 11-cetofistularina-3

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfi, Renata C.; Medina, Marina B.; Berlinck, Roberto G.S., E-mail: rgsberlinck@iqsc.usp.b [Universidade de Sao Paulo (IQSC), Sao Carlos, SP (Brazil). Inst. de Quimica; Lira, Simone P. [Escola Superior de Agricultura ' Luiz Queiroz' (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Exatas; Galetti, Fabio Cicero de; Silva, Celio L. Silva [Farmacore Biotecnologia Ltda, Ribeirao Preto, SP (Brazil); Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina; Veloso, Katyuscya; Ferreira, Antonio G. [Universidade de Sao Paulo (IQSC), Sao Carlos, SP (Brazil).Dept. de Quimica; Hadju, Eduardo [Museu Nacional (MN/UFRJ), Rio de Janeiro, RJ (Brazil); Peixinho, Solange [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Biologia

    2010-07-01

    The present investigation reports the isolation of aeroplysinin-2, 2-(3,5-dibromo-4-methoxyphenyl)-N,N,N-trimethyletanamonium, 7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca -2,6,8-trien-3-carboxylic acid and its methyl ester, 11-oxoaerothionin, aerothionin, 11-keto-12-hydroxyaerothionin, 11-ketofistularin-3 and fistularin-3 from Aplysina fistularis, as well as of furodysinin lactone and 9{alpha},11{alpha}-epoxicholest-7-en-3{beta},5{alpha},6{alpha},10-tetrol-6-acetate from Dysidea sp. Although the extracts of both sponges displayed antituberculosis activity, only 11-ketofistularin-3 isolated from A. fistularis displayed antimycobacterial activity against Mycobacterium tuberculosis H34Rv, with MIC at 16 {mu}g/mL and SI of 40, a result that reinforce that fistularin-3 derivatives are interesting leads for the development of antituberculosis drugs. (author)

  4. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil.

    Science.gov (United States)

    Ferreira, Mariana C; Cantrell, Charles L; Wedge, David E; Gonçalves, Vívian N; Jacob, Melissa R; Khan, Shabana; Rosa, Carlos A; Rosa, Luiz H

    2017-10-01

    Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.

  5. Safety and tolerability of combination antimalarial therapies for uncomplicated falciparum malaria in Ugandan children

    Science.gov (United States)

    Maiteki-Sebuguzi, Catherine; Jagannathan, Prasanna; Yau, Vincent M; Clark, Tamara D; Njama-Meya, Denise; Nzarubara, Bridget; Talisuna, Ambrose O; Kamya, Moses R; Rosenthal, Philip J; Dorsey, Grant; Staedke, Sarah G

    2008-01-01

    Background Combination antimalarial therapy is recommended for the treatment of uncomplicated falciparum malaria in Africa; however, some concerns about the safety and tolerability of new regimens remain. This study compared the safety and tolerability of three combination antimalarial regimens in a cohort of Ugandan children. Methods A longitudinal, single-blind, randomized clinical trial of children was conducted between November 2004 and May 2007 in Kampala, Uganda. Upon diagnosis of the first episode of uncomplicated malaria, participants were randomized to treatment with amodiaquine + sulphadoxine-pyrimethamine (AQ+SP), artesunate + amodiaquine (AS+AQ), or artemether-lumefantrine (AL). Once randomized, participants received the same regimen for all subsequent episodes of uncomplicated malaria. Participants were actively monitored for adverse events for the first 14 days after each treatment, and then passively followed until their next study medication treatment, or withdrawal from study. Outcome measures included the risk of adverse events at 14 and 42 days after treatment. Results Of 601 enrolled children, 382 were diagnosed with at least one episode of uncomplicated malaria and were treated with study medications. The median age at treatment was 6.3 years (range 1.1 – 12.3 years). At 14 days of follow-up, AQ+SP treatment was associated with a higher risk of anorexia, weakness, and subjective fever than treatment with AL, and a higher risk of weakness, and subjective fever than treatment with AS+AQ. Treatment with AL was associated with a higher risk of elevated temperature. Repeated episodes of neutropaenia associated with AS+AQ were detected in one participant. Considering only children less than five years, those who received AQ+SP were at higher risk of developing moderate or severe anorexia and weakness than those treated with AL (anorexia: RR 3.82, 95% CI 1.59 – 9.17; weakness: RR 5.40, 95% CI 1.86 – 15.7), or AS+AQ (anorexia: RR 2.10, 95% CI 1

  6. Safety and tolerability of combination antimalarial therapies for uncomplicated falciparum malaria in Ugandan children

    Directory of Open Access Journals (Sweden)

    Kamya Moses R

    2008-06-01

    Full Text Available Abstract Background Combination antimalarial therapy is recommended for the treatment of uncomplicated falciparum malaria in Africa; however, some concerns about the safety and tolerability of new regimens remain. This study compared the safety and tolerability of three combination antimalarial regimens in a cohort of Ugandan children. Methods A longitudinal, single-blind, randomized clinical trial of children was conducted between November 2004 and May 2007 in Kampala, Uganda. Upon diagnosis of the first episode of uncomplicated malaria, participants were randomized to treatment with amodiaquine + sulphadoxine-pyrimethamine (AQ+SP, artesunate + amodiaquine (AS+AQ, or artemether-lumefantrine (AL. Once randomized, participants received the same regimen for all subsequent episodes of uncomplicated malaria. Participants were actively monitored for adverse events for the first 14 days after each treatment, and then passively followed until their next study medication treatment, or withdrawal from study. Outcome measures included the risk of adverse events at 14 and 42 days after treatment. Results Of 601 enrolled children, 382 were diagnosed with at least one episode of uncomplicated malaria and were treated with study medications. The median age at treatment was 6.3 years (range 1.1 – 12.3 years. At 14 days of follow-up, AQ+SP treatment was associated with a higher risk of anorexia, weakness, and subjective fever than treatment with AL, and a higher risk of weakness, and subjective fever than treatment with AS+AQ. Treatment with AL was associated with a higher risk of elevated temperature. Repeated episodes of neutropaenia associated with AS+AQ were detected in one participant. Considering only children less than five years, those who received AQ+SP were at higher risk of developing moderate or severe anorexia and weakness than those treated with AL (anorexia: RR 3.82, 95% CI 1.59 – 9.17; weakness: RR 5.40, 95% CI 1.86 – 15.7, or AS

  7. Quinolinemethanol Antimalarials.

    Science.gov (United States)

    1974-12-01

    Yield of pure iaterinl froto a mi’xt of 5c and Se. *Yield froin the acid 7d. ,Yield front life ester 8d. r Anal, were wit hin ± t. fojr C, 11, N Ilr...DA-49-193-MD-2955 F 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Uiversity of Virginia, Chemistry Dept. AREA & WORK

  8. Photoreactivity of biologically active compounds. VIII. Photosensitized polymerization of lens proteins by antimalarial drugs in vitro.

    Science.gov (United States)

    Kristensen, S; Wang, R H; Tønnesen, H H; Dillon, J; Roberts, J E

    1995-02-01

    The drugs commonly used in the treatment of malaria are photochemically unstable. Several of these compounds cause dermal and ocular toxic reactions that may be light induced. The in vitro photopolymerization of calf lens proteins in the presence of antimalarial drugs was studied as part of a screening of the photochemical properties and phototoxic capabilities of these compounds. The pseudo-first-order rate constant for the reaction was calculated, and related to the amount of light absorbed by the compounds in order to determine the relative photosensitizing effect of each drug. The reaction mechanisms were evaluated by adding a variety of quenchers to the reaction medium during irradiation. Based on the results obtained in this study and previous knowledge about the pharmacokinetic behavior of these compounds, several of the drugs investigated have to be considered as potential photosensitizers in the human lens, the retina and the skin.

  9. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains.

    Science.gov (United States)

    Kondaparla, Srinivasarao; Soni, Awakash; Manhas, Ashan; Srivastava, Kumkum; Puri, Sunil K; Katti, S B

    2017-02-01

    In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    Science.gov (United States)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  11. Antimalarial benzoheterocyclic 4-aminoquinolines: Structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies.

    Science.gov (United States)

    Ongarora, Dennis S B; Strydom, Natasha; Wicht, Kathryn; Njoroge, Mathew; Wiesner, Lubbe; Egan, Timothy J; Wittlin, Sergio; Jurva, Ulrik; Masimirembwa, Collen M; Chibale, Kelly

    2015-09-01

    A novel class of benzoheterocyclic analogues of amodiaquine designed to avoid toxic reactive metabolite formation was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant) and NF54 (sensitive) strains of the malaria parasite Plasmodium falciparum. Structure-activity relationship studies led to the identification of highly promising analogues, the most potent of which had IC50s in the nanomolar range against both strains. The compounds further demonstrated good in vitro microsomal metabolic stability while those subjected to in vivo pharmacokinetic studies had desirable pharmacokinetic profiles. In vivo antimalarial efficacy in Plasmodium berghei infected mice was evaluated for four compounds, all of which showed good activity following oral administration. In particular, compound 19 completely cured treated mice at a low multiple dose of 4×10mg/kg. Mechanistic and bioactivation studies suggest hemozoin formation inhibition and a low likelihood of forming quinone-imine reactive metabolites, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant

  13. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    Science.gov (United States)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  14. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling

    Science.gov (United States)

    Le Bihan, Amélie; Angulo-Barturen, Iñigo; Binkert, Christoph; Boss, Christoph; Brun, Reto; Brunner, Ralf; Buchmann, Stephan; Dechering, Koen J.; Delves, Michael; Ewerling, Sonja; Ferrer, Santiago; Fischli, Christoph; Gamo–Benito, Francisco Javier; Heidmann, Bibia; Jiménez-Díaz, María Belén; Leroy, Didier; Martínez, Maria Santos; Meyer, Solange; Moehrle, Joerg J.; Noviyanti, Rintis; Sanz, Laura María; Sauerwein, Robert W.; Scheurer, Christian; Schleiferboeck, Sarah; Sinden, Robert; Snyder, Christopher; Straimer, Judith; Wirjanata, Grennady; Marfurt, Jutta; Weller, Thomas; Clozel, Martine; Wittlin, Sergio

    2016-01-01

    Background Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. Method and Findings The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3–4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11–16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23–39). The compound’s preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as

  15. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose-Efficacy Modeling.

    Science.gov (United States)

    Le Bihan, Amélie; de Kanter, Ruben; Angulo-Barturen, Iñigo; Binkert, Christoph; Boss, Christoph; Brun, Reto; Brunner, Ralf; Buchmann, Stephan; Burrows, Jeremy; Dechering, Koen J; Delves, Michael; Ewerling, Sonja; Ferrer, Santiago; Fischli, Christoph; Gamo-Benito, Francisco Javier; Gnädig, Nina F; Heidmann, Bibia; Jiménez-Díaz, María Belén; Leroy, Didier; Martínez, Maria Santos; Meyer, Solange; Moehrle, Joerg J; Ng, Caroline L; Noviyanti, Rintis; Ruecker, Andrea; Sanz, Laura María; Sauerwein, Robert W; Scheurer, Christian; Schleiferboeck, Sarah; Sinden, Robert; Snyder, Christopher; Straimer, Judith; Wirjanata, Grennady; Marfurt, Jutta; Price, Ric N; Weller, Thomas; Fischli, Walter; Fidock, David A; Clozel, Martine; Wittlin, Sergio

    2016-10-01

    Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under

  16. Phenylpropanoids and furanocoumarins as antibacterial and antimalarial constituents of the Bhutanese medicinal plant Pleurospermum amabile.

    Science.gov (United States)

    Wangchuk, Phurpa; Pyne, Stephen G; Keller, Paul A; Taweechotipatr, Malai; Kamchonwongpaisane, Sumalee

    2014-07-01

    With the objective of determining safety and verifying the traditional uses of the Bhutanese medicinal plant, Pleurospermum amabile Craib & W. W. Smith, we investigated its crude extracts and the isolated phytochemicals for their biological activities. Four phenylpropanoids [(E)-isomyristicin (1), (E)-isoapiol (2), methyl eugenol (3) and (E)-isoelemicin (4)] and six furanocoumarins [psoralen (5), bergapten (6), isoimperatorin (7), isopimpinellin (8), oxypeucedanin hydrate (9) and oxypeucedanin methanolate (10)] were isolated from this plant. Among the test samples, compound 10 showed weak antibacterial activity against Bacillus subtilis and best antimalarial activity against the Plasmodium falciparum strains, TM4/8.2 (chloroquine and antifolate sensitive) and K1CB1 (multidrug resistant). None of the test samples showed cytotoxicity. This study generated scientific data that support the traditional medical uses of the plant.

  17. Antimalarial β-carbolines from the New Zealand ascidian Pseudodistoma opacum.

    Science.gov (United States)

    Chan, Susanna T S; Pearce, A Norrie; Page, Michael J; Kaiser, Marcel; Copp, Brent R

    2011-09-23

    One tetrahydro-β-carboline, (-)-7-bromohomotrypargine (1), and three alkylguanidine-substituted β-carbolines, opacalines A, B, and C (2-4), have been isolated from the New Zealand ascidian Pseudodistoma opacum. The structures of the metabolites were determined by analysis of mass spectrometric and 2D NMR spectroscopic data. Natural products 2 and 3, synthetic debromo analogues 8 and 9, and intermediate 16 exhibited moderate antimalarial activity toward a chloroquine-resistant strain of Plasmodium falciparum, with an IC50 range of 2.5-14 μM. The biosynthesis of 1-4 is proposed to proceed via a Pictet-Spengler condensation of 6-bromotryptamine and the α-keto acid transamination product of either arginine or homoarginine. Cell separation and 1H NMR analysis of P. opacum identified tetrahydro-β-carboline 1 to be principally located in the zooids, while fully aromatized analogues 2-4 were localized to the test.

  18. Incorporation of basic side chains into cryptolepine scaffold: structure-antimalarial activity relationships and mechanistic studies.

    Science.gov (United States)

    Lavrado, João; Cabal, Ghislain G; Prudêncio, Miguel; Mota, Maria M; Gut, Jiri; Rosenthal, Philip J; Díaz, Cecília; Guedes, Rita C; dos Santos, Daniel J V A; Bichenkova, Elena; Douglas, Kenneth T; Moreira, Rui; Paulo, Alexandra

    2011-02-10

    The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity when compared with the parent compound. Localization studies inside parasite blood stages by fluorescence microscopy showed that these derivatives accumulate inside the nucleus, indicating that the incorporation of a basic side chain is not sufficient enough to promote selective accumulation in the acidic digestive vacuole of the parasite. Most of the compounds within this series showed the ability to bind to a double-stranded DNA duplex as well to monomeric hematin, suggesting that these are possible targets associated with the observed antimalarial activity. Overall, these novel cryptolepine analogues with substantially improved antiplasmodial activity and selectivity index provide a promising starting point for development of potent and highly selective agents against drug-resistant malaria parasites.

  19. Diagnostic pathways and direct medical costs incurred by new adult pulmonary tuberculosis patients prior to anti-tuberculosis treatment – Tamil Nadu, India

    Science.gov (United States)

    Veesa, Karun Sandeep; John, Kamalabhai Russell; Moonan, Patrick K.; Kaliappan, Saravanakumar Puthupalayam; Manjunath, Krishna; Sagili, Karuna D.; Ravichandra, Chinnappareddy; Menon, Pradeep Aravindan; Dolla, Chandrakumar; Luke, Nancy; Munshi, Kaivan; George, Kuryan; Minz, Shantidani

    2018-01-01

    Background Tuberculosis (TB) patients face substantial delays prior to treatment initiation, and out of pocket (OOP) expenditures often surpass the economic productivity of the household. We evaluated the pre-diagnostic cost and health seeking behaviour of new adult pulmonary TB patients registered at Primary Health Centres (PHCs) in Vellore district, Tamil Nadu, India. Methods This descriptive study, part of a randomised controlled trial conducted in three rural Tuberculosis Units from Dec 2012 to Dec 2015, collected data on number of health facilities, dates of visits prior to the initiation of anti-tuberculosis treatment, and direct OOP medical costs associated with TB diagnosis. Logistic regression analysis examined the factors associated with delays in treatment initiation and OOP expenditures. Results Of 880 TB patients interviewed, 34.7% presented to public health facilities and 65% patients sought private health facilities as their first point of care. The average monthly individual income was $77.79 (SD 57.14). About 69% incurred some pre-treatment costs at an average of $39.74. Overall, patients experienced a median of 6 days (3–11 IQR) of time to treatment initiation and 21 days (10–30 IQR) of health systems delay. Age ≤ 40 years (aOR: 1.73; CI: 1.22–2.44), diabetes (aOR: 1.63; CI: 1.08–2.44) and first visit to a private health facility (aOR: 17.2; CI: 11.1–26.4) were associated with higher direct OOP medical costs, while age ≤ 40 years (aOR: 0.64; CI: 0.48–0.85) and first visit to private health facility (aOR: 1.79, CI: 1.34–2.39) were associated with health systems delay. Conclusion The majority of rural TB patients registering at PHCs visited private health facilities first and incurred substantial direct OOP medical costs and delays prior to diagnosis and anti-tuberculosis treatment initiation. This study highlights the need for PHCs to be made as the preferred choice for first point of contact, to combat TB more efficiently. PMID

  20. Diagnostic pathways and direct medical costs incurred by new adult pulmonary tuberculosis patients prior to anti-tuberculosis treatment - Tamil Nadu, India.

    Science.gov (United States)

    Veesa, Karun Sandeep; John, Kamalabhai Russell; Moonan, Patrick K; Kaliappan, Saravanakumar Puthupalayam; Manjunath, Krishna; Sagili, Karuna D; Ravichandra, Chinnappareddy; Menon, Pradeep Aravindan; Dolla, Chandrakumar; Luke, Nancy; Munshi, Kaivan; George, Kuryan; Minz, Shantidani

    2018-01-01

    Tuberculosis (TB) patients face substantial delays prior to treatment initiation, and out of pocket (OOP) expenditures often surpass the economic productivity of the household. We evaluated the pre-diagnostic cost and health seeking behaviour of new adult pulmonary TB patients registered at Primary Health Centres (PHCs) in Vellore district, Tamil Nadu, India. This descriptive study, part of a randomised controlled trial conducted in three rural Tuberculosis Units from Dec 2012 to Dec 2015, collected data on number of health facilities, dates of visits prior to the initiation of anti-tuberculosis treatment, and direct OOP medical costs associated with TB diagnosis. Logistic regression analysis examined the factors associated with delays in treatment initiation and OOP expenditures. Of 880 TB patients interviewed, 34.7% presented to public health facilities and 65% patients sought private health facilities as their first point of care. The average monthly individual income was $77.79 (SD 57.14). About 69% incurred some pre-treatment costs at an average of $39.74. Overall, patients experienced a median of 6 days (3-11 IQR) of time to treatment initiation and 21 days (10-30 IQR) of health systems delay. Age ≤ 40 years (aOR: 1.73; CI: 1.22-2.44), diabetes (aOR: 1.63; CI: 1.08-2.44) and first visit to a private health facility (aOR: 17.2; CI: 11.1-26.4) were associated with higher direct OOP medical costs, while age ≤ 40 years (aOR: 0.64; CI: 0.48-0.85) and first visit to private health facility (aOR: 1.79, CI: 1.34-2.39) were associated with health systems delay. The majority of rural TB patients registering at PHCs visited private health facilities first and incurred substantial direct OOP medical costs and delays prior to diagnosis and anti-tuberculosis treatment initiation. This study highlights the need for PHCs to be made as the preferred choice for first point of contact, to combat TB more efficiently.

  1. Evaluation of patterns of liver toxicity in patients on antiretroviral and anti-tuberculosis drugs: a prospective four arm observational study in ethiopian patients.

    Directory of Open Access Journals (Sweden)

    Getnet Yimer

    Full Text Available OBJECTIVES: To evaluate the incidence, type, severity and predictors of antiretroviral and/or anti-tuberculosis drugs induced liver injury (DILI. METHODS: A total of 1,060 treatment naive patients were prospectively enrolled into four treatment groups: HIV patients receiving efavirenz based HAART alone (Arm-1; TB-HIV co-infected patients with CD4≤200 cells/μL, receiving concomitant rifampicin based anti-TB and efavirenz based HAART (Arm-2; TB-HIV co-infected patients with CD4>200 cells/μL, receiving anti-TB alone (Arm-3; TB patients taking rifampicin based anti-TB alone (Arm-4. Liver enzyme levels were monitored at baseline, 1st, 2nd, 4th, 8th, 12th and 24th weeks during treatment. CD4 and HIV viral load was measured at baseline, 24th and 48th weeks. Data were analyzed using multivariate Cox Proportional Hazards Model. RESULTS: A total of 159 patients (15% developed DILI with severity grades 1, 2, 3 and 4 of 53.5%, 32.7%, 11.3% and 2.5% respectively. The incidence of cholestatic, hepatocellular or mixed pattern was 61%, 15% and 24%, respectively. Incidence of DILI was highest in Arm-2 (24.2%>Arm-3 (10.8%>Arm-1 (8.8%>Arm-4 (2.9%. Concomitant anti-TB-HIV therapy increased the risk of DILI by 10-fold than anti-TB alone (p<0.0001. HIV co-infection increased the risk of anti-TB DILI by 4-fold (p = 0.004. HAART associated DILI was 3-fold higher than anti-TB alone, (p = 0.02. HAART was associated with cholestatic and grade 1 DILI whereas anti-TB therapy was associated with hepatocellular and grade ≥ 2. Treatment type, lower CD4, platelet, hemoglobin, higher serum AST and direct bilirubin levels at baseline were significant DILI predictors. There was no effect of DILI on immunologic recovery or virologic suppression rate of HAART. CONCLUSION: HAART associated DILI is mainly cholestatic and mild whereas hepatocellular or mixed pattern with high severity grade is more common in anti-tuberculosis DILI. TB-HIV co-infection, disease severity

  2. Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance.

    Directory of Open Access Journals (Sweden)

    Miriam Bobadilla-del Valle

    2015-09-01

    Full Text Available Mycobacterium tuberculosis causes the majority of tuberculosis (TB cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City.Data on mycobacterial isolates from human clinical samples were retrieved from the laboratory's database for the 2000-2014 period. Susceptibility to first-line drugs: rifampin, isoniazid, streptomycin (STR and ethambutol was determined. We identified 1,165 isolates, 73.7% were M. tuberculosis and 26.2%, M. bovis. Among pulmonary samples, 16.6% were M. bovis. The proportion of M. bovis isolates significantly increased from 7.8% in 2000 to 28.4% in 2014 (X(2trend, p<0.001. Primary STR resistance was higher among M. bovis compared with M. tuberculosis isolates (10.9% vs.3.4%, p<0.001. Secondary multidrug resistance (MDR rates were 38.5% and 34.4% for M. bovis and M. tuberculosis, respectively (p = 0.637. A rising trend of primary STR monoresistance was observed for both species (3.4% in 2000-2004 vs. 7.6% in 2010-2014; p = 0.02.There is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance.

  3. Investigation of Susceptibility of Mycobacterium tuberculosis Complex Strains Isolated from Clinical Samples Against the First and Second-Line Anti-tuberculosis Drugs by the Sensititre MycoTB Plate Method

    Directory of Open Access Journals (Sweden)

    Figen KAYSERİLİ ORHAN

    2018-03-01

    Full Text Available Introduction: Phenotypic methods for drug susceptibility testing of Mycobacterium tuberculosis complex (MTC to second-line drugs are not yet standardized. The Sensititre MycoTB Plate is a microtiter plate containing lyophilized antibiotics and configured for determination of MIC to first and second-line anti-tuberculosis drugs. The purpose of this study is to detect the susceptibility rates of MTC strains isolated from patients’ specimens for first and second-line anti-tuberculosis drugs. Materials and Methods: This study included 50 MTC strains isolated from various clinical specimens. Out of the 50 strains, 38 were isolated from sputum, three from cerebrospinal fluid, three from bronchoalveolar lavage, and six from other samples in this study. The susceptibility of strains to anti-tuberculosis drugs were determined by the Sensititre MycoTB Plate Method. Thawed isolates were subcultured, and dilutions were inoculated into MycoTB wells. The results were read at days 7, 14 and 21. Results: At the end of study, out of 50 MTC isolates, 7 (14% showed resistance to Isoniazid (INH, 5 (10% to streptomycin (SM, 4 (8% to ethambutol (EMB, 4 (8% to ethionamide (ETH, 3 (6% to rifampicin (RIF, 3 (6% to rifabutin (RFB, 2 (4% to kanamycin (KAN, 2 (4% to ofloxacin (OFL, 2 (4% to P-aminosalicyclic acid (PAS, 1 (2% to moxiflocacin (MOX, and 1 (2% to cycloserine (CYC. All strains were found sensitive to amikacin while 2 strains (4% were identified as multidrug-resistant tuberculosis (MDR-TB. Thirty-five strains (70% were sensitive to all drugs. Extensively drug resistant tuberculosis (XDR-TB was not determined in this study. Conclusion: This is the first study that tests second line anti-tuberculosis drugs in our location and provides us valuable data regarding MDR-TB and XDR-TB rates. The Sensititre MycoTB Plate Method is a fast, reliable and practical method and can be used to determine the susceptibility of first and second-line anti-tuberculosis drugs.

  4. In Vivo Antimalarial Activity and Mechanisms of Action of 4-Nerolidylcatechol Derivatives

    Science.gov (United States)

    Rocha e Silva, Luiz Francisco; Nogueira, Karla Lagos; Pinto, Ana Cristina da Silva; Katzin, Alejandro Miguel; Sussmann, Rodrigo A. C.; Muniz, Magno Perêa; Neto, Valter Ferreira de Andrade; Chaves, Francisco Célio Maia; Coutinho, Julia Penna; Lima, Emerson Silva; Krettli, Antoniana Ursine; Tadei, Wanderli Pedro

    2015-01-01

    4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated from Piper peltatum roots. O-Acylation or O-alkylation of compound 1 provides derivatives exhibiting improved stability and significant in vitro antiplasmodial activity. The aim of this work was to study the in vitro inhibition of hemozoin formation, inhibition of isoprenoid biosynthesis in Plasmodium falciparum cultures, and in vivo antimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibited in vitro hemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-3H]geranylgeranyl pyrophosphate, diester 2 significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone 8, menaquinone 4, and dolichol 12 in cultures of P. falciparum 3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol 12. P. falciparum in vitro protein synthesis was not affected by compounds 2 or 3. At oral doses of 50 mg per kg of body weight per day, compound 2 suppressed Plasmodium berghei NK65 in infected BALB/c mice by 44%. This in vivo result for derivative 2 represents marked improvement over that obtained previously for natural product 1. Compound 2 was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasma in vitro. However, it was detected after in vitro contact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential. PMID:25801563

  5. Medicines informal market in Congo, Burundi and Angola: counterfeit and sub-standard antimalarials

    Directory of Open Access Journals (Sweden)

    Bertocchi Paola

    2007-02-01

    Full Text Available Abstract Background The presence of counterfeits and sub-standards in African medicines market is a dramatic problem that causes many deaths each year. The increase of the phenomenon of pharmaceutical counterfeiting is due to the rise of the illegal market and to the impossibility to purchase branded high cost medicines. Methods In this paper the results of a quality control on antimalarial tablet samples purchased in the informal market in Congo, Burundi and Angola are reported. The quality control consisted in the assay of active substance by means of validated liquid chromatographic methods, uniformity of mass determination, disintegration and dissolution tests. Moreover, a general evaluation on label and packaging characteristics was performed. Results The results obtained on thirty antimalarial tablet samples containing chloroquine, quinine, mefloquine, sulphadoxine and pyrimethamine showed the presence of different kinds of problems: a general problem concerning the packaging (loose tablets, packaging without Producer name, Producer Country and sometimes without expiry date; low content of active substance (in one sample; different, non-declared, active substance (in one sample; sub-standard technological properties and very low dissolution profiles (in about 50% of samples. This last property could affect the bioavailability and bioequivalence in comparison with branded products and could be related to the use of different excipients in formulation or bad storage conditions. Conclusion This paper evidences that the most common quality problem in the analysed samples appears to be the low dissolution profile. Here it is remarked that the presence of the right active substance in the right quantity is not a sufficient condition for a good quality drug. Dissolution test is not less important in a quality control and often evidences in vitro possible differences in therapeutic efficacy among drugs with the same active content. Dissolution

  6. QUANTITAVE STRUCTURE-ACTIVITY RELATIONSHIP ANALYSIS (QSAR OF ANTIMALARIAL 1,10-PHENANTHROLINE DERIVATIVES COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ruslin Hadanu

    2010-06-01

    Full Text Available Quantitative Electronic Structure-Activity Relationship (QSAR analysis of a series of 1,10-phenanthroline derivatives as antiplasmodial compounds have been conducted using atomic net charges (q, dipole moment (μ ELUMO, EHOMO, polarizability (α and log P as the descriptors. The descriptors were obtained from computational chemistry method using semi-empirical PM3. Antiplasmodial activities were taken as the activity of the drugs  against  chloroquine-resistant Plasmodium falciparum FCR3 strain and are presented as the value of ln (1/IC50 where IC50 is an effective concentration inhibiting 50% of the parasite growth. The best model of QSAR model was determine by multiple linear regression method and giving equation of QSAR: ln 1/IC50  =  3.732 + (5.098 qC5 + (7.051 qC7 + (36.696 qC9 + (41.467 qC11 -(135.497 qC12 + (0.332 μ -                    (0.170 α + (0.757 log P. The equation was significant on the 95% level with statistical parameters: n=16; r=0.987; r2= 0.975; SE=0.317;  Fcalc/Ftable = 15.337 and gave the PRESS=0.707. Its means that there were only a relatively few deviations between the experimental and theoretical data of antimalarial activity.   Keywords: QSAR, antimalarial, semi-empirical method, 1,10-phenanthroline.

  7. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei.

    Science.gov (United States)

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2013-06-01

    The essential oil from Cedrelopsis grevei leaves, an aromatic and medicinal plant from Madagascar, is widely used in folk medicine. Essential oil was characterized by GC-MS and quantified by GC-FID. Sixty-four components were identified. The major constituents were: (E)-β-farnesene (27.61%), δ-cadinene (14.48%), α-copaene (7.65%) and β-elemene (6.96%). The essential oil contained a complex mixture consisting mainly sesquiterpene hydrocarbons (83.42%) and generally sesquiterpenes (98.91%). The essential oil was tested cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum), antiinflammatory and antioxidant (ABTS and DPPH assays) activities. C. grevei essential oil was active against MCF-7 cell lines (IC50=21.5 mg/L), against P. falciparum, (IC50=17.5mg/L) and antiinflammatory (IC50=21.33 mg/L). The essential oil exhibited poor antioxidant activity against DPPH (IC50>1000 mg/L) and ABTS (IC50=110 mg/L) assays. A bibliographical review was carried out of all essential oils identified and tested with respect to antiplasmodial, anticancer and antiinflammatory activities. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial, anticancer and antiinflammatory). According to the obtained correlations, 1,4-cadinadiene (R(2)=0.61) presented a higher relationship with antimalarial activity. However, only (Z)-β-farnesene (R(2)=0.73) showed a significant correlation for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. New molecular settings to support in vivo anti-malarial assays.

    Science.gov (United States)

    Bahamontes-Rosa, Noemí; Alejandre, Ane Rodriguez; Gomez, Vanesa; Viera, Sara; Gomez-Lorenzo, María G; Sanz-Alonso, Laura María; Mendoza-Losana, Alfonso

    2016-03-08

    Quantitative real-time PCR (qPCR) is now commonly used as a method to confirm diagnosis of malaria and to differentiate recrudescence from re-infection, especially in clinical trials and in reference laboratories where precise quantification is critical. Although anti-malarial drug discovery is based on in vivo murine efficacy models, use of molecular analysis has been limited. The aim of this study was to develop qPCR as a valid methodology to support pre-clinical anti-malarial models by using filter papers to maintain material for qPCR and to compare this with traditional methods. FTA technology (Whatman) is a rapid and safe method for extracting nucleic acids from blood. Peripheral blood samples from mice infected with Plasmodium berghei, P. yoelii, or P. falciparum were kept as frozen samples or as spots on FTA cards. The extracted genetic material from both types of samples was assessed for quantification by qPCR using sets of specific primers specifically designed for Plasmodium 18S rRNA, LDH, and CytB genes. The optimal conditions for nucleic acid extraction from FTA cards and qPCR amplification were set up, and were confirmed to be suitable for parasite quantification using DNA as template after storage at room temperature for as long as 26 months in the case of P. berghei samples and 52 months for P. falciparum and P. yoelii. The quality of DNA extracted from the FTA cards for gene sequencing and microsatellite amplification was also assessed. This is the first study to report the suitability of FTA cards and qPCR assay to quantify parasite load in samples from in vivo efficacy models to support the drug discovery process.

  9. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols.

    Directory of Open Access Journals (Sweden)

    Juliana B R Corrêa Soares

    Full Text Available BACKGROUND: The parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis, which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group has demonstrated that heme crystallization into hemozoin (Hz within the S. mansoni gut is a major heme detoxification route with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we investigated the effects of three antimalarial compounds, quinine (QN, quinidine (QND and quinacrine (QCR in a murine schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections of QN, and QND (75 mg/kg/day from the 11(th to 17(th day after infection caused significant decreases in worm burden (39%-61% and egg production (42%-98%. Hz formation was significantly inhibited (40%-65% in female worms recovered from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms. CONCLUSIONS: The overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action of these compounds and points out the heme crystallization process as a

  10. Antileishmanial, antimalarial and antimicrobial activities of the extract and isolated compounds from Austroplenckia populnea (Celastraceae).

    Science.gov (United States)

    Andrade, Sérgio F; da Silva Filho, Ademar A; de O Resende, Dimas; Silva, Márcio L A; Cunha, Wilson R; Nanayakkara, N P Dhammika; Bastos, Jairo Kenupp

    2008-01-01

    Austroplenckia populnea (Celastraceae), known as "marmelinho do campo", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial, antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC50 values of 0.7 microg mL(-1) and 5.5 microg mL(-1), respectively, while amphotericin B showed an IC50 value of 0.1 microg mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC50 value of 52 microg mL(-1), while compounds 2 and 3 displayed an IC50 value of 18 microg mL(-1) In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.

  11. Inhibition test of heme detoxification (ITHD as an approach for detecting antimalarial agents in medicinal plants

    Directory of Open Access Journals (Sweden)

    M. Mosaddegh

    2018-01-01

    Full Text Available Background and objectives: There are several methods to assess the in vitro capability of heme inhibitory activity of antimalarial compounds; most of them require some specific equipment or toxic substances and sometimes the needed materials are not accessible. Regarding the necessity and importance of optimizing and standardizing experimental conditions, the present study has intended to improve the in vitro assessment conditions of the β-hematin formation inhibitory activity for screening herbal samples. Methods: Hemin, tween 20, and samples (9:9:2 were incubated in different conditions including: hemin concentration (30, 60, and 120 µg/mL, duration (4, 24, 48, and 72 h, pH of buffer (3.6, 4, 4.4, 4.8, and 5, and temperature (37 and 60 °C in 96-well plates. Also, a total of 165 plant extracts and fractions were tested in the most suitable conditions. Results: The reaction time and the incubation temperature were determined as the critical factors. The effective conditions for β-hematin formation were found to be 60 °C after 24 h incubation. In this method, proper correlations with respect to negative (69% and positive (67% predictive values were obtained in comparison with the anti-plasmodial assay. Antimalarial activities of Pistacia atlantica, Myrtus communis, Pterocarya fraxinifolia, and Satureja mutica were found to correlate significantly with inhibition of the heme detoxification assay. Conclusion: These results support a rapid, simple and reliable approach for selecting and identifying a number of herbs for further related antimalaria investigations.

  12. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance.

    Science.gov (United States)

    Warhurst, David C; Craig, John C; Raheem, K Saki

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications.

  13. High-level semi-synthetic production of the potent antimalarial artemisinin.

    Science.gov (United States)

    Paddon, C J; Westfall, P J; Pitera, D J; Benjamin, K; Fisher, K; McPhee, D; Leavell, M D; Tai, A; Main, A; Eng, D; Polichuk, D R; Teoh, K H; Reed, D W; Treynor, T; Lenihan, J; Fleck, M; Bajad, S; Dang, G; Dengrove, D; Diola, D; Dorin, G; Ellens, K W; Fickes, S; Galazzo, J; Gaucher, S P; Geistlinger, T; Henry, R; Hepp, M; Horning, T; Iqbal, T; Jiang, H; Kizer, L; Lieu, B; Melis, D; Moss, N; Regentin, R; Secrest, S; Tsuruta, H; Vazquez, R; Westblade, L F; Xu, L; Yu, M; Zhang, Y; Zhao, L; Lievense, J; Covello, P S; Keasling, J D; Reiling, K K; Renninger, N S; Newman, J D

    2013-04-25

    In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.

  14. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Feiz Haddad

    2017-04-01

    Full Text Available Objective(s: In an attempt to discover new natural active extracts against malaria parasites, the present study evaluated the antiplasmodial properties of selected plants based on Iranian traditional medicine. Materials and Methods: Ten plant species found in Iran were selected and collected based on the available literature about the Iranian traditional medicine. The methanolic extracts of these plants were investigated for in vitro antimalarial properties against chloroquine-sensitive (3D7 and multi-drug resistant (K1 strains of Plasmodium falciparum. Their in vivo activity against Plasmodium berghei infection in mice was also determined. Cytotoxicity tests were carried out using the Raji cells line using the MTT assay. The extracts were phytochemically screened for their active constituents. Results: According to the IC50 and selectivity index (SI values, of the 10 selected plant species, Citrullus colocynthis, Physalis alkekengi, and Solanum nigrum displayed potent in vitro antimalarial activity against both 3D7 and K1 strains with no toxicity (IC50= 2.01-18.67 µg/ml and SI=3.55 to 19.25.  Comparisons between treated and untreated control mice showed that the mentioned plant species reduced parasitemia by 65.08%, 57.97%, and 60.68%, respectively.  The existence