WorldWideScience

Sample records for antimalarial antiprotozoal antituberculosis

  1. Antiprotozoal Activity of Essential Oils

    Directory of Open Access Journals (Sweden)

    Lianet Monzote

    2013-03-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In the present scenario of protozoal infections, new drugs are urgently needed to treat and control infections such as malaria, sleeping sickness, Chagas disease, leishmaniasis and intestinal infections, which affect millions of people each year. In this review, we are focusing on articles related to antiprotozoal essential oils extracted from plants that have been published during the last 20 years. The data analyzed indicate that essential oils could be promising antiprotozoal agents, opening perspectives to the discovery of more effective drugs of vegetal origin for the treatment of diseases caused by protozoa.

  2. Evaluation of in vitro antiprotozoal activity of Ajuga laxmannii and its secondary metabolites.

    Science.gov (United States)

    Atay, Irem; Kirmizibekmez, Hasan; Kaiser, Marcel; Akaydin, Galip; Yesilada, Erdem; Tasdemir, Deniz

    2016-09-01

    Context Some Ajuga L. (Lamiaceae) species are traditionally used for the treatment of malaria, as well as fever, which is a common symptom of many parasitic diseases. Objective In the continuation of our studies on the identification of antiprotozoal secondary metabolites of Turkish Lamiaceae species, we have investigated the aerial parts of Ajuga laxmannii. Materials and methods The aerial parts of A. laxmannii were extracted with MeOH. The H2O subextract was subjected to polyamide, C18-MPLC and SiO2 CCs to yield eight metabolites. The structures of the isolates were elucidated by NMR spectroscopy and MS analyses. The extract, subextracts as well as the isolates were tested for their in vitro antiprotozoal activities against Plasmodium falciparum, Trypanasoma brucei rhodesiense, T. cruzi and Leishmania donovani at concentrations of 90-0.123 μg/mL. Results Two iridoid glycosides harpagide (1) and 8-O-acetylharpagide (2), three o-coumaric acid derivatives cis-melilotoside (3), trans-melilotoside (4) and dihydromelilotoside (5), two phenylethanoid glycosides verbascoside (6) and galactosylmartynoside (7) and a flavone-C-glycoside, isoorientin (8) were isolated. Many compounds showed moderate to good antiparasitic activity, with isoorientin (8) displaying the most significant antimalarial potential (an IC50 value of 9.7 μg/mL). Discussion and conclusion This is the first report on the antiprotozoal evaluation of A. laxmannii extracts and isolates. Furthermore, isoorientin and dihydromelilotoside are being reported for the first time from the genus Ajuga.

  3. Antiprotozoal properties of Helianthemum glomeratum.

    Science.gov (United States)

    Meckes, M; Calzada, F; Tapia-Contreras, A; Cedillo-Rivera, R

    1999-03-01

    Structure characterization and biological evaluation of the compounds isolated from Helianthemum glomeratum, particularly that of the polyphenols, has been the aim of a series of studies carried out to define the further potential use of this plant in the treatment of infectious diarrhoea in children. The flavan-3-ols, (-)-epigallocatechin and (-)-epigallocatechin gallate, isolated from Helianthemum glomeratum roots were tested for their antiamoebic and antigiardial effects in vitro. Compared with the activity determined with the leaf and the root methanol extracts, the effect of (-)-epigallocatechin against Entamoeba histolytica was of a similar potency, nevertheless, it also suppressed the growth of Giardia lamblia in axenic cultures, a parasite that proved to be resistant to the crude extracts. It might be assumed that determined biological properties are due to the presence of (-)-epigallocatechin in the plant, although the flavonoids, kaempferol and tiliroside isolated from the leaves, could account for the antiprotozoal properties of this herbal resource, used in Mayan traditional medicine for the treatment of bloody diarrhoea.

  4. Discovery and Evaluation of Thiazinoquinones as Anti-Protozoal Agents

    Directory of Open Access Journals (Sweden)

    Marcel Kaiser

    2013-09-01

    Full Text Available Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2 to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM and Plasmodium falciparum (K1 dual drug resistant strain (IC50 3.3 μM while exhibiting low levels of cytotoxicity (L6, IC50 167 μM. A series of C-7 amide and Δ2(3 analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM, and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively, while Δ2(3-phenethylamide 8e (IC50 0.67 μM, SI 78 exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM combined with excellent selectivity (SI 560–4000. In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively.

  5. Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis.

    Science.gov (United States)

    Koolen, Hector H F; Pral, Elizabeth M F; Alfieri, Silvia C; Marinho, Jane V N; Serain, Alessandra F; Hernández-Tasco, Alvaro J; Andreazza, Nathalia L; Salvador, Marcos J

    2017-02-01

    Five alkaloids, in addition to hydroxytyrosol and uridine, were isolated from aerial parts of Alternanthera littoralis P. Beauv. Among the isolated compounds, alternamide A was an unusual tricyclic alkaloid with a bridged benzoazepine core. All isolated alkaloids have a catechol moiety, indicating a possible common biosynthetic route. Their structures were established by 1D and 2D NMR spectroscopy in combination with extensive tandem MS experiments by collisional induced dissociation (CID). The antiprotozoal activity of the isolated compounds was assayed against trypomastigote forms of Trypanosoma cruzi and amastigotes of Leishmania amazonensis. Alternamine A was the most active compound, reducing markedly the viability of both parasites. Antioxidant capacities evaluated by ORACFL assay showed that the isolated alkaloids (mainly alternamide B) contributed to the high activity recorded for the ethanolic crude extract; possibly, the catechol moiety present in all structures plays a central role in this result.

  6. Synergism between ethanolic extract of propolis (EEP) and anti-tuberculosis drugs on growth of mycobacteria.

    Science.gov (United States)

    Scheller, S; Dworniczak, S; Waldemar-Klimmek, K; Rajca, M; Tomczyk, A; Shani, J

    1999-01-01

    Ethanolic extract of propolis exerts a strong anti-bacterial activity, in addition to antifungal, antiviral and antiprotozoal properties. In previous studies from these laboratories we have demonstrated that the intensity of the bactericidal activity of EEP is correlated with the virulence of the mycobacteria tested, and that EEP has a synergistic effect with antibiotics on growth of staphylococcus aureus. In the present study we investigated whether the same synergism and correlation exists between EEP and some anti-tuberculosis drugs on tuberculosis mycobacteria with different degrees of virulence. Six standard strains and 11 wild strains of mycobacteria were exposed for 30 days to EEP, with or without streptomycin, rifamycin, isoniazid or ethambutol. Out of the 17 strains, 8 were resistant to at least two standard antibiotics, and were considered "multi-resistant strains". The rest were either susceptible or resistant to only one of the antimycobacterial drugs. Antagonism was recorded only in one case, when Staphylococcus aureus were treated with a mixture of EEP and ethambutol, suggesting that a chemical bond could have been formed between this anti-tuberculosis antibiotic and one of the active components of the ethanol extract of propolis.

  7. New prodrugs of the antiprotozoal drug pentamidine.

    Science.gov (United States)

    Kotthaus, Joscha; Kotthaus, Jürke; Schade, Dennis; Schwering, Ulrike; Hungeling, Helen; Müller-Fielitz, Helge; Raasch, Walter; Clement, Bernd

    2011-12-09

    Pentamidine is an effective antimicrobial agent that is approved for the treatment of African trypanosomiasis but suffers from poor oral bioavailability and central nervous system (CNS) penetration. This work deals with the development and systematic characterisation of new prodrugs of pentamidine. For this reason, numerous prodrugs that use different prodrug principles were synthesised and examined in vitro and in vivo. Another objective of the study was the determination of permeability of the different pentamidine prodrugs. While some of the prodrug principles applied in this study are known, such as the conversion of the amidine functions into amidoximes or the O-alkylation of amidoximes with a carboxymethyl residue, others were developed more recently and are described here for the first time. These newly developed methods aim to increase the affinity of the prodrug for the transporters and mediate an active uptake via carrier systems by conjugation of amidoximes with compounds that improve the overall solubility of the prodrug. The different principles chosen resulted in several pentamidine prodrugs with various advantages. The objective of this investigation was the systematic characterisation and evaluation of eight pentamidine prodrugs in order to identify the most appropriate strategy to improve the properties of the parent drug. For this reason, all prodrugs were examined with respect to their solubility, stability, enzymatic activation, distribution, CNS delivery, and oral bioavailability. The results of this work have allowed reliable conclusions to be drawn regarding the best prodrug principle for the antiprotozoal drug pentamidine.

  8. Synthesis and antiprotozoal activity of pyridyl analogues of pentamidine.

    Science.gov (United States)

    Bakunova, Svetlana M; Bakunov, Stanislav A; Wenzler, Tanja; Barszcz, Todd; Werbovetz, Karl A; Brun, Reto; Tidwell, Richard R

    2009-08-13

    A series of novel pyridyl analogues 1-18 of antiprotozoal drug 1,5-bis(4-amidinophenoxy)pentane (pentamidine) has been synthesized and tested for in vitro activities against Trypanosoma brucei rhodesiense, Plasmodium falciparum, and Leishmania donovani, and for cytotoxicity against mammalian cells. Antiprotozoal properties of compounds 1-18 depended on the placement of cationic moieties on the pyridine rings as well as the nature of substituents on the amidine groups. Diamidine 6 with cationic moieties adjacent to pyridine nitrogen atoms was the most promising compound in the series showing superior in vitro activities against T. brucei rhodesiense, P. falciparum, and L. donovani compared to pentamidine. An oral prodrug of diamidine 6, diamidoxime 9, administered at 25 mg/kg daily for 4 days, exhibited excellent antitrypanosomal efficacy in vivo curing all infected animals in the STIB900 acute mouse model of trypanosomiasis.

  9. Antiviral, antifungal and antiprotozoal agents in the cinema.

    Science.gov (United States)

    García-Sánchez, Jose Elias; García-Sánchez, E; Merino Marcos, M L

    2007-03-01

    Among the antimicrobial agents, antibacterials are the most frequently mentioned in cinematographic plots. Nevertheless, it is not uncommon to come across other antiviral agents, especially antiretrovirals and antiprotozoals. We analyzed the presence of antiviral and antifungal agents in different commercial films, both when they were merely mentioned in passing and when they played a major role in the film. This review essentially aims to address the historical portrayal of these agents in film and to list their appearances. The fictional treatments that appear in some films are not addressed.

  10. 1,2-substituted 4-(1H)-quinolones: synthesis, antimalarial and antitrypanosomal activities in vitro.

    Science.gov (United States)

    Wube, Abraham; Hüfner, Antje; Seebacher, Werner; Kaiser, Marcel; Brun, Reto; Bauer, Rudolf; Bucar, Franz

    2014-09-10

    A diverse array of 4-(1H)-quinolone derivatives bearing substituents at positions 1 and 2 were synthesized and evaluated for antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense, and cytotoxicity against L-6 cells in vitro. Furthermore, selectivity indices were also determined for both parasites. All compounds tested showed antimalarial activity at low micromolar concentrations, with varied degrees of selectivity against L-6 cells. Compound 5a was found to be the most active against P. falciparum, with an IC50 value of 90 nM and good selectivity for the malarial parasite compared to the L-6 cells. Compound 10a, on the other hand, showed a strong antitrypanosomal effect with an IC50 value of 1.25 µM. In this study side chain diversity was explored by varying the side chain length and substitution pattern on the aliphatic group at position-2 and a structure-antiprotozoal activity study revealed that the aromatic ring introduced at C-2 contributed significantly to the antiprotozoal activities.

  11. Pharmacokinetic justification of antiprotozoal therapy. A US perspective.

    Science.gov (United States)

    Berman, J D; Fleckenstein, L

    1991-12-01

    Infections with parasitic protozoa have always been problems for the developing world and are becoming of greater importance to the developed world in this age of easy international travel. The major human protozoal diseases are summarised with an emphasis on their presentation in normal hosts and in immunocompromised individuals and current US drug treatment recommendations are discussed. Present antiprotozoal regimens are based either on a pharmacokinetic rationale or on clinical trial and error. Regimens based on trial and error include amphotericin B against leishmaniasis and arsenic against African trypanosomiasis. Regimens which are to some extent driven by pharmacokinetic or biochemical considerations include paromomycin and metronidazole against amoebiasis, sodium stibogluconate against leishmaniasis, halofantrine and mefloquine against malaria, dihydrofolate reductase (DHFR) inhibitors against Pneumocystis carinii and toxoplasmosis and aerosolised pentamidine against P. carinii pneumonia. The majority of pharmacokinetic studies have been performed only on agents which have some therapeutic activity against other diseases of the developed world. Despite the trend toward rational treatment regimens, no studies have been performed that permit optimisation of antiprotozoal treatment regimens on the basis of clinical conditions such as renal failure.

  12. Antimalarial activity of cedronin.

    Science.gov (United States)

    Moretti, C; Deharo, E; Sauvain, M; Jardel, C; David, P T; Gasquet, M

    1994-06-01

    Cedronin was isolated from Simaba cedron Planchon (Simaroubaceae), a species popularly believed in South America to have antimalarial properties. It was examined for in vitro and in vivo antimalarial activities and for cytotoxicity against KB cells. Experimental results showed that cedronin was active against chloroquine-sensitive and resistant strain, with an IC50 of 0.25 micrograms/ml (0.65 mumol/ml). It was also found to be active in vivo against Plasmodium vinkei with an IC50 of 1.8 mg/kg (4.7 nM/kg) in the classic 4-day test. Cedronin belongs to the small group of quassinoids with a C19 basic skeleton and shows a rather low cytotoxicity against KB cells (IC50 = 4 micrograms/ml, 10.4 microM) as compared with C20 biologically active quassinoids; however its toxic/therapeutic ratio (10/1.8) remains lower than chloroquine (10/0.5).

  13. Absolute configuration and antiprotozoal activity of minquartynoic acid

    DEFF Research Database (Denmark)

    Rasmussen, H B; Christensen, Søren Brøgger; Kvist, L P;

    2000-01-01

    Minquartynoic acid (1) was isolated as an antimalarial and antileishmanial constituent of the Peruvian tree Minquartia guianensis and its absolute configuration at C-17 established to be (+)-S through conversion to the known (+)-(S)-17-hydroxystearic acid (2) and confirmed using Mosher's method....

  14. Structure-activity study of pentamidine analogues as antiprotozoal agents.

    Science.gov (United States)

    Bakunova, Svetlana M; Bakunov, Stanislav A; Patrick, Donald A; Kumar, E V K Suresh; Ohemeng, Kwasi A; Bridges, Arlene S; Wenzler, Tanja; Barszcz, Todd; Jones, Susan Kilgore; Werbovetz, Karl A; Brun, Reto; Tidwell, Richard R

    2009-04-09

    Diamidine 1 (pentamidine) and 65 analogues (2-66) have been tested for in vitro antiprotozoal activities against Trypanosoma brucei rhodesiense, Plasmodium falciparum, and Leishmania donovani, and for cytotoxicity against mammalian cells. Dications 32, 64, and 66 exhibited antitrypanosomal potencies equal or greater than melarsoprol (IC(50) = 4 nM). Nine congeners (2-4, 12, 27, 30, and 64-66) were more active against P. falciparum than artemisinin (IC(50) = 6 nM). Eight compounds (12, 32, 33, 44, 59, 62, 64, and 66) exhibited equal or better antileishmanial activities than 1 (IC(50) = 1.8 microM). Several congeners were more active than 1 in vivo, curing at least 2/4 infected animals in the acute mouse model of trypanosomiasis. The diimidazoline 66 was the most promising compound in the series, showing excellent in vitro activities and high selectivities against T. b. rhodesiense, P. falciparum, and L. donovani combined with high antitrypanosomal efficacy in vivo.

  15. Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae.

    Science.gov (United States)

    Osorio, Edison; Arango, Gabriel Jaime; Jiménez, Nora; Alzate, Fernando; Ruiz, Grace; Gutiérrez, David; Paco, Marco Antonio; Giménez, Alberto; Robledo, Sara

    2007-05-22

    Ethnobotanical and chemotaxonomical studies for antiparasitic activity of Colombian Annonaceae were carried out. In vitro antiprotozoal activity of 36 extracts obtained from six different species was determined against promastigotes of three Leishmania species, epimastigotes of Trypanosoma cruzi and both chloroquine sensitive (F32) and resistant (W2) Plasmodium falciparum. Cytotoxic activity was evaluated in U-937 cells. Active extracts were selected according their selectivity index (SI). Extracts from Annona muricata, Rollinia exsucca, Rollinia pittieri and Xylopia aromatica were active against Leishmania spp. and Trypanosoma cruzi showing IC50 values lower than 25 microg/ml. Hexane extract from Rollinia pittieri leaves was the most selective against Trypanosoma cruzi and Leishmania spp. (IS=10 and 16, respectively). The extracts from Desmopsis panamensis, Pseudomalmea boyacana, Rollinia exsucca and Rollinia pittieri showed good antiplasmodial activity (IC50 Annonaceae extracts. Results presented here also demonstrate which plants and/or plant parts could be useful in the treatment of leishmaniasis, Chagas' disease and malaria.

  16. Antibacterial and antiprotozoal effect of Artemisia annua extracts

    DEFF Research Database (Denmark)

    Ivarsen, E.; Fretté, X. C.; Engberg, R. M.;

    2012-01-01

    be banned in the EU. Extracts of aerial parts of Artemisia annua (AA) showed antimicrobial activity in overnight cultures of CP strains isolated from diseased broilers. The hexane extract (HEX) gave the strongest inhibition (MIC=185ppm) while the dichloromethane extract (DCM) gave a weaker inhibition (MIC......=270ppm). The dietary incorporation of HEX reduced the population of CP and the severity of the associated small intestinal lesions (P>0.05) in broilers when applying a NE disease model. The antibacterial compounds from HEX and DCM, chrysosplenol and ponticaepoxide, were isolated. This is the first...... report of activity against CP for these compounds. HEX, DCM and artemisinin were also tested against HM. The two latter showed highest antiprotozoal effect in vitro (MLC=1.0mg/ml and IC50=1.3mg/ml respectively), and were tested in vivo in infected poultry. However, no effect against HM at the given...

  17. World Antimalarial Resistance Network I: Clinical efficacy of antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Olliaro Piero

    2007-09-01

    Full Text Available Abstract The proliferation of antimalarial drug trials in the last ten years provides the opportunity to launch a concerted global surveillance effort to monitor antimalarial drug efficacy. The diversity of clinical study designs and analytical methods undermines the current ability to achieve this. The proposed World Antimalarial Resistance Network (WARN aims to establish a comprehensive clinical database from which standardised estimates of antimalarial efficacy can be derived and monitored over time from diverse geographical and endemic regions. The emphasis of this initiative is on five key variables which define the therapeutic response. Ensuring that these data are collected at the individual patient level in a consistent format will facilitate better data management and analytical practices, and ensure that clinical data can be readily collated and made amenable for pooled analyses. Such an approach, if widely adopted will permit accurate and timely recognition of trends in drug efficacy. This will guide not only appropriate interventions to deal with established multidrug resistant strains of malaria, but also facilitate prompt action when new strains of drug resistant plasmodia first emerge. A comprehensive global database incorporating the key determinants of the clinical response with in vitro, molecular and pharmacokinetic parameters will bring together relevant data on host, drug and parasite factors that are fundamental contributors to treatment efficacy. This resource will help guide rational drug policies that optimize antimalarial drug use, in the hope that the emergence and spread of resistance to new drugs can be, if not prevented, at least delayed.

  18. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers...... to provide insight into the empiric treatment of TBM. METHODS: Mycobacterium tuberculosis was cultured from the cerebrospinal fluid (CSF) of 142 patients and was tested for susceptibility to first-line antituberculosis drugs, streptomycin (SM), isoniazid (INH), rifampicin (RIF) and ethambutol (EMB). RESULTS...

  19. Additional antiprotozoal flavonol glycosides of the aerial parts of Helianthemum glomeratum.

    Science.gov (United States)

    Calzada, Fernando; Alanís, Alma Delia

    2007-01-01

    Bioassay-guided fractionation of the methanol extract of aerial parts from Helianthemum glomeratum afforded five antiprotozoal flavonol glycosides: tiliroside, kaempferol-3-O-(3'',6''di-O-E-p-coumaroyl)-betad-glucopyranoside, astragalin, quercitrin and isoquercitrin. The in vitro antiprotozoal assay showed that tiliroside was the most potent antiamoebic and antigiardial compound with IC(50) values of 17.5 microg/mL for Entamoeba histolytica and 17.4 microg/mL for G. lamblia. Isoquercitrin showed selectivity against E. histolytica (IC(50) 14.7 microg/mL) and quercitrin toward G. lamblia (IC(50) 24.3 microg/mL). All isolated compounds were less active than metronidazole and emetine, two antiprotozoal drugs used as positive controls.

  20. Microbial transformation of antimalarial terpenoids.

    Science.gov (United States)

    Parshikov, Igor A; Netrusov, Alexander I; Sutherland, John B

    2012-01-01

    The fungal and bacterial transformation of terpenoids derived from plant essential oils, especially the sesquiterpenoid artemisinin from Artemisia annua, has produced several new candidate drugs for the treatment of malaria. Obtaining new derivatives of terpenoids, including artemisinin derivatives with increased antimalarial activity, is an important goal of research in microbial biotechnology and medicinal chemistry.

  1. Synthesis of marine-derived 3-alkylpyridinium alkaloids with potent antiprotozoal activity

    NARCIS (Netherlands)

    Rodenko, B.; Al-Salabi, M.I.; Teka, I.A.; Ho, W.; El-Sabbagh, N.; Ali, J.A.M.; Ibrahim, H.M.S.; Wanner, M.J.; Koomen, G.J.; de Koning, H.P.

    2011-01-01

    Given the pressing need for new antiprotozoal drugs without cross-resistance with current (failing) chemotherapy, we have explored 3-tridecylpyridinium alkaloids (3TPAs), derivatives of viscosamine, as antiparasitic agents. We have developed a simple synthetic route toward viscosamine and related cy

  2. Antimalarial natural products: a review

    Directory of Open Access Journals (Sweden)

    Faraz Mojab

    2012-03-01

    Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures.

  3. Antiprotozoal Activity of Flavonoids Isolated from Mimosa tenuiflora (Fabaceae-Mimosoideae)

    OpenAIRE

    Elihú Bautista; Fernando Calzada; Alfredo Ortega; Lilian Yépez-Mulia

    2011-01-01

    As result of the chemical study of the leaves and flowers of Mimosa tenuiflora (Willd.) Poir. (Fabaceae-Mimosoideae) eigth flavonoids were isolated: 6-methoxy-4¿-O-methylnaringenin (1), santin (2), 6-methoxynaringenin (3), tenuiflorin A (4), 5, 7, 4¿-trihydroxy-3, 6-dimethoxyflavone (5), 6-demethoxy-4¿-O-methylcapilarisine (6), 6- methoxykaempferol (7) and tenuiflorin C (8). Antiprotozoal activity of these compounds as well as the tenuiflorina B (9) and 6-desmethoxycapilarisine (10), isolated...

  4. Adverse Reactions to Antituberculosis Drugs in Iranian Tuberculosis Patients

    Directory of Open Access Journals (Sweden)

    Aliasghar Farazi

    2014-01-01

    Full Text Available Background. Antituberculosis multidrug regimens have been associated with increased incidence of adverse drug reactions (ADRs. This study aimed to determine the incidence and associated factors of ADRs due to antituberculosis therapy. Methods. This is a retrospective cross-sectional study on tuberculosis patients who were treated in tuberculosis clinics in Markazi province in Iran. The information contained in the medical files was extracted and entered into the questionnaire. Data was descriptively analyzed by using statistical package for social sciences (SPSS 18. Results. A total of 940 TB patients of 1240 patients’ medical records available in 10 medical offices were included in this study. Of the 563 ADRs found in this study, 82.4% were considered minor reactions and 17.6% were major reactions. No death from antituberculosis ADR was observed. We found that the risk of major ADRs was higher in females (P  value=0.0241, age >50 y (P  value=0.0223, coinfection with HIV (P  value=0.0323, smoking (P  value=0.002, retreatment TB (P  value=0.0203, and comorbidities (P  value=0.0005. Conclusions. This study showed that severe side effects of anti-TB drugs are common in patients who have risk factors of ADRs and they should be followed up by close monitoring.

  5. Natural product derived antiprotozoal agents: synthesis, biological evaluation, and structure-activity relationships of novel chromene and chromane derivatives.

    Science.gov (United States)

    Harel, Dipak; Schepmann, Dirk; Prinz, Helge; Brun, Reto; Schmidt, Thomas J; Wünsch, Bernhard

    2013-09-26

    Various natural products with the chromane and chromene scaffold exhibit high antiprotozoal activity. The natural product encecalin (7) served as key intermediate for the synthesis of different ethers 9, amides 11, and amines 12. The chromane analogues 14 and the phenols 15 were obtained by reductive amination of ketones 13 and 6, respectively. Angelate 3, ethers 9, and amides 11 did not show considerable antiprotozoal activity. However, the chromene and chromane derived amines 12, 14, and 15 revealed promising antiprotozoal activity and represent novel lead compounds. Whereas benzylamine 12a and α-methylbenzylamine 12g were active against P. falciparum with IC50 values in the range of chloroquine, the analogous phenols 15a and 15b were unexpectedly 10- to 25-fold more potent than chloroquine with selectivity indexes of 6760 and 1818, respectively. The phenylbutylamine 14d based on the chromane scaffold has promising activity against T. brucei rhodesiense and L. donovani.

  6. Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species

    Institute of Scientific and Technical Information of China (English)

    Ilkay Erdogan Orhan; Nilgun Ozturk; Bilge Sener

    2015-01-01

    Objective: To explore some Fumaria species which were recorded to be traditionally used against malaria and other protozoal diseases. Methods: Consequently, in the current study, antiprotozoal effect of the ethanol extracts obtained from five Fumaria species (Fumaria densiflora, Fumaria cilicica, Fumaria rostellata, Fumaria kralikii, and Fumaria parviflora) was investigated against the parasites; Plasmodium falciparum (malaria) and Trypanosoma bruceirhodesiense (human African trypanosomiasis) at 0.81 and 4.85 μg/mL concentrations. Results: Among them, Fumaria densiflora extract exerted the highest antiplasmodial (93.80%) and antitrypanasomal effect (55.40%), while the ethanol extracts of Fumaria kralikii (43.45%) and Fumaria rostellata (41.65%) showed moderate activity against Plasmodium falciparum. Besides, phenolic acid contents of the extracts were analyzed using high performance liquid chromatography (HPLC) and trans-cinnamic (4.32 mg/g) and caffeic (3.71 mg/g) acids were found to be the dominant phenolic acids in Fumaria densiflora. Conclusions: According to our results, Fumaria densiflora deserve further study for its promising antiprotozoal activity.

  7. Optimization of propafenone analogues as antimalarial leads.

    Science.gov (United States)

    Lowes, David J; Guiguemde, W Armand; Connelly, Michele C; Zhu, Fangyi; Sigal, Martina S; Clark, Julie A; Lemoff, Andrew S; Derisi, Joseph L; Wilson, Emily B; Guy, R Kiplin

    2011-11-10

    Propafenone, a class Ic antiarrythmic drug, inhibits growth of cultured Plasmodium falciparum. While the drug's potency is significant, further development of propafenone as an antimalarial would require divorcing the antimalarial and cardiac activities as well as improving the pharmacokinetic profile of the drug. A small array of propafenone analogues was designed and synthesized to address the cardiac ion channel and PK liabilities. Testing of this array revealed potent inhibitors of the 3D7 (drug sensitive) and K1 (drug resistant) strains of P. falciparum that possessed significantly reduced ion channel effects and improved metabolic stability. Propafenone analogues are unusual among antimalarial leads in that they are more potent against the multidrug resistant K1 strain of P. falciparum compared to the 3D7 strain.

  8. The quality of antimalarials available in Yemen

    Directory of Open Access Journals (Sweden)

    Atta Hoda

    2005-06-01

    Full Text Available Abstract Background Malaria has always been a major public health problem in Yemen. Several studies in developing countries have demonstrated ineffective and poor quality drugs including antimalarials. Therefore, quality assessment of antimalarial drugs is of crucial importance. This study aimed to assess the quality of antimalarials (chloroquine and sulfadoxine/pyrimethamine available in Yemen and to determine whether the quality of these products was related to the level of the distribution chain at which the samples were collected or related to the manufacturers. Methods Four samples from each antimalarial product were collected from each of the various levels of the distribution chain. One sample was kept with the research team. Two were tested at Sana'a and Aden Drug Quality Control Laboratories. The fourth was sent to the Centre for Quality Assurance of Medicines in Potchefstroom, South Africa, for analysis. Quality indicators measured were the content of the active ingredient and dissolution rate (for tablets only in comparison to standard specifications for these products in the relevant pharmacopoeia. Results The results identified several problems of sub-standard products within the drug distribution chain. They included high and low failures in ingredient content for chloroquine tablets and chloroquine syrup. There was some dissolution failure for chloroquine tablets, and high sulfadoxine/pyrimethamine tablets dissolution failures. Failures with the dissolution of the pyrimethamine were found at most of the collection points. No clear relationship neither between the quality products and the level of the distribution chain, nor between locally manufactured and imported products was observed. Conclusion There are sub-standard antimalarial products circulating within the drug distribution chains in the country, which will have serious implications on the reduced therapeutic effectiveness and on the development of drug resistance. This

  9. Hematological and liver toxicity of anti-tuberculosis drugs

    Science.gov (United States)

    Mirlohi, Maryam-Sadat; Ekrami, Alireza; Shirali, Saeed; Ghobeishavi, Mehdi; Pourmotahari, Fatemeh

    2016-01-01

    Introduction Tuberculosis (TB) is a major global health problem, and anti-tuberculosis drugs can cause severe adverse reactions. The aim of this study was to determine hematological and biochemical changes and associated risk factors in smear positive pulmonary tuberculosis patients undergoing treatment with standard protocols. Methods In a descriptive study, a total of 40 tuberculosis patients aged between 15–60 years were collected from hospitals in Khuzestan Province (Iran) from March 2013 to March 2014. The patients were treated with drugs (isoniazid, rifampicin, ethambutol, and pyrazinamide) during the initial two months, followed by isoniazid and rifampicin for the next four to six months. Activities of liver enzymes (ALT, AST, and ALP) and hematological parameters were recorded before and after treatment. Data were analyzed using paired samples t-test and Wilcoxon test by SPSS 16. Results After using drug treatments, hematological parameters (RBC, Hb, HCT, MCV, MCH, and MCHC), except platelet count, were changed significantly (p ≤ 0.001). Liver enzyme activities (ALT, AST, and ALP) were decreased significantly (p ≤ 0.001) after treatment. Conclusion In this study, changes of hematological and biochemical parameters have been observed in patients with pulmonary tuberculosis. It can be concluded that the anti-tuberculosis treatment is associated with changes of hematological parameters and liver enzymes.

  10. Synthesis and antituberculosis activity of novel unfolded and macrocyclic derivatives of ent-kaurane steviol.

    Science.gov (United States)

    Khaybullin, Ravil N; Strobykina, Irina Yu; Dobrynin, Alexey B; Gubaydullin, Aidar T; Chestnova, Regina V; Babaev, Vasiliy M; Kataev, Vladimir E

    2012-11-15

    New derivatives of steviol 1, the aglycone of the glycosides of Stevia rebaudiana, including a novel class of semisynthetic diterpenoids, namely macrocyclic ent-kauranes were synthesized. These compounds possess antituberculosis activity inhibiting the in vitro growth of Mycobacterium Tuberculosis (H37R(V) strain) with MIC 5-20 μg/ml that is close to MIC 1 μg/ml demonstrated by antituberculosis drug isoniazid in control experiment. For the first time it was found that the change of ent-kaurane geometry (as in steviol 1) of tetracyclic diterpenoid skeleton to ent-beyerane one (as in isosteviol 2) influences on antituberculosis activity.

  11. Synthesis, characterization and evaluation of antituberculosis activity of some hydrazones.

    Science.gov (United States)

    Koçyiğit, Kaymakçioğlu B; Rollas, S

    2002-07-01

    Several new hydrazone derivatives were prepared by the reaction of some active hydrogen compounds with the diazonium salts of 4-amino-3,5-di/1,3,5-trimethylpyrazoles at 0-5 degrees C. Structures of the new substances were confirmed using UV, IR, 1H NMR, 13C NMR and EI-mass spectral data. In vitro antituberculosis activity of these compounds were tested on Mycobacterium tuberculosis H37Rv at 6.25 microg/ml. Both hydrazone products, ethyl 2-[(3,5-dimethylpyrazole-4-yl)hydrazono]-3-oxobutyrate (3d) and methyl 2-[(3,5-dimethylpyrazole-4-yl)hydrazono]4-methoxy-3-oxobutyrate (3e) showed 29 and 28% inhibition against M. tuberculosis, respectively.

  12. In vitro cytotoxic, antiprotozoal and antimicrobial activities of medicinal plants from Vanuatu.

    Science.gov (United States)

    Bradacs, Gesine; Maes, Louis; Heilmann, Jörg

    2010-06-01

    Sixty-three extracts obtained from 18 plants traditionally used in the South Pacific archipelago Vanuatu for the treatment of infectious diseases were screened for antimicrobial and antiprotozoal activities. In addition, the extracts were subjected to a detailed analysis on cytotoxic effects toward a panel of human cancer cell lines, designed as a smaller version of the NCI60 screen. Intriguingly, 15 plant extracts exhibited strong cytotoxic effects specific for only one cancer cell line. Extracts of the leaves of Acalypha grandis Benth. significantly affected Plasmodium falciparum without showing obvious effects against the other protozoa tested. The leaves of Gyrocarpus americanus Jacq. displayed significant activity against Trypanosoma b. brucei and the leaves of Tabernaemontana pandacaqui Lam. I as well as the stems of Macropiper latifolium (L.f.) against Trypanosoma cruzi. In contrast none of the extracts showed relevant antibacterial or antifungal activity.

  13. In Vitro Evaluation of Antiprotozoal and Antiviral Activities of Extracts from Argentinean Mikania Species

    Directory of Open Access Journals (Sweden)

    Laura C. Laurella

    2012-01-01

    Full Text Available The aim of this study was to investigate the antiprotozoal and antiviral activities of four Argentinean Mikania species. The organic and aqueous extracts of Mikania micrantha, M. parodii, M. periplocifolia, and M. cordifolia were tested on Trypanosoma cruzi epimastigotes, Leishmania braziliensis promastigotes, and dengue virus type 2. The organic extract of M. micrantha was the most active against T. cruzi and L. braziliensis exhibiting a growth inhibition of 77.6±4.5% and 84.9±6.1%, respectively, at a concentration of 10 μg/ml. The bioguided fractionation of M. micrantha organic extract led to the identification of two active fractions. The chromatographic profile and infrared analysis of these fractions revealed the presence of sesquiterpene lactones. None of the tested extracts were active against dengue virus type 2.

  14. Expanding the Antimalarial Drug Arsenal—Now, But How?

    Directory of Open Access Journals (Sweden)

    Rajeev K. Mehlotra

    2011-04-01

    Full Text Available The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii repurposing drugs that are currently used to treat other infections or diseases; (iii chemically modifying existing antimalarial compounds; (iv exploring natural sources; (v large-scale screening of diverse chemical libraries; and (vi through parasite genome-based (“targeted” discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum, and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs, and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into “short term” (4. Feasible options for now and “long term” (5. Next generation of

  15. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    Science.gov (United States)

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-06-29

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  16. Xanthone as Antimalarial: QSAR Analysis, Synthesis, Molecular Docking and In-vitro Antimalarial Evaluation

    Directory of Open Access Journals (Sweden)

    Jufrizal Syahri

    2017-02-01

    Full Text Available The rational design of eighteen new antimalarial compounds from xanthone derivatives has been conducted based on Quantitative Structure-Activity Relationship(QSAR calculation using semi-empirical AM1 methods. The best equation model obtained from QSAR calculation was Log pIC50 = 2.997 - 29.256 (qO8 - 138.234 (qC9 - 6.882 (qC12 - 107.836 (qC14 + 48.764 (qO15. Among the designed compounds, 3,6-dihydroxy-9H-xanthen-9-one (26 and 3,4,6-trihydroxy-9H-xanthen-9-one (27 have been synthesized and investigated their in-vitro antimalarial activities against the chloroquine-sensitive 3D7 strain. An in-vitro antimalarial activity of compound 26 and 27 showed to be highly potential as antimalarial compounds with IC50 of 0.71 and 0.11 µM respectively. Molecular docking studies of compound 26 and 27 showed the formation of a binding interaction between the compounds with the amino acids Ala16, Ser108, Phe58, Asp54 and Leu46, which is the crucial amino acids for antimalarial activity based on the protein-ligand co-crystal structure of WR99210(1,3,5-triazine, a pre-clinical molecule as P. falciparum DHFR-TS inhibitor.

  17. World Antimalarial Resistance Network (WARN II: In vitro antimalarial drug susceptibility

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2007-09-01

    Full Text Available Abstract Intrinsic resistance of Plasmodium falciparum is clearly a major determinant of the clinical failure of antimalarial drugs. However, complex interactions between the host, the parasite and the drug obscure the ability to define parasite drug resistance in vivo. The in vitro antimalarial drug susceptibility assay determines ex-vivo growth of parasite in the presence of serial drug concentrations and, thus, eliminates host effects, such as drug metabolism and immunity. Although the sensitivity of the parasite to various antimalarials provided by such a test provides an important indicator of intrinsic parasite susceptibility, there are fundamental methodological issues that undermine comparison of in vitro susceptibility both between laboratories and within a single laboratory over time. A network of laboratories is proposed that will agree on the basic parameters of the in vitro test and associated measures of quality control. The aim of the network would be to establish baseline values of sensitivity to commonly used antimalarial agents from key regions of the world, and create a global database, linked to clinical, molecular and pharmacology databases, to support active surveillance to monitor temporal trends in parasite susceptibility. Such a network would facilitate the rapid detection of strains with novel antimalarial resistance profiles and investigate suitable alternative treatments with retained efficacy.

  18. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids

    Directory of Open Access Journals (Sweden)

    Birgit Viira

    2016-06-01

    Full Text Available Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  19. [Historical overview of antimalarials used in Venezuela].

    Science.gov (United States)

    Zerpa de Artiles, N

    1993-06-01

    A historical review of antimalarials used in Venezuela is presented from the time when the bark of quina was used until the massive distribution of quinine and metoquine by the Dirección de Malariología y Saneamiento Ambiental. The utility of chloroquine and primaquine against sensible parasite isolates and of sulfadoxine-pyrimethamine and quinine, currently used against P. falciparum resistant strains, is thoroughly discussed. The author suggests use of artemisimine and its derivatives as a very promising antimalarial drug. She also stresses the possibility of the application of new antimalaria vaccine against P. falciparum blood states, presently assayed in the country as an additional tool in malaria control programs.

  20. Antimalarial pharmacology and therapeutics of atovaquone.

    Science.gov (United States)

    Nixon, Gemma L; Moss, Darren M; Shone, Alison E; Lalloo, David G; Fisher, Nicholas; O'Neill, Paul M; Ward, Stephen A; Biagini, Giancarlo A

    2013-05-01

    Atovaquone is used as a fixed-dose combination with proguanil (Malarone) for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travellers. Indeed, in the USA, between 2009 and 2011, Malarone prescriptions accounted for 70% of all antimalarial pre-travel prescriptions. In 2013 the patent for Malarone will expire, potentially resulting in a wave of low-cost generics. Furthermore, the malaria scientific community has a number of antimalarial quinolones with a related pharmacophore to atovaquone at various stages of pre-clinical development. With this in mind, it is timely here to review the current knowledge of atovaquone, with the purpose of aiding the decision making of clinicians and drug developers involved in the future use of atovaquone generics or atovaquone derivatives.

  1. Antimalarial Activity of Methanolic Leaf Extract of Piper betle L.

    OpenAIRE

    Amran, Adel A.; Rohela Mahmud; Zurainee M. Nor; Al-Mekhlafi, Hesham M; Al-Adhroey, Abdulelah H

    2010-01-01

    International audience; The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial eff...

  2. ANTITUBERCULOSIS DRUG DOSAGE FORMS: RANGE, KEY BENEFITS AND PROSPECTS OF TECHNOLOGICAL IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    M. E. Kim

    2016-01-01

    Full Text Available Interest to research in the development of new formulations of antituberculosis drugs due to the high incidence of tuberculosis in the Republic of Kazakhstan and the Russian Federation nowadays, including with acquired drug resistance. The reason for the development of acquired drug resistance is to interrupt the treatment of patients is the high toxicity of antituberculosis drugs. The improving the efficiency of antituberculosis therapy remains one of the most pressing.The aim this study was to review the dosage forms of antituberculosis drugs currently used and the ways to improve them.Methods. The study was conducted on the basis of scientific analysis (eLibrary database, PubMed, Cyberleninca, patent (kzpatents, reference (Klifar, Drugs register and technical literature.Results. It was revealed that the antituberculosis drugs are available in the form of tablets, capsules, granules for oral use and injection solutions. The advantages and disadvantages of oral dosage forms of antituberculosis drugs: tablets, capsules, granules, syrups, suspensions are described. The importance of the development and implementation in practice of pediatric formulations of antituberculosis drugs is mentioned. The state of current research inhaled formulations for the treatment of tuberculosis is described. The prospects of directional inhalation exposure by immobilization of antituberculosis drugs in liposomes, niosomes, nanocapsules, micelles, micro- and nanoparticles are mentioned. The prospect of the rectal formulations use is described. The increase in interest in the molecular encapsulation of medicinal substances with cyclodextrins in connection with the possibility of increasing the bioavailability of active ingredients, reduce the harmful effects on the gastrointestinal tract, extension, elimination of interaction of incompatible components in combination preparations, the protection of unstable substances is

  3. Antimalarial compounds from Kniphofia foliosa roots.

    Science.gov (United States)

    Wube, Abraham Abebe; Bucar, Franz; Asres, Kaleab; Gibbons, Simon; Rattray, Lauren; Croft, Simon L

    2005-06-01

    During the course of screening Ethiopian medicinal plants for their antimalarial properties, it was found that the dichloromethane extract of the roots of Kniphofia foliosa Hochst. (Asphodelaceae), which have long been used in the traditional medicine of Ethiopia for the treatment of abdominal cramps and wound healing, displayed strong in vitro antiplasmodial activity against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum with an ED50 value of 3.8 microg/mL and weak cytotoxic activity against KB cells with an ED50 value of 35.2 microg/mL. Five compounds were isolated from the roots and evaluated for their in vitro antimalarial activity. Among the compounds tested, 10-(chrysophanol-7'-yl)-10-(xi)-hydroxychrysopanol-9-anthrone and chryslandicin, showed a high inhibition of the growth of the malaria parasite, P. falciparum with ED50 values of 0.260 and 0.537 microg/mL, respectively, while the naphthalene derivative, 2-acetyl-1-hydroxy-8-methoxy-3-methylnaphthalene, exhibited a less significant antimalarial activity with an ED50 value of 15.4 microg/mL. To compare the effect on the parasite with toxicity to mammalian cells, the cytotoxic activities of the isolated compounds against the KB cell line were evaluated and 10-(chrysophanol-7'-yl)-10-(xi)-hydroxychrysopanol-9-anthrone and chryslandicin displayed very low toxicity with ED50 values of 104 and 90 microg/mL, respectively. This is the first report of the inhibition of the growth of P. falciparum by anthraquinone-anthrone dimers and establishes them as a new class of potential antimalarial compounds with very little host cell toxicity.

  4. Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra

    OpenAIRE

    Louis Maes; Paul Cos; An Matheeussen; Nawal M. Al-Musayeib; Mothana, Ramzi A.

    2012-01-01

    Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellu...

  5. Aspidosperma species as sources of antimalarials. Part III. A review of traditional use and antimalarial activity.

    Science.gov (United States)

    de Paula, Renata Cristina; Dolabela, Maria Fâni; de Oliveira, Alaíde Braga

    2014-03-01

    Several plant species belonging to the genus Aspidosperma are traditionally used in Brazil and other Meso- and South American countries for the treatment of malaria and fevers. These traditional uses were motivation for this review. A literature survey completed for this review has identified scientific bibliographical references to the use of 24 Aspidosperma species to treat malaria/fevers and to 19 species that have had their extracts and/or alkaloids evaluated, with good results, for in vitro and/or in vivo antimalarial activity. Indole alkaloids are typical constituents of Aspidosperma species. However, only 20 out of more than 200 known indole alkaloids isolated from this genus have been assayed for antimalarial activity. These data support the potential of Aspidosperma species as sources of antimalarials and the importance of research aimed at validating their use in the treatment of human malaria.

  6. Interactions of hemin, antimalarial drugs and hemin-antimalarial complexes with phospholipid monolayers

    NARCIS (Netherlands)

    Ginsburg, H.; Demel, R.A.

    1984-01-01

    Hemin, antimalarial drugs and complexes formed between them, have demonstrable effects on biological membranes. Using the phospholipid monolayer model, we show that hemin intercalates into the membrane and increases its surface pressure, depending on the lipid composition and the initial surface pre

  7. Antiprotozoal and Antimycobacterial Activities of Pure Compounds from Aristolochia elegans Rhizomes

    Directory of Open Access Journals (Sweden)

    Adelina Jiménez-Arellanes

    2012-01-01

    Full Text Available We analyzed the antimycobacterial activity of the hexane extract of rhizomes from Aristolochia elegans. Some compounds of this extract were purified and tested against a group of drug-resistant Mycobacterium tuberculosis strains. We also evaluated their antiprotozoal activities. The hexane extract was active against M. tuberculosis H37Rv at a MIC=100 μg mL−1; the pure compounds eupomatenoid-1, fargesin, and (8R,8′R,9R-cubebin were active against M. tuberculosis H37Rv (MIC = 50 μg mL−1, while fargesin presented activity against three monoresistant strains of M. tuberculosis H37Rv and a MDR clinical isolate of M. tuberculosis (MIC<50 μg mL-1. Both the extract and eupomatenoid-1 were very active against E. histolytica and G. lamblia (IC50<0.624 μg mL-1; in contrast, fargesin and (8R,8′R,9R-cubebin were moderately active (IC50<275 μg mL-1. In this context, two compounds responsible for the antimycobacterial presented by A. elegans are fargesin and cubebin, although others may exert this activity also. In addition to the antimycobacterial activity, the hexane extract has important activity against E. histolytica and G. lamblia, and eupomatenoid-1 is one of the compounds responsible for the antiparasite activity.

  8. Solid phase synthesis and antiprotozoal evaluation of di- and trisubstituted 5'-carboxamidoadenosine analogues.

    Science.gov (United States)

    Rodenko, Boris; Detz, Remko J; Pinas, Victorine A; Lambertucci, Catia; Brun, Reto; Wanner, Martin J; Koomen, Gerrit-Jan

    2006-03-01

    The rapid increase of resistance to drugs commonly used in the treatment of tropical diseases such as malaria and African sleeping sickness calls for the prompt development of new safe and efficacious drugs. The pathogenic protozoan parasites lack the capability of synthesising purines de novo and they take up preformed purines from their host through various transmembrane transporters. Adenosine derivatives constitute a class of potential therapeutics due to their selective internalisation by these transporters. Automated solid-phase synthesis can speed up the process of lead finding and we pursued the solid-phase synthesis of di- and trisubstituted 5'-carboxamidoadenosine derivatives by using a safety-catch approach. While efforts with Kenner's sulfonamide linker remained fruitless, successful application of the hydrazide safety-catch linker allowed the construction of two representative combinatorial libraries. Their antiprotozoal evaluation identified two compounds with promising activity: N(6)-benzyl-5'-N-phenylcarboxamidoadenosine with an IC(50) value of 0.91 microM against Trypanosoma brucei rhodesiense and N(6)-diphenylethyl-5'-phenylcarboxamidoadenosine with an IC(50) value of 1.8 microM against chloroquine resistant Plasmodium falciparum.

  9. Search for Antiprotozoal Activity in Herbal Medicinal Preparations; New Natural Leads against Neglected Tropical Diseases

    Directory of Open Access Journals (Sweden)

    Núria Llurba Montesino

    2015-08-01

    Full Text Available Sleeping sickness, Chagas disease, Leishmaniasis, and Malaria are infectious diseases caused by unicellular eukaryotic parasites (“protozoans”. The three first mentioned are classified as Neglected Tropical Diseases (NTDs by the World Health Organization and together threaten more than one billion lives worldwide. Due to the lack of research interest and the high increase of resistance against the existing treatments, the search for effective and safe new therapies is urgently required. In view of the large tradition of natural products as sources against infectious diseases [1,2], the aim of the present study is to investigate the potential of legally approved and marketed herbal medicinal products (HMPs as antiprotozoal agents. Fifty-eight extracts from 53 HMPs on the German market were tested by a Multiple-Target-Screening (MTS against parasites of the genera Leishmania, Trypanosoma, and Plasmodium. Sixteen HMPs showed in vitro activity against at least one of the pathogens (IC50 < 10 µg/mL. Six extracts from preparations of Salvia, Valeriana, Hypericum, Silybum, Arnica, and Curcuma exhibited high activity (IC50 < 2.5 µg/mL. They were analytically characterized by UHPLC/ESI-QqTOF-MSMS and the activity-guided fractionation of the extracts with the aim to isolate and identify the active compounds is in progress.

  10. Search for Antiprotozoal Activity in Herbal Medicinal Preparations; New Natural Leads against Neglected Tropical Diseases.

    Science.gov (United States)

    Llurba Montesino, Núria; Kaiser, Marcel; Brun, Reto; Schmidt, Thomas J

    2015-08-04

    Sleeping sickness, Chagas disease, Leishmaniasis, and Malaria are infectious diseases caused by unicellular eukaryotic parasites ("protozoans"). The three first mentioned are classified as Neglected Tropical Diseases (NTDs) by the World Health Organization and together threaten more than one billion lives worldwide. Due to the lack of research interest and the high increase of resistance against the existing treatments, the search for effective and safe new therapies is urgently required. In view of the large tradition of natural products as sources against infectious diseases [1,2], the aim of the present study is to investigate the potential of legally approved and marketed herbal medicinal products (HMPs) as antiprotozoal agents. Fifty-eight extracts from 53 HMPs on the German market were tested by a Multiple-Target-Screening (MTS) against parasites of the genera Leishmania, Trypanosoma, and Plasmodium. Sixteen HMPs showed in vitro activity against at least one of the pathogens (IC50 Arnica, and Curcuma exhibited high activity (IC50 < 2.5 µg/mL). They were analytically characterized by UHPLC/ESI-QqTOF-MSMS and the activity-guided fractionation of the extracts with the aim to isolate and identify the active compounds is in progress.

  11. Recent progress in the development of anti-malarial quinolones.

    Science.gov (United States)

    Beteck, Richard M; Smit, Frans J; Haynes, Richard K; N'Da, David D

    2014-08-30

    Available anti-malarial tools have over the ten-year period prior to 2012 dramatically reduced the number of fatalities due to malaria from one million to less than six-hundred and thirty thousand. Although fewer people now die from malaria, emerging resistance to the first-line anti-malarial drugs, namely artemisinins in combination with quinolines and arylmethanols, necessitates the urgent development of new anti-malarial drugs to curb the disease. The quinolones are a promising class of compounds, with some demonstrating potent in vitro activity against the malaria parasite. This review summarizes the progress made in the development of potential anti-malarial quinolones since 2008. The efficacy of these compounds against both asexual blood stages and other stages of the malaria parasite, the nature of putative targets, and a comparison of these properties with anti-malarial drugs currently in clinical use, are discussed.

  12. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  13. Antimalarial properties of imipramine and amitriptyline

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P.; Siegel, L.; Pinto, J.; Meshnick, S.

    1986-03-01

    This laboratory has previously demonstrated that imipramine (IM) and amitriptyline (AM), inhibit the conversion of riboflavin to its coenzymic derivatives. Several other laboratories have shown that dietary riboflavin deficiency is protective against malarial infection. In the present investigation, the authors determined whether IM and AM exert antimalarial effects similar to that of riboflavin deficiency, as they have hypothesized. In addition, they evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of P. falciparum (FCR3) in the absence or presence of these drugs (80 ..mu..M) was measured by incubating parasitized erythrocytes for 48 h in RPMI 1640 medium. Parasitemia was determined by counting erythrocyte smears and monitoring (/sup 3/H)hypoxanthine uptake. With no drug, parasitemia was 20.3 +/- 5.3%, whereas in the presence of IM and AM, parasitemia was reduced to 7.3 +/- 0.8% and 13.6 +/- 2.8%, respectively. The uptake of (/sup 3/H)hypoxanthine was reduced to 47 +/- 3.6% and 54 +/- 2.9% of control by IM and AM, respectively. Assays of hemolysis were conducted by incubating 0.5% RBC suspension in NaCl-Tris buffer for 3 h at 37/sup 0/C with variable concentrations of drugs and/or FP (1-7 ..mu..M). Both drugs at 10 to 100 ..mu..M significantly enhanced hemolysis induced by FP. No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, IM and AM, possess substantial antimalarial properties, thereby supporting the hypothesis that drugs which interfere with riboflavin metabolism should also provide protection against malaria.

  14. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  15. Antituberculosis Activity of a Naturally Occurring Flavonoid, Isorhamnetin.

    Science.gov (United States)

    Jnawali, Hum Nath; Jeon, Dasom; Jeong, Min-Cheol; Lee, Eunjung; Jin, Bongwhan; Ryoo, Sungweon; Yoo, Jungheon; Jung, In Duk; Lee, Seung Jun; Park, Yeong-Min; Kim, Yangmee

    2016-04-22

    Isorhamnetin (1) is a naturally occurring flavonoid having anticancer and anti-inflammatory properties. The present study demonstrated that 1 had antimycobacterial effects on Mycobacterium tuberculosis H37Rv, multi-drug- and extensively drug-resistant clinical isolates with minimum inhibitory concentrations of 158 and 316 μM, respectively. Mycobacteria mainly affect the lungs, causing an intense local inflammatory response that is critical to the pathogenesis of tuberculosis. We investigated the effects of 1 on interferon (IFN)-γ-stimulated human lung fibroblast MRC-5 cells. Isorhamnetin suppressed the release of tumor necrosis factor (TNF)-α and interleukin (IL)-12. A nontoxic dose of 1 reduced mRNA expression of TNF-α, IL-1β, IL-6, IL-12, and matrix metalloproteinase-1 in IFN-γ-stimulated cells. Isorhamnetin inhibited IFN-γ-mediated stimulation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase and showed high-affinity binding to these kinases (binding constants: 4.46 × 10(6) M(-1) and 7.6 × 10(6) M(-1), respectively). The 4'-hydroxy group and the 3'-methoxy group of the B-ring and the 5-hydroxy group of the A-ring of 1 play key roles in these binding interactions. A mouse in vivo study of lipopolysaccharide-induced lung inflammation revealed that a nontoxic dose of 1 reduced the levels of IL-1β, IL-6, IL-12, and INF-γ in lung tissue. These data provide the first evidence that 1 could be developed as a potent antituberculosis drug.

  16. Antiprotozoal Constituents from Annona cherimola Miller, a Plant Used in Mexican Traditional Medicine for the Treatment of Diarrhea and Dysentery

    Science.gov (United States)

    Calzada, Fernando; Correa-Basurto, Jose; Barbosa, Elizabeth; Mendez-Luna, David; Yepez-Mulia, Lilian

    2017-01-01

    Background: Annona cherimola Miller (Annonaceae) is a medicinal plant frequently recommended in Mexican traditional medicine for the treatment of gastrointestinal disorders such as diarrhea and dysentery. Objective: This work was undertaken to obtain information that support the traditional use of A. cherimola, on pharmacological basis using in vitro and computational experiments. Material and Methods: Bioassay-guided fractionation of the ethanol extract of the leaves of A. cherimola afforded five phenolic compounds: caffeic acid, quercetin, kaempferol, nicotinflorin, and rutin. Results: The in vitro antiprotozoal assay showed that kaempferol was the most potent antiamoebic and antigiardial compound with IC50 values of 7.9 μg/mL for Entamoeba histolytica and 8.7 μg/mL for Giardia lamblia. Computational molecular docking study showed that kaempferol interacted in a region different than metronidazole in the enzyme pyruvate: ferredoxin oxidoreductase (PFOR). Conclusion: Considering that PFOR is a target of metronidazole; kaempferol may be a lead compound for the development of novel antiprotozoal agent. Also, these findings give support to the use of A. cherimola in the traditional medicine from México for the treatment of diarrhea and dysentery. SUMMARY Bioassay-guided fractionation of the ethanol extract of the leaves of Annona cherimola afforded five phenolic compounds: caffeic acid, quercetin, kaempferol, nicotinflorin and rutin. The in vitro antiprotozoal assay showed that kaempferol was the most potent antiamoebic and antigiardial compound with IC50 values of 7.9 μg/mL for Entamoeba histolytica and 8.7 μg/mL for Giardia lamblia. Computational molecular docking study showed that kaempferol interacted in a region different that metronidazole in the enzyme pyruvate: ferredoxin oxidoreductase. Abbreviations used: PFOR:Pyruvate:ferredoxin oxidoreductase, G: lamblia: Giardia lamblia, E: histolytica: Entamoeba histolytica PMID:28216899

  17. The antiprotozoal drug pentamidine ameliorates experimentally induced acute colitis in mice

    Directory of Open Access Journals (Sweden)

    Esposito Giuseppe

    2012-12-01

    Full Text Available Abstract Background Intestinal inflammation is partly driven by enteroglial-derived S100B protein. The antiprotozoal drug pentamidine directly blocks S100B activity. We aimed to investigate the effect of pentamidine on intestinal inflammation using an animal model of dextran sodium sulphate (DSS-induced acute colitis. Methods Mice were divided into: control group, colitis group (4% DSS for four days and two pentamidine-treated colitis groups (0.8 mg/kg and 4 mg/kg. Anti-inflammatory effect of pentamidine was assessed in colonic tissue by evaluating the disease activity index and the severity of histological changes. Colonic tissue were also used to evaluate cyclooxigenase-2, inducible nitric oxide synthase, S100B, glial fibrillary acidic protein, phosphorylated-p38 MAPkinase, p50, p65 protein expression, malondyaldheyde production, mieloperoxidase activity, and macrophage infiltration. Nitric oxide, prostaglandin E2, interleukin-1 beta, tumor necrosis factor alpha, and S100B levels were detected in plasma samples. Parallel measurements were performed in vitro on dissected mucosa and longitudinal muscle myenteric plexus (LMMP preparations after challenge with LPS + DSS or exogenous S100B protein in the presence or absence of pentamidine. Results Pentamidine treatment significantly ameliorated the severity of acute colitis in mice, as showed by macroscopic evaluation and histological/biochemical assays in colonic tissues and in plasma. Pentamidine effect on inflammatory mediators was almost completely abrogated in dissected mucosa but not in LMMP. Conclusions Pentamidine exerts a marked anti-inflammatory effect in a mice model of acute colitis, likely targeting S100B activity. Pentamidine might be an innovative molecule to broaden pharmacological tools against colitis.

  18. Hemozoin Formation as a Target for Antimalarial Drug Design

    Science.gov (United States)

    2005-02-01

    AD Award Number: DAMD17-03-1-0030 TITLE: Hemozoin Formation as a Target for Antimalarial Drug Design PRINCIPAL INVESTIGATOR: Michael K. Riscoe, Ph.D...Formation as a Target for Antimalarial Drug Design DAMD17-03-1-0030 6. A UTHOR(S) Michael K. Riscoe, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S) AND ADDRESS...Report: by Principal Investigator - Michael K. Riscoe, Ph.D. DAMD1 7-03-1-0030: "Hemozoin Formation as a Target for Antimalarial Drug Design " INTRODUCTION

  19. Risk factors of acute hepatic failure during antituberculosis treatment: two cases and literature review

    NARCIS (Netherlands)

    Smink, F.; van Hoek, B.; Ringers, J.; van Altena, R.; Arend, S.M.

    2006-01-01

    Hepatotoxicity is a well-known side effect of antituberculosis treatment (ATT). If not recognised in time, drug-induced hepatitis can develop, which may rapidly progress to acute liver failure. We describe two patients with acute hepatic failure caused by ATT, whose pretreatment liver function had b

  20. Risk factors of acute hepatic failure during antituberculosis treatment : two cases and literature review

    NARCIS (Netherlands)

    Smink, F.; van Hoek, B.; Ringers, J.; van Altena, R.; Arend, S. M.

    2006-01-01

    Hepatotoxicity is a well-known side effect of antituberculosis treatment (ATT). If not recognised in time, drug-induced hepatitis can develop, which may rapidly progress to acute liver failure. We describe two patients with acute hepatic failure caused by ATT, whose pretreatment liver function had b

  1. Gelation Behavior of 5-Chloro-8-hydroxyquinoline, an Antituberculosis Agent in Aqueous Alcohol Solutions

    OpenAIRE

    Jukka Korpela; Hannu Salo; Erkki Kolehmainen

    2012-01-01

    It was shown that 5-chloro-8-hydroxyquinoline, an antituberculosis agent, gels aqueous alcohol solutions efficiently. Thermal stability and gel-to-sol transition temperature of 1% gel in CD3OD/D2O (2:1) was studied by 1H-NMR. Fibrous structures of four xerogels have been characterized by scanning electron microscope.

  2. A Patient Education Program to Improve Adherence Rates with Antituberculosis Drug Regimens.

    Science.gov (United States)

    Morisky, Donald E.; And Others

    1990-01-01

    An incentive scheme to reward positive health behaviors (adherence to antituberculosis drug regimens) was tested with 88 active and 117 preventive patients randomly assigned to intervention and control groups. Preventive patients who received incentives were significantly more likely to continue care and had higher adherence levels. Actives showed…

  3. Profile of Antituberculosis Use in Community Pharmacist of Bandung City 2008–2010

    Directory of Open Access Journals (Sweden)

    Sofa D. Alfian

    2012-12-01

    Full Text Available Infectious disease is still a major disease in developing countries such as in Indonesia. As one of the health care providers which has privilege to distribute antibiotics, it is very important to control the use of antibiotics in pharmacy. The aim of this study is to conduct a profile of anti-tuberculosis use, in all pharmacies in Bandung during the period from 2008–2010. This study was performed using an observational method and retrospective approach. In this study we applied the Anatomical Therapeutic Chemical/Defined Daily Dose (ATC/DDD and Drug Utilization 90 % (DU90% method. The result showed that the use of antituberculosis tends to decrease. During the period from 2008 to 2010, the use of antituberculosis decreased by 17,783 and 169,416 DDD/1000 inhabitants in 2009 and 2010, respectively. It can be concluded that the totaluse of antituberculosis in all pharmacies in Bandung during the period from 2008 to 2010 tends to decrease.

  4. Gelation Behavior of 5-Chloro-8-hydroxyquinoline, an Antituberculosis Agent in Aqueous Alcohol Solutions

    Directory of Open Access Journals (Sweden)

    Jukka Korpela

    2012-09-01

    Full Text Available It was shown that 5-chloro-8-hydroxyquinoline, an antituberculosis agent, gels aqueous alcohol solutions efficiently. Thermal stability and gel-to-sol transition temperature of 1% gel in CD3OD/D2O (2:1 was studied by 1H-NMR. Fibrous structures of four xerogels have been characterized by scanning electron microscope.

  5. Duration of anti-tuberculosis therapy and timing of antiretroviral therapy initiation: association with mortality in HIV-related tuberculosis.

    Directory of Open Access Journals (Sweden)

    Claudia P Cortes

    Full Text Available BACKGROUND: Antiretroviral therapy (ART decreases mortality risk in HIV-infected tuberculosis patients, but the effect of the duration of anti-tuberculosis therapy and timing of anti-tuberculosis therapy initiation in relation to ART initiation on mortality, is unclear. METHODS: We conducted a retrospective observational multi-center cohort study among HIV-infected persons concomitantly treated with Rifamycin-based anti-tuberculosis therapy and ART in Latin America. The study population included persons for whom 6 months of anti-tuberculosis therapy is recommended. RESULTS: Of 253 patients who met inclusion criteria, median CD4+ lymphocyte count at ART initiation was 64 cells/mm(3, 171 (68% received >180 days of anti-tuberculosis therapy, 168 (66% initiated anti-tuberculosis therapy before ART, and 43 (17% died. In a multivariate Cox proportional hazards model that adjusted for CD4+ lymphocytes and HIV-1 RNA, tuberculosis diagnosed after ART initiation was associated with an increased risk of death compared to tuberculosis diagnosis before ART initiation (HR 2.40; 95% CI 1.15, 5.02; P = 0.02. In a separate model among patients surviving >6 months after tuberculosis diagnosis, after adjusting for CD4+ lymphocytes, HIV-1 RNA, and timing of ART initiation relative to tuberculosis diagnosis, receipt of >6 months of anti-tuberculosis therapy was associated with a decreased risk of death (HR 0.23; 95% CI 0.08, 0.66; P=0.007. CONCLUSIONS: The increased risk of death among persons diagnosed with tuberculosis after ART initiation highlights the importance of screening for tuberculosis before ART initiation. The decreased risk of death among persons receiving > 6 months of anti-tuberculosis therapy suggests that current anti-tuberculosis treatment duration guidelines should be re-evaluated.

  6. Drug Discovery and Development of Antimalarial Agents: Recent Advances.

    Science.gov (United States)

    Thota, Sreekanth; Yerra, Rajeshwar

    2016-01-01

    Malaria, a deadly infectious parasitic disease, is a major issue of public health in the world today and already produces serious economic constraints in the endemic countries. Most of the malarial infections and deaths are due to Plasmodium falciparum and Plasmodium vivax species. The recent emergence of resistance necessitates the search for new antimalarial drugs, which overcome the resistance and act through new mechanisms. Although much effort has been directed towards the discovery of novel antimalarial drugs. 4-anilino quinolone triazines as potent antimalarial agents, their in silico modelling and bioevaluation as Plasmodium falciparum transketolase and β-hematin inhibitors has been reported. This review is primarily focused on the drug discovery of the recent advances in the development of antimalarial agents and their mechanism of action.

  7. Investigation of Calcium Channel Blockers as Antiprotozoal Agents and Their Interference in the Metabolism of Leishmania (L. infantum

    Directory of Open Access Journals (Sweden)

    Juliana Quero Reimão

    2016-01-01

    Full Text Available Leishmaniasis and Chagas disease are neglected parasitic diseases endemic in developing countries; efforts to find new therapies remain a priority. Calcium channel blockers (CCBs are drugs in clinical use for hypertension and other heart pathologies. Based on previous reports about the antileishmanial activity of dihydropyridine-CCBs, this work aimed to investigate whether the in vitro anti-Leishmania infantum and anti-Trypanosoma cruzi activities of this therapeutic class would be shared by other non-dihydropyridine-CCBs. Except for amrinone, our results demonstrated antiprotozoal activity for fendiline, mibefradil, and lidoflazine, with IC50 values in a range between 2 and 16 μM and Selectivity Index between 4 and 10. Fendiline demonstrated depolarization of mitochondrial membrane potential, with increased reactive oxygen species production in amlodipine and fendiline treated Leishmania, but without plasma membrane disruption. Finally, in vitro combinations of amphotericin B, miltefosine, and pentamidine against L. infantum showed in isobolograms an additive interaction when these drugs were combined with fendiline, resulting in overall mean sum of fractional inhibitory concentrations between 0.99 and 1.10. These data demonstrated that non-dihydropyridine-CCBs present antiprotozoal activity and could be useful candidates for future in vivo efficacy studies against Leishmaniasis and Chagas’ disease.

  8. Synthesis of nitro(benzo)thiazole acetamides and in vitro antiprotozoal effect against amitochondriate parasites Giardia intestinalis and Trichomonas vaginalis.

    Science.gov (United States)

    Navarrete-Vázquez, Gabriel; Chávez-Silva, Fabiola; Colín-Lozano, Blanca; Estrada-Soto, Samuel; Hidalgo-Figueroa, Sergio; Guerrero-Álvarez, Jorge; Méndez, Sara T; Reyes-Vivas, Horacio; Oria-Hernández, Jesús; Canul-Canché, Jaqueline; Ortiz-Andrade, Rolffy; Moo-Puc, Rosa

    2015-05-01

    We synthesized four 5-nitrothiazole (1-4) and four 6-nitrobenzothiazole acetamides (5-8) using an easy two step synthetic route. All compounds were tested in vitro against amitochondriate parasites Giardia intestinalis and Trichomonas vaginalis, showing excellent antiprotozoal effects. IC₅₀'s of the most potent compounds range from nanomolar to low micromolar order, being more active than their drugs of choice. Compound 1 (IC₅₀=122 nM), was 44-times more active than Metronidazole, and 10-fold more effective than Nitazoxanide against G. intestinalis and showed good trichomonicidal activity (IC₅₀=2.24 μM). This compound did not display in vitro cytotoxicity against VERO cells. The in vitro inhibitory effect of compounds 1-8 and Nitazoxanide against G. intestinalis fructose-1,6-biphosphate aldolase (GiFBPA) was evaluated as potential drug target, showing a clear inhibitory effect over the enzyme activity. Molecular docking of compounds 1, 4 and Nitazoxanide into the ligand binding pocket of GiFBPA, revealed contacts with the active site residues of the enzyme. Ligand efficiency metrics of 1 revealed optimal combinations of physicochemical and antiprotozoal properties, better than Nitazoxanide.

  9. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    OpenAIRE

    Norazsida Ramli; Pakeer Oothuman Syed Ahamed; Hassan Mohamed Elhady; Muhammad Taher

    2014-01-01

    Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral t...

  10. Synthesis of triazol derivatives of lupeol with potential antimalarial activity

    OpenAIRE

    Tatiane Freitas Borgati; Guilherme Rocha Pereira; Geraldo Célio Brandão; Alaíde Braga Oliveira; José Dias Souza Filho

    2012-01-01

    The goal of this project is synthesize and characterization of derivatives of lupeol and evaluated antimalarial activity. Historically, plants are important source of antimalarial medicines, highlighting quinine (1) (Figure 1), an important      alkaloid from the Cinchona calisaya bark. This compound was an important model for cloroquine  synthesis, a drug that was widely used in malaria treatment. In addition, one of the principal medicines used today is artemisinine, isolated from the Chine...

  11. New approaches in antimalarial drug discovery and development: a review

    Directory of Open Access Journals (Sweden)

    Anna Caroline C Aguiar

    2012-11-01

    Full Text Available Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.

  12. How do antimalarial drugs reach their intracellular targets?

    Directory of Open Access Journals (Sweden)

    Katherine eBasore

    2015-05-01

    Full Text Available Drugs represent the primary treatment available for human malaria, as caused by Plasmodium spp. Currently approved drugs and antimalarial drug leads generally work against parasite enzymes or activities within infected erythrocytes. To reach their specific targets, these chemicals must cross at least three membranes beginning with the host cell membrane. Uptake at each membrane may involve partitioning and diffusion through the lipid bilayer or facilitated transport through channels or carriers. Here, we review the features of available antimalarials and examine whether transporters may be required for their uptake. Our computational analysis suggests that most antimalarials have high intrinsic membrane permeability, obviating the need for uptake via transporters; a subset of compounds appear to require facilitated uptake. We also review parasite and host transporters that may contribute to drug uptake. Broad permeability channels at the erythrocyte and parasitophorous vacuolar membranes of infected cells relax permeability constraints on antimalarial drug design; however, this uptake mechanism is prone to acquired resistance as the parasite may alter channel activity to reduce drug uptake. A better understanding of how antimalarial drugs reach their intracellular targets is critical to prioritizing drug leads for antimalarial development and may reveal new targets for therapeutic intervention.

  13. Antiprotozoal Activity against Entamoeba histolytica of Plants Used in Northeast Mexican Traditional Medicine. Bioactive Compounds from Lippia graveolens and Ruta chalepensis

    Directory of Open Access Journals (Sweden)

    Ramiro Quintanilla-Licea

    2014-12-01

    Full Text Available Amoebiasis caused by Entamoeba histolytica is associated with high morbidity and mortality is becoming a major public health problem worldwide, especially in developing countries. Because of the side-effects and the resistance that pathogenic protozoa build against the standard antiparasitic drugs, e.g., metronidazole, much recent attention has been paid to plants used in traditional medicine around the world in order to find new antiprotozoal agents. We collected 32 plants used in Northeast Mexican traditional medicine and the methanolic extracts of these species were screened for antiprotozoal activity against E. histolytica trophozoites using in vitro tests. Only 18 extracts showed a significant inhibiting activity and among them six plant extracts showed more than 80% growth inhibition against E. histolytica at a concentration of 150 µg/mL and the IC50 values of these extracts were determined. Lippia graveolens Kunth and Ruta chalepensis Pers. showed the more significant antiprotozoal activity (91.54% and 90.50% growth inhibition at a concentration of 150 µg/mL with IC50 values of 59.14 and 60.07 µg/mL, respectively. Bioassay-guided fractionation of the methanolic extracts from these two plants afforded carvacrol (1 and chalepensin (2, respectively, as bioactive compounds with antiprotozoal activity.

  14. Antiprotozoal activity against Entamoeba histolytica of plants used in northeast Mexican traditional medicine. Bioactive compounds from Lippia graveolens and Ruta chalepensis.

    Science.gov (United States)

    Quintanilla-Licea, Ramiro; Mata-Cárdenas, Benito David; Vargas-Villarreal, Javier; Bazaldúa-Rodríguez, Aldo Fabio; Kavimngeles-Hernández, Isvar; Garza-González, Jesús Norberto; Hernández-García, Magda Elizabeth

    2014-12-15

    Amoebiasis caused by Entamoeba histolytica is associated with high morbidity and mortality is becoming a major public health problem worldwide, especially in developing countries. Because of the side-effects and the resistance that pathogenic protozoa build against the standard antiparasitic drugs, e.g., metronidazole, much recent attention has been paid to plants used in traditional medicine around the world in order to find new antiprotozoal agents. We collected 32 plants used in Northeast Mexican traditional medicine and the methanolic extracts of these species were screened for antiprotozoal activity against E. histolytica trophozoites using in vitro tests. Only 18 extracts showed a significant inhibiting activity and among them six plant extracts showed more than 80% growth inhibition against E. histolytica at a concentration of 150 µg/mL and the IC50 values of these extracts were determined. Lippia graveolens Kunth and Ruta chalepensis Pers. showed the more significant antiprotozoal activity (91.54% and 90.50% growth inhibition at a concentration of 150 µg/mL with IC50 values of 59.14 and 60.07 µg/mL, respectively). Bioassay-guided fractionation of the methanolic extracts from these two plants afforded carvacrol (1) and chalepensin (2), respectively, as bioactive compounds with antiprotozoal activity.

  15. World Antimalarial Resistance Network (WARN IV: Clinical pharmacology

    Directory of Open Access Journals (Sweden)

    Gbotosho Grace O

    2007-09-01

    Full Text Available Abstract A World Antimalarial Resistance Network (WARN database has the potential to improve the treatment of malaria, through informing current drug selection and use and providing a prompt warning of when treatment policies need changing. This manuscript outlines the contribution and structure of the clinical pharmacology component of this database. The determinants of treatment response are multi-factorial, but clearly providing adequate blood concentrations is pivotal to curing malaria. The ability of available antimalarial pharmacokinetic data to inform optimal dosing is constrained by the small number of patients studied, with even fewer (if any studies conducted in the most vulnerable populations. There are even less data relating blood concentration data to the therapeutic response (pharmacodynamics. By pooling all available pharmacokinetic data, while paying careful attention to the analytical methodologies used, the limitations of small (and thus underpowered individual studies may be overcome and factors that contribute to inter-individual variability in pharmacokinetic parameters defined. Key variables for pharmacokinetic studies are defined in terms of patient (or study subject characteristics, the formulation and route of administration of the antimalarial studied, the sampling and assay methodology, and the approach taken to data analysis. Better defining these information needs and criteria of acceptability of pharmacokinetic-pharmacodynamic (PK-PD studies should contribute to improving the quantity, relevance and quality of these studies. A better understanding of the pharmacokinetic properties of antimalarials and a more clear definition of what constitutes "therapeutic drug levels" would allow more precise use of the term "antimalarial resistance", as it would indicate when treatment failure is not caused by intrinsic parasite resistance but is instead the result of inadequate drug levels. The clinical pharmacology component

  16. A database of antimalarial drug resistance

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2006-06-01

    Full Text Available Abstract A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria.

  17. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization.

    Science.gov (United States)

    Kaur, Gurpreet; Mehta, S K; Kumar, Sandeep; Bhanjana, Gaurav; Dilbaghi, Neeraj

    2015-07-01

    A microemulsion has been formulated to coencapsulate antituberculosis drugs to solve the issue of stability of rifampicin (RIF) in the presence of isoniazid (INH) and pyrazinamide (PZA). The structural transition, solubilization locus, and quantitative release of drugs without interference have been estimated. Derivative absorbance spectroscopy, especially ratio derivative and double divisor ratio derivative methods, has been employed for estimating the release. The coencapsulation of the anti-tuberculosis drugs were carried out in single, binary, or ternary mixtures and occupy the same solubilization sites in multiple drugs microemulsion systems as in the case of single drug-loaded systems. INH and PZA obey the diffusional (Fickian) release mechanism, whereas RIF shows anomalous release. Resazurin assay and agar well diffusion method were adopted for cytotoxicity analysis and antimicrobial activity, respectively. Cytotoxicity was found to be dependent on concentration and on colloidal structure of microemulsion.

  18. Paradoxical reaction to antituberculosis therapy in a patient with lupus vulgaris.

    Science.gov (United States)

    Santesteban, R; Bonaut, B; Córdoba, A; Yanguas, I

    2015-03-01

    Patients receiving treatment for tuberculosis may experience an unexpected deterioration of their disease; this is known as a paradoxical reaction. We present the case of a 59-year-old man with lupus vulgaris who experienced a paradoxical deterioration of cutaneous lesions after starting antituberculosis therapy. The reaction was self-limiting; the lesions gradually improved, and the final outcome was very good. Paradoxical reactions are well-known in patients with human immunodeficiency virus (HIV) infection who start antiretroviral therapy, but they can also occur in non-HIV-infected patients with tuberculosis who start antituberculosis therapy. In the literature reviewed, paradoxical reactions involving skin lesions were described in patients with miliary tuberculosis. The case we report is the first of a paradoxical reaction in lupus vulgaris. The increasing frequency of tuberculosis in Spain could lead to a rise in the number of paradoxical reactions.

  19. Synthesis of triazol derivatives of lupeol with potential antimalarial activity

    Directory of Open Access Journals (Sweden)

    Tatiane Freitas Borgati

    2012-06-01

    Full Text Available The goal of this project is synthesize and characterization of derivatives of lupeol and evaluated antimalarial activity. Historically, plants are important source of antimalarial medicines, highlighting quinine (1 (Figure 1, an important      alkaloid from the Cinchona calisaya bark. This compound was an important model for cloroquine  synthesis, a drug that was widely used in malaria treatment. In addition, one of the principal medicines used today is artemisinine, isolated from the Chinese plant Artemisia annua L (2 (Figure 1, and their semi synthetic derivatives (artesunate, artemeter, arteter. However, the malaria parasite has already shown resistance    to most of these current drugs and  the search for new candidates is essential. Lupeol (3 (Figura 1 is a compound that occurs in many plant species and discloses antimalarial, antiinflamatoryl and antitumoral activities. Considering its potential as a lead antimalarial molecule, we focused our work in the synthesis of new lupeol derivatives with increased antimalarial activity(scheme 1.

  20. Predicting antiprotozoal activity of benzyl phenyl ether diamine derivatives through QSAR multi-target and molecular topology.

    Science.gov (United States)

    Garcia-Domenech, Ramon; Zanni, Riccardo; Galvez-Llompart, Maria; Galvez, Jorge

    2015-05-01

    Multi-target QSAR is a novel approach that can predict simultaneously the activity of a given chemical compound on different pharmacological targets. In this work, we have used molecular topology and statistical tools such as multilinear regression analysis and artificial neural networks, to achieve a multi-target QSAR model capable to predict the antiprotozoal activity of a group of benzyl phenyl ether diamine derivatives. The activity was related to three parasites with a high prevalence rate in humans: Trypanosoma brucei rhodesiense, Plasmodium falciparum, and Leishmania donovani. The multi-target model showed a high regression coefficient (R(2) = 0.9644 and R(2) = 0.9235 for training and test sets, respectively) and a low standard error of estimate (SEE = 0.279). Model validation was performed with an external test (R(2) = 0.9001) and a randomization analysis. Finally, the model was applied to the search of potential new active compounds.

  1. Assessment of the in vitro antiprotozoal and cytotoxic potential of 20 selected medicinal plants from the island of Soqotra.

    Science.gov (United States)

    Mothana, Ramzi A; Al-Musayeib, Nawal M; Matheeussen, An; Cos, Paul; Maes, Louis

    2012-12-03

    Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellular amastigotes of Leishmania infantum and for antitrypanosomal activity against intracellular amastigotes of Trypanosoma cruzi and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined against MRC-5 fibroblasts. Selective activity was obtained for Punica protopunica against Plasmodium (IC₅₀ 2.2 µg/mL) while Eureiandra balfourii and Hypoestes pubescens displayed activity against the three kinetoplastid parasites (IC₅₀ cinnabari and Euphorbia socotrana displayed non-specific inhibition of the parasites related to high cytotoxicity.

  2. Synthesis and Biological Evaluation of Novel 2-Methoxypyridylamino-Substituted Riminophenazine Derivatives as Antituberculosis Agents

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhang

    2014-04-01

    Full Text Available Clofazimine, a member of the riminophenazine class, is one of the few antibiotics that are still active against multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis. However, the clinical utility of this agent is limited by its undesirable physicochemical properties and skin pigmentation potential. With the goal of maintaining potent antituberculosis activity while improving physicochemical properties and lowering skin pigmentation potential, a series of novel riminophenazine derivatives containing a 2-methoxypyridylamino substituent at the C-2 position of the phenazine nucleus were designed and synthesized. These compounds were evaluated for antituberculosis activity against M. tuberculosis H37Rv and screened for cytotoxicity. Riminophenazines bearing a 3-halogen- or 3,4-dihalogen-substituted phenyl group at the N-5 position exhibited potent antituberculosis activity, with MICs ranging from 0.25~0.01 μg/mL. The 3,4-dihalogen- substituted compounds displayed low cytotoxicity, with IC50 values greater than 64 μg/mL. Among these riminophenazines, compound 15 exhibited equivalent in vivo efficacy against M. tuberculosis infection and reduced skin discoloration potential in an experimental mouse infection model as compared to clofazimine. Compound 15, as compared to clofazimine, also demonstrated improved physicochemical properties and pharmacokinetic profiles with a short half-life and less drug tissue accumulation. This compound is being evaluated as a potential drug candidate for the treatment of multidrug resistant tuberculosis.

  3. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis

    Directory of Open Access Journals (Sweden)

    Muthusamy Ravichandiran

    2013-11-01

    Full Text Available Objective: To study the chemical constituents and the anti-tuberculosis activity of methanol and chloroform ink extracts of Sepiella inermis. Methods: Pulverized ink powder was extracted separately with chloroform and methanol. Chemical analysis was carried out by UV-VIS spectrophotometer, FT-IR and GC-MS. Crude extracts were tested in vitro for their activity against Mycobacterium tuberculosis using Lowenstein Jensen (L-J medium. Activity in L-J medium was assessed by mean reduction in number of colonies on extract containing bottles as compared to extract free controls. Results: GC-MS of methanol extract revealed four compounds viz. hexadecanoic acid, 9, 12- octadecadienoic acid, 9-octadecenoic acid and octadecanoic acid. The chloroform extract containing fourteen compounds. The methanol extract exhibited anti-tuberculosis activity in L-J medium at 64 µg/mL with the observed inhibition of 14 CFU. Chloroform extract displayed a weak activity against Mycobacterium tuberculosis. Conclusions: This investigation showed the methanol extract exhibited significant activity against Mycobacterium tuberculosis than chloroform extract. Since ink of sepia is available abundantly as a waste material, further studies aimed at isolation and efficacy of active substances pave the way for new anti-tuberculosis drugs.

  4. [Pharmacodynamics and pharmacokinetics of domestic fixed-dose combination of antituberculosis drugs].

    Science.gov (United States)

    Zhao, Weijie; Li, Huiwen; Duan, Lianshan; Liang, Guifang; Zhang, Tongqun; Lu, Yu

    2002-06-01

    OBJECTIVE To study the pharmacodynamics and pharmacokinetics of domestic fixed-dose of antituberculosis drugs and to evaluate its quality and activity against Mycobacterium tuberculosis both in vitro and in vivo. METHODS The MIC was determined by the tube doubling dilution method, and the effect of the drugs was assessed by half survival time of the mice. A single oral dose of domestic and imported fixed-dose combination of antituberculosis drugs was given to healthy volunteers, and the drug concentration in serum was determined by HPLC. The pharmacokinetic parameters and the relative bioavailability were calculated. RESULTS The MIC of each composition in the compound (INH, RFP, PZA) against Mycobacterium tuberculosis was lower than that of each composition used by single-dose. In a murine tuberculosis model, the antituberculosis activity of this compound drug was superior to that of each agent used alone with the same dose. No significant difference was found as compared to the imported drug, Refater; The major pharmacokinetic parameters of the domestic and the imported drugs, t (1/2), C (max), AUC, and t(max), were not significantly different. Statistical analysis showed the two formulations were bioequivalent. CONCLUSION The three compositions in the combination had synergistic effect, and the domestic and the imported drugs were bioequivalent.

  5. Synthesis and antituberculosis activity of novel mefloquine-isoxazole carboxylic esters as prodrugs.

    Science.gov (United States)

    Mao, Jialin; Yuan, Hai; Wang, Yuehong; Wan, Baojie; Pak, Dennis; He, Rong; Franzblau, Scott G

    2010-02-01

    5-(2,8-Bis(trifluoromethyl)quinolin-4-yloxymethyl)isoxazole-3-carboxylic acid ethyl ester (compound 3) was reported to have excellent antituberculosis activity against both replicating and non-replicating Mycobacterium tuberculosis, with a minimum inhibitory concentration (MIC) of 0.9 microM and 12.2 microM, respectively. In this study, the antituberculosis activity of compound 3 was further investigated. Its activity appeared to be very specific for organisms of the M. tuberculosis complex and it effected significant reductions of bacterial numbers in infected macrophages with an EC(90) of 4.1 microM. More importantly, the increased in vitro antituberculosis activity of the corresponding acid (compound 4) at pH 6.0 suggested that it may be active in vivo in an acidic environment produced as a consequence of inflammation in the lungs of TB patients. The fact that various ester bioisosteres of compound 3 lost anti-TB activity further suggested that the ester compound 3 may function as a prodrug. The detailed structure-activity relationships (SARs) from this study should facilitate our ultimate goal of improving the anti-TB potency of this isoxazole ester series.

  6. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis

    Institute of Scientific and Technical Information of China (English)

    Muthusamy Ravichandiran; Selvam Thiripurasalini; Vaithilingam Ravitchandirane; Srinivasa Gopalane; Chelladurai Stella

    2013-01-01

    Objective: To study the chemical constituents and the anti-tuberculosis activity of methanol and chloroform ink extracts of Sepiella inermis.Methods:Chemical analysis was carried out by UV-VIS spectrophotometer, FT-IR and GC-MS. Crude extracts Pulverized ink powder was extracted separately with chloroform and methanol. were tested in vitro for their activity against Mycobacterium tuberculosis using Lowenstein Jensen (L-J) medium. Activity in L-J medium was assessed by mean reduction in number of colonies on extract containing bottles as compared to extract free controls.Results:octadecadienoic acid, 9-octadecenoic acid and octadecanoic acid. The chloroform extract GC-MS of methanol extract revealed four compounds viz. hexadecanoic acid, 9, 12-containing fourteen compounds. The methanol extract exhibited anti-tuberculosis activity in L-J medium at 64 µg/mL with the observed inhibition of 14 CFU. Chloroform extract displayed a weak activity against Mycobacterium tuberculosis.Conclusions:Mycobacterium tuberculosis than chloroform extract. Since ink of sepia is available abundantly as This investigation showed the methanol extract exhibited significant activity against a waste material, further studies aimed at isolation and efficacy of active substances pave the way for new anti-tuberculosis drugs.

  7. Antimalarial activity of methanolic leaf extract of Piper betle L.

    Science.gov (United States)

    Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela

    2010-12-28

    The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  8. Quinine conjugates and quinine analogues as potential antimalarial agents.

    Science.gov (United States)

    Jones, Rachel A; Panda, Siva S; Hall, C Dennis

    2015-06-01

    Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds.

  9. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  10. Potent antimalarial 4-pyridones with improved physico-chemical properties.

    Science.gov (United States)

    Bueno, José M; Manzano, Pilar; García, María C; Chicharro, Jesús; Puente, Margarita; Lorenzo, Milagros; García, Adolfo; Ferrer, Santiago; Gómez, Rubén M; Fraile, María T; Lavandera, José L; Fiandor, José M; Vidal, Jaume; Herreros, Esperanza; Gargallo-Viola, Domingo

    2011-09-15

    Antimalarial 4-pyridones are a novel class of inhibitors of the plasmodial mitochondrial electron transport chain targeting Cytochrome bc1 (complex III). In general, the most potent 4-pyridones are lipophilic molecules with poor solubility in aqueous media and low oral bioavailability in pre-clinical species from the solid dosage form. The strategy of introducing polar hydroxymethyl groups has enabled us to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species.

  11. The antimalarial drug quinine interferes with serotonin biosynthesis and action

    DEFF Research Database (Denmark)

    Islahudin, Farida; Tindall, Sarah M.; Mellor, Ian R.;

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmit......The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor...

  12. Medical need, scientific opportunity and the drive for antimalarial drugs.

    Science.gov (United States)

    Ridley, Robert G

    2002-02-07

    Continued and sustainable improvements in antimalarial medicines through focused research and development are essential for the world's future ability to treat and control malaria. Unfortunately, malaria is a disease of poverty, and despite a wealth of scientific knowledge there is insufficient market incentive to generate the competitive, business-driven industrial antimalarial drug research and development that is normally needed to deliver new products. Mechanisms of partnering with industry have been established to overcome this obstacle and to open up and build on scientific opportunities for improved chemotherapy in the future.

  13. In vitro Potentiation of Antimalarial Activities by Daphnetin Derivatives Against Plasmodium falciparum

    Institute of Scientific and Technical Information of China (English)

    FANG HUANG; LIN-HUA TANG; LIN-QIAN YU; YI-CHANG NI; QIN-MEI WANG; FA-JUN NAN

    2006-01-01

    Objective To screen the antimalarial compounds of daphnetin derivatives against Plasmodium falciparum in vitro. Method Plasmodium faciparum (FCC1) was cultured in vitro by a modified method of Trager and Jensen. Antimalarial compounds were screened by microscopy-based assay and microfluorimetric method. Results DA79 and DA78 showed potent antimalarial activity against Plasmodium falciparum cultured in vitro. Conclusion Though the relationship between the structures of daphnetin derivatives and their antimalarial activities has not been clarified yet, this study may provide a new direction for discovery of more potential antimalarial compounds.

  14. Immunomodulating and Antiprotozoal Effects of Different Extracts of the Oyster Culinary-Medicinal Mushroom Pleurotus ostreatus (Higher Basidiomycetes) Against Coccidiosis in Broiler.

    Science.gov (United States)

    Ullah, Muhammad Irfan; Akhtar, Masood; Iqbal, Zafar; Shahid, Muhammad; Awais, Mian Muhammad

    2015-01-01

    The culinary-medicinal oyster mushroom Pleurotus ostreatus, procured from local sources, was processed for hot water and methanolic extraction. Extracts obtained were subjected to proximate analysis to determine the amount of crude protein, crude fiber, ash, ether, and nitrogen-free extracts. These extracts were evaluated for immunomodulating and antiprotozoal effects against coccidiosis in a broiler. Cellular immune investigation revealed significantly higher (P ostreatus extracts compared with controls. Humoral immune investigation revealed higher immunoglobulin (total Ig, IgG, and IgM) titers against sheep red blood cells in treated groups compared with controls. However, nonsignificant (P > 0.05) findings were observed in investigations of lymphoid organs. Antiprotozoal studies revealed a significantly higher (P ostreatus extracts when compared with controls. Moreover, lesion scoring and oocysts per gram of droppings observed in the control group were significantly higher (P ostreatus. Results concluded that hot water and methanolic extracts of P. ostreatus had strong immune-enhancing activities. Further, these extracts also had excellent antiprotozoal activities against coccidiosis in a broiler.

  15. Antimalarial Activity of Methanolic Leaf Extract of Piper betle L.

    Directory of Open Access Journals (Sweden)

    Adel A. Amran

    2010-12-01

    Full Text Available The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50–400 mg/kg was investigated for its antimalarial activity against Plasmodium berghei (NK65 during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05 schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  16. Medicinal chemistry discoveries among 1,3,5-triazines: recent advances (2000-2013) as antimicrobial, anti-TB, anti-HIV and antimalarials.

    Science.gov (United States)

    Patel, Rahul V; Keum, Young-Soo; Park, Se Won

    2014-01-01

    The chemistry and an extensive spectrum of biological activities of s-triazines have been examined since several decades and this heterocyclic core has received emerging consensus. This article aims to summarize recent advances (2000-2013) made towards the discovery of antimicrobial, antituberculosis, anti-HIV and antimalarial agents holding 1,3,5-triazine ring as a nucleus with the substitution of several types of nucleophiles. Molecular patterns associated with particular potency have been identified targeting several Gram-positive and Gram-negative bacteria and some fungal species, mycobacterium tuberculosis H37Rv, HIV type I and HIV type II, particularly, HIV-1I IIB and HIV- 1ROD strains as well as a variety of P. falciparum malarial strains as chloroquine-resistant K1, chloroquine-susceptible NF54, chloroquine-sensitive 3D7, P. falciparum (D6 clone), P. falciparum (W2 clone), cycloguanil-resistant FCR-3, chloroquine sensitive RKL2. The report will be of considerable interest to gain useful information for the furtherance of drug discovery with extended 1,3,5-triazine designs.

  17. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum.

    Science.gov (United States)

    Rodríguez-Guzmán, Raquel; Fulks, Laura C Johansmann; Radwan, Mohamed M; Burandt, Charles L; Ross, Samir A

    2011-09-01

    From the leaves and bark of Zanthoxylum monophyllum, a new lignan, 3-methoxy-3',4'-methylenedioxylignan-4,8,9,9'-tetraol (1), has been isolated along with 22 known compounds (2- 23), fifteen of them reported for the first time from Z. monophyllum. Their chemical structures were elucidated using detailed spectroscopic studies and chemical analysis. All compounds were evaluated for antimicrobial and antiprotozoal activities. Alkaloids BIS-[6-(5,6-dihydro-chelerythrinyl)] ether (2) and 6-ethoxy-chelerythrine (4) exhibited strong activity against Aspergillus fumigatus and methicillin-resistant Staphylococcus aureus (MRSA). Compound 4-methoxy-N-methyl-2-quinolone (9) exhibited significant activity against MRSA (IC50 value of 8.0 µM) while compound 5,8,4'-trihydroxy-3,7,3'-trimethoxyflavone (10) showed weak activity against Plasmodium falciparum.

  18. Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals

    Directory of Open Access Journals (Sweden)

    Izzettin Fikret V

    2008-07-01

    Full Text Available Abstract Background The first line anti-tuberculosis drugs isoniazid (INH, rifampicin (RIF and pyrazinamide (PZA continues to be the effective drugs in the treatment of tuberculosis, however, the use of these drugs is associated with toxic reactions in tissues, particularly in the liver, leading to hepatitis. Silymarin, a standard plant extract with strong antioxidant activity obtained from S. marianum, is known to be an effective agent for liver protection and liver regeneration. The aim of this study was to investigate the protective actions of silymarin against hepatotoxicity caused by different combinations of anti-tuberculosis drugs. Methods Male Wistar albino rats weighing 250–300 g were used to form 6 study groups, each group consisting of 10 rats. Animals were treated with intra-peritoneal injection of isoniazid (50 mg/kg and rifampicin (100 mg/kg; and intra-gastric administration of pyrazinamid (350 mg/kg and silymarin (200 mg/kg. Hepatotoxicity was induced by a combination of drugs with INH+RIF and INH+RIF+PZA. Hepatoprotective effect of silymarin was investigated by co-administration of silymarin together with the drugs. Serum biochemical tests for liver functions and histopathological examination of livers were carried out to demonstrate the protection of liver against anti-tuberculosis drugs by silymarin. Results Treatment of rats with INH+RIF or INH+RIF+PZA induced hepatotoxicity as evidenced by biochemical measurements: serum alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP activities and the levels of total bilirubin were elevated, and the levels of albumin and total protein were decreased in drugs-treated animals. Histopathological changes were also observed in livers of animals that received drugs. Simultaneous administration of silymarin significantly decreased the biochemical and histological changes induced by the drugs. Conclusion The active components of silymarin had

  19. New Non-Toxic Semi-Synthetic Derivatives from Natural Diterpenes Displaying Anti-Tuberculosis Activity.

    Science.gov (United States)

    Matos, Priscilla M; Mahoney, Brian; Chan, Yohan; Day, David P; Cabral, Mirela M W; Martins, Carlos H G; Santos, Raquel A; Bastos, Jairo K; Page, Philip C Bulman; Heleno, Vladimir C G

    2015-10-07

    We report herein the synthesis of six diterpene derivatives, three of which are new, generated through known organic chemistry reactions that allowed structural modification of the existing natural products kaurenoic acid (1) and copalic acid (2). The new compounds were fully characterized using high resolution mass spectrometry, infrared spectroscopy, ¹H- and (13)C-NMR experiments. We also report the evaluation of the anti-tuberculosis potential for all compounds, which showed some promising results for Micobacterium tuberculosis inhibition. Moreover, the toxicity for each of the most active compounds was also assessed.

  20. A population-based case-control study of the safety of oral anti-tuberculosis drug treatment during pregnancy

    DEFF Research Database (Denmark)

    Czeizel, A.E.; Rockenbauer, M.; Olsen, J.

    2001-01-01

    OBJECTIVE: To study the human teratogenic potential of isoniazid and other anti-tuberculosis drug treatment during pregnancy. DESIGN AND SETTING: Cases from a large population-based dataset at the Hungarian Case-Control Surveillance of Congenital Abnormalities, and controls from the National Birth...... Registry, between 1980 and 1996. Information on all oral anti-tuberculosis drug treatments during pregnancy was medically recorded. STUDY PARTICIPANTS: Women who had newborns or fetuses with congenital abnormalities (case group), and women who had babies with no congenital abnormality (control group). MAIN...

  1. Assessment of the in Vitro Antiprotozoal and Cytotoxic Potential of 20 Selected Medicinal Plants from the Island of Soqotra

    Directory of Open Access Journals (Sweden)

    Louis Maes

    2012-12-01

    Full Text Available Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellular amastigotes of Leishmania infantum and for antitrypanosomal activity against intracellular amastigotes of Trypanosoma cruzi and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined against MRC-5 fibroblasts. Selective activity was obtained for Punica protopunica against Plasmodium (IC50 2.2 µg/mL while Eureiandra balfourii and Hypoestes pubescens displayed activity against the three kinetoplastid parasites (IC50 < 10 µg/mL. Acridocarpus socotranus showed activity against T. brucei and T. cruzi (IC50 3.5 and 8.4 µg/mL. Ballochia atrovirgata, Dendrosicycos socotrana, Dracaena cinnabari and Euphorbia socotrana displayed non-specific inhibition of the parasites related to high cytotoxicity.

  2. In vitro antituberculosis activity of diterpenoids from the Vietnamese medicinal plant Croton tonkinensis.

    Science.gov (United States)

    Jang, Woong Sik; Jyoti, Md Anirban; Kim, Sukyung; Nam, Kung-Woo; Ha, Thi Kim Quy; Oh, Won Keun; Song, Ho-Yeon

    2016-01-01

    Diterpenoids from the Vietnamese medicinal plant Croton tonkinensis are rich in ent-kaurane, kaurane and the grayanane class and are valuable intermediate plant metabolites with different bioactivities. In this study, we report the antituberculosis activity of these diterpenoids against both susceptible and resistant strains of M. tuberculosis for the first time. All of the ent-kaurane, kaurane and grayanane diterpenoids showed high to moderate activity against Mycobacterium. The highest antituberculosis activity was observed for ent-1β,7α,14β-triacetoxykaur-16-en-15-one (cpp604), with MIC values of 0.78, 1.56 and 3.12-12.5 µg/ml against H37Ra, H37Rv and all other resistant strains of Mycobacterium tuberculosis examined. In addition, other ent-kaurane-type diterpenoids also showed very high activities against mycobacterium, including cpp609 (1.56 µg/ml), cpp610 (1.56 µg/ml), cpp601 (3.12-6.25 µg/ml), cpp602 (3.12-6.25 µg/ml), cpp607 (3.12-6.25 µg/ml) and cpp608 (3.12-6.25 µg/ml). From the structure-activity relationship, functional groups R3 and R5 of the ent-kaurane skeleton were found to modulate the antimycobacterial activity.

  3. Effect of antimalarial drugs on stimulation and interleukin 2 production of human lymphocytes

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Svenson, M; Theander, T G;

    1987-01-01

    Effect of pyrimethamine, an antimalarial antifolate, and of mefloquine, chloroquine, and quinine, which belong to the quinoline group of antimalarials, on proliferation and interleukin 2 (IL-2) production of human lymphocytes was studied in vitro. Pyrimethamine at concentrations above therapeutic...... mononuclear cells of the various antimalarial drugs and the potential adverse effects of antimalarial chemotherapy are discussed.......Effect of pyrimethamine, an antimalarial antifolate, and of mefloquine, chloroquine, and quinine, which belong to the quinoline group of antimalarials, on proliferation and interleukin 2 (IL-2) production of human lymphocytes was studied in vitro. Pyrimethamine at concentrations above therapeutic...... levels suppressed the lymphocytes' proliferation, but not their IL-2 production. All three quinolines suppressed the proliferation of lymphocytes, but not equally, with mefloquine having the strongest effect. Quinine suppressed the growth at therapeutic concentrations. The IL-2 production was suppressed...

  4. Antimalarial Drugs as Immune Modulators: New Mechanisms for Old Drugs.

    Science.gov (United States)

    An, Jie; Minie, Mark; Sasaki, Tomikazu; Woodward, Joshua J; Elkon, Keith B

    2017-01-14

    The best known of the naturally occurring antimalarial compounds are quinine, extracted from cinchona bark, and artemisinin (qinghao), extracted from Artemisia annua in China. These and other derivatives are now chemically synthesized and remain the mainstay of therapy to treat malaria. The beneficial effects of several of the antimalarial drugs (AMDs) on clinical features of autoimmune disorders were discovered by chance during World War II. In this review, we discuss the chemistry of AMDs and their mechanisms of action, emphasizing how they may impact multiple pathways of innate immunity. These pathways include Toll-like receptors and the recently described cGAS-STING pathway. Finally, we discuss the current and future impact of AMDs on systemic lupus erythematosus, rheumatoid arthritis, and devastating monogenic disorders (interferonopathies) characterized by expression of type I interferon in the brain.

  5. Fake anti-malarials: start with the facts.

    Science.gov (United States)

    Kaur, Harparkash; Clarke, Siȃn; Lalani, Mirza; Phanouvong, Souly; Guérin, Philippe; McLoughlin, Andrew; Wilson, Benjamin K; Deats, Michael; Plançon, Aline; Hopkins, Heidi; Miranda, Debora; Schellenberg, David

    2016-02-13

    This meeting report presents the key findings and discussion points of a 1-day meeting entitled 'Fake anti-malarials: start with the facts' held on 28th May 2015, in Geneva, Switzerland, to disseminate the findings of the artemisinin combination therapy consortium's drug quality programme. The teams purchased over 10,000 samples, using representative sampling approaches, from six malaria endemic countries: Equatorial Guinea (Bioko Island), Cambodia, Ghana, Nigeria, Rwanda and Tanzania. Laboratory analyses of these samples showed that falsified anti-malarials (fact that the WHO has urged regulatory authorities in malaria-endemic countries to take measures to halt the production and marketing of these oral monotherapies since 2007. This report summarizes the presentations that reviewed the public health impact of falsified and substandard drugs, sampling strategies, techniques for drug quality analysis, approaches to strengthen health systems capacity for the surveillance of drug quality, and the ensuing discussion points from the dissemination meeting.

  6. Fresh Air and Good Food: Children and the Anti-Tuberculosis Campaign in the Netherlands c.1900-1940

    Science.gov (United States)

    Bakker, Nelleke

    2010-01-01

    As elsewhere in the Western world, between 1900 and 1940 the anti-tuberculosis campaign in the Netherlands produced a wide range of initiatives to promote child health. In each of these the social and the medical were linked, as the hygienic "mood" was encouraged by a child-saving ethos that focused upon the poor. In this article the…

  7. Fresh air and good food : Children and the anti-tuberculosis campaign in the Netherlands c.1900-1940

    NARCIS (Netherlands)

    Bakker, Nelleke

    2010-01-01

    As elsewhere in the Western world, between 1900 and 1940 the anti-tuberculosis campaign in the Netherlands produced a wide range of initiatives to promote child health. In each of these the social and the medical were linked, as the hygienic 'mood' was encouraged by a child-saving ethos that focused

  8. Research Progress of the Anti-Tuberculosis Drugs%抗结核药物的研究进展

    Institute of Scientific and Technical Information of China (English)

    耿叶慧; 李子强

    2016-01-01

    目的:为进一步研发新型抗结核药物提供参考。方法通过Science Direct,Wiley,Springer Link等数据库进行文献检索,将近几年文献报道抗结核候选药物进行归纳和总结。结果最低抑菌浓度小于7μmol/L,低毒和高选择性的最有潜力的抗结核候选药物已大量出现。结论抗结核候选药物的开发思路为研发更多新型抗结核药物提供了参考。%Objective To provide a reference for further researching and developping new anti-tuberculosis drugs. Methods Through document retrieval in the databases of Science Direct, Wiley and Springer Link, etc., the literatures about new antitubercular drugs were summarized. Results The most potent anti-tuberculosis drugs with low toxicity, a high selective index and MIC values ﹤ 7 μmol/L were appeared in large numbers. Conclusion The thoughts on the development of anti-tuberculosis drugs provide perspectives on the development of new anti-tuberculosis drugs.

  9. Early stationary phase culture supernatant accelerates growth of sputum cultures collected after initiation of anti-tuberculosis treatment.

    Science.gov (United States)

    Kolwijck, E; Friedrich, S O; Karinja, M N; van Ingen, J; Warren, R M; Diacon, A H

    2014-07-01

    We investigated the effect of Mycobacterium tuberculosis culture supernatant added to sputum cultures collected during the first 8 weeks of anti-tuberculosis treatment. With ongoing treatment duration, time to culture positivity decreased significantly in supernatant-enriched cultures, possibly due to stimulation of dormant or slowly metabolizing M. tuberculosis cells.

  10. Incidence, clinical features and impact on anti-tuberculosis treatment of anti-tuberculosis drug induced liver injury (ATLI in China.

    Directory of Open Access Journals (Sweden)

    Penghui Shang

    Full Text Available BACKGROUND: Anti-tuberculosis drug induced liver injury (ATLI is emerging as a significant threat to tuberculosis control in China, though limited data is available about the burden of ATLI at population level. This study aimed to estimate the incidence of ATLI, to better understand its clinical features, and to evaluate its impact on anti-tuberculosis (TB treatment in China. METHODOLOGY/PRINCIPAL FINDINGS: In a population-based prospective study, we monitored 4,304 TB patients receiving directly observed treatment strategy (DOTS treatment, and found that 106 patients developed ATLI with a cumulative incidence of 2.55% (95% Confidence Interval [CI], 2.04%-3.06%. Nausea, vomiting and anorexia were the top three most frequently observed symptoms. There were 35 (33.02% ATLI patients with no symptoms, including 8 with severe hepatotoxicity. Regarding the prognosis of ATLI, 84 cases (79.25% recovered, 18 (16.98% improved, 2 (1.89% failed to respond to the treatment with continued elevation of serum alanine aminotransferase, and 2 (1.89% died as result of ATLI. Of all the ATLI cases, 74 (69.81% cases changed their anti-TB treatment, including 4 (3.77% cases with medication administration change, 21 (19.81% cases with drugs replacement, 54 (50.94% cases with therapy interruption, and 12 (11.32% cases who discontinued therapy. In terms of treatment outcomes, 53 (51.46% cases had TB cured in time, 48 (46.60% cases had therapy prolonged, and 2 (1.94% cases died. Compared with non-ATLI patients, ATLI patients had a 9.25-fold (95%CI, 5.69-15.05 risk of unsuccessful anti-TB treatment outcomes and a 2.11-fold (95%CI, 1.23-3.60 risk of prolonged intensive treatment phase. CONCLUSIONS/SIGNIFICANCE: ATLI could considerably impact the outcomes of anti-TB treatment. Given the incidence of ATLI and the size of TB population in China, the negative impact is substantial. Therefore, more research and efforts are warranted in order to enhance the diagnosis and the

  11. Rational Design of Proteasome Inhibitors as Antimalarial Drugs.

    Science.gov (United States)

    Le Chapelain, Camille; Groll, Michael

    2016-05-23

    One life, two strategies: Crucial structural differences between the human and the Plasmodium falciparum proteasomes were recently identified. A combination of cryo-EM and functional characterization enabled the design of a selective antimalarial proteasome inhibitor that shows low toxicity in the host. When used with artemisinin, this ligand offers a new approach for the efficient treatment of malaria at all stages of the parasite lifecycle.

  12. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  13. Antimalarial diterpene alkaloids from the seeds of Caesalpinia minax.

    Science.gov (United States)

    Ma, Guoxu; Sun, Zhaocui; Sun, Zhonghao; Yuan, Jingquan; Wei, Hua; Yang, Junshan; Wu, Haifeng; Xu, Xudong

    2014-06-01

    Two new diterpene alkaloids, caesalminines A (1) and B (2), possessing a tetracyclic cassane-type furanoditerpenoid skeleton with γ-lactam ring, were isolated from the seeds of Caesalpinia minax. Their structures were determined by different spectroscopic methods and ECD calculation. The plausible biosynthetic pathway of caesalminines A and B was proposed. The anti-malarial activity of compounds 1 and 2 is presented with IC50 values of 0.42 and 0.79 μM, respectively.

  14. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones

    Science.gov (United States)

    Sarkar, Souvik; Siddiqui, Asim A.; Saha, Shubhra J.; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S.; Nag, Shiladitya; Adhikari, Susanta

    2016-01-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [3H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. PMID:27139466

  15. Potential antimalarials from African natural products: A reviw.

    Science.gov (United States)

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Kabiru, Adamu Yusuf; Jigam, Ali Audu; Umar, Maimuna Bello; Berinyuy, Eustace Bonghan; Alozieuwa, Blessing Uchenna

    2015-01-01

    Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health, and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in vivo or in vitro against malaria parasite. Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, and Science domain) that report on antiplasmodial activity of natural products from differernts Africa region. A total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%), Fababceae (8.128%), Euphorbiaceae (5.52%), Rubiaceas (5.52%), and Apocyanaceae (5.214%), have received more scientific validation than others. African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against Plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products are of paramount importance.

  16. Antimalarial effect of agmatine on Plasmodium berghei K173 strain

    Institute of Scientific and Technical Information of China (English)

    SURui-Bin; WEIXiao-Li; LIUYin; LIJin

    2003-01-01

    AIM: To study the antimalarial effect of agmatine (Agm) on chloroquine-susceptible Plasmodium berghei K173strain (S strain) and the P berghei K173 resistant strain (R strain). METHODS: The antimalarial effects of Agm onP berghei K173 S strain and R strain were evaluated by Peters 4-d suppression test in mice. RESULTS: Agm(12.5-200 mg/kg,ig,daily) decreased the parasitemia for both P berghei K173 S strain (IC50=139 mg/kg) and Rstrain (IC50=126mg/kg) in mice. Subcutaneous injection (sc) of Agm (5-40mg/kg,tid) showed relatively strongerantimalarial effect than intragastric gavage (IC50=30 mg/kg) in P berghei K 173 S strain. Spermidine antagonized theantimalarial effect of Agm for P berghei K173 S strain and R strain. Agm did not reverse the chloroquine resistanceof P berghei K173 S strain, dl-α-Difluoromethylornithine (DFMO, sc) decreased the parasitemia of P BergheiK173 S strain and this effect was antagonized by spermidine. CONCLUSION: Agm has an antimalarial effect andthe mechanism is related to its inhibition of polyamine synthesis.

  17. Anti-Malarial Plants of Jonai, India: an Ethnobotanical Approach

    Directory of Open Access Journals (Sweden)

    Tonlong WANGPAN

    2016-03-01

    Full Text Available North-East India represents a unique ecosystem with treasured medicinal plant wealth closely related with Folk medicines. A large number of plants having medicinal properties and their folk uses have remained confined to the natives of this region. The tribal community of Jonai, Assam was explored to expose the indigenous herbal remedy for malaria. Sixteen antimalarial plants belonging to 13 families were reported. The analysis revealed highest fidelity level (FL value for Ajuga integrifolia (100% followed by Ricinus communis (94%, Alstonia scholaris (88%, Oroxylum indicum (86% and Achyranthes aspera (82%. The percentage of respondent’s knowledge (PRK about anti-malarial plants showed Alstonia scholaris as the most commonly known antimalarial species (53% within this region. Preference ranking (PR unveiled eight species to be very effective against malarial parasite, which includes Allium sativum, Artemisia indica, Azadirachta indica, Carica papaya, Clerodendrum glandulosum, Ocimum tenuiflorum, Oroxylum indicum, Piper longum and Piper nigrum. All medicine preparations are made using water as the medium and are orally administered in the form of crude extract, powder, juice and decoction. Overall analysis suggested Ajuga integrifolia, Achyranthes aspera, Alstonia scholaris, Artemisia indica, Oroxylum indicum and Ricinus communis to be used for the development of novel, economical, effective and ecofriendly herbal formulations for healthcare management.

  18. Review of pyronaridine anti-malarial properties and product characteristics

    Directory of Open Access Journals (Sweden)

    Croft Simon L

    2012-08-01

    Full Text Available Abstract Pyronaridine was synthesized in 1970 at the Institute of Chinese Parasitic Disease and has been used in China for over 30 years for the treatment of malaria. Pyronaridine has high potency against Plasmodium falciparum, including chloroquine-resistant strains. Studies in various animal models have shown pyronaridine to be effective against strains resistant to other anti-malarials, including chloroquine. Resistance to pyronaridine appears to emerge slowly and is further retarded when pyronaridine is used in combination with other anti-malarials, in particular, artesunate. Pyronaridine toxicity is generally less than that of chloroquine, though evidence of embryotoxicity in rodents suggests use with caution in pregnancy. Clinical pharmacokinetic data for pyronaridine indicates an elimination T1/2 of 13.2 and 9.6 days, respectively, in adults and children with acute uncomplicated falciparum and vivax malaria in artemisinin-combination therapy. Clinical data for mono or combined pyronaridine therapy show excellent anti-malarial effects against P. falciparum and studies of combination therapy also show promise against Plasmodium vivax. Pyronaridine has been developed as a fixed dose combination therapy, in a 3:1 ratio, with artesunate for the treatment of acute uncomplicated P. falciparum malaria and blood stage P. vivax malaria with the name of Pyramax® and has received Positive Opinion by European Medicines Agency under the Article 58 procedure.

  19. Antimalarial Activity of Cocos nucifera Husk Fibre: Further Studies

    Directory of Open Access Journals (Sweden)

    J. O. Adebayo

    2013-01-01

    Full Text Available In this study, the antimalarial and toxicity potentials of husk fibre extracts of five Nigerian varieties of Cocos nucifera were evaluated in vitro. The only active extract fraction, West African Tall (WAT ethyl acetate extract fraction, was then evaluated for its phytochemical constituents, antimalarial and toxicity potentials at varying doses (31.25–500 mg/kg body weight using various organ function indices. The results revealed that WAT ethyl acetate extract fraction (WATEAEF contained alkaloids, tannins, and flavonoids and was active against Plasmodium falciparum W2 strain maintained in continuous culture, with a selectivity index of 30.3. The same extract fraction was active in vivo against Plasmodium berghei NK65, causing more than 50% reduction in parasitaemia on days 4 and 6 after inoculation at various doses administered. WATEAEF did not significantly alter (P>0.05 function indices of the liver and cardiovascular system at all doses administered but significantly increased (P<0.05 plasma creatinine concentration at 250 and 500 mg/Kg body weight compared to controls. The results of this study suggest that WATEAEF possesses antimalarial activity and may not adversely affect normal liver function nor predispose subjects to cardiovascular diseases but may impair normal kidney function at higher doses. Further studies are underway to isolate the active principles.

  20. In vitro susceptibility of Plasmodium vivax to antimalarials in Colombia.

    Science.gov (United States)

    Fernández, Diana; Segura, César; Arboleda, Margarita; Garavito, Giovanny; Blair, Silvia; Pabón, Adriana

    2014-11-01

    The in vitro susceptibilities of 30 isolates of Plasmodium vivax to a number of antimalarials (chloroquine [CQ], mefloquine, amodiaquine, quinine, and artesunate [AS]) were evaluated. The isolates came from the region of Urabá in Colombia, in which malaria is endemic, and were evaluated by the schizont maturation test. The 50% inhibitory concentration (IC50) was 0.6 nM (95% confidence interval [CI], 0.3 to 1.0 nM) for artesunate, 8.5 nM (95% CI, 5.6 to 13.0 nM) for amodiaquine, 23.3 nM (95% CI, 12.4 to 44.1 nM) for chloroquine, 55.6 nM (95% CI, 36.8 to 84.1 nM) for mefloquine, and 115.3 nM (95% CI, 57.7 to 230.5 nM) for quinine. The isolates were classified according to whether the initial parasites were mature or immature trophozoites (Tfz). It was found that the IC50s for chloroquine and artesunate were significantly different in the two aforementioned groups (P Colombia, P. vivax continues to be susceptible to antimalarials. This is the first report, to our knowledge, showing in vitro susceptibilities of P. vivax isolates to antimalarials in Colombia.

  1. Antimalarials and the fight against malaria in Brazil

    Directory of Open Access Journals (Sweden)

    Luiz MA Carmargo

    2009-04-01

    Full Text Available Luiz MA Carmargo1, Saulo de Oliveira2, Sergio Basano3, Célia RS Garcia21ICBV-USP, Monte Negro, Rondônia, Brasil; 2Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, SP, Brazil; 3CEMETRON, Porto Velho, Guaporé, BrazilAbstract: Malaria, known as the “fevers,” has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named “Jesuits’ powder.” Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira–Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients.Keywords: Plasmodium falciparum, malaria, antimalarials, calcium

  2. Antimalarial activity of newly synthesized chalcone derivatives in vitro.

    Science.gov (United States)

    Yadav, Neesha; Dixit, Sandeep K; Bhattacharya, Amit; Mishra, Lokesh C; Sharma, Manish; Awasthi, Satish K; Bhasin, Virendra K

    2012-08-01

    Twenty-seven novel chalcone derivatives were synthesized using Claisen-Schmidt condensation and their antimalarial activity against asexual blood stages of Plasmodium falciparum was determined. Antiplasmodial IC(50) (half-maximal inhibitory concentration) activity of a compound against malaria parasites in vitro provides a good first screen for identifying the antimalarial potential of the compound. The most active compound was 1-(4-benzimidazol-1-yl-phenyl)-3-(2, 4-dimethoxy-phenyl)-propen-1-one with IC(50) of 1.1 μg/mL, while that of the natural phytochemical, licochalcone A is 1.43 μg/mL. The presence of methoxy groups at position 2 and 4 in chalcone derivatives appeared to be favorable for antimalarial activity as compared to other methoxy-substituted chalcones. Furthermore, 3, 4, 5-trimethoxy groups on chalcone derivative probably cause steric hindrance in binding to the active site of cysteine protease enzyme, explaining the relative lower inhibitory activity.

  3. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc

    2015-05-27

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing.

  4. The Antituberculosis Drug Ethambutol Selectively Blocks Apical Growth in CMN Group Bacteria

    Science.gov (United States)

    Schubert, Karin; Sieger, Boris; Meyer, Fabian; Giacomelli, Giacomo; Böhm, Kati; Rieblinger, Angela; Lindenthal, Laura; Sachs, Nadja; Wanner, Gerhard

    2017-01-01

    ABSTRACT Members of the genus Mycobacterium are the most prevalent cause of infectious diseases. Mycobacteria have a complex cell envelope containing a peptidoglycan layer and an additional arabinogalactan polymer to which a mycolic acid bilayer is linked; this complex, multilayered cell wall composition (mAGP) is conserved among all CMN group bacteria. The arabinogalactan and mycolic acid synthesis pathways constitute effective drug targets for tuberculosis treatment. Ethambutol (EMB), a classical antituberculosis drug, inhibits the synthesis of the arabinose polymer. Although EMB acts bacteriostatically, its underlying molecular mechanism remains unclear. Here, we used Corynebacterium glutamicum and Mycobacterium phlei as model organisms to study the effects of EMB at the single-cell level. Our results demonstrate that EMB specifically blocks apical cell wall synthesis, but not cell division, explaining the bacteriostatic effect of EMB. Furthermore, the data suggest that members of the family Corynebacterineae have two dedicated machineries for cell elongation (elongasome) and cytokinesis (divisome). PMID:28174310

  5. Photovoice: A Novel Approach to Improving Antituberculosis Treatment Adherence in Pune, India

    Directory of Open Access Journals (Sweden)

    Sangita C. Shelke

    2014-01-01

    Full Text Available We compared antituberculosis treatment (ATT adherence and outcomes among patients exposed to Photovoice (video of previously cured TB patients sharing experiences about TB treatment versus those not exposed. The odds of successful outcome (i.e., cured or completing treatment for the 135 patients who watched Photovoice were 3 times greater (odds ratio: 2.8; 95% CI: 1.3–6.1 than for patients who did not watch Photovoice. The comparison group, on average, missed more doses (10.9 doses; 95% CI: 6.6–11.1 than the intervention group who saw Photovoice (5.5 doses; 95% CI: 3.7–6.1. Using Photovoice at initiation of ATT has the potential to improve treatment adherence and outcomes.

  6. Preparation and in vitro evaluation of benzylsulfanyl benzoxazole derivatives as potential antituberculosis agents.

    Science.gov (United States)

    Klimesová, Vera; Kocí, Jan; Waisser, Karel; Kaustová, Jarmila; Möllmann, Ute

    2009-05-01

    A set of 2-benzylsulfanyl derivatives of benzoxazole was synthesized and evaluated for their in vitro antimycobacterial activity against Mycobacterium tuberculosis, non-tuberculous mycobacteria and multidrug-resistant M. tuberculosis. The activities were expressed as the minimum inhibitory concentration (MIC) in mmol/L. The substances showed similar activity against all tested strains. The lead compounds in the set, dinitro derivatives exhibited significant activity against both sensitive and resistant strains of M. tuberculosis and also against non-tuberculous mycobacteria. To facilitate drug design of benzoxazole as potential antituberculosis agent, we have explored the quantitative structure-activity relationship (QSAR). We demonstrated that lower lipophilicity has significant contribution to activity. Dinitrobenzylsulfanyl derivative of benzoxazole represents the promising small-molecule synthetic antimycobacterials.

  7. Sale of anti-tuberculosis drugs through private pharmacies: a cross sectional study in Kerala, India.

    Directory of Open Access Journals (Sweden)

    Binoo Divakaran

    2011-03-01

    Full Text Available

    Background: Private health care providers are largely the first point of contact for Tuberculosis (TB patients, who either undergo treatment from private practitioners or buy medicines on their own from private pharmacies. Aims: This study assessed the availability, sale and magnitude of anti-tuberculosis drugs dispensing through private pharmacies.

    Methodology: The present cross sectional study was conducted among private pharmacies located along the national highway from Thalassery to Payyannur in the Kannur district of Kerala, India. A total of 38 private pharmacies located along the national highway were included.

    Results: The duration that anti–TB drugs had been on sale showed that 74.3% of pharmacies had started to sell these drugs only less than ten years ago. The majority (82.9% of the private pharmacies received up to 5 prescriptions for anti-TB drugs weekly. Out of the total of 35 pharmacies selling these drugs, 22 (62.9% reported an increase in their sales. Nearly 82% of those pharmacies that reported an increase in the sale of anti-TB drugs were selling these drugs for less than the past ten years.

    Conclusions: The current study shows that a large number of tuberculosis patients are still approaching private pharmacies for anti-tuberculosis drugs. This tendency has to be completely stopped and needs properly planned strategies to encourage private pharmacies to participate actively in the DOTS (Direct Observation Treatment Short course program of the Government, by providing them attractive alternative incentives

  8. Efficacy and safety of anti-tuberculosis drugs in HIV-positive patients: A prospective study

    Directory of Open Access Journals (Sweden)

    Jigar D Kapadia

    2013-01-01

    Full Text Available Objectives: To assess the efficacy and safety of anti-tuberculosis drugs in HIV-positive patients at a tertiary care teaching hospital. Materials and Methods: As a part of an ongoing study of opportunistic infections (OIs in HIV-positive patients, drug treatment in patients suffering from tuberculosis was assessed to determine its efficacy and safety. Based on prevalence data for last three years, a purposive sampling of study population was carried out in this observational, prospective, single centre study. Tuberculosis (TB was the most common OI observed. The selected patients were followed up for a period of one year to evaluate the clinical course and outcome of OIs, and the efficacy and safety of drugs used was checked. Results: Tuberculosis was observed in 89 out of 134 enrolled patients. These included 79 adults and 10 children. Males (66.2% were commonly affected. Extra pulmonary TB (73% was the most common manifestation with abdominal TB observed in 55 (61.7% patients. All patients were treated in accordance with the Revised National Tuberculosis Control Programme (RNTCP guidelines as recommended by National AIDS Control Organization (NACO, India. Outcome of TB was assessable in 70 patients. Majority (82.8% of the patients were cured, while 12 patients (17.1% died during the course of treatment. A total of 149 ADRs were observed in 67 (75.2% patients. Majority of ADRs (n = 147 were non-serious and did not warrant a change in therapy. Discoloration of urine was the most common ADR observed. Conclusion: TB is the most common opportunistic infection in HIV-positive patients with abdominal TB being the most common manifestation. RNTCP and NACO guidelines are adhered to in these patients. Anti-tuberculosis drugs are well tolerated and effective in majority of the patients.

  9. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery

    OpenAIRE

    Marques, Joana; Valle-Delgado, Juan J.; Urbán, Patricia; Baró, Elisabet; Prohens, Rafel; Mayor, Alfredo; Cisteró, Pau; Delves, Michael; Robert E Sinden; Grandfils, Christian; de Paz, José L.; García-Salcedo, José A.; Fernández-Busquets, Xavier

    2016-01-01

    The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial dru...

  10. Antimaláricos e Ototoxicidade Antimalarials and Ototoxicity

    Directory of Open Access Journals (Sweden)

    Marcelo Cardoso Figueiredo

    2004-06-01

    Full Text Available Os antimaláricos, como o difosfato de cloroquina, têm sido usados amplamente no tratamento não só da malária, mas também de doenças reumatológicas como a síndrome de Sjögren (SS, artrite reumatóide (AR e lúpus eritematoso sistêmico (LES. Essas drogas são usadas cronicamente e, em conseqüência do acúmulo nos melanócitos, podem causar hiperpigmentação cutânea, retinopatia e lesão no ouvido interno. Como o protocolo do uso de antimaláricos só envolve a avaliação oftalmológica e das enzimas hepáticas, esta revisão discute a necessidade de novos estudos da avaliação periódica da audição desses pacientes.Antimalarials such as chloroquine diphosphate have been widely used not only for the treatment of malaria, but also for several rheumatic diseases such as Sjögren's syndrome (SS, rheumatoid arthritis (RA and Systemic Lupus Erythematosus (SLE. These drugs are used on a long-term basis and, due to melanocytes' accumulation, can cause cutaneous hyperpigmentation, retinopathy and internal ear damage. As the antimalarials' user follow-up protocol recommends only periodic eye exams and liver function testing, we reviewed the literature questioning whether new studies on the periodic hearing evaluation are required for antimalarials' users.

  11. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    Science.gov (United States)

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

  12. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Norazsida Ramli

    2014-01-01

    Full Text Available Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral toxicity dose at 5000 mg/kg was conducted to evaluate the safety of this extract. Twenty mice were divided into control and experimental group. All the mice were observed for signs of toxicity, mortality, weight changes and histopathological changes. Antimalarial activity of different extract doses of 50, 200, 400 and 1000 mg/kg were tested in vivo against Plasmodium berghei infections in mice (five mice for each group during early, established and residual infections. Results: The acute oral toxicity test revealed that no mortality or evidence of adverse effects was seen in the treated mice. The extract significantly reduced the parasitemia by the 50 (P = 0.000, 200 (P = 0.000 and 400 mg/kg doses (P = 0.000 in the in vivo prophylactic assay. The percentage chemo-suppression was calculated as 83.33% for 50 mg/kg dose, 75.62% for 200 mg/kg dose and 90.74% for 400 mg/kg dose. Body weight of all treated groups; T1, T2, T3 and T4 also showed enhancement after 7 days posttreatment. Statistically no reduction of parasitemia calculated for curative and suppressive test. Conclusion: Thus, this extract may give a promising agent to be used as a prophylactic agent of P. berghei infection.

  13. Substandard anti-malarial drugs in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sie Ali

    2008-05-01

    Full Text Available Abstract Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers and illicit (market and street vendors, shops sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50% chloroquine, 10/77 (13% pyrimethamine-sulphadoxine, 9/77 (12% quinine, 6/77 (8% amodiaquine, 9/77 (12% artesunate, and 4/77 (5% artemether-lumefantrine. 32/77 (42% drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6% and 27/30 (90.0% samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the

  14. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    Directory of Open Access Journals (Sweden)

    Dea Shahinas

    2013-02-01

    Full Text Available Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.

  15. Epstein-Barr Virus Infection Mimicking Drug-Induced Hepatitis in a Critically ill Patient During Antituberculosis Therapy

    OpenAIRE

    Wang, Ching-Hsun; Li, Yao-Feng; Shen, Chih-Hao

    2014-01-01

    Introduction: Although hepatitis is frequently observed during antituberculosis (anti-TB) therapy, acute viral hepatitis should be ruled out first, especially in the endemic areas. In addition to common types of viral hepatitis, ie, hepatitis A, hepatitis B, and hepatitis C viruses, Epstein-Barr virus (EBV) may result in hepatitis in some cases. Case Presentation: Herein, we reported a critically ill patient who developed cholestatic hepatitis in the intensive care unit during the anti-TB the...

  16. Antimalarial drug resistance in Bangladesh, 1996-2012.

    Science.gov (United States)

    Haque, Ubydul; Glass, Gregory E; Haque, Waziul; Islam, Nazrul; Roy, Shyamal; Karim, Jahirul; Noedl, Harald

    2013-12-01

    Malaria remains an important health problem in Bangladesh, with approximately 14 million people at risk. Antimalarial drug resistance is a major obstacle to the control of malaria in endemic countries. In 2012, Bangladesh reported an estimated 29 522 malaria episodes, of which 94% were reported as being caused by Plasmodium falciparum. In this study, we reviewed and summarized antimalarial drug resistance data from Bangladesh published until June 2013. We searched published sources for data referring to any type of P. falciparum drug resistance (in vivo, in vitro, or molecular) and found 169 articles published in peer-reviewed journals. Of these, 143 articles were excluded because they did not meet our inclusion criteria. After detailed review of the remaining 26 articles, 14 were selected for evaluation. Published studies indicate that P. falciparum shows varying levels of resistance to chloroquine, mefloquine and sulfadoxine-pyrimethamine. Combination therapy of chloroquine and primaquine has proven ineffective and combinations of sulfadoxine-pyrimethamine with either quinine or chloroquine have also shown poor efficacy. Recent studies indicate that artemisinin derivatives, such as artesunate, remain highly efficacious in treating P. falciparum malaria. Available data suggest that artemisinins, quinine, doxycyline, mefloquine-artesunate and azithromycin-artesunate combination therapy remain efficacious in the treatment of P. falciparum malaria in Bangladesh.

  17. Maximizing antimalarial efficacy and the importance of dosing strategies.

    Science.gov (United States)

    Beeson, James G; Boeuf, Philippe; Fowkes, Freya J I

    2015-05-09

    Artemisinin-based combination therapies (ACTs) are the cornerstone for the treatment of malaria. However, confirmed resistance to artemisinins in South-East Asia, and reports of reduced efficacy of ACTs raise major concerns for malaria treatment and control. Without new drugs to replace artemisinins, it is essential to define dosing strategies that maximize therapeutic efficacy, limit the spread of resistance, and preserve the clinical value of ACTs. It is important to determine the extent to which reduced efficacy of ACTs reflects true resistance versus sub-optimal dosing, and quantify other factors that determine treatment failure. Pooled analyses of individual patient data from multiple clinical trials, by investigators in the Worldwide Antimalarial Resistance Network, have shown high overall efficacy for three widely used ACTs, artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine. Analyses also highlight that suboptimal dosing leads to increased risk of treatment failure, especially among children. In the most recent study, an analysis of clinical trials of artesunate-amodiaquine, widely used among children in Africa, revealed a superior efficacy for fixed-dose combination tablets compared to loose non-fixed dose combinations. This highlights the benefits of fixed-dose combinations as a practical strategy for ensuring optimal antimalarial dosing and maximizing efficacy. Please see related article: http://www.biomedcentral.com/1741-7015/13/66.

  18. The role of antimalarial treatment in the elimination of malaria.

    Science.gov (United States)

    Gosling, R D; Okell, L; Mosha, J; Chandramohan, D

    2011-11-01

    With declining transmission of malaria in several regions of the world and renewed interest in the elimination of malaria, strategies for malaria control using antimalarial drugs are being revisited. Drug-based strategies to reduce transmission of malaria need to target the asymptomatic carriers of infection. Drugs that are effective against gametocytes are few in number, but it may be possible to reduce gametocyte production by killing the asexual stages, for which more drugs are available. Drugs for use in large-scale programmes must be safe and tolerable. Strategies include improving access to treatment for malaria with an efficacious drug, intermittent-treatment programmes, and mass drug administration, with and without screening for malaria. Recent proposals have targeted high-risk groups for interventions. None of the strategies has been rigorously tested with appropriate control groups for comparison. Because of the lack of field evidence, modelling has been used. Models have shown, first, that for long-lasting effects, drug administration programmes should be linked with vector control, and second, that if elimination is the aim, programmes are likely to be more successful when applied to smaller populations of a few thousand or less. In order to sustain the gains following the scaling up of vector control and use of artemisinin combination therapies (ACTs), strategies that use antimalarials effectively need to be devised and evidence generated for the most cost-efficient way forward.

  19. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Wanna Chaijaroenkul; Artitiya Thiengsusuk; Kanchana Rungsihirunrat; Stephen Andrew Ward; Kesara Na-Bangchang

    2014-01-01

    Objective: To investigate possible protein targets for antimalarial activity of Garcinia mangostana Linn. (G. mangostana) (pericarp) in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry (LC/MS/MS). Methods: 3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G.mangostana Linn. (pericarp) at the concentrations of 12µg/mL (IC50 level: concentration that inhibits parasite growth by 50%) and 30 µg/mL (IC90 level: concentration that inhibits parasite growth by 90%) for 12 h. Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.Results:At the IC50 concentration, about 82% of the expressed parasite proteins were matched with the control (non-exposed), while at the IC90 concentration, only 15% matched proteins were found. The selected protein spots from parasite exposed to the plant extract at the concentration of 12 µg/mL were identified as enzymes that play role in glycolysis pathway, i.e., phosphoglycerate mutase putative, L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase, and fructose-bisphosphate aldolase/phosphoglycerate kinase. The proteosome was found in parasite exposed to 30 µg/mL of the extract.Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G. mangostana Linn. (pericarp).

  20. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Wanna; Chaijaroenkul; Artitiya; Thiengsusuk; Kanchana; Rungsihirunrat; Stephen; Andrew; Ward; Kesara; Na-Bangchang

    2014-01-01

    Objective:To investigate possible protein targets for antimalarial activity of Garcina mangostana Linn.(G.mangostana)(pericarp)in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry(LC/MS/MS).Methods:3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G.mangostana Linn.(pericarp)at the concentrations of 12μg/mL(1C50level:concentration that inhibits parasite growth by 50%)and 30μg/mL(1C90level:concentration that inhibits parasite growth by 90%)for 12 h.Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.Results:At the IC50concentration,about 82%of the expressed parasite proteins were matched with the control(non-exposed),while at the IC90concentration,only 15%matched proteins were found.The selected protein spots from parasite exposed to the plant extract at the concentration of 12μg/mL were identified as eneymes that play role in glycolysis pathway,i.e.,phosphoglyeerate mutase putative,L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase,and fruetose-bisphosphate aldolase/phosphoglyeerate kinase.The proteosome was found in parasite exposed to 30μg/mL of the extract.Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G.mangostana Linn.(pericarp).

  1. Quantifying the pharmacology of antimalarial drug combination therapy

    Science.gov (United States)

    Hastings, Ian M.; Hodel, Eva Maria; Kay, Katherine

    2016-01-01

    Most current antimalarial drugs are combinations of an artemisinin plus a ‘partner’ drug from another class, and are known as artemisinin-based combination therapies (ACTs). They are the frontline drugs in treating human malaria infections. They also have a public-health role as an essential component of recent, comprehensive scale-ups of malaria interventions and containment efforts conceived as part of longer term malaria elimination efforts. Recent reports that resistance has arisen to artemisinins has caused considerable concern. We investigate the likely impact of artemisinin resistance by quantifying the contribution artemisinins make to the overall therapeutic capacity of ACTs. We achieve this using a simple, easily understood, algebraic approach and by more sophisticated pharmacokinetic/pharmacodynamic analyses of drug action; the two approaches gave consistent results. Surprisingly, the artemisinin component typically makes a negligible contribution (≪0.0001%) to the therapeutic capacity of the most widely used ACTs and only starts to make a significant contribution to therapeutic outcome once resistance has started to evolve to the partner drugs. The main threat to antimalarial drug effectiveness and control comes from resistance evolving to the partner drugs. We therefore argue that public health policies be re-focussed to maximise the likely long-term effectiveness of the partner drugs. PMID:27604175

  2. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Monica Escolà; Hansen, Martin; Krogh, Kristine A;

    2014-01-01

    Antimalarial drugs commonly referred to as antimalarials, include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, e.g. the drug concentrations in whole blood, plasma, and urin...... summarized. Finally, the main problems that the researchers have dealt with are highlighted. This information will aid analytical chemists in the development of novel methods for determining existing antimalarials and upcoming new drugs.......Antimalarial drugs commonly referred to as antimalarials, include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, e.g. the drug concentrations in whole blood, plasma, and urine...

  3. Drug-induced complications of anti-tuberculosis drugs in HIV patients

    Directory of Open Access Journals (Sweden)

    Rasoulinejad M

    2011-01-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Tuberculosis with high prevalence in HIV/AIDS patients is the main reason for morbidity and mortality in these patients. About one-third of patients with HIV infection have concomitant tuberculosis. Lack of appropriate infection control on many social and economic communities will impose. Comprehensive study on the effects of anti-tuberculosis drugs in patients with HIV infecting less done, also due to the importance of reducing morbidity and mortality, reduce the cost of disease, identifying drug pharmacokinetics, the importance of completing treatment tuberculosis, this study was performed to evaluate the effects of anti- tuberculosis drugs on HIV infection and to identify the drug pharmacokinetics and so more complete tuberculosis treatment."n"nMethods: A historical cohort study was performed on patients referring to the research center for HIV/AIDS, consultation center, department of infection diseases of Imam Khomeini Hospital in Tehran, Iran. A total number of 75 cases with HIV negative versus HIV positive patients with pulmonary tuberculosis and positive sputum smear in accordance with inclusion and exclusion criteria were selected."n"nResults: In this study, the frequency of peripheral neuropathy 27(73%, arthralgia 31(83.8%, vomiting 18(48.6%, headache 26(70.3%, dizziness 20(54.1%, renal toxicity 4(10.8% and of skin rash 10(27% in patients with HIV virus infection were significantly more than HIV- negative patients. Hepatotoxicity, fever and

  4. Tuberculous ulcer of tongue with oral complications of oral antituberculosis therapy

    Directory of Open Access Journals (Sweden)

    Ajay G

    2006-01-01

    Full Text Available Tuberculosis (TB is an infectious disease affecting humans of all ages in all parts of the world. The dentist plays an important role in the identification and control of this condition by early recognition of oral lesions that may precede the detection of the pulmonary form. Occurrence of increased incidence of mycobacterial infections as a part of the spectrum of AIDS only emphasizes the importance of early diagnosis. A case of a tuberculous ulcer on the tongue along with oral ulcerations, which occurred as a consequence of oral antituberculosis therapy (ATT, is presented. Such complications have rarely been reported in the literature and the management of these is described herein. The tuberculous ulcer healed uneventfully in five weeks after institution of ATT and the other ATT-induced ulcers healed after a week of topical anesthetic application. The clinical presentations, differential diagnoses to be considered, and management of such oral manifestations is discussed. The occupational risk posed by TB to the dentist and appropriate precautions to be observed have been highlighted.

  5. 14C-urea breath test in patients undergoing anti-tuberculosis therapy

    Institute of Scientific and Technical Information of China (English)

    Sayed Amir Mirbagheri; Amir Ali Sohrabpour; Mehrdad Hasibi; Babak Moghimi; Mehdi Mohamadnejad

    2005-01-01

    AIM: Urea breath test (UBT) is a non-invasive diagnostic test for detecting the presence of Helicobacter pylori(H pylori).In this study we evaluated the effect of anti-tuberculosis therapy on the results of 14C-UBT.METHODS: Patients, with the diagnosis of tuberculosis (TB) who had a positive UBT at the point of starting antiTB therapy, were included. None had a history of peptic ulcer disease or had taken antibiotics, bismuth compounds and/or PPI in the previous month, 14C-UBT was repeated at the end of the second month and the end of treatment period and one month after completion of treatment course.RESULTS: Thirty-five patients (23 males) were enrolled.14C-UBT was negative in all 35 patients (100%) at the end of the second month and remained negative in 30cases (85.7%) at the end of the treatment course. One month after completion of treatment course, UBT remained negative in 13 patients (37.1%).CONCLUSION: Our report underscores the need for caution while interpreting urea breath test results in patients undergoing anti-TB therapy. Furthermore, the combination of drugs used in this study resulted in H pylori eradication in a minority of patients.

  6. Antituberculosis drug resistance patterns in two regions of Turkey: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Oymak Sema F

    2002-12-01

    Full Text Available Abstract Backround The emergence of Mycobacterium tuberculosis strains resistant to antituberculosis agents has recently received increased attention owing largely to the dramatic outbreaks of multi drug resistance tuberculosis (MDR-TB. Methods Patients residing in Zonguldak and Kayseri provinces of Turkey with, pulmonary tuberculosis diagnosed between 1972 and 1999 were retrospectively identified. Drug susceptibility tests had been performed for isoniazid (INH, rifampin (RIF, streptomycin (SM, ethambutol (EMB and thiacetasone (TH after isolation by using the resistance proportion method. Results Total 3718 patients were retrospectively studied. In 1972–1981, resistance rates for to SM and INH were found to be 14.8% and 9.8% respectively (n: 2172. In 1982–1991 period, resistance rates for INH, SM, RIF, EMB and TH were 14.2%, 14.4%, 10.5%, 2.7% and 2.9% (n: 683, while in 1992–1999 period 14.4%, 21.1%, 10.6%, 2.4% and 3.7% respectively (n: 863. Resistance rates were highest for SM and INH in three periods. MDR-TB patients constituted 7.3% and 6.6% of 1982–1991 and 1992–1999 periods (p > 0.05. Conclusion This study demonstrates the importance of resistance rates for TB. Continued surveillance and immediate therapeutic decisions should be undertaken in order to prevent the dissemination of such resistant strains.

  7. Screening Mangrove Endophytic Fungi for Antimalarial Natural Products

    Directory of Open Access Journals (Sweden)

    Laurent Calcul

    2013-12-01

    Full Text Available We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18 were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14, which was found to display the most favorable bioactivity profile.

  8. Syntheses and antimalarial activities of N-substituted 11-azaartemisinins.

    Science.gov (United States)

    Torok, D S; Ziffer, H; Meshnick, S R; Pan, X Q; Ager, A

    1995-12-22

    A two-step reaction sequence between artemisinin and methanolic ammonia followed by treatment with Amberlyst 15 yielded 11-azaartemisinin in 65% yield. Substituting a variety of primary alkyl- and heteroaromatic amines for ammonia in the reaction sequence yields N-substituted 11-azaartemisinins in similar or greater yield. When Amberlyst 15 is replaced by a mixture of sulfuric acid/silica gel, both 11-azaartemisinin and the expected metabolite, 10-azadesoxyartemisinin, are formed in 45% and 15% yields, respectively. In vitro and in vivo test data for a number of novel N-substituted 11-azaartemisinins, against drug-resistant strains of Plasmodium falciparum, show they possess antimalarial activities equal to or greater than that of artemisinin. The most active derivative, N-(2'-acetaldehydo)-11-azaartemisinin, 17, was 26 times more active in vitro and 4 times more active in vivo than artemisinin.

  9. Perspective for the reproduction of antimalarial drugs in Brazil

    Directory of Open Access Journals (Sweden)

    Benjamin Gilbert

    1992-01-01

    Full Text Available The appears to be no chemical manufacture of antimalarial drugs is Brazil. Technology at laboratory process level has been developed for chloroquine, mefloquine, pyrimethamine and cycloquanil, but not perfected nor scaled-up, largely for economic reasons and market uncertainty. Development of primaquine has been contracted but it will run into the same difficulty. Manufacturing capacity for sulfadoxine was registred in the SDI by Roche. A project to produce artemisinine and its derivates is under way at UNICAMP-CPQBA but is hampered by low content in the plant. Proguanil could be produced easily, but apparently no attempt has been made to do so. Quinine is imported on a large scale mostly for softdrink production. Since malarial treatment falls largely within responsability of the Government health authorities, manufacture of drugs in Brazil will depend on an assured medium-term purchase order made to a potential local manufacturer, since competition in the world market is scarcelyviable at the present moment.

  10. Triterpenes from Minquartia guianensis (Olacaceae) and in vitro antimalarial activity

    Energy Technology Data Exchange (ETDEWEB)

    Cursino, Lorena Mayara de Carvalho; Nunez, Cecilia Veronica [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Lab. de Bioprospeccao e Biotecnologia; Paula, Renata Cristina de; Nascimento, Maria Fernanda Alves do [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos; Santos, Pierre Alexandre dos, E-mail: cecilia@inpa.gov.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Fac. de Ciencias Farmaceuticas

    2012-07-01

    Minquartia guianensis, popularly known as acariquara, was phytochemically investigated. The following triterpenes were isolated from the dichloromethane extract of leaves: lupen-3-one (1), taraxer-3-one (2) and oleanolic acid (3). The dichloromethane extract of branches yielded the triterpene 3{beta}-methoxy-lup-20(29)-ene (4). The chemical structures were characterized by NMR data. Plant extracts, substance 3, squalene (5) and taraxerol (6), (5 and 6 previously isolated), were evaluated by in vitro assay against chloroquine resistant Plasmodium falciparum. The dichloromethane extract of leaves and the three triterpenes assayed have shown partial activity. Thus, these results demonstrated that new potential antimalarial natural products can be found even in partially active extracts. (author)

  11. Characterization of counterfeit artesunate antimalarial tablets from southeast Asia.

    Science.gov (United States)

    Hall, Krystyn Alter; Newton, Paul N; Green, Michael D; De Veij, Marleen; Vandenabeele, Peter; Pizzanelli, David; Mayxay, Mayfong; Dondorp, Arjen; Fernandez, Facundo M

    2006-11-01

    In southeast Asia, the widespread high prevalence of counterfeits tablets of the vital antimalarial artesunate is of great public health concern. To assess the seriousness of this problem, we quantified the amount of active ingredient present in artesunate tablets by liquid chromatography coupled to mass spectrometry. This method, in conjunction with analysis of the packaging, classified tablets as genuine, substandard, or fake and validated results of the colorimetric Fast Red TR test. Eight (35%) of 23 fake artesunate samples contained the wrong active ingredients, which were identified as different erythromycins and paracetamol. Raman spectroscopy identified calcium carbonate as an excipient in 9 (39%) of 23 fake samples. Multivariate unsupervised pattern recognition results indicated two major clusters of artesunate counterfeits, those with counterfeit foil stickers and containing calcium carbonate, erythromycin, and paracetamol, and those with counterfeit holograms and containing starch but without evidence of erythromycin or paracetamol.

  12. The antimalarial drug quinine interferes with serotonin biosynthesis and action.

    Science.gov (United States)

    Islahudin, Farida; Tindall, Sarah M; Mellor, Ian R; Swift, Karen; Christensen, Hans E M; Fone, Kevin C F; Pleass, Richard J; Ting, Kang-Nee; Avery, Simon V

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmitter serotonin (5-HT), here we test the hypothesis that quinine disrupts serotonin function. Quinine inhibited serotonin-induced proliferation of yeast as well as human (SHSY5Y) cells. One possible cause of this effect is through inhibition of 5-HT receptor activation by quinine, as we observed here. Furthermore, cells exhibited marked decreases in serotonin production during incubation with quinine. By assaying activity and kinetics of the rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase (TPH2), we showed that quinine competitively inhibits TPH2 in the presence of the substrate tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells.

  13. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    Directory of Open Access Journals (Sweden)

    Ghosh A

    2014-11-01

    Full Text Available Aparajita Ghosh,1 Tanushree Banerjee,2 Suman Bhandary,1 Avadhesha Surolia31Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; 2Department of Biotechnology, University of Pune, Pune, India; 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore, IndiaAim: The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods: Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results: The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 µM was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 µM. Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion: Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria

  14. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  15. Discovery of Novel Liver-Stage Antimalarials through Quantum Similarity.

    Science.gov (United States)

    Sullivan, David J; Liu, Yi; Mott, Bryan T; Kaludov, Nikola; Martinov, Martin N

    2015-01-01

    Without quantum theory any understanding of molecular interactions is incomplete. In principal, chemistry, and even biology, can be fully derived from non-relativistic quantum mechanics. In practice, conventional quantum chemical calculations are computationally too intensive and time consuming to be useful for drug discovery on more than a limited basis. A previously described, original, quantum-based computational process for drug discovery and design bridges this gap between theory and practice, and allows the application of quantum methods to large-scale in silico identification of active compounds. Here, we show the results of this quantum-similarity approach applied to the discovery of novel liver-stage antimalarials. Testing of only five of the model-predicted compounds in vitro and in vivo hepatic stage drug inhibition assays with P. berghei identified four novel chemical structures representing three separate quantum classes of liver-stage antimalarials. All four compounds inhibited liver-stage Plasmodium as a single oral dose in the quantitative PCR mouse liver-stage sporozoites-challenge model. One of the newly identified compounds, cethromycin [ABT-773], a macrolide-quinoline hybrid, is a drug with an extensive (over 5,000 people) safety profile warranting its exploitation as a new weapon for the current effort of malaria eradication. The results of our molecular modeling exceed current state-of-the-art computational methods. Drug discovery through quantum similarity is data-driven, agnostic to any particular target or disease process that can evaluate multiple phenotypic, target-specific, or co-crystal structural data. This allows the incorporation of additional pharmacological requirements, as well as rapid exploration of novel chemical spaces for therapeutic applications.

  16. Discovery of Novel Liver-Stage Antimalarials through Quantum Similarity.

    Directory of Open Access Journals (Sweden)

    David J Sullivan

    Full Text Available Without quantum theory any understanding of molecular interactions is incomplete. In principal, chemistry, and even biology, can be fully derived from non-relativistic quantum mechanics. In practice, conventional quantum chemical calculations are computationally too intensive and time consuming to be useful for drug discovery on more than a limited basis. A previously described, original, quantum-based computational process for drug discovery and design bridges this gap between theory and practice, and allows the application of quantum methods to large-scale in silico identification of active compounds. Here, we show the results of this quantum-similarity approach applied to the discovery of novel liver-stage antimalarials. Testing of only five of the model-predicted compounds in vitro and in vivo hepatic stage drug inhibition assays with P. berghei identified four novel chemical structures representing three separate quantum classes of liver-stage antimalarials. All four compounds inhibited liver-stage Plasmodium as a single oral dose in the quantitative PCR mouse liver-stage sporozoites-challenge model. One of the newly identified compounds, cethromycin [ABT-773], a macrolide-quinoline hybrid, is a drug with an extensive (over 5,000 people safety profile warranting its exploitation as a new weapon for the current effort of malaria eradication. The results of our molecular modeling exceed current state-of-the-art computational methods. Drug discovery through quantum similarity is data-driven, agnostic to any particular target or disease process that can evaluate multiple phenotypic, target-specific, or co-crystal structural data. This allows the incorporation of additional pharmacological requirements, as well as rapid exploration of novel chemical spaces for therapeutic applications.

  17. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity

    NARCIS (Netherlands)

    Rijpma, S.R.; Heuvel, J.J.; Velden, M. van der; Sauerwein, R.W.; Russel, F.G.; Koenderink, J.B.

    2014-01-01

    BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involve

  18. Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil

    Science.gov (United States)

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  19. Anti-tuberculosis treatment defaulting: an analysis of perceptions and interactions in Chiapas, Mexico Abandono del tratamiento antituberculosis: un análisis de percepciones e interacciones en Chiapas, México

    Directory of Open Access Journals (Sweden)

    Ivett Reyes-Guillén

    2008-06-01

    Full Text Available OBJECTIVE: To analyze the perceptions and interactions of the actors involved in anti-tuberculosis treatment, and to explore their influence in treatment defaulting in Los Altos region of Chiapas, Mexico. MATERIAL AND METHODS: From November 2002 to August 2003, in-depth interviews were administered to patients with PTB, patients' family members, institutional physicians, community health coordinators, and traditional medicine practitioners. RESULTS: We found different perceptions about PTB between patients and their families and among health personnel, as well as communication barriers between actors. Defaulting is considered to be mainly due to the treatment's adverse effects. CONCLUSIONS: It is necessary to conduct research and interventions in the studied area with the aim of changing perceptions, improving sensitization, quality and suitability of management of patients with PTB in a multicultural context, and promoting collaboration between institutional and traditional medicine.OBJETIVO: Analizar percepciones e interacciones entre actores involucrados en el tratamiento antituberculosis y su influencia en el abandono del tratamiento en los Altos de Chiapas, México. MATERIAL Y MÉTODOS: De noviembre 2002 a agosto 2003, se realizaron entrevistas a profundidad a pacientes con TBP, familiares, médicos institucionales, coordinadores comunitarios de salud y médicos tradicionales. RESULTADOS: Se encontraron diferentes percepciones entre los pacientes y sus familiares, respecto a las del personal de salud, así como barreras de comunicación entre los distintos actores. Los efectos adversos del tratamiento antituberculosis, son consideradas como una de las principales causas de su abandono. CONCLUSIONES: Es necesario que en la región estudiada se realicen investigaciones e intervenciones encaminadas a: cambiar percepciones y mejorar la sensibilidad, calidad y adecuación del manejo de pacientes con TBP en contextos multiculturales, así como

  20. Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Mariana Conceição Souza

    2015-06-01

    Full Text Available A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3 inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.

  1. The in vitro antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with mefloquine/artesunate.

    Science.gov (United States)

    Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2014-03-01

    Multidrug resistance Plasmodium falciparum is the major health problem in Thailand. Discovery and development of new antimalarial drugs with novel modes of action is urgently required. The aim of the present study was to investigate the antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with the standard antimalarial drugs mefloquine and artesunate in chloroquine sensitive (3D7) and chloroquine resistant (K1) P. falciparum clones in vitro. Median (range) IC50 (drug concentration which produces 50% parasite growth inhibition) values of the 9-hydroxycalabaxanthone, α-mangostin, artesunate and mefloquine for 3D7 vs K1 clones were 1.5 (0.9-2.1) vs 1.2 (1.1-1.6) μM, 17.9 (15.7.0-20.0) vs 9.7 (6.0-14.0) μM, 1.0 (0.4-3.0) vs 1.7 (1.0-2.5) nM, and 13.3 (11.1-13.3) vs 7.1 (6.7-12.2) nM, respectively. Analysis of isobologram and combination index (CI) of 9-hydroxycalabaxanthone with artesunate or mefloquine showed synergistic and indifference antimalarial interaction, respectively. α-mangostin-artesunate combination exhibited a slight antagonistic effect of antimalarial interaction, whereas α-mangostin and mefloquine combination showed indifference interaction in both clones. The combination of 9-hydroxycalabaxanthone with α-mangostin showed the synergistic antimalarial interaction in both clones.

  2. Rational Design of Antimalarial Drugs Using Molecular Modeling and Statistical Analysis.

    Science.gov (United States)

    Santos, Cleydson Breno Rodrigues dos; Lobato, Cleison Carvalho; Braga, Francinaldo Sarges; Costa, Josivan da Silva; Favacho, Hugo Alexandre Silva; Carvalho, Jose Carlos Tavares; Macedo, Williams Jorge da Cruz; Brasil, Davi Do Socorro Barros; Silva, Carlos Henrique Tomich de Paula da; Silva Hage-Melim, Lorane Izabel da

    2015-01-01

    Artemisinin is an antimalarial compound isolated from Artemisia annua L. that is effective against Plasmodium falciparum. This paper proposes the development of new antimalarial derivatives of artemisinin from a SAR study and statistical analysis by multiple linear regression (MLR). The HF/6-31G** method was used to determine the molecular properties of artemisinin and 10 derivatives with antimalarial action. MEP maps and molecular docking were used to study the interface between ligand and receptor (heme). The Pearson correlation was used to choose the most important properties interrelated to the antimalarial activity: Hydration Energy (HE), Energy of the Complex (Ecplex), bond length (FeO1), and maximum index of R/Electronegativity of Sanderson (RTe+). After the Pearson correlation, 72 MLR models were built between antimalarial activity and molecular properties; the statistical quality of the models was evaluated by means of correlation coefficient (r), squared correlation coefficient (r(2)), explained variance (adjusted R(2)), standard error of estimate (SEE), and variance ratio (F), and only four models showed predictive ability. The selected models were used to predict the antimalarial activity of ten new artemisinin derivatives (test set) with unknown activity, and only eight of these compounds were predicted to be more potent than artemisinin, and were therefore subjected to theoretical studies of pharmacokinetic and toxicological properties. The test set showed satisfactory results for six new artemisinin compounds which is a promising factor for future synthesis and biological assays.

  3. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya

    Directory of Open Access Journals (Sweden)

    Rusk Andria

    2012-08-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. Methods To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Results Most of the medicine retailers surveyed (65% were able to identify artemether-lumefantrine (AL as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Conclusion Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could

  4. The timing of death in patients with tuberculosis who die during anti-tuberculosis treatment in Andhra Pradesh, South India

    Directory of Open Access Journals (Sweden)

    Jonnalagada Subbanna

    2011-12-01

    Full Text Available Abstract Background India has 2.0 million estimated tuberculosis (TB cases per annum with an estimated 280,000 TB-related deaths per year. Understanding when in the course of TB treatment patients die is important for determining the type of intervention to be offered and crucially when this intervention should be given. The objectives of the current study were to determine in a large cohort of TB patients in India:- i treatment outcomes including the number who died while on treatment, ii the month of death and iii characteristics associated with "early" death, occurring in the initial 8 weeks of treatment. Methods This was a retrospective study in 16 selected Designated Microscopy Centres (DMCs in Hyderabad, Krishna and Adilabad districts of Andhra Pradesh, South India. A review was performed of treatment cards and medical records of all TB patients (adults and children registered and placed on standardized anti-tuberculosis treatment from January 2005 to September 2009. Results There were 8,240 TB patients (5183 males of whom 492 (6% were known to have died during treatment. Case-fatality was higher in those previously treated (12% and lower in those with extra-pulmonary TB (2%. There was an even distribution of deaths during anti-tuberculosis treatment, with 28% of all patients dying in the first 8 weeks of treatment. Increasing age and new as compared to recurrent TB disease were significantly associated with "early death". Conclusion In this large cohort of TB patients, deaths occurred with an even frequency throughout anti-TB treatment. Reasons may relate to i the treatment of the disease itself, raising concerns about drug adherence, quality of anti-tuberculosis drugs or the presence of undetected drug resistance and ii co-morbidities, such as HIV/AIDS and diabetes mellitus, which are known to influence mortality. More research in this area from prospective and retrospective studies is needed.

  5. The protective effect of diammonium glycyrrhizinate and polyene phosphatidyl choline on livery damage caused by anti-tuberculosis drugs

    Institute of Scientific and Technical Information of China (English)

    Li Wang

    2016-01-01

    Objective:To study the protective effect of diammonium glycyrrhizinate and polyene phosphatidyl choline on livery damage caused by anti-tuberculosis drugs.Methods:Patients who received initial 2HRS(E)Z/4HR short-range anti-tuberculosis treatment in our hospital from October 2013 to October 2015 were selected and randomly divided into diammonium glycyrrhizinate group (group A) and polyene phosphatidyl choline group (group B), and after 4 weeks of liver protection treatment, serum levels of liver damage marker molecules, stress marker molecules and NF-κB-mediated inflammatory molecules as well as protein expression levels of bile acid metabolism genes were determined.Results: Serum ALT, AST, GGT, ALP, GDH, TBIL, NF-κB, IL-1β, TNF-α and MCP-1 levels of group B were significantly lower than those of group A while HO-1, GSH-Px, SOD, ERK, MEK and SIRT1 levels were significantly higher than those of group A; serum CYP7A1, FXR and SHP protein expression levels of group B were significantly lower than those of group A while BESP protein expression level was significantly higher than that of group A.Conclusion:Polyene phosphatidyl choline has better protective effect on liver damage caused by anti-tuberculosis drugs than diammonium glycyrrhizinate, and the molecular mechanisms of polyene phosphatidyl choline to protect the liver are enhancing the antioxidant effect mediated by HO-1 and SIRT1, inhibiting the inflammatory response mediated by NF-κB and regulating the expression of bile acid metabolism genes.

  6. Factors associated with anti-tuberculosis medication adverse effects: a case-control study in Lima, Peru.

    Directory of Open Access Journals (Sweden)

    Kocfa Chung-Delgado

    Full Text Available BACKGROUND: Long-term exposure to anti-tuberculosis medication increases risk of adverse drug reactions and toxicity. The objective of this investigation was to determine factors associated with anti-tuberculosis adverse drug reactions in Lima, Peru, with special emphasis on MDR-TB medication, HIV infection, diabetes, age and tobacco use. METHODOLOGY AND RESULTS: A case-control study was performed using information from Peruvian TB Programme. A case was defined as having reported an anti-TB adverse drug reaction during 2005-2010 with appropriate notification on clinical records. Controls were defined as not having reported a side effect, receiving anti-TB therapy during the same time that the case had appeared. Crude, and age- and sex-adjusted models were calculated using odds ratios (OR and 95% confidence intervals (95%CI. A multivariable model was created to look for independent factors associated with side effect from anti-TB therapy. A total of 720 patients (144 cases and 576 controls were analyzed. In our multivariable model, age, especially those over 40 years (OR = 3.93; 95%CI: 1.65-9.35, overweight/obesity (OR = 2.13; 95%CI: 1.17-3.89, anemia (OR = 2.10; IC95%: 1.13-3.92, MDR-TB medication (OR = 11.1; 95%CI: 6.29-19.6, and smoking (OR = 2.00; 95%CI: 1.03-3.87 were independently associated with adverse drug reactions. CONCLUSIONS: Old age, anemia, MDR-TB medication, overweight/obesity status, and smoking history are independent risk factors associated with anti-tuberculosis adverse drug reactions. Patients with these risk factors should be monitored during the anti-TB therapy. A comprehensive clinical history and additional medical exams, including hematocrit and HIV-ELISA, might be useful to identify these patients.

  7. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant.

    Directory of Open Access Journals (Sweden)

    JunFeng Dong

    Full Text Available BACKGROUND: Reconstruction materials currently used in clinical for osteoarticular tuberculosis (TB are unsatisfactory due to a variety of reasons. Rifampicin (RFP is a well-known and highly effective first-line anti-tuberculosis (anti-TB drug. Poly-DL-lactide (PDLLA and nano-hydroxyapatite (nHA are two promising materials that have been used both for orthopedic reconstruction and as carriers for drug release. In this study we report the development of a novel anti-TB implant for osteoarticular TB reconstruction using a combination of RFP, PDLLA and nHA. METHODS: RFP, PDLLA and nHA were used as starting materials to produce a novel anti-TB activity implant by the solvent evaporation method. After manufacture, the implant was characterized and its biodegradation and drug release profile were tested. The in vitro cytotoxicity of the implant was also evaluated in pre-osteoblast MC3T3-E1 cells using multiple methodologies. RESULTS: A RFP/PDLLA/nHA composite was successfully synthesized using the solvent evaporation method. The composite has a loose and porous structure with evenly distributed pores. The production process was steady and no chemical reaction occurred as proved by Fourier Transform Infrared Spectroscopy (FTIR and X-Ray Diffraction (XRD. Meanwhile, the composite blocks degraded and released drug for at least 12 weeks. Evaluation of in vitro cytotoxicity in MC3T3-E1 cells verified that the synthesized composite blocks did not affect cell growth and proliferation. CONCLUSION: It is feasible to manufacture a novel bioactive anti-TB RFP/PDLLA/nHA composite by the solvent evaporation method. The composite blocks showed appropriate properties such as degradation, drug release and biosafety to MC3T3-E1 cells. In conclusion, the novel composite blocks may have great potential for clinical applications in repairing bone defects caused by osteoarticular TB.

  8. Population modeling and simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of isoniazid in lungs.

    Science.gov (United States)

    Lalande, L; Bourguignon, L; Bihari, S; Maire, P; Neely, M; Jelliffe, R; Goutelle, S

    2015-09-01

    Among first-line antituberculosis drugs, isoniazid (INH) displays the greatest early bactericidal activity (EBA) and is key to reducing contagiousness in treated patients. The pulmonary pharmacokinetics and pharmacodynamics of INH have not been fully characterized with modeling and simulation approaches. INH concentrations measured in plasma, epithelial lining fluid, and alveolar cells for 89 patients, including fast acetylators (FAs) and slow acetylators (SAs), were modeled by use of population pharmacokinetic modeling. Then the model was used to simulate the EBA of INH in lungs and to investigate the influences of INH dose, acetylator status, and M. tuberculosis MIC on this effect. A three-compartment model adequately described INH concentrations in plasma and lungs. With an MIC of 0.0625 mg/liter, simulations showed that the mean bactericidal effect of a standard 300-mg daily dose of INH was only 11% lower for FA subjects than for SA subjects and that dose increases had little influence on the effects in either FA or SA subjects. With an MIC value of 1 mg/liter, the mean bactericidal effect associated with a 300-mg daily dose of INH in SA subjects was 41% greater than that in FA subjects. With the same MIC, increasing the daily INH dose from 300 mg to 450 mg resulted in a 22% increase in FA subjects. These results suggest that patients infected with M. tuberculosis with low-level resistance, especially FA patients, may benefit from higher INH doses, while dose adjustment for acetylator status has no significant impact on the EBA in patients with low-MIC strains.

  9. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents.

    Science.gov (United States)

    Keri, Rangappa S; Sasidhar, B S; Nagaraja, Bhari Mallanna; Santos, M Amélia

    2015-07-15

    Tuberculosis (TB) is still a challenging worldwide health problem and mycobacterium tuberculosis (MTB) remains one of the most deadly human pathogens. TB is the second leading infectious cause of mortality today behind only HIV/AIDS. The impetus for developing new structural classes of antituberculosis drugs comes from the emergence of multi-drug resistant (MDR) strains. The development of MDR strains to commonly used drugs is due to, longer durations of therapy as results of resistance, and the resurgence of the disease in immune compromised patients. Therefore, there is an urgent need to explore new antitubercular (anti-TB) agents. Ironically, the low number of potentially new chemical entities which can act as anti-TB candidates is of great importance at present situation. Considering the severity of the problem, WHO has prepared a strategic plan in Berlin declaration 2007 to stop TB, globally. Among the oxygen heterocycles, coumarin derivatives are important motifs, which can be widely found in many natural products, and many of them displaying diverse biological activities. This spectacular spectrum of applications has intrigued organic and medicinal chemists for decades to explore the natural coumarins or their synthetic analogs for their applicability as anti-TB drugs. To pave the way for the future research, there is a need to collect the latest information in this promising area. In the present review, we collated published reports on coumarin derivatives to shed light on the insights on different types of methods reported for their preparations, characterizations and anti-TB applications, so that its full therapeutic potential class of compounds can be utilized for the treatment of tuberculosis. Therefore, the objective of this review is to focus on important coumarin analogs with anti-TB activities, and structure-activity relationships (SAR) for designing the better anti-TB agents. It is hoped that, this review will be helpful for new thoughts in the

  10. Synthesis, characterization and pharmacological studies of copper complexes of flavone derivatives as potential anti-tuberculosis agents.

    Science.gov (United States)

    Joseph, J; Nagashri, K; Suman, A

    2016-09-01

    Novel series of different hydroxyflavone derivatives and their copper complexes were synthesized. They were characterized using analytical and spectral techniques. The superoxide dismutase (SOD) mimetic activity of the synthesized complexes demonstrated that copper complex of L(10) has promising SOD-mimetic activity than other ligands & complexes. The in vitro antimicrobial activities of the synthesized compounds were tested against the bacterial species and fungal species. The DNA binding properties of copper complexes were studied using cyclic voltametry and electronic absorption techniques. Anti-tuberculosis activity was also performed. The effective complexes was subjected to antimycobacterial activity using MABA method and summarized. The antimycobacterial activity of copper complexes have been evaluated and discussed.

  11. Design, synthesis and study of quinoxaline-2- carboxamide 1,4-DI-N-Oxide derivatives as anti-tuberculosis agents

    OpenAIRE

    Moreno-Viguri, E. (Elsa); Monge, A; Perez-Silanes, S. (Silvia)

    2013-01-01

    The experimental work presented in this memory is based on the hypothesis that quinoxalines di-N-oxide, considered to be the core of the structure, which present a carboxamide moiety on position two and aliphatic linker between this group and an aromatic system, can be proposed as potent anti-tuberculosis agents. The main purpose of this project is the synthesis of new quinoxaline di-N-oxide derivatives as anti-tuberculosis agents. The strategy consists of the design and synthesis of several ...

  12. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    Science.gov (United States)

    Kalani, Komal; Agarwal, Jyoti; Alam, Sarfaraz; Khan, Feroz; Pal, Anirban; Srivastava, Santosh Kumar

    2013-01-01

    Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  13. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    Science.gov (United States)

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.

  14. Influence of antituberculosis drug resistance and Mycobacterium tuberculosis lineage on outcome in HIV-associated tuberculous meningitis.

    Science.gov (United States)

    Tho, Dau Quang; Török, M Estée; Yen, Nguyen Thi Bich; Bang, Nguyen Duc; Lan, Nguyen Thi Ngoc; Kiet, Vo Sy; van Vinh Chau, Nguyen; Dung, Nguyen Huy; Day, Jeremy; Farrar, Jeremy; Wolbers, Marcel; Caws, Maxine

    2012-06-01

    HIV-associated tuberculous meningitis (TBM) has high mortality. Aside from the devastating impact of multidrug resistance (MDR) on survival, little is understood about the influence of other bacterial factors on outcome. This study examined the influence of Mycobacterium tuberculosis drug resistance, bacterial lineage, and host vaccination status on outcome in patients with HIV-associated TBM. Mycobacterium tuberculosis isolates from the cerebrospinal fluid of 186 patients enrolled in two studies of HIV-associated TBM in Ho Chi Minh City, Vietnam, were tested for resistance to first-line antituberculosis drugs. Lineage genotyping was available for 122 patients. The influence of antituberculosis drug resistance and M. tuberculosis lineage on 9-month mortality was analyzed using Kaplan-Meier survival analysis and Cox multiple regression models. Isoniazid (INH) resistance without rifampin resistance was associated with increased mortality (adjusted hazard ratio [HR], 1.78, 95% confidence interval [CI], 1.18 to 2.66; P = 0.005), and multidrug resistance was uniformly fatal (n = 8/8; adjusted HR, 5.21, 95% CI, 2.38 to 11.42; P tuberculosis lineage are important determinants of mortality in patients with HIV-associated TBM. Interventions which target these factors may help reduce the unacceptably high mortality in patients with TBM.

  15. Polyneuropathy, anti-tuberculosis treatment and the role of pyridoxine in the HIV/AIDS era: a systematic review.

    Science.gov (United States)

    van der Watt, J J; Harrison, T B; Benatar, M; Heckmann, J M

    2011-06-01

    Tuberculosis (TB) is increasing in incidence in certain parts of the world, particularly where there is a co-epidemic of human immunodeficiency virus/acquired immune-deficiency syndrome (HIV/AIDS), and it is associated with a significant degree of morbidity and mortality. One of the most common complications of anti-tuberculosis treatment is the development of a painful isoniazid (INH) associated polyneuropathy (PN), which is preventable with adequate pyridoxine supplementation. As PN is also the most frequent neurological complication associated with HIV infection, subjects who are HIV and TB co-infected may be at increased risk of developing PN. In this review, we explore current knowledge of anti-tuberculosis drug associated PN focusing on INH and its relationship to pyridoxine, as well as the additional impact of antiretroviral treatment and TB-HIV co-infection. It is evident that guidelines established for the prevention and treatment of this problem differ between industrialised and developing countries, and that further research is needed to define the optimum dosing of pyridoxine supplementation in populations where there is a significant burden of TB and HIV.

  16. Effect of anti-tuberculosis therapy on liver function of pulmonary tuberculosis patients infected with hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Lei Pan; Zhan-Sheng Jia; Lin Chen; En-Qing Fu; Guang-Yu Li

    2005-01-01

    AIM: To observe the effect of anti-tuberculosis therapy on liver function of pulmonary tuberculosis patients with hepatitis B virus (HBV) infection, and to compare the differences of liver function by two treatments of antituberculosis.METHODS: Forty-seven TB patients with HBV infection and 170 TB patients without HBV infection were divided into HPBE(S) and HLAMKO treatment groups. Liver function tests before and after the treatments were performed once in 2 wk or monthly, and their clinical manifestations were recorded.RESULTS: The rate of hepatotoxicity occurred in 26 (59%)TB patients with HBV during anti-TB treatment, higher than that in 40 (24%) TB patients without HBV. Hepatotoxicity occurred in 66 out of 217 patients, and the incidence of liver dysfunction was 46.1% in HPBE(S) group, significantly higher than that in HLAMKO group (12.7%) (P<0.01).CONCLUSION: TB patients with HBV should choose HLAMKO treatment because of fewer hepatotoxicity.

  17. Antimalarial action of nitrobenzylthioinosine in combination with purine nucleoside antimetabolites.

    Science.gov (United States)

    Gero, A M; Scott, H V; O'Sullivan, W J; Christopherson, R I

    1989-04-01

    The infection of human erythrocytes by two strains of the human malarial parasite, Plasmodium falciparum (FCQ-27 or the multi-drug-resistant strain K-1), markedly changed the transport characteristics of the nucleosides, adenosine and tubercidin, compared to uninfected erythrocytes. A component of the transport of these nucleosides was insensitive to the classical mammalian nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR). In vitro studies with tubercidin demonstrated ID50 values of 0.43 and 0.51 microM for FCQ-27 and K-1, respectively. In addition, the nucleoside transport inhibitors NBMPR, nitrobenzylthioguanosine (NBTGR), dilazep and dipyridamole also independently exhibited antimalarial activity in vitro. The combination of tubercidin and NBMPR or NBTGR in vitro demonstrated synergistic activity, whilst tubercidin together with dilazep or dipyridamole showed subadditive activity. Analysis by HPLC indicated that NBMPR could permeate the infected cell membrane and provided evidence for the catabolism of NBMPR in vitro, with subsequent alteration of the purine pool in the infected erythrocyte. These observations further indicated the possibility of the utilization of cytotoxic nucleosides against P. falciparum infection in conjunction with a nucleoside transport inhibitor to protect the host tissue.

  18. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5.

    Science.gov (United States)

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J

    2014-06-06

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable "next generation" target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are "druggable." One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease.

  19. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2015-07-01

    Full Text Available Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml, significantly decreased forward scatter (≥5 µg/ml, significantly increased ROS abundance (5 µg/ml, significantly increased [Ca2+]i (7.5 µg/ml and significantly increased ceramide abundance (10 µg/ml. The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.

  20. Perspective for the production of antimalarial drugs in Brazil.

    Science.gov (United States)

    Gilbert, B

    1992-01-01

    There appears to be no chemical manufacture of antimalarial drugs in Brazil. Technology at the laboratory process level has been developed for chloroquine, mefloquine, pyrimethamine and cycloguanil, but not perfected nor scaled-up, largely for economic reasons and market uncertainty. Development of primaquine has been contracted but it will run into the same difficulty. Manufacturing capacity for sulfadoxine was registered in the SDI by Roche. A project to produce artemisinine and its derivatives is under way at UNICAMP-CPQBA but is hampered by low content in the plant. Proguanil could be produced easily, but apparently no attempt has been made to do so. Quinine is imported on a large scale mostly for soft-drink production. Since malarial treatment falls largely within the responsibility of the Government health authorities, manufacture of drugs in Brazil will depend on an assured medium-term purchase order made to a potential local manufacturer, since competition in the world market is scarcely viable at the present moment.

  1. Targeting Plasmodium Metabolism to Improve Antimalarial Drug Design.

    Science.gov (United States)

    Avitia-Domínguez, Claudia; Sierra-Campos, Erick; Betancourt-Conde, Irene; Aguirre-Raudry, Miriam; Vázquez-Raygoza, Alejandra; Luevano-De la Cruz, Artemisa; Favela-Candia, Alejandro; Sarabia-Sanchez, Marie; Ríos-Soto, Lluvia; Méndez-Hernández, Edna; Cisneros-Martínez, Jorge; Palacio-Gastélum, Marcelo Gómez; Valdez-Solana, Mónica; Hernández-Rivera, Jessica; De Lira-Sánchez, Jaime; Campos-Almazán, Mara; Téllez-Valencia, Alfredo

    2016-01-01

    Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria.

  2. A retrospective study on sequential desensitization-rechallenge for antituberculosis drug allergy

    Science.gov (United States)

    Chia, Faith Li-Ann; Tan, Sze-Chin; Tan, Teck-Choon; Leong, Khai-Pang; Tan, Justina Wei-Lyn; Tang, Chwee-Ying; Hou, Jin-Feng; Chan, Grace Yin-Lai; Chng, Hiok-Hee

    2014-01-01

    Background Antituberculosis (anti-TB) drug allergy often involves multiple concurrently administered drugs which subsequently need to be reinitiated as no better alternatives exist. Objective To describe the results of tailored sequential desensitization-rechallenge (D-R) for anti-TB drug allergy. Methods Consecutive patients who had undergone D-R to anti-TB drugs between 1 September 1997 and 31 January 2012 were recruited. Following resolution of the acute reaction, anti-TB drug was restarted at 1:6,000 to 1:3 of the final daily dose (FDD), with gradual single or multiple step daily dose escalation to the FDD. Subsequent drugs were sequentially added ≥3 days later when the preceding drug was tolerated. Full blood count and liver function tests were monitored prior to addition of each new drug. Results There were 11 patients of whom 10 were male, predominantly Chinese (8 patients). Regimens comprised at least 3 drugs: isoniazid (INH), rifampicin (RIF), ethambutol (EMB), pyrazinamide (PZA), or streptomycin. All patients had nonimmediate reactions, with cutaneous eruptions, where maculopapular exanthema (MPE) was the most common (8 patients). Drug-induced hypersensitivity syndrome (DIHS) occurred in 6 patients, and Stevens Johnson syndrome (SJS) in 2 patients. D-R to INH was successful in 7/9 patients (77.8%) and to RIF/EMB/PZA/streptomycin in all. Of the 2 patients who failed INH D-R, 1 developed fever and MPE on day 3, the other MPE on day 8. D-R with INH and RIF respectively was successful in 2 patients with SJS. Among DIHS patients, 1 failed D-R with INH (fever and MPE on day 3). There were 23/25 (92%) successful D-R among the 11 patients. All patients completed TB treatment of ≥5 months' duration with no cases of drug-resistant TB. Conclusion Tailored sequential TB drug D-R is successful where no better alternative therapies are available, with careful dose escalation and close monitoring, and after a careful risk-benefit assessment. PMID:25097851

  3. Monitoring the efficacy of antimalarial medicines in India via sentinel sites: Outcomes and risk factors for treatment failure

    Directory of Open Access Journals (Sweden)

    Neelima Mishra

    2016-01-01

    Interpretation & conclusion: Till 2012, India′s national antimalarial drug resistance monitoring system proved highly efficacious and safe towards first-line antimalarials used in the country, except in Northeastern region where a decline in efficacy of AS+SP has been observed. This led to change in first-line treatment for P. falciparum to artemether-lumefantrine in Northeastern region.

  4. Cost-effectiveness of pre-referral antimalarial, antibacterial, and combined rectal formulations for severe febrile illness.

    OpenAIRE

    Buchanan, J.; Mihaylova, B.; Gray, A; White, N

    2010-01-01

    BACKGROUND: Malaria and bacterial infections account for most infectious disease deaths in developing countries. Prompt treatment saves lives, but rapid deterioration often prevents the use of oral therapies; delays in reaching health facilities providing parenteral interventions are common. Rapidly and reliably absorbed antimalarial/antibacterial rectal formulations used in the community could prevent deaths and disabilities. Rectal antimalarial treatments are currently available; rectal ant...

  5. In Vivo Antiprotozoal Activity of the Chloroform Extract from Carica papaya Seeds against Amastigote Stage of Trypanosoma cruzi during Indeterminate and Chronic Phase of Infection

    Directory of Open Access Journals (Sweden)

    Matilde Jimenez-Coello

    2014-01-01

    Full Text Available In order to evaluate the antiprotozoal activity of the chloroform extract of Carica papaya seeds during the subacute and chronic phase of infection of Trypanosoma cruzi, doses of 50 and 75 mg/kg were evaluated during the subacute phase, including a mixture of their main components (oleic, palmitic, and stearic acids. Subsequently, doses of 50 and 75 mg/kg in mice during the chronic phase of infection (100 dpi were also evaluated. It was found that chloroform extract was able to reduce the amastigote nests numbers during the subacute phase in 55.5 and 69.7% (P > 0.05 as well as in 56.45% in animals treated with the mixture of fatty acids. Moreover, the experimental groups treated with 50 and 75 mg/kg during the chronic phase of the infection showed a significant reduction of 46.8 and 53.13% respectively (P < 0.05. It is recommended to carry out more studies to determine if higher doses of chloroformic extract or its administration in combination with other antichagasic drugs allows a better response over the intracellular stage of T. cruzi in infected animal models and determine if the chloroform extract of C. papaya could be considered as an alternative for treatment during the indeterminate and chronic phase of the infection.

  6. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  7. Antiprotozoal Activity of Buxus sempervirens and Activity-Guided Isolation of O-tigloylcyclovirobuxeine-B as the Main Constituent Active against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Julia B. Althaus

    2014-05-01

    Full Text Available Buxus sempervirens L. (European Box, Buxaceae has been used in ethnomedicine to treat malaria. In the course of our screening of plant extracts for antiprotozoal activity, a CH2Cl2 extract from leaves of B. sempervirens showed selective in vitro activity against Plasmodium falciparum (IC50 = 2.79 vs. 20.2 µg/mL for cytotoxicity against L6 rat cells. Separation of the extract by acid/base extraction into a basic and a neutral non-polar fraction led to a much more active and even more selective fraction with alkaloids while the fraction of non-polar neutral constituents was markedly less active than the crude extract. Thus, the activity of the crude extract could clearly be attributed to alkaloid constituents. Identification of the main triterpene-alkaloids and characterization of the complex pattern of this alkaloid fraction was performed by UHPLC/+ESI-QTOF-MS analyses. ESI-MS/MS target-guided larger scale preparative separation of the alkaloid fraction was performed by ‘spiral coil-countercurrent chromatography’. From the most active subfraction, the cycloartane alkaloid O-tigloylcyclovirobuxeine-B was isolated and evaluated for antiplasmodial activity which yielded an IC50 of 0.455 µg/mL (cytotoxicity against L6 rat cells: IC50 = 9.38 µg/mL. O-tigloylcyclovirobuxeine-B is thus most significantly responsible for the high potency of the crude extract.

  8. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790

  9. Lack of doxycycline antimalarial prophylaxis impact on Staphylococcus aureus tetracycline resistance.

    Science.gov (United States)

    Mende, Katrin; Beckius, Miriam L; Zera, Wendy C; Yu, Xin; Li, Ping; Tribble, David R; Murray, Clinton K

    2016-10-01

    There is concern that susceptibility of Staphylococcus aureus to tetracyclines may decrease due to use of antimalarial prophylaxis (doxycycline). We examined characteristics related to tetracycline resistance, including doxycycline exposure, in S. aureus isolates collected via admission surveillance swabs and inpatient clinical cultures from United States military personnel injured during deployment (June 2009-January 2012). Tetracycline class resistance was determined using antimicrobial susceptibility testing. The first S. aureus isolate from 168 patients were analyzed, of which 38 (23%) isolates were resistant to tetracyclines (class). Tetracycline-resistant isolates had a higher proportion of resistance to clindamycin (P=0.019) compared to susceptible isolates. There was no significant difference in tetracycline resistance between isolates collected from patients with and without antimalarial prophylaxis; however, significantly more isolates had tet(M) resistance genes in the doxycycline exposure group (P=0.031). Despite 55% of the patients receiving doxycycline as antimalarial prophylaxis, there was no association with resistance to tetracyclines.

  10. Resistance to antimalarial drugs: An endless world war against Plasmodium that we risk losing.

    Science.gov (United States)

    Severini, Carlo; Menegon, Michela

    2015-06-01

    The objective of this review was to describe the 'state of the art' of Plasmodium falciparum resistance to the main antimalarial drugs. A brief note on Plasmodium vivax is also included. Resistance of P. falciparum to the various antimalarials has a long history of hits and misses. During the last 60 years, the pace at which this parasite has developed resistance to antimalarial drugs has exceeded the pace at which new drugs have been developed. In the last decade, the introduction of artemisinin-based combination therapies (ACTs) as a first-line drug treatment for non-complicated P. falciparum malaria had led to extraordinary results in disease control, especially in sub-Saharan Africa. However, the emergence and spread of resistance to artemisinin in Southeast Asia jeopardise these results. In conclusion, the possible spread of artemisinin resistance in Africa should be considered as an epochal disaster.

  11. Blood schizontocidal activity of methylene blue in combination with antimalarials against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Garavito G.

    2007-06-01

    Full Text Available Methylene blue (MB is the oldest synthetic antimalarial. It is not used anymore as antimalarial but should be reconsidered. For this purpose we have measured its impact on both chloroquine sensitive and resistant Plasmodium strains. We showed that around 5 nM of MB were able to inhibit 50% of the parasite growth in vitro and that late rings and early trophozoites were the most sensitive stages; while early rings, late trophozoites and schizonts were less sensitive. Drug interaction study following fractional inhibitory concentrations (FIC method showed antagonism with amodiaquine, atovaquone, doxycycline, pyrimethamine; additivity with artemether, chloroquine, mefloquine, primaquine and synergy with quinine. These results confirmed the interest of MB that could be integrated in a new low cost antimalarial combination therapy.

  12. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus

    DEFF Research Database (Denmark)

    Kuhn, A; Sigges, J; Biazar, C

    2014-01-01

    BACKGROUND: In recent years it has been controversially discussed in the literature if smoking is associated with the activity of cutaneous lupus erythematosus (CLE) and the efficacy of antimalarial agents. OBJECTIVES: To investigate the influence of smoking on disease severity and antimalarial...... treatment in patients with CLE using the Core Set Questionnaire of the European Society of Cutaneous Lupus Erythematosus (EUSCLE). METHODS: A total of 1002 patients (768 female, 234 male) with different CLE subtypes were included in this cross-sectional study, which was performed in 14 different countries....... Smoking behaviour was assessed by the EUSCLE Core Set Questionnaire in 838 patients and statistically analysed using an SPSS database. The results were correlated with the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) and the efficacy of antimalarial treatment. RESULTS: A high...

  13. A Study of the Timing of Death in Patients with Tuberculosis Who Die During Anti-Tuberculosis Treatment

    Directory of Open Access Journals (Sweden)

    Bhavik Patel

    2016-06-01

    Full Text Available Introduction: India has 2.0 million estimated tuberculosis (TB cases per annum with an estimated 280,000 TB related deaths per year. Understanding when in the course of TB treatment patients die is important for determining the type of intervention to be offered and crucially when this intervention should be given. The objectives of the current study were to determine in a large cohort of TB patients in India: - i treatment outcomes including the number who died while on treatment, ii the month of death and iii characteristics associated with and ldquo;early and rdquo; death, occurring in the initial 8 weeks of treatment. Methodology: This was a retrospective study in C.U.Shah Medical College and Hospital in Surendranagar, Gujarat India. A review was performed of treatment cards and medical records of all TB patients (adults and children registered and placed on standardized anti-tuberculosis treatment from January 2007 to April 2012. Results: There were 376 TB patients of whom 41 (11% were known to have died during treatment. Case-fatality was higher in those previously treated (24% and lower in those with extra-pulmonary TB (1%.Most of deaths during anti-tuberculosis treatment were early, with 66% of all patients dying in the first 8 weeks of treatment. Increasing age and new as compared to recurrent TB disease were significantly associated with and ldquo;early death and rdquo;. In this large cohort of TB patients, Most of deaths occurred early after starting anti-TB treatment. Reasons may relate to i the treatment of the disease itself, raising concerns about drug adherence, quality of anti-tuberculosis drugs or the presence of undetected drug resistance and ii co-morbidities, such as HIV/ AIDS and diabetes mellitus, which are known to influence mortality. iii Late stage presentation by patients themselves. More research in this area from prospective and retrospective studies is needed. [Natl J Med Res 2016; 6(2.000: 186-190

  14. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Directory of Open Access Journals (Sweden)

    Eberlin Marcos N

    2011-05-01

    Full Text Available Abstract Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7 and -resistant (S20 strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4 and 50% methanolic (F5 fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  15. Brands, costs and registration status of antimalarial drugs in the Kenyan retail sector

    Directory of Open Access Journals (Sweden)

    Snow Robert W

    2005-07-01

    Full Text Available Abstract Background Although an important source of treatment for fevers, little is known about the structure of the retail sector in Africa with regard to antimalarial drugs. This study aimed to assess the range, costs, sources and registration of antimalarial drugs in the Kenyan retail sector. Methods In 2002, antimalarial drug registration and trade prices were established by triangulating national registration lists, government gazettes and trade price indices. Data on registration status and trade prices were compared with similar data generated through a retail audit undertaken among 880 randomly sampled retailers in four districts of Kenya. Results Two hundred and eighteen antimalarial drugs were in circulation in Kenya in 2002. These included 65 "sulfur"-pyrimethamine (sulfadoxine-pyrimethamine and sulfalene-pyrimethamine (SP, the first-line recommended drug in 2002 and 33 amodiaquine (AQ, the second-line recommended drug preparations. Only half of SP and AQ products were registered with the Pharmacy and Poisons Board. Of SP and AQ brands at district level, 40% and 44% were officially within legal registration requirements. 29% of retailers at district level stocked SP and 95% stocked AQ. The retail price of adult doses of SP and AQ were on average 0.38 and 0.76 US dollars, 100% and 347% higher than trade prices from manufacturers and importers. Artemether-lumefantrine, the newly announced first-line recommended antimalarial drug in 2004, was found in less than 1% of all retail outlets at a median cost of 7.6 US dollars. Conclusion There is a need to ensure that all antimalarial drugs are registered with the Pharmacy and Poisons Board to facilitate a more stringent post-marketing surveillance system to ensure drugs are safe and of good quality post-registration.

  16. Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Directory of Open Access Journals (Sweden)

    Mpimbaza Arthur

    2008-06-01

    Full Text Available Abstract Background New antimalarial regimens, including artemisinin-based combination therapies (ACTs, have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. Case description Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. Discussion and evaluation Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. Conclusion Although the World Health Organization has supported the development of

  17. A new in vivo screening paradigm to accelerate antimalarial drug discovery.

    Directory of Open Access Journals (Sweden)

    María Belén Jiménez-Díaz

    Full Text Available The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR, which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0 of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1 or induce parasite clearance (PRR >1 with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a

  18. Retinal toxicity induced by antimalarial drugs: literature review and case report.

    Science.gov (United States)

    Garza-Leon, Manuel; Flores-Alvarado, Diana Elsa; Muñoz-Bravo, Juan Manuel

    2016-06-17

    Antimalarial drugs are widely used in several countries for control of rheumatologic diseases such as systemic lupus erythematosus and rheumatoid arthritis. They are still used in Mexico because of their low cost and few secondary effects, most of which are mild and reversible. Even so, at an ophthalmological level, they could produce irreversible visual damage, which is why it is important to have ophthalmological evaluation and proper follow up. We present a clinical case as an example of characteristic ophthalmological findings as well as risk factors for retinal toxicity. We then discuss guidelines for diagnosis and follow up of patients who use antimalarial drugs for the treatment of rheumatologic illnesses.

  19. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi

    Directory of Open Access Journals (Sweden)

    Dismas Baza

    2011-02-01

    Full Text Available Abstract Background Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Methods Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO, a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment of AS-AQ, quinine and other anti-malarials were calculated. Results Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9% compared to public (4.2% and NGO (0% outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu. Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu, private and NGO sectors (both US$1.61 or 2,000 FBu. Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors

  20. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug.

    Science.gov (United States)

    Bacaer, Nicolas; Sokhna, Cheikh

    2005-04-01

    A mathematical model representing the difusion of resistance to an antimalarial drug is developed. Resistance can spread only when the basic reproduction number of the resistant parasites is bigger than the basic reproduction number of the sensitive parasites (which depends on the fraction of infected people treated with the antimalarial drug). Based on a linearization study and on numerical simulations, an expression for the speed at which resistance spreads is conjectured. It depends on the ratio of the two basic reproduction numbers, on a coefficient representing the difusion of mosquitoes, on the death rate of mosquitoes infected by resistant parasites, and on the recovery rate of nonimmune humans infected by resistant parasites.

  1. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Directory of Open Access Journals (Sweden)

    Chapman Steven

    2011-10-01

    Full Text Available Abstract Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT and malaria diagnostics including rapid diagnostic tests (RDTs. To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the

  2. Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents.

    Science.gov (United States)

    Comer, Eamon; Beaudoin, Jennifer A; Kato, Nobutaka; Fitzgerald, Mark E; Heidebrecht, Richard W; Lee, Maurice duPont; Masi, Daniela; Mercier, Marion; Mulrooney, Carol; Muncipinto, Giovanni; Rowley, Ann; Crespo-Llado, Keila; Serrano, Adelfa E; Lukens, Amanda K; Wiegand, Roger C; Wirth, Dyann F; Palmer, Michelle A; Foley, Michael A; Munoz, Benito; Scherer, Christina A; Duvall, Jeremy R; Schreiber, Stuart L

    2014-10-23

    Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure-activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.

  3. Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-tuberculosis Lead Compounds from Natural Sources.

    Science.gov (United States)

    Grzelak, Edyta M; Hwang, Changhwa; Cai, Geping; Nam, Joo-Won; Choules, Mary P; Gao, Wei; Lankin, David C; McAlpine, James B; Mulugeta, Surafel G; Napolitano, José G; Suh, Joo-Won; Yang, Seung Hwan; Cheng, Jinhua; Lee, Hanki; Kim, Jin-Yong; Cho, Sang-Hyun; Pauli, Guido F; Franzblau, Scott G; Jaki, Birgit U

    2016-04-08

    While natural products constitute an established source of lead compounds, the classical iterative bioassay-guided isolation process is both time- and labor-intensive and prone to failing to identify active minor constituents. (HP)TLC-bioautography-MS/NMR, which combines cutting-edge microbiological, chromatographic, and spectrometric technologies, was developed to accelerate anti-tuberculosis (TB) drug discovery from natural sources by acquiring structural information at a very early stage of the isolation process. Using the avirulent, bioluminescent Mtb strain mc(2)7000 luxABCDE, three variations of bioautography were evaluated and optimized for sensitivity in detecting anti-TB agents, including established clinical agents and new leads with novel mechanisms of action. Several exemplary applications of this approach to microbial extracts demonstrate its potential as a routine method in anti-TB drug discovery from natural sources.

  4. Detection and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity.

    Science.gov (United States)

    Jha, Deepak Kumar; Panda, Likun; Lavanya, P; Ramaiah, Sudha; Anbarasu, Anand

    2012-11-01

    The extraction and determination of alkaloids was performed and confirmed by phytochemical analysis. Six different quinazoline alkaloids (vasicoline, vasicolinone, vasicinone, vasicine, adhatodine and anisotine) were found in the leaf of Justicia adhatoda (J. adhatoda). The presence of the peaks obtained through HPLC indicated the diverse nature of alkaloid present in the leaf. The enzyme β-ketoacyl-acyl-carrier protein synthase III that catalyses the initial step of fatty acid biosynthesis (FabH) via a type II fatty acid synthase has unique structural features and universal occurrence in Mycobacterium tuberculosis (M. tuberculosis). Thus, it was considered as a target for designing of anti-tuberculosis compounds. Docking simulations were conducted on the above alkaloids derived from J. adhatoda. The combination of docking/scoring provided interesting insights into the binding of different inhibitors and their activity. These results will be useful for designing inhibitors for M. tuberculosis and also will be a good starting point for natural plant-based pharmaceutical chemistry.

  5. Amelioration of anti-tuberculosis drug induced oxidative stress in kidneys by Spirulina fusiformis in a rat model.

    Science.gov (United States)

    Martin, Sherry Joseph; Sabina, Evan Prince

    2016-08-01

    Nephrotoxicity is a rare complication caused by anti-tuberculosis therapy-induced oxidative stress. The Cyanobacterium Spirulina fusiformis Voronikhin belonging to Oscillatoriaceae family is used traditionally as a source of antioxidants against oxidative stress. We aimed to investigate the efficacy of S. fusiformis in modifying isoniazid (INH) and rifampicin (RIF)-induced changes in Wistar rat kidneys. Animals were divided into six groups: normal control rats; toxic control (INH & RIF-50 mg/kg b.w./d each; p.o.); INH & RIF + S. fusiformis (400 mg/kg b.w./d); INH & RIF + S. fusiformis (800 mg/kg b.w./d); S. fusiformis (800 mg/kg b.w./d) alone-treated rats; INH & RIF + silymarin (25 mg/kg b.w./d). Study duration was 28 d after which blood and kidneys were analyzed. We also studied the binding and interactions of the transcription factors Liver X Receptor (LXR) and Farnesoid X Receptor (FXR) with INH, RIF, and representative active compounds of S. fusiformis by in silico methods. INH & RIF treatment caused significant (p< 0.05) decrease in antioxidant levels and significant (p< 0.05) increase in the levels of creatinine, urea, and uric acid showing impaired kidney function. Spirulina fusiformis ameliorated these effects in a dose dependent manner. Histological examination of kidneys supported these findings. Results of the in silico analyses showed that selected active components of S. fusiformis interact with LXR and FXR and could be a possible mechanism of action. S. fusiformis rendered protection against anti-tuberculosis drugs-induced oxidative stress in kidney tissues of rats.

  6. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  7. Marine peptides and their anti-infective activities.

    Science.gov (United States)

    Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-01-16

    Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present.

  8. Marine Peptides and Their Anti-Infective Activities

    Directory of Open Access Journals (Sweden)

    Hee Kyoung Kang

    2015-01-01

    Full Text Available Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish from 2006 to the present.

  9. Embryotoxicity and toxicokinetics of the antimalarial artesunate in rats.

    Science.gov (United States)

    Chung, Moon-Koo; Yu, Wook-Joon; Lee, Jin-Soo; Lee, Jong-Hwa

    2013-03-01

    This study was conducted to investigate the potential embryo-fetal toxicity and toxicokinetics of the antimalarial agent artesunate (ARTS) in Sprague-Dawley rats. Pregnant rats were administered ARTS daily from gestational day 6~15 via oral gavage, at test doses of 0, 2, 4, or 8 mg/kg (22 females per group). The fetuses were examined for external, visceral, and skeletal abnormalities on gestational day 20. With regard to the dams, there were no deaths, treatment-related clinical signs, changes in body weight, or food intake in any of the treatment groups. There were no treatment-related gross findings at necropsy in any treatment group. In the 8 mg/kg group, there was a decrease in gravid uterine weight and in the weight of female fetuses. There was also an increase in fetal deaths (primarily late resorptions) and an increase in post-implantation losses (37%) at 8 mg/kg. An increase in the incidence of visceral and skeletal variations at 4 and 8 mg/kg was observed. These defects included minor changes in the appearance of the kidney and thymus, as well as absent ribs or thoracic vertebrae. Toxicokinetics were assessed in a parallel study, using 4 mated females per group. Using liquid chromatography-mass spectrometry (LC-MS) analysis, the concentration of ARTS and its metabolite dihydroartemisinin (DHA) were quantified in plasma from rats on gestational days 5, 6, 10, and 15. Amniotic fluid was assayed for ARTS and DHA on gestational day 15. There was evidence of rapid conversion of ARTS to the metabolite DHA in maternal plasma, since ARTS could not be consistently detected in plasma at the three doses tested. ARTS and DHA were not detected in amniotic fluid at gestational day 15, indicating limited placental transfer of the two agents. The embryofetal no-observable-adverse-effect level (NOAEL) of the test item was considered to be 8 mg/kg/day for dams, and 2 mg/kg/day for embryo-fetal development.

  10. Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439).

    Science.gov (United States)

    Dong, Yuxiang; Wang, Xiaofang; Kamaraj, Sriraghavan; Bulbule, Vivek J; Chiu, Francis C K; Chollet, Jacques; Dhanasekaran, Manickam; Hein, Christopher D; Papastogiannidis, Petros; Morizzi, Julia; Shackleford, David M; Barker, Helena; Ryan, Eileen; Scheurer, Christian; Tang, Yuanqing; Zhao, Qingjie; Zhou, Lin; White, Karen L; Urwyler, Heinrich; Charman, William N; Matile, Hugues; Wittlin, Sergio; Charman, Susan A; Vennerstrom, Jonathan L

    2017-01-18

    Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pKa and lower log D7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, additional functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.

  11. Fixed dose combination of arterolane and piperaquine: a newer prospect in antimalarial therapy.

    Science.gov (United States)

    Patil, Cy; Katare, Ss; Baig, Ms; Doifode, Sm

    2014-07-01

    Malaria has been very prevalent vector-borne disease in India and until date bears enormous implications on health care services of the country. Over the period of time, the development of resistance to traditional antimalarials like chloroquine has been posed as major deterrent in efforts of malaria control. As the drug resistance is today universally prevalent, especially in Plasmodium falciparum species, major burden of malarial control resides with the new artemisinin drug class. However, arterolane is one of the first fully synthetic non-artemisinin antimalarial compound with rapid schizontocidal activity, hence offering an alternative to artemisinin drugs in malaria control. Piperaquine is a synthetic bisquinoline (4-amioquinoline Antimalarial) with slow and longer schizontocidal activity. Therefore their combination has been shown to provide rapid parasitemic clearance and quick relief of most malaria-related symptoms along with prevention of recrudescences. This combination was approved by Drugs Controller General of India in 2011 for treatment of uncomplicated P. falciparum malaria. The article is aimed at to review this newer prospect in antimalarial therapy for which comprehensive database search was done in Google, Google Scholar, PubMed using the terms "Malaria," "Arterolane," "OZ277," "Piperaquine," and "Artemisinin combination therapy." A total of 323 articles were screened and 28 articles were considered for this review along with the World Health Organization and National malarial program guidelines.

  12. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NARCIS (Netherlands)

    Baragana, B.; Hallyburton, I.; Lee, M.C.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Martinez, M.S.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jimenez-Diaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H.

    2015-01-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activ

  13. Influence of antimalarial treatment on acquisition of immunity in Plasmodium berghei NK65 malaria.

    Science.gov (United States)

    Long, Ton That Ai; Nakazawa, Shusuke; Huaman, Maria Cecilia; Kanbara, Hiroji

    2002-07-01

    Antimalarial treatments during primary Plasmodium berghei NK65 infection in BALB/c mice influenced the acquisition of protective immunity against reinfection. Among subcurative treatments, lower doses better enable mice to acquire protective immunity than do higher doses. Eradication of parasites from the start of infection did not promote protective immunity.

  14. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    Institute of Scientific and Technical Information of China (English)

    Jerapan Krungkrai; Sudaratana Rochanakij Krungkrai

    2016-01-01

    Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu(Chinese name) and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  15. Antimalarial qinghaosu/artemisinin:The therapy worthy of a Nobel Prize

    Institute of Scientific and Technical Information of China (English)

    Jerapan Krungkrai

    2016-01-01

    Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name) and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  16. Deployment of ACT antimalarials for treatment of malaria: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Leslie Toby

    2008-12-01

    Full Text Available Abstract Following a long period when the effectiveness of existing mono-therapies for antimalarials was steadily declining with no clear alternative, most malaria-endemic countries in Africa and Asia have adopted artemisinin combination therapy (ACT as antimalarial drug policy. Several ACT drugs exist and others are in the pipeline. If properly targeted, they have the potential to reduce mortality from malaria substantially. The major challenge now is to get the drugs to the right people. Current evidence suggests that most of those who need the drugs do not get them. Simultaneously, a high proportion of those who are given antimalarials do not in fact have malaria. Financial and other barriers mean that, in many settings, the majority of those with malaria, particularly the poorest, do not access formal healthcare, so the provision of free antimalarials via this route has only limited impact. The higher cost of ACT creates a market for fake drugs. Addressing these problems is now a priority. This review outlines current evidence, possible solutions and research priorities.

  17. A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Cleydson Breno R. Santos

    2013-12-01

    Full Text Available The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs and molecular docking were used to investigate the interaction between ligands and the receptor (heme. Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE, the charge on the O11 oxygen atom (QO11, the torsion angle O1-O2-Fe-N2 (D2 and the maximum rate of R/Sanderson Electronegativity (RTe+. These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  18. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death.

    Science.gov (United States)

    Salas, E; Roy, S; Marsh, T; Rubin, B; Debnath, J

    2016-06-01

    Despite immense interest in using antimalarials as autophagy inhibitors to treat cancer, it remains unclear whether these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells.

  19. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.A.Judith A.; Laseter, Anne G.; Filer, C.N.Crist N. E-mail: crist.filer@perkinelmer.com

    2002-09-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3-{sup 3}H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl-{sup 3}H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [{sup 3}H] ethyl iodide.

  20. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    Directory of Open Access Journals (Sweden)

    Jerapan Krungkrai

    2016-05-01

    Full Text Available Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  1. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    Directory of Open Access Journals (Sweden)

    Komal Kalani

    Full Text Available Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  2. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    Directory of Open Access Journals (Sweden)

    Shen S

    2015-06-01

    Full Text Available Shuo Shen, Shu-Zhi Liu, Yu-Shi Zhang, Mao-Bo Du, Ai-Hua Liang, Li-Hua Song, Zu-Guang Ye Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China Abstract: Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data

  3. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Lee Sue J

    2009-11-01

    Full Text Available Abstract Background Preventing the emergence of anti-malarial drug resistance is critical for the success of current malaria elimination efforts. Prevention strategies have focused predominantly on qualitative factors, such as choice of drugs, use of combinations and deployment of multiple first-line treatments. The importance of anti-malarial treatment dosing has been underappreciated. Treatment recommendations are often for the lowest doses that produce "satisfactory" results. Methods The probability of de-novo resistant malaria parasites surviving and transmitting depends on the relationship between their degree of resistance and the blood concentration profiles of the anti-malarial drug to which they are exposed. The conditions required for the in-vivo selection of de-novo emergent resistant malaria parasites were examined and relative probabilities assessed. Results Recrudescence is essential for the transmission of de-novo resistance. For rapidly eliminated anti-malarials high-grade resistance can arise from a single drug exposure, but low-grade resistance can arise only from repeated inadequate treatments. Resistance to artemisinins is, therefore, unlikely to emerge with single drug exposures. Hyperparasitaemic patients are an important source of de-novo anti-malarial drug resistance. Their parasite populations are larger, their control of the infection insufficient, and their rates of recrudescence following anti-malarial treatment are high. As use of substandard drugs, poor adherence, unusual pharmacokinetics, and inadequate immune responses are host characteristics, likely to pertain to each recurrence of infection, a small subgroup of patients provides the particular circumstances conducive to de-novo resistance selection and transmission. Conclusion Current dosing recommendations provide a resistance selection opportunity in those patients with low drug levels and high parasite burdens (often children or pregnant women. Patients with

  4. Synthesis of 4-hydroxy-2(1H)-quinolone derived chalcones, pyrazolines and their antimicrobial, in silico antimalarial evaluations.

    Science.gov (United States)

    Sarveswari, S; Vijayakumar, V; Siva, R; Priya, R

    2015-01-01

    A few derivatives of 3-(4,5-dihydro-5-aryl-1-phenyl-1H-pyrazol-3-yl)-4-hydroxyquinolin-2(1H)-ones (5a-j) that are synthesized from 4-hydroxy-3-(3-arylacryloyl)quinolin-2(1H)-ones (4a-j) by microwave-assisted synthesis are screened for their antimicrobial, in silico antimalarial activities. Among the tested compounds 4h and 5d were found to have a potent antimalarial activity than the standards, and the others are found to show considerable antimalarial activity and moderate antimicrobial activity.

  5. Substandard artemisinin-based antimalarial medicines in licensed retail pharmaceutical outlets in Ghana

    Directory of Open Access Journals (Sweden)

    M. El-Duah & K. Ofori-Kwakye

    2012-09-01

    Full Text Available Background & objectives: The artemisinin-based antimalarial medicines are first line medicines in the treatmentof severe and uncomplicated falciparum malaria. Numerous brands of these medicines manufactured in variouscountries are available in the Ghanaian market. The study was aimed at evaluating the authenticity and qualityof selected brands of artemisinin-based antimalarial medicines marketed in Ghana.Methods: In all, 14 artemisinin-based antimalarial medicines were purchased from pharmacies (P and licensedchemical shops (LCSs in the Kumasi metropolis, Ghana. Simple field tests based on colorimetry and thin layerchromatography were employed in determining the authenticity of the samples. Important quality assessmenttests, namely uniformity of mass, crushing strength, disintegration time, and the percentage content of activepharmaceutical ingredients (APIs were determined.Results: All the brands tested contained the stipulated APIs. Artesunate tablet AT2 failed the uniformity of masstest while artesunate tablets AT3 & AT4 as well as amodiaquine tablets AM4 & AM6 failed the crushing strengthtest. All the six artemether-lumefantrine tablet brands passed the uniformity of mass, crushing strength anddisintegration tests. Only artemether-lumefantrine tablet brand AL1 contained the correct amount of the drugs.The other 13 artemisinin products contained either a lower (underdose or higher (overdose amount of thespecified drug. Artesunate monotherapy tablets were readily available in pharmacies and licensed chemicalshops.Interpretation & conclusion: All the artemisinin-based medicines tested (except AL1 were of substandardquality. The results demonstrate the need for continuous monitoring and evaluation of the quality of artemisininbased antimalarials in the Ghanaian market. Also, the practice of artemisinin antimalarial monotherapy is prevalentin Ghana. Determined efforts should, therefore, be made to eradicate the practice to prevent the development

  6. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Directory of Open Access Journals (Sweden)

    Newton Paul N

    2011-12-01

    Full Text Available Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA containing paracetamol (acetaminophen, counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems.

  7. Structure-based design,synthesis of novel inhibitors of Mycobacterium tuberculosis FabH as potential anti-tuberculosis agents

    Institute of Scientific and Technical Information of China (English)

    Xue Hui Zhang; Hong Yu; Wu Zhong; Li Li Wang; Song Li

    2009-01-01

    Mycobacterium tuberculosis FabH,an essential enzyme in mycolic acids biosynthetic pathway,is an attractive target for novel anti-tuberculosis agents.Structure-based design,synthesis of novel inhibitors of mrFabH was reported in this paper.A novel scaffold structure was designed,and 12 candidate compounds that displayed favorable binding with the active site were identified and synthesized.

  8. Molecular iodine catalyzed synthesis of tetrazolo[1,5-a]-quinoline based imidazoles as a new class of antimicrobial and antituberculosis agents

    Institute of Scientific and Technical Information of China (English)

    Divyesh C. Mungra; Harshad G. Kathrotiya; Niraj K. Ladani; Manish P. Patel; Ranjan G. Patel

    2012-01-01

    A series of some new tetrazolo[1,5-a]quinoline based tetrasubstituted imidazole derivatives 6a-I have been synthesized by a reaction of tetrazolo[1,5-a]quinoline-4-carbaldehyde 3a-d,benzil 4,aromatic amine 5a-c and ammonium acetate in the presence of iodine through one-pot multi-component reaction (MCR) approach.All the derivatives were screened for antimicrobial and antituberculosis activities and results worth further investigations.

  9. 1,4-Di-N-oxide quinoxaline-2-carboxamide: Cyclic voltammetry and relationship between electrochemical behavior, structure and anti-tuberculosis activity

    OpenAIRE

    Moreno-Viguri, E. (Elsa); Perez-Silanes, S. (Silvia); Gouravaram, S. (S.); Macharam, A. (Abinav); Ancizu, S. (Saioa); Torres, E; Aldana, I.; Monge, A; Crawford, P.W. (Philip W.)

    2011-01-01

    To gain insight into the mechanism of action, the redox properties of 37 quinoxaline-2-carboxamide 1,4-di-N-oxides with varying degrees of anti-tuberculosis activity were studied in dimethylformamide (DMF) using cyclic voltammetry and first derivative cyclic voltammetry. For all compounds studied, electrochemical reduction in DMF is consistent with the reduction of the N-oxide functionality to form a radical anion. The influence of molecular structure on reduction potential is addressed and i...

  10. Synthesis and evaluation of antimalarial activity of curcumin derivatives; Sintese e avaliacao da atividade antimalarica de compostos derivados da curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa [Universidade Federal de Juiz de Fora (UFSJ), MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla, E-mail: varotti@ufsj.edu.br [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil). Centro de Ciencias da Saude; and others

    2014-05-15

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC{sub 50} values ranging from 1.7 to 15.2 μg mL{sup -1}), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  11. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    Directory of Open Access Journals (Sweden)

    Littrell Megan

    2011-10-01

    Full Text Available Abstract Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT. The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85% and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%, drug stores (14%, mobile providers (4% and grocery stores (2%. Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61% and private (42% sectors. Conclusions While data on the anti-malarial

  12. THE QUESTIONS OF ALLERGY AND ANTI-TUBERCULOSIS IMMUNITY IN THE WORKS OF М.М. TSEHNOVITSER

    Directory of Open Access Journals (Sweden)

    Kuchma Y.U

    2014-10-01

    Full Text Available The mechanism of anti-tuberculosis immunity drew the attention of scientists since the established of the infectious nature of tuberculosis. The famous ukrainian microbiologist and immunologist M.M. Tsehnovitser in period from 1921 to 1940 years spent a lot of original experiments for elucidation of the role of allergy in the anti-tuberculosis immunity. M.M. Tsehnovitser believed that a common cause of infectious allergy is tuberculosis granuloma, which even at rest eliminated weakened microbes and their products in general lymphatic and blood stream of the body. In his experiments M.M. Tsehnovitser discovered: 1 When the body comes in contact with M.tuberculosisi formed tuberculosis centre. Infection meets local tissue reaction and in incubation period formed sensitization. In this state the body manifested as a natural susceptibility and resistance to infection. During this period organism going through the initial stage of allergy. 2. Meanwhile, the infectious process goes on and the M.tuberculosisi giving rise. The body reacts to this change in the formula blood - leukocytosis, monocytosis, eosinophilia. Tuberculosis focus represents a formed granuloma. This phase of tuberculosis infection accompanied by severe allergy. 3. Then there are two versions of the process. In the first case happened the generalization of tuberculosis infection. The blood reacts are leukopenia, monocytosis, eosinophilia and lymphocytosis due to toxic processes. In the second case M.tuberculosi multiplied only local in the granuloma and is not generalization of tuberculosis process. In this case, natural immunity is raised. There are allergy and positive anergy in later. 4. It is exclusively unique phenomenon for tuberculous process is the regression of the fire with his sterilization. This type of tuberculous process is in BCG-infection. In the source of infection observed complete resolution of pathological tissue, blood initially reacts slightly, but quickly comes

  13. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN

    Directory of Open Access Journals (Sweden)

    Barnes Karen I

    2010-12-01

    Full Text Available Abstract Background The Worldwide Antimalarial Resistance Network (WWARN is a global collaboration to support the objective that anyone affected by malaria receives effective and safe drug treatment. The Pharmacology module aims to inform optimal anti-malarial drug selection. There is an urgent need to define the drug exposure - effect relationship for most anti-malarial drugs. Few anti-malarials have had their therapeutic blood concentration levels defined. One of the main challenges in assessing safety and efficacy data in relation to drug concentrations is the comparability of data generated from different laboratories. To explain differences in anti-malarial pharmacokinetics in studies with different measurement laboratories it is necessary to confirm the accuracy of the assay methods. This requires the establishment of an external quality assurance process to assure results that can be compared. This paper describes this process. Methods The pharmacology module of WWARN has established a quality assurance/quality control (QA/QC programme consisting of two separate components: 1. A proficiency testing programme where blank human plasma spiked with certified reference material (CRM in different concentrations is sent out to participating bioanalytical laboratories. 2. A certified reference standard programme where accurately weighed amounts of certified anti-malarial reference standards, metabolites, and internal standards are sent to participating bioanalytical and in vitro laboratories. Conclusion The proficiency testing programme is designed as a cooperative effort to help participating laboratories assess their ability to carry out drug analysis, resolve any potential problem areas and to improve their results - and, in so doing, to improve the quality of anti-malarial pharmacokinetic data published and shared with WWARN. By utilizing the same source of standards for all laboratories, it is possible to minimize bias arising from poor

  14. Hepatitis B or hepatitis C co-infection in individuals infected with human immunodeficiency virus and effect of anti-tuberculosis drugs on liver function

    Directory of Open Access Journals (Sweden)

    Padmapriyadarsini C

    2006-01-01

    Full Text Available Background: Tuberculosis (TB and hepatitis are the two common co-infections in patients infected with human immunodeficiency virus (HIV. Anti-tuberculosis treatment (ATT may have an effect on the liver enzymes in these co-infected HIV patients. Aims: To determine the prevalence of Hepatitis B and C virus coinfection in HIV infected patients in Tamilnadu and assess effects of anti-tuberculosis drugs on their liver function. Settings: HIV positive subjects referred to the Tuberculosis Research Centre, Chennai Materials and Methods: All HIV infected patients referred to the Tuberculosis Research centre, from March 2000 to May 2004, were screened for Hepatitis B surface antigen (HBsAg & Hepatitis C virus (HCV antibodies by enzyme linked immunoabsorbent assay (ELISA. HIV infection was confirmed using two rapid tests and one ELISA. Patients were given either short- course anti-tuberculosis treatment or preventive therapy for tuberculosis, depending on the presence or absence of active TB, if their baseline liver functions were within normal limits. None of these patients were on antiretroviral therapy during the study period. Statistical Analysis: Paired t-test was used to find the significance between baseline and end of treatment liver enzymes levels, while logistic regression was done for assessing various associations. Results: Of the 951 HIV-infected patients, 61 patients (6.4% were HBsAg positive, 20 (2.1% had demonstrable anti HCV antibodies in their blood. Serial estimation of liver enzymes in 140 HIV patients (81 being co-infected with either HBV or HCV showed that 95% did not develop any liver toxicity while they were on anti-tuberculosis treatment or prophylaxis. Conclusions: The prevalence of hepatitis B and C coinfection was fairly high in this largely heterosexually infected population supporting the use of more careful screening for these viruses in HIV positive persons in this region. Anti-tuberculosis therapy as well as TB preventive

  15. Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake

    Directory of Open Access Journals (Sweden)

    Carmen E Contreras

    2004-03-01

    Full Text Available The evaluation of new antimalarial agents using older methods of monitoring sensitivity to antimalarial drugs are laborious and poorly suited to discriminate stage-specific activity. We used flow cytometry to study the effect of established antimalarial compounds, cysteine protease inhibitors, and a quinolone against asexual stages of Plasmodium falciparum. Cultured P. falciparum parasites were treated for 48 h with different drug concentrations and the parasitemia was determined by flow cytometry methods after DNA staining with propidium iodide. P. falciparum erythrocytic life cycle stages were readily distinguished by flow cytometry. Activities of established and new antimalarial compounds measured by flow cytometry were equivalent to results obtained with microscopy and metabolite uptake assays. The antimalarial activity of all compounds was higher against P. falciparum trophozoite stages. Advantages of flow cytometry analysis over traditional assays included higher throughput for data collection, insight into the stage-specificity of antimalarial activity avoiding use of radioactive isotopes.

  16. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.

    Science.gov (United States)

    Santos, Sofia A; Lukens, Amanda K; Coelho, Lis; Nogueira, Fátima; Wirth, Dyann F; Mazitschek, Ralph; Moreira, Rui; Paulo, Alexandra

    2015-09-18

    A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs.

  17. Saleability of anti-malarials in private drug shops in Muheza, Tanzania

    DEFF Research Database (Denmark)

    Ringsted, Frank M; Massawe, Isolide S; Lemnge, Martha M;

    2011-01-01

    prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. Results......: All surveyed drug shops illicitly sold SP and quinine (QN), and legally amodiaquine (AQ). Calculated monthly sale was 4,041 doses, in a town with a population of 15,000 people. Local brands of SP accounted for 74% of sales volume, compared to AQ (13%), QN (11%) and ACT (2%). Conclusions: In community...... resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp strategy. Further studies are recommended to find out barriers for ACT utilization and preference for self-medication and to train private drug...

  18. Synthesis, characterization and in vitro evaluation of novel enantiomerically-pure sulphonamide antimalarials.

    Science.gov (United States)

    Anusha, Sebastian; Sinha, Ameya; Babu Rajeev, C P; Chu, Trang T T; Mathai, Jessin; Ximei, Huang; Fuchs, Julian E; Shivananju, NanjundaSwamy; Bender, Andreas; Preiser, Peter Rainer; Rangappa, Kanchugarakoppal S; Basappa; Chandramohanadas, Rajesh

    2015-11-21

    Malaria parasites are currently gaining drug-resistance rapidly, across countries and continents. Hence, the discovery and development of novel chemical scaffolds, with superior antimalarial activity remain an important priority, for the developing world. Our report describes the development, characterization and evaluation of novel bepotastine-based sulphonamide antimalarials inhibiting asexual stage development of Plasmodium falciparum parasites in vitro. The screening results showed potent inhibitory activity of a number of novel sulphonamides against P. falciparum at low micromolar concentrations, in particular in late-stage parasite development. Based on computational studies we hypothesize N-myristoyltransferase as the target of the compounds developed here. Our results demonstrate the value of novel bepotastine-based sulphonamide compounds for targeting the asexual developmental stages of P. falciparum.

  19. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    Directory of Open Access Journals (Sweden)

    Asrar Alam

    2014-01-01

    Full Text Available Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets.

  20. Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam.

    Science.gov (United States)

    Jullian, V; Bourdy, G; Georges, S; Maurel, S; Sauvain, M

    2006-07-19

    Zanthoxylum rhoifolium bark (Rutaceae) is a medicinal plant, traditionally used in French Guiana to treat and prevent malaria. Bioassay-guided extractions of Zanthoxylum rhoifolium bark have shown that antiplasmodial activity is concentrated in the alkaloid fraction. Further fractionation of this extract has yielded seven benzophenanthridine alkaloids, dihydroavicine 1, dihydronitidine 2, oxyavicine 3, oxynitidine 4, fagaridine 5, avicine 6 and nitidine 7. Antimalarial activity of the last five compounds has been evaluated, and nitidine was the most potent, displaying an IC(50)<0.27microM against Plasmodium falciparum. Investigation of the traditional remedy, a trunk bark decoction in water, has shown that fagaridine 5, avicine 6 and nitidine 7 are also present in the decoction, therefore justifying the traditional use of Zanthoxylumrhoifolium bark as antimalarial.

  1. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  2. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    Science.gov (United States)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  3. Evaluation of crystal violet decolorization assay for minimal inhibitory concentration detection of primary antituberculosis drugs against Mycobacterium tuberculosis isolates

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz Coban

    2016-01-01

    Full Text Available In this study we evaluated the crystal violet decolorization assay (CVDA for detection of minimum inhibitory concentration (MIC of antituberculosis drugs. 53 isolates were tested in this study and 13 of them were multidrug resistant (MDR isolates. The antibiotics concentrations were 2-0.06 mg/L for isoniazid (INH and rifampicin (RIF and were 16-0.25 mg/L for streptomycin (STM and ethambutol (EMB. Crystal violet (CV-25 mg/L was added into the microwells on the seventh day of incubation and incubation was continued until decolorization. Decolorization of CV was the predictor of bacterial growth. Overall agreements for four drugs were detected as 98.1%, and the average time was detected as 9.5 ± 0.89 day after inoculation. One isolate for INH and two isolates for STM were determined resistant in the reference method, but susceptible by the CVDA. One isolate was susceptible to EMB by the reference method, but resistant by the CVDA. All results were concordant for RIF. This study shows that CVDA is a rapid, reliable and suitable for determination of MIC values of Mycobacterium tuberculosis. And it can be used easily especially in countries with limited-sources.

  4. ANTIMALARIAL DRUGS IN THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS: PAST, PRESENT, FUTURE

    Directory of Open Access Journals (Sweden)

    Tatyana Andreyevna Lisitsyna

    2010-01-01

    Full Text Available The data available in the literature on experience in using antimalarial drugs in the treatment of systemic lupus erythematosus are summarized. A major emphasis is placed on therapy with hydroxychlorochine (plaquenil versus chlorine. Possible mechanisms of action of the drug and its effect on the course of the disease itself and concomitant abnormalities are described. Data on the toxicity of the drug and its safe use in pregnancy and lactation are also discussed

  5. Relative and Absolute Stereochemistry of Diacarperoxides: Antimalarial Norditerpene Endoperoxides from Marine Sponge Diacarnus megaspinorhabdosa

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2014-08-01

    Full Text Available Five new norditerpene endoperoxides, named diacarperoxides H–L (1–5, and a new norditerpene diol, called diacardiol B (6, were isolated from the South China Sea sponge, Diacarnus megaspinorhabdosa. Their structures, including conformations and absolute configurations, were determined by using spectroscopic analyses, computational approaches and chemical degradation. Diacarperoxides H–J (1–3 showed some interesting stereochemical issues, as well as antimalarial activity.

  6. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds.

    Science.gov (United States)

    Guantai, Eric M; Ncokazi, Kanyile; Egan, Timothy J; Gut, Jiri; Rosenthal, Philip J; Smith, Peter J; Chibale, Kelly

    2010-12-01

    A targeted series of chalcone and dienone hybrid compounds containing aminoquinoline and nucleoside templates was synthesized and evaluated for in vitro antimalarial activity. The Cu(I)-catalyzed cycloaddition of azides and terminal alkynes was applied as the hybridization strategy. Several chalcone-chloroquinoline hybrid compounds were found to be notably active, with compound 8b the most active, exhibiting submicromolar IC(50) values against the D10, Dd2 and W2 strains of Plasmodium falciparum.

  7. Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam

    OpenAIRE

    Jullian, Valérie; Bourdy, Geneviève; GEORGES, S.; Maurel, Séverine; Sauvain, Michel

    2006-01-01

    Zanthoxylum rhoifolium bark (Rutaceae) is a medicinal plant, traditionally used in French Guiana to treat and prevent malaria. Bioassay-guided extractions of Zanthoxylum rhoifolium bark have shown that antiplasmodial activity is concentrated in the alkaloid fraction. Further fractionation of this extract has yielded seven benzophenanthridine alkaloids, dihydroavicine 1, dihydronitidine 2, oxyavicine 3, oxynitidine 4, fagaridine 5, avicine 6 and nitidine 7. Antimalarial activity of the last fi...

  8. Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs

    OpenAIRE

    Movellan, Julie; Urbán, Patricia; Moles, Ernest; de la Fuente, Jesús M.; Sierra, Teresa; Serrano, José Luis; Fernàndez-Busquets, Xavier

    2014-01-01

    It can be foreseen that in a future scenario of malaria eradication, a varied armamentarium will be required, including strategies for the targeted administration of antimalarial compounds. The development of nanovectors capable of encapsulating drugs and of delivering them to Plasmodium-infected cells with high specificity and efficacy and at an affordable cost is of particular interest. With this objective, dendritic derivatives based on 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and Pl...

  9. Preliminary assessment of medicinal plants used as antimalarials in the southeastern Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Caraballo Alejandro

    2004-01-01

    Full Text Available Eighteen species of medicinal plants used in the treatment of malaria in Bolívar State, Venezuela were recorded and they belonged to Compositae, Meliaceae, Anacardiaceae, Bixaceae, Boraginaceae, Caricaceae, Cucurbitaceae, Euphorbiaceae, Leguminosae, Myrtaceae, Phytolaccaceae, Plantaginaceae, Scrophulariaceae, Solanaceae and Verbenaceae families. Antimalarial plant activities have been linked to a range of compounds including anthroquinones, berberine, flavonoids, limonoids, naphthquinones, sesquiterpenes, quassinoids, indol and quinoline alkaloids.

  10. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Directory of Open Access Journals (Sweden)

    Swain Bijay K

    2009-02-01

    Full Text Available Abstract Background Herbal extracts of Andrographis paniculata (AP and Hedyotis corymbosa (HC are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20 and resistant (MRC-pf-303 strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50 of AP (7.2 μg/ml was found better than HC (10.8 μg/ml. Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC and their individual synergism with curcumin (AP+CUR, HC+CUR were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs.

  11. Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals.

    Science.gov (United States)

    Shibi, Indira G; Aswathy, Lilly; Jisha, Radhakrishnan S; Masand, Vijay H; Gajbhiye, Jayant M

    2016-01-01

    Malaria parasites show resistance to most of the antimalarial drugs and hence developing antimalarials which can act on multitargets rather than a single target will be a promising strategy of drug design. Here we report a new approach by which virtual screening of 292 unique phytochemicals present in 72 traditionally important herbs is used for finding out inhibitors of plasmepsin-2 and falcipain-2 for antimalarial activity against P. falciparum. Initial screenings of the selected molecules by Random Forest algorithm model of Weka using the bioassay datasets AID 504850 and AID 2302 screened 120 out of the total 292 phytochemicals to be active against the targets. Toxtree scan cautioned 21 compounds to be either carcinogenic or mutagenic and were thus removed for further analysis. Out of the remaining 99 compounds, only 46 compounds offered drug-likeness as per the 'rule of five' criteria. Out of ten antimalarial drug targets, only two target proteins such as 3BPF and 3PNR of falcipain-2 and 1PFZ and 2BJU of plasmepsin-2 are selected as targets. The potential binding of the selected 46 compounds to the active sites of these four targets was analyzed using MOE software. The docked conformations and the interactions with the binding pocket residues of the target proteins were understood by 'Ligplot' analysis. It has been found that 8 compounds are dual inhibitors of falcipain-2 and plasmepsin-2, with the best binding energies. Compound 117 (6aR, 12aS)-12a-Hydroxy-9-methoxy-2,3-dimethylenedioxy-8-prenylrotenone (Usaratenoid C) present in the plant Millettia usaramensis showed maximum molecular docking score.

  12. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea.

    Science.gov (United States)

    Menegon, Michela; Nurahmed, Abduselam M; Talha, Albadawi A; Nour, Bakri Y M; Severini, Carlo

    2016-05-01

    The introduction of artemisinin-based combination therapy has led to extraordinary results in malaria control, however the recent emergence of partial resistance to artemisinin therapy in Southeast Asia jeopardizes these successes. This study aimed at investigating resistance to the antimalarial drugs by evaluating the polymorphisms in the PfK13, Pfcrt and Pfmdr1 genes in Plasmodium falciparum isolates obtained from patients in Eritrea.

  13. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    OpenAIRE

    Asrar Alam

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes...

  14. In-vitro antimalarial activity of azithromycin against chloroquine sensitive and chloroquine resistant Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Biswas S

    2001-10-01

    Full Text Available BAKGROUND: The spread of drug resistance in Plasmodium falciparum has made the situation essential to look into new effective therapeutic agents like antibiotics. Azithromycin is a potential, chemotherapeutic agent which possesses antimalarial activity and favourable pharmacokinetic properties. It is an azalide microbiocide derived semi-synthetically from macrolide erythromycin. Like other antibiotics, the azalide azithromycin has ability to inhibit protein synthesis on 70S ribosomes. SETTINGS: Experimental study. SUBJECTS AND METHODS: The parasiticidal profile was studied in five chloroquine sensitive and five chloroquine resistant P. falciparum isolates obtained from various places of India. The antimalarial activity was evaluated in P. falciparum schizont maturation by short term culture for 24 hours and by exposing the parasites to the drug for 96 hours. Parasites synchronized at ring stage were put for culture with various concentrations of azithromycin dihydrate (0.01-40 micro/ml. RESULTS: At highest concentration (40 micro/ml, parasite growth was inhibited totally in all 10 isolates. Antimalarial activity at 96 hours was greater than at 24 hours in both chloroquine sensitive and resistant parasites, which may indicate that the inhibition of parasite growth may occur at clinically achievable concentration of the drug when parasites were exposed for several asexual cycles. CONCLUSION: Azithromycin shows a potential for eventual use alone or in combination in the treatment of chloroquine sensitive and resistant P. falciparum malaria.

  15. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Radhapyari, Keisham [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India); Konwar, Bolin Kumar [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Nagaland University (Central), Lumami, Zunheboto, Nagaland 798627 (India); Khan, Raju, E-mail: khan.raju@gmail.com [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India)

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL{sup −1}) with sensitivity of 0.26 μA μg mL{sup −1}. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL{sup −1} and 0.0036 μg mL{sup −1} in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor.

  16. Glycosides as possible lead antimalarial in new drug discovery: future perspectives.

    Science.gov (United States)

    Marya; Khan, Haroon; Ahmad, Izhar

    2017-01-15

    Malaria remains one of the major public health problems worldwide and is responsible for a large number of morbidity and mortality. Especially, in the third world countries, it is still alarming. The development of drug-resistant to Plasmodium falciparum strains has further degraded the overall situation. However, a limited number of effective drugs available emphasizes how essential it is to establish new anti-malarial compounds. New antimalarial agents with distinctive structures and mechanism of action from the natural origin are thus immediately required to treat sensitive and drug-resistant strains of malaria. over the years, phytopharmaceuticals have provided numerous lead compounds. Similarly, the success rate of botanicals in terms of clinical significance is also very high. Of them, glycosides is one of the most widely distributed and emerging class of plant secondary metabolites. This review provides an outlook to recently isolated glycosides from plants with marked antimalarial effects in an in-vitro and in-vivo protocols and thus ideal candidates for clinical trials to ascertain their clinical utility and or led compounds.

  17. Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali.

    Science.gov (United States)

    Azas, N; Laurencin, N; Delmas, F; Di, Giorgio C; Gasquet, M; Laget, M; Timon-David, P

    2002-02-01

    In Mali, where malaria is endemic, plants are extensively used for treating periodic fevers and malaria. According to the advice of traditional medicine, plants are often mixed during the preparation of febrifugal decoctions. In previous studies, we demonstrated the potent in vitro antimalarial activity of extracts isolated from four plants commonly used in traditional remedies: Mitragyna inermis (Willd.) O. Kuntze, Rubiaceae, Nauclea latifolia (Sm.), Rubiaceae, Guiera senegalensis (Gmel.), Combretaceae, and Feretia apodanthera (Del.), Rubiaceae. In the present work, we evaluate the potent in vitro synergistic antimalarial interaction between these extracts, using standard isobologram analysis. Then, we evaluate their cytotoxicity on human monocytes and their mutagenic activity on an in vitro system of two beta-carboline alkaloids isolated from Guiera senegalensis (harman and tetrahydroharman). Three combinations demonstrate a strong, synergistic, inhibitory effect on in vitro plasmodial development and are devoid of cytotoxicity towards human cells. These results justify their use in association in traditional medicine. Moreover, tetrahydroharman, isolated from G. senegalensis, presents interesting antimalarial activity, no cytotoxicity and is not genotoxic in the Salmonella Ames test with and without metabolic activation.

  18. [Plasmodium falciparum susceptibility to antimalarial drugs: global data issued from the Pasteur Institutes international network].

    Science.gov (United States)

    Ménard, Didier; Ariey, Frédéric; Mercereau-Puijalon, Odile

    2013-01-01

    Malaria research units within the Institut Pasteur international network (RIIP-Palu) located in Africa, in South-East Asia and in South America, work for many years in close collaboration with the National malaria control programmes. Relying on technical platforms with well-equipped laboratories and scientific expertise, they are at the forefront of research on the antimalarial drug resistance by working together for training young scientists and developping similar protocols allowing comprehensive comparisons. Including fundamental and operational researches, they conduct regional and international projects which aim (1) to detect the emergence of antimalarial drugs resistant parasites and to evaluate their spatio-temporal distribution, (2) to develop in vitro and molecular tools, (3) to identify epidemiological factors involved in the emergence and the spread of antimalarial drugs resistant parasites and (4) to understand the molecular and cellular mechanisms implicated in resistance. In this review, will be presented methodological approaches and data obtained since 2000.

  19. Muddled mechanisms: recent progress towards antimalarial target identification [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rachel L. Edwards

    2016-10-01

    Full Text Available In the past decade, malaria rates have plummeted as a result of aggressive infection control measures and the adoption of artemisinin-based combination therapies (ACTs. However, a potential crisis looms ahead. Treatment failures to standard antimalarial regimens have been reported in Southeast Asia, and devastating consequences are expected if resistance spreads to the African continent. To prevent a potential public health emergency, the antimalarial arsenal must contain therapeutics with novel mechanisms of action (MOA. An impressive number of high-throughput screening (HTS campaigns have since been launched, identifying thousands of compounds with activity against one of the causative agents of malaria, Plasmodium falciparum. Now begins the difficult task of target identification, for which studies are often tedious, labor intensive, and difficult to interpret. In this review, we highlight approaches that have been instrumental in tackling the challenges of target assignment and elucidation of the MOA for hit compounds. Studies that apply these innovative techniques to antimalarial target identification are described, as well as the impact of the data in the field.

  20. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs.

    Science.gov (United States)

    Abdul-Ghani, Rashad; Al-Maktari, Mohamed T; Al-Shibani, Latifa A; Allam, Amal F

    2014-09-01

    Effective chemotherapy is the mainstay of malaria control. However, resistance of falciparum malaria to antimalarial drugs compromised the efforts to eliminate the disease and led to the resurgence of malaria epidemics. Three main approaches are used to monitor antimalarial drug efficacy and drug resistance; namely, in vivo trials, in vitro/ex vivo assays and molecular markers of drug resistance. Each approach has its implications of use as well as its advantages and drawbacks. Therefore, there is a need to use an integrated approach that would give the utmost effect to detect resistance as early as its emergence and to track it once spread. Such integration becomes increasingly needed in the era of artemisinin-based combination therapy as a forward action to deter resistance. The existence of regional and global networks for the standardization of methodology, provision of high quality reagents for the assessment of antimalarial drug resistance and dissemination of open-access data would help in approaching an integrated resistance surveillance system on a global scale.

  1. New developments in anti-malarial target candidate and product profiles.

    Science.gov (United States)

    Burrows, Jeremy N; Duparc, Stephan; Gutteridge, Winston E; Hooft van Huijsduijnen, Rob; Kaszubska, Wiweka; Macintyre, Fiona; Mazzuri, Sébastien; Möhrle, Jörg J; Wells, Timothy N C

    2017-01-13

    A decade of discovery and development of new anti-malarial medicines has led to a renewed focus on malaria elimination and eradication. Changes in the way new anti-malarial drugs are discovered and developed have led to a dramatic increase in the number and diversity of new molecules presently in pre-clinical and early clinical development. The twin challenges faced can be summarized by multi-drug resistant malaria from the Greater Mekong Sub-region, and the need to provide simplified medicines. This review lists changes in anti-malarial target candidate and target product profiles over the last 4 years. As well as new medicines to treat disease and prevent transmission, there has been increased focus on the longer term goal of finding new medicines for chemoprotection, potentially with long-acting molecules, or parenteral formulations. Other gaps in the malaria armamentarium, such as drugs to treat severe malaria and endectocides (that kill mosquitoes which feed on people who have taken the drug), are defined here. Ultimately the elimination of malaria requires medicines that are safe and well-tolerated to be used in vulnerable populations: in pregnancy, especially the first trimester, and in those suffering from malnutrition or co-infection with other pathogens. These updates reflect the maturing of an understanding of the key challenges in producing the next generation of medicines to control, eliminate and ultimately eradicate malaria.

  2. Antimalarial Properties of Aqueous Crude Extracts of Gynostemma pentaphyllum and Moringa oleifera Leaves in Combination with Artesunate in Plasmodium berghei-Infected Mice.

    Science.gov (United States)

    Somsak, Voravuth; Borkaew, Preeyanuch; Klubsri, Chokdee; Dondee, Kittiyaporn; Bootprom, Panatda; Saiphet, Butsarat

    2016-01-01

    Due to the emergence and spread of malaria parasite with resistance to antimalarial drugs, discovery and development of new, safe, and affordable antimalarial are urgently needed. In this respect, medicinal plant extracts are targets to optimize antimalarial actions and restore efficacy of standard antimalarial drugs. The present study was aimed at determining the antimalarial activities of Gynostemma pentaphyllum and Moringa oleifera leaf extracts in combination with artesunate against Plasmodium berghei-infected mice. P. berghei ANKA maintained by serial passage in ICR mice were used based on intraperitoneal injection of 1 × 10(7) parasitized erythrocytes and subsequent development of parasitemia. These infected mice were used to investigate the antimalarial activity of artesunate (6 mg/kg) in combination with 500, 1,000, and 2,000 mg/kg of G. pentaphyllum and M. oleifera leaf extracts using 4-day suppressive test. It was found that these extracts showed significant (P leaf extract and 35, 40, and 50% for M. oleifera leaf extract. Additionally, artesunate combined with these extracts presented higher antimalarial activity, compared to extract treated alone with percentage of suppression of 78, 91, and 96% for G. pentaphyllum leaf extract and 73, 82, and 91% for M. oleifera leaf extract. The results indicated that combination treatment of G. pentaphyllum or M. oleifera leaf extracts with artesunate was able to increase the antimalarial activity by using low dose of artesunate. Hence, these results justified the combination of these extracts and artesunate in antimalarial herbal remedies.

  3. Development of a prediction system for anti-tuberculosis drug-induced liver injury in Japanese patients

    Science.gov (United States)

    Mushiroda, Taisei; Yanai, Hideki; Yoshiyama, Takashi; Sasaki, Yuka; Okumura, Masao; Ogata, Hideo; Tokunaga, Katsushi

    2016-01-01

    Drug-induced liver injury (DILI) is a common adverse drug reaction in patients receiving antituberculosis (anti-TB) treatment. Among the anti-TB agents, isoniazid (INH) is the primary drug that causes hepatotoxicity in TB patients with DILI. Previous reports in several populations have consistently demonstrated an association between polymorphisms in the N-acetyltransferase 2 (NAT2) gene, which is responsible for INH hepatic metabolism, and a risk of DILI in TB patients. In this study, the genetic and baseline clinical data from 366 Japanese patients with TB (73 patients with DILI and 293 without DILI) were used to develop a system to predict DILI risk due to anti-TB agents. The distribution of the NAT2 acetylator status among the TB patients with DILI was 31 (42.5%), 29 (39.7%), and 13 (17.8%) for rapid, intermediate, and slow acetylators, respectively. A significant association was observed between NAT2 slow acetylators and DILI risk (odds ratio 4.32, 95% confidence interval 1.93–9.66, P value=5.56×10−4). A logistic regression model based on age and NAT2 genotype revealed that the area under the curve for the receiver-operating characteristic curve was 0.717. The findings demonstrated that slow NAT2 acetylator status is a significant predictor of the risk of DILI by anti-TB agents, and a personalized anti-TB treatment approach may aid in making treatment decisions and reducing the incidence of DILI. PMID:27340556

  4. Frequency of Mycobacterium tuberculosis-specific CD8+ T-cells in the course of anti-tuberculosis treatment

    Directory of Open Access Journals (Sweden)

    Rebecca Axelsson-Robertson

    2015-03-01

    Full Text Available Anti-tuberculosis drug treatment is known to affect the number, phenotype, and effector functionality of antigen-specific T-cells. In order to objectively gauge Mycobacterium tuberculosis (MTB-specific CD8+ T-cells at the single-cell level, we developed soluble major histocompatibility complex (MHC class I multimers/peptide multimers, which allow analysis of antigen-specific T-cells without ex vivo manipulation or functional tests. We constructed 38 MHC class I multimers covering some of the most frequent MHC class I alleles (HLA-A*02:01, A*24:02, A*30:01, A*30:02, A*68:01, B*58:01, and C*07:01 pertinent to a South African or Zambian population, and presenting the following MTB-derived peptides: the early expressed secreted antigens TB10.4 (Rv0288, Ag85B (Rv1886c, and ESAT-6 (Rv3875, as well as intracellular enzymes, i.e., glycosyltransferase 1 (Rv2957, glycosyltransferase 2 (Rv2958c, and cyclopropane fatty acid synthase (Rv0447c. Anti-TB treatment appeared to impact on the frequency of multimer-positive CD8+ T-cells, with a general decrease after 6 months of therapy. Also, a reduction in the total central memory CD8+ T-cell frequencies, as well as the antigen-specific compartment in CD45RA−CCR7+ T-cells was observed. We discuss our findings on the basis of differential dynamics of MTB-specific T-cell frequencies, impact of MTB antigen load on T-cell phenotype, and antigen-specific T-cell responses in tuberculosis.

  5. Qualitative and quantitative results of interferon-γ release assays for monitoring the response to anti-tuberculosis treatment

    Science.gov (United States)

    Park, I-Nae; Shim, Tae Sun

    2017-01-01

    Background/Aims The usefulness of interferon-γ release assays (IGRAs) in monitoring to responses to anti-tuberculosis (TB) treatment is controversial. We compared the results of two IGRAs before and after anti-TB treatment in same patients with active TB. Methods From a retrospective review, we selected patients with active TB who underwent repeated QuantiFERON-TB Gold (QFN-Gold, Cellestis Limited) and T-SPOT.TB (Oxford Immunotec) assays before and after anti-TB treatment with first-line drugs. Both tests were performed prior to the start of anti-TB treatment or within 1 week after the start of anti-TB treatment and after completion of treatment. Results A total of 33 active TB patients were included in the study. On the QFN-Gold test, at baseline, 23 cases (70%) were early secreted antigenic target 6-kDa protein 6 (ESAT-6) or culture filtrate protein 10 (CFP-10) positive. On the T-SPOT. TB test, at baseline, 31 cases (94%) were ESAT-6 or CFP-10 positive. Most of patients remained both test-positive after anti-TB treatment. Although changes in interferon-γ release responses over time were highly variable in both tests, there was a mean decline of 27 and 24 spot-forming counts for ESAT-6 and CFP-10, respectively on the T-SPOT.TB test (p < 0.05 for all). Conclusions Although limited by the small number of patients and a short-term follow-up, there was significant decline in the quantitative result of the T-SPOT. TB test with treatment. However, both commercial IGRAs may not provide evidence regarding the cure of disease in Korea, a country where the prevalence of TB is within the intermediate range. PMID:27951621

  6. Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosis L,D-transpeptidase 2

    Directory of Open Access Journals (Sweden)

    Billones JB

    2016-03-01

    Full Text Available Junie B Billones,1,2 Maria Constancia O Carrillo,1 Voltaire G Organo,1 Stephani Joy Y Macalino,1 Jamie Bernadette A Sy,1 Inno A Emnacen,1 Nina Abigail B Clavio,1 Gisela P Concepcion31Office of the Vice President for Academic Affairs – Emerging Interdisciplinary Research Program: “Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines,” Department of Physical Sciences and Mathematics, College of Arts and Sciences, 2Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Manila, 3Marine Science Institute, University of the Philippines Diliman, Diliman, Quezon City, PhilippinesAbstract: Mycobacterium tuberculosis (Mtb the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme L,D-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl–arabinogalactan–peptidoglycan complex of Mtb. In this study, structure-based pharmacophore screening, molecular docking, and in silico toxicity evaluations were employed in screening compounds from a database of synthetic compounds. Out of the 4.5 million database compounds, 18 structures were identified as high-scoring, high-binding hits with very satisfactory absorption, distribution, metabolism, excretion, and toxicity properties. Two out of the 18 compounds were further subjected to in vitro bioactivity assays, with one exhibiting a good inhibitory activity against the Mtb H37Ra strain.Keywords: antituberculosis drug discovery, virtual screening, docking

  7. Early versus delayed initiation of antiretroviral therapy for Indian HIV-Infected individuals with tuberculosis on antituberculosis treatment

    Directory of Open Access Journals (Sweden)

    Sinha Sanjeev

    2012-07-01

    Full Text Available Abstract Background For antiretroviral therapy (ART naive human immunodeficiency virus (HIV infected adults suffering from tuberculosis (TB, there is uncertainty about the optimal time to initiate highly active antiretroviral therapy (HAART after starting antituberculosis treatment (ATT, in order to minimize mortality, HIV disease progression, and adverse events. Methods In a randomized, open label trial at All India Institute of Medical Sciences, New Delhi, India, eligible HIV positive individuals with a diagnosis of TB were randomly assigned to receive HAART after 2-4 or 8-12 weeks of starting ATT, and were followed for 12 months after HAART initiation. Participants received directly observed therapy short course (DOTS for TB, and an antiretroviral regimen comprising stavudine or zidovudine, lamivudine, and efavirenz. Primary end points were death from any cause, and progression of HIV disease marked by failure of ART. Findings A total of 150 patients with HIV and TB were initiated on HAART: 88 received it after 2-4 weeks (early ART and 62 after 8-12 weeks (delayed ART of starting ATT. There was no significant difference in mortality between the groups after the introduction of HAART. However, incidence of ART failure was 31% in delayed versus 16% in early ART arm (p = 0.045. Kaplan Meier disease progression free survival at 12 months was 79% for early versus 64% for the delayed ART arm (p = 0.05. Rates of adverse events were similar. Interpretation Early initiation of HAART for patients with HIV and TB significantly decreases incidence of HIV disease progression and has good tolerability. Trial registration CTRI/2011/12/002260

  8. Analysis on the clinical characters of optic neuritis caused by antituberculosis drugs%抗结核药物性视神经炎的临床分析

    Institute of Scientific and Technical Information of China (English)

    简奕娈; 古卓云; 魏琳; 张言斌

    2014-01-01

    目的:总结抗结核药物所致的视神经炎临床特点,探讨防治对策。  方法:回顾性分析广州市胸科医院2003-01/2013-01门诊和病房患者在抗结核治疗过程中出现药物性视神经炎的临床特点。  结果:抗结核药物治疗引起的药物性视神经炎不多见(17/60000),以球后视神经炎多见,引起视神经炎的抗结核药物主要是乙胺丁醇,其次是异烟肼、链霉素。明确诊断后及时停用与视神经炎相关的结核药,并根据病情给予补充维生素,扩张血管,激素等治疗,患者的视力都有不同程度的提高。  结论:在使用抗结核药期间要注意患者视力变化情况出现突发视力下降应作眼科检查,并及时给予干预,防止失明的严重后果。%To summarize the clinical characters of optic neuritis caused by antituberculosis drugs, and to discuss the prevention countermeasures. ● METHODS: The clinical characters of optic neuritis caused by antituberculosis drugs among those outpatients and ward patients from January 2003 to January 2013 were reviewed and analyzed. ● RESULTS: Optic neuritis caused by antituberculosis drugs was rare ( 17 / 60000 ), while retrobulbar neuritis was common. The drugs inducing optical neuritis were mainly ethambutol, followed by isoniazid and streptomycin. The vision of patients would have different degrees of improvement via the following treatment after specific diagnosis, i. e. , timely stopping the tuberculosis medicine associated with optic neuritis, and taking vitamin supplements, dilating blood vessels and applying hormone therapy according to the illness. ●CONCLUSlON: We should pay attention to the change of the vision of patients during the usage of antituberculosis drugs. ln the case of sudden eyesight deterioration, ophthalmology examination and timely treatment are advised preventing blindness.

  9. Identification and deconvolution of cross-resistance signals from antimalarial compounds using multidrug-resistant Plasmodium falciparum strains.

    Science.gov (United States)

    Chugh, Monika; Scheurer, Christian; Sax, Sibylle; Bilsland, Elizabeth; van Schalkwyk, Donelly A; Wicht, Kathryn J; Hofmann, Natalie; Sharma, Anil; Bashyam, Sridevi; Singh, Shivendra; Oliver, Stephen G; Egan, Timothy J; Malhotra, Pawan; Sutherland, Colin J; Beck, Hans-Peter; Wittlin, Sergio; Spangenberg, Thomas; Ding, Xavier C

    2015-02-01

    Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.

  10. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response.

    Science.gov (United States)

    Veiga, Maria Isabel; Osório, Nuno S; Ferreira, Pedro Eduardo; Franzén, Oscar; Dahlstrom, Sabina; Lum, J Koji; Nosten, Francois; Gil, José Pedro

    2014-12-01

    Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.

  11. Five prevalent antiprotozoal herbal drugs

    Directory of Open Access Journals (Sweden)

    Mohammad Azadbakht1

    2008-01-01

    Full Text Available , (Received 21 Jun, 2008 ; Accepted 12 Nov, 2008 AbstractAccording to the statistics provided by the World Health Organization (WHO, about 80% of the world population nowadays uses herbal drugs for treatment of diseases. Natural products obtained from medicinal plants, serve as a great source for drug production and are the main basis of new drug compounds. Unicellular organisms (Protozoa are the cause of deaths and spread of diseases in various societies, especially in developing countries. There are anti-malaria herbal dugs produced from various medicinal plants, some of which are used for treatment of the disease and some under study. The first anti-malaria drug was quinine, produced from bark of the Cinchona tree. Recently, the drug artemisinin has been introduced by Chinese scientists for the treatment of malaria and is currently used extensively. Coetaneous leishmaniosis (salak is one of the endemic diseases in most parts of Iran. Common drugs used against leishmaniosis (such as glucantim, have severe side-effects and in 10 to 25% of cases, there is a recurrence of the disease. Emetine is one of the drugs obtained from a root of the plant Ipecac, which is used for treatment of the disease sub-cutaneously. Giardiasis is an acute protozoan infection usually with no clinical symptoms, however, may appear as acute or chronic diarrhea. According to the announcement of WHO, more than 2/3 of the world’s population is infected with intestinal parasites and the prevalence of giardia is higher than other intestinal parasites. Herbal drugs, such as wild garlic, eucalyptus and thyme, are some of the major plants which can annihilate the giarda cysts. Annually, 75000 to 100000 people die of amebiasis (dysentery worldwide. Due to the motility of the organism, it causes sever pathological changes and sometimes colon ulcers, and if entered into the blood stream, it may appear as liver or brain abscess. Medicinal plants such as ipecac, mango, and papaya tree are some of the anti-amebic (Entamoeba histolytic plants. Trichomoniasis is a protozoal urogentital infection in men and women transmitted through sexual intercourse. The most effective drug against trichomona is metronidazole, albeit, there are several reports on its side effects and its spread of resistance. Medicinal plants, such as Myrtle and Lavender are among the main plants whose extracts and essence are effective against Trichomonas vaginalis. J Mazand Univ Med Sci 2008; 18(67: 118-132 (Persian

  12. Five prevalent antiprotozoal herbal drugs

    OpenAIRE

    Mohammad Azadbakht; Masoud Azadbakht2

    2008-01-01

    , (Received 21 Jun, 2008 ; Accepted 12 Nov, 2008) AbstractAccording to the statistics provided by the World Health Organization (WHO), about 80% of the world population nowadays uses herbal drugs for treatment of diseases. Natural products obtained from medicinal plants, serve as a great source for drug production and are the main basis of new drug compounds. Unicellular organisms (Protozoa) are the cause of deaths and sp...

  13. Antiprotozoal activity of Senna racemosa.

    Science.gov (United States)

    Moo-Puc, Rosa E; Mena-Rejon, Gonzalo J; Quijano, Leovigildo; Cedillo-Rivera, Roberto

    2007-06-13

    Methanol extracts of leaves, roots and bark of Senna racemosa (Mill.) H.S. Irwin & Barneby (syn. Cassia racemosa Mill.) were tested for antiprotozooal activity against Giardia intestinalis and Entamoeba histolytica. All of the tested extracts showed good activity against both protozoa species. Extracts from stem bark and leaves were most active, with an IC(50) of 2.10 microg/mL for Giardia intestinalis and 3.87 microg/mL for Entamoeba histolytica. Of the previously isolated compounds from Senna racemosa, the piperidine alkaloid cassine had greater activity against Giardia intestinalis with an IC(50) of 3.28 microg/mL and chrysophanol, a 1,8-dihydroxy-anthraquinone, was the most active agent against Entamoeba histolytica, with an IC(50) of 6.21 microg/mL.

  14. CoMFA, CoMSIA, and docking studies on thiolactone-class of potent anti-malarials: identification of essential structural features modulating anti-malarial activity.

    Science.gov (United States)

    Roy, Kuldeep K; Bhunia, Shome S; Saxena, Anil K

    2011-09-01

    The integrated ligand- and structure-based drug design techniques have been applied on a homogeneous dataset of thiolactone-class of potent anti-malarials, to explore the essential structural features for the inhibition of Plasmodium falciparum. Developed CoMFA (q(2) = 0.716) and CoMSIA (q(2) = 0.632) models well explained structure-activity variation in both the training (CoMFA R(2) = 0.948 & CoMSIA R(2) = 0.849) and test set (CoMFA R(2) (pred) = 0.789 & CoMSIA R(2) (pred) = 0.733) compounds. The docking and scoring of the most active compound 10 into the active site of high-resolution (2.35 Å) structure of FabB-TLM binary complex (PDB-ID: 1FJ4) indicated that thiolactone core of this compound forms bifurcated H-bonding with two catalytic residues His298 and His333, and its saturated decyl side group is stabilized by hydrophobic interactions with the residues of a small hydrophobic groove, illustrating that the active site architecture, including two catalytic histidines and a small hydrophobic groove, is vital for protein-ligand interaction. In particular, the length and flexibility of the side group attached to the position 5 of thiolactone have been observed to play a significant role in the interaction with FabB enzyme. These results present scope for rational design of thiolactone-class of compounds that could furnish improved anti-malarial activity.

  15. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome.

    Science.gov (United States)

    Ancolio, C; Azas, N; Mahiou, V; Ollivier, E; Di Giorgio, C; Keita, A; Timon-David, P; Balansard, G

    2002-11-01

    Methanol and chloroform extracts were prepared from various parts of four plants collected in Mali: Guiera senegalensis (Gmel.) Combretaceae, Feretia apodanthera (Del.) Rubiaceae, Combretum micranthum (Don.) Combretaceae, Securidaca longepedunculata (Fres.) Polygalaceae and two plants -collected in Sao Tome: Pycnanthus angolensis (Welw.) Myristicaceae and Morinda citrifolia (Benth.) Rubiaceae were assessed for their in vitro antimalarial activity and their cytotoxic effects on human monocytes (THP1 cells) by flow cytometry. The methanol extract of leaves of Feretia apodanthera and the chloroform extract of roots of Guiera senegalensis exhibited a pronounced antimalarial activity. Two alkaloids isolated from the active extract of Guiera senegalensis, harman and tetrahydroharman, showed antimalarial activity (IC(50) lower than 4 microg/mL) and displayed low toxicity against THP1. Moreover, the decrease of THP1 cells in S phase of the cell cycle, after treatment with harman and tetrahydroharman, was probably due to an inhibition of total protein synthesis.

  16. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin.

    Science.gov (United States)

    Kumar, Sahil; Singh, Rajesh K; Sharma, Rajiv; Murthy, R S R; Bhardwaj, T R

    2015-01-23

    Various polymer drug conjugates (13-16) such as primaquine and dihydroartemisinin conjugated 2-propoxy substituted polyphosphazenes (13), primaquine and dihydroartemisinin conjugated 4-acetamidophenoxy substituted polyphosphazenes (14), primaquine and dihydroartemisinin conjugated 4-formyl substituted polyphosphazenes (15) and primaquine and dihydroartemisinin conjugated 4-aminoethylbenzoate substituted polyphosphazenes (16) were synthesized using substituted polyphosphazenes as polymer and primaquine and dihydroartemisinin as combination antimalarial pharmacophores and formulated to nanoparticles to achieve novel controlled combined drug delivery approach for radical cure of malaria. The polymeric backbone was suitably substituted to impart different physicochemical properties. The polymer-drug conjugates were characterized by IR, (1)H NMR, (31)P NMR and their molecular weights were determined by Gel Permeation Chromatography. The thermal properties of the conjugates (13-16) were studied by DSC and TGA. The conjugates (13-16) were then formulated to nanoparticles formulations to increase their uptake by hepatocytes and to achieve targeted drug delivery. The nanoparticle formulations were characterized by Zeta Sizer and their morphology were studied by TEM (Transmission Electron Microscopy) imaging. The nanoparticles formulations exhibited biphasic in vitro drug release profile, the initial burst release followed by a sustained release owing to the non-fickian diffusion during first step release and fickian diffusion during second step release. In vivo antimalarial efficacy was tested using Plasmodium berghei (NK65 resistant strain) infected swiss albino mice at different doses. The combination therapy exhibited promising antimalarial efficacy at lower doses in comparison to the standard drug combination. Further, this combination therapy provided protection over 35days without any recrudescence, thus proving to be effective against resistant malaria. The study

  17. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  18. Antimalarial efficacy of Albizia lebbeck (Leguminosae against Plasmodium falciparum in vitro & P. berghei in vivo

    Directory of Open Access Journals (Sweden)

    Shagun Kalia

    2015-01-01

    Full Text Available Background & objectives: Albizia lebbeck Benth. (Leguminosae has long been used in Indian traditional medicine. The current study was designed to test antimalarial activity of ethanolic bark extract of A. lebbeck (EBEAL. Methods: EBEAL was prepared by soxhlet extraction and subjected to phytochemical analysis. The extract was evaluated for its in vitro antimalarial activity against Plasmodium falciparum chloroquine (CQ sensitive (MRC2 and CQ resistant (RKL9 strains. Cytotoxicity (CC 50 of extract against HeLa cells was evaluated. Median lethal dose (LD 50 was determined to assess safety of EBEAL in BALB/c mice. Schizonticidal (100-1000 mg/kg and preventive (100-750 mg/kg activities of EBEAL were evaluated against P. berghei. Curative activity (100-750 mg/kg of extract was also evaluated. Results: Phytochemical screening revealed presence of alkaloids, flavonoids, phenols, saponins, terpenes and phytosterols. The extract exhibited IC 50 of 8.2 µg/ml (MRC2 and 5.1 µg/ml (RKL9. CC 50 of extract on HeLa cell line was calculated to be >1000 µg/ml. EBEAL showed selectivity indices (SI of >121.9 and >196.07 against MRC2 and RKL9 strains of P. falciparum, respectively. LD 50 of EBEAL was observed to be >5 g/kg. Dose-dependent chemosuppression was observed with significant ( p100 mg/kg. Significant (P<0.001 curative and repository activities were exhibited by 750 mg/kg concentration of extract on D7. Interpretation & conclusions: The present investigation reports antiplasmodial efficacy of EBEAL in vitro against P. falciparum as evident by high SI values. ED 50 of <100 mg/kg against P. berghei categorizes EBEAL as active antimalarial. Further studies need to be done to exploit its antiplasmodial activity further.

  19. Understanding Private Sector Antimalarial Distribution Chains: A Cross-Sectional Mixed Methods Study in Six Malaria-Endemic Countries

    Science.gov (United States)

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Rueda, Sergio Torres; Kiefer, Sabine; O’Connell, Kathryn A.; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Chavasse, Desmond

    2014-01-01

    Background Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia). Methods and Findings We conducted nationally representative surveys of antimalarial wholesalers during 2009–2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4–6 steps between manufacturer and retailer; however, most likely pass through 2–3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important

  20. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    Directory of Open Access Journals (Sweden)

    Benjamin Palafox

    Full Text Available BACKGROUND: Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia. METHODS AND FINDINGS: We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are

  1. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development.

    Science.gov (United States)

    Deniskin, Roman; Frame, I J; Sosa, Yvett; Akabas, Myles H

    2016-04-01

    Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM), compared to guanosine (14.9 μM) and adenosine (142 μM). For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs

  2. Molecular Farming in Artemisia annua, a sustainable approach to improve anti-malarial drug production

    Directory of Open Access Journals (Sweden)

    Giuseppe ePulice

    2016-03-01

    Full Text Available Malaria is a parasite infection affecting millions of people worldwide. Even though progresses in prevention and treatment have been developed, 198 million cases of malaria occurred in 2013, resulting in 584000 estimated deaths. 90% of all malaria deaths occurred in Africa, mostly among children under the age of five. This article aims to review malaria’s history, epidemiology and current treatments, with a particular focus on the potential of molecular farming that use metabolic engineering in plants as effective anti-malarial solution. Malaria indeed represents an example of how a health problem on one hand, may eventually influence the proper development of a country due to the burden of the disease, and on the other hand, constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is here proposed as a sustainable alternative for the production not only of natural herbal repellents used for malaria prevention but also for the production of sustainable anti-malarial drugs like artemisinin used for primary parasite infection treatments.Artemisinin, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua plant. However, the low concentration of artemisinin in plant makes this molecule relatively expensive and difficult to meet the worldwide demand of Artemisinin Combination Therapies, especially for economically disadvantaged people in developing countries. The biosynthetic pathway of artemisinin, a process that only takes place in glandular secretory trichomes of A. annua, is relatively well elucidated, and significant efforts using plant genetic engineering have been made to increase the production of this compound. These include studies on diverse transcription factors, which all have been shown to regulate artemisinin genetic pathway and other biological processes. Therefore, genetic manipulation of these genes may be used as a cost-effective potential

  3. In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003

    Directory of Open Access Journals (Sweden)

    Mungthin Mathirut

    2005-08-01

    Full Text Available Abstract Background The Thai-Myanmar and Thai-Cambodia borders have been historically linked with the emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs. Indeed, the areas are often described as harbouring multi-drug resistant parasites. These areas of Thailand have experienced significant changes in antimalarial drug exposure patterns over the past decade. This study describes the in vitro antimalarial susceptibility patterns of 95 laboratory-adapted P. falciparum isolates, collected between 1998 and 2003,. Methods Ninety five P. falciparum isolates were collected from five sites in Thailand between 1998 and 2003. After laboratory adaptation to in vitro culture, the susceptibility of these parasites to a range of established antimalarial drugs (chloroquine [CQ], mefloquine [MQ], quinine [QN] and dihydroartemisinin [DHA] was determined by the isotopic microtest. Results Mefloquine (MQ sensitivity remained poorest in areas previously described as MQ-resistant areas. Sensitivity to MQ of parasites from this area was significantly lower than those from areas reported to harbour moderate (p = 0.002 of low level MQ resistance (p = 000001. Importantly for all drugs tested, there was a considerable range in absolute parasite sensitivities. There was a weak, but statistically positive correlation between parasite sensitivity to CQ and sensitivity to both QN and MQ and a positive correlation between MQ and QN. In terms of geographical distribution, parasites from the Thai-Cambodia were tended to be less sensitive to all drugs tested compared to the Thai-Myanmar border. Parasite sensitivity to all drugs was stable over the 6-year collection period with the exception of QN. Conclusion This study highlights the high degree of variability in parasite drug sensitivity in Thailand. There were geographical differences in the pattern of resistance which might reflect differences in drug usage in each area. In contrast to many

  4. Synthesis and structure-activity relationships of 4-pyridones as potential antimalarials.

    Science.gov (United States)

    Yeates, Clive L; Batchelor, John F; Capon, Edward C; Cheesman, Neil J; Fry, Mitch; Hudson, Alan T; Pudney, Mary; Trimming, Helen; Woolven, James; Bueno, José M; Chicharro, Jesús; Fernández, Esther; Fiandor, José M; Gargallo-Viola, Domingo; Gómez de las Heras, Federico; Herreros, Esperanza; León, María L

    2008-05-08

    A series of diaryl ether substituted 4-pyridones have been identified as having potent antimalarial activity superior to that of chloroquine against Plasmodium falciparum in vitro and murine Plasmodium yoelii in vivo. These were derived from the anticoccidial drug clopidol through a systematic study of the effects of varying the side chain on activity. Relative to clopidol the most active compounds show >500-fold improvement in IC50 for inhibition of P. falciparum in vitro and about 100-fold improvement with respect to ED50 against P. yoelii in mice. These compounds have been shown elsewhere to act selectively by inhibition of mitochondrial electron transport at the cytochrome bc1 complex.

  5. Synthesis and antimalarial activity of new 3-arylquinoxaline-2-carbonitrile derivatives.

    Science.gov (United States)

    Zarranz, Belén; Jaso, Andrés; Aldana, Ignacio; Monge, Antonio; Maurel, Séverine; Deharo, Eric; Jullian, Valérie; Sauvain, Michel

    2005-01-01

    New series of 3-arylquinoxaline-carbonitrile derivatives have been synthesized from various 5-substituted or 5,6-disubstituted benzofuroxanes and tested for their in vitro and in vivo activity against the erythrocytic development of Plasmodium falciparum strain with different chloroquine-resistance status. Quinoxaline 1,4-dioxide derivatives showed superior antimalarial activity in respect to reduced quinoxaline analogues. The best activity was observed with nonsubstituted quinoxaline 1,4-dioxides in positions 6 and 7 of the aromatic ring and with a hydrogen or chloro substituent in para position of the phenyl group.

  6. Synthesis and antimalarial evaluation of some 4-quinazolinone derivatives based on febrifugine

    Directory of Open Access Journals (Sweden)

    Debanjan Sen

    2010-01-01

    Full Text Available A series of 2-substituted and 2,3-substituted quinazolin -4(3H-one derivatives were designed and synthesized based on the structure of febrifugine. The structures of the new compounds were confirmed by spectral analysis. The in vivo biological activity test results indicated that those compounds exhibited antimalarial activities against Plasmodium berghei in mice, at a dose of 5 mg/kg. Compared to Chloroquine and Artemisinin, these compounds have the advantages of shorter synthetic routes and consequently are highly cost effective in nature.

  7. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname

    Directory of Open Access Journals (Sweden)

    Evans Lawrence

    2012-06-01

    Full Text Available Abstract Background Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector and unlicensed facilities (informal sector is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. Methods To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Results Quality issues were observed in 45 of 77 (58% anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30 and 11% (5/47 respectively. A higher proportion of medicines sampled from the private sector 34% (11/32 failed quality control tests versus 16% (7/45 in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86% were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. Conclusions The findings of the studies in both countries point to

  8. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1 for antimalarial drug development

    Directory of Open Access Journals (Sweden)

    Roman Deniskin

    2016-04-01

    Full Text Available Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs. Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1. Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1 homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine and pyrimidines ([3H]uridine, whereas wild type (fui1Δ yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM, compared to guanosine (14.9 μM and adenosine (142 μM. For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range. IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1. The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel

  9. Antimalarial drug resistance of Plasmodium falciparum in India: changes over time and space

    OpenAIRE

    Shah, Naman K.; Dhillon, Gajender P S; Dash, Adtiya P; Arora, Usha; Meshnick, Steven R.; Valecha, Neena

    2011-01-01

    After the launch of the National Malaria Control Programme in 1953, the number of malaria cases reported in India fell to an all-time low of 0·1 million in 1965. However, the initial success could not be maintained and a resurgence of malaria began in the late 1960s. Resistance of Plasmodium falciparum to chloroquine was first reported in 1973 and increases in antimalarial resistance, along with rapid urbanisation and labour migration, complicated the challenge that India’s large geographical...

  10. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

    Directory of Open Access Journals (Sweden)

    Kryzhanovsky D.G.

    2014-11-01

    Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

  11. Antimalarial Properties of Aqueous Crude Extracts of Gynostemma pentaphyllum and Moringa oleifera Leaves in Combination with Artesunate in Plasmodium berghei-Infected Mice

    Directory of Open Access Journals (Sweden)

    Voravuth Somsak

    2016-01-01

    Full Text Available Due to the emergence and spread of malaria parasite with resistance to antimalarial drugs, discovery and development of new, safe, and affordable antimalarial are urgently needed. In this respect, medicinal plant extracts are targets to optimize antimalarial actions and restore efficacy of standard antimalarial drugs. The present study was aimed at determining the antimalarial activities of Gynostemma pentaphyllum and Moringa oleifera leaf extracts in combination with artesunate against Plasmodium berghei-infected mice. P. berghei ANKA maintained by serial passage in ICR mice were used based on intraperitoneal injection of 1 × 107 parasitized erythrocytes and subsequent development of parasitemia. These infected mice were used to investigate the antimalarial activity of artesunate (6 mg/kg in combination with 500, 1,000, and 2,000 mg/kg of G. pentaphyllum and M. oleifera leaf extracts using 4-day suppressive test. It was found that these extracts showed significant (P<0.05 antimalarial activity in dose-dependent manner with percentage of suppression of 45, 50, and 55% for G. pentaphyllum leaf extract and 35, 40, and 50% for M. oleifera leaf extract. Additionally, artesunate combined with these extracts presented higher antimalarial activity, compared to extract treated alone with percentage of suppression of 78, 91, and 96% for G. pentaphyllum leaf extract and 73, 82, and 91% for M. oleifera leaf extract. The results indicated that combination treatment of G. pentaphyllum or M. oleifera leaf extracts with artesunate was able to increase the antimalarial activity by using low dose of artesunate. Hence, these results justified the combination of these extracts and artesunate in antimalarial herbal remedies.

  12. Antimalarial Properties of Aqueous Crude Extracts of Gynostemma pentaphyllum and Moringa oleifera Leaves in Combination with Artesunate in Plasmodium berghei-Infected Mice

    Science.gov (United States)

    Borkaew, Preeyanuch; Klubsri, Chokdee; Dondee, Kittiyaporn; Bootprom, Panatda; Saiphet, Butsarat

    2016-01-01

    Due to the emergence and spread of malaria parasite with resistance to antimalarial drugs, discovery and development of new, safe, and affordable antimalarial are urgently needed. In this respect, medicinal plant extracts are targets to optimize antimalarial actions and restore efficacy of standard antimalarial drugs. The present study was aimed at determining the antimalarial activities of Gynostemma pentaphyllum and Moringa oleifera leaf extracts in combination with artesunate against Plasmodium berghei-infected mice. P. berghei ANKA maintained by serial passage in ICR mice were used based on intraperitoneal injection of 1 × 107 parasitized erythrocytes and subsequent development of parasitemia. These infected mice were used to investigate the antimalarial activity of artesunate (6 mg/kg) in combination with 500, 1,000, and 2,000 mg/kg of G. pentaphyllum and M. oleifera leaf extracts using 4-day suppressive test. It was found that these extracts showed significant (P < 0.05) antimalarial activity in dose-dependent manner with percentage of suppression of 45, 50, and 55% for G. pentaphyllum leaf extract and 35, 40, and 50% for M. oleifera leaf extract. Additionally, artesunate combined with these extracts presented higher antimalarial activity, compared to extract treated alone with percentage of suppression of 78, 91, and 96% for G. pentaphyllum leaf extract and 73, 82, and 91% for M. oleifera leaf extract. The results indicated that combination treatment of G. pentaphyllum or M. oleifera leaf extracts with artesunate was able to increase the antimalarial activity by using low dose of artesunate. Hence, these results justified the combination of these extracts and artesunate in antimalarial herbal remedies. PMID:27872647

  13. Prediction of potential antimalarial targets of artemisinin based on protein information from whole genome of Plasmodium falciparum

    Institute of Scientific and Technical Information of China (English)

    HAN LiPing; HUANG Qiang; NAN Peng; ZHONG Yang

    2009-01-01

    On the basis of the genomic data and protein pathway information about Plasmodium falciparum clone 3D7 from the NCBI taxonomy database and the KEGG database,eight key protein enzymes in the signal pathways were selected to perform molecular docking with artemisinin.The binding modes obtained from the molecular docking suggested that purine nucleoside phosphorylase (pfPNP),peptide deformylase (pfPDF),and ribose 5-phosphate isomerase (pfRpiA) may be involved in the antimalarial mode of action of artemisinin.Artemisinin exhibited its antimalarial activity probably by interfering with the metabolic pathways of purine,pyrimidine,methionine,glyoxylate and dicarboxylate,or pentose phosphate.

  14. Synthesis and antimalarial activity evaluation of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one derivatives

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Kumawat

    2016-09-01

    Full Text Available Some novel derivatives of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro antimalarial activity against chloroquine sensitive strain of Plasmodium falciparum (RKL-2 employing chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities towards the parasite in comparison to the standard. It was found that antimalarial activity of 3-(3-(7-chloroquinolin-4-ylaminopropyl-2-(4-bromophenyl-1,3-thiazinan-4-one was marginally superior than all the compounds evaluated.

  15. Access to Artemisinin-Combination Therapy (ACT) and other Anti-Malarials: National Policy and Markets in Sierra Leone

    Science.gov (United States)

    Amuasi, John H.; Diap, Graciela; Nguah, Samuel Blay; Karikari, Patrick; Boakye, Isaac; Jambai, Amara; Lahai, Wani Kumba; Louie, Karly S.; Kiechel, Jean-Rene

    2012-01-01

    Malaria remains the leading burden of disease in post-conflict Sierra Leone. To overcome the challenge of anti-malarial drug resistance and improve effective treatment, Sierra Leone adopted artemisinin-combination therapy artesunate-amodiaquine (AS+AQ) as first-line treatment for uncomplicated P. falciparum malaria. Other national policy anti-malarials include artemether-lumefantrine (AL) as an alternative to AS+AQ, quinine and artemether for treatment of complicated malaria; and sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment (IPTp). This study was conducted to evaluate access to national policy recommended anti-malarials. A cross-sectional survey of 127 medicine outlets (public, private and NGO) was conducted in urban and rural areas. The availability on the day of the survey, median prices, and affordability policy and available non-policy anti-malarials were calculated. Anti-malarials were stocked in 79% of all outlets surveyed. AS+AQ was widely available in public medicine outlets; AL was only available in the private and NGO sectors. Quinine was available in nearly two-thirds of public and NGO outlets and over one-third of private outlets. SP was widely available in all outlets. Non-policy anti-malarials were predominantly available in the private outlets. AS+AQ in the public sector was widely offered for free. Among the anti-malarials sold at a cost, the same median price of a course of AS+AQ (US$1.56), quinine tablets (US$0.63), were found in both the public and private sectors. Quinine injection had a median cost of US$0.31 in the public sector and US$0.47 in the private sector, while SP had a median cost of US$0.31 in the public sector compared to US$ 0.63 in the private sector. Non-policy anti-malarials were more affordable than first-line AS+AQ in all sectors. A course of AS+AQ was affordable at nearly two days’ worth of wages in both the public and private sectors. PMID:23133522

  16. Investigation of indolglyoxamide and indolacetamide analogues of polyamines as antimalarial and antitrypanosomal agents.

    Science.gov (United States)

    Wang, Jiayi; Kaiser, Marcel; Copp, Brent R

    2014-05-28

    Pure compound screening has previously identified the indolglyoxy lamidospermidine ascidian metabolites didemnidine A and B (2 and 3) to be weak growth inhibitors of Trypanosoma brucei rhodesiense (IC50 59 and 44 μM, respectively) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 41 and 15 μM, respectively), but lacking in selectivity (L6 rat myoblast, IC50 24 μM and 25 μM, respectively). To expand the structure-activity relationship of this compound class towards both parasites, we have prepared and biologically tested a library of analogues that includes indoleglyoxyl and indoleacetic "capping acids", and polyamines including spermine (PA3-4-3) and extended analogues PA3-8-3 and PA3-12-3. 7-Methoxy substituted indoleglyoxylamides were typically found to exhibit the most potent antimalarial activity (IC50 10-92 nM) but with varying degrees of selectivity versus the L6 rat myoblast cell line. A 6-methoxyindolglyoxylamide analogue was the most potent growth inhibitor of T. brucei (IC50 0.18 μM) identified in the study: it, however, also exhibited poor selectivity (L6 IC50 6.0 μM). There was no apparent correlation between antimalarial and anti-T. brucei activity in the series. In vivo evaluation of one analogue against Plasmodium berghei was undertaken, demonstrating a modest 20.9% reduction in parasitaemia.

  17. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Directory of Open Access Journals (Sweden)

    Huthmacher Carola

    2010-08-01

    Full Text Available Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte. Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.

  18. Antimalarial activity of Ageratum conyzoides in combination with chloroquine and artesunate

    Institute of Scientific and Technical Information of China (English)

    Ukwe Chinwe V; Ekwunife Obinna I; Epueke Ebele A; Ubaka Chukwuemeka M

    2010-01-01

    Objective: To determine the suppressive and curative activity of aqueous leaf extract of Ageratum conyzoides (A. conyzoides) in combination with chloroquine and artesunate, respectively against Plasmodium berghei infection in mice. Methods: Using malaria (Plasmodium berghei) infected albino mice of both sexes, aqueous extracts of A. conyzoides in combination with chloroquine and artesunate were tested for antimalarial activity, respectively. Four-day suppressive test and Rane's curative test were carried out. Results: Suppressive tests showed significant dose dependent reduction in parasitemia level produced by the extract-chloroquine and extract-artesunate combinations. Suppressive activities of both extract-drug combinations were greater than the individual drugs alone. Extract-chloroquine (100:5) produced the highest suppressive effect (98% suppression). Curative tests showed absolute survival in two extract-drug combinations. Two extract-drug combinations produced higher curative effects than the individual drugs alone. The highest dose combinations of extract-chloroquine (100:5) and extract-artesunate (100:5) produced absolute parasitemia clearance (cure) in the infected mice. Conclusions: The study indicated that aqueous extract of A. conyzoides had the ability to potentiate the antimalarial activity of chloroquine and artesunate against induced plasmodiasis in mice. It contributes a lot in the malaria endemic and poverty stricken tropics.

  19. In silico analysis reveals the anti-malarial potential of quinolinyl chalcone derivatives.

    Science.gov (United States)

    Thillainayagam, Mahalakshmi; Pandian, Lavanya; Murugan, Kumar Kalavathy; Vijayaparthasarathi, Vijayakumar; Sundaramoorthy, Sarveswari; Anbarasu, Anand; Ramaiah, Sudha

    2015-01-01

    In this study, the correlation between chemical structures and various parameters such as steric effects and electrostatic interactions to the inhibitory activities of quinolinyl chalcone derivatives is derived to identify the key structural elements required in the rational design of potent and novel anti-malarial compounds. The molecular docking simulations and Comparative Molecular Field Analysis (CoMFA) are carried out on 38 chalcones derivatives using Plasmodium falciparum lactate dehydrogenase (PfLDH) as potential target. Surflex-dock is used to determine the probable binding conformations of all the compounds at the active site of pfLDH and to identify the hydrogen bonding interactions which could be used to alter the inhibitory activities. The CoMFA model has provided statistically significant results with the cross-validated correlation coefficient (q(2)) of .850 and the non-cross-validated correlation coefficient (r(2)) of .912. Standard error of estimation (SEE) is .280 and the optimum number of component is five. The predictive ability of the resultant model is evaluated using a test set comprising of 13 molecules and the predicted r(2) value is .885. The results provide valuable insight for optimization of quinolinyl chalcone derivatives for better anti-malarial therapy.

  20. Phycocyanin Extraction from Spirulina platensis and Its Antimalarial Activity In-Vitro

    Directory of Open Access Journals (Sweden)

    Diah Anggraini Wulandari

    2016-04-01

    Full Text Available Phycocyanin is a pigment-protein complex from the light-harvesting phycobiliprotein family which isoften found in cyanobacteria. The product phycocyanin produced by phanizomenon flos-aquae and Spirulinasp. The aim of this study were to determine the best solvents purification phycocanin from Spirulina platensisin three solvents, phosphate buffer, water and aceton ammonium sulphate and to evaluate the antimalarialactivity in vitro of phycocyanin in the best solvent extraction from S. platensis. The method of this study wasusing in-vitro antimalarial method. The result showed C- phycocyanin (C-PC, yield, and protein contentsof phycocyanin were 8 mg/mL, 20.22%, 1.88% extracted and purified by phosphate buffer, 6.63 mg/mL,16.58 %, 3.51% extracted and purified by water, 2.86 mg/mL, 7.15%, 8.4% extracted and purified by acetoneammonium sulphate respectively. Phosphate buffer was the best solvent of phycocyanin extraction from S.platensis. Antimalarial activity in vitro of phycocyanin in hosphate buffer against Plasmodium falciparumstrains 3D7 with IC50 was 158,489 μg/mL. The possible mechanism might be relied on the destruction ofpolymerization of Haemozoin by binding of C-PC with ferriprotoporphyrin-IX at the water surface of theplasma membrane.

  1. Gas chromatographic method for the determination of lumefantrine in antimalarial finished pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Sultan Suleman

    2015-09-01

    Full Text Available A simple method has been developed and validated for quantitative determination of lumefantrine in antimalarial finished pharmaceutical products using gas chromatography coupled to flame ionization detector. Lumefantrine was silylated with N,O–bis(trimethyl-silyltrifluoro-acetamide at 70°C for 30 minutes, and chromatographic separation was conducted on a fused silica capillary (HP-5, 30 m length × 0.32 mm i.d., 0.25 μm film thickness column. Evaluation of the method within analytical quality-by-design principles, including a central composite face-centered design for the sample derivatization process and Plackett–Burman robustness verification of the chromatographic conditions, indicated that the method has acceptable specificity toward excipients and degradants, accuracy [mean recovery = 99.5%, relative standard deviation (RSD = 1.0%], linearity (=0.9986, precision (intraday = 96.1% of the label claim, RSD = 0.9%; interday = 96.3% label claim, RSD = 0.9%, and high sensitivity with detection limits of 0.01 μg/mL. The developed method was successfully applied to analyze the lumefantrine content of marketed fixed-dose combination antimalarial finished pharmaceutical products.

  2. A framework for assessing the risk of resistance for anti-malarials in development

    Directory of Open Access Journals (Sweden)

    Ding Xavier C

    2012-08-01

    Full Text Available Abstract Resistance is a constant challenge for anti-infective drug development. Since they kill sensitive organisms, anti-infective agents are bound to exert an evolutionary pressure toward the emergence and spread of resistance mechanisms, if such resistance can arise by stochastic mutation events. New classes of medicines under development must be designed or selected to stay ahead in this vicious circle of resistance control. This involves both circumventing existing resistance mechanisms and selecting molecules which are resilient against the development and spread of resistance. Cell-based screening methods have led to a renaissance of new classes of anti-malarial medicines, offering us the potential to select and modify molecules based on their resistance potential. To that end, a standardized in vitro methodology to assess quantitatively these characteristics in Plasmodium falciparum during the early phases of the drug development process has been developed and is presented here. It allows the identification of anti-malarial compounds with overt resistance risks and the prioritization of the most robust ones. The integration of this strategy in later stages of development, registration, and deployment is also discussed.

  3. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model

    Directory of Open Access Journals (Sweden)

    Gayan S. Bamunuarachchi

    2013-12-01

    Full Text Available Background & objectives: Artemisinin isolated from Artemisia annua is the most potent antimalarial drug against chloroquine-resistant Plasmodium falciparum malaria. Artemisia vulgaris, an invasive weed, is the only Artemisia species available in Sri Lanka. A pilot study was undertaken to investigate the antiparasitic activity of an A. vulgaris ethanolic leaf extract (AVELE in a P. berghei ANKA murine malaria model that elicits pathogenesis similar to falciparum malaria. Methods: A 4-day suppressive and the curative assays determined the antiparasitic activity of AVELE using four doses (250, 500, 750 and 1000 mg/kg, Coartem® as the positive control and 5% ethanol as the negative control in male ICR mice infected with P. berghei. Results: The 500, 750 and 1000 mg/kg doses of AVELE significantly (p ≤0.01 inhibited parasitaemia by 79.3, 79.6 and 87.3% respectively, in the 4-day suppressive assay, but not in the curative assay. Chronic administration of the high dose of AVELE ruled out overt signs of toxicity and stress as well as hepatotoxicity, renotoxicity and haematotoxicity. Interpretation & conclusion: The oral administration of a crude ethonolic leaf extract of A. vulgaris is non-toxic and possesses potent antimalarial properties in terms of antiparasitic activity.

  4. Important drug interactions in patients with rheumatic disorders: interactions of glucocorticoids, immunosuppressants and antimalarial drugs.

    Science.gov (United States)

    Hromadkova, L; Soukup, T; Vlcek, J

    2012-08-01

    Despite the fact that biological treatments are very promising, classical immunosuppressants, antimalarial drugs and glucocorticosteroids are still very important and widely used in practice. Although drug interactions can have fatal consequences, few studies have reviewed drug interactions of these classical drugs used in rheumatology, and very few guidelines are available on this subject. Therefore, this report summarizes important interactions of immunosuppressants, antimalarial drugs and glucocorticosteroids with drugs commonly used in internal medicine. In the present study, more than 300 interactions were retrieved from the Micromedex ® database. The selection was reduced to the interactions rated as moderate, major or contraindicated. The selected interactions were further checked against PubMed ®, MEDLINE ®, InfoPharm Compendium of Drug Interactions and Summaries of Product Characteristics. For each interaction, its nature, mechanism, onset and clinical severity were indicated, documentation quality was rated and recommendations for clinical practice were formulated. Twenty significant interactions that we rated as moderate, severe and very severe were identified. Interacting drugs were warfarin, fluoroquinolones, azole antifungals, co-trimoxazole, proton pump inhibitors, amiodarone, cholestyramine, activated carbon, allopurinol, angiotensin-converting enzyme inhibitors, statins, digoxin, iron, aluminium and magnesium salts, and hepatotoxic and nephrotoxic agents.

  5. Phytochemical Analysis and Antimalarial Activity Aqueous Extract of Lecaniodiscus cupanioides Root.

    Science.gov (United States)

    Nafiu, Mikhail Olugbemiro; Abdulsalam, Taoheed Adedeji; Akanji, Musbau Adewumi

    2013-01-01

    Root aqueous extract of Lecaniodiscus cupanioides was evaluated for antimalarial activity and analyzed for its phytochemical constituents. Twenty-four (24) albino mice were infected by intraperitoneal injection of standard inoculum of chloroquine sensitive Plasmodium berghei (NK 65). The animals were randomly divided into 6 groups of 3 mice each. Group 1 served as the control while groups II-IV were orally administered 50, 150, and 250 mg/kg body weights of extract. Groups 5 and 6 received 1.75 and 5 mg/kg of artesunate and chloroquine, respectively. The results of the phytochemical analysis showed the presence of alkaloids (2.37%), saponin (0.336), tannin (0.012 per cent), phenol (0.008 per cent), and anthraquinone (0.002 per cent). There was 100 per cent parasite inhibition in the chloroquine group and 70 per cent in the 50 mg/kg body weight on day 12, respectively. The mean survival time (MST), for the control group was 14 days, artesunate 16 days, and chloroquine 30 days, while the groups that received 50 and 250 mg/kg body weight recorded similar MST of 17 days and the 150 mg/kg body weight group recorded 19 days. The results obtained indicated that the aqueous extract of Lecaniodiscus cupanioides may provide an alternative antimalarial.

  6. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.

    Science.gov (United States)

    Boss, Christoph; Aissaoui, Hamed; Amaral, Nathalie; Bauer, Aude; Bazire, Stephanie; Binkert, Christoph; Brun, Reto; Bürki, Cédric; Ciana, Claire-Lise; Corminboeuf, Olivier; Delahaye, Stephane; Dollinger, Claire; Fischli, Christoph; Fischli, Walter; Flock, Alexandre; Frantz, Marie-Céline; Girault, Malory; Grisostomi, Corinna; Friedli, Astrid; Heidmann, Bibia; Hinder, Claire; Jacob, Gael; Le Bihan, Amelie; Malrieu, Sophie; Mamzed, Saskia; Merot, Aurelien; Meyer, Solange; Peixoto, Sabrina; Petit, Nolwenn; Siegrist, Romain; Trollux, Julien; Weller, Thomas; Wittlin, Sergio

    2016-09-20

    More than 40 % of the world's population is at risk of being infected with malaria. Most malaria cases occur in the countries of sub-Saharan Africa, Central and South America, and Asia. Resistance to standard therapy, including artemisinin combinations, is increasing. There is an urgent need for novel antimalarials with new mechanisms of action. In a phenotypic screen, we identified a series of phenylalanine-based compounds that exhibit antimalarial activity via a new and yet unknown mechanism of action. Our optimization efforts culminated in the selection of ACT-451840 [(S,E)-N-(4-(4-acetylpiperazin-1-yl)benzyl)-3-(4-(tert-butyl)phenyl)-N-(1-(4-(4-cyanobenzyl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl)acrylamide] for clinical development. Herein we describe our optimization efforts from the screening hit to the potential drug candidate with respect to antiparasitic activity, drug metabolism and pharmacokinetics (DMPK) properties, and in vivo pharmacological efficacy.

  7. Formulation and particle size reduction improve bioavailability of poorly water-soluble compounds with antimalarial activity.

    Science.gov (United States)

    Wang, Hongxing; Li, Qigui; Reyes, Sean; Zhang, Jing; Xie, Lisa; Melendez, Victor; Hickman, Mark; Kozar, Michael P

    2013-01-01

    Decoquinate (DQ) is highly effective at killing malaria parasites in vitro; however, it is extremely insoluble in water. In this study, solid dispersion method was used for DQ formulation which created a suitable physical form of DQ in aqueous phase for particle manipulation. Among many polymers and surfactants tested, polyvinylpyrrolidone 10, a polymer, and L- α -phosphatidylcholine or polysorbate, two surfactants, were chosen as DQ formulation components. The formulation particles were reduced to a mean size between 200 to 400 nm, which was stable in aqueous medium for at least three weeks. Pharmacokinetic (PK) studies showed that compared to DQ microparticle suspension, a nanoparticle formulation orally dosed to mice showed a 14.47-fold increase in area under the curve (AUC) of DQ plasma concentration and a 4.53-fold increase in AUC of DQ liver distribution. WR 299666, a poorly water-soluble compound with antimalarial activity, was also tested and successfully made into nanoparticle formulation without undergoing solid dispersion procedure. We concluded that nanoparticles generated by using appropriate formulation components and sufficient particle size reduction significantly increased the bioavailability of DQ and could potentially turn this antimalarial agent to a therapeutic drug.

  8. QSAR modeling of antimalarial activity of urea derivatives using genetic algorithm–multiple linear regressions

    Directory of Open Access Journals (Sweden)

    Abolghasem Beheshti

    2016-05-01

    Full Text Available A quantitative structure–activity relationship (QSAR was performed to analyze antimalarial activities of 68 urea derivatives using multiple linear regressions (MLR. QSAR analyses were performed on the available 68 IC50 oral data based on theoretical molecular descriptors. A suitable set of molecular descriptors were calculated to represent the molecular structures of compounds, such as constitutional, topological, geometrical, electrostatic and quantum-chemical descriptors. The important descriptors were selected with the aid of the genetic algorithm (GA method. The obtained model was validated using leave-one-out (LOO cross-validation; external test set and Y-randomization test. The root mean square errors (RMSE of the training set, and the test set for GA–MLR model were calculated to be 0.314 and 0.486, the square of correlation coefficients (R2 were obtained 0.801 and 0.803, respectively. Results showed that the predictive ability of the model was satisfactory, and it can be used for designing similar group of antimalarial compounds.

  9. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    Directory of Open Access Journals (Sweden)

    Khodakarim Nastaran

    2010-05-01

    Full Text Available Abstract Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain and CY27 (chloroquine-sensitive strain, using the parasite lactate dehydrogenase (pLDH assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain. Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy, Solanum surattense (Burm.f. and Prosopis juliflora (Sw. showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time.

  10. Phytochemical screening, antimalarial and histopathological studies of Allophylus africanus and Tragia benthamii

    Institute of Scientific and Technical Information of China (English)

    Oladosu I.A.; Balogun S.O.; Ademowo G.O.

    2013-01-01

    The anti-malarial potential of different parts ofAllophylus africanus P.Beauv and Tragia benthamii Baker were determined in vivo for suppressive,curative and cytotoxic activities in mice receiving 0.2 mL of a standard inoculum size of 1 × 107 infected erythrocytes of Plasmodium berghei (NK-65) intraperitoneally.The A.africanus extracts suppressed parasitaemia following administration to infected mice by 92.82%-97.81% on day 7 post-infection against 96.81% for chloroquine.The infected extract-treated animals had significantly moderate (P < 0.05) packed cell volume (PCV) compared with the infected,untreated animals.Phytochemical screening revealed a predominance of tannins,saponins,flavonoids and carbohydrates in all parts of A.africanus,and alkaloids instead of flavonoids in the extract of T.benthamii.The results suggest that the extract possesses considerable antimalarial activity.These results support further studies on A.africanus.

  11. Evaluation of the Quality of Artemisinin-Based Antimalarial Medicines Distributed in Ghana and Togo

    Directory of Open Access Journals (Sweden)

    Dorcas Osei-Safo

    2014-01-01

    Full Text Available This study, conducted as part of our overall goal of regular pharmacovigilance of antimalarial medicines, reports on the quality of 132 artemisinin-based antimalarial medicines distributed in Ghana and Togo. Three methods were employed in the quality evaluation—basic (colorimetric tests for establishing the identity of the requisite active pharmaceutical ingredients (APIs, semi-quantitative TLC assay for the identification and estimation of API content, and HPLC assay for a more accurate quantification of API content. From the basic tests, only one sample totally lacked API. The HPLC assay, however, showed that 83.7% of the ACTs and 57.9% of the artemisinin-based monotherapies failed to comply with international pharmacopoeia requirements due to insufficient API content. In most of the ACTs, the artemisinin component was usually the insufficient API. Generally, there was a good correlation between the HPLC and SQ-TLC assays. The overall failure rates for both locally manufactured (77.3% and imported medicines (77.5% were comparable. Similarly the unregistered medicines recorded a slightly higher overall failure rate (84.7% than registered medicines (70.8%. Only two instances of possible cross-border exchange of medicines were observed and there was little difference between the medicine quality of collections from border towns and those from inland parts of both countries.

  12. Understanding the biology of the Plasmodium falciparum apicoplast; an excellent target for antimalarial drug development.

    Science.gov (United States)

    Chakraborty, Arnish

    2016-08-01

    Malaria is a life-threatening tropical disease, caused by the intracellular parasite Plasmodium falciparum. The World Health Organization counts malaria as one of the top ten causes of worldwide death. The unavailability of a successful malaria vaccine and the ever-increasing instances of drug resistance in the malaria parasite demand the discovery of new targets within P. falciparum for the development of next generation antimalarials. Fortunately, all apicomplexan parasites, including P. falciparum harbor a relict, non-photosynthetic plastid known as the apicoplast. The apicoplast is a semi-autonomous organelle within P. falciparum containing a 35kb circular genome. Despite a genome of its own, majority of the apicoplast proteins are encoded by the parasite nucleus and imported into the apicoplast. The organelle has been shown to be essential to P. falciparum survival and the loss the apicoplast manifests as a 'delayed death' response in the parasite. The apicoplast has evolved out of cyanobacteria in a complex, two step endosymbiotic event. As a result the architecture and the gene expression machinery of the apicoplast is quite bacteria-like and is susceptible to a wide range of antibiotics such as fosmidomycin, tetracycline, azithromycin, clindamycin and triclosan. The biosynthetic pathways for isoprenoids, fatty acids and heme operate within the malaria apicoplast, making the organelle an excellent target for drug development. The review focuses on the evolution, biology and the essentiality of the apicoplast within the malaria parasite and discusses some of the recent achievements towards the design and discovery of apicoplast targeted antimalarial compounds.

  13. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Science.gov (United States)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  14. Natural products as starting points for future anti-malarial therapies: going back to our roots?

    Directory of Open Access Journals (Sweden)

    Wells Timothy NC

    2011-03-01

    Full Text Available Abstract Background The discovery and development of new anti-malarials are at a crossroads. Fixed dose artemisinin combination therapy is now being used to treat a hundred million children each year, with a cost as low as 30 cents per child, with cure rates of over 95%. However, as with all anti-infective strategies, this triumph brings with it the seeds of its own downfall, the emergence of resistance. It takes ten years to develop a new medicine. New classes of medicines to combat malaria, as a result of infection by Plasmodium falciparum and Plasmodium vivax are urgently needed. Results Natural product scaffolds have been the basis of the majority of current anti-malarial medicines. Molecules such as quinine, lapachol and artemisinin were originally isolated from herbal medicinal products. After improvement with medicinal chemistry and formulation technologies, and combination with other active ingredients, they now make up the current armamentarium of medicines. In recent years advances in screening technologies have allowed testing of millions of compounds from pharmaceutical diversity for anti-malarial activity in cellular assays. These initiatives have resulted in thousands of new sub-micromolar active compounds – starting points for new drug discovery programmes. Against this backdrop, the paucity of potent natural products identified has been disappointing. Now is a good time to reflect on the current approach to screening herbal medicinal products and suggest revisions. Nearly sixty years ago, the Chinese doctor Chen Guofu, suggested natural products should be approached by dao-xing-ni-shi or ‘acting in the reversed order’, starting with observational clinical studies. Natural products based on herbal remedies are in use in the community, and have the potential unique advantage that clinical observational data exist, or can be generated. The first step should be the confirmation and definition of the clinical activity of herbal

  15. Recent progress in the identification and development of anti-malarial agents using virtual screening based approaches.

    Science.gov (United States)

    Shah, Priyanka; Tiwari, Sunita; Siddiqi, Mohammad Imran

    2015-01-01

    Malaria has continued to be one of the most perplexing diseases for biological science community around the world due to its prevalent devastating nature and quick developing resistance against the frontline drugs. Artimisinin-based combination therapy (ACT) has been so far found to be among the best therapies against Plasmodium pathogens but alarming emergence of resistance in parasites against every known chemotherapy has prompted the scientific community to step up all the efforts towards development of new and affordable anti-malarial drugs. Computer-aided approaches have received enormous attention in recent years in the field of identification and design of novel drugs. In this review, we summarize recently published research concerning the identification and development of anti-malarial compounds using virtual screening approaches. It would be admirable to discern the successful application of in silico studies for anti-malarial drug discovery hitherto and would certainly help in generating new avenues for pursuing integrated studies between the experimentalists and computational chemists in a systematic manner as a time and cost efficient alternative for future antimalarial drug discovery projects.

  16. Why hospital pharmacists have failed to manage antimalarial drugs stock-outs in pakistan? A qualitative insight.

    Science.gov (United States)

    Malik, Madeeha; Hassali, Mohamed Azmi Ahmad; Shafie, Asrul Akmal; Hussain, Azhar

    2013-01-01

    Purpose. This study aimed to explore the perceptions of hospital pharmacists towards drug management and reasons underlying stock-outs of antimalarial drugs in Pakistan. Methods. A qualitative study was designed to explore the perceptions of hospital pharmacists regarding drug management and irrational use of antimalarial drugs in two major cities of Pakistan, namely, Islamabad (national capital) and Rawalpindi (twin city). Semistructured interviews were conducted with 16 hospital pharmacists using indepth interview guides at a place and time convenient for the respondents. Interviews, which were audiotaped and transcribed verbatim, were evaluated by thematic content analysis and by other authors' analysis. Results. Most of the respondents were of the view that financial constraints, inappropriate drug management, and inadequate funding were the factors contributing toward the problem of antimalarial drug stock-outs in healthcare facilities of Pakistan. The pharmacists anticipated that prescribing by nonproprietary names, training of health professionals, accepted role of hospital pharmacist in drug management, implementation of essential drug list and standard treatment guidelines for malaria in the healthcare system can minimize the problem of drug stock outs in healthcare system of Pakistan. Conclusion. The current study showed that all the respondents in the two cities agreed that hospital pharmacist has failed to play an effective role in efficient management of anti-malarial drugs stock-outs.

  17. Why Hospital Pharmacists Have Failed to Manage Antimalarial Drugs Stock-Outs in Pakistan? A Qualitative Insight

    Directory of Open Access Journals (Sweden)

    Madeeha Malik

    2013-01-01

    Full Text Available Purpose. This study aimed to explore the perceptions of hospital pharmacists towards drug management and reasons underlying stock-outs of antimalarial drugs in Pakistan. Methods. A qualitative study was designed to explore the perceptions of hospital pharmacists regarding drug management and irrational use of antimalarial drugs in two major cities of Pakistan, namely, Islamabad (national capital and Rawalpindi (twin city. Semistructured interviews were conducted with 16 hospital pharmacists using indepth interview guides at a place and time convenient for the respondents. Interviews, which were audiotaped and transcribed verbatim, were evaluated by thematic content analysis and by other authors’ analysis. Results. Most of the respondents were of the view that financial constraints, inappropriate drug management, and inadequate funding were the factors contributing toward the problem of antimalarial drug stock-outs in healthcare facilities of Pakistan. The pharmacists anticipated that prescribing by nonproprietary names, training of health professionals, accepted role of hospital pharmacist in drug management, implementation of essential drug list and standard treatment guidelines for malaria in the healthcare system can minimize the problem of drug stock outs in healthcare system of Pakistan. Conclusion. The current study showed that all the respondents in the two cities agreed that hospital pharmacist has failed to play an effective role in efficient management of anti-malarial drugs stock-outs.

  18. Design, synthesis and in vitro evaluation of tetrahydropyrimidine-isatin hybrids as potential antitubercular and antimalarial agents

    Institute of Scientific and Technical Information of China (English)

    Tarunkumar Nanjibhai Akhaja; Jignesh Priyakant Raval

    2012-01-01

    A series of 5-substituted-3-[{5-(6-methyl-2-oxo/thioxo-4-phenyl-1,2,3,4-tetrahydropyrimidin-5-yl)-1,3,4-oxadiazol-2-yl}-imino]-1,3-dihydro-2H-indol-2-one were synthesized,characterized and screened for their anti-tubercular and antimalarial activity.

  19. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products

    Directory of Open Access Journals (Sweden)

    Alaíde Braga de Oliveira

    2009-08-01

    Full Text Available Malaria is still the most destructive and dangerous parasitic infection in many tropical and subtropical countries. The burden of this disease is getting worse, mainly due to the increasing resistance of Plasmodium falciparum against the widely available antimalarial drugs. There is an urgent need for new, more affordable and accessible antimalarial agents possessing original modes of action. Natural products have played a dominant role in the discovery of leads for the development of drugs to treat human diseases, and this fact anticipates that new antimalarial leads may certainly emerge from tropical plant sources. This present review covers most of the recently-published non-alkaloidal natural compounds from plants with antiplasmodial and antimalarial properties, belonging to the classes of terpenes, limonoids, flavonoids, chromones, xanthones, anthraquinones, miscellaneous and related compounds, besides the majority of papers describing antiplasmodial crude extracts published in the last five years not reviewed before. In addition, some perspectives and remarks on the development of new drugs and phytomedicines for malaria are succinctly discussed.

  20. Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery.

    Science.gov (United States)

    McCarty, Sara E; Schellenberger, Amanda; Goodwin, Douglas C; Fuanta, Ngolui Rene; Tekwani, Babu L; Calderón, Angela I

    2015-01-01

    The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR), an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper provides an overview of the structure and function of TrxR, discusses similarities and differences between the thioredoxin reductases (TrxRs) of different Plasmodium species and the human forms of the enzyme, gives an overview of modeling Plasmodium infections in animals, and suggests the role of Trx functions in antimalarial drug resistance. TrxR of Plasmodium falciparum is a central focus of this paper since it is the only Plasmodium TrxR that has been crystallized and P. falciparum is the species that causes most malaria cases. It is anticipated that the information summarized here will give insight and stimulate new directions in which research might be most beneficial.

  1. Plants as Sources of Antimalarial Drugs Part. 1. In vitro Test Method for the Evaluation of Crude Extracts from Plants.

    Science.gov (United States)

    O'neill, M J; Bray, D H; Boardman, P; Phillipson, J D; Warhurst, D C

    1985-10-01

    An IN VITRO antimalarial test, utilising the inhibition of uptake of [G- (3)H]-hypoxanthine into PLASMODIUM FALCIPARUM cultured in human blood, has been used to assess the activity of crude extracts of ARTEMISIA ANNUA and A. VULGARIS (Compositae) and of BRUCEA JAVANICA, AILANTHUS ALTISSIMA, and SIMABA CEDRON (Simaroubaceae).

  2. Safety and tolerability of combination antimalarial therapies for uncomplicated falciparum malaria in Ugandan children

    Directory of Open Access Journals (Sweden)

    Kamya Moses R

    2008-06-01

    Full Text Available Abstract Background Combination antimalarial therapy is recommended for the treatment of uncomplicated falciparum malaria in Africa; however, some concerns about the safety and tolerability of new regimens remain. This study compared the safety and tolerability of three combination antimalarial regimens in a cohort of Ugandan children. Methods A longitudinal, single-blind, randomized clinical trial of children was conducted between November 2004 and May 2007 in Kampala, Uganda. Upon diagnosis of the first episode of uncomplicated malaria, participants were randomized to treatment with amodiaquine + sulphadoxine-pyrimethamine (AQ+SP, artesunate + amodiaquine (AS+AQ, or artemether-lumefantrine (AL. Once randomized, participants received the same regimen for all subsequent episodes of uncomplicated malaria. Participants were actively monitored for adverse events for the first 14 days after each treatment, and then passively followed until their next study medication treatment, or withdrawal from study. Outcome measures included the risk of adverse events at 14 and 42 days after treatment. Results Of 601 enrolled children, 382 were diagnosed with at least one episode of uncomplicated malaria and were treated with study medications. The median age at treatment was 6.3 years (range 1.1 – 12.3 years. At 14 days of follow-up, AQ+SP treatment was associated with a higher risk of anorexia, weakness, and subjective fever than treatment with AL, and a higher risk of weakness, and subjective fever than treatment with AS+AQ. Treatment with AL was associated with a higher risk of elevated temperature. Repeated episodes of neutropaenia associated with AS+AQ were detected in one participant. Considering only children less than five years, those who received AQ+SP were at higher risk of developing moderate or severe anorexia and weakness than those treated with AL (anorexia: RR 3.82, 95% CI 1.59 – 9.17; weakness: RR 5.40, 95% CI 1.86 – 15.7, or AS

  3. Smart nanocrystals of artemether: fabrication, characterization, and comparative in vitro and in vivo antimalarial evaluation

    Science.gov (United States)

    Shah, Syed Muhammad Hassan; Ullah, Farhat; Khan, Shahzeb; Shah, Syed Muhammad Mukarram; de Matas, Marcel; Hussain, Zahid; Minhas, Muhammad Usman; AbdEl-Salam, Naser M; Assi, Khaled Hafez; Isreb, Mohammad

    2016-01-01

    Artemether (ARTM) is a very effective antimalarial drug with poor solubility and consequently low bioavailability. Smart nanocrystals of ARTM with particle size of 161±1.5 nm and polydispersity index of 0.172±0.01 were produced in <1 hour using a wet milling technology, Dena® DM-100. The crystallinity of the processed ARTM was confirmed using differential scanning calorimetry and powder X-ray diffraction. The saturation solubility of the ARTM nanocrystals was substantially increased to 900 µg/mL compared to the raw ARTM in water (145.0±2.3 µg/mL) and stabilizer solution (300.0±2.0 µg/mL). The physical stability studies conducted for 90 days demonstrated that nanocrystals stored at 2°C–8°C and 25°C were very stable compared to the samples stored at 40°C. The nanocrystals were also shown to be stable when processed at acidic pH (2.0). The solubility and dissolution rate of ARTM nanocrystals were significantly increased (P<0.05) compared to those of its bulk powder form. The results of in vitro studies showed significant antimalarial effect (P<0.05) against Plasmodium falciparum and Plasmodium vivax. The IC50 (median lethal oral dose) value of ARTM nanocrystals was 28- and 54-fold lower than the IC50 value of unprocessed drug and 13- and 21-fold lower than the IC50 value of the marketed tablets, respectively. In addition, ARTM nanocrystals at the same dose (2 mg/kg) showed significantly (P<0.05) higher reduction in percent parasitemia (89%) against P. vivax compared to the unprocessed (27%), marketed tablets (45%), and microsuspension (60%). The acute toxicity study demonstrated that the LD50 value of ARTM nanocrystals is between 1,500 mg/kg and 2,000 mg/kg when given orally. This study demonstrated that the wet milling technology (Dena® DM-100) can produce smart nanocrystals of ARTM with enhanced antimalarial activities. PMID:27920499

  4. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  5. Quinolinemethanol Antimalarials.

    Science.gov (United States)

    1974-12-01

    COC1121Br 106-163 5 CjirO ad 6-Me Ph1F COCI1213r 13-4-136 72 CInl133rFNO 5e 7-CF, H COCH ,Br 203-205 deck 63 C,,l1,lrF3NO*HBrl 7& 7-CFs H CH-CH, 60-621 72 C...and II, starting from the corresponding quinoline-l- R R\\ H carboxylic acids (IV), is outlined in Scheme I and re- LICocII, cocH , duces the number of

  6. Discovery of new antimalarial chemotypes through chemical methodology and library development.

    Science.gov (United States)

    Brown, Lauren E; Chih-Chien Cheng, Ken; Wei, Wan-Guo; Yuan, Pingwei; Dai, Peng; Trilles, Richard; Ni, Feng; Yuan, Jing; MacArthur, Ryan; Guha, Rajarshi; Johnson, Ronald L; Su, Xin-zhuan; Dominguez, Melissa M; Snyder, John K; Beeler, Aaron B; Schaus, Scott E; Inglese, James; Porco, John A

    2011-04-26

    In an effort to expand the stereochemical and structural complexity of chemical libraries used in drug discovery, the Center for Chemical Methodology and Library Development at Boston University has established an infrastructure to translate methodologies accessing diverse chemotypes into arrayed libraries for biological evaluation. In a collaborative effort, the NIH Chemical Genomics Center determined IC(50)'s for Plasmodium falciparum viability for each of 2,070 members of the CMLD-BU compound collection using quantitative high-throughput screening across five parasite lines of distinct geographic origin. Three compound classes displaying either differential or comprehensive antimalarial activity across the lines were identified, and the nascent structure activity relationships (SAR) from this experiment used to initiate optimization of these chemotypes for further development.

  7. Incorporation of basic side chains into cryptolepine scaffold: structure-antimalarial activity relationships and mechanistic studies.

    Science.gov (United States)

    Lavrado, João; Cabal, Ghislain G; Prudêncio, Miguel; Mota, Maria M; Gut, Jiri; Rosenthal, Philip J; Díaz, Cecília; Guedes, Rita C; dos Santos, Daniel J V A; Bichenkova, Elena; Douglas, Kenneth T; Moreira, Rui; Paulo, Alexandra

    2011-02-10

    The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity when compared with the parent compound. Localization studies inside parasite blood stages by fluorescence microscopy showed that these derivatives accumulate inside the nucleus, indicating that the incorporation of a basic side chain is not sufficient enough to promote selective accumulation in the acidic digestive vacuole of the parasite. Most of the compounds within this series showed the ability to bind to a double-stranded DNA duplex as well to monomeric hematin, suggesting that these are possible targets associated with the observed antimalarial activity. Overall, these novel cryptolepine analogues with substantially improved antiplasmodial activity and selectivity index provide a promising starting point for development of potent and highly selective agents against drug-resistant malaria parasites.

  8. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    Directory of Open Access Journals (Sweden)

    Valtcho D Zheljazkov

    Full Text Available A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L. seed (fruits. Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT. Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed, was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range, β-pinene (3.7-10.3% range, γ-cymene (5-7.3% range, γ-terpinene (1.8-7.2% range, cumin aldehyde (50-66% range, α-terpinen-7-al (3.8-16% range, and β-terpinen-7-al (12-20% range varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The

  9. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant

  10. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    Science.gov (United States)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  11. Phenylpropanoids and furanocoumarins as antibacterial and antimalarial constituents of the Bhutanese medicinal plant Pleurospermum amabile.

    Science.gov (United States)

    Wangchuk, Phurpa; Pyne, Stephen G; Keller, Paul A; Taweechotipatr, Malai; Kamchonwongpaisane, Sumalee

    2014-07-01

    With the objective of determining safety and verifying the traditional uses of the Bhutanese medicinal plant, Pleurospermum amabile Craib & W. W. Smith, we investigated its crude extracts and the isolated phytochemicals for their biological activities. Four phenylpropanoids [(E)-isomyristicin (1), (E)-isoapiol (2), methyl eugenol (3) and (E)-isoelemicin (4)] and six furanocoumarins [psoralen (5), bergapten (6), isoimperatorin (7), isopimpinellin (8), oxypeucedanin hydrate (9) and oxypeucedanin methanolate (10)] were isolated from this plant. Among the test samples, compound 10 showed weak antibacterial activity against Bacillus subtilis and best antimalarial activity against the Plasmodium falciparum strains, TM4/8.2 (chloroquine and antifolate sensitive) and K1CB1 (multidrug resistant). None of the test samples showed cytotoxicity. This study generated scientific data that support the traditional medical uses of the plant.

  12. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling

    Science.gov (United States)

    Le Bihan, Amélie; Angulo-Barturen, Iñigo; Binkert, Christoph; Boss, Christoph; Brun, Reto; Brunner, Ralf; Buchmann, Stephan; Dechering, Koen J.; Delves, Michael; Ewerling, Sonja; Ferrer, Santiago; Fischli, Christoph; Gamo–Benito, Francisco Javier; Heidmann, Bibia; Jiménez-Díaz, María Belén; Leroy, Didier; Martínez, Maria Santos; Meyer, Solange; Moehrle, Joerg J.; Noviyanti, Rintis; Sanz, Laura María; Sauerwein, Robert W.; Scheurer, Christian; Schleiferboeck, Sarah; Sinden, Robert; Snyder, Christopher; Straimer, Judith; Wirjanata, Grennady; Marfurt, Jutta; Weller, Thomas; Clozel, Martine; Wittlin, Sergio

    2016-01-01

    Background Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. Method and Findings The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3–4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11–16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23–39). The compound’s preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as

  13. The in vivo antimalarial activity of methylene blue combined with pyrimethamine, chloroquine and quinine

    Directory of Open Access Journals (Sweden)

    Giovanny Garavito

    2012-09-01

    Full Text Available The effectiveness of methylene blue (MB combined with pyrimethamine (PYR, chloroquine (CQ or quinine (Q was examined in a classical four-day suppressive test against a causative agent of rodent malaria, Plasmodium berghei. A marked potentiation was observed when MB was administered at a non-curative dose of 15 mg/kg/day in combination with PYR (0.19 mg/kg/day or Q (25 mg/kg/day. No synergy was found between MB (15 mg/Kg and CQ (0.75 mg/Kg. Our results suggest that the combination of MB with PYR or Q may improve the efficacy of these currently used antimalarial drugs.

  14. Smart nanocrystals of artemether: fabrication, characterization, and comparative in vitro and in vivo antimalarial evaluation

    Directory of Open Access Journals (Sweden)

    Shah SMH

    2016-11-01

    Full Text Available Syed Muhammad Hassan Shah,1 Farhat Ullah,2 Shahzeb Khan,2,3 Syed Muhammad Mukarram Shah,4 Marcel de Matas,5 Zahid Hussain,6 Muhammad Usman Minhas,7 Naser M AbdEl-Salam,8 Khaled Hafez Assi,3 Mohammad Isreb3 1Department of Pharmacy, Sarhad University of Science & Information Technology, Peshawar, 2Department of Pharmacy, University of Malakand, Chakdara, Pakistan; 3Institute of Life Sciences Research, School of Pharmacy, University of Bradford, West Yorkshire, 4Department of Pharmacy, University of Swabi, KPK, Pakistan; 5SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK; 6Faculty of Pharmacy, Department of Pharmaceutics, Universiti Teknologi MARA, Selangor, Malaysia; 7Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan; 8Riyadh Community College, King Saud University, Riyadh, Saudi Arabia Abstract: Artemether (ARTM is a very effective antimalarial drug with poor solubility and consequently low bioavailability. Smart nanocrystals of ARTM with particle size of 161±1.5 nm and polydispersity index of 0.172±0.01 were produced in <1 hour using a wet milling technology, Dena® DM-100. The crystallinity of the processed ARTM was confirmed using differential scanning calorimetry and powder X-ray diffraction. The saturation solubility of the ARTM nanocrystals was substantially increased to 900 µg/mL compared to the raw ARTM in water (145.0±2.3 µg/mL and stabilizer solution (300.0±2.0 µg/mL. The physical stability studies conducted for 90 days demonstrated that nanocrystals stored at 2°C–8°C and 25°C were very stable compared to the samples stored at 40°C. The nanocrystals were also shown to be stable when processed at acidic pH (2.0. The solubility and dissolution rate of ARTM nanocrystals were significantly increased (P<0.05 compared to those of its bulk powder form. The results of in vitro studies showed significant antimalarial effect (P<0

  15. Malaria healthcare policy change in Kenya: Implications on sales and marketing of antimalarials

    Directory of Open Access Journals (Sweden)

    Peter K. Ngure , Lorraine Nyaoke & David Minja

    2012-03-01

    Full Text Available Background & objectives: Malaria healthcare policy change in Kenya aimed at improving the control of malariabut faced a number of challenges in implementation related to marketing of the drugs. This research investigatedthe effect of the change of the national malaria policy on drug sales and strategic marketing responses ofantimalarial pharmaceutical companies in Kenya.Study design: A descriptive cross-sectional design was employed to describe the existing state of antimalarialsmarket in Kenya after the change of the malaria healthcare policy.Results & conclusion: Policy change did result in an increase in the sales of Coartem®. Novartis Pharma recordeda 97% growth in sales of Coartem® between 2003 and 2004. However, this increase was not experienced by allthe companies. Further, SPs (which had been replaced as first-line therapy for malaria registered good sales. Inmost cases, these sales were higher than the sales of Coartem®. Generally, the sales contribution of SPs andgeneric antimalarial medicines exceeded that of Coartem® for most distributors. The most common changemade to marketing strategies by distributors (62.5% was to increase imports of antimalarials. A total of 40% ofthe manufacturers preferred to increase their budgetary allocation for marketing activities. In view of the factthat continued sale of SP drugs and limited availability of AL poses the risk of increasing the incidence ofmalaria in Kenya, it is therefore, recommended that pharmacy surveillance systems be strengthened to ensuredrugs that have been rendered non-viable or that prescription-only medicines are not sold contrary to the nationalguidelines.

  16. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    Science.gov (United States)

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  17. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation.

    Directory of Open Access Journals (Sweden)

    S M D K Ganga Senarathna

    Full Text Available The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10(-6 cm/sec, followed by amodiaquine around 20 x 10(-6 cm/sec; both mefloquine and artesunate were around 10 x 10(-6 cm/sec. Methylene blue was between 2 and 6 x 10(-6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine.

  18. The Stapled AKAP Disruptor Peptide STAD-2 Displays Antimalarial Activity through a PKA-Independent Mechanism.

    Directory of Open Access Journals (Sweden)

    Briana R Flaherty

    Full Text Available Drug resistance poses a significant threat to ongoing malaria control efforts. Coupled with lack of a malaria vaccine, there is an urgent need for the development of new antimalarials with novel mechanisms of action and low susceptibility to parasite drug resistance. Protein Kinase A (PKA has been implicated as a critical regulator of pathogenesis in malaria. Therefore, we sought to investigate the effects of disrupted PKA signaling as a possible strategy for inhibition of parasite replication. Host PKA activity is partly regulated by a class of proteins called A Kinase Anchoring Proteins (AKAPs, and interaction between HsPKA and AKAP can be inhibited by the stapled peptide Stapled AKAP Disruptor 2 (STAD-2. STAD-2 was tested for permeability to and activity against Plasmodium falciparum blood stage parasites in vitro. The compound was selectively permeable only to infected red blood cells (iRBC and demonstrated rapid antiplasmodial activity, possibly via iRBC lysis (IC50 ≈ 1 μM. STAD-2 localized within the parasite almost immediately post-treatment but showed no evidence of direct association with PKA, indicating that STAD-2 acts via a PKA-independent mechanism. Furosemide-insensitive parasite permeability pathways in the iRBC were largely responsible for uptake of STAD-2. Further, peptide import was highly specific to STAD-2 as evidenced by low permeability of control stapled peptides. Selective uptake and antiplasmodial activity of STAD-2 provides important groundwork for the development of stapled peptides as potential antimalarials. Such peptides may also offer an alternative strategy for studying protein-protein interactions critical to parasite development and pathogenesis.

  19. In Vivo Antimalarial Activity of Annona muricata Leaf Extract in Mice Infected with Plasmodium berghei.

    Science.gov (United States)

    Somsak, Voravuth; Polwiang, Natsuda; Chachiyo, Sukanya

    2016-01-01

    Malaria is one of the most important infectious diseases in the world. The choice for the treatment is highly limited due to drug resistance. Hence, finding the new compounds to treat malaria is urgently needed. The present study was attempted to evaluate the antimalarial activity of the Annona muricata aqueous leaf extract in Plasmodium berghei infected mice. Aqueous leaf extract of A. muricata was prepared and tested for acute toxicity in mice. For efficacy test in vivo, standard 4-day suppressive test was carried out. ICR mice were inoculated with 10(7) parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection. The extracts (100, 500, and 1000 mg/kg) were then given orally by gavage once a day for 4 consecutive days. Parasitemia, percentage of inhibition, and packed cell volume were subsequently calculated. Chloroquine (10 mg/kg) was given to infected mice as positive control while untreated control was given only distilled water. It was found that A. muricata aqueous leaf extract at doses of 100, 500, and 1000 mg/kg resulted in dose dependent parasitemia inhibition of 38.03%, 75.25%, and 85.61%, respectively. Survival time was prolonged in infected mice treated with the extract. Moreover, no mortality to mice was observed with this extract up to a dose of 4000 mg/kg. In conclusion, the A. muricata aqueous leaf extract exerted significant antimalarial activity with no toxicity and prolonged survival time. Therefore, this extract might contain potential lead molecule for the development of a new drug for malaria treatment.

  20. Present development concerning antimalarial activity of phospholipid metabolism inhibitors with special reference to in vivo activity

    Directory of Open Access Journals (Sweden)

    Marie L. Ancelin

    1994-01-01

    Full Text Available The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50 against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain. This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50/ED50 but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral

  1. Formation of the diuretic chlorazanil from the antimalarial drug proguanil--implications for sports drug testing.

    Science.gov (United States)

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Tretzel, Laura; Bailloux, Isabelle; Buisson, Corinne; Lasne, Francoise; Schaefer, Maximilian S; Kienbaum, Peter; Mueller-Stoever, Irmela; Schänzer, Wilhelm

    2015-11-10

    Chlorazanil (Ordipan, N-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine) is a diuretic agent and as such prohibited in sport according to the regulations of the World Anti-Doping Agency (WADA). Despite its introduction into clinical practice in the late 1950s, the worldwide very first two adverse analytical findings were registered only in 2014, being motive for an in-depth investigation of these cases. Both individuals denied the intake of the drug; however, the athletes did declare the use of the antimalarial prophylactic agent proguanil due to temporary residences in African countries. A structural similarity between chlorazanil and proguanil is given but no direct metabolic relation has been reported in the scientific literature. Moreover, chlorazanil has not been confirmed as a drug impurity of proguanil. Proguanil however is metabolized in humans to N-(4-chlorophenyl)-biguanide, which represents a chemical precursor in the synthesis of chlorazanil. In the presence of formic acid, formaldehyde, or formic acid esters, N-(4-chlorophenyl)-biguanide converts to chlorazanil. In order to probe for potential sources of the chlorazanil detected in the doping control samples, drug formulations containing proguanil and urine samples of individuals using proguanil as antimalarial drug were subjected to liquid chromatography-high resolution/high accuracy mass spectrometry. In addition, in vitro simulations with 4-chlorophenyl-biguanide and respective reactants were conducted in urine and resulting specimens analyzed for the presence of chlorazanil. While no chlorazanil was found in drug formulations, the urine samples of 2 out of 4 proguanil users returned findings for chlorazanil at low ng/mL levels, similar to the adverse analytical findings in the doping control samples. Further, in the presence of formaldehyde, formic acid and related esters, 4-chlorophenyl-biguanide was found to produce chlorazanil in human urine, suggesting that the detection of the obsolete diuretic

  2. Evaluation of antimalarial resistance marker polymorphism in returned migrant workers in China.

    Science.gov (United States)

    Feng, Jun; Li, Jun; Yan, He; Feng, Xinyu; Xia, Zhigui

    2015-01-01

    Imported malaria has been a great challenge for public health in China due to decreased locally transmitted cases and frequent exchange worldwide. Plasmodium falciparum has been mainly responsible for the increasing impact. Currently, artesunate plus amodiaquine, one of the artemisinin combination therapies recommended by the World Health Organization, has been mainly used against uncomplicated P. falciparum malaria in China. However, drug resistance marker polymorphism in returning migrant workers has not been demonstrated. Here, we have evaluated the prevalence of pfmdr1 and pfcrt polymorphisms, as well as the K13 propeller gene, a molecular marker of artemisinin resistance, in migrant workers returned from Ghana to Shanglin County, Guangxi Province, China, in 2013. A total of 118 blood samples were randomly selected and used for the assay. Mutations of the pfmdr1 gene that covered codons 86, 184, 1034, and 1246 were found in 11 isolates. Mutations at codon N86Y (9.7%) were more frequent than at others, and Y(86)Y(184)S(1034)D(1246) was the most prevalent (63.6%) of the four haplotypes. Mutations of the pfcrt gene that covered codons 74, 75, and 76 were observed in 17 isolates, and M(74)N(75)T(76) was common (70.6%) in three haplotypes. Eight different genotypes of the K13 propeller were first observed in 10 samples in China, 2 synonymous mutations (V487V and A627A) and 6 nonsynonymous mutations. C580Y was the most prevalent (2.7%) in all the samples. The data presented might be helpful for enrichment of molecular surveillance of antimalarial resistance and will be useful for developing and updating antimalarial guidance in China.

  3. Medicines informal market in Congo, Burundi and Angola: counterfeit and sub-standard antimalarials

    Directory of Open Access Journals (Sweden)

    Bertocchi Paola

    2007-02-01

    Full Text Available Abstract Background The presence of counterfeits and sub-standards in African medicines market is a dramatic problem that causes many deaths each year. The increase of the phenomenon of pharmaceutical counterfeiting is due to the rise of the illegal market and to the impossibility to purchase branded high cost medicines. Methods In this paper the results of a quality control on antimalarial tablet samples purchased in the informal market in Congo, Burundi and Angola are reported. The quality control consisted in the assay of active substance by means of validated liquid chromatographic methods, uniformity of mass determination, disintegration and dissolution tests. Moreover, a general evaluation on label and packaging characteristics was performed. Results The results obtained on thirty antimalarial tablet samples containing chloroquine, quinine, mefloquine, sulphadoxine and pyrimethamine showed the presence of different kinds of problems: a general problem concerning the packaging (loose tablets, packaging without Producer name, Producer Country and sometimes without expiry date; low content of active substance (in one sample; different, non-declared, active substance (in one sample; sub-standard technological properties and very low dissolution profiles (in about 50% of samples. This last property could affect the bioavailability and bioequivalence in comparison with branded products and could be related to the use of different excipients in formulation or bad storage conditions. Conclusion This paper evidences that the most common quality problem in the analysed samples appears to be the low dissolution profile. Here it is remarked that the presence of the right active substance in the right quantity is not a sufficient condition for a good quality drug. Dissolution test is not less important in a quality control and often evidences in vitro possible differences in therapeutic efficacy among drugs with the same active content. Dissolution

  4. Anti-malarial activity of leaf-extract of hydrangea macrophylla, a common Japanese plant.

    Directory of Open Access Journals (Sweden)

    Kamei K

    2000-10-01

    Full Text Available To find a new anti-malarial medicine derived from natural resources, we examined the leaves of 13 common Japanese plants in vitro. Among them, a leaf-extract of Hydrangea macrophylla, a common Japanese flower, inhibited the parasitic growth of Plasmodium falciparum. The IC50 of Hydrangea macrophylla leaf extract to Plasmodium falciparum was 0.18 microg/ml. The IC50 to NIH 3T3-3 cells, from a normal mouse cell line, was 7.2 microg/ml. Thus, selective toxicity was 40. For the in vivo test, we inoculated Plasmodium berghei, a rodent malaria parasite, to ddY mice and administered the leaf-extract of Hydrangea macrophylla (3.6 mg/0.2 ml orally 3 times a day for 3 days. Malaria parasites did not appear in the blood of in the treated mice, but they did appear in the control group on day 3 or 4 after inoculation with the parasites. When leaf extract was administered to 5 mice 2 times a day for 3 days, malaria parasites did not appear in 4 of the mice but did appear in 1 mouse. In addition, the leaf-extract was administered orally 3 times a day for 3 days to Plasmodium berghei infected mice with a parasitemia of 2.7%. In the latter group, malaria parasites disappeared on day 3 after initiating the treatment, but they appeared again after day 5 or 6. Although we could not cure the mice entirely, we confirmed that the Hydrangea macrophylla leaf extract did contain an anti-malarial substance that can be administered orally.

  5. Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition.

    Science.gov (United States)

    Kim, Ju-Hwa; Choi, Ae-Ran; Kim, Yong Kee; Yoon, Sungpil

    2013-11-22

    The purpose of this study was to identify conditions that will increase the sensitivity of resistant cancer cells to anti-mitotic drugs. Currently, atovaquine (ATO), chloroquine (CHL), primaquine (PRI), mefloquine (MEF), artesunate (ART), and doxycycline (DOY) are the most commonly used anti-malarial drugs. Herein, we tested whether anti-malarial drugs can sensitize drug-resistant KBV20C cancer cells. None of the six tested anti-malarial drugs was found to better sensitize the drug-resistant cells compared to the sensitive KB cells. With an exception of DOY, all other anti-malarial drugs tested could sensitize both KB and KBV20C cells to a similar extent, suggesting that anti-malarial drugs could be used for sensitive as well as resistant cancer cells. Furthermore, we examined the effects of anti-malarial drugs in combination with an antimitotic drug, vinblastine (VIN) on the sensitisation of resistant KBV20C cells. Using viability assay, microscopic observation, assessment of cleaved PARP, and Hoechst staining, we identified that two anti-malarial drugs, PRI and MEF, highly sensitized KBV20C-resistant cells to VIN treatment. Moreover, PRI- or MEF-induced sensitisation was not observed in VIN-treated sensitive KB parent cells, suggesting that the observed effect is specific to resistant cancer cells. We demonstrated that the PRI and MEF sensitisation mechanism mainly depends on the inhibition of p-glycoprotein (P-gp). Our findings may contribute to the development of anti-malarial drug-based combination therapies for patients resistant to anti-mitotic drugs.

  6. Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Kamau Edwin

    2012-01-01

    Full Text Available Abstract Background Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods. Methods TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD for each assay. Results Data from genetic profiles of the Plasmodium falciparum laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples. Conclusion TaqMan Allelic Discrimination assay provides a good alternative tool in

  7. Febrifugine derivative antimalarial activity: quantum mechanical predictors Descritores da atividade antimalarial de derivados de febrifugina obtidos via mecânica qüântica

    Directory of Open Access Journals (Sweden)

    Pedro Alves da Silva Autreto

    2008-02-01

    Full Text Available Plasmodium falciparum resistant strain development has encouraged the search for new antimalarial drugs. Febrifugine is a natural substance with high activity against P. falciparum presenting strong emetic property and liver toxicity, which prevent it from being used as a clinical drug. The search for analogues that could have a better clinical performance is a current topic. We aim to investigate the theoretical electronic structure by means of febrifugine derivative family semi-empirical molecular orbital calculations, seeking the electronic indexes that could help the design of new efficient derivatives. The theoretical results show there is a clustering in well-defined ranges of several electronic indexes of the most selective molecules. The model proposed for achieving high selectivity was tested with success.O desenvolvimento de linhagens resistentes de Plasmodium falciparum tem encorajado a busca por novas drogas antimalariais. A febrifugina é uma substância natural com alta atividade contra o P. falciparum que apresenta propriedade emética e toxicidade para o fígado tal que não permitem o seu uso clínico. A busca por análogos que possam ter uma performance clínica melhor é um tema de pesquisa atual. Nosso objetivo é investigar a estrutura eletrônica teórica de uma família de derivados da febrifugina empregando cálculos semi-empíricos de orbitais moleculares, procurando por índices eletrônicos que possam ajudar a modelar novos derivados mais eficientes. Os resultados teóricos mostram que para as moléculas mais seletivas existe um agrupamento dos valores de determinados índices em intervalos bem definidos. O modelo proposto para se obter alta seletividade foi testado com sucesso.

  8. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    Science.gov (United States)

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.

  9. Secondary metabolites from the sponges Aplysina fistularis and Dysidea sp. and the antituberculosis activity of 11-Ketofistularin-3; Metabolitos secundarios das esponjas Aplysina fistularis e Dysidea sp. e atividade antituberculose da 11-cetofistularina-3

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfi, Renata C.; Medina, Marina B.; Berlinck, Roberto G.S., E-mail: rgsberlinck@iqsc.usp.b [Universidade de Sao Paulo (IQSC), Sao Carlos, SP (Brazil). Inst. de Quimica; Lira, Simone P. [Escola Superior de Agricultura ' Luiz Queiroz' (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Exatas; Galetti, Fabio Cicero de; Silva, Celio L. Silva [Farmacore Biotecnologia Ltda, Ribeirao Preto, SP (Brazil); Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina; Veloso, Katyuscya; Ferreira, Antonio G. [Universidade de Sao Paulo (IQSC), Sao Carlos, SP (Brazil).Dept. de Quimica; Hadju, Eduardo [Museu Nacional (MN/UFRJ), Rio de Janeiro, RJ (Brazil); Peixinho, Solange [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Biologia

    2010-07-01

    The present investigation reports the isolation of aeroplysinin-2, 2-(3,5-dibromo-4-methoxyphenyl)-N,N,N-trimethyletanamonium, 7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca -2,6,8-trien-3-carboxylic acid and its methyl ester, 11-oxoaerothionin, aerothionin, 11-keto-12-hydroxyaerothionin, 11-ketofistularin-3 and fistularin-3 from Aplysina fistularis, as well as of furodysinin lactone and 9{alpha},11{alpha}-epoxicholest-7-en-3{beta},5{alpha},6{alpha},10-tetrol-6-acetate from Dysidea sp. Although the extracts of both sponges displayed antituberculosis activity, only 11-ketofistularin-3 isolated from A. fistularis displayed antimycobacterial activity against Mycobacterium tuberculosis H34Rv, with MIC at 16 {mu}g/mL and SI of 40, a result that reinforce that fistularin-3 derivatives are interesting leads for the development of antituberculosis drugs. (author)

  10. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  11. Antimalarial activity of granzyme B and its targeted delivery by a granzyme B-single-chain Fv fusion protein.

    Science.gov (United States)

    Kapelski, Stephanie; de Almeida, Melanie; Fischer, Rainer; Barth, Stefan; Fendel, Rolf

    2015-01-01

    We present here the first evidence that granzyme B acts against Plasmodium falciparum (50% inhibitory concentration [IC50], 1,590 nM; 95% confidence interval [95% CI], 1,197 to 2,112 nM). We created a novel antimalarial fusion protein consisting of granzyme B fused to a merozoite surface protein 4 (MSP4)-specific single-chain Fv protein (scFv), which targets the enzyme to infected erythrocytes, with up to an 8-fold reduction in the IC50 (176 nM; 95% CI, 154 to 202 nM). This study confirms the therapeutic efficacies of recombinant antibody-mediated antimalarial immunotherapeutics based on granzyme B.

  12. Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

    Science.gov (United States)

    Mishra, Kirti; Dash, Aditya P.; Dey, Nrisingha

    2011-01-01

    Andrographolide (AND), the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS), andrographolide (AND), and curcumin (CUR) were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND) was found synergistic with curcumin (CUR) and addictively interactive with artesunate (AS). In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%), compared to the control (81%), but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties. PMID:21760808

  13. Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

    Directory of Open Access Journals (Sweden)

    Kirti Mishra

    2011-01-01

    Full Text Available Andrographolide (AND, the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS, andrographolide (AND, and curcumin (CUR were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND was found synergistic with curcumin (CUR and addictively interactive with artesunate (AS. In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%, compared to the control (81%, but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.

  14. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. Spicigera, Asteraceae

    Directory of Open Access Journals (Sweden)

    Fariba H. Afshar

    2011-12-01

    Full Text Available Artemisia species (Asteraceae, widespread throughout the world, are a group of important medicinal plants. The extracts of two medicinal plants of this genus, Artemisia scoparia Waldst. & Kit. and A. spicigera C. Koch, were evaluated for potential antimalarial, free-radical-scavenging and insecticidal properties, using the heme biocrystallisation and inhibition assay, the DPPH assay and the contact toxicity bioassay using the pest Tribolium castaneum, respectively. The methanol extracts of both species showed strong free-radical-scavenging activity and the RC50 values were 0.0317 and 0.0458 mg/mL, respectively, for A. scoparia and A. spicigera. The dichloromethane extracts of both species displayed a moderate level of potential antimalarial activity providing IC50 at 0.778 and 0.999 mg/mL for A. scoparia and A. spicigera, respectively. Both species of Artemisia showed insecticidal properties. However, A. spicigera was more effective than A. scoparia.

  15. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence "transmission blocking" assay.

    Directory of Open Access Journals (Sweden)

    Joël Lelièvre

    Full Text Available BACKGROUND: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. METHODS AND FINDINGS: Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV-V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. CONCLUSIONS: The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial

  16. Torrubiellone E, an antimalarial N-hydroxypyridone alkaloid from the spider pathogenic fungus Torrubiella longissima BCC 2022.

    Science.gov (United States)

    Isaka, Masahiko; Haritakun, Rachada; Intereya, Kamolphan; Thanakitpipattana, Donnaya; Hywel-Jones, Nigel L

    2014-05-01

    Torrubiellone E (1), a new N-hydroxypyridone alkaloid, was isolated from the spider pathogenic fungus Torrubiella longissima BCC 2022, together with the known compounds, torrubiellones A (2) and B (3), and JBIR-130 (4). Compound 1 exhibited antimalarial activity against Plasmodium falciparum K1 with an IC5 value of 3.2 microg/mL, while it also showed weak cytotoxic activities.

  17. Reactions of antimalarial peroxides with each of leucomethylene blue and dihydroflavins: flavin reductase and the cofactor model exemplified.

    Science.gov (United States)

    Haynes, Richard K; Cheu, Kwan-Wing; Tang, Maggie Mei-Ki; Chen, Min-Jiao; Guo, Zu-Feng; Guo, Zhi-Hong; Coghi, Paolo; Monti, Diego

    2011-02-07

    Flavin adenine dinucleotide (FAD) is reduced by NADPH-E. coli flavin reductase (Fre) to FADH(2) in aqueous buffer at pH 7.4 under argon. Under the same conditions, FADH(2) in turn cleanly reduces the antimalarial drug methylene blue (MB) to leucomethylene blue. The latter is rapidly re-oxidized by artemisinins, thus supporting the proposal that MB exerts its antimalarial activity, and synergizes the antimalarial action of artemisinins, by interfering with redox cycling involving NADPH reduction of flavin cofactors in parasite flavin disulfide reductases. Direct treatment of the FADH(2) generated from NADPH-Fre-FAD by artemisinins and antimalaria-active tetraoxane and trioxolane structural analogues under physiological conditions at pH 7.4 results in rapid reduction of the artemisinins, and efficient conversion of the peroxide structural analogues into ketone products. Comparison of the relative rates of FADH(2) oxidation indicate optimal activity for the trioxolane. Therefore, the rate of intraparastic redox perturbation will be greatest for the trioxolane, and this may be significant in relation to its enhanced in vitro antimalarial activities. (1)H NMR spectroscopic studies using the BNAH-riboflavin (RF) model system indicate that the tetraoxane is capable of using both peroxide units in oxidizing the RFH(2) generated in situ. Use of the NADPH-Fre-FAD catalytic system in the presence of artemisinin or tetraoxane confirms that the latter, in contrast to artemisinin, consumes two reducing equivalents of NADPH. None of the processes described herein requires the presence of ferrous iron. Ferric iron, given its propensity to oxidize reduced flavin cofactors, may play a role in enhancing oxidative stress within the malaria parasite, without requiring interaction with artemisinins or peroxide analogues. The NADPH-Fre-FAD system serves as a convenient mimic of flavin disulfide reductases that maintain redox homeostasis in the malaria parasite.

  18. Comparative embryotoxicity of different antimalarial peroxides: in vitro study using the rat whole embryo culture model (WEC).

    Science.gov (United States)

    Longo, Monica; Zanoncelli, Sara; Brughera, Marco; Colombo, Paolo; Wittlin, Sergio; Vennerstrom, Jonathan L; Moehrle, Joerg; Craft, J Carl

    2010-12-01

    Three groups of compounds: (i) active peroxides (artemisinin and arterolene), (ii) inactive non-peroxidic derivatives (deoxyartemisinin and carbaOZ277) and (iii) inactive peroxide (OZ381) were tested by WEC system to provide insights into the relationship between chemical structure and embryotoxic potential, and to assess the relationship between embryotoxicity and antimalarial activity. Deoxyartemisinin, OZ381 and carbaOZ277 did not affect rat embryonic development. Artemisinin and arterolane affected primarily nucleated red blood cells (RBCs), inducing anemia and subsequent tissue damage in rat embryos, with NOELs for RBC damage at 0.1 and 0.175μg/mL, respectively. These data support the idea that only active antimalarial peroxides are able to interfere with normal embryonic development. In an attempt to establish whether and to what extent activity as antimalarials and embryotoxicity can be divorced, IC(50)s for activity in Plasmodium falciparum strains and the NOELs for RBCs were compared. From this comparison, arterolane showed a better safety margin than artemisinin.

  19. Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2011-04-01

    Full Text Available The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (∼ 1 SNP/kb, and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS, searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.

  20. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2009-06-01

    Full Text Available Abstract Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency.

  1. New heterocyclic hybrids of pyrazole and its bioisosteres: design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents.

    Science.gov (United States)

    Bekhit, Adnan A; Hassan, Ahmed M M; Abd El Razik, Heba A; El-Miligy, Mostafa M M; El-Agroudy, Eman J; Bekhit, Alaa El-Din A

    2015-04-13

    A new series of pyrazole derivatives were synthesized by hybridization with five-membered heterocyclic moieties such as thiazoles, thiazolidinones, 1,3,4-thiadiazoles and pyrazolines. The compounds were evaluated for their in vivo antimalarial activity against Plasmodium berghei infected mice and the most active derivatives were further examined for their in vitro antimalarial activity against chloroquine resistant (RKL9) strain of Plasmodium falciparum. Compounds 2c, 2d, 4b, 4c, 4d, 5a, 6c, 8c and 9b had more than 90% parasite suppression activity of that found with the antimalarial reference standard drug, chloroquine phosphate and had lower IC50 values than chloroquine. Compounds 4b and 9b were the most active derivatives, and their activities were 5-fold higher than chloroquine. All the newly synthesized compounds were evaluated for their in vitro antileishmanial activity against Leishmania aethiopica promastigotes and amastigote. The results showed that compounds 2c, 2d, 3d, 4b, 4c, 4d and 5a had lower or similar IC50 values than the reference standard drugs, amphotericin B and miltefosine. Compound 3d had the highest antileishmanial activity. Collectively, compounds 2c, 2d, 4b, 4c, 4d and 5a exhibited dual activity against malaria and leishmaniasis and were safe and well tolerated by the experimental animals orally up to 300 mg/kg and parenterally up to 100 mg/kg.

  2. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor

    Science.gov (United States)

    Goldgof, Gregory M.; Durrant, Jacob D.; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E.; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A.; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M.; Manary, Micah J.; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W.; Slayman, Carolyn W.; Amaro, Rommie E.; Suzuki, Yo; Winzeler, Elizabeth A.

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  3. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents.

    Science.gov (United States)

    Pingaew, Ratchanok; Saekee, Amporn; Mandi, Prasit; Nantasenamat, Chanin; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2014-10-06

    A new series of chalcone-coumarin derivatives (9-19) linked by the 1,2,3-triazole ring were synthesized through the azide/alkyne dipolar cycloaddition. Hybrid molecules were evaluated for their cytotoxic activity against four cancer cell lines (e.g., HuCCA-1, HepG2, A549 and MOLT-3) and antimalarial activity toward Plasmodium falciparum. Most of the synthesized hybrids, except for analogs 10 and 16, displayed cytotoxicity against MOLT-3 cell line without affecting normal cells. Analogs (10, 11, 16 and 18) exhibited higher inhibitory efficacy than the control drug, etoposide, in HepG2 cells. Significantly, the high cytotoxic potency of the hybrid 11 was shown to be non-toxic to normal cells. Interestingly, the chalcone-coumarin 18 was the most potent antimalarial compound affording IC50 value of 1.60 μM. Molecular docking suggested that the cytotoxicity of reported hybrids could be possibly due to their dual inhibition of α- and β-tubulins at GTP and colchicine binding sites, respectively. Furthermore, falcipain-2 was identified to be a plausible target site of the hybrids given their antimalarial potency.

  4. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study

    Science.gov (United States)

    Ley, Benedikt; Alam, Mohammad Shafiul; Thriemer, Kamala; Hossain, Mohammad Sharif; Kibria, Mohammad Golam; Auburn, Sarah; Poirot, Eugenie; Price, Ric N.; Khan, Wasif Ali

    2016-01-01

    Background The Bangladeshi national treatment guidelines for uncomplicated malaria follow WHO recommendations but without G6PD testing prior to primaquine administration. A prospective observational study was conducted to assess the efficacy of the current antimalarial policy. Methods Patients with uncomplicated malaria, confirmed by microscopy, attending a health care facility in the Chittagong Hill Tracts, Bangladesh, were treated with artemether-lumefantrine (days 0–2) plus single dose primaquine (0.75mg/kg on day2) for P. falciparum infections, or with chloroquine (days 0–2) plus 14 days primaquine (3.5mg/kg total over 14 days) for P. vivax infections. Hb was measured on days 0, 2 and 9 in all patients and also on days 16 and 30 in patients with P. vivax infection. Participants were followed for 30 days. The study was registered with the clinical trials website (NCT02389374). Results Between September 2014 and February 2015 a total of 181 patients were enrolled (64% P. falciparum, 30% P. vivax and 6% mixed infections). Median parasite clearance times were 22.0 (Interquartile Range, IQR: 15.2–27.3) hours for P. falciparum, 20.0 (IQR: 9.5–22.7) hours for P. vivax and 16.6 (IQR: 10.0–46.0) hours for mixed infections. All participants were afebrile within 48 hours, two patients with P. falciparum infection remained parasitemic at 48 hours. No patient had recurrent parasitaemia within 30 days. Adjusted male median G6PD activity was 7.82U/gHb. One male participant (1/174) had severe G6PD deficiency (<10% activity), five participants (5/174) had mild G6PD deficiency (10–60% activity). The Hb nadir occurred on day 2 prior to primaquine treatment in P. falciparum and P. vivax infected patients; mean fractional fall in Hb was -8.8% (95%CI -6.7% to -11.0%) and -7.4% (95%CI: -4.5 to -10.4%) respectively. Conclusion The current antimalarial policy remains effective. The prevalence of G6PD deficiency was low. Main contribution to haemolysis in G6PD normal

  5. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in Bangladesh: A Prospective Observational Study.

    Directory of Open Access Journals (Sweden)

    Benedikt Ley

    Full Text Available The Bangladeshi national treatment guidelines for uncomplicated malaria follow WHO recommendations but without G6PD testing prior to primaquine administration. A prospective observational study was conducted to assess the efficacy of the current antimalarial policy.Patients with uncomplicated malaria, confirmed by microscopy, attending a health care facility in the Chittagong Hill Tracts, Bangladesh, were treated with artemether-lumefantrine (days 0-2 plus single dose primaquine (0.75mg/kg on day2 for P. falciparum infections, or with chloroquine (days 0-2 plus 14 days primaquine (3.5mg/kg total over 14 days for P. vivax infections. Hb was measured on days 0, 2 and 9 in all patients and also on days 16 and 30 in patients with P. vivax infection. Participants were followed for 30 days. The study was registered with the clinical trials website (NCT02389374.Between September 2014 and February 2015 a total of 181 patients were enrolled (64% P. falciparum, 30% P. vivax and 6% mixed infections. Median parasite clearance times were 22.0 (Interquartile Range, IQR: 15.2-27.3 hours for P. falciparum, 20.0 (IQR: 9.5-22.7 hours for P. vivax and 16.6 (IQR: 10.0-46.0 hours for mixed infections. All participants were afebrile within 48 hours, two patients with P. falciparum infection remained parasitemic at 48 hours. No patient had recurrent parasitaemia within 30 days. Adjusted male median G6PD activity was 7.82U/gHb. One male participant (1/174 had severe G6PD deficiency (<10% activity, five participants (5/174 had mild G6PD deficiency (10-60% activity. The Hb nadir occurred on day 2 prior to primaquine treatment in P. falciparum and P. vivax infected patients; mean fractional fall in Hb was -8.8% (95%CI -6.7% to -11.0% and -7.4% (95%CI: -4.5 to -10.4% respectively.The current antimalarial policy remains effective. The prevalence of G6PD deficiency was low. Main contribution to haemolysis in G6PD normal individuals was attributable to acute malaria rather

  6. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Directory of Open Access Journals (Sweden)

    Chance Michael L

    2011-08-01

    Full Text Available Abstract Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP. Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr-C59R and dihydropteroate synthase (dhps-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9. The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum

  7. A retrospective analysis of the change in anti-malarial treatment policy: Peru

    Directory of Open Access Journals (Sweden)

    Vincent-Mark Arlene

    2009-04-01

    Full Text Available Abstract Background National malaria control programmes must deal with the complex process of changing national malaria treatment guidelines, often without guidance on the process of change. Selecting a replacement drug is only one issue in this process. There is a paucity of literature describing successful malaria treatment policy changes to help guide control programs through this process. Objectives To understand the wider context in which national malaria treatment guidelines were formulated in a specific country (Peru. Methods Using qualitative methods (individual and focus group interviews, stakeholder analysis and a review of documents, a retrospective analysis of the process of change in Peru's anti-malarial treatment policy from the early 1990's to 2003 was completed. Results The decision to change Peru's policies resulted from increasing levels of anti-malarial drug resistance, as well as complaints from providers that the drugs were no longer working. The context of the change occurred in a time in which Peru was changing national governments, which created extreme challenges in moving the change process forward. Peru utilized a number of key strategies successfully to ensure that policy change would occur. This included a having the process directed by a group who shared a common interest in malaria and who had long-established social and professional networks among themselves, b engaging in collaborative teamwork among nationals and between nationals and international collaborators, c respect for and inclusion of district-level staff in all phases of the process, d reliance on high levels of technical and scientific knowledge, e use of standardized protocols to collect data, and f transparency. Conclusion Although not perfectly or fully implemented by 2003, the change in malaria treatment policy in Peru occurred very quickly, as compared to other countries. They identified a problem, collected the data necessary to justify the

  8. Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance.

    Directory of Open Access Journals (Sweden)

    Miriam Bobadilla-del Valle

    2015-09-01

    Full Text Available Mycobacterium tuberculosis causes the majority of tuberculosis (TB cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City.Data on mycobacterial isolates from human clinical samples were retrieved from the laboratory's database for the 2000-2014 period. Susceptibility to first-line drugs: rifampin, isoniazid, streptomycin (STR and ethambutol was determined. We identified 1,165 isolates, 73.7% were M. tuberculosis and 26.2%, M. bovis. Among pulmonary samples, 16.6% were M. bovis. The proportion of M. bovis isolates significantly increased from 7.8% in 2000 to 28.4% in 2014 (X(2trend, p<0.001. Primary STR resistance was higher among M. bovis compared with M. tuberculosis isolates (10.9% vs.3.4%, p<0.001. Secondary multidrug resistance (MDR rates were 38.5% and 34.4% for M. bovis and M. tuberculosis, respectively (p = 0.637. A rising trend of primary STR monoresistance was observed for both species (3.4% in 2000-2004 vs. 7.6% in 2010-2014; p = 0.02.There is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance.

  9. Cytotoxic and Antimalarial Amaryllidaceae Alkaloids from the Bulbs of Lycoris radiata

    Directory of Open Access Journals (Sweden)

    Bin Hao

    2013-02-01

    Full Text Available Phytochemical investigation of the 80% ethanol extract of the bulbs of Lycoris radiata resulted in the isolation of five new Amaryllidaceae alkaloids: (+-5,6-dehydrolycorine (1, (+-3α,6β-diacetyl-bulbispermine (2, (+-3α-hydroxy-6β-acetyl- bulbispermine (3, (+-8,9-methylenedioxylhomolycorine-N-oxide (5, and 5,6-dihydro-5- methyl-2-hydroxyphenanthridine (7, together with two known compounds, (+-3α-methoxy- 6β-acetylbulbispermine (4 and (+-homolycorine- N-oxide (6. Structural elucidation of all the compounds were performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC NMR spectroscopy, in addition to high resolution mass spectrometry. Alkaloid 1 showed potent cytotoxicity against astrocytoma and glioma cell lines (CCF-STTG1, CHG-5, SHG-44, and U251, as well as HL-60, SMMC-7721, and W480 cell lines with IC50 values of 9.4–11.6 μM. Additonally, compound 1 exhibited antimalarial activity with IC50 values of 2.3 μM for D-6 strain and 1.9 μM for W-2 strain of Plasmodium falciparum.

  10. The biological and clinical activity of anti-malarial drugs in autoimmune disorders.

    Science.gov (United States)

    Taherian, Elham; Rao, Anshul; Malemud, Charles J; Askari, Ali D

    2013-01-01

    Chloroquine and hydroxychloroquine are 4-aminoquinoline compounds commonly employed as anti-malarial drugs. Chloroquine and its synthetic analogue, hydroxychloroquine also belong to the disease-modifying anti-rheumatic drug class because these drugs are immunosuppressive. The immunosuppressive activity of chloroquine and hydroxychloroquine is likely to account for their capacity to reduce T-cell and B-cell hyperactivity as well as pro-inflammatory cytokine gene expression. This review evaluated experimental and clinical trials results as well as clinical response data relative to the use of chloroquine and/or hydroxychloroquine as first-line medical therapies in systemic lupus erythematosus, rheumatoid arthritis, primary Sjogren's syndrome, the anti-phospholipid syndrome and in the treatment of sarcoidosis. A primary outcomes measure in these clinical trials was the extent to which chloroquine and/or hydroxychloroquine reduced disease progression or exacerbations and/or the use and dosage of corticosteroids. The relative efficacy of chloroquine and hydroxychloroquine in modifying the clinical course of these autoimmune disorders is balanced against evidence that these drugs induce adverse effects which may reduce their use and effectiveness in the therapy of autoimmune disorders.

  11. Reverse pharmacology for developing an anti-malarial phytomedicine. The example of Argemone mexicana

    Directory of Open Access Journals (Sweden)

    Claudia Simoes-Pires

    2014-12-01

    Reverse pharmacology, also called bedside-to-bench, is a research approach based on the traditional knowledge and relates to reversing the classical laboratory to clinic pathway to a clinic to laboratory practice. It is a trans-disciplinary approach focused on traditional knowledge, experimental observations and clinical experiences. This paper is an overview of the reverse pharmacology approach applied to the decoction of Argemone mexicana, used as an antimalarial traditional medicine in Mali. A. mexicana appeared as the most effective traditional medicine for the treatment of uncomplicated falciparum malaria in Mali, and the clinical efficacy of the decoction was comparable to artesunate–amodiaquine as previously published. Four stages of the reverse pharmacology process will be described here with a special emphasis on the results for stage 4. Briefly, allocryptopine, protopine and berberine were isolated through bioguided fractionation, and had their identity confirmed by spectroscopic analysis. The three alkaloids showed antiparasitic activity in vitro, of which allocryptopine and protopine were selective towards Plasmodium falciparum. Furthermore, the amount of the three active alkaloids in the decoction was determined by quantitative NMR, and preliminary in vivo assays were conducted. On the basis of these results, the reverse pharmacology approach is discussed and further pharmacokinetic studies appear to be necessary in order to determine whether these alkaloids can be considered as phytochemical markers for quality control and standardization of an improved traditional medicine made with this plant.

  12. Design and evaluation of primaquine-artemisinin hybrids as a multistage antimalarial strategy.

    Science.gov (United States)

    Capela, Rita; Cabal, Ghislain G; Rosenthal, Philip J; Gut, Jiri; Mota, Maria M; Moreira, Rui; Lopes, Francisca; Prudêncio, Miguel

    2011-10-01

    It is widely accepted that the struggle against malaria depends on the development of new strategies to fight infection. The "magic bullet" thought to be necessary to reach eradication should not only provide treatment for all Plasmodium spp. that infect human red blood cells but should also eliminate the replicative and dormant liver forms of the parasite. Moreover, these goals should ideally be achieved by using different mechanisms of action so as to avoid the development of resistance. To that end, two hybrid molecules with covalently linked primaquine and artemisinin moieties were synthesized, and their effectiveness against the liver and blood stages of infection was compared in vitro and in vivo with those of the parent compounds. Both hybrids displayed enhanced in vitro activities, relative to those of the parent compounds, against Plasmodium berghei liver stages. Both compounds were about as potent as artemisinin against cultured Plasmodium falciparum (50% inhibitory concentration [IC(50)], ∼10 nM). When used to treat a murine P. berghei infection, one of the molecules displayed better efficacy than an equimolar mixture of the parent pharmacophores, leading to improved cure and survival rates. These results reveal a novel approach to the design and evaluation of antimalarials based on the covalent combination of molecules acting on different stages of the parasite life cycle.

  13. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    Science.gov (United States)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  14. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund (Leiden-MC); (Puerto Rico); (STPHI); (Harvard); (GSK); (Genzyme); (UTSMC)

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  15. Study on the developmental toxicity of combined artesunate and mefloquine antimalarial drugs on rats.

    Science.gov (United States)

    Boareto, Ana Cláudia; Müller, Juliane Centeno; de Araujo, Samanta Luiza; Lourenço, Ana Carolina; Lourenço, Emerson Luiz Botelho; Gomes, Caroline; Minatovicz, Bruna; Lombardi, Natália; Paumgartten, Francisco Roma; Dalsenter, Paulo Roberto

    2012-12-01

    Antimalarial drug combinations containing artemisinins (ACTs) have become first choice therapies for Plasmodium falciparum malaria. Data on safety of ACTs in pregnancy are limited and no previous study has been conducted on the developmental toxicity of artesunate-mefloquine combinations on the first trimester of gestation. To evaluate the developmental toxicity of an artesunate/mefloquine combination, pregnant rats were treated orally with artesunate (15 and 40 mg/kg bwt/day), mefloquine (30 and 80 mg/kg bwt/day) and artesunate/mefloquine (15/30 and 40/80 mg/kg bwt/day) on gestation days 9-11. Dams were C-sectioned on day 20, and their uteri and fetuses removed and examined for soft tissue and skeleton abnormalities. Artesunate increased embryolethality and the incidence of limb long bone malformations on the absence of overt maternal toxicity. Mefloquine (80 mg/kg bwt/day) was maternally toxic and enhanced fetal variations. Combination of artesunate and mefloquine did not enhance their toxicity compared to the toxicity observed after its separate administration. Embryotoxicity of artesunate was apparently attenuated when it is co-administered with mefloquine.

  16. Mass administration of the antimalarial drug mefloquine to Guantánamo detainees: a critical analysis.

    Science.gov (United States)

    Nevin, Remington L

    2012-10-01

    Recently, evidence has emerged from an unusual form of mass drug administration practised among detainees held at US Naval Station Guantánamo Bay, Cuba ('Guantánamo'), ostensibly as a public health measure. Mefloquine, an antimalarial drug originally developed by the US military, whose use is associated with a range of severe neuropsychiatric adverse effects, was administered at treatment doses to detainees immediately upon their arrival at Guantánamo, prior to laboratory testing for malaria and irrespective of symptoms of disease. In this analysis, the history of mefloquine's development is reviewed and the indications for its administration at treatment doses are discussed. The stated rationale for the use of mefloquine among Guantánamo detainees is then evaluated in the context of accepted forms of population-based malaria control. It is concluded that there was no plausible public health indication for the use of mefloquine at Guantánamo and that based on prevailing standards of care, the clinical indications for its use are decidedly unclear. This analysis suggests the troubling possibility that the use of mefloquine at Guantánamo may have been motivated in part by knowledge of the drug's adverse effects, and points to a critical need for further investigation to resolve unanswered questions regarding the drug's potentially inappropriate use.

  17. Gancidin W, a potential low-toxicity antimalarial agent isolated from an endophytic Streptomyces SUK10

    Science.gov (United States)

    Zin, Noraziah Mohamad; Baba, Mohd Shukri; Zainal-Abidin, Abu Hassan; Latip, Jalifah; Mazlan, Noor Wini; Edrada-Ebel, RuAngelie

    2017-01-01

    Endophytic Streptomyces strains are potential sources for novel bioactive molecules. In this study, the diketopiperazine gancidin W (GW) was isolated from the endophytic actinobacterial genus Streptomyces, SUK10, obtained from the bark of Shorea ovalis tree, and it was tested in vivo against Plasmodium berghei PZZ1/100. GW exhibited an inhibition rate of nearly 80% at 6.25 and 3.125 μg kg−1 body weight on day four using the 4-day suppression test method on male ICR strain mice. Comparing GW at both concentrations with quinine hydrochloride and normal saline as positive and negative controls, respectively, 50% of the mice treated with 3.125 μg kg−1 body weight managed to survive for more than 11 months after infection, which almost reached the life span of normal mice. Biochemical tests of selected enzymes and proteins in blood samples of mice treated with GW were also within normal levels; in addition, no abnormalities or injuries were found on internal vital organs. These findings indicated that this isolated bioactive compound from Streptomyces SUK10 exhibits very low toxicity and is a good candidate for potential use as an antimalarial agent in an animal model. PMID:28223778

  18. Antimalarial Drug Resistance: Surveillance and Molecular Methods for National Malaria Control Programmes

    Directory of Open Access Journals (Sweden)

    Umberto D'Alessandro

    1998-09-01

    Full Text Available National malaria control programmes have the responsibility to develop a policy for malaria disease management based on a set of defined criteria as efficacy, side effects, costs and compliance. These will fluctuate over time and national guidelines will require periodic re-assessment and revision. Changing a drug policy is a major undertaking that can take several years before being fully operational. The standard methods on which a decision can be taken are the in vivo and the in vitro tests. The latter allow a quantitative measurement of the drug response and the assessment of several drugs at once. However, in terms of drug policy change its results might be difficult to interpret although they may be used as an early warning system for 2nd or 3rd line drugs. The new WHO 14-days in vivo test addresses mainly the problem of treatment failure and of haematological parameters changes in sick children. It gives valuable information on whether a drug still `works'. None of these methods are well suited for large-scale studies. Molecular methods based on detection of mutations in parasite molecules targeted by antimalarial drugs could be attractive tools for surveillance. However, their relationship with in vivo test results needs to be established

  19. Design and Evaluation of Primaquine-Artemisinin Hybrids as a Multistage Antimalarial Strategy▿†

    Science.gov (United States)

    Capela, Rita; Cabal, Ghislain G.; Rosenthal, Philip J.; Gut, Jiri; Mota, Maria M.; Moreira, Rui; Lopes, Francisca; Prudêncio, Miguel

    2011-01-01

    It is widely accepted that the struggle against malaria depends on the development of new strategies to fight infection. The “magic bullet” thought to be necessary to reach eradication should not only provide treatment for all Plasmodium spp. that infect human red blood cells but should also eliminate the replicative and dormant liver forms of the parasite. Moreover, these goals should ideally be achieved by using different mechanisms of action so as to avoid the development of resistance. To that end, two hybrid molecules with covalently linked primaquine and artemisinin moieties were synthesized, and their effectiveness against the liver and blood stages of infection was compared in vitro and in vivo with those of the parent compounds. Both hybrids displayed enhanced in vitro activities, relative to those of the parent compounds, against Plasmodium berghei liver stages. Both compounds were about as potent as artemisinin against cultured Plasmodium falciparum (50% inhibitory concentration [IC50], ∼10 nM). When used to treat a murine P. berghei infection, one of the molecules displayed better efficacy than an equimolar mixture of the parent pharmacophores, leading to improved cure and survival rates. These results reveal a novel approach to the design and evaluation of antimalarials based on the covalent combination of molecules acting on different stages of the parasite life cycle. PMID:21807973

  20. Combinatorial pathway engineering for optimized production of the anti-malarial FR900098.

    Science.gov (United States)

    Freestone, Todd S; Zhao, Huimin

    2016-02-01

    As resistance to current anti-malarial therapeutics spreads, new compounds to treat malaria are increasingly needed. One promising compound is FR900098, a naturally occurring phosphonate. Due to limitations in both chemical synthesis and biosynthetic methods for FR900098 production, this potential therapeutic has yet to see widespread implementation. Here we applied a combinatorial pathway engineering strategy to improve the production of FR900098 in Escherichia coli by modulating each of the pathway's nine genes with four promoters of different strengths. Due to the large size of the library and the low screening throughput, it was necessary to develop a novel screening strategy that significantly reduced the sample size needed to find an optimal strain. This was done by using biased libraries that localize searching around top hits and home in on high-producing strains. By incorporating this strategy, a significantly improved strain was found after screening less than 3% of the entire library. When coupled with culturing optimization, a strain was found to produce 96 mg/L, a 16-fold improvement over the original strain. We believe the enriched library method developed here can be used on other large pathways that may be difficult to engineer by combinatorial methods due to low screening throughput.

  1. Assessment of Antimalarial Activity against Plasmodium falciparum and Phytochemical Screening of Some Yemeni Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Mohammed A. Alshawsh

    2009-01-01

    Full Text Available Developing countries, where malaria is one of the most prevalent diseases, still rely on traditional medicine as a source for the treatment of this disease. In the present study, six selected plants (Acalypha fruticosa, Azadirachta indica, Cissus rotundifolia, Echium rauwalfii, Dendrosicyos socotrana and Boswellia elongata commonly used in Yemen by traditional healers for the treatment of malaria as well as other diseases, were collected from different localities of Yemen, dried and extracted with methanol and water successfully. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates of Plasmodium falciparum. The selectivity parameters to evaluate the efficacy of these medicinal plants were measured by in vitro micro test (Mark III according to World Health Organization (WHO 1996 & WHO 2001 protocols of antimalarial drug tests. Among the investigated 12 extracts, three were found to have significant antiplasmodial activity with IC50 values less than 4 µg/ml, namely the water extracts of A. fruticosa, A. indica and D. socotrana. Six extracts showed moderate activity with IC50 values ranging from 10 to 30 µg/ml and three appeared to be inactive with IC50 values more than 30 µg/ml. In addition, preliminary phytochemical screening of the methanolic and aqueous extracts indicated the presence of saponins, tannins, flavonoids, terpenoids, polysaccharides and peptides.

  2. Use of refractometry and colorimetry as field methods to rapidly assess antimalarial drug quality.

    Science.gov (United States)

    Green, Michael D; Nettey, Henry; Villalva Rojas, Ofelia; Pamanivong, Chansapha; Khounsaknalath, Lamphet; Grande Ortiz, Miguel; Newton, Paul N; Fernández, Facundo M; Vongsack, Latsamy; Manolin, Ot

    2007-01-04

    The proliferation of counterfeit and poor-quality drugs is a major public health problem; especially in developing countries lacking adequate resources to effectively monitor their prevalence. Simple and affordable field methods provide a practical means of rapidly monitoring drug quality in circumstances where more advanced techniques are not available. Therefore, we have evaluated refractometry, colorimetry and a technique combining both processes as simple and accurate field assays to rapidly test the quality of the commonly available antimalarial drugs; artesunate, chloroquine, quinine, and sulfadoxine. Method bias, sensitivity, specificity and accuracy relative to high-performance liquid chromatographic (HPLC) analysis of drugs collected in the Lao PDR were assessed for each technique. The HPLC method for each drug was evaluated in terms of assay variability and accuracy. The accuracy of the combined method ranged from 0.96 to 1.00 for artesunate tablets, chloroquine injectables, quinine capsules, and sulfadoxine tablets while the accuracy was 0.78 for enterically coated chloroquine tablets. These techniques provide a generally accurate, yet simple and affordable means to assess drug quality in resource-poor settings.

  3. Iron(III) protoporphyrin IX complexes of the antimalarial Cinchona alkaloids quinine and quinidine.

    Science.gov (United States)

    de Villiers, Katherine A; Gildenhuys, Johandie; le Roex, Tanya

    2012-04-20

    The antimalarial properties of the Cinchona alkaloids quinine and quinidine have been known for decades. Surprisingly, 9-epiquinine and 9-epiquinidine are almost inactive. A lack of definitive structural information has precluded a clear understanding of the relationship between molecular structure and biological activity. In the current study, we have determined by single crystal X-ray diffraction the structures of the complexes formed between quinine and quinidine and iron(III) protoporphyrin IX (Fe(III)PPIX). Coordination of the alkaloid to the Fe(III) center is a key feature of both complexes, and further stability is provided by an intramolecular hydrogen bond formed between a propionate side chain of Fe(III)PPIX and the protonated quinuclidine nitrogen atom of either alkaloid. These interactions are believed to be responsible for inhibiting the incorporation of Fe(III)PPIX into crystalline hemozoin during its in vivo detoxification. It is also possible to rationalize the greater activity of quinidine compared to that of quinine.

  4. The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2003-09-01

    Full Text Available Abstract Background The naturally occurring benzoquinone ansamycin compound, geldanamycin (GA, is a specific inhibitor of heat shock protein 90 (Hsp90 and is a potential anticancer agent. Since Plasmodium falciparum has been reported to have an Hsp90 ortholog, we tested the possibility that GA might inhibit it and thereby display antiparasitic activity. Results We provide direct recombinant DNA evidence for the Hsp90 protein of Plasmodium falciparum, the causative agent of fatal malaria. While the mRNA of Hsp90 was mainly expressed in ring and trophozoite stages, the protein was found in all stages, although schizonts contained relatively lower amounts. In vitro the parasitic Hsp90 exhibited an ATP-binding activity that could be specifically inhibited by GA. Plasmodium growth in human erythrocyte culture was strongly inhibited by GA with an IC50 of 20 nM, compared to the IC50 of 15 nM for chloroquine (CQ under identical conditions. When used in combination, the two drugs acted synergistically. GA was equally effective against CQ-sensitive and CQ-resistant strains (3D7 and W2, respectively and on all erythrocytic stages of the parasite. Conclusions Together, these results suggest that an active and essential Hsp90 chaperone cycle exists in Plasmodium and that the ansamycin antibiotics will be an important tool to dissect its role in the parasite. Additionally, the favorable pharmacology of GA, reported in human trials, makes it a promising antimalarial drug.

  5. Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery.

    Science.gov (United States)

    Pradhan, Anupam; Siwo, Geoffrey H; Singh, Naresh; Martens, Brian; Balu, Bharath; Button-Simons, Katrina A; Tan, Asako; Zhang, Min; Udenze, Kenneth O; Jiang, Rays H Y; Ferdig, Michael T; Adams, John H; Kyle, Dennis E

    2015-01-01

    The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs' mechanisms of action. A mutant of the artemisinin resistance candidate gene - "K13-propeller" gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways.

  6. First findings on the seroepidemiology of human paragonimosis at the anti-tuberculosis centre of Divo, Republic of Ivory Coast (West Africa

    Directory of Open Access Journals (Sweden)

    Aka N.A.

    2008-06-01

    Full Text Available An epidemiological study was carried out in 2004-2005 at the anti-tuberculosis centre of Divo (Ivory Coast to collect sera from patients who consulted for tuberculosis suspicion and to estimate the seroprevalence of human paragonimosis in the context of a systematic screening. No Paragonimus egg was found in the stools and/or sputa of the 167 persons investigated. In contrast, 41 sera were ascertained with antibodies against Paragonimus africanus using ELISA testing. As the optical density (OD values related to seropositive findings were found under 0.6 (the minimal OD to detect an active paragonimosis, the above antibody titres might originate from patients in chronic or in convalescent stages, or might result of cross reactions with trematodes. Concomitantly, dissection of local crabs (Callinectes marginatus demonstrated the presence of Paragonimus metacercariae in six out of 34 examined. The parasite burdens in crabs ranged from two to 35 cysts with a mean diameter of 302 μm. In Ivory Coast, the locality of Divo must be considered an at-risk zone in reason of the presence of anti-Paragonimus antibodies in several human sera and the presence of infected crabs at the local market.

  7. Adverse events in healthy individuals and MDR-TB contacts treated with anti-tuberculosis drugs potentially effective for preventing development of MDR-TB: a systematic review.

    Science.gov (United States)

    Langendam, Miranda W; Tiemersma, Edine W; van der Werf, Marieke J; Sandgren, Andreas

    2013-01-01

    A recent systematic review concluded that there is insufficient evidence on the effectiveness to support or reject preventive therapy for treatment of contacts of patients with multidrug resistant tuberculosis (MDR-TB). Whether preventive therapy is favorable depends both on the effectiveness and the adverse events of the drugs used. We performed a systematic review to assess adverse events in healthy individuals and MDR-TB contacts treated with anti-tuberculosis drugs potentially effective for preventing development of MDR-TB. We searched MEDLINE, EMBASE, and other databases (August 2011). Record selection, data extraction, and study quality assessment were done in duplicate. The quality of evidence was assessed using the GRADE approach. Of 6,901 identified references, 20 studies were eligible. Among the 16 studies in healthy volunteers (a total of 87 persons on either levofloxacin, moxifloxacin, ofloxacin, or rifabutin, mostly for 1 week), serious adverse events and treatment discontinuation due to adverse events were rare (MDR-TB contacts, therapy was stopped for 58-100% of the included persons because of the occurrence of adverse events ranging from mild adverse events such as nausea and dizziness to serious events requiring treatment. The quality of the evidence was very low. Although the number of publications and quality of evidence are low, the available evidence suggests that shortly after starting treatment the occurrence of serious adverse events is rare. Mild adverse events occur more frequently and may be of importance because these may provoke treatment interruption.

  8. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    Directory of Open Access Journals (Sweden)

    Rosa A. S. Couto

    2016-06-01

    Full Text Available Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs for the voltammetric detection of the anti-tuberculosis (anti-TB drug ethambutol (ETB. The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV and square wave voltammetry (SWV techniques. Electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples.

  9. A review of age-old antimalarial drug to combat malaria:efficacy up-gradation by nanotechnology based drug delivery

    Institute of Scientific and Technical Information of China (English)

    Satyajit Tripathy; Somenath Roy

    2014-01-01

    Malaria is uncontrolled burden in the world till now.Despite of different efforts to develop antimalarial drug for decades, any anti-malarial drug can able to eradicate completely till now. Many anti-malarial substances are practically ineffectual because of their physicochemical limitations, cytotoxicity, chemical instability and degradation, and limited activities against intracellular parasites.Taking into consideration, the amount of research is going to conduct in the field of nanoparticle based drug delivery systems, lead to new ways of improving the treatment of infectious diseases.The study has focused on the progress and advancement of research on nanotechnology based drug delivery to eradicate the malaria.We like to focus the efficacy of nanotechnology based drug applicationfor the opening out of novel chemotherapeutics in laboratory research, which may show the way to better use with age-old antimalarial drug and may draw the attention of pharmaceutical industries for the improvement and designing of effective anti-malarial drugs in future.

  10. Evaluation of anti-malarial activity of Artemisia turcomanica and A. kopetdaghensis by cell-free β-hematin formation assay

    Directory of Open Access Journals (Sweden)

    M. Mojarrab

    2016-10-01

    Full Text Available Background and objectives:The plants of genus Artemisia (Asteraceae have been conventionally used for prevention and medication of a number of ailments. In the present research, ten extracts with different polarities from aerial parts of two Artemisia species, A. kopetdaghensis and A. turcomanica were evaluated for their potential anti-malarial properties. Methods: The plant materials were extracted successively with petroleum ether (PE, dichloromethane (DCM, ethyl acetate (EtOAC, ethanol, and ethanol-water (1:1 v/v  by cold maceration method. Cell free β-hematin formation assay were used for assessing anti-malarial activity of obtained extracts. Results: DCM extract of A. kopetdaghensis and PE extract of A. turcomanica showed remarkable anti-malarial activity with IC50 values of 1.04±0.02 mg/mL and 0.90±0.27 mg/mL, respectively, compared to positive control (chloroquine, IC50 0.04±0.01 mg/mL. Conclusion:  It seems that the anti-malarial activity of these extracts might be bound up with the presence of compounds with low or medium polarity; hence, this preliminary test indicated that these potent extracts could be considered for further investigations to find new sources of anti-malarial phytochemicals.

  11. Antimalarial activity of Bidens pilosa L. (Asteraceae) ethanol extracts from wild plants collected in various localities or plants cultivated in humus soil.

    Science.gov (United States)

    Andrade-Neto, Valter F; Brandão, Maria G L; Oliveira, Francielda Q; Casali, Vicente W D; Njaine, Brian; Zalis, Mariano G; Oliveira, Luciana A; Krettli, Antoniana U

    2004-08-01

    Bidens pilosa (Asteraceae), a medicinal plant used worldwide, has antimalarial activity as shown in previous work. This study tested ethanol extracts from wild plants collected in three different regions of Brazil and from plants cultivated in various soil conditions. The extracts were active in mice infected with P. berghei: doses of humus enriched soil, were active; but the wild plants were the most active. Analysis using thin layer chromatography demonstrated the presence of flavonoids (compounds considered responsible for the antimalarial activity) in all plants tested, even though at different profiles. Because B. pilosa is proven to be active against P. falciparum drug-resistant parasites in vitro, and in rodent malaria in vivo, it is a good candidate for pre-clinical tests as a phytotherapeutic agent or for chemical isolation of the active compounds with the aim of finding new antimalarial drugs.

  12. Antimalarial and antioxidant activities of Indigofera oblongifolia on Plasmodium chabaudi-induced spleen tissue injury in mice.

    Science.gov (United States)

    Lubbad, Mahmoud Y; Al-Quraishy, Saleh; Dkhil, Mohamed A

    2015-09-01

    Malaria is still one of the most common infectious diseases and leads to various public health problems worldwide. Medicinal plants are promising sources for identifying novel agents with potential antimalarial activity. This study aimed to investigate the antimalarial and the antioxidant activities of Indigofera oblongifolia on Plasmodium chabaudi-induced spleen tissue injury in mice. Mice were divided into five groups. The first group served as a vehicle control; the second, third, fourth, and fifth groups were infected with 1 × 10(6) P. chabaudi-parasitized erythrocytes. Mice of the last three groups were gavaged with 100 μl of I. oblongifolia leave extract (IOLE) at a dose of 100, 200, and 300 mg IOLE/kg, respectively, once daily for 7 days. IOLE was significantly able to lower the percentage of parasitemia. The most effective dose was the 100 mg IOLE/kg, which could reduce the parasitemia from about 38 to 12 %. The infection induced spleen injury. This was evidenced by disorganization of spleen white and red pulps, appearance of hemozoin granules and parasitized erythrocytes. These changes in spleen led to the increased histological score. Also, the infection increased the spleen oxidative damage where the levels of nitrite/nitrate, malondialdehyde, and catalase were significantly altered. All these infection-induced parameters were significantly improved during IOLE treatment. In addition, the mRNA expression of inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were upregulated after infection with P. chabaudi, whereas IOLE significantly reduced the expression of these genes. Our results indicate that I. oblongifolia leaves extract exhibits a significant antimalarial and antioxidant effects, and protects host spleen tissue from injuries induced by P. chabaudi.

  13. Low-cost, high-speed identification of counterfeit antimalarial drugs on paper.

    Science.gov (United States)

    Koesdjojo, Myra T; Wu, Yuanyuan; Boonloed, Anukul; Dunfield, Elizabeth M; Remcho, Vincent T

    2014-12-01

    With the emergence of artesunate antimalarial counterfeiting in Southeast Asia and sub-Saharan Africa, we present the production of a rapid, inexpensive and simple colorimetric-based testing kit for the detection of counterfeit artesunate in order to preserve life and prevent the development of multi-drug resistant malaria. The kit works based on paper microfluidics which offer several advantages over conventional microfluidics, and has great potential to generate inexpensive, easy-to-use, rapid and disposable diagnostic devices. Here, we have developed a colorimetric assay that is specific to artesunate and turns yellow upon addition of the sample. The test can be done within minutes, and allows for a semi-quantitative analysis of the artesunate tablets by comparing the developed yellow color on the paper test to a color-coded key chart that comes with the kit. A more accurate and precise analysis is done by utilizing a color analyzer on an iPhone camera that measures the color intensity of the developed color on the paper chip. A digital image of the chip was taken and analyzed by measuring the average gray intensity of the color developed on the paper circle. A plot of the artesunate concentration versus the average gray scale intensity was generated. Results show that the intensity of the yellow color developed on the paper test was consistent and proportional to the amount of artesunate present in the sample. With artesunate concentrations ranging from 0.0 to 20mg/mL, a linear calibration plot was obtained with a detection limit of 0.98 mg/mL.

  14. A call for using natural compounds in the development of new antimalarial treatments – an introduction

    Directory of Open Access Journals (Sweden)

    Deharo Eric

    2011-03-01

    Full Text Available Abstract Natural compounds, mostly from plants, have been the mainstay of traditional medicine for thousands of years. They have also been the source of lead compounds for modern medicine, but the extent of mining of natural compounds for such leads decreased during the second half of the 20th century. The advantage of natural compounds for the development of drugs derives from their innate affinity for biological receptors. Natural compounds have provided the best anti-malarials known to date. Recent surveys have identified many extracts of various organisms (mostly plants as having antiplasmodial activity. Huge libraries of fractionated natural compounds have been screened with impressive hit rates. Importantly, many cases are known where the crude biological extract is more efficient pharmacologically than the most active purified compound from this extract. This could be due to synergism with other compounds present in the extract, that as such have no pharmacological activity. Indeed, such compounds are best screened by cell-based assay where all potential targets in the cell are probed and possible synergies identified. Traditional medicine uses crude extracts. These have often been shown to provide many concoctions that deal better with the overall disease condition than with the causative agent itself. Traditional medicines are used by ~80 % of Africans as a first response to ailment. Many of the traditional medicines have demonstrable anti-plasmodial activities. It is suggested that rigorous evaluation of traditional medicines involving controlled clinical trials in parallel with agronomical development for more reproducible levels of active compounds could improve the availability of drugs at an acceptable cost and a source of income in malaria endemic countries.

  15. Anti-malarial efficacy of pyronaridine and artesunate in combination in vitro and in vivo.

    Science.gov (United States)

    Vivas, Livia; Rattray, Lauren; Stewart, Lindsay; Bongard, Emily; Robinson, Brian L; Peters, Wallace; Croft, Simon L

    2008-03-01

    Pyronaridine is a Mannich base anti-malarial with demonstrated efficacy against drug resistant Plasmodium falciparum, P. vivax, P. ovale and P. malariae. However, resistance to pyronaridine can develop quickly when it is used alone but can be considerably delayed when it is administered with artesunate in rodent malaria models. The aim of this study was to evaluate the efficacy of pyronaridine in combination with artesunate against P. falciparum in vitro and in rodent malaria models in vivo to support its clinical application. Pyronaridine showed consistently high levels of in vitro activity against a panel of six P. falciparum drug-sensitive and resistant strains (Geometric Mean IC50=2.24 nM, 95% CI=1.20-3.27). In vitro interactions between pyronaridine and artesunate showed a slight antagonistic trend, but in vivo compared to pyronaridine and artesunate administered alone, the 3:1 ratio of the combination, reduced the ED90 of artesunate by approximately 15.6-fold in a pyronaridine-resistant P. berghei line and by approximately 200-fold in an artesunate-resistant line of P. berghei. Complete cure rates were achieved with doses of the combination above or equal to 8 mg/kg per day against P. chabaudi AS. These results indicate that the combination had an enhanced effect over monotherapy and lower daily doses of artesunate could be used to obtain a curative effect. The data suggest that the combination of pyronaridine and artesunate should have potential in areas of multi-drug resistant malaria.

  16. Prospective strategies to delay the evolution of anti-malarial drug resistance: weighing the uncertainty

    Directory of Open Access Journals (Sweden)

    McKenzie F Ellis

    2010-07-01

    Full Text Available Abstract Background The evolution of drug resistance in malaria parasites highlights a need to identify and evaluate strategies that could extend the useful therapeutic life of anti-malarial drugs. Such strategies are deployed to best effect before resistance has emerged, under conditions of great uncertainty. Methods Here, the emergence and spread of resistance was modelled using a hybrid framework to evaluate prospective strategies, estimate the time to drug failure, and weigh uncertainty. The waiting time to appearance was estimated as the product of low mutation rates, drug pressure, and parasite population sizes during treatment. Stochastic persistence and the waiting time to establishment were simulated as an evolving branching process. The subsequent spread of resistance was simulated in simple epidemiological models. Results Using this framework, the waiting time to the failure of artemisinin combination therapy (ACT for malaria was estimated, and a policy of multiple first-line therapies (MFTs was evaluated. The models quantify the effects of reducing drug pressure in delaying appearance, reducing the chances of establishment, and slowing spread. By using two first-line therapies in a population, it is possible to reduce drug pressure while still treating the full complement of cases. Conclusions At a global scale, because of uncertainty about the time to the emergence of ACT resistance, there was a strong case for MFTs to guard against early failure. Our study recommends developing operationally feasible strategies for implementing MFTs, such as distributing different ACTs at the clinic and for home-based care, or formulating different ACTs for children and adults.

  17. Ferroquine, an Ingenious Antimalarial Drug –Thoughts on the Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Faustine Dubar

    2008-11-01

    Full Text Available Ferroquine (FQ or SR97193 is a novel antimalarial drug candidate, currently in development at Sanofi-Aventis. In contrast to conventional drugs, FQ is the first organometallic drug: a ferrocenyl group covalently flanked by a 4-aminoquinoline and a basic alkylamine. FQ is able to overcome the CQ resistance problem, an important limit to the control of Plasmodium falciparum, the principal causative agent of malaria. After fifteen years of effort, it is now possible to propose a multifactorial mechanism of action of FQ by its capacity to target lipids, to inhibit the formation of hemozoin and to generate reactive oxygen species.

  18. Isoxazole mediated synthesis of 4-(1H)pyridones: improved preparation of antimalarial candidate GSK932121.

    Science.gov (United States)

    Fernández, Jorge; Chicharro, Jesús; Bueno, José M; Lorenzo, Milagros

    2016-08-09

    A new synthesis of the antimalarial clinical candidate GSK932121 is described. This approach has two key reactions, the selective acylation of an unprotected 3-hydroxymethyl-5-methyl isoxazole and the reductive N-O bond cleavage of the previously functionalized isoxazole derivative, to give the 4-(1H)pyridone ring present in the final structure. The complete synthesis consists of 5 steps (versus 10 steps in previously published reports) and has enabled the preparation of the material in kilogram scale to support clinical studies.

  19. Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development

    Directory of Open Access Journals (Sweden)

    Zaloumis Sophie

    2012-08-01

    Full Text Available Abstract Background Mechanistic within-host models relating blood anti-malarial drug concentrations with the parasite-time profile help in assessing dosing schedules and partner drugs for new anti-malarial treatments. A comprehensive simulation study to assess the utility of a stage-specific pharmacokinetic-pharmacodynamic (PK-PD model for predicting within-host parasite response was performed. Methods Three anti-malarial combination therapies were selected: artesunate-mefloquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine. The PK-PD model included parameters to represent the concentration-time profiles of both drugs, the initial parasite burden and distribution across the parasite life cycle, and the parasite multiplication factor due to asexual reproduction. The model also included the maximal killing rate of each drug, and the blood drug concentration associated with half of that killing effect (in vivo EC50, derived from the in vitro IC50, the extent of binding to 0.5% Albumax present in the in vitro testing media, and the drugs plasma protein binding and whole blood to plasma partitioning ratio. All stochastic simulations were performed using a Latin-Hypercube-Sampling approach. Results The simulations demonstrated that the proportion of patients cured was highly sensitive to the in vivo EC50 and the maximal killing rate of the partner drug co-administered with the artemisinin derivative. The in vivo EC50 values that corresponded to on average 95% of patients cured were much higher than the adjusted values derived from the in vitro IC50. The proportion clinically cured was not strongly influenced by changes in the parameters defining the age distribution of the initial parasite burden (mean age of 4 to 16 hours and the parasite multiplication factor every life cycle (ranging from 8 to 12 fold/cycle. The median parasite clearance times, however, lengthened as the standard deviation of the initial parasite burden increased (i

  20. Reduction of anti-malarial consumption after rapid diagnostic tests implementation in Dar es Salaam: a before-after and cluster randomized controlled study

    Directory of Open Access Journals (Sweden)

    Swai Ndeniria

    2011-04-01

    Full Text Available Abstract Background Presumptive treatment of all febrile patients with anti-malarials leads to massive over-treatment. The aim was to assess the effect of implementing malaria rapid diagnostic tests (mRDTs on prescription of anti-malarials in urban Tanzania. Methods The design was a prospective collection of routine statistics from ledger books and cross-sectional surveys before and after intervention in randomly selected health facilities (HF in Dar es Salaam, Tanzania. The participants were all clinicians and their patients in the above health facilities. The intervention consisted of training and introduction of mRDTs in all three hospitals and in six HF. Three HF without mRDTs were selected as matched controls. The use of routine mRDT and treatment upon result was advised for all patients complaining of fever, including children under five years of age. The main outcome measures were: (1 anti-malarial consumption recorded from routine statistics in ledger books of all HF before and after intervention; (2 anti-malarial prescription recorded during observed consultations in cross-sectional surveys conducted in all HF before and 18 months after mRDT implementation. Results Based on routine statistics, the amount of artemether-lumefantrine blisters used post-intervention was reduced by 68% (95%CI 57-80 in intervention and 32% (9-54 in control HF. For quinine vials, the reduction was 63% (54-72 in intervention and an increase of 2.49 times (1.62-3.35 in control HF. Before-and-after cross-sectional surveys showed a similar decrease from 75% to 20% in the proportion of patients receiving anti-malarial treatment (Risk ratio 0.23, 95%CI 0.20-0.26. The cluster randomized analysis showed a considerable difference of anti-malarial prescription between intervention HF (22% and control HF (60% (Risk ratio 0.30, 95%CI 0.14-0.70. Adherence to test result was excellent since only 7% of negative patients received an anti-malarial. However, antibiotic

  1. Clinical Study of Drug-resistant Pulmonary Tuberculosis Treated by Combination of Anti-Tuberculosis Chemicals and Compound Astragalus Capsule(复方黄芪胶囊)

    Institute of Scientific and Technical Information of China (English)

    姜艳; 李新; 于志勇; 尹红义; 韩玉庆

    2004-01-01

    Objective: To observe and evaluate the therapeutic effect of anti-tuberculosis (anti-TB) chemicals and Compound Astragalus Capsule (CAC) in combinedly treating drug resistant pulmonary tuberculosis (DR-TB). Methods: Ninety-two patients with DR-TB were equally randomized into the treated group (treated with combination therapy) and the control group (treated with anti-TB chemicals alone). The therapeutic course for both groups was 18 months. Therapeutic effects between the two groups were compared at the end of the therapeutic course. Sputum bacterial negative rate, focal absorption effective rate, cavity closing rate, 10-day symptom improving rate, the incidence of adverse reaction and 2-year bacteriological recurrence rate between the two groups were compared. Results: In the treated group, the sputum bacterial negative conversion rate was 84. 8%, focal absorption effective rate 91.3 %, cavity closing rate 58. 7 % and 10-day symptom improving rate 54.4%, while in the control group, the corresponding rates were 65.2%,73.9 %, 37. 0% and 26.1%, respectively. Comparison between the groups showed significant difference in all the parameters ( P<0.05, P<0.05, P<0.05 and P<0.01 ). The incidence of adverse reaction and 2year bacteriological recurrence rate in the treated group were 23.9 % and 2.6 % respectively, while those in the control group 50.0% and 16.7%, which were higher than the former group with significant difference ( P<0.01 and P<0.05, respectively). Conclusion: The therapeutic effect of combined treatment with antiTB and CAC is superior to that of treatment with anti-TB chemicals alone, and the Chinese herbal medicine showed an adverse reaction alleviating effect, which provides a new therapy for DR-TB, and therefore, it is worth spreading in clinical practice.

  2. Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers.

    Science.gov (United States)

    Choonara, Yahya E; Pillay, Viness; Ndesendo, Valence M K; du Toit, Lisa C; Kumar, Pradeep; Khan, Riaz A; Murphy, Caragh S; Jarvis, Debbie-Leigh

    2011-10-15

    This study focused on evaluating four emulsion-based processing strategies for polymeric nanoparticle synthesis to explicate the mechanisms of nanoparticle formation and the influence on achieving sustained-release of two anti-tuberculosis drugs, isoniazid and rifampicin. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were formulated with and without sorbitan mono-oleate as a stabilizer using emulsion-solvent-surfactant-evaporation (ESSE) and emulsion-solvent-evaporation (ESE) approaches. An alginate solution gelled by ionic crosslinking with calcium chloride was employed to prepare alginate hydrogel nanoparticles via reverse-emulsion-cationic-gelification (RECG) and reverse-emulsion-surfactant-cationic-gelification (RESCG) approaches. In vitro drug release analysis was performed. The size, zeta potential and morphology of the nanoparticles were analyzed. Molecular mechanics energy relationships (MMER) were employed to explore the spatial disposition of alginate and PLGA with respect to the emulsifying profile of sorbitan monooleate and to corroborate the experimental findings. Results revealed that particle size of the PLGA nanoparticles was influenced by the stabilizer concentration. Nanoparticles synthesized by the ESSE approach had smaller sizes of 240±8.7 nm and 195.5±5.4 nm for rifampicin- and isoniazid-loaded nanoparticles, respectively. This was a substantial size reduction from nanoparticles generated by the ESE approach (>1000 nm). The RESCG approach produced stable and higher nanoparticle yields with desirable size (277±1.0 nm; 289±1.2 nm), a low polydispersity index (27.1±0.3 mV; 28.5±0.5 mV) and drug entrapment efficiency of 73% and 75% for isoniazid and rifampicin, respectively. Drug release from the ESSE and RESCG synthesized nanoparticles displayed desirable release of the two anti-TB drugs with sustained zero-order kinetics over a period of 8h. MMER supported the mechanisms of nanoparticle formation with a sphericalized interlaced network

  3. Insights into cytochrome bc 1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling

    Science.gov (United States)

    Sodero, Ana Carolina Rennó; Abrahim-Vieira, Bárbara; Torres, Pedro Henrique Monteiro; Pascutti, Pedro Geraldo; Garcia, Célia RS; Ferreira, Vitor Francisco; da Rocha, David Rodrigues; Ferreira, Sabrina Baptista; Silva, Floriano Paes

    2017-01-01

    BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc 1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite. PMID:28327793

  4. 7-Chloro-4-aminoquinoline γ-hydroxy-γ-lactam derived-tetramates as a new family of antimalarial compounds.

    Science.gov (United States)

    Chopin, Nicolas; Iikawa, Shinya; Bosson, Julien; Lavoignat, Adeline; Bonnot, Guillaume; Bienvenu, Anne-Lise; Picot, Stéphane; Bouillon, Jean-Philippe; Médebielle, Maurice

    2016-11-01

    In this Letter we report on an efficient and short 2-3 steps synthesis of γ-hydroxy-γ-lactam derived-tetramates bearing a 7-chloro-4-aminoquinoline skeleton and their evaluation as potent antimalarials. These molecules were obtained through ring opening-ring closure (RORC) process of γ-ylidene-tetronate derivatives in the presence of 7-chloro-4-aminoquinoline-derived amines. In vitro antimalarial activity of these new γ-lactams was evaluated against Plasmodium falciparum clones of variable sensitivity (3D7 and W2) and they were found to be active in the range of 14-827nM with generally good resistance index. A preliminary SAR study is also presented to explain these results. Finally, the most active compounds did not show in vitro cytotoxicity when tested against Human Umbilical Vein Endothelial Cells (HUVEC) up to concentration of 50μM and they were stable at pH 7.4 for at least 48h.

  5. Plasmodium IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target

    Science.gov (United States)

    Imlay, Leah S.; Armstrong, Christopher M.; Masters, Mary Clare; Li, Ting; Price, Kathryn E.; Edwards, Rachel L.; Mann, Katherine M.; Li, Lucy X.; Stallings, Christina L.; Berry, Neil G.; O’Neill, Paul M.; Odom, Audrey R.

    2015-01-01

    As resistance to current therapies spreads, novel antimalarials are urgently needed. In this work, we examine the potential for therapeutic intervention via the targeting of Plasmodium IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), the second dedicated enzyme of the essential methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis. Enzymes of this pathway represent promising therapeutic targets because the pathway is not present in humans. The Malaria Box compound, MMV008138, inhibits Plasmodium falciparum growth, and PfIspD has been proposed as a candidate intracellular target. We find that PfIspD is the sole intracellular target of MMV008138 and characterize the mode of inhibition and target-based resistance, providing chemical validation of this target. Additionally, we find that the Pf ISPD genetic locus is refractory to disruption in malaria parasites, providing independent genetic validation for efforts targeting this enzyme. This work provides compelling support for IspD as a druggable target for the development of additional, much-needed antimalarial agents. PMID:26783558

  6. Efficacy and tolerability of four antimalarial combinations in the treatment of uncomplicated Plasmodium falciparum malaria in Senegal

    Directory of Open Access Journals (Sweden)

    Faye Oumar

    2007-06-01

    Full Text Available Abstract Background In view of the high level of chloroquine resistance in many countries, WHO has recommended the use of combination therapy with artemisinin derivatives in the treatment of uncomplicated malaria due to Plasmodium falciparum. Four antimalarial drug combinations, artesunate plus amodiaquine (Arsucam®, artesunate plus mefloquine (Artequin®, artemether plus lumefantrine (Coartem®; four doses and six doses, and amodiaquine plus sulphadoxine-pyrimethamine, were studied in five health districts in Senegal. Methods This is a descriptive, analytical, open, randomized study to evaluate the efficacy and tolerability of these four antimalarial combinations in the treatment of uncomplicated falciparum malaria using the 2002 WHO protocol. Results All drug combinations demonstrated good efficacy. On day 28, all combinations resulted in an excellent clinical and parasitological response rate of 100% after correction for PCR results, except for the four-dose artemether-lumefantrine regimen (96.4%. Follow-up of approximately 10% of each treatment group on day 42 demonstrated an efficacy of 100%. The combinations were well tolerated clinically and biologically. No unexpected side-effect was observed and all side-effects disappeared at the end of treatment. No serious side-effect requiring premature termination of treatment was observed. Conclusion The four combinations are effective and well-tolerated.

  7. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria.

    Science.gov (United States)

    Bankole, A E; Adekunle, A A; Sowemimo, A A; Umebese, C E; Abiodun, O; Gbotosho, G O

    2016-01-01

    The use of plant to meet health-care needs has greatly increased worldwide in the recent times. The search for new plant-derived bioactive agents that can be explored for the treatment of drug-resistant malaria infection is urgently needed. Thus, we evaluated the antimalarial activity of three medicinal plants used in Nigerian folklore for the treatment of malaria infection. A modified Peter's 4-day suppressive test was used to evaluate the antimalarial activity of the plant extracts in a mouse model of chloroquine-resistant Plasmodium berghei ANKA strain. Animals were treated with 250, 500, or 800 mg/kg of aqueous extract. It was observed that of all the three plants studied, Markhamia tomentosa showed the highest chemosuppression of parasites of 73 % followed by Polyalthia longifolia (53 %) at day 4. All the doses tested were well tolerated. Percentage suppression of parasite growth on day 4 post-infection ranged from 1 to 73 % in mice infected with P. berghei and treated with extracts when compared with chloroquine diphosphate, the standard reference drug which had a chemosuppression of 90 %. The percentage survival of mice that received extract ranged from 0 to 60 % (increased as the dose increases to 800 mg/kg). Phytochemical analysis revealed the presence of tannins, saponins, and phenolic compounds in all the three plants tested.

  8. Analysis of the electrochemical reactivity of natural hemozoin and {beta}-hemozoin in the presence of antimalarial drugs

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Reyes-Cruz, Victor, E-mail: reyescruz16@yahoo.com [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Urbano Reyes, Gustavo, E-mail: gurbano2003@yahoo.com.mx [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Veloz Rodriguez, Maria Aurora, E-mail: maveloz70@yahoo.com.mx [Area Academica de Ciencias de la Tierra y Materiales, Instituto de Ciencias Basicas e Ingenieria, Universidad Autonoma del Estado de Hidalgo (Mexico); Imbert Palafox, Jose Luis, E-mail: imbertox@hotmail.com [Area Academica de Medicina, Instituto de Ciencias de la Salud, Universidad Autonoma del Estado de Hidalgo (Mexico)

    2011-11-30

    We report an evaluation of the reactivity of hemozoin (HZ) and {beta}-hemozoin ({beta}-HZ) obtained from the Triatoma Meccus longipennis, alone and in combination with quinine and amodiaquine. Using cyclic voltammetry and carbon paste electrodes, the redox processes that these compounds undergo were analysed. The results indicated that the atom Fe presence, the substance concentration, the drugs existence and the nature of the electrolytic medium are important in the redox processes. The strongest reactivity was for {beta}-HZ from Triatoma, which suggests that cellular molecules are embedded in an oxidising environment due to the presence of {beta}-HZ and indicates that like HZ, {beta}-HZ could be associate with phospholipid bilayers and interfere with their physical and chemical integrity, contributing to membrane breakdown and hyper-oxidation of molecules. It was further observed that when measuring the reactivity of HZ and {beta}-HZ with quinine and amodiaquine, a more oxidative stress was generated between the second one and the {beta}-HZ, which could explain the effectiveness of amodiaquine as a better antimalarial drug. Finally, it was concluded that electrochemical evaluation may be a convenient tool in determining the efficiency of antimalarial drugs and the identification of their redox processes.

  9. The search for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: a review

    Directory of Open Access Journals (Sweden)

    Krettli Antoniana U

    2001-01-01

    Full Text Available In this review we discuss the ongoing situation of human malaria in the Brazilian Amazon, where it is endemic causing over 610,000 new acute cases yearly, a number which is on the increase. This is partly a result of drug resistant parasites and new antimalarial drugs are urgently needed. The approaches we have used in the search of new drugs during decades are now reviewed and include ethnopharmocology, plants randomly selected, extracts or isolated substances from plants shown to be active against the blood stage parasites in our previous studies. Emphasis is given on the medicinal plant Bidens pilosa, proven to be active against the parasite blood stages in tests using freshly prepared plant extracts. The anti-sporozoite activity of one plant used in the Brazilian endemic area to prevent malaria is also described, the so called "Indian beer" (Ampelozizyphus amazonicus, Rhamnaceae. Freshly prepared extracts from the roots of this plant were totally inactive against blood stage parasites, but active against sporozoites of Plasmodium gallinaceum or the primary exoerythrocytic stages reducing tissue parasitism in inoculated chickens. This result will be of practical importance if confirmed in mammalian malaria. Problems and perspectives in the search for antimalarial drugs are discussed as well as the toxicological and clinical trials to validate some of the active plants for public health use in Brazil.

  10. De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Science.gov (United States)

    Annadurai, Ramasamy S; Neethiraj, Ramprasad; Jayakumar, Vasanthan; Damodaran, Anand C; Rao, Sudha Narayana; Katta, Mohan A V S K; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  11. De Novo transcriptome assembly (NGS of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Directory of Open Access Journals (Sweden)

    Ramasamy S Annadurai

    Full Text Available Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  12. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.

    Science.gov (United States)

    Haynes, Richard K; Chan, Wing-Chi; Wong, Ho-Ning; Li, Ka-Yan; Wu, Wai-Keung; Fan, Kit-Man; Sung, Herman H Y; Williams, Ian D; Prosperi, Davide; Melato, Sergio; Coghi, Paolo; Monti, Diego

    2010-08-02

    The antimalarial drug methylene blue (MB) affects the redox behaviour of parasite flavin-dependent disulfide reductases such as glutathione reductase (GR) that control oxidative stress in the malaria parasite. The reduced flavin adenine dinucleotide cofactor FADH(2) initiates reduction to leucomethylene blue (LMB), which is oxidised by oxygen to generate reactive oxygen species (ROS) and MB. MB then acts as a subversive substrate for NADPH normally required to regenerate FADH(2) for enzyme function. The synergism between MB and the peroxidic antimalarial artemisinin derivative artesunate suggests that artemisinins have a complementary mode of action. We find that artemisinins are transformed by LMB generated from MB and ascorbic acid (AA) or N-benzyldihydronicotinamide (BNAH) in situ in aqueous buffer at physiological pH into single electron transfer (SET) rearrangement products or two-electron reduction products, the latter of which dominates with BNAH. Neither AA nor BNAH alone affects the artemisinins. The AA-MB SET reactions are enhanced under aerobic conditions, and the major products obtained here are structurally closely related to one such product already reported to form in an intracellular medium. A ketyl arising via SET with the artemisinin is invoked to explain their formation. Dihydroflavins generated from riboflavin (RF) and FAD by pretreatment with sodium dithionite are rapidly oxidised by artemisinin to the parent flavins. When catalytic amounts of RF, FAD, and other flavins are reduced in situ by excess BNAH or NAD(P)H in the presence of the artemisinins in the aqueous buffer, they are rapidly oxidised to the parent flavins with concomitant formation of two-electron reduction products from the artemisinins; regeneration of the reduced flavin by excess reductant maintains a catalytic cycle until the artemisinin is consumed. In preliminary experiments, we show that NADPH consumption in yeast GR with redox behaviour similar to that of parasite GR is

  13. Anti-malarial drug quality in Lagos and Accra - a comparison of various quality assessments

    Directory of Open Access Journals (Sweden)

    Bate Roger

    2010-06-01

    Full Text Available Abstract Background Two major cities in West Africa, Accra, the capital of Ghana, and Lagos, the largest city of Nigeria, have significant problems with substandard pharmaceuticals. Both have actively combated the problem in recent years, particularly by screening products on the market using the Global Pharma Health Fund e.V. Minilab® protocol. Random sampling of medicines from the two cities at least twice over the past 30 months allows a tentative assessment of whether improvements in drug quality have occurred. Since intelligence provided by investigators indicates that some counterfeit producers may be adapting products to pass Minilab tests, the results are compared with those from a Raman spectrometer and discrepancies are discussed. Methods Between mid-2007 and early-2010, samples of anti-malarial drugs were bought covertly from pharmacies in Lagos on three different occasions (October 2007, December 2008, February 2010, and from pharmacies in Accra on two different occasions (October 2007, February 2010. All samples were tested using the Minilab® protocol, which includes disintegration and active ingredient assays as well as visual inspection, and most samples were also tested by Raman spectrometry. Results In Lagos, the failure rate in the 2010 sampling fell to 29% of the 2007 finding using the Minilab® protocol, 53% using Raman spectrometry, and 46% using visual inspection. In Accra, the failure rate in the 2010 sampling fell to 54% of the 2007 finding using the Minilab® protocol, 72% using Raman spectrometry, and 90% using visual inspection. Conclusions The evidence presented shows that drug quality is probably improving in both cities, especially Lagos, since major reductions of failure rates over time occur with all means of assessment. Many more samples failed when examined by Raman spectrometry than by Minilab® protocol. The discrepancy is most likely caused by the two techniques measuring different aspects of the medication

  14. Endoperoxide polyketides from a Chinese Plakortis simplex: further evidence of the impact of stereochemistry on antimalarial activity of simple 1,2-dioxanes.

    Science.gov (United States)

    Chianese, Giuseppina; Persico, Marco; Yang, Fan; Lin, Hou-Wen; Guo, Yue-Wei; Basilico, Nicoletta; Parapini, Silvia; Taramelli, Donatella; Taglialatela-Scafati, Orazio; Fattorusso, Caterina

    2014-09-01

    Chemical investigation of the organic extract obtained from the sponge Plakortis simplex collected in the South China Sea afforded five new polyketide endoperoxides (2 and 4-7), along with two known analogues (1 and 3). The stereostructures of these metabolites have been deduced on the basis of spectroscopic analysis and chemical conversion. The isolated endoperoxide derivatives have been tested for their in vitro antimalarial activity against Plasmodium falciparum strains, showing IC50 values in the low micromolar range. The structure-activity relationships were analyzed by means of a detailed computational investigation and rationalized in the light of the mechanism of action proposed for this class of simple antimalarials. The relative orientation of the atoms involved in the putative radical generation and transfer reaction was demonstrated to have a great impact on the antimalarial activity. The resulting 3D pharmacophoric model can be a useful guide to design simple and effective antimalarial lead compounds belonging to the class of 1,2-dioxanes.

  15. Structural features of substituted triazole-linked chalcone derivatives as antimalarial activities against D10 strains ofPlasmodium falciparum:A QSAR approach

    Institute of Scientific and Technical Information of China (English)

    Mukesh C. Sharma

    2015-01-01

    A quantitative structure–activity relationship (QSAR) was performed to analyze antimalarial activities against the D10 strains ofPlasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50 D10 strains ofPlasmodium falciparum data based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient (r2) of 0.8994, significant cross validated correlation coefficient (q2) of 0.7689,r2 for external test set(p2)redr of 0.8256, coefficient of correlation of predicted data set)(p2sered,r of 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.

  16. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.

    Science.gov (United States)

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-12-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.

  17. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Natalie Jane Spillman

    2015-12-01

    Full Text Available The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na+ concentration and the plasma membrane P-type cation translocating ATPase ‘PfATP4’ has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's ‘Malaria Box’. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na+. Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.

  18. Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor.

    Science.gov (United States)

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K; Gil, José P; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.

  19. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries

    Directory of Open Access Journals (Sweden)

    O'Connell Kathryn A

    2011-10-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC, Madagascar, Nigeria, Uganda and Zambia. Methods Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. Results 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets as compared to first-line quality-assured ACT ( Conclusions These standardized, nationally representative results demonstrate the typically low availability, low market share and high prices of ACT, in the private sector where most anti-malarials are accessed, with some exceptions. The results confirm that there is substantial room to improve availability and affordability of ACT treatment in the surveyed countries. The data will also be useful for monitoring the impact of interventions such as the Affordable Medicines Facility for malaria.

  20. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action.

    Science.gov (United States)

    Singh, Shiv Vardan; Manhas, Ashan; Kumar, Yogesh; Mishra, Sonali; Shanker, Karuna; Khan, Feroz; Srivastava, Kumkum; Pal, Anirban

    2017-03-05

    A clinical emergency stands due to the appearance of drug resistant Plasmodium strains necessitate novel and effective antimalarial chemotypes, where plants seem as the prime option, especially after the discovery of quinine and artemisinin. The present study was aimed towards bioprospecting leaves of Flueggea virosa for its antimalarial efficacy and active principles. Crude hydro-ethanolic extract along with solvent derived fractions were tested in vitro against Plasmodium falciparum CQ sensitive (3D7) and resistant (K1) strains, where all the fractions exhibited potential activity (IC50 values <10μg/mL) against both the strains. Interestingly, under in vivo conditions against P. berghei in Swiss mice, preferential chemo-suppression was recorded for crude hydro-ethanolic extract (77.38%) and ethyl acetate fraction (86.09%) at the dose of 500mg/kg body weight. Additionally, ethyl acetate fraction was found to be capable of normalizing the host altered pharmacological parameters and enhanced oxidative stress augmented during the infection. The bioactivity guided fractionation lead to the isolation of bergenin as a major and active constituent (IC50, 8.07±2.05μM) of ethyl acetate fraction with the inhibition of heme polymerization pathway of malaria parasite being one of the possible chemotherapeutic target. Furthermore, bergenin exhibited a moderate antimalarial activity against P. berghei and also ameliorated parasite induced systemic inflammation in host (mice). Safe toxicity profile elucidated through in vitro cytotoxicity and in silico ADME/T predications evidently suggest that bergenin possess drug like properties. Hence, the present study validates the traditional usage of F. indica as an antimalarial remedy and also insists for further chemical modifications of bergenin to obtain more effective antimalarial chemotypes.

  1. Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs

    Directory of Open Access Journals (Sweden)

    Pradines Bruno

    2011-10-01

    Full Text Available Abstract Background As a result of widespread chloroquine and sulphadoxine-pyrimethamine resistance, artemisinin-based combination therapy (ACT (which includes artemether-lumefantrine and artesunate-amodiaquine has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Since then, there have been very few reports on the ex vivo susceptibility of Plasmodium falciparum to anti-malarial drugs. To examine whether parasite susceptibility has been affected by the widespread use of ACT, the ex vivo susceptibility of local isolates was assessed at the military hospital of Dakar. Methods The ex vivo susceptibility of 93 P. falciparum isolates from Dakar was successfully determined using the Plasmodium lactate dehydrogenase (pLDH ELISA for the following drugs: chloroquine (CQ, quinine (QN, mefloquine (MQ, monodesethylamodiaquine (MDAQ, lumefantrine (LMF, dihydroartemisinin (DHA and doxycycline (DOX. Results After transformation of the isolate IC50 in ratio of IC50 according to the susceptibility of the 3D7 reference strain (isolate IC50/3D7 IC50, the prevalence of the in vitro resistant isolates with reduced susceptibility was 50% for MQ, 22% for CQ, 12% for DOX, 6% for both QN and MDAQ and 1% for the drugs LMF and DHA. The highest significant positive correlations were shown between responses to CQ and MDAQ (r = 0.569; P r = 0.511; P r = 0.428; P = 0.0001, LMF and MQ (r = 0.413; P = 0.0002, QN and DHA (r = 0.402; P = 0.0003 and QN and MQ (r = 0.421; P = 0.0001. Conclusions The introduction of ACT in 2002 has not induced a decrease in P. falciparum susceptibility to the drugs DHA, MDAQ and LMF, which are common ACT components. However, the prevalence of P. falciparum isolates with reduced susceptibility has increased for both MQ and DOX. Taken together, these data suggest that intensive surveillance of the P. falciparum in vitro susceptibility to anti-malarial drugs in Senegal is required.

  2. The antiretroviral efficacy of highly active antiretroviral therapy and plasma nevirapine concentrations in HIV-TB co-infected Indian patients receiving rifampicin based antituberculosis treatment

    Directory of Open Access Journals (Sweden)

    Sinha Sanjeev

    2011-11-01

    Full Text Available Abstract Background Rifampicin reduces the plasma concentrations of nevirapine in human immunodeficiency virus (HIV and tuberculosis (TB co-infected patients, who are administered these drugs concomitantly. We conducted a prospective interventional study to assess the efficacy of nevirapine-containing highly active antiretroviral treatment (HAART when co-administered with rifampicin-containing antituberculosis treatment (ATT and also measured plasma nevirapine concentrations in patients receiving such a nevirapine-containing HAART regimen. Methods 63 cases included antiretroviral treatment naïve HIV-TB co-infected patients with CD4 counts less than 200 cells/mm3 started on rifampicin-containing ATT followed by nevirapine-containing HAART. In control group we included 51 HIV patients without tuberculosis and on nevirapine-containing HAART. They were assessed for clinical and immunological response at the end of 24 and 48 weeks. Plasma nevirapine concentrations were measured at days 14, 28, 42 and 180 of starting HAART. Results 97 out of 114 (85.1% patients were alive at the end of 48 weeks. The CD4 cell count showed a mean increase of 108 vs.113 cells/mm3 (p=0.83 at 24 weeks of HAART in cases and controls respectively. Overall, 58.73% patients in cases had viral loads of less than 400 copies/ml at the end of 48 weeks. The mean (± SD Nevirapine concentrations of cases and control at 14, 28, 42 and 180 days were 2.19 ± 1.49 vs. 3.27 ± 4.95 (p = 0.10, 2.78 ± 1.60 vs. 3.67 ± 3.59 (p = 0.08, 3.06 ± 3.32 vs. 4.04 ± 2.55 (p = 0.10 respectively and 3.04 μg/ml (in cases. Conclusions Good immunological and clinical response can be obtained in HIV-TB co-infected patients receiving rifampicin and nevirapine concomitantly despite somewhat lower nevirapine trough concentrations. This suggests that rifampicin-containing ATT may be co administered in resource limited setting with nevirapine-containing HAART regimen without substantial reduction in

  3. Antiprotozoal alkaloids from Psychotria prunifolia (Kunth) Steyerm

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Lucilia; Oliveira, Cecilia M.A. de; Faria, Emiret O.; Ribeiro, Laryssa C.; Carvalho, Brenda G., E-mail: lucilia@quimica.ufg.br [Instituto de Quimica, Universidade Federal de Goias, Campus II, Samambaia, Goiania, GO (Brazil); Silva, Cleuza C. da; Santin, Silvana M.O. [Departamento de Quimica, Universidade Estadual de Maringa, Maringa, PR (Brazil); Schuque, Ivania T.A.; Nakamura, Celso V.; Britta, Elisandra A.; Miranda, Nathielle [Departamento de Farmacia e Farmacologia, Universidade Estadual de Maringa, PR (Brazil); Iglesias, Amadeu H. [Waters Technologies do Brasil LTDA, Barueri, SP (Brazil); Delprete, Piero G. [VHerbier de Guyane, Institut de Recherche pour le Developpement (IRD), UMR AMAP, French Guiana (France)

    2012-07-01

    The continuity of the phyto chemical study of crude extracts of P. prunifolia's roots and branches led to the isolation of five indole-{beta}-carboline alkaloids. Among them, the 10-hydroxy-iso-deppeaninol and N-oxide-10-hydroxy-antirhine derivatives are described here for the first time. The structures were achieved through 1D and 2D NMR, IR and HRMS analyses. The branches and roots crude extracts and the alkaloids 14-oxoprunifoleine and strictosamide showed selective activity against L. amazonensis, with IC{sub 50} values of 16.0 and 40.7 {mu}g per mL, respectively. (author)

  4. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  5. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Maria P. Crespo-Ortiz

    2012-01-01

    Full Text Available Improvement of quality of life and survival of cancer patients will be greatly enhanced by the development of highly effective drugs to selectively kill malignant cells. Artemisinin and its analogs are naturally occurring antimalarials which have shown potent anticancer activity. In primary cancer cultures and cell lines, their antitumor actions were by inhibiting cancer proliferation, metastasis, and angiogenesis. In xenograft models, exposure to artemisinins substantially reduces tumor volume and progression. However, the rationale for the use of artemisinins in anticancer therapy must be addressed by a greater understanding of the underlying mechanisms involved in their cytotoxic effects. The primary targets for artemisinin and the chemical base for its preferential effects on heterologous tumor cells need yet to be elucidated. The aim of this paper is to provide an overview of the recent advances and new development of this class of drugs as potential anticancer agents.

  6. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies

    DEFF Research Database (Denmark)

    Vestergaard, Lasse S; Ringwald, Pascal

    2007-01-01

    Reduced sensitivity of Plasmodium falciparum to formerly recommended cheap and well-known antimalarial drugs places an increasing burden on malaria control programs and national health systems in endemic countries. The high costs of the new artemisinin-based combination treatments underline the use...... of rational and updated malaria treatment policies, but defining and updating such policies requires a sufficient volume of high-quality drug-resistance data collected at national and regional levels. Three main tools are used for drug resistance monitoring, including therapeutic efficacy tests, in vitro...... tests, and analyses of molecular markers. Data obtained with the therapeutic efficacy test conducted according to the standard protocol of the World Health Organization are most useful for updating national treatment policies, while the in vitro test and molecular markers can provide important...

  7. Design and Synthesis of Some New Quinoline Based 1,2,3-Triazoles as Antimicrobial and Antimalarial Agents

    Directory of Open Access Journals (Sweden)

    Parthasaradhi Y.

    2015-09-01

    Full Text Available A series of novel 6-bromo-2-chloro-3-(4-phenyl-[1,2,3]triazol-1-ylmethyl-quinoline and its derivatives (5a-j were synthesized in good yields from the intermediates (6-bromo-2-chloro-quinolin-3-yl-methanol (2, methanesulfonic acid (6-bromo-2-chloroquinolin-3-ylmethyl methanesulfonate (3 and 3-azidomethyl-6-bromo-2-chloro-quinoline (4. The synthetic route leading to the title compounds is commenced from commercially available 6-bromo-2-chloro-quinolin-3-carbaldehyde (1. The chemical structures of the newly synthesized compounds were elucidated by their IR, 1H and 13C NMR, mass spectral data and elemental analysis. Further, all the target compounds were screened for their antimicrobial activity against various microorganisms and antimalarial activity towards P. falciparum. DOI: http://dx.doi.org/10.17807/orbital.v7i3.692 

  8. The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis.

    Science.gov (United States)

    Cabello, Christopher M; Lamore, Sarah D; Bair, Warner B; Qiao, Shuxi; Azimian, Sara; Lesson, Jessica L; Wondrak, Georg T

    2012-08-01

    Recent research suggests that altered redox control of melanoma cell survival, proliferation, and invasiveness represents a chemical vulnerability that can be targeted by pharmacological modulation of cellular oxidative stress. The endoperoxide artemisinin and semisynthetic artemisinin-derivatives including dihydroartemisinin (DHA) constitute a major class of antimalarials that kill plasmodium parasites through induction of iron-dependent oxidative stress. Here, we demonstrate that DHA may serve as a redox chemotherapeutic that selectively induces melanoma cell apoptosis without compromising viability of primary human melanocytes. Cultured human metastatic melanoma cells (A375, G361, LOX) were sensitive to DHA-induced apoptosis with upregulation of cellular oxidative stress, phosphatidylserine externalization, and activational cleavage of procaspase 3. Expression array analysis revealed DHA-induced upregulation of oxidative and genotoxic stress response genes (GADD45A, GADD153, CDKN1A, PMAIP1, HMOX1, EGR1) in A375 cells. DHA exposure caused early upregulation of the BH3-only protein NOXA, a proapototic member of the Bcl2 family encoded by PMAIP1, and genetic antagonism (siRNA targeting PMAIP1) rescued melanoma cells from apoptosis indicating a causative role of NOXA-upregulation in DHA-induced melanoma cell death. Comet analysis revealed early DHA-induction of genotoxic stress accompanied by p53 activational phosphorylation (Ser 15). In primary human epidermal melanocytes, viability was not compromised by DHA, and oxidative stress, comet tail moment, and PMAIP1 (NOXA) expression remained unaltered. Taken together, these data demonstrate that metastatic melanoma cells display a specific vulnerability to DHA-induced NOXA-dependent apoptosis and suggest feasibility of future anti-melanoma intervention using artemisinin-derived clinical redox antimalarials.

  9. Quality of anti-malarial drugs provided by public and private healthcare providers in south-east Nigeria

    Directory of Open Access Journals (Sweden)

    Uzochukwu Benjamin

    2009-02-01

    Full Text Available Abstract Background There is little existing knowledge about actual quality of drugs provided by different providers in Nigeria and in many sub-Saharan African countries. Such information is important for improving malaria treatment that will help in the development and implementation of actions designed to improve the quality of treatment. The objective of the study was to determine the quality of drugs used for the treatment of malaria in a broad spectrum of public and private healthcare providers. Methods The study was undertaken in six towns (three urban and three rural in Anambra state, south-east Nigeria. Anti-malarials (225 samples, which included artesunate, dihydroartemisinin, sulphadoxine-pyrimethamine (SP, quinine, and chloroquine, were either purchased or collected from randomly selected providers. The quality of these drugs was assessed by laboratory analysis of the dissolution profile using published pharmacopoeial monograms and measuring the amount of active ingredient using high performance liquid chromatography (HPLC. Findings It was found that 60 (37% of the anti-malarials tested did not meet the United States Pharmacopoeia (USP specifications for the amount of active ingredients, with the suspect drugs either lacking the active ingredients or containing suboptimal quantities of the active ingredients. Quinine (46% and SP formulations (39% were among drugs that did not satisfy the tolerance limits published in USP monograms. A total of 78% of the suspect drugs were from private facilities, mostly low-level providers, such as patent medicine dealers (vendors. Conclusion This study found that there was a high prevalence of poor quality drugs. The findings provide areas for public intervention to improve the quality of malaria treatment services. There should be enforced checks and regulation of drug supply management as well as stiffer penalties for people stocking substandard and counterfeit drugs.

  10. Effect of transmission reduction by insecticide-treated bednets (ITNs on antimalarial drug resistance in western Kenya.

    Directory of Open Access Journals (Sweden)

    Monica Shah

    Full Text Available Despite the clear public health benefit of insecticide-treated bednets (ITNs, the impact of malaria transmission-reduction by vector control on the spread of drug resistance is not well understood. In the present study, the effect of sustained transmission reduction by ITNs on the prevalence of Plasmodium falciparum gene mutations associated with resistance to the antimalarial drugs sulfadoxine-pyrimethamine (SP and chloroquine (CQ in children under the age of five years was investigated during an ITN trial in Asembo area, western Kenya. During the ITN trial, the national first line antimalarial treatment changed from CQ to SP. Smear-positive samples collected from cross sectional surveys prior to ITN introduction (baseline, n = 250 and five years post-ITN intervention (year 5 survey, n = 242 were genotyped for single nucleotide polymorphisms (SNPs at dhfr-51, 59, 108, 164 and dhps-437, 540 (SP resistance, and pfcrt-76 and pfmdr1-86 (CQ resistance. The association between the drug resistance mutations and epidemiological variables was evaluated. There were significant increases in the prevalence of SP dhps mutations and the dhfr/dhps quintuple mutant, and a significant reduction in the proportion of mixed infections detected at dhfr-51, 59 and dhps-437, 540 SNPs from baseline to the year 5 survey. There was no change in the high prevalence of pfcrt-76 and pfmdr1-86 mutations. Multivariable regression analysis further showed that current antifolate use and year of survey were significantly associated with more SP drug resistance mutations. These results suggest that increased antifolate drug use due to drug policy change likely led to the high prevalence of SP mutations 5 years post-ITN intervention and reduced transmission had no apparent effect on the existing high prevalence of CQ mutations. There is no evidence from the current study that sustained transmission reduction by ITNs reduces the prevalence of genes associated with malaria

  11. Establishment of an in vitro screening model for neurodegeneration induced by antimalarial drugs of the artemisinin-type..

    Science.gov (United States)

    Schmuck, G; Haynes, R K

    2000-01-01

    The establishment of an in vitro screening model for neurodegeneration inducing antimalarial drugs was conducted in stepwise fashion. Firstly, the in vivo selective neurotoxic potency of artemisinin was tested in neuronal cells in vitro in relation to the cytotoxic potency in other organ cell cultures such as liver and kidney or versus glial cells. Secondly, a comparison between different parts of the brain (cortex vs. brain stem) was performed and in the last step, a fast and sensitive screening endpoint was identified. In summary, non-neuronal cell lines such as hepatocytes (HEP-G2), liver epithelial cells (IAR), proximal tubular cells (LLC-PK(1)) and glial cells from the rat (C6) and human (GO-G-IJKT) displayed only moderate sensitivity to artemisinin and its derivatives. The same was found in undifferentiated neuronal cell lines from the mouse (N-18) and from human (Kelly), whereas during differentiation, these cells became much more sensitive. Primary astrocytes from the rat also were not specifically involved. In the comparison of primary neuronal cell cultures from the cortex and brain stem of the rat, the brain stem was found to be more sensitive than the cortex. The neurotoxic potential was determined by cytoskeleton elements (neurofilaments), which were degradated in vitro by diverse neurodegenerative compounds. In comparison of dog and rat primary brain stem cultures, the dog cells were found to be more sensitive to artemisinin than the rat cells. In addition to the primary brain stem cell cultures it was shown that the sprouting assay, which determines persistent delayed neurotoxic effects, is also useful for screening antimalarial drugs. To other compounds, artemether and artesunate, showed that use of the sprouting assay followed by primary brain stem cultures of the rat will be a good strategy to select candidate compounds.

  12. A novel prediction approach for antimalarial activities of Trimethoprim, Pyrimethamine, and Cycloguanil analogues using extremely randomized trees.

    Science.gov (United States)

    Nattee, Cholwich; Khamsemanan, Nirattaya; Lawtrakul, Luckhana; Toochinda, Pisanu; Hannongbua, Supa

    2017-01-01

    Malaria is still one of the most serious diseases in tropical regions. This is due in part to the high resistance against available drugs for the inhibition of parasites, Plasmodium, the cause of the disease. New potent compounds with high clinical utility are urgently needed. In this work, we created a novel model using a regression tree to study structure-activity relationships and predict the inhibition constant, Ki of three different antimalarial analogues (Trimethoprim, Pyrimethamine, and Cycloguanil) based on their molecular descriptors. To the best of our knowledge, this work is the first attempt to study the structure-activity relationships of all three analogues combined. The most relevant descriptors and appropriate parameters of the regression tree are harvested using extremely randomized trees. These descriptors are water accessible surface area, Log of the aqueous solubility, total hydrophobic van der Waals surface area, and molecular refractivity. Out of all possible combinations of these selected parameters and descriptors, the tree with the strongest coefficient of determination is selected to be our prediction model. Predicted Ki values from the proposed model show a strong coefficient of determination, R(2)=0.996, to experimental Ki values. From the structure of the regression tree, compounds with high accessible surface area of all hydrophobic atoms (ASA_H) and low aqueous solubility of inhibitors (Log S) generally possess low Ki values. Our prediction model can also be utilized as a screening test for new antimalarial drug compounds which may reduce the time and expenses for new drug development. New compounds with high predicted Ki should be excluded from further drug development. It is also our inference that a threshold of ASA_H greater than 575.80 and Log S less than or equal to -4.36 is a sufficient condition for a new compound to possess a low Ki.

  13. The impact of text message reminders on adherence to antimalarial treatment in northern Ghana: a randomized trial.

    Directory of Open Access Journals (Sweden)

    Julia R G Raifman

    Full Text Available BACKGROUND: Low rates of adherence to artemisinin-based combination therapy (ACT regimens increase the risk of treatment failure and may lead to drug resistance, threatening the sustainability of current anti-malarial efforts. We assessed the impact of text message reminders on adherence to ACT regimens. METHODS: Health workers at hospitals, clinics, pharmacies, and other stationary ACT distributors in Tamale, Ghana provided flyers advertising free mobile health information to individuals receiving malaria treatment. The messaging system automatically randomized self-enrolled individuals to the control group or the treatment group with equal probability; those in the treatment group were further randomly assigned to receive a simple text message reminder or the simple reminder plus an additional statement about adherence in 12-hour intervals. The main outcome was self-reported adherence based on follow-up interviews occurring three days after treatment initiation. We estimated the impact of the messages on treatment completion using logistic regression. RESULTS: 1140 individuals enrolled in both the study and the text reminder system. Among individuals in the control group, 61.5% took the full course of treatment. The simple text message reminders increased the odds of adherence (adjusted OR 1.45, 95% CI [1.03 to 2.04], p-value 0.028. Receiving an additional message did not result in a significant change in adherence (adjusted OR 0.77, 95% CI [0.50 to 1.20], p-value 0.252. CONCLUSION: The results of this study suggest that a simple text message reminder can increase adherence to antimalarial treatment and that additional information included in messages does not have a significant impact on completion of ACT treatment. Further research is needed to develop the most effective text message content and frequency. TRIAL REGISTRATION: ClinicalTrials.gov NCT01722734.

  14. Anti-malarials exert a protective effect while Mestizo patients are at increased risk of developing SLE renal disease: data from a Latin-American cohort

    Science.gov (United States)

    Pons-Estel, Guillermo J.; Alarcón, Graciela S.; Hachuel, Leticia; Boggio, Gabriela; Wojdyla, Daniel; Pascual-Ramos, Virginia; Soriano, Enrique R.; Saurit, Verónica; Cavalcanti, Fernando S.; Guzman, Renato A.; Guibert-Toledano, Marlene; Sauza del Pozo, Maria J.; Amigo, Mary-Carmen; Alva, Magaly; Esteva-Spinetti, Maria H.

    2012-01-01

    Objective. To examine the role of ethnicity and the use of anti-malarials (protective) on lupus renal disease. Methods. A nested case–control study (1:2 proportion, n = 265 and 530) within GLADEL's (Grupo Latino Americano De Estudio de Lupus) longitudinal inception cohort was carried out. The end-point was ACR renal criterion development after diagnosis. Cases and controls were matched for follow-up time (end-point or a comparable time, respectively). Renal disease predictors were examined by univariable and multivariable analyses. Additional analyses were done to determine if the protective effect of anti-malarials persisted after adjusting for intake-associated confounders. Results. Of the cases, 233 (87.9%) were women; their mean (s.d.) age at diagnosis was 28.0 (11.9) years and their median (Q3–Q1 interquartile range) follow-up time for cases and controls was 8.3 months (Q3–Q1: 23.5); 56.6% of the cases and 74.3% of the controls were anti-malarial users. Mestizo ethnicity [odds ratio (OR) 1.72, 95% CI 1.19, 2.48] and hypertension (OR 2.26, 95% CI 1.38, 3.70) were independently associated with a higher risk of renal disease, whereas anti-malarial use (OR 0.39, 95% CI 0.26, 0.58), older age at disease onset (OR 0.98, 95% CI 0.96, 0.99) and female gender (OR 0.56, 95% CI 0.32, 0.99) were negatively associated with such occurrence. After adjusting for variables associated with their intake, the protective effect of anti-malarials on renal disease occurrence persisted (OR 0.38, 95% CI 0.25, 0.58). Conclusion. Mestizo patients are at increased risk of developing renal disease, whereas anti-malarial use protects patients from such an occurrence. PMID:22389125

  15. Saleability of anti-malarials in private drug shops in Muheza, Tanzania: a baseline study in an era of assumed artemisinin combination therapy (ACT

    Directory of Open Access Journals (Sweden)

    Ringsted Frank M

    2011-08-01

    Full Text Available Abstract Background Artemether-lumefantrine (ALu replaced sulphadoxine-pymimethamine (SP as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant women depend on SP for Intermittent Preventive Treatment (IPTp during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform a baseline study of the private market for anti-malarials in Muheza town, an area with widespread anti-malarial drug resistance, prior to the implementation of a provider training and accreditation programme that will allow accredited drug shops to sell subsidized ALu. Methods All drug shops selling prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. Results All surveyed drug shops illicitly sold SP and quinine (QN, and legally amodiaquine (AQ. Calculated monthly sale was 4,041 doses, in a town with a population of 15,000 people. Local brands of SP accounted for 74% of sales volume, compared to AQ (13%, QN (11% and ACT (2%. Conclusions In community practice, the saleability of ACT was negligible. SP was best-selling, and use was not reserved for IPTp, as stipulated in the national anti-malarial policy. It is a major reason for concern that such drug-pressure in the community equals de facto intermittent presumptive treatment. In an area where SP drug resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp

  16. Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Directory of Open Access Journals (Sweden)

    Kaludov Nikola

    2011-09-01

    Full Text Available Abstract Background Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds. Methods A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and de novo molecular design. Results Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified in silico and tested in vitro; eight of them showed anti-malarial activity (IC50 ≤ 10 μM, with six being very effective (IC50 ≤ 1 μM, and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a

  17. Is primaquine useful and safe as true exo-erythrocytic merontocidal, hypnozoitocidal and gametocidal antimalarial drug?

    Directory of Open Access Journals (Sweden)

    Francisco Javier López-Antuñano

    1999-10-01

    Full Text Available The main objective of this paper is to make available in a single document, a sequence of events that have been published on the biology of malaria parasites and their interaction with the human host, looking for arguments for effective and save treatment: what we know and what we would like to know about the effects of primaquine in order to justify its use in clinical and public health practice. The practicioner should be aware that the antimalarial activity, hemolytic and methemoglobinemic side effects, and detoxification of primaquine are all thought to depend on various biotransformation products of the drug. In spite of the universal use during over six decades, their site and mechanism of formation and degradation and their specific biologic effects remain very poorly understood in human beings. The mature gametocytes of P. falciparum are naturally resistant to chloroquine and other blood merontocides, but they are usually eliminated with a single dose of 1.315 mg/kg per os (p.o. of primaquine phosphate (equivalent to 0.75 mg-base. Rather than empirically, related with relapses frequency, dosage schedules should only be determined through consideration of the kinetics and dynamics of the drug and its effect on sporozoites, pre and exo-erythrocytic merontes, hypnozoites and gametocytes of P. vivax. Where medical care services are not available or not capable to detect glucose -6- phosphate dehydrogenese- (G-6-PD deficiencies and deleterious effects of the drug, we recommend not to use primaquine. Both, P. vivax primary clinical attack and P. vivax relapses, as and when they occur should be treated with a course of 10 mg/kg chloroquine-base p.o. Prevention of relapses is probably related to strain characteristics of P. vivax hypnozoites populations envolved. If well informed and qualified medical care workers decide to use primaquine in the absence of enzime defficiencies and are able to follow-up the clinical, toxicological and parasitic

  18. Structural optimization of quinolon-4(1H)-imines as dual-stage antimalarials: toward increased potency and metabolic stability.

    Science.gov (United States)

    Ressurreição, Ana S; Gonçalves, Daniel; Sitoe, Ana R; Albuquerque, Inês S; Gut, Jiri; Góis, Ana; Gonçalves, Lídia M; Bronze, Maria R; Hanscheid, Thomas; Biagini, Giancarlo A; Rosenthal, Philip J; Prudêncio, Miguel; O'Neill, Paul; Mota, Maria M; Lopes, Francisca; Moreira, Rui

    2013-10-10

    Discovery of novel effective and safe antimalarials has been traditionally focused on targeting erythrocytic parasite stages that cause clinical symptoms. However, elimination of malaria parasites from the human population will be facilitated by intervention at different life-cycle stages of the parasite, including the obligatory developmental phase in the liver, which precedes the erythrocytic stage. We have previously reported that N-Mannich-based quinolon-4(1H)-imines are potent antiplasmodial agents but present several stability liabilities. We now report our efforts to optimize quinolon-4(1H)-imines as dual-stage antiplasmodial agents endowed with chemical and metabolic stability. We report compounds active against both the erythrocytic and exoerythrocytic forms of malaria parasites, such as the quinolon-4(1H)-imine 5p (IC50 values of 54 and 710 nM against the erythrocytic and exoerythrocytic forms), which constitute excellent starting points for further lead optimization as dual-stage antimalarials.

  19. 抗痨颗粒对耐多药结核分枝杆菌蛋白质组学的影响%Effect of Anti-tuberculosis Particles on Proteomics of Drug-resistant Mycobacterium Tuberculosis

    Institute of Scientific and Technical Information of China (English)

    李建国; 刘湘花; 汤红琴; 董修兵; 李宁宁

    2012-01-01

    目的:应用蛋白质组学的双向电泳技术,比较分析抗痨颗粒提取物作用前后耐多药结核分枝杆菌的全菌蛋白表达差异,揭示药物作用机制.方法:临床耐多药结核分枝杆菌接种在7H9添加OADC液体培养基中37℃培养6~8d,细菌密度为1×108/mL~2 × 108/mL.抗痨颗粒浸提物的最低抑菌浓度(MIC)为0.638 8 g·L-1.加到液体培养基中,作用20 h,终浓度为相当于生药0.255 6 g·mL-1.局部内环境与外部环境完全隔离下,采用双向凝胶电泳分离全菌总蛋白,得到差异表达的蛋白质点进行分析比对.结果:耐多药结核分枝杆菌用药前后,发现了8个差异斑点,确定其中2个蛋白质为:硫代硫酸硫转移酶( thiosulfate sulfurtransferase)和假定蛋白Rv0634A.结论:揭示了抗痨颗粒对耐多药结核分枝杆菌的翻译,结构组成,氨基酸代谢,氰化物和H2S的解毒以及硫和铁转移等各方面均有一定影响,从而破坏结核分枝杆菌的生活能力,从而达到抑制结核分枝杆菌的目的.%Objective; To reveal the mechanism of drug action to compare and analyze of the effect of anti-tuberculosis particles extract on multi-drug resistant-mycobacterium tuberculosis proteomics to reveal the mechanism of drug action. Method; The clinical mycobacterium tuberculosis with multidrug resistance was added in Middlebrook 7H9 OADC liquid medium at 37 ℃ for 6-8 d, when the bacterial density researched 1 × l08/mL-2 × l08/mL, the minimum inhibitory concentration ( MIC) of anti-tuberculosis particulate extracts was 0. 638 8 g · L-1 , the final concentration was equivalent to 0. 255 6 g · mL . Local environment and external environment was completely isolated, two-dimensional gel electrophoresis separation of whole cell total protein was used to analyze differentially expressed protein spots. Result; Before and after treatment by anti-tuberculosis particles extract, multidrug-resistant mycobacterium tuberculosis showed eight

  20. The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death.

    Science.gov (United States)

    Qiao, Shuxi; Tao, Shasha; Rojo de la Vega, Montserrat; Park, Sophia L; Vonderfecht, Amanda A; Jacobs, Suesan L; Zhang, Donna D; Wondrak, Georg T

    2013-12-01

    Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.

  1. A novel way to grow hemozoin-like crystals in vitro and its use to screen for hemozoin inhibiting antimalarial compounds.

    Directory of Open Access Journals (Sweden)

    Vincent Thomas

    Full Text Available BACKGROUND: Hemozoin crystals are normally formed in vivo by Plasmodium parasites to detoxify free heme released after hemoglobin digestion during its intraerythrocytic stage. Inhibition of hemozoin formation by various drugs results in free heme concentration toxic for the parasites. As a consequence, in vitro assays have been developed to screen and select candidate antimalarial drugs based on their capacity to inhibit hemozoin formation. In this report we describe new ways to form hemozoin-like crystals that were incidentally discovered during research in the field of prion inactivation. METHODS: We investigated the use of a new assay based on naturally occurring "self-replicating" particles and previously described as presenting resistance to decontamination comparable to prions. The nature of these particles was determined using electron microscopy, Maldi-Tof analysis and X-ray diffraction. They were compared to synthetic hemozoin and to hemozoin obtained from Plasmodium falciparum. We then used the assay to evaluate the capacity of various antimalarial and anti-prion compounds to inhibit "self-replication" (crystallisation of these particles. RESULTS: We identified these particles as being similar to ferriprotoporphyrin IX crystal and confirmed the ability of these particles to serve as nuclei for growth of new hemozoin-like crystals (HLC. HLC are morphologically similar to natural and synthetic hemozoin. Growth of HLC in a simple assay format confirmed inhibition by quinolines antimalarials at potencies described in the literature. Interestingly, artemisinins and tetracyclines also seemed to inhibit HLC growth. CONCLUSIONS: The described HLC assay is simple and easy to perform and may have the potential to be used as an additional tool to screen antimalarial drugs for their hemozoin inhibiting activity. As already described by others, drugs that inhibit hemozoin crystal formation have also the potential to inhibit misfolded proteins

  2. A small-fish model for behavioral-toxicological screening of new antimalarial drugs: a comparison between erythro- and threo-mefloquine

    OpenAIRE

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2015-01-01

    Background New antimalarial drugs need to be developed because over time resistance against the existing drugs develops. Furthermore, some of the drugs have severe side effects. Here we describe a behavioral small-fish model for early detection of neurotoxic effects of new drugs. As case example we compare the effects of two mefloquine diastereomers on the behavior of goldfish using an automated 3D tracking system. Findings In a preliminary experiment, the overall toxic effects in terms of mo...

  3. A novel in vitro bioluminescence rate-of-kill (BRoK) assay to study the pharmacodynamic properties of antimalarial drug action in Plasmodium falciparum

    OpenAIRE

    Ullah, Imran

    2016-01-01

    Massive screens of chemical libraries for antimalarial activity have identified thousands of compounds that exhibit sub-micromolar potency against the blood stage of the malaria parasite Plasmodium falciparum. Triaging these compounds to establish priorities to take forward for development requires additional information regarding their activity. Key amongst their pharmacodynamics (PD) properties is the rate of kill– with a rapid cytocidal effect specifically identified as a key requirement f...

  4. Adherence of community caretakers of children to pre-packaged antimalarial medicines (HOMAPAK®) among internally displaced people in Gulu district, Uganda

    OpenAIRE

    Jan H Kolaczinski; Ojok, Naptalis; Opwonya, John; Meek, Sylvia; Collins, Andrew

    2006-01-01

    Abstract Background In 2002, home-based management of fever (HBMF) was introduced in Uganda, to improve access to prompt, effective antimalarial treatment of all fevers in children under 5 years. Implementation is through community drug distributors (CDDs) who distribute pre-packaged chloroquine plus sulfadoxine-pyrimethamine (HOMAPAK®) free of charge to caretakers of febrile children. Adherence of caretakers to this regimen has not been studied. Methods A questionnaire-based survey combined ...

  5. Characterization and optimization of the haemozoin-like crystal (HLC) assay to determine Hz inhibiting effects of anti-malarial compounds

    OpenAIRE

    2015-01-01

    Background The haem-haemozoin biocrystallization pathway is an attractive target where several efficacious and safe anti-malarial drugs act. Consequently, in vitro haemozoin (Hz) inhibition assays have been developed to identify novel compounds. However, results may differ between assays and often require complex methods or sophisticated infrastructure. The recently reported growth of haemozoin-like crystals (HLC) appears to be a simple alternative although the endproduct is structurally diff...

  6. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity.

    Science.gov (United States)

    Lucchi, Naomi W; Komino, Franklin; Okoth, Sheila Akinyi; Goldman, Ira; Onyona, Philip; Wiegand, Ryan E; Juma, Elizabeth; Shi, Ya Ping; Barnwell, John W; Udhayakumar, Venkatachalam; Kariuki, Simon

    2015-12-01

    Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya.

  7. Evaluation of In Vitro Antimalarial Activity of Different Extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and Fractions of the Most Potent Extracts

    Directory of Open Access Journals (Sweden)

    Mahdi Mojarrab

    2014-01-01

    Full Text Available Ten extracts with different polarity from two Iranian Artemisia species, A. armeniaca Lam. and A. aucheri Boiss, were screened for their antimalarial properties by in vitro  β-hematin formation assay. Dichloromethane (DCM extracts of both plants showed significant antimalarial activities with IC50 values of 1.36 ± 0.01 and 1.83 ± 0.03 mg/mL and IC90 values of 2.12 ± 0.04 and 2.62 ± 0.09 mg/mL for A. armeniaca and A. aucheri, respectively. Bioactivity-guided fractionation of DCM extracts of both plants by vacuum liquid chromatography (VLC over silica gel with solvent mixtures of increasing polarities afforded seven fractions. Two fractions from DCM extract of A. armeniaca and four fractions from DCM extract of A. aucheri showed potent antimalarial activity with reducing IC50 and IC90 values compared to extracts. The most potent fraction belonged to DCM extract of A. armeniaca with IC50 and IC90 values of 0.47 ± 0.006 and 0.71 ± 0.006 mg/mL, respectively.

  8. Development and validation of a generic liquid chromatographic method for the simultaneous determination of five commonly used antimalarial drugs: Application to pharmaceutical formulations and human plasma.

    Science.gov (United States)

    Mannemala, Sai Sandeep; Nagarajan, Janaki Sankarachari Krishnan

    2015-05-01

    A simple, sensitive, and rapid liquid chromatographic method was developed and validated using diode array detection for the determination of five commonly used antimalarial drugs in pharmaceutical formulations and in human plasma. Chromatographic separation of antimalarial drugs and internal standard (ibuprofen) was achieved on a C18 column with a mobile phase composed of 10 mM dipotassium orthophosphate at pH 3.0, methanol, and acetonitrile in a ratio of 20:38:42 v/v, at a flow rate of 1 mL/min. The analytes were monitored at 220 nm and separated in ˂10 min. The method was validated for linearity, accuracy, precision, limit of quantification, and robustness. Both intra- and interday precisions (in terms of %RSD) were lower than 3% and accuracy ranged from 98.1 to 104.5%. Extraction recoveries were ≥96% in plasma. The limits of quantitation for artemether, lumefantrine, pyrimethamine, sulfadoxine, and mefloquine were 0.3, 0.03, 0.06, 0.15, and 0.15 μg/mL in human plasma. Stability under various conditions was also investigated. The method was successfully applied for quantification of antimalarial drugs in marketed formulations and in spiked human plasma. The method can be employed for routine QC purposes and in pharmacokinetic investigations.

  9. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids.

    Science.gov (United States)

    Amoa Onguéné, Pascal; Ntie-Kang, Fidele; Lifongo, Lydia Likowo; Ndom, Jean Claude; Sippl, Wolfgang; Mbaze, Luc Meva'a

    2013-12-13

    Traditional medicine caters for about 80% of the health care needs of many rural populations around the world, especially in developing countries. In addition, plant-derived compounds have played key roles in drug discovery. Malaria is currently a public health concern in many countries in the world due to factors such as chemotherapy faced by resistance, poor hygienic conditions, poorly managed vector control programmes and no approved vaccines. In this review, an attempt has been made to assess the value of African medicinal plants for drug discovery by discussing the anti-malarial virtue of the derived phytochemicals that have been tested by in vitro and in vivo assays. This survey was focused on pure compounds derived from African flora which have exhibited anti-malarial properties with activities ranging from "very active" to "weakly active". However, only the compounds which showed anti-malarial activities from "very active" to "moderately active" are discussed in this review. The activity of 278 compounds, mainly alkaloids, terpenoids, flavonoids, coumarines, phenolics, polyacetylenes, xanthones, quinones, steroids, and lignans have been discussed. The first part of this review series covers the activity of 171 compounds belonging to the alkaloid and terpenoid classes. Data available in the literature indicated that African flora hold an enormous potential for the development of phytomedicines for malaria.

  10. Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives.

    Science.gov (United States)

    Kumar, S P; George, L B; Jasrai, Y T; Pandya, H A

    2015-01-01

    An empirical relationship between the experimental inhibitory activities of triclosan derivatives and its computationally predicted Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase (PfENR) dock poses was developed to model activities of known antimalarials. A statistical model was developed using 57 triclosan derivatives with significant measures (r = 0.849, q(2) = 0.619, s = 0.481) and applied on structurally related and structurally diverse external datasets. A substructure-based search on ChEMBL malaria dataset (280 compounds) yielded only two molecules with significant docking energy, whereas eight active antimalarials (EC(50) < 100 nM, tested on 3D7 strain) with better predicted activities (pIC(50) ~ 7) from Open Access Malaria Box (400 compounds) were prioritized. Further, calculations on the structurally diverse rhodanine molecules (known PfENR inhibitors) distinguished actives (experimental IC(50) = 0.035 μM; predicted pIC(50) = 6.568) and inactives (experimental IC(50) = 50 μM; predicted pIC50 = -4.078), which showed that antimalarials possessing dock poses similar to experimental interaction profiles can be used as leads to test experimentally on enzyme assays.

  11. A combination of the leaves and tuber of Icacina senegalensis A. Juss (Icacinaceae improves the antimalarial activity of the plant in mice

    Directory of Open Access Journals (Sweden)

    Esien David-Oku

    2015-10-01

    Full Text Available Objective: To investigate the possibility of increased antimalarial activity of Icacina senegalensis A. Juss (Icacinaceae upon a combination of its leaves and tubers against Plasmodium berghei malaria in mice. Methods: Chloroquine sensitive ANKA clones of Plasmodium berghei were used to develop experimental models based on intraperitoneal injection of 107 parasitized erythrocytes in phosphate buffer saline (pH 7.2 and subsequent development of parasitemia. The models were employed to investigate prophylactic and curative anti-malarial activities of tuber and tuberleaf methanol extracts of the plant at selected dosages (25, 50 and 100 mg/kg body weight. Chloroquine with a curative dosage of 10 mg/kg body weight was used as positive control in both studies. Results: Tuber and tuber-leaf extracts produced a dose-dependent chemosuppression of the parasites, with higher activity and mean survival time exhibited by the combined extract. Conclusions: Anti-plasmodia activity has been discovered in methanol extract of Icacina senegalensis tuber extract. The observed optimization of the antimalarial actions of the plant upon a combination of its leaf and tuber opens a new area of medicinal plant research.

  12. Quality of antimalarial drugs and antibiotics in Papua New Guinea: a survey of the health facility supply chain.

    Directory of Open Access Journals (Sweden)

    Manuel W Hetzel

    Full Text Available BACKGROUND: Poor-quality life-saving medicines are a major public health threat, particularly in settings with a weak regulatory environment. Insufficient amounts of active pharmaceutical ingredients (API endanger patient safety and may contribute to the development of drug resistance. In the case of malaria, concerns relate to implications for the efficacy of artemisinin-based combination therapies (ACT. In Papua New Guinea (PNG, Plasmodium falciparum and P. vivax are both endemic and health facilities are the main source of treatment. ACT has been introduced as first-line treatment but other drugs, such as primaquine for the treatment of P. vivax hypnozoites, are widely available. This study investigated the quality of antimalarial drugs and selected antibiotics at all levels of the health facility supply chain in PNG. METHODS AND FINDINGS: Medicines were obtained from randomly sampled health facilities and selected warehouses and hospitals across PNG and analysed for API content using validated high performance liquid chromatography (HPLC. Of 360 tablet/capsule samples from 60 providers, 9.7% (95% CI 6.9, 13.3 contained less, and 0.6% more, API than pharmacopoeial reference ranges, including 29/37 (78.4% primaquine, 3/70 (4.3% amodiaquine, and one sample each of quinine, artemether, sulphadoxine-pyrimethamine and amoxicillin. According to the package label, 86.5% of poor-quality samples originated from India. Poor-quality medicines were found in 48.3% of providers at all levels of the supply chain. Drug quality was unrelated to storage conditions. CONCLUSIONS: This study documents the presence of poor-quality medicines, particularly primaquine, throughout PNG. Primaquine is the only available transmission-blocking antimalarial, likely to become important to prevent the spread of artemisinin-resistant P. falciparum and eliminating P. vivax hypnozoites. The availability of poor-quality medicines reflects the lack of adequate quality control and

  13. Assessment of Markers of Antimalarial Drug Resistance in Plasmodium falciparum Isolates from Pregnant Women in Lagos, Nigeria.

    Directory of Open Access Journals (Sweden)

    Chimere Obiora Agomo

    Full Text Available The use of antimalarial drugs for prevention and treatment is a major strategy in the prevention of malaria in pregnancy. Although sulphadoxine-pyrimethamine (SP is currently recommended for intermittent preventive treatment of malaria during pregnancy in Nigeria, previously used drugs for prophylaxis such as chloroquine (CQ and pyrimethamine are accessible as they are purchased over the counter. This study describes the markers of absence or presence of resistance to quinoline (Pfcrt and Pfmdr 1 and type 1 antifolate antimalarial medicines (Pfdhfr.Plasmodium falciparum-positive dried blood spots from pregnant women attending antenatal clinics for the first time during current pregnancy were investigated for the presence of mutations at codons 72-76 of Plasmodium falciparum chloroquine resistance transporter (Pfcrt gene by real time polymerase chain reaction (PCR using haplotype-specific probes. PCR followed by sequence analysis was used to identify mutations at codons 86, 184, 1034, 1042 and 1246 of P. falciparum multi-drug resistance-1 (Pfmdr1 gene; and codons 16, 50, 51, 59, 108, 140 and 164 of Pfdhfr gene.Two haplotypes of Pfcrt (n = 54 were observed: CVMNK 13(24.2% and CVIET 41 (75.9% of the samples. The SVMNT haplotype was absent in this population. The Pfmdr1 (n = 28 haplotypes were NYSND 15(53.6%, YYSND 5(17.9%, NFSND 6(21.4% and YFSND 2(7.1%. The Pfdhfr (n = 15 were ACNCSVI 4(26.7%, and ACICNSVI 1(6.7% and ACIRNVI 10 (66.7%. The rate of occurrence of Pfcrt 76T, Pfdhfr108N, Pfmdr186Y and 184F were 75.9%, 73.3%, 25% and 28.1% respectively. The Pfmdr1 86Y was associated with low parasitaemia (median = 71 parasites/μl, P = 0.024 while Pfcrt 76T was associated with young maternal age (mean 24.1 ± 4.5 years; P = 0.006. The median parasitaemia were similar (P>0.05 in wild and mutant strains of Pfcrt 76, Pfmdr1 184 and Pfdhfr 108. There was no association between gravidity or gestational age of the women and presence of mutations in the Pfcrt

  14. Insights following change in drug policy: A descriptive study for antimalarial prescription practices in children of public sector health facilities in Jharkhand state of India

    Directory of Open Access Journals (Sweden)

    Neelima Mishra

    2013-12-01

    Full Text Available Background & objectives: Widespread resistance to chloroquine was the mainstay to implement artemisininbased combination therapy (ACT in the year 2007 in few malaria endemic states in India including Jharkhand as the first line of treatment for uncomplicated Plasmodium falciparum malaria. This study was conducted in Jharkhand state of the country just after the implementation of ACT to assess the prevailing antimalarial drug prescribing practices, availability of antimalarial drugs and the acceptability of the new policy by the health professionals for the treatment of uncomplicated P. falciparum malaria patients particularly in children ≤15 yr of age. Methods: This is a cross-sectional study in children aged ≤15 yr with malaria or to whom antimalarial drug was prescribed. Main outcome measure was prescription of recommended ACT in children aged ≤15 yr with malaria in the selected areas of Jharkhand. Results: In the year 2008, artemisinin-based combination therapy (ACT was implemented in 12 districts of the studied state; however, the availability of ACT was confirmed only in five districts. Antimalarial prescription was prevalent amongst the undiagnosed (8.4%, malaria negative (64.3% and unknown blood test result (1.2% suggesting the prevalence of irrational treatment practices. ACT prescription was very low with only 3.2% of confirmed falciparum malaria patients receiving it while others received either non-artesunate (NA treatment (88.1% including chloroquine (CQ alone, CQ + Primaquine (PQ/other drugs, sulphadoxine-pyrimethamine (SP alone, SP + other drugs or artemisinin monotherapy (AM treatment (6.3%. Still others were given nonantimalarial treatment (NM in both malaria positive (0.3% and malaria negative (2.1% cases. Interpretation & conclusion: Despite the change in drug policy in the studied state the availability and implementation of ACT was a major concern. Nevertheless, the non-availability of blister packs for children aged

  15. Accessibility, availability and affordability of anti-malarials in a rural district in Kenya after implementation of a national subsidy scheme

    Directory of Open Access Journals (Sweden)

    Simiyu Chrispinus

    2011-10-01

    Full Text Available Abstract Background Poor access to prompt and effective treatment for malaria contributes to high mortality and severe morbidity. In Kenya, it is estimated that only 12% of children receive anti-malarials for their fever within 24 hours. The first point of care for many fevers is a local medicine retailer, such as a pharmacy or chemist. The role of the medicine retailer as an important distribution point for malaria medicines has been recognized and several different strategies have been used to improve the services that these retailers provide. Despite these efforts, many mothers still purchase ineffective drugs because they are less expensive than effective artemisinin combination therapy (ACT. One strategy that is being piloted in several countries is an international subsidy targeted at anti-malarials supplied through the retail sector. The goal of this strategy is to make ACT as affordable as ineffective alternatives. The programme, called the Affordable Medicines Facility - malaria was rolled out in Kenya in August 2010. Methods In December 2010, the affordability and accessibility of malaria medicines in a rural district in Kenya were evaluated using a complete census of all public and private facilities, chemists, pharmacists, and other malaria medicine retailers within the Webuye Demographic Surveillance Area. Availability, types, and prices of anti-malarials were assessed. There are 13 public or mission facilities and 97 medicine retailers (registered and unregistered. Results The average distance from a home to the nearest public health facility is 2 km, but the average distance to the nearest medicine retailer is half that. Quinine is the most frequently stocked anti-malarial (61% of retailers. More medicine retailers stocked sulphadoxine-pyramethamine (SP; 57% than ACT (44%. Eleven percent of retailers stocked AMFm subsidized artemether-lumefantrine (AL. No retailers had chloroquine in stock and only five were selling artemisinin

  16. Assessment of global reporting of adverse drug reactions for anti-malarials, including artemisinin-based combination therapy, to the WHO Programme for International Drug Monitoring

    Directory of Open Access Journals (Sweden)

    Van Erps Jan

    2011-03-01

    Full Text Available Abstract Background In spite of enhanced control efforts, malaria remains a major public health problem causing close to a million deaths annually. With support from several donors, large amounts of artemisinin-based combination therapy (ACT are being deployed in endemic countries raising safety concerns as little is known about the use of ACT in several of the settings where they are deployed. This project was undertaken to profile the provenance of the pharmacovigilance reporting of all anti-malarials, including ACT to the WHO adverse drug reaction (ADR database (Vigibase™ over the past 40 years. Methods The WHO Programme for International Drug Monitoring, the Uppsala Monitoring Centre (UMC provided anonymized extracts of Vigibase™ covering the period 1968-2008. All countries in the programme were clustered according to their malaria control phase and income status. The number of individual case safety reports (ICSRs of anti-malarials was analyzed according to those clusters. Results From 1968 to 2008, 21,312 ICSRs suspecting anti-malarials were received from 64 countries. Low-income countries, that are also malaria-endemic (categorized as priority 1 countries submitted only 1.2% of the ICSRs. Only 60 out of 21,312 ICSRs were related to ACT, 51 of which were coming from four sub-Saharan African countries. Although very few ICSRs involved artemisinin-based compounds, many of the adverse events reported were potentially serious. Conclusions This paper illustrates the low reporting of ADRs to anti-malarials in general and ACT in particular. Most reports were submitted by non-endemic and/or high-income countries. Given the current mix of large donor funding, the insufficient information on safety of these drugs, increasing availability of ACT and artemisinin-based monotherapies in public and private sector channels, associated potential for inappropriate use and finally a pipeline of more than 10 new novel anti-malarials in various stages of

  17. In vitro antimalarial activity and cytotoxicity of some selected cuban medicinal plants Actividad antimalárica in vitro y citotoxicidad de algunas plantas medicinales Cubanas seleccionadas

    Directory of Open Access Journals (Sweden)

    Aymé Fernández-Calienes Valdés

    2010-08-01

    Full Text Available Terrestrial plants have been demonstrated to be sources of antimalarial compounds. In Cuba, little is known about antimalarial potentials of plant species used as medicinals. For that reason, we evaluated the antimalarial activity of 14 plant species used in Cuba as antimalarial, antipyretic and/or antiparasitic. Hydroalcoholic extracts were prepared and tested in vitro for the antimalarial activity against Plasmodium falciparum Ghana strain and over human cell line MRC-5 to determine cytotoxicity. Parasite multiplication was determined microscopically by the direct count of Giemsa stained parasites. A colorimetric assay was used to quantify cytotoxicity. Nine extracts showed IC50 values lower than 100 µg/mL against P. falciparum, four extracts were classified as marginally active (SI 10. B. vulgaris showed the most potent and specific antiplasmodial action (IC50 = 4.7 µg/mL, SI = 28.9. Phytochemical characterization of active extracts confirmed the presence of triterpenoids in B. vulgaris and polar compounds with phenol free groups and fluorescent metabolites in both extracts as major phytocompounds, by thin layer chromatography. In conclusion, antimalarial use of B. vulgaris and P. hysterophorus was validated. B. vulgaris and P. granatum extracts were selected for follow-up because of their strong antimalarial activity.Las plantas terrestres han demostrado ser fuentes de compuestos antimaláricos. En Cuba, el conocimiento sobre el potencial antimalárico de las plantas medicinales es escaso. Por esta razón, evaluamos la actividad antimalárica de 14 especies de plantas usadas en Cuba como antimaláricas, antipiréticas y/o antiparasitarias. Se prepararon extractos hidroalcohólicos y se probaron in vitro frente a la cepa Ghana de Plasmodium falciparum para la actividad antimalárica y frente a la línea celular humana MRC-5 para determinar citotoxicidad. La multiplicación de los parásitos se determinó microscópicamente mediante el

  18. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries

    Science.gov (United States)

    2011-01-01

    Background Artemisinin-based combination therapy (ACT) is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC), Madagascar, Nigeria, Uganda and Zambia. Methods Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. Results 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets) as compared to first-line quality-assured ACT (< 25%). In the public/not-for-profit sector, first-line quality-assured ACT was available for free in all countries except Benin and the DRC (US$1.29 [Inter Quartile Range (IQR): $1.29-$1.29] and $0.52[IQR: $0.00-$1.29] per adult equivalent dose respectively). In the private sector, first-line quality-assured ACT was 5-24 times more expensive than non-artemisinin therapies. The exception was Madagascar where, due to national social marketing of subsidized ACT, the price of first-line quality-assured ACT ($0.14 [IQR: $0.10, $0.57]) was significantly lower than the most popular treatment (chloroquine, $0.36 [IQR: $0.36, $0.36]). Quality-assured ACT accounted for less than 25% of total anti-malarial volumes; private-sector quality-assured ACT volumes represented less than 6% of the total market share

  19. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium.

    Science.gov (United States)

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A S; Fernàndez-Busquets, Xavier

    2016-04-13

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses.

  20. In Vitro and In Vivo Antimalarial Evaluations of Myrtle Extract, a Plant Traditionally Used for Treatment of Parasitic Disorders

    Directory of Open Access Journals (Sweden)

    Farzaneh Naghibi

    2013-01-01

    Full Text Available Based on the collected ethnobotanical data from the Traditional Medicine and Materia Medica Research Center (TMRC, Iran, Myrtus communis L. (myrtle was selected for the assessment of in vitro and in vivo antimalarial and cytotoxic activities. Methanolic extract of myrtle was prepared from the aerial parts and assessed for antiplasmodial activity, using the parasite lactate dehydrogenase (pLDH assay against chloroquine-resistant (K1 and chloroquine-sensitive (3D7 strains of Plasmodium falciparum. The 4-day suppressive test was employed to determine the parasitemia suppression of the myrtle extract against P. berghei  in vivo. The IC50 values of myrtle extract were 35.44 µg/ml against K1 and 0.87 µg/ml against 3D7. Myrtle extract showed a significant suppression of parasitaemia (84.8 ± 1.1% at 10 mg/kg/day in mice infected with P. berghei after 4 days of treatment. Cytotoxic activity was carried out against mammalian cell lines using methyl thiazol tetrazolium (MTT assay. No cytotoxic effect on mammalian cell lines up to 100 µg/mL was shown. The results support the traditional use of myrtle in malaria. Phytochemical investigation and understanding the mechanism of action would be in our upcoming project.

  1. Several Human Cyclin-Dependent Kinase Inhibitors, Structurally Related to Roscovitine, As New Anti-Malarial Agents

    Directory of Open Access Journals (Sweden)

    Sandrine Houzé

    2014-09-01

    Full Text Available In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs. There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs. We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains. Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.

  2. Chloroquine interference with hemoglobin endocytic trafficking suppresses adaptive heme and iron homeostasis in macrophages: the paradox of an antimalarial agent.

    Science.gov (United States)

    Schaer, Christian A; Laczko, Endre; Schoedon, Gabriele; Schaer, Dominik J; Vallelian, Florence

    2013-01-01

    The CD163 scavenger receptor pathway for Hb:Hp complexes is an essential mechanism of protection against the toxicity of extracellular hemoglobin (Hb), which can accumulate in the vasculature and within tissues during hemolysis. Chloroquine is a lysosomotropic agent, which has been extensively used as an antimalarial drug in the past, before parasite resistance started to limit its efficacy in most parts of the world. More recent use of chloroquine is related to its immunomodulatory activity in patients with autoimmune diseases, which may also involve hemolytic disease components. In this study we examined the effects of chloroquine on the human Hb clearance pathway. For this purpose we developed a new mass-spectrometry-based method to specifically quantify intracellular Hb peptides within the endosomal-lysosomal compartment by single reaction monitoring (SRM). We found that chloroquine exposure impairs trafficking of Hb:Hp complexes through the endosomal-lysosomal compartment after internalization by CD163. Relative quantification of intracellular Hb peptides by SRM confirmed that chloroquine blocked cellular Hb:Hp catabolism. This effect suppressed the cellular heme-oxygenase-1 (HO-1) response and shifted macrophage iron homeostasis towards inappropriately high expression of the transferrin receptor with concurrent inhibition of ferroportin expression. A functional deficiency of Hb detoxification and heme-iron recycling may therefore be an adverse consequence of chloroquine treatment during hemolysis.

  3. Chloroquine Interference with Hemoglobin Endocytic Trafficking Suppresses Adaptive Heme and Iron Homeostasis in Macrophages: The Paradox of an Antimalarial Agent

    Directory of Open Access Journals (Sweden)

    Christian A. Schaer

    2013-01-01

    Full Text Available The CD163 scavenger receptor pathway for Hb:Hp complexes is an essential mechanism of protection against the toxicity of extracellular hemoglobin (Hb, which can accumulate in the vasculature and within tissues during hemolysis. Chloroquine is a lysosomotropic agent, which has been extensively used as an antimalarial drug in the past, before parasite resistance started to limit its efficacy in most parts of the world. More recent use of chloroquine is related to its immunomodulatory activity in patients with autoimmune diseases, which may also involve hemolytic disease components. In this study we examined the effects of chloroquine on the human Hb clearance pathway. For this purpose we developed a new mass-spectrometry-based method to specifically quantify intracellular Hb peptides within the endosomal-lysosomal compartment by single reaction monitoring (SRM. We found that chloroquine exposure impairs trafficking of Hb:Hp complexes through the endosomal-lysosomal compartment after internalization by CD163. Relative quantification of intracellular Hb peptides by SRM confirmed that chloroquine blocked cellular Hb:Hp catabolism. This effect suppressed the cellular heme-oxygenase-1 (HO-1 response and shifted macrophage iron homeostasis towards inappropriately high expression of the transferrin receptor with concurrent inhibition of ferroportin expression. A functional deficiency of Hb detoxification and heme-iron recycling may therefore be an adverse consequence of chloroquine treatment during hemolysis.

  4. The antimalarial drug mefloquine inhibits cardiac inward rectifier K+ channels: evidence for interference in PIP2-channel interaction.

    Science.gov (United States)

    López-Izquierdo, Angélica; Ponce-Balbuena, Daniela; Moreno-Galindo, Eloy G; Aréchiga-Figueroa, Iván A; Rodríguez-Martínez, Martín; Ferrer, Tania; Rodríguez-Menchaca, Aldo A; Sánchez-Chapula, José A

    2011-04-01

    The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 μM) > Kir2.1 (IC50 > 30 μM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 μM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.

  5. Assay method for quality control and stability studies of a new antimalarial agent (CDRI 99/411)$

    Institute of Scientific and Technical Information of China (English)

    Kiran Khandelwal; Shakti Deep Pachauri; Sofia Zaidi; Pankaj Dwivedi; Ashok Kumar Sharma; Chandan Singh; Anil Kumar Dwivedi

    2013-01-01

    CDRI compound no. 99/411 is a potent 1,2,4-trioxane antimalarial candidate drug under development at our Institute. An HPLC method for determination of CDRI 99/411 with its starting material and intermediates has been developed and validated for in process quality control and stability studies. The analytical performance parameters such as linearity, precision, accuracy, specificity, limit of detection (LOD) and lower limit of quantification (LLOQ) were determined according to International Conference on Harmonization ICH Q2(R1) guidelines. HPLC separation was achieved on a RP-select B Lichrospheres column (250 mm  4 mm, 5μm, Merck) using water containing 0.1%glacial acetic acid and acetonitrile as the mobile phase in a gradient elution. The eluents were monitored by a photo diode array detector at 245 and 275 nm. Based on signal to noise ratio of 3 and 10 the LOD of CDRI 99/411 was 0.55 mg/mL, while the LLOQ was 1.05 mg/mL. The calibration curves were linear in the range of 1.05-68 mg/mL. Precision of the method was determined by inter- and intra-assay variations within the acceptable range.

  6. Marine organism sulfated polysaccharides exhibiting significant antimalarial activity and inhibition of red blood cell invasion by Plasmodium

    Science.gov (United States)

    Marques, Joana; Vilanova, Eduardo; Mourão, Paulo A. S.; Fernàndez-Busquets, Xavier

    2016-01-01

    The antimalarial activity of heparin, against which there are no resistances known, has not been therapeutically exploited due to its potent anticoagulating activity. Here, we have explored the antiplasmodial capacity of heparin-like sulfated polysaccharides from the sea cucumbers Ludwigothurea grisea and Isostichopus badionotus, from the red alga Botryocladia occidentalis, and from the marine sponge Desmapsamma anchorata. In vitro experiments demonstrated for most compounds significant inhibition of Plasmodium falciparum growth at low-anticoagulant concentrations. This activity was found to operate through inhibition of erythrocyte invasion by Plasmodium, likely mediated by a coating of the parasite similar to that observed for heparin. In vivo four-day suppressive tests showed that several of the sulfated polysaccharides improved the survival of Plasmodium yoelii-infected mice. In one animal treated with I. badionotus fucan parasitemia was reduced from 10.4% to undetectable levels, and Western blot analysis revealed the presence of antibodies against P. yoelii antigens in its plasma. The retarded invasion mediated by sulfated polysaccharides, and the ensuing prolonged exposure of Plasmodium to the immune system, can be explored for the design of new therapeutic approaches against malaria where heparin-related polysaccharides of low anticoagulating activity could play a dual role as drugs and as potentiators of immune responses. PMID:27071342

  7. The anti-malarial chloroquine overcomes Primary resistance and restores sensitivity to Trastuzumab in HER2-positive breast cancer

    Science.gov (United States)

    Cufí, Sílvia; Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Corominas-Faja, Bruna; Cuyàs, Elisabet; López-Bonet, Eugeni; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A.

    2013-01-01

    Autophagy may control the de novo refractoriness of HER2 gene-amplified breast carcinomas to the monoclonal antibody trastuzumab (Herceptin). Tumor cells originally obtained from a patient who rapidly progressed on trastuzumab ab initio display increased cellular levels of the LC3-II protein—a finding that correlates with increased numbers of autophagosomes—and decreased levels of the autophagy receptor p62/SQSTM1, a protein selectively degraded by autophagy. Trastuzumab-refractory cells are in a state of “autophagy addiction” because genetic ablation of autophagy-specific genes (ATG8, ATG5, ATG12) notably reduces intrinsic refractoriness to trastuzumab. When the anti-malarial lysosomotropic drug chloroquine impedes autophagic resolution of the accumulation of autophagolysosomes formed in the presence of trastuzumab, cells commit to die by apoptosis. Accordingly, combination treatment with trastuzumab and chloroquine radically suppresses tumor growth by > 90% in a tumor xenograft completely refractory to trastuzumab. Adding chloroquine to trastuzumab-based regimens may therefore improve outcomes among women with autophagy-addicted HER2-positive breast cancer. PMID:23965851

  8. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Alessandra Bianchin

    Full Text Available The purpose of this study was to investigate the blood stage of the malaria causing parasite, Plasmodium falciparum, to predict potential protein interactions between the parasite merozoite and the host erythrocyte and design peptides that could interrupt these predicted interactions. We screened the P. falciparum and human proteomes for computationally predicted short linear motifs (SLiMs in cytoplasmic portions of transmembrane proteins that could play roles in the invasion of the erythrocyte by the merozoite, an essential step in malarial pathogenesis. We tested thirteen peptides predicted to contain SLiMs, twelve of them palmitoylated to enhance membrane targeting, and found three that blocked parasite growth in culture by inhibiting the initiation of new infections in erythrocytes. Scrambled peptides for two of the most promising peptides suggested that their activity may be reflective of amino acid properties, in particular, positive charge. However, one peptide showed effects which were stronger than those of scrambled peptides. This was derived from human red blood cell glycophorin-B. We concluded that proteome-wide computational screening of the intracellular regions of both host and pathogen adhesion proteins provides potential lead peptides for the development of anti-malarial compounds.

  9. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    James S McCarthy

    Full Text Available BACKGROUND: Critical to the development of new drugs for treatment of malaria is the capacity to safely evaluate their activity in human subjects. The approach that has been most commonly used is testing in subjects with natural malaria infection, a methodology that may expose symptomatic subjects to the risk of ineffective treatment. Here we describe the development and pilot testing of a system to undertake experimental infection using blood stage Plasmodium falciparum parasites (BSP. The objectives of the study were to assess the feasibility and safety of induced BSP infection as a method for assessment of efficacy of new drug candidates for the treatment of P. falciparum infection. METHODS AND FINDINGS: A prospective, unblinded, Phase IIa trial was undertaken in 19 healthy, malaria-naïve, male adult volunteers who were infected with BSP and followed with careful clinical and laboratory observation, including a sensitive, quantitative malaria PCR assay. Volunteers were randomly allocated to treatment with either of two licensed antimalarial drug combinations, artemether-lumefantrine (A/L or atovaquone-proguanil (A/P. In the first cohort (n = 6 where volunteers received ∼360 BSP, none reached the target parasitemia of 1,000 before the day designated for antimalarial treatment (day 6. In the second and third cohorts, 13 volunteers received 1,800 BSP, with all reaching the target parasitemia before receiving treatment (A/L, n = 6; A/P, n = 7 The study demonstrated safety in the 19 volunteers tested, and a significant difference in the clearance kinetics of parasitemia between the drugs in the 13 evaluable subjects, with mean parasite reduction ratios of 759 for A/L and 17 for A/P (95% CI 120-4786 and 7-40 respectively; p<0.01. CONCLUSIONS: This system offers a flexible and safe approach to testing the in vivo activity of novel antimalarials. TRIAL REGISTRATION: ClinicalTrials.gov NCT01055002.

  10. Phase I randomized dose-ascending placebo-controlled trials of ferroquine - a candidate anti-malarial drug - in adults with asymptomatic Plasmodium falciparum infection

    Directory of Open Access Journals (Sweden)

    Ospina Salazar Carmen L

    2011-03-01

    Full Text Available Abstract Background The development and spread of drug resistant Plasmodium falciparum strains is a major concern and novel anti-malarial drugs are, therefore, needed. Ferroquine is a ferrocenic derivative of chloroquine with proven anti-malarial activity against chloroquine-resistant and -sensitive P. falciparum laboratory strains. Methods Adult young male aged 18 to 45 years, asymptomatic carriers of P. falciparum, were included in two-dose escalation, double-blind, randomized, placebo-controlled Phase I trials, a single dose study and a multiple dose study aiming to evaluate oral doses of ferroquine from 400 to 1,600 mg. Results Overall, 54/66 patients (40 and 26 treated in the single and multiple dose studies, respectively experienced at least one adverse event, 15 were under placebo. Adverse events were mainly gastrointestinal symptoms such as abdominal pain (16, diarrhoea (5, nausea (13, and vomiting (9, but also headache (11, and dizziness (5. A few patients had slightly elevated liver parameters (10/66 including two patients under placebo. Moderate changes in QTc and morphological changes in T waves were observed in the course of the study. However, no adverse cardiac effects with clinical relevance were observed. Conclusions These phase I trials showed that clinically, ferroquine was generally well-tolerated up to 1,600 mg as single dose and up to 800 mg as repeated dose in asymptomatic young male with P. falciparum infection. Further clinical development of ferroquine, either alone or in combination with another anti-malarial, is highly warranted and currently underway.

  11. A novel endogenous antimalarial: Fe(II)-protoporphyrin IX alpha (heme) inhibits hematin polymerization to beta-hematin (malaria pigment) and kills malaria parasites.

    Science.gov (United States)

    Monti, D; Vodopivec, B; Basilico, N; Olliaro, P; Taramelli, D

    1999-07-13

    The polymerization of hemoglobin-derived ferric-protoporphyrin IX [Fe(III)PPIX] to inert hemozoin (malaria pigment) is a crucial and unique process for intraerythrocytic plasmodia to prevent heme toxicity and thus a good target for new antimalarials. Quinoline drugs, i.e., chloroquine, and non-iron porphyrins have been shown to block polymerization by forming electronic pi-pi interactions with heme monomers. Here, we report the identification of ferrous-protoporphyrin IX [Fe(II)PPIX] as a novel endogenous anti-malarial. Fe(II)PPIX molecules, released from the proteolysis of hemoglobin, are first oxidized and then polymerized to hemozoin. We obtained Fe(II)PPIX on preparative scale by electrochemical reduction of Fe(III)PPIX, and the reaction was monitored by cyclic voltammetry. Polymerization assays at acidic pH were conducted with the resulting Fe(II)PPIX using a spectrophotometric microassay of heme polymerization adapted to anaerobic conditions and the products characterized by infrared spectroscopy. Fe(II)PPIX (a) did not polymerize and (b) produced a dose-dependent inhibition of Fe(III)PPIX polymerization (IC(50) = 0.4 molar equiv). Moreover, Fe(II)PPIX produced by chemical reduction with thiol-containing compounds gave similar results: a dose-dependent inhibition of heme polymerization was observed using either L-cysteine, N-acetylcysteine, or DL-homocysteine, but not with L-cystine. Cyclic voltammetry confirmed that the inhibition of heme polymerization was due to the Fe(II)PPIX molecules generated by the thiol-mediated reduction of Fe(III)PPIX. These results point to Fe(II)PPIX as a potential endogenous antimalarial and to Fe(III)PPIX reduction as a potential new pharmacological target.

  12. Artemisinin combination therapies price disparity between government and private health sectors and its implication on antimalarial drug consumption pattern in Morogoro Urban District, Tanzania

    Directory of Open Access Journals (Sweden)

    Malisa Allen

    2012-03-01

    Full Text Available Abstract Background Universal access to effective treatments is a goal of the Roll Back Malaria Partnership. However, despite official commitments and substantial increases in financing, this objective remains elusive, as development assistance continue to be routed largely through government channels, leaving the much needed highly effective treatments inaccessible or unaffordable to those seeking services in the private sector. Methods To quantify the effect of price disparity between the government and private health systems, this study have audited 92 government and private Drug Selling Units (DSUs in Morogoro urban district in Tanzania to determine the levels, trend and consumption pattern of antimalarial drugs in the two health systems. A combination of observation, interviews and questionnaire administered to the service providers of the randomly selected DSUs were used to collect data. Results ALU was the most selling antimalarial drug in the government health system at a subsidized price of 300 TShs (0.18 US$. By contrast, ALU that was available in the private sector (coartem was being sold at a price of about 10,000 TShs (5.9 US$, the price that was by far unaffordable, prompting people to resort to cheap but failed drugs. As a result, metakelfin (the phased out drug was the most selling drug in the private health system at a price ranging from 500 to 2,000 TShs (0.29–1.18 US$. Conclusions In order for the prompt diagnosis and treatment with effective drugs intervention to have big impact on malaria in mostly low socioeconomic malaria-endemic areas of Africa, inequities in affordability and access to effective treatment must be eliminated. For this to be ensued, subsidized drugs should be made available in both government and private health sectors to promote a universal access to effective safe and affordable life saving antimalarial drugs.

  13. A quantitative documentation of the composition of two powdered herbal formulations (antimalarial and haematinic) using ethnomedicinal information from ogbomoso, Nigeria.

    Science.gov (United States)

    Ogunkunle, Adepoju Tunde Joseph; Oyelakin, Tosin Mathew; Enitan, Abosede Oluwaseyi; Oyewole, Funmilayo Elizabeth

    2014-01-01

    The safety of many African traditional herbal remedies is doubtful due to lack of standardization. This study therefore attempted to standardize two polyherbal formulations from Ogbomoso, Oyo State, Nigeria, with respect to the relative proportions (weight-for-weight) of their botanical constituents. Information supplied by 41 local herbal practitioners was statistically screened for consistency and then used to quantify the composition of antimalarial (Maloff-HB) and haematinic (Haematol-B) powdered herbal formulations with nine and ten herbs, respectively. Maloff-HB contained the stem bark of Enantia chlorantha Oliv. (30.0), Alstonia boonei De Wild (20.0), Mangifera indica L. (10.0), Okoubaka aubrevillei Phelleg & Nomand (8.0), Pterocarpus osun Craib (4.0), root bark of Calliandra haematocephala Hassk (10.0), Sarcocephalus latifolius (J. E. Smith) E. A. Bruce (8.0), Parquetina nigrescens (Afz.) Bullock (6.0), and the vines of Cassytha filiformis L. (4.0), while Haematol-B was composed of the leaf sheath of Sorghum bicolor Moench (30.0), fruit calyx of Hibiscus sabdariffa L. (20.0), stem bark of Theobroma cacao L. (10.0), Khaya senegalensis (Desr.) A. Juss (5.5), Mangifera indica (5.5), root of Aristolochia ringens Vahl. (7.0), root bark of Sarcocephalus latifolius (5.5), Uvaria chamae P. Beauv. (5.5), Zanthoxylum zanthoxyloides (Lam.) Zepern & Timler (5.5), and seed of Garcinia kola Heckel (5.5). In pursuance of their general acceptability, the two herbal formulations are recommended for their pharmaceutical, phytochemical, and microbial qualities.

  14. Longitudinal in vitro surveillance of Plasmodium falciparum sensitivity to common anti-malarials in Thailand between 1994 and 2010

    Directory of Open Access Journals (Sweden)

    Parker Daniel

    2012-08-01

    Full Text Available Abstract Background Drug and multidrug-resistant Plasmodium falciparum malaria has existed in Thailand for several decades. Furthermore, Thailand serves as a sentinel for drug-resistant malaria within the Greater Mekong sub-region. However, the drug resistance situation is highly dynamic, changing quickly over time. Here parasite in vitro drug sensitivity is reported for artemisinin derivatives, mefloquine, chloroquine and quinine, across Thailand. Methods Blood was drawn from patients infected with P. falciparum in seven sentinel provinces along Thai international borders with Cambodia, Myanmar, Laos, and Malaysia. In vitro parasite sensitivity was tested using the World Health Organization’s microtest (mark III (between 1994 and 2002 and the histidine-rich protein-2 (HRP2-based enzyme-linked immunosorbent assay (in 2010. Following World Health Organization protocol, at least 30 isolates were collected for each province and year represented in this study. Where possible, t-tests were used to test for significant differences. Results There appears to be little variation across study sites with regard to parasite sensitivity to chloroquine. Quinine resistance appears to have been rising prior to 1997, but has subsequently decreased. Mefloquine sensitivity appears high across the provinces, especially along the north-western border with Myanmar and the eastern border with Cambodia. Finally, the data suggest that parasite sensitivity to artemisinin and its derivatives is significantly higher in provinces along the north-western border with Myanmar. Conclusions Parasite sensitivity to anti-malarials in Thailand is highly variable over time and largely mirrors official drug use policy. The findings with regard to reduced sensitivity to artemisinin derivatives are supported by recent reports of reduced parasite clearance associated with artemisinin. This trend is alarming since artemisinin is considered the last defence against malaria. Continued

  15. Determination of metabolic profile of anti-malarial trioxane CDRI 99/411 in rat liver microsomes using HPLC.

    Science.gov (United States)

    Mishra, Smriti; Manickavasagam, Lakshmi; Jain, Girish Kumar

    2012-01-01

    CDRI 99/411 is a potent 1,2,4-trioxane anti-malarial candidate compound of the Central Drug Research Institute, India. This study aimed to conduct comprehensive in vitro metabolic investigations of CDRI 99/411 to corroborate its preclinical investigations. Preliminary in vitro metabolic investigations were performed to assess the metabolic stability [in vitro half-life (t(1/2) ) and in vitro hepatic intrinsic clearance (Cl(int) )] of CDRI 99/411 in male Sprague-Dawley rat and human liver microsomes using validated high-performance liquid chromatography with photodiode array detector. The observed in vitro t(1/2) of the compound in rat and human liver microsomes was 13 min with in vitro Cl(int) 130.7±25.0 μL/min/mg and 19 min with in vitro Cl(int) 89.3 ± 17.40 μL/min/mg. These observations suggested moderate metabolic degradation and in vitro Cl(int) with insignificant difference (p>0.05) in the metabolic stability profile in rat and human. Hence, in vitro metabolic investigations were performed with rat liver microsomes. It was observed that CDRI 99/411 exhibited sigmoidal kinetics. At nonlinear regression (r ≥ 0.99) EC(50) and Hill slope values were 17 µm and 1.50, respectively. The metabolism of CDRI 99/411 was primarily mediated by CYP3A2 and was inferred by CYP reaction phenotyping with known potent inhibitors. Two metabolites of CDRI 99/411 were detected which were undetectable on incubation with 1-aminobenzotriazole and ketoconazole.

  16. A Quantitative Documentation of the Composition of Two Powdered Herbal Formulations (Antimalarial and Haematinic Using Ethnomedicinal Information from Ogbomoso, Nigeria

    Directory of Open Access Journals (Sweden)

    Adepoju Tunde Joseph Ogunkunle

    2014-01-01

    Full Text Available The safety of many African traditional herbal remedies is doubtful due to lack of standardization. This study therefore attempted to standardize two polyherbal formulations from Ogbomoso, Oyo State, Nigeria, with respect to the relative proportions (weight-for-weight of their botanical constituents. Information supplied by 41 local herbal practitioners was statistically screened for consistency and then used to quantify the composition of antimalarial (Maloff-HB and haematinic (Haematol-B powdered herbal formulations with nine and ten herbs, respectively. Maloff-HB contained the stem bark of Enantia chlorantha Oliv. (30.0, Alstonia boonei De Wild (20.0, Mangifera indica L. (10.0, Okoubaka aubrevillei Phelleg & Nomand (8.0, Pterocarpus osun Craib (4.0, root bark of Calliandra haematocephala Hassk (10.0, Sarcocephalus latifolius (J. E. Smith E. A. Bruce (8.0, Parquetina nigrescens (Afz. Bullock (6.0, and the vines of Cassytha filiformis L. (4.0, while Haematol-B was composed of the leaf sheath of Sorghum bicolor Moench (30.0, fruit calyx of Hibiscus sabdariffa L. (20.0, stem bark of Theobroma cacao L. (10.0, Khaya senegalensis (Desr. A. Juss (5.5, Mangifera indica (5.5, root of Aristolochia ringens Vahl. (7.0, root bark of Sarcocephalus latifolius (5.5, Uvaria chamae P. Beauv. (5.5, Zanthoxylum zanthoxyloides (Lam. Zepern & Timler (5.5, and seed of Garcinia kola Heckel (5.5. In pursuance of their general acceptability, the two herbal formulations are recommended for their pharmaceutical, phytochemical, and microbial qualities.

  17. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.

    Science.gov (United States)

    Shi, Jie-Hua; Pan, Dong-Qi; Wang, Xiou-Xiou; Liu, Ting-Ting; Jiang, Min; Wang, Qi

    2016-09-01

    Artemether (AMT), a peroxide sesquiterpenoides, has been widely used as an antimalarial for the treatment of multiple drug-resistant strains of plasmodium falciparum malaria. In this work, the binding interaction of AMT with bovine serum albumin (BSA) under the imitated physiological conditions (pH7.4) was investigated by UV spectroscopy, fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), three-dimensional fluorescence spectroscopy and molecular docking methods. The experimental results indicated that there was a change in UV absorption of BSA along with a slight red shift of absorption wavelength, indicating that the interaction of AMT with BSA occurred. The intrinsic fluorescence of BSA was quenched by AMT due to the formation of AMT-BSA complex. The number of binding sites (n) and binding constant of AMT-BSA complex were about 1 and 2.63×10(3)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of AMT with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be concluded that the binding of AMT with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°|. The results of experiment and molecular docking confirmed the main interaction forces between AMT and BSA were van der Waals force. And, there was a slight change in the BSA conformation after binding AMT but BSA still retains its secondary structure α-helicity. However, it had been confirmed that AMT binds on the interface between sub-domain IIA and IIB of BSA.

  18. General Pharmacology of Artesunate, a Commonly used Antimalarial Drug:Effects on Central Nervous, Cardiovascular, and Respiratory System.

    Science.gov (United States)

    Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Eun-Joo

    2010-09-01

    Artesunate, a semi-synthetic derivative of artemisinin, is used primarily as a treatment for malaria. Its effects on the central nervous system, general behavior, and cardiovascular, respiratory, and other organ systems were studied using mice, rats, guinea pigs, and dogs. Artesunate was administered orally to mice at doses of 125, 250, and 500 mg/kg and to rats and guinea pigs at 100, 200, and 400 mg/kg. In dogs, test drugs were administered orally in gelatin capsules at doses of 50, 100, and 150 mg/kg. Artesunate induced insignificant changes in general pharmacological studies, including general behavior, motor coordination, body temperature, analgesia, convulsion modulation, blood pressure, heart rate (HR) , and electrocardiogram (ECG) in dogs in vivo; respiration in guinea pigs; and gut motility or direct effects on isolated guinea pig ileum, contractile responses, and renal function. On the other hand, artesunate decreased the HR and coronary flow rate (CFR) in the rat in vitro; however, the extent of the changes was small and they were not confirmed in in vivo studies in the dog. Artesunate increased hexobarbital-induced sleeping time in a dose-related manner. Artesunate induced dose-related decreases in the volume of gastric secretions and the total acidity of gastric contents, and induced increases in pH at a dose of 400 mg/kg. However, all of these changes were observed at doses much greater than clinical therapeutic doses (2.4 mg/kg in humans, when used as an anti-malarial) . Thus, it can be concluded that artesunate is safe at clinical therapeutic doses.

  19. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway.

    Directory of Open Access Jour