WorldWideScience

Sample records for antikaon condensed matter

  1. Antikaon condensation in neutron stars

    CERN Document Server

    Pal, S; Greiner, W

    2000-01-01

    We investigate the condensation of charged K sup - meson and neutral anti-K sup 0 meson in dense neutron star matter. Calculations are performed in relativistic mean field models in which both the baryon-baryon and (anti)kaon-baryon interactions are mediated by meson exchange. It is found that anti-K sup 0 condensation is quite sensitive to the antikaon optical potential and depends more strongly on the nucleonic equation of state. For moderate values of antikaon potential and a rather stiff equation of state, a significant region of maximum mass star will contain anti-K sup 0 meson. The critical density of anti-K sup 0 condensation is always higher than that of K sup - condensation. With the appearance of K sup - and anti-K sup 0 condensates, pairs of p-K sup - and n-Kbar sup 0 are produced with equal proportion leading to a perfectly symmetric matter of nucleons and antikaons in neutron stars. Along with K sup - condensate, anti-K sup 0 condensate makes the equation of state much softer resulting in smaller...

  2. Role of antikaon condensation in r-mode instability

    CERN Document Server

    Chatterjee, Debarati

    2007-01-01

    We investigate the effect of antikaon condensed matter on bulk viscosity in rotating neutron stars. We use relativistic field theoretical models to construct the equation of state of neutron stars with the condensate, where the phase transition from nucleonic to $K^-$ condensed phase is assumed to be of first order. We calculate the coefficient of bulk viscosity due to the non-leptonic weak interaction n --> p + K^-. The influence of antikaon bulk viscosity on the gravitational radiation reaction driven instability in the r-modes is investigated. We compare our results with the previously studied non-leptonic weak interaction $n + p --> p + \\Lambda$ involving hyperons on the damping of the r-mode oscillations. We find that the bulk viscosity coefficient due to the non-leptonic weak process involving the condensate is suppressed by several orders of magnitude in comparison with the non-superfluid hyperon bulk viscosity coefficient. Consequently, the antikaon bulk viscosity may not be able to damp the r-mode in...

  3. Bose–Einstein condensation of anti-kaons and neutron star twins

    Indian Academy of Sciences (India)

    Sarmistha Banik; Debades Bandyopadhyay

    2003-05-01

    We investigate the role of Bose–Einstein condensation (BEC) of anti-kaons on the equation of state (EoS) and other properties of compact stars. In the framework of relativistic mean field model we determine the EoS for -stable hyperon matter and compare it to the situation when anti-kaons condense in the system. We observe that anti-kaon condensates soften the EoS, thereby lowering the maximum mass of the stars. We also demonstrate that the presence of antikaon condensates in the high density core of compact stars may lead to a new mass sequence beyond white dwarf and neutron stars. The limiting mass of the new sequence stars is nearly equal to that of neutron star branch though they have distinctly different radii and compositions. They are called neutron star twins.

  4. (K)0 Condensation in Hyperonic Neutron Star Matter

    Institute of Scientific and Technical Information of China (English)

    DING Wen-Bo; LIU Guang-Zhou; ZHU Ming-Feng; YU Zi; ZHAO En-Guang

    2008-01-01

    In the framework of the relativistic mean field theory,we investigate (K)0 condensation along with Kˉcondensation occur well in the core of the maximum mass stars for relatively shallow optical potentials of (K) in the range of-100 MeV~-160 MeV.With the increasing optical potential of (K),the critical densities of (K) decrease and the species of baryons appearing in neutron stars become fewer.The main role of (K)0 condensation is to make the abundances of particles become identical leading to isospin saturated symmetric matter including antikaons,state,which leads to a large reduction in the maximum masses of neutron stars.In the core of massive neutron stars,neutron star matter including rich particle species,such as antikaons,nucleons and hyperons,may exist.

  5. Strange Baryonic Matter and Kaon Condensation

    Science.gov (United States)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    In this contribution we address the question whether kaon condensation could occur in strongly interacting self-bound strange hadronic matter. In our comprehensive dynamical relativistic mean-field (RMF) calculations of nuclear and hypernuclear systems containing several antikaons we found saturation of bar K separation energy as well as the associated nuclear and bar K density distributions upon increasing the number of bar K mesons. The saturation pattern was found to be a universal feature of these multi-strangeness configurations. Since in all cases the bar K separation energy does not exceed 200 MeV, we conclude that bar K mesons do not provide the physical "strangeness" degrees of freedom for self-bound strange hadronic matter.

  6. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  7. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  8. Condensed Matter Physics

    Science.gov (United States)

    Marder, Michael P.

    2000-01-01

    A modern, unified treatment of condensed matter physics This new work presents for the first time in decades a sweeping review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching "not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, electron interference in nanometer-sized channels, and the quantum Hall effect." Six major areas are covered---atomic structure, electronic structure, mechanical properties, electron transport, optical properties, and magnetism. But rather than defining the field in terms of particular materials, the author focuses on the way condensed matter physicists approach physical problems, combining phenomenology and microscopic arguments with information from experiments. For graduate students and professionals, researchers and engineers, applied mathematicians and materials scientists, Condensed Matter Physics provides: * An exciting collection of new topics from the past two decades. * A thorough treatment of classic topics, including band theory, transport theory, and semiconductor physics. * Over 300 figures, incorporating many images from experiments. * Frequent comparison of theory and experiment, both when they agree and when problems are still unsolved. * More than 50 tables of data and a detailed index. * Ample end-of-chapter problems, including computational exercises. * Over 1000 references, both recent and historically significant.

  9. Soft condensed matter

    NARCIS (Netherlands)

    Frenkel, D.

    2002-01-01

    These lectures illustrate some of the concepts of soft-condensed matter physics, taking examples from colloid physics. Many of the theoretical concepts will be illustrated with the results of computer simulations. After a brief introduction describing interactions between colloids, the paper focuses

  10. Asymmetric condensed dark matter

    Science.gov (United States)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  11. Asymmetric condensed dark matter

    CERN Document Server

    Aguirre, Anthony

    2015-01-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

  12. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  13. Kaon condensation and multi-strange matter

    Science.gov (United States)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2010-04-01

    We report on dynamical calculations of multi- K¯ hypernuclei, which were performed by adding K¯ mesons to particle-stable configurations of nucleons, Λ and Ξ hyperons. The K¯ separation energy as well as the baryonic densities saturate with the number of antikaons. We demonstrate that the saturation is a robust feature of multi- K¯ hypernuclei. Because the K¯ separation energy B does not exceed 200 MeV, we conclude that kaon condensation is unlikely to occur in finite strong-interaction self-bound {N,Λ,Ξ} strange hadronic systems.

  14. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  15. Nuclear fusion inside condense matters

    Institute of Scientific and Technical Information of China (English)

    HE Jing-tang

    2007-01-01

    This article describes in detail the nuclear fusion inside condense matters--the Fleischmann-Pons effect, the reproducibility of cold fusions, self-consistentcy of cold fusions and the possible applications.

  16. Condensed Matter Physics - Biology Resonance

    Science.gov (United States)

    Baskaran, G.

    The field of condensed matter physics had its genesis this century and it has had a remarkable evolution. A closer look at its growth reveals a hidden aim in the collective consciousness of the field - a part of the development this century is a kind of warm up exercise to understand the nature of living condensed matter, namely the field of biology, by a growing new breed of scientists in the coming century. Through some examples the vitality of this interaction will be pointed out.

  17. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  18. Advances in condensed matter optics

    CERN Document Server

    Chen, Liangyao; Jiang, Xunya; Jin, Kuijuan; Liu, Hui; Zhao, Haibin

    2015-01-01

    This book describes some of the more recent progresses and developmentsin the study of condensed matter optics in both theoretic and experimental fields.It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.

  19. Condensed matter analogues of cosmology

    Science.gov (United States)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  20. Lorentz violation and Condensed Matter Physics

    CERN Document Server

    Ajaib, Muhammad Adeel

    2014-01-01

    We present heuristic arguments that hint to a possible connection of Lorentz violation with observed phenomenon in condensed matter physics. Various references from condensed matter literature are cited where operators in the Standard Model Extension (SME) appear to be enhanced. Based on this we propose that, in the non-relativistic limit, Lorentz violation in the context of the SME exhibits itself in various condensed matter systems.

  1. Muonic Chemistry in Condensed Matter

    CERN Multimedia

    2002-01-01

    When polarized muons (@m|+) stop in condensed matter, muonic atoms are formed in the final part of their range, and direct measurements of the @m|+-spin polarization are possible via the asymmetric decay into positrons. The hyperfine interaction determines the characteristic precession frequencies of the @m|+ spin in muonium, @w(Mu). Such frequencies can be altered by the interactions of the muonium's electron spin with the surrounding medium. The measurement of @w(Mu) in a condensed system is known often to provide unique information regarding the system. \\\\ \\\\ In particular, the use of muonium atoms as a light isotope of the simple reactive radical H|0 allows the investigation of fast reactions of radicals over a typical time scale 10|-|9~@$<$~t~@$<$~10|-|5~sec, which is determined by the instrumental resolution at one end and by the @m|+ lifetime at the other. \\\\ \\\\ In biological macromolecules transient radicals, such as the constituents of DNA itself, exist on a time scale of sub-microseconds, acco...

  2. In-medium kaon and antikaon properties in the quark-meson coupling model

    CERN Document Server

    Tsushima, K; Thomas, A W; Wright, S V

    1998-01-01

    The properties of the kaon, $K$, and antikaon, $\\kbar$, in nuclear medium are studied in the quark-meson coupling (QMC) model. Employing a constituent quark-antiquark (MIT bag model) picture, their excitation energies in a nuclear medium at zero momentum are calculated within mean field approximation. The scalar, and the vector mesons are assumed to couple directly to the nonstrange quarks and antiquarks in the $K$ and $\\kbar$ mesons. It is demonstrated that the $\\rho$ meson induces different mean field potentials for each member of the isodoublets, $K$ and $\\kbar$, when they are embedded in asymmetric nuclear matter. Furthermore, it is also shown that this $\\rho$ meson potential is repulsive for the $K^-$ meson in matter with a neutron excess, and renders $K^-$ condensation less likely to occur.

  3. Holographic Duality in Condensed Matter Physics

    Science.gov (United States)

    Zaanen, Jan; Liu, Yan; Sun, Ya-Wen; Schalm, Koenraad

    2015-11-01

    Preface; 1. Introduction; 2. Condensed matter: the charted territory; 3. Condensed matter: the challenges; 4. Large N field theories for holography and condensed matter; 5. The AdS/CFT correspondence as computational device: the dictionary; 6. Finite temperature magic: black holes and holographic thermodynamics; 7. Holographic hydrodynamics; 8. Finite density: the Reissner-Nordström black hole and strange metals; 9. Holographic photoemission and the RN metal: the fermions as probes; 10. Holographic superconductivity; 11. Holographic Fermi liquids; 12. Breaking translational invariance; 13. AdS/CMT from the top down; 14. Outlook: holography and quantum matter; References; Index.

  4. Statistical physics and condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding

  5. Condensed Matter Theories - Volume 22

    Science.gov (United States)

    Reinholz, Heidi; Röpke, Gerd; de Llano, Manuel

    2007-09-01

    pke -- pt. H. Biophysics. Condensed matter physics of biomolecule systems in a differential geometric framework / H. Bohr, J.I. Ipsen and S. Markvorsen. The brain's view of the natural world in motion: computing structure from function using directional Fourier transformations / B.K. Dellen, J.W. Clark and R. Wessel -- pt. I. Quantum information. Control and error prevention in condensed matter quantum computing devices / M.S. Byrd and L.A. Wu. Maxent approaches to qubits / C.M. Sarris, A.N. Proto and F B. Malik -- pt. J. New formalisms. Thermal coherent states, a broader class of mixed coherent states, and generalized thermo-field dynamics / R.F. Bishop and A. Vourdas. Ergodic condition and magnetic models / M. Howard Lee. From thermodynamics to Maxent / A. Plastino and E. M.F. Curado. Recent progress in the density-matrix renormalization group / U. Schollwöck.

  6. Stellar matter with pseudoscalar condensates

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, A.A. [Saint-Petersburg State University, St. Petersburg (Russian Federation); Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos (ICCUB), Barcelona, Catalonia (Spain); Andrianov, V.A.; Kolevatov, S.S. [Saint-Petersburg State University, St. Petersburg (Russian Federation); Espriu, D. [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos (ICCUB), Barcelona, Catalonia (Spain)

    2016-03-15

    In this work we consider how the appearance of gradients of pseudoscalar condensates in dense systems may possibly influence the transport properties of photons in such a medium as well as other thermodynamic characteristics. We adopt the hypothesis that in regions where the pseudoscalar density gradient is large the properties of photons and fermions are governed by the usual lagrangian extended with a Chern-Simons interaction for photons and a constant axial field for fermions. We find that these new pieces in the lagrangian produce non-trivial reflection coefficients both for photons and fermions when entering or leaving a region where the pseudoscalar has a non-zero gradient. A varying pseudoscalar density may also lead to instability of some fermion and boson modes and modify some properties of the Fermi sea. We speculate that some of these modifications could influence the cooling rate of stellar matter (for instance in compact stars) and have other observable consequences. While quantitative results may depend on the precise astrophysical details most of the consequences are quite universal and consideration should be given to this possibility. (orig.)

  7. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of

  8. Primes, Geometry and Condensed Matter

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2009-07-01

    Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that

  9. Arnold Sommerfeld and Condensed Matter Physics

    Science.gov (United States)

    Joas, Christian; Eckert, Michael

    2017-03-01

    Arnold Sommerfeld (1868-1951), one of the founders of modern theoretical physics and a pioneer of quantum theory, was no condensed matter physicist. He nevertheless played a crucial role for the history of the field. Besides his important contributions to the study of condensed matter systems, among which his seminal electron gas theory of metallic conduction probably stands out, he influenced the field through his very approach to science, through his way of “doing” physics. Sommerfeld's specific style permeated not only his research but also his teaching and his promoting of physics. This has had a lasting influence on the practices of physicists to this day, and not only, but importantly, on those of condensed matter physicists. This article aims to provide a concise account of Sommerfeld's influence on the study of condensed matter systems, with regard to both his research and his practice.

  10. Essay: fifty years of condensed matter physics.

    Science.gov (United States)

    Cohen, Marvin L

    2008-12-19

    Since the birth of Physical Review Letters fifty years ago, condensed matter physics has seen considerable growth, and both the journal and the field have flourished during this period. In this essay, I begin with some general comments about condensed matter physics and then give some personal views on the conceptual development of the field and list some highlights. The focus is mostly on theoretical developments.

  11. Spatially inhomogeneous condensate in asymmetric nuclear matter

    NARCIS (Netherlands)

    Sedrakian, A

    2001-01-01

    We study the isospin singlet pairing in asymmetric nuclear matter with nonzero total momentum of the condensate Cooper pairs. The quasiparticle excitation spectrum is fourfold split compared to the usual BCS spectrum of the symmetric, homogeneous matter. A twofold splitting of the spectrum into sepa

  12. The NSF Condensed Matter Physics Program

    Science.gov (United States)

    Sokol, Paul

    The Condensed Matter Physics (CMP) program in the NSF Division of Materials Research (DMR) supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems. CMP is the largest Individual Investigator Award program in DMR and supports a broad portfolio of research spanning both hard and soft condensed matter. Representative research areas include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; topological insulators; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, liquid crystals, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields. In this talk I will review the current CMP portfolio and discuss future funding trends for the program. I will also describe recent activities in the program aimed at addressing the challenges facing current and future principal investigators.

  13. Field theories of condensed matter physics

    CERN Document Server

    Fradkin, Eduardo

    2013-01-01

    Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.

  14. Low-energy Antikaon Interaction with Nuclei: The AMADEUS Challenge

    CERN Document Server

    Marton, Johann; Bellotti, Giovanni; Berucci, Carolina; Bosnar, Dimitri; Bragadireanu, Mario; Curceanu, Catalina; Clozza, Alberto; Cargnelli, Michael; Butt, Aslan; Del Grande, Raffaele; Fabbietti, Laura; Fiorini, Carlo; Ghio, Francesco; Guaraldo, Carlo; Iliescu, Mihai; Sandri, Paolo Levi; Pietreanu, Dorel; Piscicchia, Kristian; Vidal, Antonio Romero; Scordo, Alessandro; Shi, Hexi; Sirghi, Diana; Sirghi, Florin; Tucakovic, Ivana; Doce, Oton Vazquez; Widmann, Eberhard; Zmeskal, Johann

    2016-01-01

    The low-energy strong interaction of antikaons (K-) with nuclei has many facets and rep- resents a lively and challenging research ?eld. It is interconnected to the peculiar role of strangeness, since the strange quark is rather light, but still much heavier than the up and down quarks. Thus, when strangeness is involved one has to deal with spontaneous and explicit symmetry breaking in QCD. It is well known that the antikaon interaction with nucleons is attractive, but how strong ? Is the interaction strong enough to bind nucleons to form kaonic nuclei and, if so, what are the properties (binding energy, decay width)? There are controversial indications for such bound states and new results are expected to come soon. The existence of antikaon mediated bound states might have important consequences since it would open the possibility for the formation of cold baryonic matter of high density which might have a severe impact in astrophysics for the understanding of the composi- tion of compact (neutron) stars. ...

  15. Fundamentals of neutron scattering by condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Scherm, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-12-31

    The purpose of this introductory lecture is to give the basic facts about the scattering of neutrons by condensed matter. This lecture is restricted to nuclear scattering, whereas magnetic scattering will be dealt with in an other course. Most of the formalism, however, can also be easily extended to magnetic scattering. (author) 17 figs., 3 tabs., 10 refs.

  16. Electrostrong Nuclear Disintegration in Condensed Matter

    CERN Document Server

    Swain, J; Widom, A

    2013-01-01

    Photo- and electro-disintegration techniques have been traditionally used for studying giant dipole resonances and through them nuclear structure. Over a long period, detailed theoretical models for the giant dipole resonances were proposed and low energy electron accelerators were constructed to perform experiments to test their veracity. More recently, through laser and "smart" material devices, electrons have been accelerated in condensed matter systems up to several tens of MeV. We discuss here the possibility of inducing electro-disintegration of nuclei through such devices. It involves a synthesis of electromagnetic and strong forces in condensed matter via giant dipole resonances to give an effective "electro-strong interaction" - a large coupling of electromagnetic and strong interactions in the tens of MeV range.

  17. Exact Mappings in Condensed Matter Physics

    OpenAIRE

    Lee, Ching Hua

    2016-01-01

    Condensed matter systems are complex yet simple. Amidst their complexity, one often find order specified by not more than a few parameters. Key to such a reductionistic description is an appropriate choice of basis, two of which I shall describe in this thesis. The first, an exact mapping known as the Wannier State Representation (WSR), provides an exact Hilbert space correspondence between two intensely-studied topological systems, the Fractional Quantum Hall (FQH) and Fractional Chern Insul...

  18. Majorana fermions in condensed-matter physics

    Science.gov (United States)

    Leggett, A. J.

    2016-06-01

    It is an honor and a pleasure to have been invited to give a talk in this conference celebrating the memory of the late Professor Abdus Salam. To my regret, I did not know Professor Salam personally, but I am very aware of his work and of his impact on my area of specialization, condensed matter physics, both intellectually through his ideas on spontaneously broken symmetry and more practically through his foundation of the ICTP. Since I assume that most of this audience are not specialized in condensed-matter physics, I thought I would talk about one topic which to some extent bridges this field and the particle-physics interests of Salam, namely Majorana fermions (M.F.s). However, as we shall see, the parallels which are often drawn in the current literature may be a bit too simplistic. I will devote most of this talk to a stripped-down exposition of the current orthodoxy concerning M.F.s. in condensed-matter physics and their possible applications to topological quantum computing (TQC), and then at the end briefly indicate why I believe this orthodoxy may be seriously misleading.

  19. Condensation of galactic cold dark matter

    Science.gov (United States)

    Visinelli, Luca

    2016-07-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for ``canonical'' cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional ``quantum pressure'' term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the ``cuspy halo problem'' present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of Mχ c2 ≈ 10-24 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  20. Solitonic axion condensates modeling dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Castañeda Valle, David, E-mail: casvada@gmail.com; Mielke, Eckehard W., E-mail: ekke@xanum.uam.mx

    2013-09-15

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.

  1. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  2. Computational Theory of Warm Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T W; Surh, M P; Benedict, L X

    2001-02-25

    We have developed an improved computational theory of condensed matter in the regime where T {le} T{sub Fermi}. Previous methods of calculating the equation of state (EOS) relied on interpolation between low-temperature (solid) and high-temperature (plasma) limits, or employed severe approximations. Recent theoretical and experimental developments have highlighted the need for accurate EOS and opacity data in the intermediate temperature range and offer the opportunity to test theoretical models. We describe our results for EOS and optical properties for temperatures up to 10{sup 6} K, and describe directions for future work.

  3. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  4. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  5. Hidden Scale Invariance in Condensed Matter

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2014-01-01

    . This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...

  6. Chiral magnetic effect in condensed matter systems

    Science.gov (United States)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  7. Equation of state of warm condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W., III; Young, D.A.; Rogers, F.J.

    1998-03-01

    Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T{approximately}T{sub Fermi}. We seek to ``connect up`` these two regimes by using ab initio finite temperature methods (including linear-response[1] based phonon calculations) to derive an equation of state of condensed matter for T{<=}T{sub Fermi}. We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T>10{sup 4}K, and compare our results with available experimental data.

  8. Gravity, holography and applications to condensed matter

    CERN Document Server

    Baggioli, Matteo

    2016-01-01

    Momentum relaxation is an ever-present and unavoidable ingredient of any realistic condensed matter system. In real-world materials the presence of a lattice, impurities or disorder forces momentum to dissipate and leads to relevant physical effects such as the finiteness of the DC transport properties, i.e. conductivities. The main purpose of this thesis is the introduction of momentum dissipation and its consequent effects into the framework of AdS/CMT, namely the applications of the gauge-gravity duality to condensed matter. A convenient and effective way of breaking the translational symmetry associated to such a conservation law is provided by massive gravity (MG) bulk theories. We consider generic massive gravity models embedded into asymptotically Anti de Sitter spacetime and we analyze them using holographic techniques. We study in detail their consistency and stability. We then focus our attention on the transport properties of the CFT duals. A big part of our work is devoted to the analysis of the e...

  9. PAC Spectrometer for Condensed Matter Investigation

    CERN Document Server

    Brudanin, V B; Kochetov, O I; Korolev, N A; Milanov, M; Ostrovsky, I V; Pavlov, V N; Salamatin, A V; Timkin, V V; Velichkov, A I; Fomicheva, L N; Tsvyaschenko, A V; Akselrod, Z Z

    2005-01-01

    A four-detector spectrometer of perturbed angular $\\gamma \\gamma $ correlations is developed for investigation of hyperfine interactions in condensed matter. It allows measurements with practically any types of detectors. A unique circuit design involving a specially developed Master PAC unit combined with a computer allows a substantially higher efficiency, reduced setup time and simpler operation in comparison with traditional PAC spectrometers. A cryostat and a high-temperature oven allow measurements in the temperature range from 120 to 1300 K. An encased electromagnet makes it possible to generate a magnetic field up to 2 T on a sample. The measurement system includes a press with a specially designed high-pressure chamber allowing on-line PAC measurements in samples under pressure up to 60 GPa.

  10. Statistical mechanics and applications in condensed matter

    CERN Document Server

    Di Castro, Carlo

    2015-01-01

    This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between ...

  11. The Solar Photosphere: Evidence for Condensed Matter

    Directory of Open Access Journals (Sweden)

    Robitaille P. M.

    2006-04-01

    Full Text Available The stellar equations of state treat the Sun much like an ideal gas, wherein the photosphere is viewed as a sparse gaseous plasma. The temperatures inferred in the solar interior give some credence to these models, especially since it is counterintuitive that an object with internal temperatures in excess of 1 MK could be existing in the liquid state. Nonetheless, extreme temperatures, by themselves, are insufficient evidence for the states of matter. The presence of magnetic fields and gravity also impact the expected phase. In the end, it is the physical expression of a state that is required in establishing the proper phase of an object. The photosphere does not lend itself easily to treatment as a gaseous plasma. The physical evidence can be more simply reconciled with a solar body and a photosphere in the condensed state. A discussion of each physical feature follows: (1 the thermal spectrum, (2 limb darkening, (3 solar collapse, (4 the solar density, (5 seismic activity, (6 mass displacement, (7 the chromosphere and critical opalescence, (8 shape, (9 surface activity, (10 photospheric/coronal flows, (11 photospheric imaging, (12 the solar dynamo, and (13 the presence of Sun spots. The explanation of these findings by the gaseous models often requires an improbable combination of events, such as found in the stellar opacity problem. In sharp contrast, each can be explained with simplicity by the condensed state. This work is an invitation to reconsider the phase of the Sun.

  12. Quantum entanglement in condensed matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Laflorencie, Nicolas, E-mail: laflo@irsamc.ups-tlse.fr

    2016-08-03

    This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.

  13. Quantum entanglement in condensed matter systems

    Science.gov (United States)

    Laflorencie, Nicolas

    2016-08-01

    This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.

  14. Power spectrum for the Bose-Einstein condensate dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Velten, Hermano, E-mail: velten@physik.uni-bielefeld.de [Departamento de Fisica, UFES, Vitoria, 29075-910 Espirito Santo (Brazil); Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, 33501 Bielefeld (Germany); Wamba, Etienne [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2012-03-13

    We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo-Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15 MeV

  15. Power spectrum for the Bose-Einstein condensate dark matter

    CERN Document Server

    Velten, Hermano

    2011-01-01

    We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo- Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15meV < m < 700meV leading to a small, but perceptible, excess of power at large scales.

  16. Dark matter as a condensate: Deduction of microscopic properties

    CERN Document Server

    Gutierrez, Sergio; Camacho, Abel

    2016-01-01

    In the present work we model dark matter as a Bose-Einstein condensate and the main goal is the deduction of the microscopic properties, namely, mass, number of particles, and scattering length, related to the particles comprised in the corresponding condensate. This task is done introducing in the corresponding model the effects of the thermal cloud of the system. Three physical conditions are imposed, i.e., mechanical equilibrium of the condensate, explanation of the rotation curves of stars belonging to dwarf galaxies, and, finally, the deflection of light due to the presence of dark matter. These three aforementioned expressions allow us to cast the features of the particles in terms of detectable astrophysical variables. Finally, the model is contrasted against observational data and in this manner we obtain values for the involved microscopic parameters of the condensate. The deduced results are compared with previous results in which dark matter has not been considered a condensate. The main conclusion...

  17. The diffusive instability of kaon condensate in neutron star matter

    CERN Document Server

    Kubis, S

    2004-01-01

    The beta equilibrated dense matter with kaon condensate is analyzed with respect to extended stability conditions including charge fluctuations. This kind of the diffusive instability, appeared to be common property in the kaon condensation case. Results for three different nuclear models are presented.

  18. Resource Letter HCMP-1: History of Condensed Matter Physics

    Science.gov (United States)

    Martin, Joseph D.

    2017-02-01

    This Resource Letter provides a guide to the literature on the history of condensed matter physics, including discussions of the development of the field and strategies for approaching its complicated historical trajectory. Following the presentation of general resources, journal articles and books are cited for the following topics: conceptual development; institutional and community structure; social, cultural, and political history; and connections between condensed matter physics and technology.

  19. Connections between quantum chromodynamics and condensed matter physics

    Indian Academy of Sciences (India)

    Shailesh Chandrasekharan

    2003-11-01

    Features of QCD can be seen qualitatively in certain condensed matter systems. Recently some of the analyses that originated in condensed matter physics have found applications in QCD. Using examples we discuss some of the connections between the two fields and show how progress can be made by exploiting this connection. Some of the challenges that remain in the two fields are quite similar. We argue that recent algorithmic developments call for optimism in both fields.

  20. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  1. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  2. Gauge and Matter Condensates in Realistic String Models

    CERN Document Server

    Kalara, S; Pages, D N

    1992-01-01

    We examine the inter-relationship of the superpotential containing hidden and observable matter fields and the ensuing condensates in free fermionic string models. These gauge and matter condensates of the strongly interacting hidden gauge groups play a crucial role in the determination of the physical parameters of the observable sector. Supplementing the above information with the requirement of modular invariance, we find that a generic model with only trilinear superpotential allows for a degenerate (and sometimes pathological) set of vacua. This degeneracy may be lifted by higher order terms in the superpotential. We also point out some other subtle points that may arise in calculations of this nature. We exemplify our observations by computing explicitly the modular invariant gaugino and matter condensates in the flipped $SU(5)$ string model with hidden gauge group $SO(10)\\times SU(4)$.

  3. Antineutrino induced antikaon production off the nucleon

    CERN Document Server

    Alam, M Rafi; Athar, M Sajjad; Vacas, M J Vicente

    2011-01-01

    The charged current antikaon production off nucleons induced by antineutrinos is studied at low and intermediate energies. We extend here our previous calculation on kaon production induced by neutrinos. We have developed a microscopic model that starts from the SU(3) chiral Lagrangians and includes background terms and the resonant mechanisms associated to the lowest lying resonance in the channel, namely, the Sigma*(1385). Our results could be of interest for the background estimation of various neutrino oscillation experiments like MiniBooNE and SuperK. They can also be helpful for the planned antineutrino experiments like MINERvA, NOvA and T2K phase II and for beta-beam experiments with antineutrino energies around 1 GeV.

  4. Coherence vs. decoherence in (some) problems of condensed matter physics

    Indian Academy of Sciences (India)

    Sushanta Dattagupta

    2002-08-01

    We present an `overview’ of coherence-to-decoherence transition in certain selected problems of condensed matter physics. Our treatment is based on a subsystem-plus-environment approach. All the examples chosen in this paper have one thing in common – the environmental degrees of freedom are taken to be bosonic and their spectral density of excitations is assumed to be `ohmic’. The examples are drawn from a variety of phenomena in condensed matter physics involving, for instance, quantum diffusion of hydrogen in metals, Landau diamagnetism and -axis transport in high c superconductors.

  5. Computer Simulation Studies in Condensed-Matter Physics XVII

    Science.gov (United States)

    Landau, D. P.; Lewis, S. P.; Schüttler, H.-B.

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  6. Diagrammatics lectures on selected problems in condensed matter theory

    CERN Document Server

    Sadovskii, Michael V

    2006-01-01

    The introduction of quantum field theory methods has led to a kind of "revolution" in condensed matter theory. This resulted in the increased importance of Feynman diagrams or diagram technique. It has now become imperative for professionals in condensed matter theory to have a thorough knowledge of this method.There are many good books that cover the general aspects of diagrammatic methods. At the same time, there has been a rising need for books that describe calculations and methodical "know how" of specific problems for beginners in graduate and postgraduate courses. This unique collection

  7. The Rethermalizing Bose-Einstein Condensate of Dark Matter Axions

    CERN Document Server

    Banik, Nilanjan; Sikivie, Pierre; Todarello, Elisa Maria

    2015-01-01

    The axions produced during the QCD phase transition by vacuum realignment, string decay and domain wall decay thermalize as a result of their gravitational self-interactions when the photon temperature is approximately 500 eV. They then form a Bose-Einstein condensate (BEC). Because the axion BEC rethermalizes on time scales shorter than the age of the universe, it has properties that distinguish it from other forms of cold dark matter. The observational evidence for caustic rings of dark matter in galactic halos is explained if the dark matter is axions, at least in part, but not if the dark matter is entirely WIMPs or sterile neutrinos.

  8. Particle Physics and Condensed Matter: The Saga Continues

    CERN Document Server

    Wilczek, Frank

    2016-01-01

    Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here I'll supply some broad, unifying context, both conceptual and historical, for the abundance of results reported at the Nobel Symposium on "New Forms of Matter, Topological Insulators and Superconductors". Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction.

  9. Surface Tension between Kaon Condensate and Normal Nuclear Matter Phase

    OpenAIRE

    Christiansen, Michael B.; Glendenning, Norman K.; Schaffner-Bielich, Jurgen

    2000-01-01

    We calculate for the first time the surface tension and curvature coefficient of a first order phase transition between two possible phases of cold nuclear matter, a normal nuclear matter phase in equilibrium with a kaon condensed phase, at densities a few times the saturation density. We find the surface tension is proportional to the difference in energy density between the two phases squared. Furthermore, we show the consequences for the geometrical structures of the mixed phase region in ...

  10. SHM of Galaxies Embedded within Condensed Neutrino Matter

    CERN Document Server

    Morley, Peter D

    2014-01-01

    We re-examine the question of condensed neutrino objects (de- generate neutrino matter) based on new calculations. The potential show-stopper issue of free-streaming light neutrinos inhibiting galaxy formation is addressed. We compute the period associated with sim- ple harmonic motion (SHM) of galaxies embedded within condensed neutrino objects. For observational consequences, we examine the ro- tational velocities of embedded galaxies using Hickson 88A (N6978) as the prototype. Finally, we point out that degenerate neutrino objects repel each other in overlap and we compute directly the repulsive force between two interesting and relevant con?gurations. An outstanding issue is whether the accompanying tidal forces generated by condensed neutrino matter on embedded galaxies give rise to galactic bulges and halos.

  11. Soft condensed matter: Polymers, complex fluids, and biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, D.

    1995-10-01

    Historians often characterize epochs through their dominant materials, clay, bronze, iron, and steel. From this perspective, the modern era is certainly the age of plastics. The progression from hard to soft materials suggests that the emerging era will be the age of {open_quotes}soft condensed matter.{close_quotes}

  12. Excitation energy transfer processes in condensed matter theory and applications

    CERN Document Server

    Singh, Jai

    1994-01-01

    Applying a unified quantum approach, contributors offer fresh insights into the theoretical developments in the excitation energy transfer processes in condensed matter This comprehensive volume examines Frenkel and Wannier excitonic processes; rates of excitonic processes; theory of laser sputter and polymer ablation; and polarons, excitonic polarons and self-trapping

  13. The 18th Annual Condensed Matter Physics Meeting

    Science.gov (United States)

    Chaplin, Don; Hutchinson, Wayne; Yazidjoglou, Nick; Stewart, Glen

    The Handbook contains abstracts of oral and poster presentations covering various aspects of condensed matter physics such as magnetism, superconductivity, semiconductor materials and their properties, as well as the use of nuclear techniques in studies of these materials. 162 contributions have been considered to be in the INIS subject scope and were indexed separately.

  14. Condensates and correlations in nuclear matter

    Directory of Open Access Journals (Sweden)

    Röpke G.

    2010-10-01

    Full Text Available Nuclei in dense matter are influenced by the medium. Solving an A-particle Schroedinger equation including the effects of self-energy and Pauli blocking, a quasiparticle description is introduced. Deriving thermodynamic properties, this approach contains the NSE at low densities as well as mean-field approaches at high densities. Consequences for the symmetry energy, the phase transition, the determination of thermodynamic parameters from cluster yields and astrophysical applications are discussed.

  15. Holographic geometries for condensed matter applications

    CERN Document Server

    Keranen, V

    2013-01-01

    Holographic modeling of strongly correlated many-body systems motivates the study of novel spacetime geometries where the scaling behavior of quantum critical systems is encoded into spacetime symmetries. Einstein-Dilaton-Maxwell theory has planar black brane solutions that exhibit Lifshitz scaling and in some cases hyperscaling violation. Entanglement entropy and Wilson loops in the dual field theory are studied by inserting simple geometric probes involving minimal surfaces into the black brane geometry. Coupling to background matter fields leads to interesting low-energy behavior in holographic models, such as U(1) symmetry breaking and emergent Lifshitz scaling.

  16. Bose-Einstein condensation of dark matter axions.

    Science.gov (United States)

    Sikivie, P; Yang, Q

    2009-09-11

    We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.

  17. Particle physics and condensed matter: the saga continues

    Science.gov (United States)

    Wilczek, Frank

    2016-12-01

    Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here I will supply some broad, unifying context, both conceptual and historical, for the abundance of results reported at the Nobel Symposium on ‘New Forms of Matter, Topological Insulators and Superconductors’. Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction. Invited presentation of concluding remarks at Nobel Symposium 156 on New Forms of Matter, Topological Insulators and Superconductors, 13-15 June 2014, Högberga Gård, Stockholm.

  18. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter

    CERN Document Server

    Diez-Tejedor, Alberto; Profumo, Stefano

    2014-01-01

    We constrain the parameters of a self-interacting massive dark matter scalar particle in a condensate using the kinematics of the eight brightest dwarf spheroidal satellites of the Milky Way. For the case of an attractive self-interaction the condensate develops a mass density profile with a characteristic scale radius that is closely related to the fundamental parameters of the theory. We find that the velocity dispersion of dwarf spheroidal galaxies suggests a scale radius of the order of 1 kpc, in tension with previous results found using the rotational curve of low-surface-brightness and dwarf galaxies. We discuss the implications of our findings for the particle dark matter model and argue that a single classical coherent state cannot play, in general, a relevant role for the description of dark matter in galaxies.

  19. Experimental and Computational Techniques in Soft Condensed Matter Physics

    Science.gov (United States)

    Olafsen, Jeffrey

    2010-09-01

    1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.

  20. Order and chaos in soft condensed matter

    Indian Academy of Sciences (India)

    A K Sood; Rajesh Ganapathy

    2006-07-01

    Soft matter, like colloidal suspensions and surfactant gels, exhibit strong response to modest external perturbations. This paper reviews our recent experiments on the nonlinear flow behaviour of surfactant worm-like micellar gels. A rich dynamic behaviour exhibiting regular, quasi-periodic, intermittency and chaos is observed. In particular, we have shown experimentally that the route to chaos is via Type-II intermittency in shear thinning worm-like micellar solution of cetyltrimethylammonium tosylate where the strength of flow-concentration coupling is tuned by the addition of sodium chloride. A Poincaré first return map of the time series and the probability distribution of laminar length between burst events show that our data are consistent with Type-II intermittency. The existence of a `Butterfly' intensity pattern in small angle light scattering (SALS) measurements performed simultaneously with the rheological measurements confirms the coupling of flow to concentration fluctuations in the system under study. The scattered depolarised intensity in SALS, sensitive to orientational order fluctuations, shows the same time-dependence (like intermittency) as that of shear stress.

  1. Dark matter and dark energy induced by condensates

    CERN Document Server

    Capolupo, Antonio

    2016-01-01

    It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states, of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature, the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal vacuum of the intercluster medium could contribute to the dark matter, together with the vacuum energy of fields in curved space-time and of mixed neutrinos. Moreover, a component of the dark energy can be represented by the vacuum of axion-like particles mixed with photons and superpartners of neutrinos. The formal analogy among the systems characterized by the condensates can open new scenarios in the possibility to detect the dark components of the universe in table top experiments.

  2. Dark Matter and Dark Energy Induced by Condensates

    Directory of Open Access Journals (Sweden)

    Antonio Capolupo

    2016-01-01

    Full Text Available It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature and the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal vacuum of the intercluster medium could contribute to the dark matter, together with the vacuum energy of fields in curved space-time and of mixed neutrinos. Moreover, a component of the dark energy can be represented by the vacuum of axion-like particles mixed with photons and superpartners of neutrinos. The formal analogy among the systems characterized by the condensates can open new scenarios in the possibility of detecting the dark components of the universe in table top experiments.

  3. Springer Handbook of Condensed Matter and Materials Data

    CERN Document Server

    Martienssen, Werner

    2005-01-01

    Condensed Matter and Materials Science are two of the most active fields of applied physics, with a stream of discoveries in areas from superconductivity and magnetism to the optical, electronic and mechanical properties of materials. While a huge amount of data has been compiled and spread over numerous reference works, no single volume compiles the most used information. Springer Handbook of Condensed Matter and Materials Data provides a concise compilation of data and functional relationships from the fields of solid-state physics and materials in this 1200-page volume. The data, encapsulated in over 750 tables and 1025 illustrations, have been selected and extracted primarily from the extensive high-quality data collection Landolt-Börnstein and also from other systematic data sources and recent publications of physical and technical property data. Many chapters are authored by Landolt-Börnstein editors, including the editors of this Springer Handbook. Key Topics Fundamental Constants The International S...

  4. Applications of lattice QCD techniques for condensed matter systems

    Science.gov (United States)

    Buividovich, P. V.; Ulybyshev, M. V.

    2016-08-01

    We review the application of lattice QCD techniques, most notably the Hybrid Monte Carlo (HMC) simulations, to first-principle study of tight-binding models of crystalline solids with strong inter-electron interactions. After providing a basic introduction into the HMC algorithm as applied to condensed matter systems, we review HMC simulations of graphene, which in the recent years have helped to understand the semimetal behavior of clean suspended graphene at the quantitative level. We also briefly summarize other novel physical results obtained in these simulations. Then we comment on the applicability of hybrid Monte Carlo to topological insulators and Dirac and Weyl semimetals and highlight some of the relevant open physical problems. Finally, we also touch upon the lattice strong-coupling expansion technique as applied to condensed matter systems.

  5. A Scientific Cloud Computing Platform for Condensed Matter Physics

    Science.gov (United States)

    Jorissen, K.; Johnson, W.; Vila, F. D.; Rehr, J. J.

    2013-03-01

    Scientific Cloud Computing (SCC) makes possible calculations with high performance computational tools, without the need to purchase or maintain sophisticated hardware and software. We have recently developed an interface dubbed SC2IT that controls on-demand virtual Linux clusters within the Amazon EC2 cloud platform. Using this interface we have developed a more advanced, user-friendly SCC Platform configured especially for condensed matter calculations. This platform contains a GUI, based on a new Java version of SC2IT, that permits calculations of various materials properties. The cloud platform includes Virtual Machines preconfigured for parallel calculations and several precompiled and optimized materials science codes for electronic structure and x-ray and electron spectroscopy. Consequently this SCC makes state-of-the-art condensed matter calculations easy to access for general users. Proof-of-principle performance benchmarks show excellent parallelization and communication performance. Supported by NSF grant OCI-1048052

  6. 10th International Workshop on Condensed Matter Theories

    CERN Document Server

    Kalia, Rajiv; Bishop, R

    1987-01-01

    The second volume of Condensed Matter Theories contains the proceedings of the 10th International Workshop held at Argonne National Laboratory, Argonne, IL, U.S.A. during the week of July 21, 1986. The workshop was attended by high-energy, nuclear and condensed-matter physicists as well as materials scientists. This diverse blend of participants was in keeping with the flavor of the previous workshops. This annual series of international workshops was"started in 1977 in Sao Paulo, Brazil. Subsequent'workshops were held in Trieste (Italy), Buenos Aires (Argentina), Caracas (Venezuela), Altenberg (West Germany), Granada (Spain), and San Francisco (U.S.A.). What began as a meeting of the physicists from the Western Hemisphere has expanded in the last three years into an international conference of scientists with diverse interests and backgrounds. This diversity has promoted a healthy exchange of ideas from different branches of physics and also fruitful interactions among the participants. The present volume is...

  7. Aperiodic structures in condensed matter fundamentals and applications

    CERN Document Server

    Macia Barber, Enrique

    2008-01-01

    One of the Top Selling Physics Books according to YBP Library ServicesOrder can be found in all the structures unfolding around us at different scales, including in the arrangements of matter and in energy flow patterns. Aperiodic Structures in Condensed Matter: Fundamentals and Applications focuses on a special kind of order referred to as aperiodic order.The book covers several topics dealing with the role of aperiodic order in numerous domains of the physical sciences and technology. It first presents the most characteristic features of various aperiodic systems. The author then describes t

  8. Quark and gluon condensates in nuclear matter with Brown- Rho scaling

    Institute of Scientific and Technical Information of China (English)

    郭华; 杨树; 刘玉鑫

    2001-01-01

    Quark and gluon condensates in nuclear matter are investigated in a density-dependent relativistic mean-field theory. The in-medium quark condensate decreases rapidly as the density of nu-clear matter increases, if the Brown-Rho scaling is included. The decrease in the in-medium quark condensate with the nuclear matter density is consistent with the result predicted by the partial chiral symmetry restoration. The gluon condensate and the influence of the strange quark contents on the gluon condensate in nuclear matter are discussed.

  9. Shock wave compression of condensed matter a primer

    CERN Document Server

    Forbes, Jerry W

    2012-01-01

    This book introduces the core concepts of the shock wave physics of condensed matter, taking a continuum mechanics approach to examine liquids and isotropic solids. The text primarily focuses on one-dimensional uniaxial compression in order to show the key features of condensed matter’s response to shock wave loading. The first four chapters are specifically designed to quickly familiarize physical scientists and engineers with how shock waves interact with other shock waves or material boundaries, as well as to allow readers to better understand shock wave literature, use basic data analysis techniques, and design simple 1-D shock wave experiments. This is achieved by first presenting the steady one-dimensional strain conservation laws using shock wave impedance matching, which insures conservation of mass, momentum and energy. Here, the initial emphasis is on the meaning of shock wave and mass velocities in a laboratory coordinate system. An overview of basic experimental techniques for measuring pressure...

  10. Dark Matter Halos as Bose-Einstein Condensates

    CERN Document Server

    Mielke, E W; Schunck, F E; Mielke, Eckehard W.; Fuchs, Burkhard; Schunck, Franz E.

    2006-01-01

    Galactic dark matter is modelled by a scalar field in order to effectively modify Kepler's law without changing standard Newtonian gravity. In particular, a solvable toy model with a self-interaction U(Phi) borrowed from non-topological solitons produces already qualitatively correct rotation curves and scaling relations. Although relativistic effects in the halo are very small, we indicate corrections arising from the general relativistic formulation. Thereby, we can also probe the weak gravitational lensing of our soliton type halo. For cold scalar fields, it corresponds to a gravitationally confined Boson-Einstein condensate, but of galactic dimensions.

  11. Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics

    Directory of Open Access Journals (Sweden)

    Peter A. Horváthy

    2006-12-01

    Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.

  12. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  13. Lectures on holographic methods for condensed matter physics

    CERN Document Server

    Hartnoll, Sean A

    2009-01-01

    These notes are loosely based on lectures given and to be given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009 and at the IPM String School in Tehran, April 2009, respectively. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.

  14. Applied mathematics and condensed matter; Mathematiques appliquees et matiere condensee

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, D.; Jollet, F. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    Applied mathematics have always been a key tool in computing the structure of condensed matter. In this paper, we present the most widely used methods, and show the importance of mathematics in their genesis and evolution. After a brief survey of quantum Monte Carlo methods, which try to compute the N electrons wave function, the paper describes the theoretical foundations of N independent particle approximations. We mainly focus on density functional theory (DFT). This theory associated with advanced numerical methods, and high performance computing, has produced significant achievements in the field. This paper presents the foundations of the theory, as well as different numerical methods used to solve DFT equations. (authors)

  15. Weak Nonlinear Matter Waves in a Trapped Spin-1 Condensates

    Institute of Scientific and Technical Information of China (English)

    CAI Hong-Qiang; YANG Shu-Rong; XUE Ju-Kui

    2011-01-01

    The dynamics of the weak nonlinear matter solitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BEGs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation freauencv are also obtained.

  16. Conventional and Unconventional Pairing and Condensates in Dilute Nuclear Matter

    CERN Document Server

    Clark, John W; Stein, Martin; Huang, Xu-Guang; Khodel, Victor A; Shaginyan, Vasily R; Zverev, Mikhail V

    2016-01-01

    This contribution will survey recent progress toward an understanding of diverse pairing phenomena in dilute nuclear matter at small and moderate isospin asymmetry, with results of potential relevance to supernova envelopes and proto-neutron stars. Application of {\\it ab initio} many-body techniques has revealed a rich array of temperature-density phase diagrams, indexed by isospin asymmetry, which feature both conventional and unconventional superfluid phases. At low density there exist a homogeneous translationally invariant BCS phase, a homogeneous LOFF phase violating translational invariance, and an inhomogeneous translationally invariant phase-separated BCS phase. The transition from the BCS to the BEC phases is characterized in terms of the evolution, from weak to strong coupling, of the pairing gap, condensate wave function, and quasiparticle occupation numbers and spectra. Additionally, a schematic formal analysis of pairing in neutron matter at low to moderate densities is presented that establishes...

  17. International Workshop on Current Problems in Condensed Matter

    CERN Document Server

    Current Problems in Condensed Matter

    1998-01-01

    This volume contains the papers presented at the International Workshop on the Cur­ rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More­ los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis k...

  18. International Symposium on Dynamics of Ordering Processes in Condensed Matter

    CERN Document Server

    Furukawa, H

    1988-01-01

    The International Symposium on Dynamics of Ordering Processes in Condensed Matter was held at the Kansai Seminar House, Kyoto, for four days, from 27 to 30 August 1987, under the auspices of the Physical Soci­ ety of Japan. The symposium was financially supported by the four orga­ nizations and 45 companies listed on other pages in this volume. We are very grateful to all of them and particularly to the greatest sponsor, the Commemorative Association for the Japan World Exposition 1970. A total Df 22 invited lectures and 48 poster presentations were given and 110 participants attended from seven nations. An objective of the Symposium was to review and extend our present understanding of the dynamics of ordering processes in condensed matters, (for example, alloys, polymers and fluids), that are brought to an un­ stable state by sudden change of such external parameters as temperature and pressure. A second objective, no less important, was to identify new fields of science that might be investigated by sim...

  19. Use of ultracold neutrons for condensed-matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  20. Condensed Matter Physics in Colombia is in its forties

    Science.gov (United States)

    Camacho, Angela

    2015-03-01

    Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties

  1. Fröhlich Condensate: Emergence of Synergetic Dissipative Structures in Information Processing Biological and Condensed Matter Systems

    Directory of Open Access Journals (Sweden)

    Roberto Luzzi

    2012-10-01

    Full Text Available We consider the case of a peculiar complex behavior in open boson systems sufficiently away from equilibrium, having relevance in the functioning of information-processing biological and condensed matter systems. This is the so-called Fröhlich–Bose–Einstein condensation, a self-organizing-synergetic dissipative structure, a phenomenon apparently working in biological processes and present in several cases of systems of boson-like quasi-particles in condensed inorganic matter. Emphasis is centered on the quantum-mechanical-statistical irreversible thermodynamics of these open systems, and the informational characteristics of the phenomena.

  2. Towards exclusive antikaonic nuclear cluster search with AMADEUS

    Energy Technology Data Exchange (ETDEWEB)

    Kienle, Paul [Stefan Meyer Institute of the Austrian Academy of Sciences, Vienna A-1090, Boltzmanngasse 3 (Austria); Physik Department Technische Universitaet Muenchen, D-85748 Garching (Germany)], E-mail: paul.kienle@ph.tum.de

    2008-05-15

    The recently proposed AMADEUS project makes use of mono energetic, low energy K{sup -} beams from the upgraded high luminosity DA{phi}NE (e{sup +}e{sup -})-collider of the LNF Frascati for the production of antikaon mediated deeply bound nuclear states using the (K{sub stopped}{sup -}, n/p) reaction. The existing KLOE detector with a target for stopping the K{sup -} surrounded by trigger detectors will be used for an exclusive detection of all particles in the production and decay processes of the antikaonic nuclei formed. Using missing mass and invariant mass spectroscopy a conclusive observation of these exotic objects should be in reach and then their properties, such as binding energies, total and partial widths, size and density could be determined, thus opening a new spectroscopy of exotic strongly bound nuclear systems.

  3. Phi meson spectral moments and QCD condensates in nuclear matter

    Science.gov (United States)

    Gubler, Philipp; Weise, Wolfram

    2016-10-01

    A detailed analysis of the lowest two moments of the ϕ meson spectral function in vacuum and nuclear matter is performed. The consistency is examined between the constraints derived from finite energy QCD sum rules and the spectra computed within an improved vector dominance model, incorporating the coupling of kaonic degrees of freedom with the bare ϕ meson. In the vacuum, recent accurate measurements of the e+e- →K+K- cross section allow us to determine the spectral function with high precision. In nuclear matter, the modification of the spectral function can be described by the interactions of the kaons from ϕ → K K ‾ with the surrounding nuclear medium. This leads primarily to a strong broadening and an asymmetric deformation of the ϕ meson peak structure. We confirm that, both in vacuum and nuclear matter, the zeroth and first moments of the corresponding spectral functions satisfy the requirements of the finite energy sum rules to a remarkable degree of accuracy. Limits on the strangeness sigma term of the nucleon are examined in this context. Applying our results to the second moment of the spectrum, we furthermore discuss constraints on four-quark condensates and the validity of the commonly used ground state saturation approximation.

  4. 11th International Workshop on Condensed Matter Theories

    CERN Document Server

    Bishop, R; Manninen, Matti; Condensed Matter Theories : Volume 3

    1988-01-01

    This book is the third volume in an approximately annual series which comprises the proceedings of the International Workshops on Condensed Matter Theories. The first of these meetings took place in 1977 in Sao Paulo, Brazil, and successive workshops have been held in Trieste, Italy (1978), Buenos Aires, Argentina (1979), Caracas, Venezuela (1980), Mexico City, Mexico (1981), St. Louis, USA (1982), Altenberg, Federal Republic of Germany (1983), Granada, Spain (1984), San Francisco, USA (1985), and Argonne, USA (1986). The present volume contains the proceedings of the Eleventh Workshop which took place in Qulu, Finland during the period 27 July - 1 August, 1987. The original motivation and the historical evolution of the series of Workshops have been amply described in the preface to the first volume in the present series. An important objective throughout has been to work against the ever-present trend for physics to fragment into increasingly narrow fields of specialisation, between which communication is d...

  5. Geometric nonlinearities in field theory, condensed matter and analytical mechanics

    Directory of Open Access Journals (Sweden)

    J.J. Sławianowski

    2010-01-01

    Full Text Available There are two very important subjects in physics: Symmetry of dynamical models and nonlinearity. All really fundamental models are invariant under some particular symmetry groups. There is also no true physics, no our Universe and life at all, without nonlinearity. Particularly interesting are essential, non-perturbative nonlinearities which are not described by correction terms imposed on some well-defined linear background. Our idea in this paper is that there exists some mysterious, still incomprehensible link between essential, physically relevant nonlinearity and dynamical symmetry, first of all, of large symmetry groups. In some sense the problem is known even in soliton theory, where the essential nonlinearity is often accompanied by the infinite system of integrals of motion, thus, by infinite-dimensional symmetry groups. Here we discuss some more familiar problems from the realm of field theory, condensed matter physics, and analytical mechanics, where the link between essential nonlinearity and high symmetry is obvious, although not fully understandable.

  6. The Sun is Condensed Matter and has a Real Surface

    Science.gov (United States)

    Robitaille, Pierre-Marie

    2014-03-01

    The idea that the Sun was a gaseous in nature was born from 1858-65. At that time, a group of men, including Herbert Spencer, Father Angelo Secchi, Warren de la Rue, Balfour Stewart, and Benjamin Loewy, advanced that the Sun was a ball of gas. In 1865, Hervé Faye was the first to argue that the solar surface was merely an illusion. Dismissing all signs to the contrary, solar physics has promoted this idea to the present day, as manifested by the Standard Solar Model. In this work, overwhelming observational evidence will be presented that the Sun does indeed possess a distinct surface (see P.M. Robitaille, Forty Lines of Evidence for Condensed Matter -- The Sun on Trial: Liquid Metallic Hydrogen as a Solar Building Block, Progress in Physics, 2013, v. 4, 90-143). Our telescopes and satellites are sampling real structures on the surface of the Sun.

  7. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    Science.gov (United States)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  8. Multi-kaonic Hypernuclei and Kaon Condensation

    Science.gov (United States)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2011-09-01

    This contribution reports on dynamical, self-consistent calculations of multi-bar K hypernuclei, which were performed by adding antikaons to particle-stable nuclear configurations of nucleons, Λ and Ξ hyperons. Our results show a robust pattern of saturation of the bar K separation energy Bbar K as a function of the number of bar K mesons, with Bbar K bounded from above by 200 MeV. The associated baryon densities saturate at values 2-3 times nuclear-matter density. The main reason for saturation is the repulsion induced by the vector meson fields between bar K mesons, similarly to what was found for multi-bar K nuclei. The calculations confirm that strangeness in finite strong-interaction self-bound systems is realized through hyperons, with no room for kaon condensation.

  9. Paul Scherrer Institute Scientific Report 1998. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Bucher-Zimmermann, Claudia [eds.

    1999-09-01

    As a consequence of a major reorganisation at PSI, a new department has been formed with the groups focussing on research of condensed matter. The activities of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zuerich), the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, are described in this annual report figs., tabs., refs.

  10. Genesis of electroweak and dark matter scales from a bilinear scalar condensate

    CERN Document Server

    Kubo, Jisuke

    2015-01-01

    The condensation of scalar bilinear in a classically scale invariant strongly interacting hidden sector is used to generate electroweak scale, where the excitation of the condensate is identified as dark matter. We formulate an effective theory for the condensation of scalar bilinear and find in the self-consistent mean field approximation that the dark matter mass is of $O(1)$ TeV with the spin-independent elastic cross section off the nucleon slightly below the LUX upper bound.

  11. Gravitational, lensing, and stability properties of Bose-Einstein condensate dark matter halos

    CERN Document Server

    Harko, Tiberiu

    2015-01-01

    The possibility that dark matter, whose existence is inferred from the study of the galactic rotation curves and from the mass deficit in galaxy clusters, can be in a form of a Bose-Einstein condensate has recently been extensively investigated. In the present work, we consider a detailed analysis of the astrophysical properties of the Bose-Einstein condensate dark matter halos that could provide clear observational signatures and help discriminate between different dark matter models. In the Bose-Einstein condensation model dark matter can be described as a non-relativistic, gravitationally confined Newtonian gas, whose density and pressure are related by a polytropic equation of state with index $n=1$. The mass and the gravitational properties of the condensate halos are obtained in a systematic form, including the mean logarithmic slopes of the density and of the tangential velocity. Furthermore, the lensing properties of the condensate dark matter are also investigated in detail. In particular, a general ...

  12. Dark matter as the Bose-Einstein condensation in loop quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Atazadeh, K.; Mousavi, M. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Darabi, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2016-06-15

    We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed. (orig.)

  13. 13th International Workshop on Condensed Matter Theories

    CERN Document Server

    1990-01-01

    This volume gathers the invited talks of the XIII International Work­ shop on Condensed Matter Theories which took place in Campos do Jordao near Sao Paulo, Brazil, August 6-12, 1989. It contains contributions in a wide variety of fields including neutral quantum and classical fluids, electronic systems, composite materials, plasmas, atoms, molecules and nuclei, and as this year's workshop reflected the natural preoccupation in materials science with its spectacular prospect for mankind, room tempera­ ture super-conductivity. All topics are treated from a common viewpoint: that of many-body physics, whether theoretical or simu1ational. Since the very first workshop, held at the prestigious Instituto de Fisica Teorica in Sao Paulo, and organized by the same organizer of the 1989 workshop, Professor Valdir Casaca Aguilera-Navarro, the meeting has taken place annually six times in Latin America, four in Europe and three in the United States. Its principal objective has been to innitiate and nurture collaborati...

  14. FOREWORD: 18th International School on Condensed Matter Physics

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Genova, Julia; Nesheva, Diana; Petrov, Alexander G.; Primatarowa, Marina T.

    2014-12-01

    We are delighted to present the Proceedings of the 18th International School on Condensed Matter Physics: Challenges of Nanoscale Science: Theory, Materials, Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences and chaired by Professor Alexander G Petrov. On this occasion the School was held in memory of Professor Nikolay Kirov (1943-2013), former Director of the Institute and Chairman between 1991 and 1998. The 18ISCMP was one of several events dedicated to the 145th anniversary of the Bulgarian Academy of Sciences in 2014, and was held in the welcoming Black Sea resort of St. Constantine and Helena near Varna, at the Hotel and Congress Centre Frederic Joliot-Curie. Participants from 16 countries delivered 32 invited lectures, and 71 contributed posters were presented over three lively and well-attended evening sessions. Manuscripts submitted to the Proceedings were refereed in accordance with the guidelines of the Journal of Physics: Conference Series, and we believe the papers published herein testify to the high technical quality and diversity of contributions. A satellite meeting, Transition Metal Oxide Thin Films - Functional Layers in Smart Windows and Water Splitting Devices: Technology and Optoelectronic Properties was held in parallel with the School (http://www.inera.org, 3-6 Sept 2014). This activity, which took place under the FP7-funded project INERA, offered opportunities for crossdisciplinary discussions and exchange of ideas between both sets of participants. As always, a major factor in the success of the 18ISCMP was the social programme, headed by the organized events (Welcome and Farewell Parties) and enhanced in no small measure by a variety of pleasant local restaurants, bars and beaches. We are most grateful to staff of the Journal of Physics: Conference Series for their continued support for the School, this being the third occasion on which the Proceedings have been published under its

  15. Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, Dario; Colombo, Mattia; Liberati, Stefano, E-mail: bettoni@sissa.it, E-mail: mattia.colombo@studenti.unitn.it, E-mail: liberati@sissa.it [SISSA, Via Bonomea 265, Trieste, 34136 (Italy)

    2014-02-01

    Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales.

  16. PREFACE: Symmetry and Structural Properties of Condensed Matter

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2008-03-01

    This volume comprises the proceedings of the Ninth Summer School on Theoretical Physics under the leading title `Symmetry and Structural Properties of Condensed Matter' (SSPCM 2007). The school, organised by Rzeszów University of Technology, Poland, together with AGH University of Science and Technology, Cracow, Poland, in 5-12 September 2007 in Myczkowce. The meeting aimed to continue the series of biannual SSPCM schools (since 1990), and focused on the promotion of some advanced mathematical methods within the physics of condensed matter, with an emphasis on quantum information aspects. The main topics of the SSPCM07 school were the following: Quantum information and computing Finite dimensional Hilbert spaces Generating functions and exactly soluble models The Proceedings are divided into three parts accordingly. These topics can be seen as a natural continuation of the previous SSPCM05 school, aimed at studying interrelations between solid state physics and quantum informatics, as well as an extension of earlier SSPCM meetings, devoted to mathematical tools of condensed matter theory. The school gathered together more than 60 participants from 11 countries and 7 scientific centres in Poland. Some of them were there for the first time, and some had attended nearly all previous meetings. We had advanced researchers as well as their young collaborators and students. Acknowledgements The Organizing Committee wishes to express our gratitude to all participants for several their activities at the school and for creating so friendly and inspiring an atmosphere that one can talk about the term: `SSPCM society'. Special thanks are due to all lecturers, for preparing and presenting their talks, and for several valuable discussions. We also give thanks to all those who prepared manuscripts, giving us thus an opportunity to share their ideas, to all referees who improved significantly the quality of this volume, to all members of our International Advisory Committee, and

  17. Neutron reflection from condensed matter, the Goos-Haenchen effect and coherence

    Energy Technology Data Exchange (ETDEWEB)

    Ignatovich, V.K

    2004-02-23

    The Goos-Haenchen (GH) effect for neutron reflection from condensed matter is considered. An experiment to quantify the effect is proposed. The relation of GH shift to the neutron coherence length is considered.

  18. Revisiting RG Flow for Kaon Condensation

    CERN Document Server

    Paeng, Won-Gi

    2014-01-01

    Kaon condensation in compact-star matter can be considered as a quantum critical phenomenon with the kaon mass tuned to zero by the baryon density plus the electron chemical potential that increases at the increase of the density. We approach this problem with a renormalization group flow at one loop of the system of anti-kaons considered as pseudo-Goldstone bosons coupled to nucleonic matter described as a Fermi liquid near its fixed point. While the Weinberg-Tomozawa term in chiral Lagrangians is of leading order in describing kaon-nucleon interactions in chiral perturbation theory, hence widely employed in the literature, it is irrelevant in the RG sense, therefore plays, if any, a less important role in the condensation process. The consequence is that the $\\Lambda (1405)$ resonance which is driven by the Weinberg-Tomozawa term is irrelevant for triggering kaon condensation. On the contrary, the $KN$ sigma term $\\Sigma_{KN}$, subleading in chiral counting, can play a more crucial role in renormalization g...

  19. On abelianizations of the ABJM model and applications to condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, Jeff, E-mail: jeff@nassp.uct.ac.za [The Laboratory for Quantum Gravity and Strings, Department of Mathematics and Applied Mathematics, University of Cape Town (South Africa); Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil). Instituto de Fisica Teorica

    2015-08-15

    In applications of AdS/CFT to condensed matter systems in 2+1 dimensions, the ABJM model is often used; however, the condensed matter models are usually abelian and contain charged fields. We show that a naive reduction of the ABJM model to N = 1 does not have the desired features, but we can find an abelian reduction that has most features, and we can also add fundamental fields to the ABJM model to obtain other models with similar properties. (author)

  20. Dark matter and dark energy induced by condensates

    OpenAIRE

    Antonio Capolupo

    2016-01-01

    It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature and the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal...

  1. MULTI-bar K (hyper)nuclei and Kaon Condensation

    Science.gov (United States)

    Gazda, D.; Mareš, J.; Friedman, E.; Gal, A.

    2010-10-01

    We report on recent relativistic mean-field calculations of multi-bar K nuclei1,2 which were performed fully and self-consistently across the periodic table. The bar K separation energy B{bar K} as well as the nuclear and bar K-meson densities were found to saturate with the number of antikaons in the nuclear medium. Saturation appears robust against a wide range of variations, including the nuclear model used and the type of boson fields mediating the strong interactions. In addition, we have explored properties of kaonic hypernuclei - strange systems made of nucleons, hyperons and K- mesons. We observed saturation also in these objects. Since the bar K separation energy B{bar K} does not exceed 200 MeV, multi-bar K nuclei lie energetically well above multi-hyperonic nuclei and it is unlikely that kaon condensation could occur in strong-interaction self-bound hadronic matter.

  2. Condensed-matter physics: Quantum mechanics in a spin

    Science.gov (United States)

    Balents, Leon

    2016-12-01

    Quantum spin liquids are exotic states of matter first predicted more than 40 years ago. An inorganic material has properties consistent with these predictions, revealing details about the nature of quantum matter. See Letter p.559

  3. Understanding soft condensed matter via modeling and computation

    CERN Document Server

    Shi, An-Chang

    2011-01-01

    All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.

  4. FOREWORD: International Scientific Seminars on "Fundamental and Applied Problems of Photonics and Condensed Matter Physics"

    Science.gov (United States)

    Yurchenko, Stanislav; Ryzhii, Viktor

    2015-01-01

    International Scientific Seminars ''Fundamental and Applied Problems of Photonics and Condensed Matter Physics'' were held in Bauman Moscow State Technical University (BMSTU) in May - June 2014. The idea of the Seminars was to organize a series of meetings between young scientists and discuss actual problems and the latest results in Photonics and Condensed Matter Physics. There were eight Sessions: Modern Problems of Condensed Matter Physics; Laser Physics; Spectroscopy of Condensed Matter; Terahertz Optical Technology; Optical Signals Processing; Physics of Optical Strong Correlated Systems; Complex Dusty Plasma Physics; Biomediacal Applications of Photonics. Seminars were organized by the young group of scientists and students from Research and Educational Center ''Photonics and Infrared Technology'' at BMSTU. It brought a significant contribution to the development of youth science in the field of Physics and Photonics in Russia. More than 100 young scientists and students participated in the Seminars in spring - summer 2014. The International Scientific Seminars were supported by the Russian Foundation for Basic Research (grant # 14-08-06030-g). This volume contains proceedings of the International Scientific Seminars ''Fundamental and Applied Problems of Photonics and Condensed Matter Physics''. Stanislav Yurchenko and Viktor Ryzhii Bauman Moscow State Technical University

  5. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef......It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low......-energy effective model that the chiral symmetry is broken again by the spin-polarized condensate on increasing the quark number density, while chiral symmetry restoration occurs, in which the chiral condensate disappears at a certain density....

  6. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  7. Eighteenth Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    CERN Document Server

    Landau, David P; Schüttler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVIII

    2006-01-01

    This volume represents a "status report" emanating from presentations made during the 18th Annual Workshop on Computer Simulations Studies in Condensed Matter Physics at the Center for Simulational Physics at the University of Georgia in March 2005. It provides a broad overview of the most recent advances in the field, spanning the range from statistical physics to soft condensed matter and biological systems. Results on nanostructures and materials are included as are several descriptions of advances in quantum simulations and quantum computing as well as.methodological advances.

  8. Emergence, causation and storytelling: condensed matter physics and the limitations of the human mind

    CERN Document Server

    Blundell, S J

    2016-01-01

    The physics of matter in the condensed state is concerned with problems in which the number of constituent particles is vastly greater than can be easily comprehended. The inherent physical limitations of the human mind are fundamental and restrict the way in which we can interact with and learn about the universe. This presents challenges for developing scientific explanations that are met by emergent narratives, concepts and arguments that have a non-trivial relationship to the underlying microphysics. By examining examples within condensed matter physics, and also from cellular automata, I show how such emergent narratives efficiently describe elements of reality.

  9. Fermion condensate generates a new state of matter by making flat bands

    Science.gov (United States)

    Shaginyan, V. R.; Popov, K. G.; Khodel, V. A.

    2014-09-01

    This short review paper is devoted to 90th anniversary of S.T. Belyaev birthday. Belyaev's ideas associated with the condensate state in Bose interacting systems have stimulated intensive studies of the possible manifestation of such a condensation in Fermi systems. In many Fermi systems and compounds at zero temperature a phase transition happens that leads to a quite specific state called fermion condensation. As a signal of such a fermion condensation quantum phase transition (FCQPT) serves unlimited increase of the effective mass of quasiparticles that determines the excitation spectrum and creates flat bands. We show that the class of Fermi liquids with the fermion condensate forms a new state of matter. We discuss the phase diagrams and the physical properties of systems located near that phase transition. A common and essential feature of such systems is quasiparticles different from those suggested by L.D. Landau by crucial dependence of their effective mass on temperature, external magnetic field, pressure, etc. It is demonstrated that a huge amount of experimental data collected on different compounds suggest that they, starting from some temperature and down, form the new state of matter, and are governed by the fermion condensation. Our discussion shows that the theory of fermion condensation develops completely good description of the NFL behavior of strongly correlated Fermi systems. Moreover, the fermion condensation can be considered as the universal reason for the NFL behavior observed in various HF metals, liquids, compounds with quantum spin liquids, and quasicrystals. We show that these systems exhibit universal scaling behavior of their thermodynamic properties. Therefore, the quantum critical physics of different strongly correlated compounds is universal, and emerges regardless of the underlying microscopic details of the compounds. This uniform behavior, governed by the universal quantum critical physics, allows us to view it as the main

  10. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.

  11. Quark and gluon condensates in nuclear matter with Brown- Rho scaling

    Institute of Scientific and Technical Information of China (English)

    GUO; Hua(

    2001-01-01

    [1]Brown, G. E., Rho, M., Scaling effective Lagrangian in a dense medium, Phys. Rev. Lett., 1991, 66: 2720-2723.[2]Delfino, A., Dey, J., Dey, M. et al., Decoupling of quark condensate from the effective nucleon at high density and tem-perature, Phys. Lett. B, 1995, 363: 17-23.[3]Guo, H., In-medium QMC model parameters and quark condensate in nuclear matter, J. Physics (London) G, 1999, 25: 1701-1711.[4]Li, G. Q., Ko, C. M., Quark condensate in nuclear matter, Phys. Lett. B, 1994, 338: 118-122.[5]Mitsumori, T., Noda, N., Kouno, H. et al., Quark condensate in nuclear matter based on nuclear Schwinger-Dyson for-mulism, Phys. Rev. C, 1997, 55: 1577-1579.[6]Malheiro, M., Dey, M., Delfino, A. et al., Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density, Phys. Rev. C, 1997, 55: 521-524.[7]Li, L., Shen, H., Ning, P. Z., Quark condensate in dense and hot baryonic matter, in Proceedings of CCAST-World Labo-ratory Workshop (CCAST-WL, Beijing), 1996, 77-98.[8]Haddad, S., Weigel, M. K., Finite nuclear systems in a relativistic extended Thomas-Fermi approach with density-dependent coupling parameters, Phys. Rev. C, 1993, 48: 2740-2745.[9]Brockman, R., Machleidt, R., Relativistic nuclear structure. I. Nuclear Matter, Phys. Rev. C, 1990, 42: 1965-1980.[10]Haddad, S., Weigel, M. K., Thermostatic properties and Coulomb instability of highly excited nuclei, Phys. Rev. C, 1994, 49: 3228-3233.[11]Fuchs, C., Lenske, H., Wolter, H., Density dependent hadron field theory, Phys. Rev. C, 1995, 52: 3043-3060.[12]Ineichen, F., Weigel, M. K., Eiff, D., Nuclear structure calculation in the density-dependent relativistic Hartree theory, Phys. Rev. C, 1996, 53: 2158-2162.[13]Guo, H., Liu, B., Toro, D. M., Phase transition in warm nuclear matter, Phys. Rev. C, 2000, 62: 1-8.[14]Cohen, T. D., Furnstahl, R. J., Griegel, D. K., Quark and gluon condensates in nuclear matter, Phys

  12. Wave packet dynamics of the matter wave field of a Bose-Einstein condensate

    CERN Document Server

    Sudheesh, C; Lakshmibala, S

    2004-01-01

    We show in the framework of a tractable model that revivals and fractional revivals of wave packets afford clear signatures of the extent of departure from coherence and from Poisson statistics of the matter wave field in a Bose-Einstein condensate, or of a suitably chosen initial state of the radiation field propagating in a Kerr-like medium.

  13. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...

  14. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, H.; Ipsen, John Hjort; Markvorsen, S

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...

  15. Effect of light assisted collisions on matter wave coherence in superradiant Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak;

    2012-01-01

    We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...

  16. Topological phases in condensed matter systems: A study of symmetries, quasiparticles and phase transitions

    NARCIS (Netherlands)

    Haaker, S.M.

    2014-01-01

    The research described in this thesis focuses on topological phases in condensed matter systems. It can be roughly divided into two parts. In the first part noninteracting systems are studied. The symmetry algebra of a charged spin-1/2 particle coupled to a non-Abelian magnetic field is determined,

  17. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...

  18. Parametric amplification of matter waves in dipolar spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Deuretzbacher, F.; Gebreyesus, G.; Topic, O.;

    2010-01-01

    Spin-changing collisions may lead under proper conditions to the parametric amplification of matter waves in spinor Bose-Einstein condensates. Magnetic dipole-dipole interactions, although typically very weak in alkali-metal atoms, are shown to play a very relevant role in the amplification process...

  19. Material science and Condensed matter Physics. 8th International Conference. Abstracts.

    Science.gov (United States)

    Kulyuk, L. L.; Paladi, Florentin; Canter, Valeriu; Nikorich, Valentina; Filippova, Irina

    2016-08-01

    The book includes the abstracts of the communications presented at the 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), a traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP).A total of 346 abstracts has been included in the book. The Conference programm included plenary lectures, topical keynote lectures, contributed oral and poster presentations distributed into 7 sections: * Condensed Matter Theory; * Advanced Bulk Materials; * Design and Structural Characterization of Materials; * Solid State Nanophysics and Nanotechnology; * Energy Conversion and Storage. Solid State Devices; * Surface Engineering and Applied Electrochemistry; * Digital and Optical holography: Materials and Methods. The abstracts are arranged according to the sections mentioned above. The Abstracts book includes a table of matters at the beginning of the book and an index of authors at the finish of the book.

  20. Graphene a new paradigm in condensed matter and device physics

    CERN Document Server

    Wolf, E L

    2014-01-01

    The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law. The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The lattice symmetry further implies a two-component wave-function, which has a practical effect of cancelling direct backscattering of carriers. The resulting high carrier mobility allows observation of the Quantum Hall Effect at room temp...

  1. Dark Energy and Dark Matter from the same Vacuum Condensate

    Science.gov (United States)

    Sarfatti, Jack

    2003-04-01

    The micro-quantum Dirac negative energy electron Fermi sphere with Planck scale cutoff is unstable to the formation of off-mass-shell Cooper pairs of virtual electrons and positrons from their static Coulomb attraction. The resulting virtual BEC complex macro-quantum coherent local order parameter (0|e+e-|0) gives rise to both spin 2 gravity guv and spin 0 quintessence / from the Goldstone and Higgs oscillations respectively, Susskind's "world hologram" conjecture replaces the Planck scale Lp with Lp^2/3L^1/3 at scale L. Hagen Kleinert's strain tensor for the "world crystal" is Einstein's geometrodynamic field: guv = nuv + Lp^4/3L^2/3Du,Dvarg(0|e+e-|0)/2 nuv = Minkowski metric, = anti-commutator Du = ,u + TaAu^a is the spin 1 gauge covariant derivative for Lie group P with Lie algebra [Ta,Tb] = Cab^cTc / = Lp-4/3L-2/3[1 - Lp^2L|(0|e+e-|0)|^2] When L = size of visible universe 10^28 cm, Lp^2/3L^1/3 1 fermi / > 0 is anti-gravitating zero point vacuum dark energy, i.e. Kip Thorne's "exotic matter" for traversable wormhole time machines. / < 0 is gravitating zero point vacuum dark matter The non-perturbative BCS energy gap equation for a basic vacuum polarization closed loop with one virtual photon Feynman diagram is: z^2 = ge^-(1/gz) z = (Lp/L)^1/3 and the dimensionless coupling vertex is g^1/2 http://stardrive.org/Jack/nambu.pdf http://stardrive.org/Jack/Lambda1.pdf

  2. Simple-Minded Models of Condensed Matter Systems.

    Science.gov (United States)

    Lammert, Paul Edward

    Chapter 0 presents a survey of recent work on the role of topological defects in classical equilibrium phase transitions. A wide variety of systems and models are covered. The range includes XY models in two and three dimensions, defect theories of two and three dimensional melting of solids and smectic-A liquid crystals, and systems with nonabelian global symmetries, specifically three-dimensional Heisenberg models and IR P^{(n -1)}(generalized nematic) models in two and three dimensions. An attempt is made to bring some clarity to the conceptual problems and to draw attention to the common themes. The general review is followed by detailed study of the effects of topological defects in a specific system, namely nematic media. Chapters 1 and 2 present analysis of a new model of the isotropic-nematic transition in which disclination lines--the characteristic topological defects of nematics--figure prominently. This nematic model incorporates the nematic inversion symmetry as a gauge symmetry. In Chapter 1, Monte Carlo and analytical results on this model are presented. It is found that the first-order isotropic-nematic transition is weakened by increasing defect suppression. Sufficiently great suppression causes that transition to split into two continuous ones, which correspond to unbinding and condensation of dislocation loops, respectively. The intermediate phase possesses a subtle sort of topological ordering. Observable consequences of the new scenario are calculated in detail in Chapter 2. Specifically these are the critical behavior associated with the two continuous transitions. Specific heat, light scattering, magnetic susceptibility and Frank elastic constants are treated. The remaining chapters are devoted to the phenomenon of superconductivity in doped C_{60 }. A selective overview of the physics and a bit of the chemistry of these materials is found in Chapter 3. The focus is on superconducting phenomenology and the attempts which have been made to

  3. Evolution and thermalization of dark matter axions in the condensed regime

    CERN Document Server

    Saikawa, Ken'ichi

    2012-01-01

    We discuss the possibility that dark matter axions form a Bose-Einstein condensate (BEC) due to the gravitational self-interactions. The formation of BEC occurs in the condensed regime, where the transition rate between different momentum states is large compared to the energy exchanged in the transition. The time evolution of the quantum state occupation number of axions in the condensed regime is derived based on the in-in formalism. We recover the expression for the thermalization rate due to self-interaction of the axion field, which was obtained in the other literature. It is also found that the leading order contributions for interactions between axions and other species vanish, which implies that the axion BEC does not give any significant modifications on standard cosmological parameters.

  4. Gauge/gravity duality applied to condensed matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Martin Matthias

    2010-07-07

    developed. Finally a second model for the field theory at the quantum-critical point, a Chern-Simons matter theory in (2+1) dimensions is studied more precisely. On the gravitational side thereby higher-dimensional membranes and other non-perturbative objects, so-called KK-monopoles are embedded in M-theory respectively its type IIA limit.

  5. Why more is different philosophical issues in condensed matter physics and complex systems

    CERN Document Server

    Morrison, Margaret

    2015-01-01

    The physics of condensed matter, in contrast to quantum physics or cosmology, is not traditionally associated with deep philosophical questions. However, as science - largely thanks to more powerful computers - becomes capable of analysing and modelling ever more complex many-body systems, basic questions of philosophical relevance arise. Questions about the emergence of structure, the nature of cooperative behaviour, the implications of the second law,  the quantum-classical transition and many other issues. This book is a collection of essays by leading physicists and philosophers. Each investigates one or more of these issues, making use of examples from modern condensed matter research.  Physicists and philosophers alike will find surprising and stimulating ideas in these pages.

  6. In-Medium K+ and K- Production and K- Condensation in Supernova Matter

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; ZHOU Ran; LIU Yu-Xin; LIU Bo; LI Xi-Guo

    2004-01-01

    @@ In-medium effects and neutrino trapping on K+ and K- production and K- condensation in supernova matter are investigated in a chiral hadronic model. Our results show that neutrino trapping shifts the critical density for K- condensation to higher density, the Q values for K+ and K- production are not sensitive to neutrino trapping, in-medium effects decrease the Q values for NN → NNK+ K- and ∧N → NNK- and increase those for NN → N∧K+, K-p →∧π0 and K-n →∧π- as the density of supernova matter increases. Moreover,it is shown that neutrino trapping decreases the maximum masses of protoneutron stars compared with the neutrino-free case.

  7. The beginnings of theoretical condensed matter physics in Rome: a personal remembrance

    Science.gov (United States)

    Di Castro, Carlo; Bonolis, Luisa

    2014-02-01

    This oral history interview provides a personal view on how theoretical condensed matter physics developed in Rome starting in the sixties of the last century. It then follows along the lines of research pursued by the interviewee up to the date of the interview, in March 2006. The topics considered range from the phenomenology of superfluid helium and superconductors, critical phenomena and renormalisation group approach, quantum fluids to strongly correlated electron systems and high temperature superconductors. Within these topics, fundamental problems of condensed matter physics are touched upon, such as the microscopic derivation of scaling, the metal-insulator transition and the interaction effects on disordered electron systems beyond the Anderson localisation, and the existence of heterogeneous states in cuprates. The English text presented here and revised by the authors is based on the original oral history interview recorded in Italian at Carlo Di Castro's office, Physics Department of Sapienza University, Rome, Italy, March 2006.

  8. Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff

    CERN Document Server

    Nicolis, Alberto; Piazza, Federico; Rattazzi, Riccardo

    2015-01-01

    We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincar\\'e-invariant theory that spontaneously breaks Lorentz boosts while preserving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern---the "framid"---does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries---and possibly rotational ones---and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and---if they exist---supersolids. A third, "extra-ordinary", possibility involves replacing these internal symmetries with other symmetries ...

  9. Temporal condensed matter physics in gas-filled photonic crystal fibers

    CERN Document Server

    Saleh, Mohammed F; Tran, Truong X; Marini, Andrea; Belli, Federico; Abdolvand, Amir; Biancalana, Fabio

    2014-01-01

    Raman effect in gases can generate an extremely long-living wave of coherence that can lead to the establishment of an almost perfect periodic variation of the medium refractive index. We show theoretically and numerically that the equations, regulate the pulse propagation in hollow-core photonic crystal fibers filled by Raman-active gas, are exactly identical to a classical problem in quantum condensed matter physics -- but with the role of space and time reversed -- namely an electron in a periodic potential subject to a constant electric field. We are therefore able to infer the existence of Wannier-Stark ladders, Bloch oscillations, and Zener tunneling, phenomena that are normally associated with condensed matter physics only, now realized with purely optical means in the temporal domain.

  10. Topics and methods in condensed matter theory from basic quantum mechanics to the frontiers of research

    CERN Document Server

    Cini, M

    2007-01-01

    This book provides material for courses in theoretical physics for undergraduate and graduate students specializing in condensed matter, including experimentalists who want a thorough theoretical background; the advanced part should be of interest to research workers too. A good first course in quantum mechanics is assumed. Here a variety of many-body phenomena in condensed matter are discussed, with special attention paid to the understanding of strong correlation effects. This requires a variety of theoretical tools (diagram expansions, groups, recursion methods and more). The text, which arose naturally from teaching, is eminently readable and the mathematical treatments are explained in enough detail to be followed easily. Proofs of all the relevant theorems are provided, but the main emphasis is always on the physical meaning or applicability of the results. Many examples are provided for illustration and also serve as worked problems.

  11. Modern trends in the development of position sensitive neutron detectors for condensed matter research

    Indian Academy of Sciences (India)

    A V Belushkin

    2008-10-01

    Different types of neutron scattering experiment for the study of condensed matter properties pose specific and often contradictory requirements for detector characteristics. There is no single type of detector which satisfies all the criteria. Therefore, compromise is inevitable and some of the characteristics are trade off in favour of others. Present report gives an overview of detector systems presently operating at the leading neutron scattering facilities as well as some development work around the globe.

  12. Consequences of a condensed matter realization of Lorentz violating QED in Weyl semi-metals

    CERN Document Server

    Grushin, Adolfo G

    2012-01-01

    In Lorentz violating quantum electrodynamics (QED) it is known that a radiatively induced Chern-Simons term appears in the effective action for the gauge field, which is finite but undetermined. This ambiguity is shown to be absent in a condensed matter realization of such a theory in Weyl semi-metals due to the existence of a full microscopic model from which this effective theory emerges. Physically observable consequences such as birefringence are also discussed in this scenario.

  13. Condensed matter research using the UCSB FEL. [Univ. of California, Santa Barbara Free Electron Laser project

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The University of California, Santa Barbara (UCSB) Free Electron Laser (FEL) project was initiated in 1981 to test the idea of using an electrostatic accelerator in a recirculating beam mode to produce high-power, continuously tunable, coherent far infrared radiation. The development and application of this device to condensed matter research are briefly recounted. Emphasis was on semiconductor research and two-photon experiments. (RWR)

  14. Condensed matter research using the UCSB FEL. Final technical report, May 1, 1984--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The University of California, Santa Barbara (UCSB) Free Electron Laser (FEL) project was initiated in 1981 to test the idea of using an electrostatic accelerator in a recirculating beam mode to produce high-power, continuously tunable, coherent far infrared radiation. The development and application of this device to condensed matter research are briefly recounted. Emphasis was on semiconductor research and two-photon experiments. (RWR)

  15. RH Sneutrino Condensate CDM and the Baryon-to-Dark Matter Ratio

    CERN Document Server

    McDonald, John

    2007-01-01

    The similarity of the observed mass densities of baryons and cold dark matter may be a sign they have a related origin. The baryon-to-dark matter ratio can be understood in the MSSM with right-handed (RH) neutrinos if CDM is due to a d = 4 flat direction condensate of very weakly coupled RH sneutrino LSPs and the baryon asymmetry is generated by Affleck-Dine leptogenesis along a d = 4 (H_{u}L)^2 flat direction. Observable signatures of the model include CDM and baryon isocurvature perturbations and distinctive long-lived NLSP phenomenology.

  16. Dynamics of Bose-Einstein Condensates: Exact Representation and Topological Classification of Coherent Matter Waves

    Directory of Open Access Journals (Sweden)

    Leilei Jia

    2014-01-01

    Full Text Available By using the bifurcation theory of dynamical systems, we present the exact representation and topological classification of coherent matter waves in Bose-Einstein condensates (BECs, such as solitary waves and modulate amplitude waves (MAWs. The existence and multiplicity of such waves are determined by the parameter regions selected. The results show that the characteristic of coherent matter waves can be determined by the “angular momentum” in attractive BECs while for repulsive BECs; the waves of the coherent form are all MAWs. All exact explicit parametric representations of the above waves are exhibited and numerical simulations support the result.

  17. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  18. An introduction to gauge-gravity duality and its application in condensed matter

    Science.gov (United States)

    Green, A. G.

    2013-02-01

    The past few years have witnessed a remarkable crossover of string theoretical ideas from the abstract world of geometrical forms to the concrete experimental realm of condensed matter physics. The basis for this - variously known as holography, the AdS/CFT correspondence or gauge-gravity duality - comes from notions right at the cutting edge of string theory. Nevertheless, the insights afforded can often be expressed in ways very familiar to condensed matter physicists. ? The aim of this short, introductory review is to survey the ideas underpinning this crossover, in a way that - as far as possible - strips them of sophisticated mathematical formalism, whilst at the same time retaining their fundamental essence. I will sketch the areas in which progress has been made to date and highlight where the challenges and open questions lie. Finally, I will attempt to give a perspective upon these ideas. What contribution can we realistically expect from this approach and how might it be accommodated into the canon of condensed matter theory? Inevitably, any attempt to do this in such a rapidly evolving field will be superseded by events. Nevertheless, I hope that this will provide a useful way to think about gauge-gravity duality and the uncharted directions in which it might take us.

  19. PREFACE: 17th International School on Condensed Matter Physics (ISCMP): Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.

    2012-12-01

    We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors

  20. Particulate matter in exhaled breath condensate: A promising indicator of environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Teresa, E-mail: murmur@itn.pt [ITN, E.N. 10, 2685-953 Sacavem (Portugal); CFN-UL, Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Alexandra Barreiros, M. [LNEG, Estrada Paco do Lumiar, 22, 1649-038 Lisboa (Portugal); Alves, Luis C. [ITN, E.N. 10, 2685-953 Sacavem (Portugal); CFN-UL, Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Felix, Pedro M.; Franco, Cristiana; Sousa, Joana; Almeida, S.M. [ITN, E.N. 10, 2685-953 Sacavem (Portugal)

    2011-10-15

    Assessing the retention of aerosol particles in the human lung, one of the most important pathways of absorption, is a demanding issue. At present, there is no direct biomarker of exposure for the respiratory system. The collection of exhaled breath condensate (EBC) constitutes a new non-invasive method for sampling from the lung. However, the heterogeneity of the sample due to particulate matter suspended in the condensed phase may influence the quality of analytical results in occupational assessments. The main objective of the study was to confirm the presence of particulate matter in the condensate, to investigate how large the particles in suspension could be and to determine their elemental contents relative to those of EBC matrix. This paper reports on preliminary nuclear microprobe data of particulate matter in EBC. The sizes and the elemental contents of particles suspended in EBC of workers of a lead processing industry and in EBC of non-exposed individuals were inspected. Results demonstrated that EBC of workers contain large aerosol particles, isolated and in agglomerates, contrasting with non-exposed individuals. The particles contained high concentrations of Cl, Ca, Zn and Pb that are elements associated to the production process. These elements were also present in the EBC matrix although in much lower levels, suggesting that a fraction of the inhaled particulate matter was solubilised or their size-ranges were below the nuclear microprobe resolution. Therefore, the morphological characterization of individual particles achieved with nuclear microprobe techniques helped describing EBC constituents in detail, to comprehend their origin and enabled to delineate methodological procedures that can be recommended in occupational assessments. These aspects are critical to the validation of EBC as a biomarker of exposure to metals for the respiratory system.

  1. Dynamics of bisolitonic matter waves in a Bose-Einstein condensate subjected to an atomic beam splitter and gravity

    CERN Document Server

    Dikande, Alain Moise; Ebobenow, Joseph

    2010-01-01

    A theoretical scheme for an experimental implementation involving bisolitonic matter waves from an attractive Bose-Einstein condensate, is considered within the framework of a non-perturbative approach to the associate Gross-Pitaevskii equation. The model consists of a single condensate subjected to an expulsive harmonic potential creating a double-condensate structure, and a gravitational potential that induces atomic exchanges between the two overlapping post condensates. Using a non-isospectral scattering transform method, exact expressions for the bright-matter-wave bisolitons are found in terms of double-lump envelopes with the co-propagating pulses displaying more or less pronounced differences in their widths and tails depending on the mass of atoms composing the condensate.

  2. Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter

    CERN Document Server

    Shock Waves in Condensed Matter

    1986-01-01

    The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub­ lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov­ ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...

  3. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small...

  4. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures.The research in chemistry includes chemical synthesis and physico-chemical investigation of small...

  5. Physics in the Andean Countries: A Perspective from Condensed Matter, Novel Materials and Nanotechnology

    Science.gov (United States)

    Prieto, P.

    2009-05-01

    We will discuss the current state of R&D in the fields of condensed matter, novel materials, and nanotechnology in the Andean nations. We will initially consider Latin America and the Caribbean (LAC) to then visualize individual developments, as well as those for the region as a whole in these fields of knowledge in each of the nations constituting the Andean Region (Bolivia, Ecuador, Chile, Venezuela, Peru, and Colombia). Based on Science & Technology watch exercises in the countries involved, along with the Iberian American and Inter-American Science & Technology Network of Indicators (Red de indicadores de Ciencia y Tecnolog'ia (RICYT) iberoamericana e interamericana)1, we will reveal statistical data that will shed light on the development in the fields mentioned. As will be noted, total R&D investment in Latin American and Caribbean countries remained constant since 1997. In spite of having reached a general increase in publications without international collaboration in LAC nations, the countries with greatest research productivity in Latin America (Argentina, Mexico, Brazil, and Chile) have strengthened their international collaboration with the United States, France, Germany, and Italy through close links associated with the formation processes of their researchers. Academic and research integration is evaluated through joint authorship of scientific articles, evidencing close collaboration in fields of research. This principle has been used in the creation of cooperation networks among participating nations. As far as networks of research on condensed matter, novel materials, and nanotechnology, the Andean nations have not consolidated a regional network allowing permanent and effective cooperation in research and technological development; as would be expected, given their idiomatic and cultural similarities, their historical background, and geographical proximity, which have been integrating factors in other research areas or socio-economic aspects. This

  6. Finding new signature effects on galactic dynamics to constrain Bose-Einstein-condensed cold dark matter

    CERN Document Server

    Rindler-Daller, Tanja

    2012-01-01

    If cosmological cold dark matter (CDM) consists of light enough bosonic particles that their phase-space density exceeds unity, they will comprise a Bose-Einstein condensate (BEC). The nature of this BEC-CDM as a quantum fluid may then distinguish it dynamically from the standard form of CDM involving a collisionless gas of non-relativistic particles that interact purely gravitationally. We summarize some of the dynamical properties of BEC-CDM that may lead to observable signatures in galactic halos and present some of the bounds on particle mass and self-interaction coupling strength that result from a comparison with observed galaxies.

  7. Phase Diagram of the Gross-Neveu Model: Exact Results and Condensed Matter Precursors

    CERN Document Server

    Schnetz, O; Urlichs, K; Schnetz, Oliver; Thies, Michael; Urlichs, Konrad

    2004-01-01

    Recently the revised phase diagram of the (large N) Gross-Neveu model in 1+1 dimensions with discrete chiral symmetry has been determined numerically. It features three phases, a massless and a massive Fermi gas and a kink-antikink crystal. Here we investigate the phase diagram by analytical means, mapping the Dirac-Hartree-Fock equation onto the non-relativistic Schroedinger equation with the (single gap) Lame potential. It is pointed out that mathematically identical phase diagrams appeared in the condensed matter literature some time ago in the context of the Peierls-Froehlich model and ferromagnetic superconductors.

  8. New insights into antikaon-nucleon scattering and the structure of the Lambda(1405)

    CERN Document Server

    Mai, Maxim

    2012-01-01

    We perform a combined analysis of antikaon-nucleon scattering cross sections and the recent SIDDHARTA kaonic hydrogen data in the framework of a coupled-channel Bethe-Salpeter approach at next-to-leading order in the chiral expansion of the effective potential. We find a precise description of the antikaon-proton scattering amplitudes and are able to extract accurate values of the scattering lengths, a0=-1.81^+0.30_-0.28 + i 0.92^+0.29_-0.23 fm, a1=+0.48^+0.12_-0.11 + i 0.87^+0.26_-0.20 fm. We also discuss the two-pole structure of the Lambda(1405).

  9. High-performance computational condensed-matter physics in the cloud

    Science.gov (United States)

    Rehr, J. J.; Svec, L.; Gardner, J. P.; Prange, M. P.

    2009-03-01

    We demonstrate the feasibility of high performance scientific computation in condensed-matter physics using cloud computers as an alternative to traditional computational tools. The availability of these large, virtualized pools of compute resources raises the possibility of a new compute paradigm for scientific research with many advantages. For research groups, cloud computing provides convenient access to reliable, high performance clusters and storage, without the need to purchase and maintain sophisticated hardware. For developers, virtualization allows scientific codes to be pre-installed on machine images, facilitating control over the computational environment. Detailed tests are presented for the parallelized versions of the electronic structure code SIESTA ootnotetextJ. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002). and for the x-ray spectroscopy code FEFF ootnotetextA. Ankudinov et al., Phys. Rev. B 65, 104107 (2002). including CPU, network, and I/O performance, using the the Amazon EC2 Elastic Cloud.

  10. Antikaon-nucleon interaction and Λ(1405) in chiral SU(3) dynamics

    Science.gov (United States)

    Kamiya, Yuki; Miyahara, Kenta; Ohnishi, Shota; Ikeda, Yoichi; Hyodo, Tetsuo; Oset, Eulogio; Weise, Wolfram

    2016-10-01

    The properties of the Λ (1405) resonance are key ingredients for determining the antikaon-nucleon interaction in strangeness nuclear physics, and the novel internal structure of the Λ (1405) is of great interest in hadron physics, as a prototype case of a baryon that does not fit into the simple three-quark picture. We show that a quantitative description of the antikaon-nucleon interaction with the Λ (1405) is achieved in the framework of chiral SU(3) dynamics, with the help of recent experimental progress. Further constraints on the K bar N subthreshold interaction are provided by analyzing πΣ spectra in various processes, such as the K- d → πΣn reaction and the Λc → ππΣ decay. The structure of the Λ (1405) is found to be dominated by an antikaon-nucleon molecular configuration, based on its wavefunction derived from a realistic K bar N potential and the compositeness criteria from a model-independent weak-binding relation.

  11. Condensation for non-relativistic matter in Hořava–Lifshitz gravity

    Directory of Open Access Journals (Sweden)

    Jiliang Jing

    2015-10-01

    Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.

  12. The History of the APS Shock Compression of Condensed Matter Topical Group

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W

    2001-05-02

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.

  13. History of the APS Topical Group on Shock Compression of Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W

    2001-10-19

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years.

  14. A Duality Web in 2+1 Dimensions and Condensed Matter Physics

    CERN Document Server

    Seiberg, Nathan; Wang, Chong; Witten, Edward

    2016-01-01

    Building on earlier work in the high energy and condensed matter communities, we present a web of dualities in $2+1$ dimensions that generalize the known particle/vortex duality. Some of the dualities relate theories of fermions to theories of bosons. Others relate different theories of fermions. For example, the long distance behavior of the $2+1$-dimensional analog of QED with a single Dirac fermion (a theory known as $U(1)_{1/2}$) is identified with the $O(2)$ Wilson-Fisher fixed point. The gauged version of that fixed point with a Chern-Simons coupling at level one is identified as a free Dirac fermion. The latter theory also has a dual version as a fermion interacting with some gauge fields. Assuming some of these dualities, other dualities can be derived. Our analysis resolves a number of confusing issues in the literature including how time reversal is realized in these theories. It also has many applications in condensed matter physics like the theory of topological insulators (and their gapped bounda...

  15. PHOTOEMISSION AS A PROBE OF THE COLLECTIVE EXCITATIONS IN CONDENSED MATTER SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, P.D.; VALLA, T.

    2006-08-01

    New developments in instrumentation have recently allowed photoemission measurements to be performed with very high energy and momentum resolution.[1] This has allowed detailed studies of the self-energy corrections to the lifetime and mass renormalization of excitations in the vicinity of the Fermi level. These developments come at an opportune time. Indeed the discovery of high temperature superconductivity in the cuprates and related systems is presenting a range of challenges for condensed matter physics.[2] Does the mechanism of high T{sub c} superconductivity represent new physics? Do we need to go beyond Landau's concept of the Fermi liquid?[3] What, if any, is the evidence for the presence or absence of quasiparticles in the excitation spectra of these complex oxides? The energy resolution of the new instruments is comparable to or better than the energy or temperature scale of superconductivity and the energy of many collective excitations. As such, photoemission has again become recognized as an important probe of condensed matter. Studies of the high T{sub c} superconductors and related materials are aided by the observation that they are two dimensional. To understand this, we note that the photoemission process results in both an excited photoelectron and a photohole in the final state. Thus the experimentally measured photoemission peak is broadened to a width reflecting contributions from both the finite lifetime of the photohole and the momentum broadening of the outgoing photoelectron.

  16. A duality web in 2 + 1 dimensions and condensed matter physics

    Science.gov (United States)

    Seiberg, Nathan; Senthil, T.; Wang, Chong; Witten, Edward

    2016-11-01

    Building on earlier work in the high energy and condensed matter communities, we present a web of dualities in 2 + 1 dimensions that generalize the known particle/vortex duality. Some of the dualities relate theories of fermions to theories of bosons. Others relate different theories of fermions. For example, the long distance behavior of the 2 + 1-dimensional analog of QED with a single Dirac fermion (a theory known as U(1)1/2) is identified with the O(2) Wilson-Fisher fixed point. The gauged version of that fixed point with a Chern-Simons coupling at level one is identified as a free Dirac fermion. The latter theory also has a dual version as a fermion interacting with some gauge fields. Assuming some of these dualities, other dualities can be derived. Our analysis resolves a number of confusing issues in the literature including how time reversal is realized in these theories. It also has many applications in condensed matter physics like the theory of topological insulators (and their gapped boundary states) and the problem of electrons in the lowest Landau level at half filling. (Our techniques also clarify some points in the fractional Hall effect and its description using flux attachment.) In addition to presenting several consistency checks, we also present plausible (but not rigorous) derivations of the dualities and relate them to 3 + 1-dimensional S-duality.

  17. Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Song Chang-Sheng; Li Jing; Zong Feng-De

    2012-01-01

    An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed.We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a timespace periodic optical lattice.The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations.A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate.We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case,the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations.We then find a stable region for successful manipulating matter-wave solitons without collapse,which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.

  18. All basic condensed matter physics phenomena and notions mirror in biology – A hypothesis, two examples and a novel prediction

    Indian Academy of Sciences (India)

    G Baskaran

    2002-02-01

    A few billion years of evolutionary time and the complex process of ‘selection’ has given biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have been discovered by humans in the laboratory, that too only in extreme non-biological conditions such as low temperatures, high purity, high pressure etc., in the last centuries. Biology, at some level, is a complex and self-regulated condensed matter system compared to the ‘inanimate’ condensed matter systems such as liquid 4He, liquid water or a piece of graphite. In this article I propose a hypothesis that ‘all basic condensed matter physics phenomena and notions (already known and ones yet to be discovered) mirror in biology’. I explain this hypothesis by considering the idea of ‘Bose condensation’ or ‘momentum space order’ and discuss two known example of quantum magnetism encountered in biology. I also provide some new and rather speculative possibility, from light harvesting in biological photosynthesis, of mesoscopic exciton condensation related phenomena at room temperature.

  19. Neutron research on condensed matter: a study of the facilities and scientific opportunities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    An in-depth review of the present status and future potential of the applications of low-energy neutron scattering to research in the condensed-matter sciences, including physics, chemistry, biology, and metallurgy is presented. The study shows that neutron scattering technology has proven to be of enormous importance to research in the above areas and especially to those of solid-state physics and chemistry. The main emphasis is on the scattering of low-energy neutrons by condensed matter. Since the same type of neutron source facilities can be used for the study of radiation damage, this related topic has also been included. (GHT)

  20. Characteristic size and mass of galaxies in the Bose–Einstein condensate dark matter model

    Directory of Open Access Journals (Sweden)

    Jae-Weon Lee

    2016-05-01

    Full Text Available We study the characteristic length scale of galactic halos in the Bose–Einstein condensate (or scalar field dark matter model. Considering the evolution of the density perturbation we show that the average background matter density determines the quantum Jeans mass and hence the spatial size of galaxies at a given epoch. In this model the minimum size of galaxies increases while the minimum mass of the galaxies decreases as the universe expands. The observed values of the mass and the size of the dwarf galaxies are successfully reproduced with the dark matter particle mass m≃5×10−22 eV. The minimum size is about 6×10−3m/Hλc and the typical rotation velocity of the dwarf galaxies is O(H/m c, where H is the Hubble parameter and λc is the Compton wave length of the particle. We also suggest that ultra compact dwarf galaxies are the remnants of the dwarf galaxies formed in the early universe.

  1. Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications.

    Science.gov (United States)

    Melnykowycz, Mark; Tschudin, Michael; Clemens, Frank

    2016-03-04

    A soft condensed matter sensor (SCMS) designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB) and a thermoplastic elastomer (TPE) was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4-6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.

  2. Generalization of Classical Statistical Mechanics to Quantum Mechanics and Stable Property of Condensed Matter

    CERN Document Server

    Huang, Y C; Zhang, N

    2004-01-01

    Classical statistical average values are generally generalized to average values of quantum mechanics, it is discovered that quantum mechanics is direct generalization of classical statistical mechanics, and we generally deduce both a general new continuous eigenvalue equation and a general discrete eigenvalue equation in quantum mechanics, and discover that a eigenvalue of quantum mechanics is just an extreme value of an operator in possibility distribution, the eigenvalue f is just classical observable quantity. A general classical statistical uncertain relation is further given, the general classical statistical uncertain relation is generally generalized to quantum uncertainty principle, the two lost conditions in classical uncertain relation and quantum uncertainty principle, respectively, are found. We generally expound the relations among uncertainty principle, singularity and condensed matter stability, discover that quantum uncertainty principle prevents from the appearance of singularity of the elec...

  3. Topological Aspects of Condensed Matter Physics : Lecture Notes of the Les Houches Summer School : Session CIII

    CERN Document Server

    Chamon, Claudio; Goerbig, Mark O; Moessner, Roderich; Cugliandolo, Leticia F

    2017-01-01

    Topological condensed matter physics is a recent arrival among the disciplines of modern physics of a distinctive and substantive nature. Its roots reach far back, but much of its current importance derives from exciting developments in the last half-century. The field is advancing rapidly, growing explosively, and diversifying greatly. There is now a zoo of topological phenomena–the quantum spin Hall effect, topological insulators, Coulomb spin liquids, non-Abelian anyonic statistics and their potential application in topological quantum computing, to name but a few–as well as an increasingly sophisticated set of concepts and methods underpinning their understanding. The aim of this Les Houches Summer School was to present an overview of this field, along with a sense of its origins and its place on the map of advances in fundamental physics. The school comprised a set of basic lectures (Part I) aimed at a pedagogical introduction to the fundamental concepts, which was accompanied by more advanced lectur...

  4. Gravitational Waves as a New Probe of Bose-Einstein Condensate Dark Matter

    CERN Document Server

    Dev, P S Bhupal; Ohmer, Sebastian

    2016-01-01

    There exists a class of ultralight Dark Matter (DM) models which could form a Bose-Einstein condensate (BEC) in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC DM halo intervening along the line of sight of a gravitational wave (GW) signal could induce an observable change in the speed of GW, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GW as a new probe of the BEC DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC DM parameter space can be effectively probed by our new method in the near future.

  5. Perspective: Structural dynamics in condensed matter mapped by femtosecond x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Elsaesser, T.; Woerner, M. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin (Germany)

    2014-01-14

    Ultrashort soft and hard x-ray pulses are sensitive probes of structural dynamics on the picometer length and femtosecond time scales of electronic and atomic motions. Recent progress in generating such pulses has initiated new directions of condensed matter research, exploiting a variety of x-ray absorption, scattering, and diffraction methods to probe photoinduced structural dynamics. Atomic motion, changes of local structure and long-range order, as well as correlated electron motion and charge transfer have been resolved in space and time, providing a most direct access to the physical mechanisms and interactions driving reversible and irreversible changes of structure. This perspective combines an overview of recent advances in femtosecond x-ray diffraction with a discussion on ongoing and future developments.

  6. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. B., E-mail: sbroy@rrcat.gov.in [Magnetic & Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia (United States)

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  7. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  8. Evolution of Matter Wave Interference of Bose-Condensed Gas in a 1D Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-Jun; ZHANG Dong-Mei

    2007-01-01

    For a Bose-condensed gas in a combined potential consisting of an axially-symmetric harmonic magnetic trap and one-dimensional (1D) optical lattice, using the mean-field Gross-Pitaevskii (G-P) equation and the propagator method, we obtain the analytical result of the order parameter for matter wave interference at any time. The evolution of the interference pattern under a variation of the relative phase △φ between successive subcondensates trapped on an optical lattices is also studied. For △φ = π, the interference pattern is symmetric with two sharp peaks, which are symmetrically located on a straight line on both sides of a vacant central peak and moving apart from each other. This work is in agreement with available experimental results.

  9. 24th Solvay Conference on Physics on Quantum Theory of Condensed Matter

    CERN Document Server

    Sevrin, Alexander

    2010-01-01

    Ever since 1911, the Solvay Conferences have shaped modern physics. The 24th edition chaired by Bertrand Halperin did not break the tradition. Held in October 2008, it gathered in Brussels most of the leading figures working on the quantum theory of condensed matter, addressing some of the most profound open problems in the field. The proceedings contain the rapporteur talks giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions treating: mesoscopic and disordered systems; exotic phases and quantum phase transitions in model systems; experimentally realized correlated-electron materials; quantum Hall systems, and one-dimensional systems; and, systems of ultra-cold atoms, and advanced computational methods. In the Solvay tradition, the proceedings include also the prepared comments to the rapporteur talks. The discussions among the participants - some of which are quite lively and involving dramatically divergent points of view - have been care...

  10. Fundamentals of Condensed Matter Physics Marvin L. Cohen and Steven G. Louie

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram

    2017-06-01

    This graduate level textbook on Condensed Matter Physics is written lucidly by two leading luminaries in this field. The volume draws its material from the graduate course in condensed matter physics that has been offered by the authors for several decades at the University of California, Berkeley. Cohen and Louie have done an admirable job of guiding the reader gradually from elementary concepts to advanced topics. The book is divided into four main parts that have four chapters each. Chapter 1 presents models of solids in terms of interacting atoms, which is appropriate for the ground state, and excitations to describe collective effects. Chapter 2 deals with the properties of electrons in crystalline materials. The authors introduce the Born-Oppenheimer approximation and then proceed to the periodic potential approximation. Chapter 3 discusses energy bands in materials and covers concepts from the free electron model to the tight binding model and periodic boundary conditions. Chapter 4 starts with fixed atomic cores and introduces lattice vibrations, phonons, and the concept of density of states. By the end of this part, the student should have a basic understanding of electrons and phonons in materials. Part II presents electron dynamics and the response of materials to external probes. Chapter 5 covers the effective Hamiltonian approximation and the motion of the electron under a perturbation, such as an external field. The discussion moves to many-electron interactions and the exchange-correlation energy in Chapter 6, the widely-used Density Functional Theory (DFT) in chapter 7, and the dielectric response function in Chapter 8. The next two parts of the book cover advanced topics. Part III begins with a discussion of the response of materials to photons in Chapter 9. Chapter 10 goes into the details of electron-phonon interactions in different materials and introduces the polaron. Chapter 11 presents electron dynamics in a magnetic field and Chapter 12

  11. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B. [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  12. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  13. A theory of gravity with preferred frame and condensed matter interpretation

    CERN Document Server

    Schmelzer, I

    2010-01-01

    Does relativistic gravity provide empirical arguments against theories with a preferred frame like de Broglie-Bohm pilot wave theory? We present here a viable metric theory of gravity with preferred frame which gives a negative answer to this question. The theory has the same equations as Logunov's "relativistic theory of gravity" (RTG) but a less restrictive causality condition. It has not only a preferred frame, but allows even a condensed matter interpretation -- a variant of the ADM decomposition splits the metric into density, velocity and stress tensor of some hypothetical medium so that continuity and Euler equations hold. The theory shares many nice properties of RTG (EEP, Einstein equations in a natural limit, no big bang and black hole singularities, local energy and momentum densities for the gravitational field and a symmetry preference for a flat universe), but is also compatible with standard $\\Lambda$CDM cosmology. We also give a first principles derivation of the Lagrangian.

  14. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B. [ed.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  15. Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff

    Energy Technology Data Exchange (ETDEWEB)

    Nicolis, Alberto; Penco, Riccardo [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Piazza, Federico [Physics Department and Institute for Strings, Cosmology, and Astroparticle Physics,Columbia University, New York, NY 10027 (United States); Paris Center for Cosmological Physics and Laboratoire APC,Université Paris 7, 75205 Paris (France); CPT, Aix Marseille Université,UMR 7332, 13288 Marseille (France); Rattazzi, Riccardo [Institut de Théorie des Phénomènes Physiques,EPFL Lausanne (Switzerland)

    2015-06-23

    We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincaré-invariant theory that spontaneously breaks Lorentz boosts while preserving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern — the framid — does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries — and possibly rotational ones — and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and — if they exist — supersolids. A third, “extra-ordinary”, possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincaré group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the “galileids”, for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy 2→2 scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as E{sup 2}, E{sup 4}, and E{sup 6}. Similarly the energy momentum tensor in the ground state is “trivial' for framids (ρ+p=0), normal for solids (ρ+p>0) and even inhomogenous for galileids.

  16. Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff

    Science.gov (United States)

    Nicolis, Alberto; Penco, Riccardo; Piazza, Federico; Rattazzi, Riccardo

    2015-06-01

    We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincaré-invariant theory that spontaneously breaks Lorentz boosts while preserving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern — the framid — does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries — and possibly rotational ones — and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and — if they exist — supersolids. A third, "extra-ordinary", possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincaré group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the " galileids", for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy 2 → 2 scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as E 2, E 4, and E 6. Similarly the energy momentum tensor in the ground state is "trivial" for framids ( ρ + p = 0), normal for solids ( ρ + p > 0) and even inhomogenous for galileids.

  17. Solitonic-type excitations in laser-condensed matter interaction: additional proof by independent publications

    Science.gov (United States)

    Kudriavtsev, Eugene M.

    2000-08-01

    The goal of this report is to discuss (in addition to review) the independent literature works which come to our attention in 2 last years with experimental or theoretical proofs the existence of the solitonic type Wave of Change in Reflection and Conduction (WCRC). WCRC presents a new variety of transfer phenomena in condensed matter. It was excited by a single IR laser pulse with a threshold of more than 10 kW/cm2 and consists of a series of about 30 solitary pulses with propagation velocity of each subsequent pulse decreasing two times comparing with that of preceding one in the range from sound velocity to less than about micron/s. Each pulse has the following solitary wave features: (1) it is all the time of one sign, (2) its velocity Ui is nearly constant, (3) it reflects from sample surfaces without noticeable velocity change. So far the systematic WCRC study was made in Lebedev Physical Institute, grate deal in collaboration with group of Marseilles University (prof. M. Autric) and also with some others groups. Literature analysis showed independent works where WCRC can be seen and which was made in different institutions with different own goals in mind. As example, work on optical monitoring of laser damage in IR materials or thermocouple measurements of temperature non stability in water cooled copper shield stopped the high power e-beam, etc. We will discuss also some details of theoretical work connected with development of Frenkel-Kontorova (1937) topological soliton model. WCRC is rather universal phenomenon, it appears in many laser-condensed matter interactions and so it should be studied for the WCRC mechanism understanding and its effect evaluation for different applications.

  18. Research in the Theory of Condensed Matter and Elementary Particles: Final Report, September 1, 1984 - November 30, 1987

    Science.gov (United States)

    Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.

    1988-04-01

    Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry.

  19. Condensate flow in holographic models in the presence of dark matter

    CERN Document Server

    Rogatko, Marek

    2016-01-01

    Holographic model of a current carrying superconductor or superfluid with {\\it dark matter} sector described by the additional $U(1)$-gauge field coupled to the ordinary Maxwell one, has been studied in the probe limit. We investigated analytically by the Sturm-Liouville variational method, the holographic s-wave and p-wave models in the background of the AdS soliton as well as five-dimensional AdS black hole spacetimes. The two models of p-wave superfluids were considered, the so called $SU(2)$ and the Maxwell-vector. Special attention has been paid to the dependence of the critical chemical potential and critical transition temperature on the velocity of the condensate and {\\it dark matter} parameters. The phenomenologically observed superconductor transition to normal metal or insulator, at large super-currents values, is not easily visible within analytical approach neglecting backreaction. Some hints about the existence of such transition can be inferred from the changes of the Sturm-Liouville solution a...

  20. A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases.

    Science.gov (United States)

    Belopolski, Ilya; Xu, Su-Yang; Koirala, Nikesh; Liu, Chang; Bian, Guang; Strocov, Vladimir N; Chang, Guoqing; Neupane, Madhab; Alidoust, Nasser; Sanchez, Daniel; Zheng, Hao; Brahlek, Matthew; Rogalev, Victor; Kim, Timur; Plumb, Nicholas C; Chen, Chaoyu; Bertran, François; Le Fèvre, Patrick; Taleb-Ibrahimi, Amina; Asensio, Maria-Carmen; Shi, Ming; Lin, Hsin; Hoesch, Moritz; Oh, Seongshik; Hasan, M Zahid

    2017-03-01

    Engineered lattices in condensed matter physics, such as cold-atom optical lattices or photonic crystals, can have properties that are fundamentally different from those of naturally occurring electronic crystals. We report a novel type of artificial quantum matter lattice. Our lattice is a multilayer heterostructure built from alternating thin films of topological and trivial insulators. Each interface within the heterostructure hosts a set of topologically protected interface states, and by making the layers sufficiently thin, we demonstrate for the first time a hybridization of interface states across layers. In this way, our heterostructure forms an emergent atomic chain, where the interfaces act as lattice sites and the interface states act as atomic orbitals, as seen from our measurements by angle-resolved photoemission spectroscopy. By changing the composition of the heterostructure, we can directly control hopping between lattice sites. We realize a topological and a trivial phase in our superlattice band structure. We argue that the superlattice may be characterized in a significant way by a one-dimensional topological invariant, closely related to the invariant of the Su-Schrieffer-Heeger model. Our topological insulator heterostructure demonstrates a novel experimental platform where we can engineer band structures by directly controlling how electrons hop between lattice sites.

  1. Vienna Soil-Organic-Matter Modeler--Generating condensed-phase models of humic substances.

    Science.gov (United States)

    Sündermann, Axel; Solc, Roland; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H; Oostenbrink, Chris

    2015-11-01

    Humic substances are ubiquitous in the environment and have manifold functions. While their composition is well known, information on the chemical structure and three-dimensional conformation is scarce. Here we describe the Vienna Soil-Organic-Matter Modeler, which is an online tool to generate condensed phase computer models of humic substances (http://somm.boku.ac.at). Many different models can be created that reflect the diversity in composition and conformations of the constituting molecules. To exemplify the modeler, 18 different models are generated based on two experimentally determined compositions, to explicitly study the effect of varying e.g. the amount of water molecules in the models or the pH. Molecular dynamics simulations were performed on the models, which were subsequently analyzed in terms of structure, interactions and dynamics, linking macroscopic observables to the microscopic composition of the systems. We are convinced that this new tool opens the way for a wide range of in silico studies on soil organic matter.

  2. Paul Scherrer Institute Scientific Report 2000. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.

    2001-07-01

    This year started with a highlight for the Swiss Spallation Neutron Source SINQ located at PSI: The thermal neutron flux exceeded the value of 10{sup 14} n cm{sup -2} s{sup 1} which may be considered as the critical limit for an advanced medium-flux neutron source. The excellent performance attracted a large number of external users to participate at the neutron scattering programme. The major part of this annual report gives an overview on the scientific activities of the staff members of the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich). The research topics covered diverse areas such as strongly correlated electron systems including high-temperature superconductors, low-dimensional and quantum magnetism, materials research on soft and hard matter including multilayers. Progress in 2000 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 2000 is also provided.

  3. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  4. Dynamics and Matter-Wave Solitons in Bose-Einstein Condensates with Two- and Three-Body Interactions

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2014-01-01

    Full Text Available By means of similarity transformation, this paper proposes the matter-wave soliton solutions and dynamics of the variable coefficient cubic-quintic nonlinear Schrödinger equation arising from Bose-Einstein condensates with time-dependent two- and three-body interactions. It is found that, under the effect of time-dependent two- and three-body interaction and harmonic potential with time-dependent frequency, the density of atom condensates will gradually diminish and finally collapse.

  5. EDITORIAL: Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter

    Science.gov (United States)

    Ferry, David

    2009-01-01

    It is with a great deal of both happiness and sadness that I have to announce that we are losing one of the real strengths of the Journal of Physics: Condensed Matter (JPCM). Dr Richard Palmer, our Senior Publisher, announced his retirement, and this issue marks the first without his involvement. Of course, we are happy that he will get to enjoy his retirement, but we are sad to lose such a valuable member of our team. Richard first started work at IOP Publishing in March 1971 as an Editorial Assistant with Journal of Physics B: Atomic and Molecular Physics. After a few months, he transferred to Journal of Physics C: Solid State Physics. During his first year, he was sent on a residential publishing training course and asked to sign an undertaking to stay at IOP Publishing for at least two years. Although Richard refused to sign, as he did not want to commit himself, he has remained with the journal since then. The following year, the Assistant Editor of Journal of Physics C: Solid State Physics, Malcolm Haines, walked out without notice in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of Journal of Physics C: Solid State Physics, before being given the job of Assistant Editor permanently. I am told that in those days the job consisted mainly of editing and proofreading and peer review. There was no journal development work. At some point in the early 1980s, production and peer review were split into separate departments and Richard then headed a group of journals consisting of Journal of Physics C: Solid State Physics, Journal of Physics D: Applied Physics and Journal of Physics F: Metal Physics, Semiconductor Science and Technology, Superconductor Science and Technology, Plasma Physics and Controlled Fusion, and later Nanotechnology and Modelling and Simulation

  6. Supermassive black holes from collapsing dark matter Bose–Einstein condensates

    Science.gov (United States)

    Das Gupta, Patrick; Thareja, Eklavya

    2017-02-01

    The discovery of active galactic nuclei at redshifts ≳ 6 suggests that supermassive black holes (SMBHs) formed early on. Growth of the remnants of population III stars by accretion of matter, both baryonic as well as collisionless dark matter (DM), leading up to formation of SMBHs is a very slow process. Therefore, such models encounter difficulties in explaining quasars detected at z≳ 6 . Furthermore, massive particles making up collisionless DM have not only so far eluded experimental detection but they also do not satisfactorily explain gravitational structures on small scales. In recent years, there has been a surge in research activities concerning cosmological structure formation that involve coherent, ultra-light bosons in a dark fluid-like or fuzzy cold DM state. In this paper, we study collapse of such ultra-light bosonic halo DM that is in a Bose–Einstein condensate (BEC) phase to give rise to SMBHs on dynamical time scales. Time evolution of such self-gravitating BECs is examined using the Gross–Pitaevskii equation in the framework of time-dependent variational method. Comprised of identical dark bosons of mass m, BECs can collapse to form black holes of mass M eff on time scales  ∼108 yrs provided m~{{M}\\text{eff}}≳ 0.64~mPl2 . In particular, ultra-light dark bosons of mass ∼ {{10}-20}~\\text{eV} can lead to SMBHs with mass ≳ {{10}10}~{{M}ȯ} at z≈ 6 . Recently observed radio-galaxies in the ELAIS-N1 deep field with aligned jets can also possibly be explained if vortices of a rotating cluster size BEC collapse to form spinning SMBHs with angular momentum J≲ 3.6~{{n}W}\\frac{G{{M}2}}{c} , where n W and M are the winding number and mass of a vortex, respectively.

  7. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics.

    Science.gov (United States)

    Pikulski, M; Shiroka, T; Ott, H-R; Mesot, J

    2014-09-01

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.

  8. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Pikulski, M., E-mail: marekp@ethz.ch; Shiroka, T.; Ott, H.-R.; Mesot, J. [Laboratorium für Festkörperphysik, ETH Hönggerberg, CH-8093 Zürich, Switzerland and Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2014-09-15

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.

  9. Antwerp Advanced Study Institute on Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter

    CERN Document Server

    Camp, Piet

    1985-01-01

    The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium·, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material ...

  10. Paul Scherrer Institute Scientific Report 1999. Volume III: Condensed Matter Research with Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, Juerg; Castellazzi, Denise; Shea-Braun, Margit [eds.

    2000-07-01

    This year was a period of consolidation of the operation at the spallation source of PSI and its scientific exploitation at an increasing number of instruments. The major part of this annual report gives an overview of the research activities in the Laboratory of Neutron Scattering (jointly operated with the Swiss Federal Institute of Technology, ETH Zurich) of our department, mainly emphasizing highly correlated electron systems and the investigation of magnetism. The activities on multilayers and surfaces, a basic research object by itself, is however also to a large extent motivated by the development of optical components for neutron- and X-ray instrumentation. While most of the solid-state work has been done with neutrons, some contributions deal with other probes, like muons and synchrotron light, exploiting the unique possibilities at PSI, to take advantage of the complementary nature of the different probes. Progress in 1999 in these topical areas as well as the activities of the Condensed Matter Theory Group, and the Group for Low Temperature Facilities, is described in this report. A list of scientific publications in 1999 is also provided.

  11. Specifications for hard condensed matter specimens for three-dimensional high-resolution tomographies.

    Science.gov (United States)

    Bleuet, P; Audoit, G; Barnes, J-P; Bertheau, J; Dabin, Y; Dansas, H; Fabbri, J-M; Florin, B; Gergaud, P; Grenier, A; Haberfehlner, G; Lay, E; Laurencin, J; Serra, R; Villanova, J

    2013-06-01

    Tomography is a standard and invaluable technique that covers a large range of length scales. It gives access to the inner morphology of specimens and to the three-dimensional (3D) distribution of physical quantities such as elemental composition, crystalline phases, oxidation state, or strain. These data are necessary to determine the effective properties of investigated heterogeneous media. However, each tomographic technique relies on severe sampling conditions and physical principles that require the sample to be adequately shaped. For that purpose, a wide range of sample preparation techniques is used, including mechanical machining, polishing, sawing, ion milling, or chemical techniques. Here, we focus on the basics of tomography that justify such advanced sample preparation, before reviewing and illustrating the main techniques. Performances and limits are highlighted, and we identify the best preparation technique for a particular tomographic scale and application. The targeted tomography techniques include hard X-ray micro- and nanotomography, electron nanotomography, and atom probe tomography. The article mainly focuses on hard condensed matter, including porous materials, alloys, and microelectronics applications, but also includes, to a lesser extent, biological considerations.

  12. MOLOCH computer code for molecular-dynamics simulation of processes in condensed matter

    Directory of Open Access Journals (Sweden)

    Derbenev I.V.

    2011-01-01

    Full Text Available Theoretical and experimental investigation into properties of condensed matter is one of the mainstreams in RFNC-VNIITF scientific activity. The method of molecular dynamics (MD is an innovative method of theoretical materials science. Modern supercomputers allow the direct simulation of collective effects in multibillion atom sample, making it possible to model physical processes on the atomistic level, including material response to dynamic load, radiation damage, influence of defects and alloying additions upon material mechanical properties, or aging of actinides. During past ten years, the computer code MOLOCH has been developed at RFNC-VNIITF. It is a parallel code suitable for massive parallel computing. Modern programming techniques were used to make the code almost 100% efficient. Practically all instruments required for modelling were implemented in the code: a potential builder for different materials, simulation of physical processes in arbitrary 3D geometry, and calculated data processing. A set of tests was developed to analyse algorithms efficiency. It can be used to compare codes with different MD implementation between each other.

  13. Correlations in condensed matter under extreme conditions a tribute to Renato Pucci on the occasion of his 70th birthday

    CERN Document Server

    2017-01-01

    This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.

  14. Condensed-matter ab initio approach for strongly correlated electrons: Application to a quantum spin liquid candidate

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Youhei [Quantum-Phase Electronics Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2015-12-31

    Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.

  15. Computerized Verification of New Hierarchic Theory of Condensed Matter on Examples of Water & Ice. New Optoacoustic Device Comprehensive Analyzer of Matter Properties (CAMP)

    CERN Document Server

    Kaivarainen, A

    2002-01-01

    The short version of new quantum and quantitative Hierarchic theory, general for solids and liquids (Kaivarainen, 1989, 1995, physics/0102086) is presented. Condensed matter is considered as system of 3D standing waves (collective excitations) of different nature: thermal de Broglie waves (waves B), IR photons, related to intermolecular oscilla device is that only small part of 300 parameters, yielding by CAMP system, is possible to get, using separate experimental methods, like IR spectroscopy, sound velocimetry, densitometry and refractometry.

  16. Affleck-Dine baryogenesis, condensate fragmentation and gravitino dark matter in gauge-mediation with a large messenger mass

    Energy Technology Data Exchange (ETDEWEB)

    Doddato, Francesca; McDonald, John, E-mail: f.doddato@lancaster.ac.uk, E-mail: j.mcdonald@lancaster.ac.uk [Dept. of Physics, Cosmology and Astroparticle Physics Group, University of Lancaster, Lancaster LA1 4YB (United Kingdom)

    2011-06-01

    We study the conditions for successful Affleck-Dine baryogenesis and the origin of gravitino dark matter in GMSB models. AD baryogenesis in GMSB models is ruled out by neutron star stability unless Q-balls are unstable and decay before nucleosynthesis. Unstable Q-balls can form if the messenger mass scale is larger than the flat-direction field Φ when the condensate fragments. We provide an example based on AD baryogenesis along a d = 6 flat direction for the case where m{sub 3/2} ≈ 2GeV, as predicted by gravitino dark matter from Q-ball decay. Using a phenomenological GMSB potential which models the Φ dependence of the SUSY breaking terms, we numerically solve for the evolution of Φ and show that the messenger mass can be sufficiently close to the flat-direction field when the condensate fragments. We compute the corresponding reheating temperature and the baryonic charge of the condensate fragments and show that the charge is large enough to produce late-decaying Q-balls which can be the origin of gravitino dark matter.

  17. PREFACE: 10th Summer School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter'

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2010-03-01

    This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and

  18. Invited Article: High-pressure techniques for condensed matter physics at low temperature

    Science.gov (United States)

    Feng, Yejun; Jaramillo, R.; Wang, Jiyang; Ren, Yang; Rosenbaum, T. F.

    2010-04-01

    Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent ΔP /P per unit area of ±1.8%/(104 μm2) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021±0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.

  19. Invited article: High-pressure techniques for condensed matter physics at low temperature.

    Science.gov (United States)

    Feng, Yejun; Jaramillo, R; Wang, Jiyang; Ren, Yang; Rosenbaum, T F

    2010-04-01

    Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T=4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P=16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T=5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent DeltaP/P per unit area of +/-1.8 %/(10(4) microm(2)) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021+/-0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.

  20. Invited article : High pressure standards for condensed matter physics at low temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.; Jaramillo, R.; Wang, J.; Ren, Y.; Rosenbaum, T. F.; Univ. of Chicago

    2010-04-01

    Condensed matter experiments at high pressure accentuate the need for accurate pressure scales over a broad range of temperatures, as well as placing a premium on a homogeneous pressure environment. However, challenges remain in diamond anvil cell technology, including both the quality of various pressure transmitting media and the accuracy of secondary pressure scales at low temperature. We directly calibrate the ruby fluorescence R1 line shift with pressure at T = 4.5 K using high-resolution x-ray powder diffraction measurements of the silver lattice constant and its known equation of state up to P = 16 GPa. Our results reveal a ruby pressure scale at low temperatures that differs by 6% from the best available ruby scale at room T. We also use ruby fluorescence to characterize the pressure inhomogeneity and anisotropy in two representative and commonly used pressure media, helium and methanol:ethanol 4:1, under the same preparation conditions for pressures up to 20 GPa at T = 5 K. Contrary to the accepted wisdom, both media show equal levels of pressure inhomogeneity measured over the same area, with a consistent {Delta}P/P per unit area of {+-}1.8?%/(10{sup 4}{mu}m{sup 2}) from 0 to 20 GPa. The helium medium shows an essentially constant deviatoric stress of 0.021{+-}/{+-}0.011 GPa up to 16 GPa, while the methanol:ethanol mixture shows a similar level of anisotropy up to 10 GPa, above which the anisotropy increases. The quality of both pressure media is further examined under the more stringent requirements of single crystal x-ray diffraction at cryogenic temperature. For such experiments we conclude that the ratio of sample-to-pressure chamber volume is a critical parameter in maintaining sample quality at high pressure, and may affect the choice of pressure medium.

  1. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    Science.gov (United States)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG

  2. Towards applications of the gauge-gravity duality to condensed matter physics

    Science.gov (United States)

    Rocha, Fabio Diales Da

    String theory offers, through the gauge-gravity dualities, powerful methods to study strongly coupled field theories. In this dissertation, we will be concerned with applying these methods to topics related to condensed matter physics. The Abelian Higgs model coupled to gravity with a negative cosmological constant provides a gravitational dual to a strongly coupled field theory that has superconducting or superfluid phases. We construct zero-temperature solutions of this model that interpolate between two copies of anti-de Sitter space and which we identify with gravitational duals of quantum critical points. We will do this both for an ad hoc Abelian Higgs model and for closely related gravitational Lagrangians arising as consistent truncations of string theory and M-theory. We also compute their frequency-dependent conductivities and find power law behavior at low frequencies. We will introduce spin-1/2 fermions in these domain wall geometries and find continuous bands of fermionic normal modes. These bands can be either partially filled or totally empty and gapped. We will consider fermionic normal modes and correlators in other gravitational backgrounds and find other interesting features. For certain dilatonic black holes in AdS5 and AdS4 in the extremal limit, we find isolated fermionic normal modes at zero frequency and finite momentum. We will also find that these dilatonic black holes have linear specific heat at low temperatures, which combined with the previous property makes them an interesting candidate for a gravitational dual of a Fermi liquid. Finally, we will consider fermion correlators in non-abelian holographic superconductors and find that their spectral function exhibits several interesting features such as support in displaced Dirac cones and an asymmetric distribution of normal modes. We compare these features to similar ones observed in angle resolved photoemission experiments on high Tc superconductors.

  3. The possibility of formation of Supermassive Black Holes from Bose-Einstein Condensation of Bosonic Dark Matter

    CERN Document Server

    Gupta, Patrick Das

    2015-01-01

    Observed active galactic nuclei at redshifts of about 6 strongly suggest that supermassive black holes (SMBHs) had formed early on. Accretion of matter onto remnants of Population III stars leading to SMBHs is a very slow process, and therefore the model faces difficulties in explaining quasars detected at $ z \\gtrsim 6$. In this paper we invoke Bose-Einstein condensation of dark bosons to demonstrate that existence of very light ($m \\sim 10^{-23} \\ \\mbox{eV}$) spinless dark matter particles can not only lead to SMBHs of mass $\\gtrsim 10^{10} \\ M_\\odot$ at $ z \\gtrsim 6$ but also such particles can masquerade as dark matter as well as dark energy.

  4. Affleck-Dine Baryogenesis, Condensate Fragmentation and Gravitino Dark Matter in Gauge-Mediation with a Large Messenger Mass

    CERN Document Server

    Doddato, Francesca

    2011-01-01

    We study the conditions for successful Affleck-Dine baryogenesis and the origin of gravitino dark matter in GMSB models. AD baryogenesis in GMSB models is ruled out by neutron star stability unless Q-balls are unstable and decay before nucleosynthesis. Unstable Q-balls can form if the messenger mass scale is larger than the flat-direction field Phi when the condensate fragments. We provide an example based on AD baryogenesis along a d = 6 flat direction for the case where m_{3/2} \\approx 2 GeV, as predicted by gravitino dark matter from Q-ball decay. Using a phenomenological GMSB potential which models the Phi dependence of the SUSY breaking terms, we numerically solve for the evolution of Phi and show that the messenger mass can be sufficiently close to the flat-direction field when the condensate fragments. We compute the corresponding reheating temperature and the baryonic charge of the condensate fragments and show that the charge is large enough to produce late-decaying Q-balls which can be the origin of...

  5. Scalar quanta in Fermi liquids: Zero sounds, instabilities, Bose condensation, and a metastable state in dilute nuclear matter

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2016-12-01

    The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter f0 in the particle-hole channel. For f0 > 0 the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For -1 excitations, and for f0 excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter f0(k) > 0. We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for f0 > -1.

  6. Forty Lines of Evidence for Condensed Matter — The Sun on Trial: Liquid Metallic Hydrogen as a Solar Building Block

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-10-01

    Full Text Available Our Sun has confronted humanity with overwhelming evidence that it is comprised of condensed matter. Dismissing this reality, the standard solar models continue to be anchored on the gaseous plasma. In large measure, the endurance of these theories can be attributed to 1 the mathematical elegance of the equations for the gaseous state, 2 the apparent success of the mass-luminosity relationship, and 3 the long-lasting influence of leading proponents of these models. Unfortunately, no direct physical finding supports the notion that the solar body is gaseous. Without exception, all observations are most easily explained by recognizing that the Sun is primarily comprised of condensed matter. However, when a physical characteristic points to condensed matter, a postori arguments are invoked to account for the behavior using the gaseous state. In isolation, many of these treatments appear plausible. As a result, the gaseous models continue to be accepted. There seems to be an overarching belief in solar science that the problems with the gaseous models are few and inconsequential. In reality, they are numerous and, while often subtle, they are sometimes daunting. The gaseous equations of state have introduced far more dilemmas than they have solved. Many of the conclusions derived from these approaches are likely to have led solar physics down unproductive avenues, as deductions have been accepted which bear little or no relationship to the actual nature of the Sun. It could be argued that, for more than 100 years, the gaseous models have prevented mankind from making real progress relative to understanding the Sun and the universe. Hence, the Sun is now placed on trial. Forty lines of evidence will be presentedbthat the solar body is comprised of, and surrounded by, condensed matter. These ‘proofs’ can be divided into seven broad categories: 1 Planckian, 2 spectroscopic, 3 structural, 4 dynamic, 5 helioseismic, 6 elemental, and 7 earthly

  7. Matter-Wave Solitons in Two-Component Bose-Einstein Condensates with Tunable Interactions and Time Varying Potential

    Institute of Scientific and Technical Information of China (English)

    宣恒农; 左苗

    2011-01-01

    We present three families of exact matter-wave soliton solutions for an effective one-dimension two- component Bose-Einstein condensates (BECs) with tunable interactions, harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons, bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential, periodically modulated harmonic trap potential, and kinklike modulated harmonic trap potential. Through the Feshbach resonance, these dynamics can be realized in experiments by suitable control of time-dependent trap parameters, atomic interactions, and interaction with thermal cloud.

  8. BOOK REVIEW: Many-Body Quantum Theory in Condensed Matter Physics—An Introduction

    Science.gov (United States)

    Logan, D. E.

    2005-02-01

    This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical `rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some

  9. The low lying modes of triplet-condensed neutron matter and their effective theory

    CERN Document Server

    Bedaque, Paulo F

    2013-01-01

    The condensation of neutrons into a 3P2 superfluid phase occurs at densities relevant for the interior of neutron stars. The triplet pairing breaks rotational symmetry spontaneously and leads to the existence of gapless modes (angulons) that are relevant for many transport coefficients and to the star's cooling properties. We derive the leading terms of the low energy effective field theory, including the leading coupling to electroweak currents, valid for a variety of possible 3P2 phases.

  10. Evolution of Matter Wave Interference of Bose-Condensed Gas in a 2D Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    XUZhi-Jun; LINGuo-Cheng; XUJun; LIZhen

    2005-01-01

    We investigate the average particle-number distribution of the atoms in the combined potential of 2D optical lattices and 31) harmonic magnetic trap based on the Gross-Pitaevskii equation. After the combined potential is switched of[, and only the optical lattice is switched off, we give the analytical results of the wavefunction of the Bosecondensed gas at any time t by using a propagator method. For both disk-shaped and cigar-shaped Bose-condensed gas,we discuss the evolution process of the central and side peaks of the interference pattern.

  11. Tunable rotary orbits of matter-wave nonlinear modes in attractive Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    He, Y J; Wang, H Z [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275 (China); Malomed, Boris A [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Mihalache, Dumitru [Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele-Bucharest 077125 (Romania)], E-mail: stswhz@mail.sysu.edu.cn

    2008-03-14

    We demonstrate that by spatially modulating the Bessel optical lattice where a Bose-Einstein condensate is loaded, we get tunable rotary orbits of nonlinear lattice modes. We show that the radially expanding or shrinking Bessel lattice can drag the nonlinear localized modes to orbits of either larger or smaller radii and the rotary velocity of nonlinear modes can be changed accordingly. The localized modes can even be transferred to the Bessel lattice core when the localized modes' rotations are stopped. Effects beyond the quasi-particle approximation such as destruction of the nonlinear modes by nonadiabatic dragging are also explored.

  12. Defect evolution in cosmology and condensed matter quantitative analysis with the velocity-dependent one-scale model

    CERN Document Server

    Martins, C J A P

    2016-01-01

    This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.

  13. Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos

    CERN Document Server

    Chavanis, Pierre-Henri

    2016-01-01

    We develop a general formalism applying to Newtonian self-gravitating Bose-Einstein condensates. This formalism may find application in the context of dark matter halos. We introduce a generalized Gross-Pitaevskii equation including a source of dissipation (damping) and an arbitrary nonlinearity. Using the Madelung transformation, we derive the hydrodynamic representation of this generalized Gross-Pitaevskii equation and obtain a damped quantum Euler equation involving a friction force proportional and opposite to the velocity and a pressure force associated with an equation of state determined by the nonlinearity present in the generalized Gross-Pitaevskii equation. In the strong friction limit, we obtain a quantum Smoluchowski equation. These equations satisfy an $H$-theorem for a free energy functional constructed with a generalized entropy. We specifically consider the Boltzmann and Tsallis entropies associated with isothermal and polytropic equations of state. We also consider the entropy associated with...

  14. Reaction Matrix Calculations in Neutron Matter with Alternating-Layer-Spin Structure under π0 Condensation. II ---Numerical Results---

    Science.gov (United States)

    Tamiya, K.; Tamagaki, R.

    1981-10-01

    Results obtained by applying a formulation based on the reaction matrix theory developed in I are given. Calculations by making use of a modified realistic potential, the Reid soft-core potential with the OPEP-part enhanced due to the isobar (Δ)-mixing, show that the transition to the [ALS] phase of quasi-neutrons corresponding to a typical π0 condensation occurs in the region of (2 ˜ 3) times the nuclear density. The most important ingredients responsible for this transition are the growth of the attractive 3P2 + 3F2 contribution mainly from the spin-parallel pairs in the same leyers and the reduction of the repulsive 3P1 contribution mainly from the spin-antiparallel pairs in the nearest layers; these mainfest themselves as the [ALS]-type localization develops. Properties of the matter under the new phase thus obtained such as the shape of the Fermi surface and the effective mass are discussed.

  15. Dispersive and dissipative effects in quantum field theory in curved space-time to model condensed matter systems

    CERN Document Server

    Busch, Xavier

    2014-01-01

    The two main predictions of quantum field theory in curved space-time, namely Hawking radiation and cosmological pair production, have not been directly tested and involve ultra high energy configurations. As a consequence, they should be considered with caution. Using the analogy with condensed matter systems, their analogue versions could be tested in the lab. Moreover, the high energy behavior of these systems is known and involves dispersion and dissipation, which regulate the theory at short distances. When considering experiments which aim to test the above predictions, there will also be a competition between the stimulated emission from thermal noise and the spontaneous emission out of vacuum. In order to measure these effects, one should thus compute the consequences of UV dispersion and dissipation, and identify observables able to establish that the spontaneous emission took place. In this thesis, we first analyze the effects of dispersion and dissipation on both Hawking radiation and pair particle...

  16. Apparatus to study matter-wave quantum optics in spin space in a sodium spinor Bose-Einstein condensate

    Science.gov (United States)

    Nematollahi, Delaram; Zhang, Qimin; Altermatt, Joseph; Zhong, Shan; Goodman, Matthew; Bhagat, Anita; Schwettmann, Arne

    2016-05-01

    We present our apparatus designed to study matter-wave quantum optics in spin space, including our recently finished vacuum system and laser systems. Microwave-dressed spin-exchange collisions in a sodium spinor Bose-Einstein condensate provide a precisely controllable nonlinear interaction that generates squeezing and acts as a source of entanglement. As a consequence of this entanglement between atoms with magnetic quantum numbers m = +1 and m = -1, the noise of population measurements can be reduced below the shot noise. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices. With an added ion detector to detect Rydberg atoms via pulsed-field ionization, we plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.

  17. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  18. From relativistic quantum fields to condensed matter and back again: Updating the Gross-Neveu phase diagram

    CERN Document Server

    Thies, M

    2006-01-01

    During the last few years, the phase diagram of the large N Gross-Neveu model in 1+1 dimensions at finite temperature and chemical potential has undergone a major revision. Here we present a streamlined account of this development, collecting the most important results. Quasi-one-dimensional condensed matter systems like conducting polymers provide real physical systems which can be approximately described by the Gross-Neveu model and have played some role in establishing its phase structure. The kink-antikink phase found at low temperatures is closely related to inhomogeneous superconductors in the Larkin-Ovchinnikov-Fulde-Ferrell phase. With the complete phase diagram at hand, the Gross-Neveu model can now serve as a firm testing ground for new algorithms and theoretical ideas.

  19. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere I. Continuous Emission and Condensed Matter Within the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The continuous spectrum of the solar photosphere stands as the paramount observation with regard to the condensed nature of the solar body. Studies relative to Kirchhoff’s law of thermal emission (e.g. Robitaille P.-M. Kirchhoff’s law of thermal emission: 150 years. Progr. Phys., 2009, v. 4, 3–13. and a detailed analysis of the stellar opacity problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun. Progr. Phys., 2011, v. 3, 93–99 have revealed that gaseous models remain unable to properly account for the generation of this spectrum. Therefore, it can be stated with certainty that the photosphere is comprised of condensed matter. Beyond the solar surface, the chromospheric layer of the Sun also generates a weak continuous spectrum in the visible region. This emission exposes the presence of material in the condensed state. As a result, above the level of the photosphere, matter exists in both gaseous and condensed forms, much like within the atmosphere of the Earth. The continuous visible spectrum associated with the chromosphere provides the twenty-sixth line of evidence that the Sun is condensed matter.

  20. Stopping powers of energetic electrons penetrating condensed matter--theory and application

    Institute of Scientific and Technical Information of China (English)

    TAN Zhen-Yu; XIA Yue-Yuan

    2004-01-01

    In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed.

  1. Reaction Matrix Calculations in Neutron Matter with Alternating-Layer-Spin Structure under π0 Condensation. I ---Formulation---

    Science.gov (United States)

    Tamiya, K.; Tamagaki, R.

    1981-09-01

    Based on the viewpoint that a typical π0 condensation is realized with the [ALS] (Alternating-Layer-Spin) structure of nucleon system, a framework to calculate the energy of neutron matter under such a new phase is presented in the reaction matrix theory. This enables us to treat both effects on equal footing; the long-range effect dominated by the OPEP tensor component with the enhancement due to the mixing of Δ(1236MeV) and the sort-range effect much influenced by repulsive core and spin-orbit force. Starting with the [ALS] model wave function constructed on the Bloch basis which assures to take the limit of no localization, we have the expressions for energy quantities expressed by the partial-wave contributions. This scheme provides a way to understand the mechanism of energy gain in the new phase, by making use of the notions of the ordinary unclear matter theory such as the potential picture and the partial waves. Some numerical examples are shown.

  2. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    Science.gov (United States)

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-02

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.

  3. Ferroelectric hybrid fibers to develop flexible sensors for shape sensing of smart textiles and soft condensed matter bodies

    Science.gov (United States)

    Sebastian, Tutu; Lusiola, Tony; Clemens, Frank

    2017-04-01

    Piezoelectric fibers are widely used in composites for actuator and sensor applications due to its ability to convert electrical pulses into mechanical vibrations and transform the returned mechanical vibrations back into electrical signal. They are beneficial for the fabrication of composites especially 1–3 composites, active fiber composites (unidirectional axially aligned PZT fibers sandwiched between interdigitated electrodes and embedded in a polymer matrix) etc, with potential applications in medical imaging, structural health monitoring, energy harvesting, vibration and noise control. However, due to the brittle nature of PZT fibers, maximum strain is limited to 0.2% and cannot be integrated into flexible sensor applications. In this contribution, a new approach to develop flexible ferroelectric hybrid fibers for soft body shape sensing is investigated. Piezoelectric particles incorporated in a polymer matrix and extruded as fiber, 0–3 composite in fibrous form is studied. Commercially obtained calcined PZT and calcined BaTiO3 powders were used in the unsintered form to obtain flexible soft condensed matter ferroelectric hybrid fibers. The extruded fibers were subjected to investigation for their electromechanical behavior as a function of electric field. The hybrid fibers reached 10% of the maximum polarization of their sintered counterpart.

  4. Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light

    Science.gov (United States)

    Le Hur, Karyn; Henriet, Loïc; Petrescu, Alexandru; Plekhanov, Kirill; Roux, Guillaume; Schiró, Marco

    2016-10-01

    We review recent developments regarding the quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues, by analogy with atomic physics. We start with quantum impurity models addressing dissipative and driven systems. Both theorists and experimentalists are making efforts towards the characterization of these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect can be characterized by a renormalized light frequency and a peak in the Rayleigh elastic transmission of a photon. We also address the physics of hybrid systems comprising mesoscopic quantum dot devices coupled with an electromagnetic resonator. Then, we discuss extensions to Quantum Electrodynamics (QED) Networks allowing one to engineer the Jaynes-Cummings lattice and Rabi lattice models through the presence of superconducting qubits in the cavities. This opens the door to novel many-body physics with light out of equilibrium, in relation with the Mott-superfluid transition observed with ultra-cold atoms in optical lattices. Then, we summarize recent theoretical predictions for realizing topological phases with light. Synthetic gauge fields and spin-orbit couplings have been successfully implemented in quantum materials and with ultra-cold atoms in optical lattices - using time-dependent Floquet perturbations periodic in time, for example - as well as in photonic lattice systems. Finally, we discuss the Josephson effect related to Bose-Hubbard models in ladder and two-dimensional geometries, producing phase coherence and Meissner currents. The Bose-Hubbard model is related to the Jaynes-Cummings lattice model in the large detuning limit between light and matter (the superconducting qubits). In the presence of synthetic gauge fields, we show that Meissner currents subsist in an insulating Mott phase. xml:lang="fr"

  5. Propagation and interaction of matter-wave solitons in Bose-Einstein condensates with time-dependent scattering length and varying potentials

    Energy Technology Data Exchange (ETDEWEB)

    Li Biao; Li Yuqi [Nonlinear Science Center, Ningbo University, Ningbo 315211 (China); Zhang Xiaofei; Liu, W M, E-mail: biaolee2000@yahoo.com.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-09-14

    We present two families of one-soliton solutions and three families of two-soliton solutions for a generalized nonlinear Schroedinger equation, which is characterized by the time-dependent scattering length and varying potentials. Then, we investigate the propagation of one-soliton and interactions of two-soliton by some selected control functions. The results show that the intensities of one- and two-soliton first increase rapidly to a peak value, and then decay very slowly to the background value; thus, the lifetimes of both one-soliton and two-soliton in Bose-Einstein condensates can be extended largely at least to the order of the lifetime of a Bose-Einstein condensate in real experiments. Our results open up new ways of considerable experimental interest for the management of matter-wave solitons in Bose-Einstein condensates.

  6. Dynamics of kink, antikink, bright, generalized Jacobi elliptic function solutions of matter-wave condensates with time-dependent two- and three-body interactions.

    Science.gov (United States)

    Belobo Belobo, D; Ben-Bolie, G H; Kofane, T C

    2015-04-01

    By using the F-expansion method associated with four auxiliary equations, i.e., the Bernoulli equation, the Riccati equation, the Lenard equation, and the hyperbolic equation, we present exact explicit solutions describing the dynamics of matter-wave condensates with time-varying two- and three-body nonlinearities. Condensates are trapped in a harmonic potential and they exchange atoms with the thermal cloud. These solutions include the generalized Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions. In addition, we have also found rational function solutions. Solutions constructed here have many free parameters that can be used to manipulate and control some important features of the condensate, such as the position, width, velocity, acceleration, and homogeneous phase. The stability of the solutions is confirmed by their long-time numerical behavior.

  7. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  8. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    Energy Technology Data Exchange (ETDEWEB)

    De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, Santo André, SP, 09210-170 (Brazil)

    2014-03-01

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  9. Isotopes in Condensed Matter

    CERN Document Server

    G Plekhanov, Vladimir

    2013-01-01

    This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe  in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed.  The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.

  10. Molecular view modeling of atmospheric organic particulate matter: Incorporating molecular structure and co-condensation of water

    Science.gov (United States)

    Pankow, James F.; Marks, Marguerite C.; Barsanti, Kelley C.; Mahmud, Abdullah; Asher, William E.; Li, Jingyi; Ying, Qi; Jathar, Shantanu H.; Kleeman, Michael J.

    2015-12-01

    Most urban and regional models used to predict levels of organic particulate matter (OPM) are based on fundamental equations for gas/particle partitioning, but make the highly simplifying, anonymized-view (AV) assumptions that OPM levels are not affected by either: a) the molecular characteristics of the condensing organic compounds (other than simple volatility); or b) co-condensation of water as driven by non-zero relative humidity (RH) values. The simplifying assumptions have allowed parameterized chamber results for formation of secondary organic aerosol (SOA) (e.g., ;two-product; (2p) coefficients) to be incorporated in chemical transport models. However, a return towards a less simplistic (and more computationally demanding) molecular view (MV) is needed that acknowledges that atmospheric OPM is a mixture of organic compounds with differing polarities, water, and in some cases dissolved salts. The higher computational cost of MV modeling results from a need for iterative calculations of the composition-dependent gas/particle partition coefficient values. MV modeling of OPM that considered water uptake (but not dissolved salts) was carried out for the southeast United States for the period August 29 through September 7, 2006. Three model variants were used at three universities: CMAQ-RH-2p (at PSU), UCD/CIT-RH-2p (at UCD), and CMAQ-RH-MCM (at TAMU). With the first two, MV structural characteristics (carbon number and numbers of functional groups) were assigned to each of the 2p products used in CMAQv.4.7.1 such that resulting predicted Kp,i values matched those in CMAQv.4.7.1. When water uptake was allowed, most runs assumed that uptake occurred only into the SOA portion, and imposed immiscibility of SOA with primary organic aerosol (POA). (POA is often viewed as rather non-polar, while SOA is commonly viewed as moderately-to-rather polar. Some runs with UCD/CIT-RH-2p were used to investigate the effects of POA/SOA miscibility.) CMAQ-RH-MCM used MCM to

  11. Matter-wave solutions of Bose-Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields

    Institute of Scientific and Technical Information of China (English)

    Etienne Wamba; Timoléon C. Kofané; Alidou Mohamadou

    2012-01-01

    We construct,through a further extension of the tanh-function method,the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction.The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields.The exact solutions obtained include soliton solutions,such as kink and antikink as well as bright,dark,multisolitonic modulated waves.We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.

  12. International Conference on Neutrino Mass, Dark Matter and Gravitational Waves, Condensation of Atoms and Monopoles, Light-cone Quantization : Orbis Scientiae '96

    CERN Document Server

    Mintz, Stephan; Perlmutter, Arnold; Neutrino Mass, Dark Matter and Gravitational Waves, Condensation of Atoms and Monopoles, Light-cone Quantization : Orbis Scientiae '96

    1996-01-01

    The International Conference, Orbis Scientiae 1996, focused on the topics: The Neutrino Mass, Light Cone Quantization, Monopole Condensation, Dark Matter, and Gravitational Waves which we have adopted as the title of these proceedings. Was there any exciting news at the conference? Maybe, it depends on who answers the question. There was an almost unanimous agreement on the overall success of the conference as was evidenced by the fact that in the after-dinner remarks by one of us (BNK) the suggestion of organizing the conference on a biannual basis was presented but not accepted: the participants wanted the continuation of the tradition to convene annually. We shall, of course, comply. The expected observation of gravitational waves will constitute the most exciting vindication of Einstein's general relativity. This subject is attracting the attention of the experimentalists and theorists alike. We hope that by the first decade of the third millennium or earlier, gravitational waves will be detected,...

  13. The Early Years of Condensed Matter Physics at Illinois -- in Celebration of the 80th Birth Year of Charles P. Slichter -- Charlie Slichter & the gang at Urbana

    CERN Document Server

    Kadanoff, Leo P

    2014-01-01

    The 1950s-- and perhaps also the 1960s-- were very special times for the development of solid-state/condensed-matter physics. The University of Illinois at Urbana was at the center of these activities. In areas like NMR and superconductivity, methods were developed which would form the basis for the next half century of science and technology. Experimentalists, including Charlie and John Wheatley, worked hand in hand with theorists, including the incomparable John Bardeen. They worked cooperatively to develop ideas, often born in Urbana, but with godparents at Harvard and Moscow and Paris. A characteristic style of broad collaboration and spirited exchange developed and spread from Illinois. This development was not an accident but the result of the vision of leaders like Wheeler Loomis, Fred Seitz, and later Gerald Almy1. The strong leadership saved the other scientists from expending their time on departmental decision-making. The style of the scientific activity was set by Fred, who strongly encouraged joi...

  14. Forces, Growth and Form in Soft Condensed Matter: At the Interface between Physics and Biology NATO Advanced Study Institute, Geilo, Norway, 24 March - 3 April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, G. ed.

    2003-05-01

    The goal of this ASI was to bring together a group of disparate sciences to discuss areas of research related to competition between interactions of different ranges, for it is this that creates local structure on which complexity depends in soft condensed matter, biological systems and their synthetic models. The starting point, and the underlying theme throughout the ASI, was thus a thorough discussion of the relative role of the various fundamental interactions in such systems (electrostatic, hydrophobic, steric, conformational, van der Waals, etc.). The next focus was on how these competing interactions influence the form and topology of soft and biological matter, like polymers and proteins, leading to hierarchical structures in self-assembling systems and folding patterns sometimes described in terms of chirality, braids and knots. Finally, focus was on how the competing interactions influence various bio processes like genetic regulation and biological evolution taking place in systems like biopolymers, macromolecules and cell membranes. The report includes the abstracts of the posters presented, two of which are given in this database: (1) Precise characterisation of nano channels in track etched membranes by SAXS and SANS, and (2) Cisplatin binding to DNA: Structure, bonding and NMR properties from CarParrinello/Classical MD simulations.

  15. Condensation Energy of a Spacetime Condensate

    CERN Document Server

    de Matos, Clovis Jacinto

    2010-01-01

    Starting from an analogy between the Planck-Einstein scale and the dual length scales in Ginzburg-Landau theory of superconductivity, and assuming that space-time is a condensate of neutral fermionic particles with Planck mass, we derive the baryonic mass of the universe. In that theoretical framework baryonic matter appears to be associated with the condensation energy gained by spacetime in the transition from its normal (symetric) to its (less symetric) superconducting-like phase. It is shown however that the critical transition temperature cannot be the Planck temperature. Thus leaving open the enigma of the microscopic description of spacetime at quantum level.

  16. Methods for studying the coherent 4D structural dynamics of free molecules and condensed state of matter

    Energy Technology Data Exchange (ETDEWEB)

    Ishchenko, A. A., E-mail: aischenko@yasenevo.ru [Moscow State Technological University (Russian Federation); Bagratashvili, V. N. [Russian Academy of Sciences, Institute of Laser and Information Technologies (Russian Federation); Avilov, A. S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-09-15

    Studies in the coupled 4D spatial and temporal continuum are necessary for understanding the dynamic features of molecular systems with a complex profile of the potential energy surface. The introduction of time sweep into diffraction methods and the development of principles for studying coherent processes have revealed new approaches to the analysis of the dynamics of wave packets, the intermediate products and the transition state of the reaction center, and short-lived compounds in gaseous and condensed media. The use of picosecond and femtosecond electron probe pulses, synchronized with excitation laser pulses, determined the development of ultrafast electron crystallography, time-resolved X-ray diffraction, and dynamic transmission electron microscopy (DTEM). One of the most promising applications of the developed diffraction methods is the characterization and visualization of the processes occurring upon the photoexcitation of free molecules and biological objects and the analysis of surface and thin films. The whole set of spectral and diffraction methods based on different physical principles, which are complementary and make it possible to perform the photoexcitation of nuclei and electrons and carry out diagnostics of their dynamics at ultrashort time sequences, reveal new possibilities for studies with the necessary integration of the 'structure-dynamics-function' triad in chemistry, biology, and materials science.

  17. Photon condensation: A new paradigm for Bose-Einstein condensation

    Science.gov (United States)

    Rajan, Renju; Ramesh Babu, P.; Senthilnathan, K.

    2016-10-01

    Bose-Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose-Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose-Einstein condensate. We also elaborate on the theoretical framework for atomic Bose-Einstein condensation, which includes statistical mechanics and the Gross-Pitaevskii equation. As an extension, we discuss Bose-Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck's law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.

  18. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – Part 2: Composition, hygroscopicity and cloud condensation activity

    Directory of Open Access Journals (Sweden)

    E. Fuentes

    2011-03-01

    Full Text Available The effect of nanogel colloidal and dissolved organic matter <0.2 μm, secreted by marine biota, on the hygroscopic growth and droplet activation behaviour of the primary marine aerosol was studied. Seawater proxies were prepared by the combination of artificial seawater devoid of marine organics and natural seawater enriched in organic exudate released by laboratory-grown phytoplankton cultures, as described in a companion paper. The primary aerosol was produced by bubble bursting, using a plunging multijet system as an aerosol generator.

    The aerosol generated from seawater proxies enriched with marine exudate presented organic volume fractions on the order of 8–37%, as derived by applying a simple mixing rule. The hygroscopic growth and cloud condensation nuclei (CCN activity of the marine organics-enriched particles where 9–17% and 5–24% lower, respectively, than those of the aerosol produced from artificial seawater devoid of exudate. Experiments in a companion paper indicated that the cloud nuclei formation could be enhanced in diatom bloom areas because of the increase in the primary particle production induced by marine organics. The experiments in the present study, however, indicate that the impacts of such an enhancement would be counteracted by the reduction in the CCN activity of the primary particles enriched in marine organics.

    The extent of the effect of the biogenic matter on the particle behaviour was dependent on the seawater organic concentration and type of algal exudate. Aerosol produced from seawater proxies containing diatomaceous exudate presented higher hydrophobicity and lower CCN activity than those enriched with nanoplankton exudate. The organic fraction of the particles was found to correlate with the seawater organic concentration, without observing saturation of the particle organic mass fraction even for unrealistically high organic matter concentration in seawater. These findings are

  19. Basic concept for an accelerator-driven subcritical system to be used as a long-pulse neutron source for Condensed Matter research

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, R., E-mail: raul.vivanco.sanchez@gmail.com [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Ghiglino, A.; Vicente, J.P. de; Sordo, F.; Terrón, S.; Magán, M. [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Perlado, J.M. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Bermejo, F.J. [Instituto de Estructura de la Materia, IEM-CSIC, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)

    2014-12-11

    A model for an accelerator-driven subcritical system to be operated as a source of cold neutrons for Condensed Matter research is developed at the conceptual level. Its baseline layout relies upon proven accelerator, spalattion target and fuel array technologies, and consists in a proton accelerator able to deliver some 67.5 mA of proton beam with kinetic energy 0.6 GeV, a pulse length of 2.86 ms, and repetition rate of 14 Hz. The particle beam hits a target of conventional design that is surrounded by a multiplicative core made of fissile/fertile material, composed by a subcritical array of fuel bars made of aluminium Cermet cooled by light water poisoned with boric acid. Relatively low enriched uranium is chosen as fissile material. An optimisation of several parameters is carried out, using as components of the objective function several characteristics pertaining the cold neutron pulse. The results show that the optimal device will deliver up to 80% of the cold neutron flux expected for some of the ongoing projects using a significantly lower proton beam power than that managed in such projects. The total power developed within the core rises up to 22.8 MW, and the criticality range shifts to a final k{sub eff} value of around 0.9 after the 50 days cycle.

  20. An overview of Experimental Condensed Matter Physics in Argentina by 2014, and Oxides for Non Volatile Memory Devices: The MeMOSat Project

    Science.gov (United States)

    Levy, Pablo

    2015-03-01

    In the first part of my talk, I will describe the status of the experimental research in Condensed Matter Physics in Argentina, biased towards developments related to micro and nanotechnology. In the second part, I will describe the MeMOSat Project, a consortium aimed at producing non-volatile memory devices to work in aggressive environments, like those found in the aerospace and nuclear industries. Our devices rely on the Resistive Switching mechanism, which produces a permanent but reversible change in the electrical resistance across a metal-insulator-metal structure by means of a pulsed protocol of electrical stimuli. Our project is devoted to the study of Memory Mechanisms in Oxides (MeMO) in order to establish a technological platform that tests the Resistive RAM (ReRAM) technology for aerospace applications. A review of MeMOSat's activities is presented, covering the initial Proof of Concept in ceramic millimeter sized samples; the study of different oxide-metal couples including (LaPr)2/3Ca1/3MnO, La2/3Ca1/3MnO3, YBa2Cu3O7, TiO2, HfO2, MgO and CuO; and recent miniaturized arrays of micrometer sized devices controlled by in-house designed electronics, which were launched with the BugSat01 satellite in June2014 by the argentinian company Satellogic.

  1. Hadrons in compact stars

    Indian Academy of Sciences (India)

    Debades Bandyopadhyay

    2006-05-01

    We discuss -equilibrated and charge neutral matter involving hyperons and $\\bar{K}$ condensates within relativistic models. It is observed that populations of baryons are strongly affected by the presence of antikaon condensates. Also, the equation of state including $\\bar{K}$ condensates becomes softer resulting in a smaller maximum mass neutron star.

  2. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  3. Decay of Ultralight Axion Condensates

    Energy Technology Data Exchange (ETDEWEB)

    Eby, Joshua; Ma, Michael; Suranyi, Peter; Wijewardhana, L. C.R.

    2017-05-15

    Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion masses $m\\sim10^{-22}$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. We find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.

  4. Baryonic matter and beyond

    CERN Document Server

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  5. Condensed matter astrophysics: A prescription for determining the species-specific composition and quantity of interstellar dust using x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Julia C.; Xiang, Jingen; Ravel, Bruce; Kortright, Jeffrey B; Flanagan, Kathryn

    2009-01-05

    We present a newtechnique for determining the quantity and composition of dust in astrophysical environments using<6 keV X-rays.We argue that high-resolution X-ray spectra as enabled by the Chandra and XMM-Newton gratings should be considered a powerful and viable new resource for delving into a relatively unexplored regime for directlydetermining dust properties: composition, quantity, and distribution.We present initial cross section measurements of astrophysically likely iron-based dust candidates taken at the Lawrence Berkeley National Laboratory Advanced Light Source synchrotron beamline, as an illustrative tool for the formulation of our technique for determining the quantity and composition of interstellar dust with X-rays. (Cross sections for the materials presented here will be made available for astrophysical modeling in the near future.) Focused at the 700 eV Fe LIII and LII photoelectric edges, we discuss a technique for modeling dust properties in the soft X-rays using L-edge data to complement K-edge X-ray absorption fine structure analysis techniques discussed by Lee& Ravel. The paper is intended to be a techniques paper of interest and useful to both condensed matter experimentalists andastrophysicists. For the experimentalists, we offer a new prescription for normalizing relatively low signal-to-noise ratio L-edge cross section measurements. For astrophysics interests, we discuss the use of X-ray absorption spectra for determining dust composition in cold and ionized astrophysical environments and a new method for determining species-specific gas and dust ratios. Possible astrophysical applications of interest, including relevance to Sagittarius A*, are offered. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters, for proposed and planned missions such as Astro-H and the International X

  6. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – Part 2: Composition, hygroscopicity and cloud condensation activity

    Directory of Open Access Journals (Sweden)

    E. Fuentes

    2010-11-01

    Full Text Available The effect of colloidal and dissolved organic matter <0.2 μm, secreted by marine biota, on the hygroscopic growth and droplet activation behaviour of the primary marine aerosol was studied. Seawater proxies were prepared by the combination of artificial seawater devoid of marine organics and natural seawater enriched in organic exudate released by laboratory-grown phytoplankton cultures, as described in a companion paper. The primary aerosol was produced by bubble bursting, using a plunging multijet system as an aerosol generator.

    The aerosol generated from seawater proxies enriched with marine exudate presented organic volume fractions on the order of 5–37%, as derived by applying a simple mixing rule. The hygroscopic growth and cloud condensation nuclei (CCN activity of the marine organics-enriched particles where 9–17% and 5–24% lower, respectively, than those of the aerosol produced from artificial seawater devoid of exudate. Experiments in a companion paper indicated that the cloud nuclei formation could be enhanced in diatom bloom areas because of the increase in the primary particle production induced by marine organics. The experiments in the present study, however, indicate that the impacts of such an enhancement would be counteracted by the reduction in the CCN activity of the primary particles enriched in marine organics.

    The extent of the effect of the biogenic matter on the particle behaviour was dependent on the seawater organic concentration and type of algal exudate. Aerosol produced from seawater proxies containing diatomaceous exudate presented higher hydrophobicity and lower CCN activity than those enriched with nanoplankton exudate. The organic fraction of the particles increased with increasing seawater organic concentration, with the highest organic enrichment found for the diatomaceous exudate. These findings are indicative that, besides the differences induced by the aerosol generator employed

  7. Condensed matter physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.

    1995-10-01

    The proposed Los Alamos Neutron Science Center (LANSCE) upgrade is ideally suited for science-based stockpile stewardship (SBSS) because LANSCE is a highly-intensity pulsed neutron source located at a nuclear weapons design laboratory. The attributes of a high-intensity pulsed source are essential for performing experiments on Pu and other materials important for SBSS. Neutrons can accurately probe thick bulk specimens, probe thin layers both freestanding and embedded in thicker specimens, and provide time-resolution for some phenomena. Both ordered structures and disorder in solids, liquids, and amorphous materials can be characterized, as well as phase transition. Because LANSCE is at a nuclear design laboratory, specimens important for SBSS issues are available. Los Alamos National Laboratory is an appropriate place to develop the requisite hardware to accommodate SBSS specimens, such as Pu.

  8. Photoacoustic spectroscopy of condensed matter

    Science.gov (United States)

    Somoano, R. B.

    1978-01-01

    Photoacoustic spectroscopy is a new analytical tool that provides a simple nondestructive technique for obtaining information about the electronic absorption spectrum of samples such as powders, semisolids, gels, and liquids. It can also be applied to samples which cannot be examined by conventional optical methods. Numerous applications of this technique in the field of inorganic and organic semiconductors, biology, and catalysis have been described. Among the advantages of photoacoustic spectroscopy, the signal is almost insensitive to light scattering by the sample and information can be obtained about nonradiative deactivation processes. Signal saturation, which can modify the intensity of individual absorption bands in special cases, is a drawback of the method.

  9. Symmetry and Condensed Matter Physics

    Science.gov (United States)

    El-Batanouny, M.; Wooten, F.

    2008-03-01

    Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.

  10. Fundamentals of Condensed Matter Physics

    Science.gov (United States)

    Cohen, Marvin L.; Louie, Steven G.

    2016-05-01

    Part I. Basic Concepts: Electrons and Phonons: 1. Concept of a solid: qualitative introduction and overview; 2. Electrons in crystals; 3. Electronic energy bands; 4. Lattice vibrations and phonons; Part II. Electron Intercations, Dynamics and Responses: 5. Electron dynamics in crystals; 6. Many-electron interactions: the interacting electron gas and beyond; 7. Density functional theory; 8. The dielectric function for solids; Part III. Optical and Transport Phenomena: 9. Electronic transitions and optical properties of solids; 10. Electron-phonon interactions; 11. Dynamics of crystal electrons in a magnetic field; 12. Fundamentals of transport phenomena in solids; Part IV. Superconductivity, Magnetism, and Lower Dimensional Systems: 13. Using many-body techniques; 14. Superconductivity; 15. Magnetism; 16. Reduced-dimensional systems and nanostructures; Index.

  11. Thermal and chemical equilibration of hadronic matter

    CERN Document Server

    Bratkovskaya, E L; Greiner, C; Effenberger, M; Mosel, U; Sibirtsev, A A

    2001-01-01

    We study thermal and chemical equilibration in 'infinite' hadron matter as well as in finite size relativistic nucleus-nucleus collisions using a BUU cascade transport model with resonance and string degrees-of-freedom. The 'infinite' hadron matter is simulated within a cubic box employing periodic boundary conditions. The various equilibration times depend on baryon density and energy density and are much shorter for particles consisting of light quarks then for particles including strangeness. For kaons and antikaons the chemical equilibration time is found to be larger than $\\simeq$ 40 fm/c for all baryon and energy densities considered. The inclusion of continuum excitations, i.e. hadron 'strings', leads to a limiting temperature of $T_s\\simeq$ 150 MeV.

  12. Some typical self-organization phenomena in soft condensed matter physics%一些典型的软物质物理中的非平衡自组织现象

    Institute of Scientific and Technical Information of China (English)

    谭鹏; 徐磊

    2012-01-01

    Self-organization is a common phenomenon in soft condensed matter, which often oc non equilibrium processes and results in beautiful patterns. Specific examples include diffusion aggregation, pattern formation in Hele Shaw cells, gelation, patterns in granular materials, and so We will briefly describe these interesting processes in soft condensed matter.%在软物质物理中经常有自组织(self-organization)现象发生.这一现象通常在非平衡的过程中产生,并生成非常美丽和有趣的图案与结构.具体例子包括胶体颗粒的扩散限制凝聚(diffusion limited aggregation, DLA), Helemshaw盒中产生的流体分形结构,凝胶的形成(gelation),生物体自组织聚集,以及颗粒类物质(granula rmaterial)运动产生的规则图案等.这些现象在软物质物理研究中产生了很多重要结果.文章以比较浅显的文字介绍这些软物质物理中的非平衡自组织现象.

  13. Condensation Polymerization

    Indian Academy of Sciences (India)

    S Ramakrishnan

    2017-04-01

    The very idea that large polymer molecules can indeed existwas hotly debated during the early part of the 20th century.As highlighted by Sivaram in his articles on Carothersand Flory, Staudinger’s macromolecular hypothesis was finallyaccepted, and the study of polymers gained momentumbecause of the remarkable efforts of the these two individualswho laid down the foundations concerning the processes thatled to the formation of large polymer molecules, and to thosethat led to an understanding of many of their extraordinaryphysical properties. Condensation polymerizations, as thename suggests, utilizes bond-forming reactions that generatea small molecule condensate, which often needs to be continuouslyremoved to facilitate the formation of the polymer. Inthis article, I shall describe some of the essential principles ofcondensation polymerizations or more appropriately calledstep-growth polymerizations; and I will also describe someinteresting extensions that lead to the formation of polymernetworks and highly branched polymers.

  14. Aspects of thermal and chemical equilibration of hadronic matter

    CERN Document Server

    Bratkovskaya, E L; Greiner, C; Effenberger, M; Mosel, U; Sibirtsev, A A

    2000-01-01

    We study thermal and chemical equilibration in 'infinite' hadron matter as well as in finite size relativistic nucleus-nucleus collisions using a BUU cascade transport model that contains resonance and string degrees-of-freedom. The 'infinite' hadron matter is simulated within a cubic box with periodic boundary conditions. The various equilibration times depend on baryon density and energy density and are much shorter for particles consisting of light quarks then for particles including strangeness. For kaons and antikaons the chemical equilibration time is found to be larger than $\\simeq$ 40 fm/c for all baryon and energy densities considered. The inclusion of continuum excitations, i.e. hadron 'strings', leads to a limiting temperature of $T_s\\simeq$ 150 MeV. We, furthermore, study the expansion of a hadronic fireball after equilibration. The slope parameters of the particles after expansion increase with their mass; the pions leave the fireball much faster then nucleons and accelerate subsequently heavier ...

  15. Dirac matter

    CERN Document Server

    Rivasseau, Vincent; Fuchs, Jean-Nöel

    2017-01-01

    This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...

  16. International journal of quantum chemistry. Quantum Chemistry Symposium Number 27: Proceedings of the International Symposium on Atomic, Molecular, and Condensed Matter Theory and Computational Methods

    Science.gov (United States)

    Lowdin, Per-Olov; Ohrn, N. Y.; Sabin, John R.; Zerner, Michael C.

    1993-03-01

    The topics covered at the 33rd annual Sanibel Symposium, organized by the faculty and staff of the Quantum Theory Project of the University of Florida, and held March 13 - 20, 1993, include advanced scientific computing, interaction of photons and matter, quantum molecular dynamics, electronic structure methods, polymeric systems, and quantum chemical methods for extended systems.

  17. Neutrino emissivity under neutral kaon condensation

    CERN Document Server

    Kubis, S

    2006-01-01

    Neutrino emissivity from neutron star matter with neutral kaon condensate is considered. It is shown that a new cooling channel is opened, and what is more, all previously known channels acquire the greater emissivity reaching the level of the direct URCA cycle in normal matter.

  18. Neutrino emissivity under neutral kaon condensation

    OpenAIRE

    Kubis, Sebastian

    2005-01-01

    Neutrino emissivity from neutron star matter with neutral kaon condensate is considered. It is shown that a new cooling channel is opened, and what is more, all previously known channels acquire the greater emissivity reaching the level of the direct URCA cycle in normal matter.

  19. Bose-Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: new cosmological constraints and its detectability by LIGO

    CERN Document Server

    Li, Bohua; Rindler-Daller, Tanja

    2016-01-01

    We consider an alternative dark matter candidate, ultralight bosonic dark matter ($m>10^{-22}$eV) described by a complex scalar field (SFDM) with a global U(1) symmetry, for which the associated charge density is conserved after particle production during standard reheating (w=0). We allow for a repulsive self-interaction. In a Lambda-SFDM universe, SFDM starts relativistic, evolving from stiff (w=1) to radiationlike (w=1/3), before becoming nonrelativistic at late times (w=0). Thus, before the radiation-dominated era, there is an earlier era of stiff-SFDM-domination. Transitions between these eras, determined by SFDM particle mass $m$ and the quartic self-interaction coupling strength $\\lambda$, are thus constrained by cosmological observables, particularly N_{eff}, the effective number of neutrino species during BBN, and z_{eq}, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational wave background (SGWB) from inflation is amplified during the stiff era, it can contribute...

  20. Condensation heat transfer

    Science.gov (United States)

    Rose, J. W.

    The paper gives a brief description of some of the better understood aspects of condensation heat transfer and includes discussion of the liquid-vapour interface, natural and forced convection laminar film condensation and dropwise condensation.

  1. New LIGO Constraints on Bose-Einstein-Condensed Scalar Field Dark Matter and the Stochastic Gravitational-Wave Background from Inflation

    Science.gov (United States)

    Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja

    2017-06-01

    We consider an alternative to WIMP cold dark matter (CDM), ultralight bosonic dark matter (m≥10-22eV) described by a complex scalar field (SFDM) with global U(1) symmetry, for which the comoving particle number density is conserved after particle production during standard reheating. We allow for a repulsive self-interaction. In a ΛSFDM universe, SFDM starts relativistic, evolving from stiff (w=1) to radiationlike (w=1/3), before becoming nonrelativistic at late times (w=0). Thus, before the familiar radiation-dominated era, there is an earlier era of stiff-SFDM-domination, during which the expansion rate is higher than in ΛCDM. SFDM particle mass m and coupling strength λ, of a quartic self-interaction, are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during BBN, and zeq, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational-wave background (SGWB) from inflation is amplified during the stiff era, it can contribute a radiationlike component large enough to affect these observables by further boosting the expansion rate. Remarkably, this same amplification makes detection of the SGWB possible at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo and LISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad range of reheat temperatures Treheat, for values of tensor-to-scalar ratio r currently allowed by CMB polarization measurements. The SGWB is maximally detectable if modes that reentered the horizon when reheating ended have frequencies today in the LIGO sensitive band. For r=0.01, if SFDM parameters are chosen which marginally satisfy the above constraints, the maximally detectable model for (λ/(mc2)2, m)=(10-18eV-1cm3, 8×10-20eV) corresponds to Treheat≈104GeV, for which we predict an aLIGO O1 run detection with SNR~10. Upper limits on the SGWB

  2. Microscopic theory of equilibrium polariton condensates

    Science.gov (United States)

    Xue, Fei; Wu, Fengcheng; Xie, Ming; Su, Jung-Jung; MacDonald, A. H.

    2016-12-01

    We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical manipulation of polariton condensates.

  3. Cross sections for inelastic meson-meson scattering via quark-antiquark annihilation

    CERN Document Server

    Shen, Zhen-Yu; Weber, H J

    2015-01-01

    We study inelastic meson-meson scattering that is governed by quark-antiquark annihilation and creation involving a quark and an antiquark annihilating into a gluon, and subsequently the gluon creating another quark-antiquark pair. The resultant hadronic reactions include for I=1: pion + pion to rho + rho, kaon + antikaon to kaon* + antikaon*, kaon + antikaon* to kaon* + antikaon*, kaon* + antikaon to kaon* + antikaon*, as well as pion + pion to kaon + antikaon, pion + rho to kaon + antikaon*, pion + rho to kaon* + antikaon, and kaon + antikaon to rho + rho. In each reaction, one or two Feynman diagrams are involved in the Born approximation. We derive formulas for the unpolarized cross section, the transition amplitude, and the transition potential for quark-antiquark annihilation and creation. The unpolarized cross sections for the reactions are calculated at six temperatures, and prominent temperature dependence is found. It is due to differences among mesonic temperature dependence in hadronic matter.

  4. Topological phases and transitions in condensed matter systems%凝聚态材料中的拓扑相与拓扑相变--2016年诺贝尔物理学奖解读

    Institute of Scientific and Technical Information of China (English)

    戴希

    2016-01-01

    Two months ago, three physicists won the Nobel physics prize for their discov-ery of topological phases and transitions. In this paper, we review the origin of the concept of topol-ogy in condensed matter physics, then present a brief introduction to the main classes of topologi-cal states in solid-state materials, including topological insulators, the quantum anomalous Hall ef-fect, topological crystalline insulators, and topological semimetals.%凝聚态物理中拓扑相变和拓扑物态的发现,获得了2016年度诺贝尔物理学奖。文章系统介绍了凝聚态物理中拓扑性的起源,并简要介绍了目前凝聚态物理中发现的主要几类拓扑态:拓扑绝缘体、量子反常霍尔效应、拓扑晶体绝缘体和拓扑半金属。

  5. The Color Glass Condensate and the Glasma: Two Lectures.

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2007-08-29

    These two lectures concern the Color Glass Condensate and the Glasma. These are forms of matter which might be studied in high energy hadronic collisions. The Color Glass Condensate is high energy density gluonic matter. It constitutes the part of a hadron wave function important for high energy processes. The Glasma is matter produced from the Color Glass Condensate in the first instants after a collision of two high energy hadrons. Both types of matter are associated with coherent fields. The Color Glass Condensate is static and related to a hadron wavefunction, where the Glasma is transient and evolves quickly after a collision. I present the properties of such matter, and some aspects of what is known of their properties.

  6. Determination and Emission of Condensable particulate Matter from Coal-fired power plants%燃煤电厂可凝结颗粒物的测试与排放

    Institute of Scientific and Technical Information of China (English)

    裴冰

    2015-01-01

    The sampling-analysis method for CPM of stationary source was established and the sampling device was developed. The determination method was compared with EPA method 202 and applied in real-world test in coal-fired power plants. The result showed the average CPM emission concentration in the coal-fired power plant was (21. 2 ± 3. 5) mg•m - 3 while the FPM was (20. 6 ± 10. 0) mg•m - 3 during the same sampling period according to the method in the national standard. The high-efficiency dust removal device could efficiently reduce FPM emission but showed insignificant effect on CPM. The mass contribution of CPM to TPM would rise after high-efficiency dust removal rebuilding project, to which more attention should be paid. The condensate contributed 68% to CPM mass while the filter contributed 32% , and the organic component contributed little to CPM, accounting for only 1% .%建立了固定源可凝结颗粒物(condensable particulate matter, CPM)采样-分析方法,开发了 CPM 采样配件,与 EPA Method 202方法进行比对后应用于燃煤电厂.结果表明燃煤电厂 CPM 排放均值为(21.2±3.5) mg•m -3,同步使用国标方法测得的FPM 为(20.6±10.0) mg•m -3;高效除尘器可有效降低 FPM 的排放水平,但对 CPM 无太大影响.高效除尘改造后 CPM 对TPM 的贡献将有所提高,应引起足够的重视. CPM 中冷凝液贡献了68%,滤膜为32%,有机组分较少,为1%.

  7. A superheated Bose-condensed gas

    OpenAIRE

    Gaunt, Alexander L.; Fletcher, Richard J.; Robert P. Smith; Hadzibabic, Zoran

    2012-01-01

    Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and explain an example of non-equilibrium stalling of a continuous, second-order phase transition. We create a superheated atomic Bose gas, in which a Bose-Einstein condensate (BEC) persists above the equilibrium critical temperature, $T_c$, if its coup...

  8. Kaon Condensates, Nuclear Symmetry Energy and Cooling of Neutron Stars

    CERN Document Server

    Kubis, S

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  9. Manure total nitrogen flux from condensed tannin fed beef cattle

    Science.gov (United States)

    A study was conducted to determine the effects of three levels of condensed tannins fed to 27 beef feedyard steers on total nitrogen (N) flux from manure. Condensed tannins were fed at rates of 0, 0.5, and 1 percent of the daily ration on a dry matter basis. Manure and urine were collected over two ...

  10. Condensation in insulated homes

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, R A

    1978-05-28

    A research proposal on condensation in insulated homes is presented. Information is provided on: justification for condensation control; previous work and present outlook (good vapor barrier, condensation and retrofit insulation, vapor barrier decreases condensation, brick-veneer walls, condensation in stress-skin panels, air-conditioned buildings, retrofitting for conservation, study on mobile homes, high indoor relative humidity, report on various homes); and procedure (after funding has been secured). Measures are briefly described on opening walls, testing measures, and retrofitting procedures. An extensive bibliography and additional informative citations are included. (MCW)

  11. Chaos in a Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Xia; Ni Zheng-Guo; Cong Fu-Zhong; Liu Xue-Shen; Chen Lei

    2010-01-01

    It is demonstrated that Smale-horseshoe chaos exists in the time evolution of the one-dimensional Bose-Einstein condensate driven by time-periodic harmonic or inverted-harmonic potential.A formally exact solution of the timedependent Gross-Pitaevskii equation is constructed,which describes the matter shock waves with chaotic or periodic amplitudes and phases.

  12. Quantum tunnelling in condensed media

    CERN Document Server

    Kagan, Yu

    1992-01-01

    The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an ""environment"" - this being some form of condensed matter. The ""system"" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse

  13. Statistical Mechanics and Applications in Condensed Matter

    Science.gov (United States)

    Di Castro, Carlo; Raimondi, Roberto

    2015-08-01

    Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.

  14. Inhomogeneous Superconductivity in Condensed Matter and QCD

    CERN Document Server

    Casalbuoni, Roberto; Casalbuoni, Roberto; Nardulli, Giuseppe

    2004-01-01

    Inhomogeneous superconductivity arises when the species participating in the pairing phenomenon have different Fermi surfaces with a large enough separation. In these conditions it could be more favorable for each of the pairing fermions to stay close to its Fermi surface and, differently from the usual BCS state, for the Cooper pair to have a non zero total momentum. For this reason in this state the gap varies in space, the ground state is inhomogeneous and a crystalline structure might be formed. This situation was considered for the first time by Fulde, Ferrell, Larkin and Ovchinnikov, and the corresponding state is called LOFF. The spontaneous breaking of the space symmetries in the vacuum state is a characteristic feature of this phase and is associated to the presence of long wave-length excitations of zero mass. The situation described here is of interest both in solid state and in elementary particle physics, in particular in Quantum Chromo-Dynamics at high density and small temperature. In this revi...

  15. Latest trends in condensed matter physics

    CERN Document Server

    Singhal, R K

    2011-01-01

    This special issue of ""Solid State Phenomena"" documents some novel experimental and theoretical approaches applied to fascinating materials. Motivated by the increasing need to synthesize and understand the properties of technologically important materials, this issue represents an important step forward in improving our understanding of how modern materials can be optimised for technology and industry. The issue comprises 9 original review papers covering experimental approaches and theoretical modeling. The contributions will be very useful to researchers working in various areas of CMP an

  16. Topological Insulators Dirac Equation in Condensed Matters

    CERN Document Server

    Shen, Shun-Qing

    2012-01-01

    Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...

  17. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  18. Galilean Geometry in Condensed Matter Systems

    CERN Document Server

    Geracie, Michael

    2016-01-01

    We present a systematic means to impose Galilean invariance within field theory. We begin by defining the most general background geometries consistent with Galilean invariance and then turn to applications within effective field theory, fluid dynamics, and the quantum Hall effect.

  19. Colored condensates deep inside neutron stars

    CERN Document Server

    Blaschke, David

    2014-01-01

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 $M_\\odot$.

  20. Condensates in Quantum Chromodynamics and the Cosmological Constant

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Shrock, Robert

    2009-05-08

    Casher and Susskind have noted that in the light-front description, spontaneous chiral symmetry breaking in quantum chromodynamics (QCD) is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon QCD condensates are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the AdS/CFT correspondence, and the Bethe-Salpeter/Dyson-Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of 'in-hadron' condensates by Roberts et al., using the Bethe-Salpeter/Dyson-Schwinger formalism for QCD bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, since all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.

  1. Systematic text condensation

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2012-01-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....

  2. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  3. Vector meson condensation in a pion superfluid

    Science.gov (United States)

    Brauner, Tomáš; Huang, Xu-Guang

    2016-11-01

    We revisit the suggestion that charged ρ -mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that ρ -meson condensation is either avoided or postponed to isospin chemical potentials much higher than the ρ -meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and ρ -mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models.

  4. Vector meson condensation in a pion superfluid

    CERN Document Server

    Brauner, Tomas

    2016-01-01

    We revisit the suggestion that charged rho-mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that rho-meson condensation is either avoided or postponed to isospin chemical potentials much higher than the rho-meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and rho-mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models.

  5. Sedimentary condensation and authigenesis

    Science.gov (United States)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  6. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  7. Water condensation for submicronic particles abatement

    OpenAIRE

    Cozzolino, Gennaro

    2013-01-01

    Control of particulate matter (PM) emissions from industrial processes is important for protection of human health and the environment. A promising technique for submicron PM abatement is by condensing water vapor onto the particles, which enhances particle growth and improves the performance of traditional particle collection devices. This thesis analyzes the flue gases cleaning process by means of activation heterogeneous water nucleation mechanism on particles surface as a function of work...

  8. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  9. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  10. Immature condensate from southeastern Mediterranean coastal plain, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, A.; Aizenshtat, Z.; Goldberg, M.

    1985-06-01

    A highly unsaturated, sulfur-rich, naphthenic condensate was discovered in association with dry biogenic gas in the upper Tertiary of the southeastern Mediterranean coastal plain of Israel. Geologic and geochemical evidence suggests that this condensate was generated in thermally immature rocks. Similar material has been reported from the upper Tertiary of the western Mediterranean. We suggest that the immature condensates were formed from resin-rich, terrestrially derived organic matter. Under an equivalent thermal regime, marine material derived primarily from algae and bacteria will produce heavy crude, rich in asphaltenes.

  11. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  12. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  13. Bose-Einstein condensation of plexcitons

    CERN Document Server

    Rodriguez, S R K; Rivas, J Gomez

    2013-01-01

    Bosons (particles with integer spin) above a critical density to temperature ratio may macroscopically populate the ground state of a system, in an effect known as Bose-Einstein Condensation (BEC). The observation of BEC in dilute atomic gases was a great triumph of modern physics, a task requiring nK cooling of atoms. Following these demonstrations, a quest for lighter bosons enabling BEC at higher temperatures came to light. Photons in a microcavity were destined to fulfil this quest. Their coupling to semiconductor excitons allowed the condensation of exciton-polaritons at a few K in solid-state, and the condensation of photons was later observed in a liquid-state dye at room-temperature. Distinctly, one of the most actively studied excitations in condensed matter, surface plasmon polaritons - collective oscillations of conduction electrons in metals -, has never been shown or predicted to exhibit BEC. The strong radiative and Ohmic losses in metals, together with the lack of a suitable (e.g. harmonic) pot...

  14. Preventing freezing of condensate inside tubes of air cooled condenser

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan [Chonbuk Nat' l Univ., Jeonju (Korea, Republic of); Cho, Young Il [Drexel Univ., Philadelphia (United States)

    2012-08-15

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred.

  15. Condensed landscape experience

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    . This paper addresses the question of whether the sensation of landscape can be condensed in function or to the size of an urban building. It also discusses the benefits and potentials of the amalgamate, by underlining the unique qualities of such a hybrid. In an attempt to define the experience of landscape...

  16. Domains of Disoriented Chiral Condensate

    CERN Document Server

    Amado, R D; Lu, Yang

    1996-01-01

    The probability distribution of neutral pion fraction from independent domains of disoriented chiral condensate is characterized. The signal for the condensate is clear for a small number of domains but is greatly reduced for more than three.

  17. Astrophysical Bose-Einstein Condensates and Superradiance

    CERN Document Server

    Kuhnel, Florian

    2014-01-01

    We investigate gravitational analogue models to describe slowly rotating objects (e.g., dark-matter halos, or boson stars) in terms of Bose-Einstein condensates, trapped in their own gravitational potentials. We begin with a modified Gross-Pitaevskii equation, and show that the resulting background equations of motion are stable, as long as the rotational component is treated as a small perturbation. The dynamics of the fluctuations of the velocity potential are effectively governed by the Klein-Gordon equation of a "Eulerian metric", where we derive the latter by the use of a relativistic Lagrangian extrapolation. Superradiant scattering on such objects is studied. We derive conditions for its occurence and estimate its strength. Our investigations might give an observational handle to phenomenologically constrain Bose-Einstein condensates.

  18. Astrophysical Bose-Einstein condensates and superradiance

    Science.gov (United States)

    Kühnel, Florian; Rampf, Cornelius

    2014-11-01

    We investigate gravitational analogue models to describe slowly rotating objects (e.g., dark-matter halos, or boson stars) in terms of Bose-Einstein condensates, trapped in their own gravitational potentials. We begin with a modified Gross-Pitaevskii equation, and show that the resulting background equations of motion are stable, as long as the rotational component is treated as a small perturbation. The dynamics of the fluctuations of the velocity potential are effectively governed by the Klein-Gordon equation of an "Eulerian metric," where we derive the latter by the use of a relativistic Lagrangian extrapolation. Superradiant scattering on such objects is studied. We derive conditions for its occurrence and estimate its strength. Our investigations might give an observational handle to phenomenologically constrain Bose-Einstein condensates.

  19. Rydberg matter: properties and decay

    Science.gov (United States)

    Manykin, Edward A.; Ojovan, Michael I.; Poluektov, Pavel P.

    2006-03-01

    Rydberg matter is a condensed excited state made of highly excited atoms. State of art of research in the field of Rydberg matter is briefly reviewed. Special attention is focused on the contribution of Russian and Swedish scientists' groups to the analysis of this problem. Most attention is concentrated on physical principles of pseudopotential method and density functional theory used to describe the Rydberg matter. The description of Rydberg matter as an excited state becomes viable after the formal replacement of excited atoms by ground state pseudoatoms. This procedure has been used to find parameters of Rydberg matter made of highly excited cesium atoms. Theoretical estimations conform to experimental data available.

  20. Chaos of chiral condensate

    CERN Document Server

    Hashimoto, Koji; Yoshida, Kentaroh

    2016-01-01

    Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.

  1. Parametric Amplification of Vacuum Fluctuations in a Spinor Condensate

    DEFF Research Database (Denmark)

    Klempt, C.; Topic, O.; Gebreyesus, G.

    2010-01-01

    Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead...... to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant...... triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter....

  2. Gravitino Condensates in the Early Universe and Inflation

    CERN Document Server

    Mavromatos, Nick E

    2015-01-01

    We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local supersymmetry (supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) supersymmetry is "eaten" by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks the local supersymmetry (supergravity) dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-inflation-type phase. The higher-order curvature corrections of the (quantum) effective action of gravitino condensates induced by integrating out massive gravitino degrees of freedom in a curved space-time background, in the broken-supergravity phase, are responsible for inducing a scalar mode which inflates the Universe. The scenario is in agreement with Planck data phenomenology in a natural and phenomen...

  3. Hyperbolic spin vortices and textures in exciton-polariton condensates

    Science.gov (United States)

    Manni, F.; Léger, Y.; Rubo, Y. G.; André, R.; Deveaud, B.

    2013-10-01

    From cosmology to the microscopic scales of the quantum world, the study of topological excitations is essential for the understanding of phase conformation and phase transitions. Quantum fluids are convenient systems to investigate topological entities because well-established techniques are available for their preparation, control and measurement. Across a phase transition, a system dramatically changes its properties because of the spontaneous breaking of certain continuous symmetries, leading to generation of topological defects. In particular, attention is given to entities that involve both spin and phase topologies. Exciton-polariton condensates are quantum fluids combining coherence and spin properties that, thanks to their light-matter nature, bring the advantage of direct optical access to the condensate order parameter. Here we report on the spontaneous occurrence of hyperbolic spin vortices in polariton condensates, by directly imaging both their phase and spin structure, and observe the associated spatial polarization patterns, spin textures that arise in the condensate.

  4. Quantum cosmology of (loop) quantum gravity condensates: An example

    CERN Document Server

    Gielen, Steffen

    2014-01-01

    Spatially homogeneous universes can be described in (loop) quantum gravity as condensates of elementary excitations of space. Their treatment is easiest in the second-quantised group field theory formalism which allows the adaptation of techniques from the description of Bose-Einstein condensates in condensed matter physics. Dynamical equations for the states can be derived directly from the underlying quantum gravity dynamics. The analogue of the Gross-Pitaevskii equation defines an anisotropic quantum cosmology model, in which the condensate wavefunction becomes a quantum cosmology wavefunction on minisuperspace. To illustrate this general formalism, we give a mapping of the gauge-invariant geometric data for a tetrahedron to a minisuperspace of homogeneous anisotropic 3-metrics. We then study an example for which we give the resulting quantum cosmology model in the general anisotropic case and derive the general analytical solution for isotropic universes. We discuss the interpretation of these solutions a...

  5. Manure ammonia and greenhouse gas emissions from beef cattle fed condensed tannins

    Science.gov (United States)

    A study was conducted to determine the effects of three levels of condensed tannins fed to 27 beef feed yard steers on ammonia and GHG emissions from manure. Condensed tannins were fed at rates of 0, 0.5 and 1.0 percent on a dry matter basis. Manure and urine were collected from two periods over 6 d...

  6. Chiral condensates and QCD vacuum in two dimensions

    CERN Document Server

    Christiansen, H R

    1997-01-01

    We analyze the chiral symmetries of flavored quantum chromodynamics in two dimensions and show the existence of chiral condensates within the path-integral approach. The massless and massive cases are discussed as well, for arbitrary finite and infinite number of colors. Our results put forward the question of topological issues when matter is in the fundamental representation of the gauge group.

  7. The dielectric function of condensed systems

    CERN Document Server

    Keldysh, LV; Kirzhnitz, DA

    1989-01-01

    Much progress has been made in the understanding of the general properties of the dielectric function and in the calculation of this quantity for many classes of media. This volume gathers together the considerable information available and presents a detailed overview of the present status of the theory of electromagnetic response functions, whilst simultaneously covering a wide range of problems in its application to condensed matter physics.The following subjects are covered:- the dielectric function of the homogeneous electron gas, of crystalline systems, and of inh

  8. Silicate condensation in Mira variables

    CERN Document Server

    Gail, Hans-Peter; Pucci, Annemarie

    2016-01-01

    We study whether the condensation of silicate dust in Mira envelopes could be caused by cluster formation by the abundant SiO molecules. For a simplified model of the pulsational motions of matter in the the outer layers of a Mira variable which is guided by a numerical model for Mira pulsations, the equations of dust nucleation and growth are solved in the co-moving frame of a fixed mass element. It is assumed that seed particles form by clustering of SiO molecules. The calculation of the nucleation rate is based on the experimental data of Nuth and Donn (1982). The quantity of dust formed is calculated by a moment method and the calculation of radiation pressure on the dusty gas is based on a dirty silicate model. Dust nucleation occurs in the model at the upper culmination of the trajectory of a gas parcel where it stays for a considerable time at low temperatures while subsequent dust growth occurs during the descending part of the motion and continues after the next shock reversed motion. It is found tha...

  9. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  10. Recent developments in antikaon-nucleon dynamics

    CERN Document Server

    Hyodo, Tetsuo

    2012-01-01

    Stimulated by various experimental achievements, the study of Kbar N dynamics now enters a new phase. The two-body Kbar N interaction is largely constrained by recent experimental data, and the nature of the Lambda(1405) resonance is being unveiled by several theoretical analyses. These findings provide a basic tool for applications to KbarK-nuclear systems. We summarize the current status of the Kbar N phenomenology and outline the future direction in this field.

  11. Recoil corrections in antikaon-deuteron scattering

    Directory of Open Access Journals (Sweden)

    Mai Maxim

    2016-01-01

    Full Text Available Using the non-relativistic effective field theory approach for K−d scattering, it is demonstrated that a systematic perturbative expansion of the recoil corrections in the parameter ξ = MK/mN is possible in spite of the fact that K−d scattering at low energies is inherently non-perturbative due to the large values of the K̄N scattering lengths. The first order correction to the K−d scattering length due to single insertion of the retardation term in the multiple-scattering series is calculated. The recoil effect turns out to be reasonably small even at the physical value of MK/mN ≃ 0:5.

  12. Differential Neutrino Condensation onto Cosmic Structure

    CERN Document Server

    Yu, Hao-Ran; Inman, Derek; Zhang, Tong-Jie; Pen, Ue-Li; Harnois-Déraps, Joachim; Yuan, Shuo; Teng, Huan-Yu; Zhu, Hong-Ming; Chen, Xuelei; Xing, Zhi-Zhong; Du, Yunfei; Zhang, Lilun; Lu, Yutong; Liao, XiangKe

    2016-01-01

    Astrophysical techniques have pioneered the discovery of neutrino mass properties. Current cosmological observations give an upper bound on neutrino masses by attempting to disentangle the small neutrino contribution from the sum of all matter using precise theoretical models. We discover the differential neutrino condensation effect in our TianNu N-body simulation. Neutrino masses can be inferred using this effect by comparing galaxy properties in regions of the universe with different neutrino relative abundance (i.e. the local neutrino to cold dark matter density ratio). In "neutrino-rich"' regions, more neutrinos can be captured by massive halos compared to "neutrino-poor" regions. This effect differentially skews the halo mass function and opens up the path to independent neutrino mass measurements in current or future galaxy surveys.

  13. Convective condensation heat transfer in a horizontal condenser tube

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, P.K. [College of Engineering, GITAM, Visakhapatnam (India); Sastry, C.V.N.; Rao, V.D. [Andhra Univ., College of Engineering, Visakhapatnam (India); Kakac, S.; Liu, H. [Miami Univ., College of Engineering, FL (United States)

    2002-03-01

    The purpose of this article is to solve analytically the problem of convective condensation of vapors inside a horizontal condenser tube. Homogeneous model approach is employed in the estimation of shear velocity, which is subsequently, made use of in predicting local convective condensation heat transfer coefficients. The resulting analysis of the present study is compared with some of the available equations in the literature. It is observed that the agreement is reasonably satisfactory validating the assumptions and the theory presented. (authors)

  14. Superfluidity in polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Amo, A; Lefrere, J; Adrados, C; Giacobino, E; Bramati, A [Laboratoire Kastler Brossel, UPMC, ENS and CNRS, 75005 Paris (France); Sanvitto, D; Laussy, F P; Ballarini, D; Valle, E del; MartIn, M D; Tejedor, C; Vina, L [SEMICUAM, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Pigeon, S; Ciuti, C [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris Diderot-Paris 7 and CNRS, 75013 Paris (France); Carusotto, I [BEC-CNR-INFM and Dip. di Fisica, Universita di Trento, I-38050 Povo (Italy); Houdre, R [Institut de Photonique et d' Electronique Quantique, Ecole Polytechnique Federale de Lausanne, Station 3, CH-1015 Lausanne (Switzerland); LemaItre, A; Bloch, J [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis (France); Krizhanovskii, D N; Skolnick, M S, E-mail: alberto.amo@spectro.jussieu.f [Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield (United Kingdom)

    2010-02-01

    Exciton-polaritons, two-dimensional composite bosons arising from the quantum mixture of excitons and photons, can manifest many-body quantum effects at liquid He temperatures (4 K). Interestingly, polaritons are predicted to behave as particular quantum fluids due to their out of equilibrium character, arising from their reduced lifetime (shorter than their thermalization time). Here we report the observation of superfluid motion of polaritons in semiconductor microcavities both under cw and pulsed excitation. Among other signatures, superfluidity is manifested via the absence of scattering of the polariton condensates when encountering a localized defect in their flow path.

  15. Nanocarbon condensation in detonation

    Science.gov (United States)

    Bastea, Sorin

    2017-01-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions. PMID:28176827

  16. Galaxies as condensates

    CERN Document Server

    Bugg, D V

    2012-01-01

    A novel interpretation of MOND is presented. For galactic data, in addition to Newtonian acceleration, there is an attractive acceleration peaking at Milgrom's parameter a_0. The peak lies within experimental error where a_0 = cH_0/2\\pi and H_0 is the present-time value of the Hubble constant. This peaking may be understood in terms of quantum mechanical mixing between Newtonian gravitation and the Hubble mechanism. There are five pointers towards galaxies being Fermi-Dirac condensates.

  17. Confinement Contains Condensates

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  18. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity

    Science.gov (United States)

    Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.

    2017-01-01

    Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light–matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light–matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities. PMID:28211455

  19. Supermode-density-wave-polariton condensation with a Bose-Einstein condensate in a multimode cavity

    Science.gov (United States)

    Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.

    2017-02-01

    Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light-matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light-matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities.

  20. Topology and Fermionic Condensate

    Science.gov (United States)

    Kulikov, I.; Pronin, P.

    The purpose of this paper is to investigate an influence of a space-time topology on the formation of fermionic condensate in the model with four-fermion interaction ()2. The value for the space-time with topology of R1 × R1 × S1 is found. Moreover a relation of the value of fermionic condensate to a periodic length is studied. In this connection the possibility of a relation of the topologic deposits to structure of hadrons is discussed.Translated AbstractTopologie und FermikondensatEs wird der Einfluß einer Raum-Zeittopologie auf die Bildung des Fermikondensats in einem Modell mit Vierfermionenwechselwirkung ()2 untersucht. Für eine Raum-Zeit mit der Topologie R1 × R2 × S1 werden die Parameter gegeben. Weiterhin wird die Relation der Größe des Fermikondensats zu einer periodischen Länge untersucht. In diesem Zusammenhang wird die Verbindung des topologischen Depots zur Struktur der Hadronen diskutiert.

  1. Polariton condensates put in motion

    Energy Technology Data Exchange (ETDEWEB)

    Sanvitto, D; Amo, A; Vina, L [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, E-28049, Madrid (Spain); Laussy, F P; Tejedor, C [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049, Madrid (Spain); LemaItre, A; Bloch, J, E-mail: daniele.sanvitto@uam.es [LPN/CNRS, Route de Nozay, F-91460, Marcoussis (France)

    2010-04-02

    We present several examples of the interesting phenomenology shown by a moving polariton condensate in semiconductor microcavities. The superfluid behavior is probed by colliding the polariton condensate against physical obstacles in the form of natural defects of the sample, demonstrating a clear suppression of scattering when the speed of the flow lies below the critical velocity. At higher velocities Cerenkov-like shock waves around the defect and disruption of the condensate are also observed.

  2. Quantitative assessment of DNA condensation.

    Science.gov (United States)

    Trubetskoy, V S; Slattum, P M; Hagstrom, J E; Wolff, J A; Budker, V G

    1999-02-15

    A fluorescent method is proposed for assessing DNA condensation in aqueous solutions with variety of condensing agents. The technique is based on the effect of concentration-dependent self-quenching of covalently bound fluorophores upon DNA collapse. The method allows a more precise determination of charge equivalency in titration experiments with various polycations. The technique's ability to determine the number of DNA molecules that are condensed together in close proximity is under further investigation.

  3. Dark matter and cosmological nucleosynthesis

    Science.gov (United States)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  4. Dark Lump Excitations in Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    黄国翔; 朱善华

    2002-01-01

    Key Laboratory for Optical and Magnetic Resonance Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062We investigate the dynamics of two-dimensional matter-wave pulses in a Bose-Einstein condensate with diskshaped traps. For the case ofrepulsive atom-atom interactions, a Kadomtsev-Petviashvili equation with positive dispersion is derived using the method of multiple scales. The results show that it is possible to excite dark lump-like two-dimensional nonlinear excitations in the Bose-Einstein condensate.

  5. Dynamical Evolution of the Scalar Condensate in Heavy Ion Collisions

    CERN Document Server

    Csernai, László P; Jeon, S; Kapusta, J I; Csernai, Laszlo P.; Ellis, Paul J.; Jeon, Sangyong; Kapusta, Joseph I.

    2000-01-01

    We derive the effective coarse-grained field equation for the scalar condensate of the linear sigma model in a simple and straightforward manner using linear response theory. In general, the necessary response functions cannot be obtained in perturbation theory but require a summation of ladder diagrams. We estimate these response functions using direct physical reasoning. The field equation is solved for hot matter undergoing either one or three dimensional expansion and cooling in the aftermath of a high energy nuclear collision. The results show that the time constant for returning the scalar condensate to thermal equilibrium is of order 2 fm/c.

  6. Bose Einstein condensation of the classical axion field in cosmology?

    CERN Document Server

    Davidson, Sacha

    2013-01-01

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a bose einstein condensate. Using classical equations of motion during linear structure formation, we explore whether "gravitational thermalisation" can drive axions to a bose einstein condensate. At linear order in G_N, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. From the anisotropic stress, we estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.

  7. The Dynamics of Affleck-Dine Condensate Collapse

    CERN Document Server

    Enqvist, Kari; Enqvist, Kari; Donald, John Mc

    2000-01-01

    In the MSSM, cosmological scalar field condensates formed along flat directions of the scalar potential (Affleck-Dine condensates) are typically unstable with respect to formation of Q-balls, a type of non-topological soliton. We consider the dynamical evolution of the Affleck-Dine condensate in the MSSM. We discuss the creation and linear growth, in F- and D-term inflation models, of the quantum seed perturbations which in the non-linear regime catalyse the collapse of the condensate to non-topological soliton lumps. We study numerically the evolution of the collapsing condensate lumps and show that the solitons initially formed are not in general Q-balls, but Q-axitons, a pseudo-breather which can have very different properties from Q-balls of the same charge. We calculate the energy and charge radiated from a spherically symmetric condensate lump as it evolves into a Q-axiton. We also discuss the implications for baryogenesis and dark matter.

  8. Nonequilibrium Weak Processes in Kaon Condensation; 2, Kinetics of condensation

    CERN Document Server

    Muto, T; Iwamoto, N; Muto, Takumi; Tatsumi, Toshitaka; Iwamoto, Naoki

    2000-01-01

    The kinetics of negatively charged kaon condensation in the early stages of a newly born neutron star is considered. The thermal kaon process, in which kaons are thermally produced by nucleon-nucleon collisions, is found to be dominant throughout the equilibration process. Temporal changes of the order parameter of the condensate and the number densities of the chemical species are obtained from the rate equations, which include the thermal kaon reactions as well as the kaon-induced Urca and the modified Urca reactions. It is shown that the dynamical evolution of the condensate is characterized by three stages: the first, prior to establishment of a condensate, the second, during the growth and subsequent saturation of the condensate, and the third, near chemical equilibrium. The connection between the existence of a soft kaon mode and the instability of the noncondensed state is discussed. Implications of the nonequilibrium process on the possible delayed collapse of a protoneutron star are also mentioned.

  9. Condensation Processes in Geothermal Systems

    Science.gov (United States)

    Norman, D. I.; Moore, J. N.

    2005-12-01

    We model condensation processes in geothermal systems to understand how this process changes fluid chemistry. We assume two processes operate in geothermal systems: 1) condensation of a vapor phase derived by boiling an aqueous geothermal fluid into a cool near surface water and 2) condensation of a magmatic vapor by a deep circulating meteoric thermal fluid. It is assumed that the condensation process has two stages. Initially the condensing fluid is under saturated in gaseous species. Condensation of the vapor phase continues until the pressure on the fluid equals the sum of the partial pressures of water and the dissolved gaseous species. At that time bubbles flux through the condensing fluid. In time the fluid and fluxing gas phase come to equilibrium. Calculation shows that during the second stage of the condensation process the liquid phase becomes enriched in more soluble gaseous species like CO2 and H2S, and depleted in less soluble species like CH4 and N2. Stage 2 condensation processes can therefore be monitored by ratios of more and less condensable species like CO2/N2. Condensation of vapor released by boiling geothermal fluids results in liquids with high concentrations of H2S and CO2 like is seen in geothermal system steam-heated waters. Condensation of a magmatic vapor into circulating meteoric water has been proposed, but not well demonstrated. We compare to our models the Cerro Prieto, Mexico gas analysis data set collected over twelve years time by USGS personnel. It was assumed for modeling that the Cerro Prieto geothermal fluids are circulating meteoritic fluids with N2/Ar ratios about 40 to which is added a magmatic vapor with N2/Ar ratio = 400. The Cerro Prieto analyses show a strong correlation between N2/Ar and CO2/N2 as predicted by calculation. Two dimensional image plots of well N2/Ar + CO2/N2 show a bull's-eye pattern on the geothermal field. Image plots of analyses collected over a year or less time show N2/Ar and CO2/N2 hot spots

  10. ϕ meson mass and decay width in nuclear matter and nuclei

    Science.gov (United States)

    Cobos-Martínez, J. J.; Tsushima, K.; Krein, G.; Thomas, A. W.

    2017-08-01

    The mass and decay width of the ϕ meson in cold nuclear matter are computed in an effective Lagrangian approach. The medium dependence of these properties are obtained by evaluating kaon-antikaon loop contributions to the ϕ self-energy, employing the medium-modified kaon masses, calculated using the quark-meson coupling model. The loop integral is regularized with a dipole form factor, and the sensitivity of the results to the choice of cutoff mass in the form factor is investigated. At normal nuclear matter density we find a downward shift of the ϕ mass by a few percent, while the decay width is enhanced by an order of magnitude. For a large variation of the cutoff mass parameter, the results for the ϕ mass and the decay width turn out to vary very little. Our results support results in the literature which suggest that one should observe a small downward mass shift and a large broadening of the decay width. In order to explore the possibility of studying the binding and absorption of ϕ mesons in nuclei, we also present the single-particle binding energies and half-widths of ϕ-nucleus bound states for some selected nuclei.

  11. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  12. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  13. A History of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco [U. Amsterdam, GRAPPA; Hooper, Dan [Fermilab

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  14. Effective Mass of Kaon in Asymmetrici Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    LiXiguo; GaoYuan; LiuZiyu; ZuoWei

    2003-01-01

    The properties of kaon at very high baryon density has been a fascinating subject since 1986. Of particular importance is the modification of effective mass of antikaon in-medium. This is expected to not only help us to understander the chiral symmetry restoration but also effect the composition and structure of neutron star.. The modification of kaon and antikaon mass in medium might be a new mechanism of production at energies below the threshold. Based on the mean-field approximation to the effective SU(3)L×SU(3)n chiral Lagrangian, the kaon and anti kaon mass in medium, defined as the energy of a kaon (or antikaon) with zero three momentum,are then given by[1

  15. PPOOLEX experiments on wall condensation

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2009-08-15

    This report summarizes the results of the wall condensation experiments carried out in December 2008 and January 2009 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows, were carried out. The main purpose of the experiment series was to study wall condensation phenomenon inside the dry well compartment while steam is discharged through it into the condensation pool and to produce comparison data for CFD calculations at VTT. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. For the wall condensation experiments the test facility was equipped with a system for collecting and measuring the amount of condensate from four different wall segments of the dry well compartment. A thermo graphic camera was used in a couple of experiments for filming the outside surface of the dry well wall. The effect of the initial temperature level of the dry well structures and of the steam flow rate for the accumulation of condensate was studied. The initial temperature level of the dry well structures varied from 23 to 99 deg. C. The steam flow rate varied from 90 to 690 g/s and the temperature of incoming steam from 115 to 160 deg. C. During the initial phase of steam discharge the accumulation of condensate was strongly controlled by the temperature level of the dry well structures; the lower the initial temperature level was the more condensate was accumulated. As the dry well structural temperatures increased the condensation process slowed down. Most of the condensate usually accumulated during the first 200 seconds of the discharge. However, the condensation process never completely stopped because a small temperature difference remained between the dry well atmosphere and inner wall

  16. APPARATUS FOR CONDENSATION AND SUBLIMATION

    Science.gov (United States)

    Schmidt, R.J.; Fuis, F. Jr.

    1958-10-01

    An apparatus is presented for the sublimation and condensation of uranium compounds in order to obtain an improved crystalline structure of this material. The apparatus comprises a vaporizing chamber and condensing structure connected thereto. There condenser is fitted with a removable liner having a demountable baffle attached to the liner by means of brackets and a removable pin. The baffle is of spiral cross-section and is provided with cooling coils disposed between the surfaces of the baffle for circulation of a temperature controlling liquid within the baffle. The cooling coll provides for controlllng the temperature of the baffle to insure formatlon of a satisfactory condensate, and the removable liner facilitates the removal of condensate formed during tbe sublimation process.

  17. The Many Faces of strange Matter: Compact Stars, Cosmic Rays, and Dark Matter

    Science.gov (United States)

    Xu, R. X.

    2015-11-01

    The state of cold bulk matter at around nuclear density depends on the fundamental strong interaction between quarks at low-energy scale, so-called non-perturbative quantum chromo-dynamics. Such kind of matter is conjectured to be condensed matter of 3-flavour (u, d, and s) quark clusters in this note, being manifested in the form of compact stars, cosmic rays, and even dark matter.

  18. The many faces of strange matter: compact stars, cosmic rays, and dark matter

    CERN Document Server

    Xu, Renxin

    2015-01-01

    The state of cold bulk matter at around nuclear density depends on the fundamental strong interaction between quarks at low-energy scale, so-called non-perturbative quantum chromo-dynamics. Such kind of matter is conjectured to be condensed matter of 3-flavour (u, d and s) quark clusters in this note, being manifested in the form of compact stars, cosmic rays, and even dark matter.

  19. Molecular Orbital Theory of the gaseous Bose-Einstein condensate: Natural Orbital analysis of strongly correlated ground and excited states of an atomic condensate in a double well

    OpenAIRE

    Reinhardt, William P.; Perry, Heidi

    2003-01-01

    The possibility, envisaged in 1925 by Einstein following the suggestion of Bose, of a dilute gas of atoms being condensed into a single quantum state was experimentally achieved in 1995 following decades of research. An avalanche of experiment and theory has followed, leading to the awarding of the 2001 Nobel Prizes in Physics to three of the pioneering experimentalists. Theory, mostly couched in the language and formalism of condensed matter physics, has developed apace. What we point out he...

  20. Familon model of dark matter

    Science.gov (United States)

    Burdyuzha, V.; Lalakulich, O.; Ponomarev, Yu.; Vereshkov, G.

    2004-05-01

    If the next fundamental level of matter occurs (preons), then dark matter must consist of familons containing a 'hot' component from massless particles and a 'cold' component from massive particles. During the evolution of the Universe this dark matter occurred up to late-time relativistic phase transitions the temperatures of which were different. Fluctuations created by these phase transitions had a fractal character. As a result the structuration of dark matter (and therefore the baryon subsystem) occurred, and in the Universe some characteristic scales which have caused this phenomenon arise naturally. Familons are collective excitations of non-perturbative preon condensates that could be produced during an earlier relativistic phase transition. For structuration of dark matter (and the baryon component), three generations of particles are necessary. The first generation of particles produced the observed baryon world. The second and third generations produced dark matter from particles that appeared when symmetry between the generations was spontaneously broken.

  1. Familon Model of Dark Matter

    CERN Document Server

    Burdyuzha, V; Ponomarev, Yu; Vereshkov, G

    2008-01-01

    If the next fundamental level of matter occurs (preons) then dark matter must consist of familons containing a "hot" component from massless particles and a "cold" component from massive particles. During evolution of the Universe this dark matter was undergone to late-time relativistic phase transitions temperatures of which were different. Fluctuations created by these phase transitions have had a fractal character. In the result the structurization of dark matter (and therefore the baryon subsystem) has taken place and in the Universe some characteristic scales which have printed this phenomenon arise naturally. Familons are collective excitations of nonperturbative preon condensates which could be produced during more early relativistic phase transition. For structurization of dark matter (and baryon component) three generations of particles are necessary. The first generation of particles has produced the observed baryon world. The second and third generations have produced dark matter from particles whi...

  2. Efficient, Long-Life Biocidal Condenser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental control systems for manned lunar and planetary bases will require condensing heat exchangers to control humidity. Condensing surfaces must be...

  3. Efficient, Long-Life Biocidal Condenser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental control systems for manned lunar and planetary bases will require condensing heat exchangers to control humidity in manned modules. Condensing surfaces...

  4. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  5. Thermalization and Bose-Einstein Condensation in Overpopulated Glasma

    CERN Document Server

    Blaizot, Jean-Paul; Liao, Jinfeng; McLerran, Larry; Venugopalan, Raju

    2012-01-01

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter ("Glasma") is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an {\\em emergent property} of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization, and based on that we find approximate scaling solutions as well as numerically study the onset of condensation.

  6. Thermalization and Bose-Einstein Condensation in Overpopulated Glasma

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul; Gelis, François [Institut de Physique Théorique (URA 2306 du CNRS), CEA/DSM/Saclay, 91191, Gif-sur-Yvette Cedex (France); Liao, Jinfeng [Physics Department and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Venugopalan, Raju [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2013-05-02

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation.

  7. Organic particulate matter formation at varying relative humidity using surrogate secondary and primary organic compounds with activity corrections in the condensed phase obtained using a method based on the Wilson equation

    Directory of Open Access Journals (Sweden)

    E. I. Chang

    2010-06-01

    Full Text Available Secondary organic aerosol (SOA formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p approach. The N·2p approach neglects: 1 variation of activity coefficient (ζi values and mean molecular weight MW in the particulate matter (PM phase; 2 water uptake into the PM; and 3 the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2pζpMW,ζ approach (θ is a phase index. Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA compounds to allow calculation of ζi and MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure pL,io (atm. To facilitate adoption of the (N·2pζpMW,θ approach in large-scale models, this study also develops CP-Wilson.1 (Chang-Pankow-Wilson.1, a group-contribution ζi-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975. Group parameter values required by CP-Wilson.1 are obtained by fitting ζi values to predictions from UNIFAC. The (N·2pζpMW,θ approach is applied (using CP-Wilson.1 to several real α-pinene/O3 chamber cases for high reacted hydrocarbon levels (ΔHC≈400 to 1000 μg m−3 when relative humidity (RH ≈50%. Good agreement between the chamber and predicted results is

  8. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  9. Soft Matter under Exogenic Impacts

    CERN Document Server

    Rzoska, Sylwester J

    2007-01-01

    ‘Soft Matter Under Exogenic Impacts’ is fairly unique in supplying a comprehensive presentation of high pressures, negative pressures, random constraints and strong electric field exogenic (external) impacts on various soft matter systems. These are: (i) critical liquids, (ii) glass formers, such as supercooled liquids including water, polymers and resins, (iii) liquid crystals and (iv) bio-liquids. It is, because of this, an excellent guide in this novel and still puzzling research area. Besides new results, the identification of new types of physical behavior, new technological materials, ultimate verification of condensed and soft matter physics models, new applications in geophysics, biophysics, biotechnology, are all discussed in this book.

  10. Nonequilibrium Thermodynamics of Wealth Condensation

    CERN Document Server

    Braun, D

    2006-01-01

    We analyze wealth condensation for a wide class of stochastic economy models on the basis of the economic analog of thermodynamic potentials, termed transfer potentials. The economy model is based on three common transfers modes of wealth: random transfer, profit proportional to wealth and motivation of poor agents to work harder. The economies never reach steady state. Wealth condensation is the result of stochastic tunneling through a metastable transfer potential. In accordance with reality, both wealth and income distribution transiently show Pareto tails for high income subjects. For metastable transfer potentials, exponential wealth condensation is a robust feature. For example with 10 % annual profit 1% of the population owns 50 % of the wealth after 50 years. The time to reach such a strong wealth condensation is a hyperbolic function of the annual profit rate.

  11. Solar engineering - a condensed course

    Energy Technology Data Exchange (ETDEWEB)

    Broman, Lars

    2011-11-15

    The document represents the material covered in a condensed two-week course focusing on the most important thermal and PV solar energy engineering topics, while also providing some theoretical background.

  12. Elliptic Flow from Nonequilibrium Color Glass Condensate Initial Conditions

    CERN Document Server

    Ruggieri, M; Plumari, S; Greco, V

    2013-01-01

    A current goal of relativistic heavy ion collisions experiments is the search for a Color Glass Condensate as the limiting state of QCD matter at very high density. In viscous hydrodynamics simulations, a standard Glauber initial condition leads to estimate $4\\pi \\eta/s \\sim 1$, while a Color Glass Condensate modeling leads to at least a factor of 2 larger $\\eta/s$. Within a kinetic theory approach based on a relativistic Boltzmann-like transport simulation, we point out that the out-of-equilibrium initial distribution proper of a Color Glass Condensate reduces the efficiency in building-up the elliptic flow. Our main result at RHIC energy is that the available data on $v_2$ are in agreement with a $4\\pi \\eta/s \\sim 1$ also for Color Glass Condensate initial conditions, opening the possibility to describe self-consistently also higher order flow, otherwise significantly underestimated, and to pursue further the search for signatures of the Color Glass Condensate.

  13. Charged Condensate and Helium Dwarf Stars

    CERN Document Server

    Gabadadze, Gregory

    2008-01-01

    White dwarf stars composed of carbon, oxygen or heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat -- the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  14. Breathing Bright Solitons in a Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    崇桂书; 海文华; 谢琼涛

    2003-01-01

    A Bose-Einstein condensate with time varying scattering length in time-dependent harmonic trap is analytically investigated and soliton-like solutions of the Gross-Pitaeviskii equation are obtained to describe single soliton,bisoliton and N-soliton properties of the matter wave. The influences of the geometrical property and modulate frequency of trapping potential on soliton behaviour are discussed. When the trap potential has a very small trap aspect ratio or oscillates with a high frequency, the matter wave preserves its shape nearly like a soliton train in propagation, while the breathing behaviour, which displays the periodic collapse and revival of the matter wave,is found for a relatively large aspect ratio or slow varying potential. Meanwhile mass centre of the matter wave translates and/or oscillates for different trap aspect ratio and trap frequencies.

  15. Functional renormalization group approach to neutron matter

    Directory of Open Access Journals (Sweden)

    Matthias Drews

    2014-11-01

    Full Text Available The chiral nucleon-meson model, previously applied to systems with equal number of neutrons and protons, is extended to asymmetric nuclear matter. Fluctuations are included in the framework of the functional renormalization group. The equation of state for pure neutron matter is studied and compared to recent advanced many-body calculations. The chiral condensate in neutron matter is computed as a function of baryon density. It is found that, once fluctuations are incorporated, the chiral restoration transition for pure neutron matter is shifted to high densities, much beyond three times the density of normal nuclear matter.

  16. Dark Matter

    OpenAIRE

    Einasto, Jaan

    2013-01-01

    I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic...

  17. Condenser Optimization in Steam Power Plant

    Institute of Scientific and Technical Information of China (English)

    Sukru Bekdemir; Recep Ozturk; Zehra Yumurtac

    2003-01-01

    In this paper the effects of the condenser design parameters (such as turbine inlet condition, turbine power and condenser pressure) on heat transfer area, cooling water flow-rate, condenser cost and specific energy generation cost are studied for surface type condenser.The results are given in the text and also shown as diagrams.

  18. Rapid Drop Dynamics During Superhydrophobic Condensation

    Science.gov (United States)

    Zhang, Xiaodong; Boreyko, Jonathan; Chen, Chuan-Hua

    2008-11-01

    Rapid drop motion is observed on superhydrophobic surfaces during condensation; condensate drops with diameter of order 10 μm can move at above 100G and 0.1 m/s. When water vapor condenses on a horizontal superhydrophobic surface, condensate drops move in a seemingly random direction. The observed motion is attributed to the energy released through coalescence of neighboring condensate drops. A scaling analysis captured the initial acceleration and terminal velocity. Our work is a step forward in understanding the dynamics of superhydrophobic condensation occurring in both natural water-repellant plants and engineered dropwise condensers.

  19. Violation of the Weak Energy Condition by the Inflationary Yang-Mills Condensate

    Institute of Scientific and Technical Information of China (English)

    张杨

    2002-01-01

    Recent cosmic microwave background data favours a blueshifted primeval perturbation spectrum with an indexn>1, which implies that the equation of state of dominant matter should be such that p + p<0 during theinflationary expansion of the early universe. We study the quantum Yang-Mills condensate inflationary modeland find that this requirement can be satisfied by the effective quantum Yang-Mills condensate naturally in thestates with the negative dielectric constant.

  20. Generalized Klein-Gordon models: Behavior around the ground state condensate

    Science.gov (United States)

    Kuetche, Victor K.

    2014-07-01

    In this work, we investigate the balance between the nonlinear and linear interaction energy of an interparticle anharmonic system in the vicinity of the ground state condensate. As a result, we find that the nonlinear interaction energy is very significant in the vicinity of each degree of freedom. We address some potential applications of the findings to miscellaneous areas of interests such as soliton theory, hydrodynamics, solid state physics, ferromagnetic and ferroelectric domain walls, condensed matter physics, and particle physics, among others.

  1. Generalized Klein-Gordon models: behavior around the ground state condensate.

    Science.gov (United States)

    Kuetche, Victor K

    2014-07-01

    In this work, we investigate the balance between the nonlinear and linear interaction energy of an interparticle anharmonic system in the vicinity of the ground state condensate. As a result, we find that the nonlinear interaction energy is very significant in the vicinity of each degree of freedom. We address some potential applications of the findings to miscellaneous areas of interests such as soliton theory, hydrodynamics, solid state physics, ferromagnetic and ferroelectric domain walls, condensed matter physics, and particle physics, among others.

  2. Research progress of control of condensate depression for condenser

    Science.gov (United States)

    Liu, Ying; Liang, Run; Li, Fengyu

    2017-08-01

    It is introduced that significance and structure of the condensate depression control system. In accordance with controller devised procedure, we analyze and elaborate how to construct the lumped parameter and dynamic mathematical model which possesses distinct physics significance. Neural network model being called black-box model is also introduced. We analyze and contrast the control technique of condensate depression as conventional PI control, fuzzy PI control and fuzzy control. It is indicated that if the controller of condensate depression were devised inappropriate, while the steam discharged of turbine varying by a large margin, would result in the rotation rate of cooling water circulating pump accelerating at a great lick even to trigger the galloping danger which is less impressive for the units operating safely.

  3. Scrutinizing the pion condensed phase

    CERN Document Server

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo; Pagliaroli, Giulia

    2016-01-01

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid in the normal phase and close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to ...

  4. Polariton condensates at room temperature

    Science.gov (United States)

    Guillet, Thierry; Brimont, Christelle

    2016-10-01

    We review the recent developments of the polariton physics in microcavities featuring the exciton-photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

  5. Fermion mass and the pressure of dense matter

    CERN Document Server

    Fraga, Eduardo S; 10.1063/1.2714447

    2008-01-01

    We consider a simple toy model to study the effects of finite fermion masses on the pressure of cold and dense matter, with possible applications in the physics of condensates in the core of neutron stars and color superconductivity.

  6. Nonautonomous matter waves in a waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenya [Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Xiaofei [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); College of Science, Honghe University, Mengzi 661100 (China); Liu, W. M. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-08-15

    We present a physical model that describes the transport of Bose-Einstein-condensed atoms from a reservoir to a waveguide. By using the similarity and Moebius transformations, we study nonautonomous matter waves in Bose-Einstein condensates in the presence of an inhomogeneous source. Then, we find its various types of exact nonautonomous matter-wave solutions, including the W-shaped bright solitary waves, W-shaped and U-shaped dark solitary waves, periodic wave solutions, and rational solitary waves. The results show that these different types of matter-wave structures can be generated and effectively controlled by modulating the amplitude of the source. Our results may raise the possibility of some experiments and potential applications related to Bose-Einstein condensates in the presence of an inhomogeneous source.

  7. Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.

    Science.gov (United States)

    Berrada, T; van Frank, S; Bücker, R; Schumm, T; Schaff, J-F; Schmiedmayer, J

    2013-01-01

    Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.

  8. Persistent currents in ferromagnetic condensates

    Science.gov (United States)

    Lamacraft, Austen

    2017-06-01

    Persistent currents in Bose condensates with a scalar order parameter are stabilized by the topology of the order parameter manifold. In condensates with multicomponent order parameters it is topologically possible for supercurrents to "unwind" without leaving the manifold. We study the energetics of this process in the case of ferromagnetic condensates using a long wavelength energy functional that includes both the superfluid and spin stiffnesses. Exploiting analogies to an elastic rod and rigid body motion, we show that the current carrying state in a 1D ring geometry transitions between a spin helix in the energy minima and a solitonlike configuration at the maxima. The relevance to recent experiments in ultracold atoms is briefly discussed.

  9. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  10. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  11. Femtosecond X-ray scattering in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Korff Schmising, Clemens von

    2008-11-24

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  12. Group theory Application to the physics of condensed matter

    CERN Document Server

    Dresselhauss, M S; Jorio, A

    2007-01-01

    Every process in physics is governed by selection rules that are the consequence of symmetry requirements. The beauty and strength of group theory resides in the transformation of many complex symmetry operations into a very simple linear algebra. This concise and class-tested book has been pedagogically tailored over 30 years MIT and 2 years at the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory in close connection with applications helps students to learn, understand and use it for their own needs. For this reason, the theoretical background is confined to the first 4 introductory chapters (6-8 classroom hours). From there, each chapter develops new theory while introducing applications so that the students can best retain new concepts, build on concepts learned the previous week, and see interrelations between topics as presented. Essential problem sets between the chapters also aid the retention of the new material and for the consolid...

  13. Condensed-matter physics: Multitasking materials from atomic templates

    Science.gov (United States)

    Fiebig, Manfred

    2016-09-01

    Two 'failed' materials can perform much better when united. Such a combination exhibits magnetization and electric polarization up to room temperature, providing a basis for new magnetoelectric devices. See Letter p.523

  14. Condensed-matter physics: Superconducting electrons go missing

    Science.gov (United States)

    Zaanen, Jan

    2016-08-01

    'Overdoped' high-temperature superconductors, which have a high density of charge carriers, were thought to be well understood. An experiment challenges what we know about quantum physics in such systems. See Letter p.309

  15. Condensed-matter physics: Attractive electrons from nanoengineering

    Science.gov (United States)

    Kontos, Takis

    2016-07-01

    Electrons repel each other because they are negatively charged. An experiment now confirms a fifty-year-old theory that electrons can also attract one another as a result of repulsion from other electrons. See Letter p.395

  16. ICTP Spring College in Condensed Matter on Superconductivity

    CERN Document Server

    Lu, Y

    1995-01-01

    This volume contains the lecture notes of the ""Spring College on Superconductivity"" held from 27 April to 19 June 1992 at ICTP. The distinguished faculty of lecturers has provided a wide coverage of topics on the fascinating subject of superconductivity, ranging from basic physics to the latest developments. The comprehensive reviews included in this volume will prove invaluable for research workers and graduate students in the field.

  17. Photoelectron-Auger electron coincidence study for condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, G. [Department of Physics and Unita' INFM, University Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)]. E-mail: stefani@fis.uniroma3.it; Gotter, R. [National Laboratory TASC-INFM, Area Science Park, SS 14 Km 163.5, Basovizza, I-34012 Trieste (Italy); Ruocco, A. [Department of Physics and Unita INFM, University Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Offi, F. [Department of Physics and Unita INFM, University Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Pieve, F. Da [Department of Physics and Unita INFM, University Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Iacobucci, S. [IMIP-CNR Area della Ricerca di Roma, via Salaria Km 29, 3 Montelibretti (Italy); Morgante, A. [National Laboratory TASC-INFM, Area Science Park, SS 14 Km 163.5, Basovizza, I-34012 Trieste (Italy); Verdini, A. [National Laboratory TASC-INFM, Area Science Park, SS 14 Km 163.5, Basovizza, I-34012 Trieste (Italy); Liscio, A. [IMIP-CNR Area della Ricerca di Roma, via Salaria Km 29, 3 Montelibretti (Italy); Yao, H. [Department of Physics and Astronomy and Laboratory of Surface Modification, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08855 (United States); Bartynski, R.A. [Department of Physics and Astronomy and Laboratory of Surface Modification, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08855 (United States)

    2004-12-01

    Advances in materials science have produced a wide array of new solid-state systems with tunable properties and previously unattainable combinations of phenomena that hold the promise of entirely new approaches to technological applications. Invariably, these new materials are increasingly complex and include a large number of constituents in a variety of chemical states. Entirely new theoretical and experimental approaches are needed to gain the insights necessary for intelligent engineering of these materials. In the past 20 years, a steadily increasing number of electron-electron coincidence experiments on atoms and molecules have demonstrated the capability of investigating complicated systems with sensitivity and specificity well beyond the limits imposed by conventional electron spectroscopies. Over the past decade or so, Auger-photoelectron coincidence spectroscopy (APECS) has emerged as a powerful technique for obtaining detailed information about complex materials systems. Moreover, the recent advent of angle-resolved (AR)-APECS has introduced a new level of discrimination in studying the distribution of electrons photoemitted from complex systems. In this review, we describe the basic ideas behind APECS and discuss a study of the SiO{sub 2} system as an example of the unique information this technique can provide. We then introduce the concept of AR-APECS, explain its novel state and angular momentum selectivity that can be used to disentangle information about complex systems that is hidden to conventional spectroscopies. Examples of AR-APECS measurements from Cu, Ge, and graphite that exemplify the capabilities of this technique are presented.

  18. Condensed matter physics at surfaces and interfaces of solids

    Energy Technology Data Exchange (ETDEWEB)

    Mele, E.J.

    1992-01-01

    This research program is focused on structural and elastic properties of crystalline solids and interfaces between solids. We are particularly interested in novel forms of structural ordering and the effects of this ordering on the lattice dynamical properties. We are currently studying structural and vibrational properties of the surfaces of the elemental alkaline earths (particularly Be), and structural phenomena in the doped fullerites.

  19. Advances in chemical physics dynamical processes in condensed matter

    CERN Document Server

    Evans, Myron W

    2009-01-01

    Transport Properties and Soliton Models for Polyacetylene (M. Andretta, et al.). Development and Application of the Theory of Brownian Motion (W. Coffey). The Fading of Memory During the Regression of Structural Fluctuations (L. Dissado, et al.). Cooperative Molecular Behavior and Field Effects on Liquids: Experimental Considerations (G. Evans). A Review and Computer Simulation of the Molecular Dynamics of a Series of Specific Molecular Liquids (M. Evans and G. Evans). Recent Advances in Molecular-Dynamics Computer Simulation (D. Fincham and D. Heyes). Nonadiabatic Scattering Probl

  20. Mesoscopic structure formation in condensed matter due to vacuum fluctuations

    Science.gov (United States)

    Sen, Siddhartha; Gupta, Kumar S.; Coey, J. M. D.

    2015-10-01

    An observable influence of zero-point fluctuations of the vacuum electromagnetic field on bound electrons is well known in the hydrogen atom, where it produces the Lamb shift. Here, we adapt an approach used to explain the Lamb shift in terms of a slight expansion of the orbits due to interaction with the zero-point field and apply it to assemblies of N electrons that are modeled as independent atomically bound two-level systems. The effect is to stabilize a collective ground-state energy, which leads to a prediction of novel effects at room temperature for quasi-two-dimensional systems over a range of parameters in the model, namely, N , the two-level excitation energy ℏ ω and the ionization energy ℏ ω +ɛ . Some mesoscopic systems where these effects may be observable include water sheaths on protein or DNA, surfaces of gaseous nanobubbles, and the magnetic response of inhomogeneous, electronically dilute oxides. No such effects are envisaged for uniform three-dimensional systems.

  1. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  2. Investigation of cold nuclear fusion in condensed matter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Shelton, D.S.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M. [Brigham Young Univ., Provo, UT (United States); Anderson, A.N. [Idaho Research Software, Inc., Boise, ID (United States); McMurtry, G.; Murphy, N. [Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics; Goff, F.E. [Los Alamos National Lab., NM (United States)

    1992-12-29

    Recent research has been directed towards finding means to produce neutron emissions at will, to demonstrate reproducibility, and to permit in-depth studies of the origin of neutron emissions. this goal has been pursued in the Kamiokande detector in Japan and has led to the development of a deep underground laboratory in a tunnel in the Wasatch mountains near Brigham Young University. New counters for low-level neutron emissions are being utilized. Calorimetric tools have also been developed.

  3. Investigation of cold nuclear fusion in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Shelton, D.S.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M. (Brigham Young Univ., Provo, UT (United States)); Anderson, A.N. (Idaho Research Software, Inc., Boise, ID (United States)); McMurtry, G.; Murphy, N. (Hawaii Univ., Honolulu, HI (United States). Hawai

    1992-12-29

    Recent research has been directed towards finding means to produce neutron emissions at will, to demonstrate reproducibility, and to permit in-depth studies of the origin of neutron emissions. this goal has been pursued in the Kamiokande detector in Japan and has led to the development of a deep underground laboratory in a tunnel in the Wasatch mountains near Brigham Young University. New counters for low-level neutron emissions are being utilized. Calorimetric tools have also been developed.

  4. Twentieth ANZIP condensed matter physics meeting. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Theoretical and experimental short communications included in these proceedings cover recent achievements in high temperatures superconductivity, superconducting devices, nuclear techniques in studies of the structure of solids, lattice models and dynamics, physics studies of surfaces, interfaces and thin films. Separate abstracts have been prepared for 180 items in INIS scope

  5. The quasicrystal model of cluster systems in condensed matter

    Science.gov (United States)

    Melnikov, G.

    2017-01-01

    The paper proposes a quasicrystal model of the structure of clusters. The model is based on the similarity of the structure of clusters and macroscopic structure of quasicrystals. It offers a formula to calculate the radii of successive coordination spheres in quasicrystalline films. The formula is based on the properties of Fibonacci sequence and characteristics of the power potential of interaction between particles.

  6. A Dark Matter Superfluid

    CERN Document Server

    Khoury, Justin

    2015-01-01

    In this talk we present a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known cold at...

  7. Dark Matter Superfluidity

    CERN Document Server

    Khoury, Justin

    2016-01-01

    In this talk I summarize a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the $\\Lambda$CDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. This framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known co...

  8. Scrutinizing the pion condensed phase

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Stefano; Mammarella, Andrea; Mannarelli, Massimo [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Lepori, Luca [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito-L' Aquila (Italy); Pagliaroli, Giulia [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Gran Sasso Science Institute, L' Aquila (Italy)

    2017-02-15

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the ''radial'' fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition. (orig.)

  9. Neutrinos: the Real Nature of Dark Matter After All?

    CERN Document Server

    Morley, P D

    2016-01-01

    What exactly is Dark Matter? New theories for what really constitutes Dark Matter appear to make the news headlines every week. At a slower pace, these theories are slowly being eliminated. We revisit this scientific thriller and make the case that condensed neutrino matter is a leading suspect. We provide a forensic discussion of some subtle evidence and show that independent experimental results due out in 2019 from the KATRIN experiment will either be the definitive result or eliminate condensed neutrinos as a Dark Matter candidate.

  10. Pion decay constants in dense skyrmion matter

    Directory of Open Access Journals (Sweden)

    Lee H.-J.

    2010-10-01

    Full Text Available According to the QCD, the hadronic matter can have various phases with matter density and temperature. In general, when there is phase transition in a matter, it is known that a symmetry in the matter changes. In case of the hadronic matter, the chiral symmetry in the matter is expected to be restored when the matter density (or temperature increases. The actual order parameter with respect to the chiral symmetry in the hadronic matter is known as the quark condensate from the QCD, but the pion decay constant, corresponding to the radius of the chiral circle, plays the role of the order parameter in an effective field theoretical approach to the QCD. In this paper, by using the skyrmion model which is an effective theory to the QCD, we construct the skyrmion matter as a model of the hadronic matter (nuclear matter and calculate the pion decay constant in the matter. Because of presence of the matter, the pion decay constant is split into the two components, the temporal component and the spatial component. We discuss the phase transition in the skyrmion matter and behavior of the two components of the decay constant for massless pion with density of the skyrmion matter.

  11. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    Science.gov (United States)

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  12. Turbulent mixing condensation nucleus counter

    Science.gov (United States)

    Mavliev, Rashid

    The construction and operating principles of the Turbulent Mixing Condensation Nucleus Counter (TM CNC) are described. Estimations based on the semiempirical theory of turbulent jets and the classical theory of nucleation and growth show the possibility of detecting particles as small as 2.5 nm without the interference of homogeneous nucleation. This conclusion was confirmed experimentally during the International Workshop on Intercomparison of Condensation Nuclei and Aerosol Particle Counters (Vienna, Austria). Number concentration, measured by the Turbulent Mixing CNC and other participating instruments, is found to be essentially equal.

  13. Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.

    2010-06-09

    These lectures concern the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas.

  14. Pairing Phase Transitions of Matter under Rotation

    CERN Document Server

    Jiang, Yin

    2016-01-01

    The phases and properties of matter under global rotation have attracted much interest recently. In this paper we investigate the pairing phenomena in a system of fermions under the presence of rotation. We find that there is a generic suppression effect on pairing states with zero angular momentum. We demonstrate this effect with the chiral condensation and the color superconductivity in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.

  15. Alpha particle clusters and their condensation in nuclear systems

    Science.gov (United States)

    Schuck, Peter; Funaki, Yasuro; Horiuchi, Hisashi; Röpke, Gerd; Tohsaki, Akihiro; Yamada, Taiichi

    2016-12-01

    In this article we review the present status of α clustering in nuclear systems. First of all, an important aspect is condensation in nuclear matter. Like for pairing, quartetting in matter is at the root of similar phenomena in finite nuclei. Cluster approaches for finite nuclei are shortly recapitulated in historical order. The α container model, recently been proposed by Tohsaki-Horiuchi-Schuck-Röpke (THSR), will be outlined and the ensuing condensate aspect of the Hoyle state at 7.65 MeV in 12C is investigated in some detail. A special case will be made with respect to the very accurate reproduction of the inelastic form factor from the ground to Hoyle state with the THSR description. The extended volume will be deduced. New developments concerning excitations of the Hoyle state will be discussed. After 15 years since the proposal of the α condensation concept a critical assessment of this idea will be given. Alpha gas states in other nuclei like 16O and 13C will be considered. An important aspect is the experimental evidence, both present and future ones. The THSR wave function can also describe configurations of one α particle on top of a doubly magic core. The cases of 20Ne and 212Po will be investigated.

  16. Evaporative Condensers in Comfortable Air Conditioning System

    Institute of Scientific and Technical Information of China (English)

    YIN Ying-de; ZHU Dong-sheng; DU Gui-mei; LI Yuan-xi; SUN He-jing; LIU Qing-ming

    2009-01-01

    The operating theory of an evaporative condenser was expatiated.The difference between an e-vaporative condensing refrigeration system and a general refrigeration system was analyzed.Compared with the air-cooled and the water-cooled,the virtues of energy-conservation and water-conservation of evaporative con-densers were analyzed.Some questions existing in the application of evaporative condensers were pointed out,the corresponding solving methods were analyzed accordingly,and the development trend of evaporative con-densing technique in mechanical refrigeration system field and the applied foreground of evaporative condensers in comfortable air conditioning were prospected.

  17. Gravitino condensates in the early universe and inflation

    Directory of Open Access Journals (Sweden)

    Mavromatos Nick E.

    2015-01-01

    Full Text Available We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local super-symmetry (supergravity, entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global super-symmetry is “eaten” by the gravitino field, which becomes massive (via its own vacuum condensation and breaks the local supersymmetry (supergravity dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-inflation-type phase. The higher-order curvature corrections of the (quantum effective action of gravitino condensates induced by integrating out massive gravitino degrees of freedom in a curved space-time background, in the broken-supergravity phase, are responsible for inducing a scalar mode which inflates the Universe. The scenario is in agreement with Planck data phenomenology in a natural and phenomenologically-relevant range of parameters, namely Grand-Unified-Theory values for the super-symmetry breaking energy scale and dynamically-induced gravitino mass.

  18. Condensational theory of stationary tornadoes

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; 10.1016/j.physleta.2011.04.023

    2012-01-01

    Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in agreement with observations for the Mulhall tornado, world's largest on record and longest-lived among the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are estimated.

  19. Approaching Bose-Einstein Condensation

    Science.gov (United States)

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  20. Magnetofermionic condensate in two dimensions

    Science.gov (United States)

    Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.

    2016-11-01

    Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations.

  1. Rotary condenser for SC2

    CERN Multimedia

    1975-01-01

    During 1975 the SC2 performance was improved among other things by redesigning some of the elements of the ROTCO (Annual Report 1975, p. 55). The photo shows an interior wiew of the housing of the rotary condenser and of the sixteen sets of shaped stator blades.

  2. Machine learning phases of matter

    Science.gov (United States)

    Carrasquilla, Juan; Melko, Roger G.

    2017-02-01

    Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the `curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.

  3. Dark matter

    OpenAIRE

    Einasto, J.

    2011-01-01

    I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Properties of dark matter particles determine the structure of the cosmic web.

  4. Machine learning phases of matter

    OpenAIRE

    Carrasquilla, Juan; Melko, Roger G.

    2016-01-01

    Neural networks can be used to identify phases and phase transitions in condensed matter systems via supervised machine learning. Readily programmable through modern software libraries, we show that a standard feed-forward neural network can be trained to detect multiple types of order parameter directly from raw state configurations sampled with Monte Carlo. In addition, they can detect highly non-trivial states such as Coulomb phases, and if modified to a convolutional neural network, topol...

  5. Gluonic phases, vector condensates, and exotic hadrons in dense QCD

    CERN Document Server

    Gorbar, E V; Miransky, V A; Hashimoto, Michio

    2007-01-01

    We study the dynamics in phases with vector condensates of gluons (gluonic phases) in dense two-flavor quark matter. These phases yield an example of dynamics in which the Higgs mechanism is provided by condensates of gauge (or gauge plus scalar) fields. Because vacuum expectation values of spatial components of vector fields break the rotational symmetry, it is naturally to have a spontaneous breakdown both of external and internal symmetries in this case. In particular, by using the Ginzburg-Landau approach, we establish the existence of a gluonic phase with both the rotational symmetry and the electromagnetic U(1) being spontaneously broken. In other words, this phase describes an anisotropic medium in which the color and electric superconductivities coexist. It is shown that this phase corresponds to a minimum of the Ginzburg-Landau potential and, unlike the two-flavor superconducting (2SC) phase, it does not suffer from the chromomagnetic instability. The dual (confinement) description of its dynamics is...

  6. Vortices in gauge models at finite density with vector condensates

    CERN Document Server

    Gorbar, E V; Miransky, V A; Jia, Junji

    2006-01-01

    There exists a class of gauge models incorporating a finite density of matter in which the Higgs mechanism is provided by condensates of gauge (or gauge and scalar) fields, i.e., there are vector condensates in this case. We describe vortex solutions in the simplest model in this class, the gauged $SU(2)\\times U(1)_Y$ $\\sigma$-model with the chemical potential for hypercharge $Y$, in which the gauge symmetry is completely broken. It is shown that there are three types of topologically stable vortices in the model, connected either with photon field or hypercharge gauge field, or with both of them. Explicit vortex solutions are numerically found and their energy per unit length are calculated. The relevance of these solutions for the gluonic phase in the dense two-flavor QCD is discussed.

  7. Interferometry with Bose-Einstein Condensates in Microgravity

    CERN Document Server

    Müntinga, H; Krutzik, M; Wenzlawski, A; Arnold, S; Becker, D; Bongs, K; Dittus, H; Duncker, H; Gaaloul, N; Gherasim, C; Giese, E; Grzeschik, C; Hänsch, T W; Hellmig, O; Herr, W; Herrmann, S; Kajari, E; Kleinert, S; Lämmerzahl, C; Lewoczko-Adamczyk, W; Malcolm, J; Meyer, N; Nolte, R; Peters, A; Popp, M; Reichel, J; Roura, A; Rudolph, J; Schiemangk, M; Schneider, M; Seidel, S T; Sengstock, K; Tamma, V; Valenzuela, T; Vogel, A; Walser, R; Wendrich, T; Windpassinger, P; Zeller, W; van Zoest, T; Ertmer, W; Schleich, W P; Rasel, E M

    2013-01-01

    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

  8. Carbonaceous Matter in Growing Nanoparticles

    Science.gov (United States)

    Johnston, M. V.; Stangl, C. M.; Horan, A. J.

    2015-12-01

    Atmospheric nanoparticles constitute the greatest portion of ambient aerosol loading by number. A major source of atmospheric nanoparticles is new particle formation (NPF), a gas to particle conversion process whereby clusters nucleate from gas phase precursors to form clusters on the order of one or a few nanometers and then grow rapidly to climatically relevant sizes. A substantial fraction of cloud condensation nuclei (CCN) are thought to arise from NPF. In order to better predict the frequency, growth rates, and climatic impacts of NPF, knowledge of the chemical mechanisms by which nucleated nanoparticles grow is needed. The two main contributors to particle growth are (neutralized) sulfate and carbonaceous matter. Particle growth by sulfuric acid condensation is generally well understood, though uncertainty remains about the extent of base neutralization and the relative roles of ammonia and amines. Much less is known about carbonaceous matter, and field measurements suggest that nitrogen-containing species are important. In this presentation, recent work by our group will be described that uses a combination of ambient measurements, laboratory experiments and computational work to study carbonaceous matter in growing nanoparticles. These studies span a range of particle sizes from the initial adsorption of molecules onto a nanometer-size ammonium bisulfate seed cluster to reactions in particles that are large enough to support condensed-phase chemistry.

  9. Molecular Effects on Evaporation and Condensation

    OpenAIRE

    Meland, Roar

    2002-01-01

    In this thesis the evaporation from and condensation on a plane liquid surface have been studied by analysis and molecular dynamics simulations. The effect of the condensation coefficient on the inverted temperature gradient for a two-surface evaporation-condensation geometry is investigated by the moment method. The influence of the molecular exchange phenomenon on the gas-kinetic treatment of evaporation and condensation is shown to be neglible under certain assumptions. Methods to simulate...

  10. Tunguska Dark Matter Ball

    CERN Document Server

    Froggatt, C D

    2014-01-01

    It is suggested that the Tunguska event in June 1908 cm-large was due to a cm-large ball of a condensate of bound states of 6 top and 6 anti-top quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  11. Chromatin as active matter

    Science.gov (United States)

    Agrawal, Ankit; Ganai, Nirmalendu; Sengupta, Surajit; Menon, Gautam I.

    2017-01-01

    Active matter models describe a number of biophysical phenomena at the cell and tissue scale. Such models explore the macroscopic consequences of driving specific soft condensed matter systems of biological relevance out of equilibrium through ‘active’ processes. Here, we describe how active matter models can be used to study the large-scale properties of chromosomes contained within the nuclei of human cells in interphase. We show that polymer models for chromosomes that incorporate inhomogeneous activity reproduce many general, yet little understood, features of large-scale nuclear architecture. These include: (i) the spatial separation of gene-rich, low-density euchromatin, predominantly found towards the centre of the nucleus, vis a vis. gene-poor, denser heterochromatin, typically enriched in proximity to the nuclear periphery, (ii) the differential positioning of individual gene-rich and gene-poor chromosomes, (iii) the formation of chromosome territories, as well as (iv), the weak size-dependence of the positions of individual chromosome centres-of-mass relative to the nuclear centre that is seen in some cell types. Such structuring is induced purely by the combination of activity and confinement and is absent in thermal equilibrium. We systematically explore active matter models for chromosomes, discussing how our model can be generalized to study variations in chromosome positioning across different cell types. The approach and model we outline here represent a preliminary attempt towards a quantitative, first-principles description of the large-scale architecture of the cell nucleus.

  12. Advances in Soft Matter Mechanics

    CERN Document Server

    Li, Shaofan

    2012-01-01

    "Advances in Soft Matter Mechanics" is a compilation and selection of recent works in soft matter mechanics by a group of active researchers in the field. The main objectives of this book are first to disseminate the latest developments in soft matter mechanics in the field of applied and computational mechanics, and second to introduce soft matter mechanics as a sub-discipline of soft matter physics. As an important branch of soft matter physics, soft matter mechanics has developed rapidly in recent years. A number of the novel approaches discussed in this book are unique, such as the coarse grained finite element method for modeling colloidal adhesion, entropic elasticity, meshfree simulations of liquid crystal elastomers, simulations of DNA, etc. The book is intended for researchers and graduate students in the field of mechanics, condensed matter physics and biomaterials. Dr. Shaofan Li is a professor of the University of California-Berkeley, U.S.A; Dr. Bohua Sun is a professor of Cape Peninsula Universit...

  13. Polymer induced condensation of dna supercoils

    NARCIS (Netherlands)

    Bessa Ramos Jr., J.E.; Ruggiero Neto, J.; Vries, de R.J.

    2008-01-01

    Macromolecular crowding is thought to be a significant factor driving DNA condensation in prokaryotic cells. Whereas DNA in prokaryotes is supercoiled, studies on crowding-induced DNA condensation have so far focused on linear DNA. Here we compare DNA condensation by poly(ethylene oxide) for superco

  14. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  15. Polymer Bose–Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, E., E-mail: ecastellanos@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, México D.F. 07000 (Mexico); Chacón-Acosta, G., E-mail: gchacon@correo.cua.uam.mx [Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, México D.F. 01120 (Mexico)

    2013-05-13

    In this work we analyze a non-interacting one-dimensional polymer Bose–Einstein condensate in a harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose–Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for λ{sup 2} up to ≲10{sup −16} m{sup 2}. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.

  16. Atomistic modeling of dropwise condensation

    Science.gov (United States)

    Sikarwar, B. S.; Singh, P. L.; Muralidhar, K.; Khandekar, S.

    2016-05-01

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  17. Radiative corrections to Bose condensation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. (Academia de Ciencias de Cuba, La Habana. Inst. de Matematica, Cibernetica y Computacion)

    1985-04-01

    The Bose condensation of the scalar field in a theory behaving in the Coleman-Weinberg mode is considered. The effective potential of the model is computed within the semiclassical approximation in a dimensional regularization scheme. Radiative corrections are shown to introduce certain ..mu..-dependent ultraviolet divergences in the effective potential coming from the Many-Particle theory. The weight of radiative corrections in the dynamics of the system is strongly modified by the charge density.

  18. Theory of laminar film condensation

    CERN Document Server

    Fujii, Tetsu

    1991-01-01

    Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar­ ified that one of the most important problems was manufacturing con­ densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con­ denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo­ retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with som...

  19. Condensation on Slippery Asymmetric Bumps

    Science.gov (United States)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  20. Speech Matters

    DEFF Research Database (Denmark)

    Hasse Jørgensen, Stina

    2011-01-01

    About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011.......About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011....

  1. Memory Matters

    Science.gov (United States)

    ... Emergency Room? What Happens in the Operating Room? Memory Matters KidsHealth > For Kids > Memory Matters A A ... of your complex and multitalented brain. What Is Memory? When an event happens, when you learn something, ...

  2. Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins

    NARCIS (Netherlands)

    Nierop, K.G.J.; Preston, C.M.; Verstraten, J.M.

    2006-01-01

    Condensed tannins are a major component of litter inputs, but little is known about the effects of tannin structural variations on soil biological processes and organic matter development. Four different condensed tannins (CTs) extracted from balsam fir, western red cedar, kalmia and black spruce we

  3. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds......Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...

  4. Quality factors to consider in condensate selection

    Energy Technology Data Exchange (ETDEWEB)

    Lywood, B. [Crude Quality Inc., Edmonton, AB (Canada)

    2009-07-01

    Many factors must be considered when assessing the feasibility of using condensates as a diluent for bitumen or heavy crude production blending. In addition to commercial issues, the effect of condensate quality is a key consideration. In general, condensate quality refers to density and viscosity. However, valuation decisions could be enhanced through the expansion of quality definitions and understanding. This presentation focused on the parameters that are important in choosing a diluent grade product. It also reviewed pipeline and industry specifications and provided additional information regarding general properties for bitumen and condensate compatibility; sampling and quality testing needs; and existing sources of information regarding condensate quality. tabs., figs.

  5. MANIFESTATION OF THE COLOR GLASS CONDENSATE IN PARTICLE PRODUCTION AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    TUCHIN,K.

    2004-07-26

    In this paper we discuss the experimental signatures of the new form of nuclear matter--the Color Glass Condensate (CGC) in particle production at RHIC. We show that predictions for particle production in p(d)A and AA collisions derived from these properties are in agreement with data collected at RHIC.

  6. Multi-K¯ nuclei and kaon condensation

    Science.gov (United States)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2008-04-01

    We extend previous relativistic mean-field (RMF) calculations of multi-K¯ nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting K¯ separation energy BK¯, as well as the associated nuclear and K¯-meson densities, saturate with the number κ of K¯ mesons for κ>κsat~10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BK¯ generally does not exceed 200 MeV, it is argued that multi-K¯ nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and K¯0 mesons, or protons and K- mesons, and study their properties.

  7. Condensation on slippery asymmetric bumps

    Science.gov (United States)

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C.; Aizenberg, Joanna

    2016-03-01

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  8. Velocity condensation for magnetotactic bacteria

    CERN Document Server

    Rupprecht, Jean-Francois; Bocquet, Lydéric

    2015-01-01

    Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g. active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that L\\'evy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.

  9. Dropwise Condensation on Hydrophobic Cylinders

    CERN Document Server

    Park, Kyoo-Chul; Hoang, Michelle; McManus, Brendan; Aizenberg, Joanna

    2016-01-01

    In this work, we studied the effect of the diameter of horizontal hydrophobic cylinders on droplet growth. We postulate that the concentration gradient created by natural convection around a horizontal circular cylinder is related to the droplet growth on the cylinder by condensation. We derive a simple scaling law of droplet growth and compare it with experimental results. The predicted negative exponent of drop diameter (d) as a function of cylinder diameter (D) at different time points is similar to the general trend of experimental data. Further, this effect of cylinder diameter on droplet growth is observed to be stronger than the supersaturation conditions created by different surface temperatures.

  10. Coupling a single electron to a Bose-Einstein condensate

    CERN Document Server

    Balewski, Jonathan B; Gaj, Anita; Peter, David; Büchler, Hans Peter; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman

    2013-01-01

    The coupling of electrons to matter is at the heart of our understanding of material properties such as electrical conductivity. One of the most intriguing effects is that electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, the basis for BCS superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate (BEC) and show that it can excite phonons and eventually set the whole condensate into a collective oscillation. We find that the coupling is surprisingly strong as compared to ionic impurities due to the more favorable mass ratio. The electron is held in place by a single charged ionic core forming a Rydberg bound state. This Rydberg electron is described by a wavefunction extending to a size comparable to the dimensions of the BEC, namely up to 8 micrometers. In such a state, corresponding to a principal quantum number of n=202, the Rydberg electron is interacting with several tens of thousands of condensed atoms...

  11. Consciousness as a state of matter

    Science.gov (United States)

    Tegmark, Max

    2015-07-01

    I examine the hypothesis that consciousness can be understood as a state of matter, "perceptronium", with distinctive information processing abilities. I explore five basic principles that may distinguish conscious matter from other physical systems such as solids, liquids and gases: the information, integration, independence, dynamics and utility principles. This approach generalizes Giulio Tononi's integrated information framework for neural-network-based consciousness to arbitrary quantum systems, and provides interesting links to error-correcting codes and condensed matter criticality, as well as an interesting connections between the emergence of consciousness and the emergence of time. (For more technical details, see arXiv:1401.1219).

  12. Consciousness as a State of Matter

    CERN Document Server

    Tegmark, Max

    2014-01-01

    I examine the hypothesis that consciousness can be understood as a state of matter, "perceptronium", with distinctive information processing abilities. I explore five basic principles that may distinguish conscious matter from other physical systems such as solids, liquids and gases: the information, integration, independence, dynamics and utility principles. This approach generalizes Giulio Tononi's integrated information framework for neural-network-based consciousness to arbitrary quantum systems, and provides interesting links to error-correcting codes and condensed matter criticality, as well as an interesting connections between the emergence of consciousness and the emergence of time. (For more technical details, see arXiv:1401.1219).

  13. Many-body theory of nuclear and neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V.R.; Akmal, A.; Ravenhall, D.G. [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    1998-06-01

    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v{sub 18} two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  14. Bio-oil fractionation and condensation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C.; Jones, Samuel T.; Pollard, Anthony

    2017-04-04

    The present invention relates to a method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also disclosed are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  15. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  16. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  17. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    Science.gov (United States)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  18. DNA condensation in one dimension

    Science.gov (United States)

    Pardatscher, Günther; Bracha, Dan; Daube, Shirley S.; Vonshak, Ohad; Simmel, Friedrich C.; Bar-Ziv, Roy H.

    2016-12-01

    DNA can be programmed to assemble into a variety of shapes and patterns on the nanoscale and can act as a template for hybrid nanostructures such as conducting wires, protein arrays and field-effect transistors. Current DNA nanostructures are typically in the sub-micrometre range, limited by the sequence space and length of the assembled strands. Here we show that on a patterned biochip, DNA chains collapse into one-dimensional (1D) fibres that are 20 nm wide and around 70 µm long, each comprising approximately 35 co-aligned chains at its cross-section. Electron beam writing on a photocleavable monolayer was used to immobilize and pattern the DNA molecules, which condense into 1D bundles in the presence of spermidine. DNA condensation can propagate and split at junctions, cross gaps and create domain walls between counterpropagating fronts. This system is inherently adept at solving probabilistic problems and was used to find the possible paths through a maze and to evaluate stochastic switching circuits. This technique could be used to propagate biological or ionic signals in combination with sequence-specific DNA nanotechnology or for gene expression in cell-free DNA compartments.

  19. Condensation induced water hammer safety

    Energy Technology Data Exchange (ETDEWEB)

    Gintner, M.A.

    1997-03-10

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer.

  20. Fermi-Einstein condensation in dense QCD-like theories

    CERN Document Server

    Langfeld, Kurt

    2011-01-01

    While pure Yang-Mills theory feature the centre symmetry, this symmetry is explicitly broken by the presence of dynamical matter. We study the impact of the centre symmetry in such QCD-like theories. In the analytically solvable Schwinger model, centre transitions take place even under extreme conditions, temperature and/or density, and we show that they are key to the solution of the Silver-Blaze problem. We then develop an effective SU(3) quark model which confines quarks by virtue of centre sector transitions. The phase diagram by confinement is obtained as a function of the temperature and the chemical potential. We show that at low temperatures and intermediate values for the chemical potential the centre dressed quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein condensation. To corroborate the existence of centre sector transitions in gauge theories with matter, we study (at vanishing chemical potential) the interface tension in the three-dimensional Z2 gauge theory wit...

  1. Structure of Nonlocal Vacuum Condensate of Quarks

    Institute of Scientific and Technical Information of China (English)

    周丽娟; 马维兴

    2003-01-01

    The Dyson-Schwinger formalism is used to derive a fully dressed quark propagator. By use of the derived form of the quark propagator, the structure of non-local quark vacuum condensate is studied, and the values of local quark vacuum condensate as well as quark gluon mixed condensate are calculated. The theoretical predictions are in good agreement with the empirical one used commonly in the literature.

  2. Ultra-low threshold polariton condensation

    CERN Document Server

    Steger, Mark; Alberi, Kirstin; Mascarenhas, Angelo; Snoke, David W; Pfeiffer, Loren N; West, Ken

    2016-01-01

    We demonstrate condensation of microcavity polaritons with a very sharp threshold occuring at two orders of magnitude lower pump intensity than previous demonstrations of condensation. The long cavity-lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or "polariton lasing" has long been proposed as a promising source of coherent light at lower threshold than traditional lasing, and these results suggest methods to bring this threshold even lower.

  3. Van der Waals Interactions and Exciton Condensation

    Science.gov (United States)

    Handel, P. H.; Kittel, C.

    1971-01-01

    It is shown that the van der Waals interaction can lead at low temperatures to a condensed state of excitons with properties in qualitative agreement with the observations of exciton droplets. Our calculation gives a binding energy of the correct sign and magnitude for the exciton condensate. In a diclectric medium, the strong enhancement of the exciton polarizability leads to a giant van der Waals interaction, and this interaction appears to make possible a condensed exciton phase. PMID:16591958

  4. Enhanced condensation heat transfer with wettability patterning

    Science.gov (United States)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  5. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  6. Twisted equivariant matter

    CERN Document Server

    Freed, Daniel S

    2012-01-01

    We show how general principles of symmetry in quantum mechanics lead to twisted notions of a group representation. This framework generalizes both the classical 3-fold way of real/complex/quaternionic representations as well as a corresponding 10-fold way which has appeared in condensed matter and nuclear physics. We establish a foundation for discussing continuous families of quantum systems. Having done so, topological phases of quantum systems can be defined as deformation classes of continuous families of gapped Hamiltonians. For free particles there is an additional algebraic structure on the deformation classes leading naturally to notions of twisted equivariant K-theory. In systems with a lattice of translational symmetries we show that there is a canonical twisting of the equivariant K-theory of the Brillouin torus. We give precise mathematical definitions of two invariants of the topological phases which have played an important role in the study of topological insulators. Twisted equivariant K-theor...

  7. Bosonic Condensation and Disorder-Induced Localization in a Flat Band.

    Science.gov (United States)

    Baboux, F; Ge, L; Jacqmin, T; Biondi, M; Galopin, E; Lemaître, A; Le Gratiet, L; Sagnes, I; Schmidt, S; Türeci, H E; Amo, A; Bloch, J

    2016-02-12

    We report on the engineering of a nondispersive (flat) energy band in a geometrically frustrated lattice of micropillar optical cavities. By taking advantage of the non-Hermitian nature of our system, we achieve bosonic condensation of exciton polaritons into the flat band. Because of the infinite effective mass in such a band, the condensate is highly sensitive to disorder and fragments into localized modes reflecting the elementary eigenstates produced by geometric frustration. This realization offers a novel approach to studying coherent phases of light and matter under the controlled interplay of frustration, interactions, and dissipation.

  8. Quantitative and Qualitative Analysis of Bose-Einstein Condensation in Harmonic Traps

    Institute of Scientific and Technical Information of China (English)

    HU Guang-Xi; YE Ji-Ping; DAI Xian-Xi; DAI Ji-Xin; William E. Evenson

    2003-01-01

    A simple and direct approach to handle summation is presented. With this approach, we analytically investigate Bose-Einstein condensation of ideal Bose gas trapped in an isotropic harmonic oscillator potential. We get the accurate expression of Tc which is very close to (0.43% larger than) the experimental data. We find the curve of internal energy of the system vs. temperature has a turning point which marks the beginning of a condensation. We also find that there exists specific heat jump at the transition temperature, no matter whether the system is macroscopic or finite. This phenomenon could be a manifestation of a phase transition in finite systems.

  9. Nonlinear Wave in a Disc-Shaped Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan; CHEN Jian-Hong; YANG Hong-Juan; SHI Yu-Ren; WANG Hong-Yan

    2006-01-01

    @@ We discuss the possible nonlinear wavesof atomic matter wave in a Bose-Einstein condensate. One and two of two-dimensional (2D) dark solitons in the Bose-Einstein condensed system are investigated. A rich dynamics is studied for the interactions between two solitons. The interaction profiles of two solitons are greatly different if the angle between them are different. If the angle is small enough, the maximum amplitude during the interaction between two solitons is even less than that of a single soliton. However, if the angle is large enough, the maximum amplitude of two solitons can gradually attend to the sum of two soliton amplitudes.

  10. The mean condensate heat resistance of dropwise condensation with flowing inert gases

    NARCIS (Netherlands)

    van der Geld, C.W.M.; Brouwers, Jos

    1995-01-01

    The quantification of the condensate heat resistance is studied for dropwise condensation from flowing air-steam mixtures. Flows are essentially laminar and stable with gas Reynolds numbers around 900 and 2000. The condensate shaping up as hemispheres on a plastic plane wall and the presence of iner

  11. The mean condensate heat resistance of dropwise condensation with flowing inert gases

    NARCIS (Netherlands)

    Geld, van der C.W.M.; Brouwers, H.J.H.

    1995-01-01

    The quantification of the condensate heat resistance is studied for dropwise condensation from flowing air-steam mixtures. Flows are essentially laminar and stable with gas Reynolds numbers around 900 and 2000. The condensate shaping up as hemispheres on a plastic plane wall and the presence of iner

  12. The mean condensate heat resistance of dropwise condensation with flowing inert gases

    NARCIS (Netherlands)

    van der Geld, C.W.M.; Brouwers, Jos

    1995-01-01

    The quantification of the condensate heat resistance is studied for dropwise condensation from flowing air-steam mixtures. Flows are essentially laminar and stable with gas Reynolds numbers around 900 and 2000. The condensate shaping up as hemispheres on a plastic plane wall and the presence of

  13. Space, Time, and Tachyon Condensation

    CERN Document Server

    McInnes, B

    2006-01-01

    It has often been suggested that strings propagating on spatial sections with one or more dimensions compactified to a circle might help to resolve the initial singularity in cosmology. Assuming that Inflation occurred, it can however be shown, under extremely mild assumptions, that spatial sections having first homology groups which contain an element of infinite order actually \\emph{worsen} the singularity problem. We illustrate the force of this observation by explaining its consequences for recent ideas about winding strings and tachyon condensation as resolutions of the initial singularity. We argue that, in order to understand the initial singularity, one has to understand why the versions of de Sitter spacetime with compact flat spatial sections are themselves geodesically incomplete. To this end, we study the problem of the "twins" in these spacetimes. This study suggests that the singularity is not "resolved" but is instead made physically inaccessible.

  14. Condensation on Slippery Asymmetric Bumps

    CERN Document Server

    Park, Kyoo-Chul; He, Neil; Aizenberg, Joanna

    2015-01-01

    Bumps are omnipresent from human skin to the geological structures on planets, which offer distinct advantages in numerous phenomena including structural color, drag reduction, and extreme wettability. Although the topographical parameters of bumps such as radius of curvature of convex regions significantly influence various phenomena including anti-reflective structures and contact time of impacting droplets, the effect of the detailed bump topography on growth and transport of condensates have not been clearly understood. Inspired by the millimetric bumps of the Namib Desert beetle, here we report the identified role of radius of curvature and width of bumps with homogeneous surface wettability in growth rate, coalescence and transport of water droplets. Further rational design of asymmetric convex topography and synergetic combination with slippery coating simultaneously enable self-transport, leading to unseen five-fold higher growth rate and an order of magnitude faster shedding time of droplets compared...

  15. 2015 Soft Condensed Matter Physics: Self-Assembly and Active Matter GRC/GRS

    Science.gov (United States)

    2015-10-20

    Registered Jamali, Vida Rice University Poster Presenter Registered Jeong, Joonwoo Ulsan National Institute of Science and Technology, South Korea ...Newfoundland Poster Presenter Registered Park, Pyeong Jun Korea National University of Transportation Poster Presenter Registered Patteson, Alison E...and students. Of the 177 attendees, 74 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of

  16. Invisible matter.

    Science.gov (United States)

    Dolgov, A. D.

    These lectures have been given to particle physicists, mostly experimentalists and very briefly and at a pedestrian level review the problems of dark matter. The content of the lectures is the following: 1. Introduction. 2. Cosmological background. 3. Luminous matter. 4. Primordial nucleosynthesis and the total amount of baryons. 5. Gravitating invisible matter. 6. Baryonic crisis. 7. Inflationary omega. 8. Intermediate summary. 9. Possible forms of dark matter. 10. Structure formation: basic assumptions. 11. Structure formations: basics of the theory. 12. Evolution of perturbations with different forms of dark matter. 13. Conclusion. The presentation and conclusion reflect personal view of the author that a considerable amount of invisible energy in the universe is in the form of vacuum energy (cosmological constant) and possibly in the form of a classical field which adjusts vacuum energy to the value permitted and requested by astronomical data.

  17. Assessment of the controllability of condensible emissions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shareef, G.S.; Waddell, J.T.

    1990-10-01

    The report gives results of a study to gain insights into the condensible emissions area from an air toxics perspective, with emphasis on controllability and chemical composition of these emissions. The study: compiled existing data on condensible emissions; determined the chemical composition of condensible emissions, where possible; identified source categories that are major emitters of condensibles; evaluated the effectiveness of various control devices in reducing condensible emissions; and evaluated how the performance of currently available control technologies can be improved to better control condensible emissions. Two data bases were developed: the Condensibles Data Base contains 43 emission source categories; the Specialized Condensibles Data Base focuses on the chemical composition of condensible emissions.

  18. Soliton resonance in bose-einstein condensate

    Science.gov (United States)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  19. ASSESSMENT OF THE CONTROLLABILITY OF CONDENSIBLE EMISSIONS

    Science.gov (United States)

    The report gives results of a study to gain insights into the condensible emissions area from an air toxics perspective, with emphasis on controllability and chemical composition of these emissions. he study compiled existing data on condensible emissions; determined the chemical...

  20. Phase contrast imaging of Bose condensed clouds

    NARCIS (Netherlands)

    Meppelink, R; Rozendaal, R.A.; Koller, S.B.; Vogels, J.M.; van der Straten, P.

    2010-01-01

    Phase contrast imaging is used to observe Bose-Einstein condensates (BECs) at finite temperature in situ. The imaging technique is used to accurately derive the absolute phase shift of a probe laser beam due to both the condensate and the thermal cloud. The accuracy of the method is enhanced by usin

  1. Bose-Einstein condensation of atomic hydrogen

    NARCIS (Netherlands)

    Willmann, L

    1999-01-01

    The recent creation of a Bose-Einstein condensate of atomic hydrogen has added a new system to this exciting field, The differences between hydrogen and the alkali metal atoms require other techniques for the initial trapping and cooling of the atoms and the subsequent detection of the condensate. T

  2. Hydrophilic structures for condensation management in appliances

    Science.gov (United States)

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  3. Gravitino condensation, supersymmetry breaking and inflation

    CERN Document Server

    Houston, N

    2015-01-01

    Motivated by dualistic considerations of the reality of quark condensation in quantum chromodynamics, and the connections of supergravity to the exotic physics of string and M-theory, in this thesis we investigate the dynamical breaking of local supersymmetry via gravitino condensation. We firstly demonstrate non-perturbative gravitino mass generation via this mechanism in flat spacetime, and from this derive the condensate mode wavefunction renormalisation. By then calculating the full canonically normalised one-loop effective potential for the condensate mode about a de Sitter background, we demonstrate that, contrary to claims in the literature, this process may both occur and function in a phenomenologically viable manner. In particular, we find that outside of certain unfortunate gauge choices, the stability of the condensate is intimately tied via gravitational degrees of freedom to the sign of the tree-level cosmological constant. Furthermore, we find that the energy density liberated may provide the n...

  4. When does lasing become a condensation phenomenon?

    CERN Document Server

    Fischer, Baruch

    2012-01-01

    We present a generic classical light condensation (LC) phenomenon in linear photonic mode systems, such as cw laser cavities, in a noisy environment (spontaneous emission, etc.), based on weighting the modes in a loss-gain scale rather than in photon energy. It is characterized by a sharp transition from multi- to single-mode oscillation. The study uses a linear multivariate Langevin formulation which gives a mode occupation hierarchy that functions like Bose-Einstein statistics. We find that condensation occurs when the spectral filtering has near the lowest loss mode a power law dependence with exponent smaller than 1. We then discuss how and when condensation occurs in photon systems, how it relates to lasing, and the difficulties to observe regular photon Bose-Einstein condensation (BEC) in laser cavities. We raise the possibility that recent experiments on photon condensation in optical cavities fall in a classical LC or lasing category rather than being a thermal-quantum BEC phenomenon.

  5. Superdense matter

    Indian Academy of Sciences (India)

    Thomas Schäfer

    2003-04-01

    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss the use of weak coupling methods. We study the phase structure as a function of the number of flavors and their masses. We also introduce effective theories that describe low energy excitations at high baryon density. Finally, we comment on the possibility of kaon condensation at very large baryon density.

  6. Heavy-quark expansion for D and B mesons in nuclear matter

    CERN Document Server

    Buchheim, Thomas; Kampfer, Burkhard

    2014-01-01

    The planned experiments at FAIR enable the study of medium modifications of $D$ and $B$ mesons in (dense) nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.

  7. Heavy-quark expansion for D and B mesons in nuclear matter

    Directory of Open Access Journals (Sweden)

    Buchheim Thomas

    2014-01-01

    Full Text Available The planned experiments at FAIR enable the study of medium modifications of D and B mesons in (dense nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.

  8. Precondensed matter - Key to the early solar system

    Science.gov (United States)

    Clayton, D. D.

    1978-01-01

    Explicit astrophysical details are developed for the hypothesis that chemical and isotopic anomalies in primitive solar-system samples reflect routine initial chemical conditions within precondensed matter. The central feature of this theory concerns the chemical state of presolar dust, which is regarded as never having been vaporized in the region where the most chemically primitive samples (carbonaceous meteorites) accumulated. It is suggested that the initial chemical state of heavy atoms during meteorite and planetary accumulation was distributed between a refractory-mineral component from high-temperature condensation and a volatile component resulting from cold matter adhering to preexisting grains. Thermal conditions in the solar nebula are considered along with the existence of supernova condensates and other thermal condensates in the interstellar dust. Fractionation into volatile and refractory elements is idealized in terms of four distinct interstellar components, and the fractionated precondensed matter is described.

  9. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  10. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  11. Quantum Critical Dynamics of Bose-Einstein Condensates in a Shaken Optical Lattice

    Science.gov (United States)

    Clark, Logan W.; Feng, Lei; Ha, Li-Chung; Chin, Cheng

    2016-05-01

    From condensed matter to cosmology, systems which cross a continuous, symmetry-breaking phase transition are expected to generate topological defects whose density scales universally with the rate at which the phase transition is crossed. We experimentally test the application of this universal Kibble-Zurek scaling prediction to quantum phase transitions by studying ultracold bosons in a shaken optical lattice. When the lattice shaking amplitude crosses a critical threshold, an ordinary Bose condensate transitions to an effectively ferromagnetic pseudo-spinor condensate with discrete, magnetized regions separated by domain walls. We appraise the dynamic scaling laws for both the time at which the domain structure forms and the typical size of the domains by varying the quench rate across the transition. We explore the regime in which the universal prediction applies, as well as potential deviations at extreme quench rates.

  12. Behavior of luminous matter in the head-on encounter of two ultralight BEC dark matter halos

    CERN Document Server

    Guzman, F S; Cruz, J P

    2016-01-01

    Within the context of ultralight BEC dark matter, we analyze the head-on encounters of two structures. These structures are made of a BEC component, which is a ground state equilibrium solution of the Gross-Pitaevskii-Poisson system, together with a component of luminous matter. The evolution of the Condensate dark matter is carried out by solving the time dependent GPP equations, whereas the luminous matter is modeled with particles interacting gravitationally on top of the BEC dark matter halos. We track the evolution of frontal encounters for various values of the collision velocity and analyze the regime of high velocity regime showing solitonic behavior of the BEC halos and that of slow velocities producing a single final structure. We measure the relative velocity of the dark matter with respect to the luminous matter after the encounters in the solitonic case and track the evolution of luminous matter in the case of merger.

  13. Antimatter Matters

    CERN Multimedia

    CERN

    2016-01-01

    This video is a teaser-introduction to the Antimatter Matters exhibtion at the Royal Society's Summer Science exhibition July 4-10 2016. The exhibition is jointly organised and hosted by UK members of the ALPHA and LHCb collaborations.

  14. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  15. Dispensing fuel with aspiration of condensed vapors

    Energy Technology Data Exchange (ETDEWEB)

    Butkovich, M.S.; Strock, D.J.

    1993-08-10

    A vapor recovery process is described, comprising the steps of: fueling a motor vehicle with gasoline by discharging gasoline into a fill opening or filler pipe of a tank of said vehicle through a fuel outlet conduit of a nozzle; emitting gasoline vapors from said tank during said fueling; substantially collecting said vapors during said fueling with a vapor return conduit of said nozzle and passing said vapors through said vapor return conduit in counter current flow relationship to said discharging gasoline in said fuel conduit; conveying said vapors from said vapor return conduit to a vapor return hose; at least some of said vapors condensing to form condensate in said vapor return hose; substantially removing said condensate from said vapor return hose during said fueling with a condensate pickup tube from said nozzle by passing said condensate through said condensate pickup tube in counter current flow relationship to said conveying vapors in said vapor return hose; sensing the presence of gasoline with a liquid sensing tube in said vapor return conduit of said nozzle between inner and outer spouts of said nozzle to detect when said tank of said vehicle is filled with said fuel conduit being within the inner spout of said nozzle; and automatically shutting off said fueling and condensate removing when said liquid sensing tube detects when said tank of said vehicle is filled and fuel enters said vapor return conduit.

  16. Enhancing dropwise condensation through bioinspired wettability patterning.

    Science.gov (United States)

    Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M

    2014-11-01

    Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.

  17. Dynamics of condensation on lubricant impregnated surfaces

    Science.gov (United States)

    Anand, Sushant; Paxson, Adam; Rykaczewski, Konrad; Beysens, Daniel; Varanasi, Kripa

    2013-03-01

    Replacing the filmwise condensation mode with dropwise condensation promises large improvements in heat transfer that will lead to large cost savings in material, water consumption and decreased size of the systems. In this regards, use of superhydrophobic surfaces fabricated by texturing surfaces with nano/microstructures has been shown to lead decrease in contact line pinning of millimetric drops resulting in fast shedding. However, these useful properties are lost during condensation where droplets that nucleate within texture grow by virtue of condensation to large sized droplets while still adhering to the surface. Recently we have shown that liquid impregnated surfaces can overcome many limitations of conventional superhydrophobic surfaces during condensation. Here we discuss aspects related to condensation on lubricant surfaces, such as behavior of growing droplets. We compare the characteristics of droplets condensing on these surfaces with their behavior on conventional un-impregnated superhydrophobic surfaces and show how use of lubricant impregnated surfaces may lead to large enhancement in heat transfer and energy efficiencies.

  18. Fouling computations for optimized condenser cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.J.; March, P.A. [Tennessee Valley Authority, Norris, TN (United States)

    1996-08-01

    Condenser tests are typically performed to evaluate water side fouling levels. Because the water side fouling level is independent of condenser operating conditions, fouling levels determined from a condenser test should also be independent of condenser operating conditions. This study investigates the effect of inlet cooling water temperature on fouling levels computed with an empirical relation presented in the Heat Exchange Institute (HEI) Standard and with the resistance-summation method. These two methods are compared with a simplified mathematical model of a condenser and with actual test data. The comparisons show that the fouling and fouling rate computed by the HEI method are significantly lower than the resistance-summation method for cold condenser circulating water inlet temperatures. The significance of the deviation in fouling rates is then evaluated within the context of an optimized condenser cleaning schedule to determine differences in cleaning schedules and the associated dollar costs of basing cleaning decisions on each of the two methods. 11 refs., 11 figs.

  19. Baryonic Condensates on the Conifold

    CERN Document Server

    Benna, M K; Klebanov, I R; Benna, Marcus K.; Dymarsky, Anatoly; Klebanov, Igor R.

    2007-01-01

    We provide new evidence for the gauge/string duality between the baryonic branch of the cascading SU(k(M+1)) \\times SU(kM) gauge theory and a family of type IIB flux backgrounds based on warped products of the deformed conifold and R^{3,1}. We show that a Euclidean D5-brane wrapping all six deformed conifold directions can be used to measure the baryon expectation values, and present arguments based on kappa-symmetry and the equations of motion that identify the gauge bundles required to ensure worldvolume supersymmetry of this object. Furthermore, we investigate its coupling to the pseudoscalar and scalar modes associated with the phase and magnitude, respectively, of the baryon expectation value. We find that these massless modes perturb the Dirac-Born-Infeld and Chern-Simons terms of the D5-brane action in a way consistent with our identification of the baryonic condensates. We match the scaling dimension of the baryon operators computed from the D5-brane action with that found in the cascading gauge theor...

  20. The Cosmological Consequences of the Preon Structure of Matter

    CERN Document Server

    Burdyuzha, V; Lalakulich, O; Ponomarev, Yu; Burdyuzha, Vladimir; Vereshkov, Grigory; Lalakulich, Olga; Ponomarev, Yuri

    1999-01-01

    If the preon structure of quarks, leptons and gauge bosons will be provedthen in the Universe during a relativistic phase transition the production ofnonperturbative preon condensates has occured. Familons are collectiveexcitations of these condensates. It is shown that the dark matter consisting of familon type pseudogoldstonebosons was undergone to two relativistic phase transitions temperatures ofwhich were different. In the result of these phase transitions thestructurization of dark matter and therefore the baryon subsystem has takenplace. In the Universe two characteristic scales which have printed thisphenomenon arise naturally.