WorldWideScience

Sample records for antihormone-resistant human breast

  1. Antihormonal treatment associated musculoskeletal pain in women with breast cancer in the adjuvant setting

    Directory of Open Access Journals (Sweden)

    Seber S

    2016-08-01

    Full Text Available Selcuk Seber,1 Dilek Solmaz,2 Tarkan Yetisyigit1 1Medical Oncology Department, 2Rheumatology Department, Namik Kemal University Hospital, Tekirdag, Turkey Purpose: Antihormonal treatment is an effective therapy in the adjuvant setting. However, musculoskeletal pain is a common adverse effect encountered in patients receiving this treatment. We aimed to evaluate the risk factors for the development of antihormonal treatment-associated musculoskeletal pain (AHAMP and its impact on the health-related quality of life (HRQOL.Patients and methods: A cross-sectional survey of 78 consecutive breast cancer patients receiving adjuvant antihormonal treatment for early-stage breast cancer in an academic medical oncology clinic was conducted. AHAMP was assessed by Health Assessment Questionnaire (HAQ and 10 cm visual analog scale (VAS. HRQOL was assessed by self-administered short form 36 and Functional Assessment of Cancer Therapy-Breast subscale surveys.Results: AHAMP was found to be present in 37 (47.7% patients. In multivariate regression analysis, having a normal body mass index (<30 kg/m2, cigarette smoking, and low serum vitamin D level (20 ng/mL were found to be independent risk factors. In HRQOL assessment, physical and mental scores were found to be significantly lower in patients with joint arthralgia.Conclusion: AHAMP has an adverse effect on the quality of life of breast cancer patients receiving adjuvant antihormonal treatment, and assessment of predictive factors is important for identification of patient groups at risk of developing this condition. Keywords: antineoplastic hormonal agents, musculoskeletal pain, breast cancer

  2. The St. Gallen Prize Lecture 2011: evolution of long-term adjuvant anti-hormone therapy: consequences and opportunities.

    Science.gov (United States)

    Jordan, V Craig; Obiorah, Ifeyinwa; Fan, Ping; Kim, Helen R; Ariazi, Eric; Cunliffe, Heather; Brauch, Hiltrud

    2011-10-01

    The successful translation of the scientific principles of targeting the breast tumour oestrogen receptor (ER) with the nonsteroidal anti-oestrogen tamoxifen and using extended durations (at least 5 years) of adjuvant therapy, dramatically increased patient survivorship and significantly enhanced a drop in national mortality rates from breast cancer. The principles are the same for the validation of aromatase inhibitors to treat post-menopausal patients but tamoxifen remains a cheap, life-saving medicine for the pre-menopausal patient. Results from the Oxford Overview Analysis illustrate the scientific principle of "longer is better" for adjuvant therapy in pre-menopausal patients. One year of adjuvant therapy is ineffective at preventing disease recurrence or reducing mortality, whereas five years of adjuvant tamoxifen reduces recurrence by 50% which is maintained for a further ten years after treatment stops. Mortality is reduced but the magnitude continues to increase to 30% over a 15-year period. With this clinical database, it is now possible to implement simple solutions to enhance survivorship. Compliance with long-term anti-hormone adjuvant therapy is critical. In this regard, the use of selective serotonin reuptake inhibitors (SSRIs) to reduce severe menopausal side effects may be inappropriate. It is known that SSRIs block the CYP2D6 enzyme that metabolically activates tamoxifen to its potent anti-oestrogenic metabolite, endoxifen. The selective norepinephrine reuptake inhibitor, venlafaxine, does not block CYP2D6, and may be a better choice. Nevertheless, even with perfect compliance, the relentless drive of the breast cancer cell to acquire resistance to therapy persists. The clinical application of long-term anti-hormonal therapy for the early treatment and prevention of breast cancer, focused laboratory research on the discovery of mechanisms involved in acquired anti-hormone resistance. Decades of laboratory study to reproduce clinical experience

  3. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers

    Science.gov (United States)

    Abderrahman, Balkees; Curpan, Ramona F; Hawsawi, Yousef M; Fan, Ping; Jordan, V Craig

    2018-01-01

    Prostate and breast cancer are the two cancers with the highest incidence in men and women, respectively. Here, we focus on the known biology of acquired resistance to antihormone therapy of prostate and breast cancer and compare laboratory and clinical similarities in the evolution of the disease. Laboratory studies and clinical observations in prostate and breast cancer demonstrate that cell selection pathways occur during acquired resistance to antihormonal therapy. Following sex steroid deprivation, both prostate and breast cancer models show an initial increased acquired sensitivity to the growth potential of sex steroids. Subsequently, prostate and breast cancer cells either become dependent upon the antihormone treatment or grow spontaneously in the absence of hormones. Paradoxically, the physiologic sex steroids now kill a proportion of selected, but vulnerable, resistant tumor cells. The sex steroid receptor complex triggers apoptosis. We draw parallels between acquired resistance in prostate and breast cancer to sex steroid deprivation. Clinical observations and patient trials confirm the veracity of the laboratory studies. We consider therapeutic strategies to increase response rates in clinical trials of metastatic disease that can subsequently be applied as a preemptive salvage adjuvant therapy. The goal of future advances is to enhance response rates and deploy a safe strategy earlier in the treatment plan to save lives. The introduction of a simple evidence-based enhanced adjuvant therapy as a global healthcare strategy has the potential to control recurrence, reduce hospitalization, reduce healthcare costs and maintain a healthier population that contributes to society. PMID:29162647

  4. Trastuzumab Resistance: Role for Notch Signaling

    Directory of Open Access Journals (Sweden)

    Kinnari Mehta

    2009-01-01

    Full Text Available Epidermal growth factor receptor-2 (ErbB-2/HER2 is a potent breast oncogene that has been shown to be amplified in 20% of breast cancers. Overexpression of ErbB-2 predicts for aggressive tumor behavior, resistance to some cytotoxic and antihormonal therapies, and poor overall survival. Trastuzumab, the humanized, monoclonal antibody directed against ErbB-2 has shown tremendous efficacy and improved overall survival for women when combined with a taxane-based chemotherapy. However, resistance to trastuzumab remains a major concern, most notably in women with metastatic breast cancer. Numerous mechanisms that include overexpression of alternate receptor tyrosine kinases and/or loss of critical tumor suppressors have been proposed in the last several years to elucidate trastuzumab resistance. Here we review the many possible mechanisms of action that could contribute to resistance, and novel therapies to prevent or reverse the resistant phenotype. Moreover, we provide a critical role for Notch signaling cross-talk with overlapping or new signaling networks in trastuzumab-resistant breast.

  5. The association between antihormonal treatment and cognitive complaints in breast cancer survivors with sleep problems

    DEFF Research Database (Denmark)

    Amidi, Ali; Damholdt, Malene; Dahlgaard, Jesper Ovesen

    2016-01-01

    . Statistically significant associations were observed between the CFQ and all measures of psychological distress (depression, fatigue, PTS, and perceived stress (r = 0.33–0.58, p's > 0.001)). Severity of sleep problems was also associated with the CFQ (r = 0.16, p = 0.01) There was no significant effect......, CFQtotal = 29.9(SD = 14.6); CFQ‐distractibility = 8.9(SD = 5.2) (p's = 0.06; 0.03). When adjusting for severity of sleep problems, symptoms of depression, PTS, fatigue, and perceived stress, these differences remained statistically significant (CFQ‐total: p = 0.047; CFQ‐distractibility: p = 0......Background: Cognitive complaints following chemotherapy are common and often associated with psychological distress. There is also a growing concern about cognitive problems among BC survivors receiving adjuvant antihormonal therapy. We, therefore, investigated the association between antihormonal...

  6. Loss of PEDF: A Novel Mechanism of Antihormone Resistance in Breast Cancer

    Science.gov (United States)

    2015-10-01

    Lewis-Wambi JS, Slifker MJ, Willis AL, Ramos P, Tapia C, Kim HR, Yerrum S, Sharma CG, Nicolas E, Balagurunathan Y, Ross EA, Jordan VC: Estrogen...J, Tan LP, Platteel I, Sluis T, Huitema S, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in

  7. The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells.

    Science.gov (United States)

    Todor, I N; Lukyanova, N Yu; Chekhun, V F

    2012-07-01

    To perform the comparative study both of qualitative and quantitative content of lipids in parental and drug resistant breast cancer cells. Parental (MCF-7/S) and resistant to cisplatin (MCF-7/CP) and doxorubicin (MCF-7/Dox) human breast cancer cells were used in the study. Cholesterol, total lipids and phospholipids content were determined by means of thin-layer chromatography. It was found that cholesterol as well as cholesterol ethers content are significantly higher but diacylglycerols, triacyl-glycerols content are significantly lower in resistant cell strains than in parental (sensitive) cells. Moreover the analysis of individual phospholipids showed the increase of sphingomyelin, phosphatidylserine, cardiolipin, phosphatidic acid and the decrease of phosphatidy-lethanolamine, phosphatidylcholine in MCF-7/CP and MCF-7/Dox cells. Obtained results allow to suggest that the lipid profile changes can mediate the modulation of membrane fluidity in drug resistant MCF-7 breast cancer cells.

  8. ALK and TGF-Beta Resistance in Breast Cancer

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH‐15‐1‐0650 TITLE: ALK and TGF-Beta Resistance in Breast Cancer PRINCIPAL INVESTIGATOR: Xin-Hua Feng CONTRACTING...and TGF-Beta Resistance in Breast Cancer 5b. GRANT NUMBER W81XWH‐15‐1‐0650 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Xin-Hua Feng...response is a hallmark in human cancer . However, the mechanisms underlying TGF- resistance in breast cancer have not been elucidated. Anaplastic

  9. Factors affecting local recurrence and distant metastases of invasive breast cancer after breast-conserving surgery in Chiang Mai University Hospital.

    Science.gov (United States)

    Ditsatham, Chagkrit; Somwangprasert, Areewan; Watcharachan, Kirati; Wongmaneerung, Phanchaporn; Khorana, Jiraporn

    2016-01-01

    The purpose of this study was to collect data regarding breast cancer profiles and factors that affect local recurrence and distant metastasis after breast-conserving surgery (BCS) in Chiang Mai University Hospital. This study was a retrospective review in a single institution of newly diagnosed invasive breast cancer patients who were treated with BCS between April 9, 2001 and December 25, 2011. A total of 185 patients treated with BCS were included in this study, with an average age of 46.83 years. The average recurrence age was 41.1 years and the average nonrecurrence age was 47.48 years, with a recurrence rate of 10.27%. Premenopause was significant in recurrence (P=0.047), as well as non-estrogen-expression patients (P=0.001) and patients who did not receive antihormonal treatment (P=0.011). The recurrence rate in our institute was 10.27%. Factors affecting recurrence after BCS included young age, premenopausal status, nonexpression of the estrogen receptor, and patients who had not received antihormonal treatment. The recurrence rate was higher in the first 90 postoperative months.

  10. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  11. Molecular characterization of irinotecan (SN-38) resistant human breast cancer cell lines

    DEFF Research Database (Denmark)

    Jandu, Haatisha; Aluzaite, Kristina; Fogh, Louise

    2016-01-01

    Background: Studies in taxane and/or anthracycline refractory metastatic breast cancer (mBC) patients have shown approximately 30 % response rates to irinotecan. Hence, a significant number of patients will experience irinotecan-induced side effects without obtaining any benefit. The aim of this ......Background: Studies in taxane and/or anthracycline refractory metastatic breast cancer (mBC) patients have shown approximately 30 % response rates to irinotecan. Hence, a significant number of patients will experience irinotecan-induced side effects without obtaining any benefit. The aim...... or an initial high dose of SN-38 (the active metabolite of irinotecan), respectively. The resistant cell lines were analyzed for cross-resistance to other anti-cancer drugs, global gene expression, growth rates, TOP1 and TOP2A gene copy numbers and protein expression, and inhibition of the breast cancer...... of the BCRP in breast cancer patients scheduled for irinotecan treatment. Moreover, LMP400 should be tested in a clinical setting in breast cancer patients with resistance to irinotecan....

  12. Proteome analysis of multidrug-resistant, breast cancer–derived microparticles

    Directory of Open Access Journals (Sweden)

    Deep Pokharel

    2014-08-01

    Full Text Available Cancer multidrug resistance (MDR occurs when cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer–derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp, transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer–derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography–tandem mass spectrometry (LC/MS/MS, in which we identify 120 unique proteins found only in drug-resistant, breast cancer–derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM; and cytoskeleton motor proteins within the MP cargo.

  13. Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells

    NARCIS (Netherlands)

    Meijer, Danielle; van Agthoven, Ton; Bosma, Peter T.; Nooter, Kees; Dorssers, Lambert C. J.

    2006-01-01

    Antiestrogens, such as tamoxifen, are widely used for endocrine treatment of estrogen receptor-positive breast cancer. However, as breast cancer progresses, development of tamoxifen resistance is inevitable. The mechanisms underlying this resistance are not well understood. To identify genes

  14. Poly(ADP-ribose polymerase 1 (PARP1 overexpression in human breast cancer stem cells and resistance to olaparib.

    Directory of Open Access Journals (Sweden)

    Marine Gilabert

    Full Text Available BACKGROUND: Breast cancer stem cells (BCSCs have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL, BrCA-MZ-01. METHODS: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+ and mature cancer (ALDH- cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE. Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. RESULTS: 2-D DIGE identified poly(ADP-ribose polymerase 1 (PARP1 as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. CONCLUSION: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.

  15. Expression of the breast cancer resistance protein in breast cancer

    NARCIS (Netherlands)

    Faneyte, Ian F.; Kristel, Petra M. P.; Maliepaard, Marc; Scheffer, George L.; Scheper, Rik J.; Schellens, Jan H. M.; van de Vijver, Marc J.

    2002-01-01

    PURPOSE: The breast cancer resistance protein (BCRP) is involved in in vitro multidrug resistance and was first identified in the breast cancer cell line MCF7/AdrVp. The aim of this study was to investigate the role of BCRP in resistance of breast cancer to anthracycline treatment. EXPERIMENTAL

  16. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  17. Positron emission tomography of tumour [{sup 18}F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kruchten, Michel van; Schroeder, Carolien P.; Vries, Elisabeth G.E. de; Hospers, Geke A.P. [University of Groningen, Department of Medical Oncology, University Medical Centre Groningen (Netherlands); Glaudemans, Andor W.J.M.; Vries, Erik F.J. de [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen (Netherlands)

    2015-10-15

    Whereas anti-oestrogen therapy is widely applied to treat oestrogen receptor (ER) positive breast cancer, paradoxically, oestrogens can also induce tumour regression. Up-regulation of ER expression is a marker for oestrogen hypersensitivity. We, therefore, performed an exploratory study to evaluate positron emission tomography (PET) with the tracer 16α-[{sup 18}F]fluoro-17β-oestradiol ({sup 18}F-FES) as potential marker to select breast cancer patients for oestradiol therapy. Eligible patients had acquired endocrine-resistant metastatic breast cancer that progressed after ≥2 lines of endocrine therapy. All patients had prior ER-positive histology. Treatment consisted of oestradiol 2 mg, three times daily, orally. Patients underwent {sup 18}F-FES-PET/CT imaging at baseline. Tumour {sup 18}F-FES-uptake was quantified for a maximum of 20 lesions and expressed as maximum standardised uptake value (SUV{sub max}). CT-scan was repeated every 3 months to evaluate treatment response. Clinical benefit was defined as time to radiologic or clinical progression ≥24 weeks. {sup 18}F-FES uptake, quantified for 255 lesions in 19 patients, varied greatly between lesions (median 2.8; range 0.6-24.3) and between patients (median 2.5; range 1.1-15.5). Seven (37 %) patients experienced clinical benefit of oestrogen therapy, eight progressed (PD), and four were non-evaluable due to side effects. The positive and negative predictive value (PPV/NPV) of {sup 18}F-FES-PET for response to treatment were 60 % (95 % CI: 31-83 %) and 80 % (95 % CI: 38-96 %), respectively, using SUV{sub max} >1.5. {sup 18}F-FES-PET may aid identification of patients with acquired antihormone resistant breast cancer that are unlikely to benefit from oestradiol therapy. (orig.)

  18. Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-resistant Human Breast Cancer Cells

    International Nuclear Information System (INIS)

    Zhang, Hai-chang; Zhang, Fei; Wu, Bing; Han, Jing-hua; Ji, Wei; Zhou, Yan; Niu, Rui-fang

    2012-01-01

    To explore the interaction of Anxa2 with P-Glycoprotein (P-gp) in the migration and invasion of the multidrug-resistant (MDR) human breast cancer cell line MCF-7/ADR. A pair of short hairpin RNA (shRNA) targeting P-gp was transfected into MCF-7/ADR cells, and monoclonal cell strains were screened. The expression of P-gp was detected by Western blot. Transwell chambers were used to observe the cell migration capacity and invasion ability. The interaction between P-gp and Anxa2 was examined by immunoprecipitation and immunofluorescence confocal microscopy analyses. P-gp expression was significantly knocked down, and there were notable decreasing trends in the migration and invasion capability of MDR breast cancer cells (P<0.05). There was a close interaction between Anxa2 and P-gp. MCF-7/ADR is an MDR human breast cancer cell line with high migration and invasion abilities. The knockdown of P-gp notably impaired the migration and invasion abilities of the tumor cells. The interaction of Anxa2 with P-pg may play an important role in the enhanced invasiveness of MDR human breast cancer cells

  19. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  20. Pristimerin overcomes adriamycin resistance in breast cancer cells through suppressing Akt signaling

    Science.gov (United States)

    XIE, GUI'E; YU, XINPEI; LIANG, HUICHAO; CHEN, JINGSONG; TANG, XUEWEI; WU, SHAOQING; LIAO, CAN

    2016-01-01

    Breast cancer remains a major public health problem worldwide. Chemotherapy serves an important role in the treatment of breast cancer. However, resistance to chemotherapeutic agents, in particular, multi-drug resistance (MDR), is a major cause of treatment failure in cancer. Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance are urgently needed for the treatment of breast cancer. Pristimerin, a quinonemethide triterpenoid compound isolated from Celastraceae and Hippocrateaceae, has been shown to possess antitumor, anti-inflammatory, antioxidant and insecticidal properties. The aim of the present study was to investigate whether pristimerin can override chemoresistance in MCF-7/adriamycin (ADR)-resistant human breast cancer cells. The results demonstrated that pristimerin indeed displayed potent cytocidal effect on multidrug-resistant MCF-7/ADR breast cancer cells, and that these effects occurred through the suppression of Akt signaling, which in turn led to the downregulation of antiapoptotic effectors and increased apoptosis. These findings indicate that use of pristimerin may represent a potentially promising approach for the treatment of ADR-resistant breast cancer. PMID:27123073

  1. Loss of PEDF: A Novel Mechanism of Antihormone Resistance in Breast Cancer

    Science.gov (United States)

    2014-08-01

    transcriptionally silent , and that DNA methylation gradually accumulates upon long-term gene silencing and are associated with human malignancies. 5-Aza-2...in various neoplasms of the thyroid , where specific mutations lead to defined tumor types [60-62]. The RET protein spans the cell membrane, so that one...BM: Mechanisms of disease: cancer targeting and the impact of oncogenic RET for medullary thyroid carcinoma therapy. Nat Clin Pract Oncol 2006, 3:564

  2. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity

    Directory of Open Access Journals (Sweden)

    Bruno M. Simões

    2015-09-01

    Full Text Available Breast cancers (BCs typically express estrogen receptors (ERs but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.

  3. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane.

    NARCIS (Netherlands)

    Huls, M.; Brown, C.D.; Windass, A.S.; Sayer, R.; Heuvel, J.J.M.W. van den; Heemskerk, S.; Russel, F.G.M.; Masereeuw, R.

    2008-01-01

    The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney,

  4. UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer.

    Science.gov (United States)

    Ning, Kuan; Wang, Teng; Sun, Xu; Zhang, Pengfei; Chen, Yun; Jin, Jian; Hua, Dong

    2017-06-01

    Chemotherapy resistance has become a serious challenge in the treatment of breast cancer. Previous studies showed cells can transfer proteins, including those responsible for drug resistance to adjacent cells via exosomes. The switches of drug resistance via exosomes transfer were assessed by CellTiter-Blue Viability assay, flow cytometry, and immunostaining analysis. Relative protein levels of Ubiquitin carboxyl terminal hydrolase-L1 (UCH-L1), P-glycoprotein (P-gp), extracellular-signal regulated protein kinase1/2 (ERK1/2), and phospho-extracellular-signal regulated protein kinase1/2 (p-ERK1/2) were measured by Western blot. Immunohistochemistry was performed on 93 breast cancer samples to assess the associations of UCH-L1 levels with immunofluorescence value of UCH-L1 in circulating exosomes. The Adriamycin-resistant human breast cancer cells (MCF7/ADM) secreted exosomes carrying UCH-L1 and P-gp proteins into the extracellular microenvironment then integrated into Adriamycin-sensitive human breast cancer cells (MCF7/WT) in a time-dependent manner, transferring the chemoresistance phenotype. Notably, in blood samples from patients with breast cancer, the level of exosomes carrying UCH-L1 before chemotherapy was significantly negatively correlated with prognosis. Our study demonstrated that UCH-L1-containing exosomes can transfer chemoresistance to recipient cells and these exosomes may be useful as non-invasive diagnostic biomarkers for detection of chemoresitance in breast cancer patients, achieving more effective and individualized chemotherapy. © 2017 Wiley Periodicals, Inc.

  5. MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Oudin, Madeleine J; Barbier, Lucie; Schäfer, Claudia; Kosciuk, Tatsiana; Miller, Miles A; Han, Sangyoon; Jonas, Oliver; Lauffenburger, Douglas A; Gertler, Frank B

    2017-01-01

    Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA and particularly its invasive isoform, MENA INV , are established drivers of metastasis. MENA INV expression is significantly correlated with metastasis and poor outcome in human patients with breast cancer. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENA INV confer resistance to the taxane paclitaxel, but not to the widely used DNA-damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENA INV -driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by co-treatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance. Mol Cancer Ther; 16(1); 143-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    International Nuclear Information System (INIS)

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed

  7. The application of 99Tcm-MIBI scintimammography to diagnose multidrug resistance of breast cancer

    International Nuclear Information System (INIS)

    Cheng Bing

    2002-01-01

    The author discussed the main mechanism of multidrug resistance of breast cancer tissues, and the correlation between technetium-99m sestamibi ( 99 Tc m -MIBI) breast imaging results, with the expression of drug resistance proteins P-glycoprotein and glutathione-S-transferase-π in human breast cancer. Through not all the results reported before matched each other, as a kind of a noninvasive simple functional test imaging technology in vitro, SPECT can be used to diagnose P-glycoprotein expression in breast cancer, and can be used to predict chemotherapy response

  8. Rhein Induces Apoptosis in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ching-Yao Chang

    2012-01-01

    Full Text Available Human breast cancers cells overexpressing HER2/neu are more aggressive tumors with poor prognosis, and resistance to chemotherapy. This study investigates antiproliferation effects of anthraquinone derivatives of rhubarb root on human breast cancer cells. Of 7 anthraquinone derivatives, only rhein showed antiproliferative and apoptotic effects on both HER2-overexpressing MCF-7 (MCF-7/HER2 and control vector MCF-7 (MCF-7/VEC cells. Rhein induced dose- and time-dependent manners increase in caspase-9-mediated apoptosis correlating with activation of ROS-mediated activation of NF-κB- and p53-signaling pathways in both cell types. Therefore, this study highlighted rhein as processing anti-proliferative activity against HER2 overexpression or HER2-basal expression in breast cancer cells and playing important roles in apoptotic induction of human breast cancer cells.

  9. Carboplatin treatment of antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Yde, Christina Westmose; Christensen, Ib J

    2012-01-01

    Antiestrogen resistance is a major clinical problem in current breast cancer treatment. Therefore, biomarkers and new treatment options for antiestrogen-resistant breast cancer are needed. In this study, we investigated whether antiestrogen‑resistant breast cancer cell lines have increased...... sensitivity to carboplatin, as it was previously shown with cisplatin, and whether low Bcl-2 expression levels have a potential value as marker for increased carboplatin sensitivity. Breast cancer cells resistant to the pure antiestrogen fulvestrant, and two out of four cell lines resistant...... to the antiestrogen tamoxifen, were more sensitive to carboplatin treatment compared to the parental MCF-7 cell line. This indicates that carboplatin may be an advantageous treatment in antiestrogen‑resistant breast cancer; however, a marker for increased sensitivity would be needed. Low Bcl-2 expression...

  10. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hansen, Stine Ninel; Ehlers, Natasja Spring; Zhu, Shida

    2016-01-01

    Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic...... alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing...... resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired...

  11. Functional ablation of pRb activates Cdk2 and causes antiestrogen resistance in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hemant Varma

    2007-12-01

    Full Text Available Estrogens are required for the proliferation of hormone dependent breast cancer cells, making estrogen receptor (ER positive tumors amenable to endocrine therapies such as antiestrogens. However, resistance to these agents remains a significant cause of treatment failure. We previously demonstrated that inactivation of the retinoblastoma protein (pRb family tumor suppressors causes antiestrogen resistance in MCF-7 cells, a widely studied model of estrogen responsive human breast cancers. In this study, we investigate the mechanism by which pRb inactivation leads to antiestrogen resistance. Cdk4 and cdk2 are two key cell cycle regulators that can phosphorylate and inactivate pRb, therefore we tested whether these kinases are required in cells lacking pRb function. pRb family members were inactivated in MCF-7 cells by expressing polyomavirus large tumor antigen (PyLT, and cdk activity was inhibited using the cdk inhibitors p16(INK4A and p21(Waf1/Cip1. Cdk4 activity was no longer required in cells lacking functional pRb, while cdk2 activity was required for proliferation in both the presence and absence of pRb function. Using inducible PyLT cell lines, we further demonstrated that pRb inactivation leads to increased cyclin A expression, cdk2 activation and proliferation in antiestrogen arrested cells. These results demonstrate that antiestrogens do not inhibit cdk2 activity or proliferation of MCF-7 cells in the absence of pRb family function, and suggest that antiestrogen resistant breast cancer cells resulting from pRb pathway inactivation would be susceptible to therapies that target cdk2.

  12. Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells

    International Nuclear Information System (INIS)

    Brown, Iain; Shalli, Kawan; McDonald, Sarah L; Moir, Susan E; Hutcheon, Andrew W; Heys, Steven D; Schofield, Andrew C

    2004-01-01

    Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. However, apoptosis and cell cycle regulation are key mechanisms by which most chemotherapeutic agents exert their cytotoxic effects. We created two docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) and performed cDNA microarray analysis to identify candidate genes associated with docetaxel resistance. Gene expression changes were validated at the RNA and protein levels by reverse transcription PCR and western analysis, respectively. Gene expression cDNA microarray analysis demonstrated reduced p27 expression in docetaxel-resistant breast cancer cells. Although p27 mRNA expression was found to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-fold), reduced expression of p27 protein was noted in both MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer cells (2.83-fold and 3.80-fold, respectively). This study demonstrates that reduced expression of p27 is associated with acquired resistance to docetaxel in breast cancer cells. An understanding of the genes that are involved in resistance to chemotherapy may allow further development in modulating drug resistance, and may permit selection of those patients who are most likely to benefit from such therapies

  13. Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer.

    LENUS (Irish Health Repository)

    Mohd Sharial, M S N

    2012-12-01

    Approximately 15%-23% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2), which leads to the activation of signaling pathways that stimulate cell proliferation and survival. HER2-targeted therapy has substantially improved outcomes in patients with HER2-positive breast cancer. However, both de novo and acquired resistance are observed.

  14. A targeted enzyme approach to sensitization of tyrosine kinase inhibitor-resistant breast cancer cells.

    Science.gov (United States)

    Giordano, Courtney R; Mueller, Kelly L; Terlecky, Laura J; Krentz, Kendra A; Bollig-Fischer, Aliccia; Terlecky, Stanley R; Boerner, Julie L

    2012-10-01

    Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of potential use in patients with breast cancer. Unfortunately, in clinical studies, gefitinib is often ineffective indicating that resistance to EGFR inhibitors may be a common occurrence in cancer of the breast. EGFR has been shown to be overexpressed in breast cancer, and in particular remains hyperphosphorylated in cell lines such as MDA-MB-468 that are resistant to EGFR inhibitors. Here, we investigate the cause of this sustained phosphorylation and the molecular basis for the ineffectiveness of gefitinib. We show that reactive oxygen species (ROS), known to damage cellular macromolecules and to modulate signaling cascades in a variety of human diseases including cancers, appear to play a critical role in mediating EGFR TKI-resistance. Furthermore, elimination of these ROS through use of a cell-penetrating catalase derivative sensitizes the cells to gefitinib. These results suggest a new approach for the treatment of TKI-resistant breast cancer patients specifically, the targeting of ROS and attendant downstream oxidative stress and their effects on signaling cascades. Copyright © 2012. Published by Elsevier Inc.

  15. Radiation response of drug-resistant variants of a human breast cancer cell line

    International Nuclear Information System (INIS)

    Lehnert, S.; Greene, D.; Batist, G.

    1989-01-01

    The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells

  16. Aluminium and the human breast.

    Science.gov (United States)

    Darbre, P D

    2016-06-01

    The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current usage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  18. A Novel Docetaxel-Loaded Poly (ɛ-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    Science.gov (United States)

    Mei, Lin; Zhang, Yangqing; Zheng, Yi; Tian, Ge; Song, Cunxian; Yang, Dongye; Chen, Hongli; Sun, Hongfan; Tian, Yan; Liu, Kexin; Li, Zhen; Huang, Laiqiang

    2009-12-01

    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ɛ-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere® in the MCF-7 TAX30 cell culture, but the differences were not significant ( p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere® ( p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer.

  19. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Li, Ying [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Yue, Jiang [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Guo, Austin M., E-mail: Austin_Guo@nymc.edu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Flavonoids exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Anoikis resistance occurs at multiple key stages of the metastatic cascade. Here, we demonstrate that isoliquiritigenin (ISL), a flavonoid from Glycyrrhiza glabra, inhibits human breast cancer metastasis by preventing anoikis resistance, migration and invasion through downregulating cyclooxygenase (COX)-2 and cytochrome P450 (CYP) 4A signaling. ISL induced anoikis in MDA-MB-231 and BT-549 human breast cancer cells as evidenced by flow cytometry and the detection of caspase cleavage. Moreover, ISL inhibited the mRNA expression of phospholipase A2, COX-2 and CYP 4A and decreased the secretion of prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE) in detached MDA-MB-231 cells. In addition, it decreased the levels of phospho-PI3K (Tyr{sup 458}), phospho-PDK (Ser{sup 241}) and phospho-Akt (Thr{sup 308}). Conversely, the exogenous addition of PGE{sub 2}, WIT003 (a 20-HETE analog) and an EP4 agonist (CAY10580) or overexpression of constitutively active Akt reversed ISL-induced anoikis. ISL exerted the in vitro anti-migratory and anti-invasive activities, whereas the addition of PGE{sub 2}, WIT003 and CAY10580 or overexpression of constitutively active Akt reversed the in vitro anti-migratory and anti-invasive activities of ISL in MDA-MB-231 cells. Notably, ISL inhibited the in vivo lung metastasis of MDA-MB-231 cells, together with decreased intratumoral levels of PGE{sub 2}, 20-HETE and phospho-Akt (Thr{sup 308}). In conclusion, ISL inhibits breast cancer metastasis by preventing anoikis resistance, migration and invasion via downregulating COX-2 and CYP 4A signaling. It suggests that ISL could be a promising multi-target agent for preventing breast cancer metastasis, and anoikis could represent a novel mechanism through which flavonoids may exert the anti-metastatic activities. - Highlights: • Isoliquiritigenin induces anoikis and suppresses

  20. miR-193b Modulates Resistance to Doxorubicin in Human Breast Cancer Cells by Downregulating MCL-1

    Directory of Open Access Journals (Sweden)

    Jingpei Long

    2015-01-01

    Full Text Available MicroRNAs (miRNAs family, which is involved in cancer development, proliferation, apoptosis, and drug resistance, is a group of noncoding RNAs that modulate the expression of oncogenes and antioncogenes. Doxorubicin is an active cytotoxic agent for breast cancer treatment, but the acquisition of doxorubicin resistance is a common and critical limitation to cancer therapy. The aim of this study was to investigate whether miR-193b mediated the resistance of breast cancer cells to doxorubicin by targeting myeloid cell leukemia-1 (MCL-1. In this study, we found that miR-193b levels were significantly lower in doxorubicin-resistant MCF-7 (MCF-7/DOXR cells than in the parental MCF-7 cells. We observed that exogenous miR-193b significantly suppressed the ability of MCF-7/DOXR cells to resist doxorubicin. It demonstrated that miR-193b directly targeted MCL-1 3′-UTR (3′-Untranslated Regions. Further studies indicated that miR-193b sensitized MCF-7/DOXR cells to doxorubicin through a mechanism involving the downregulation of MCL-1. Together, our findings provide evidence that the modulation of miR-193b may represent a novel therapeutic target for the treatment of breast cancer.

  1. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer.

    OpenAIRE

    Canonici, A; Gijsen, M; Mullooly, M; Bennett, R; Bouguern, N; Pedersen, K; O'Brien, NA; Roxanis, I; Li, J-L; Bridge, E; Finn, R; Siamon, D; McGowan, P; Duffy, MJ; O'Donovan, N

    2013-01-01

    Trastuzumab has been shown to improve the survival outcomes of HER2 positive breast cancer patients. However, a significant proportion of HER2-positive patients are either inherently resistant or develop resistance to trastuzumab. We assessed the effects of neratinib, an irreversible panHER inhibitor, in a panel of 36 breast cancer cell lines. We further assessed its effects with or without trastuzumab in several sensitive and resistant breast cancer cells as well as a BT474 xenograft model. ...

  2. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  3. Factors of influence on acute skin toxicity of breast cancer patients treated with standard three-dimensional conformal radiotherapy (3D-CRT) after breast conserving surgery (BCS)

    International Nuclear Information System (INIS)

    Kraus-Tiefenbacher, Uta; Sfintizky, Andreas; Welzel, Grit; Simeonova, Anna; Sperk, Elena; Siebenlist, Kerstin; Mai, Sabine; Wenz, Frederik

    2012-01-01

    Standard 3D-CRT after BCS may cause skin toxicity with a wide range of intensity including acute effects like erythema or late effects. In order to reduce these side effects it is mandatory to identify potential factors of influence in breast cancer patients undergoing standard three-dimensional conformal radiation therapy (3D-CRT) of the breast and modern systemic therapy. Between 2006 and 2010 a total of 211 breast cancer patients (median age 52,4 years, range 24–77) after BCS consecutively treated in our institution with 3D-CRT (50 Gy whole breast photon radiotherapy followed by 16 Gy electron boost to the tumorbed) were evaluated with special focus on documented skin toxicity at the end of the 50 Gy-course. Standardized photodocumentation of the treated breast was done in each patient lying on the linac table with arms elevated. Skin toxicity was documented according to the common toxicity criteria (CTC)-score. Potential influencing factors were classified in three groups: patient-specific (smoking, age, breast size, body mass index = BMI, allergies), tumor-specific (tumorsize) and treatment-specific factors (antihormonal therapy with tamoxifen or aromatase inhibitors, chemotherapy). Uni- and multivariate statistical analyses were done using IBM SPSS version 19. After 50 Gy 3D-CRT to the whole breast 28.9% of all 211 patients had no erythema, 62.2% showed erythema grade 1 (G1) and 8.5% erythema grade 2. None of the patients had grade 3/4 (G3/4) erythema. In univariate analyses a significant influence or trend on the development of acute skin toxicities (erythema G0 versus G1 versus G2) was observed for larger breast volumes (p=0,004), smoking during radiation therapy (p=0,064) and absence of allergies (p=0,014) as well as larger tumorsize (p=0,009) and antihormonal therapy (p=0.005). Neither patient age, BMI nor choice of chemotherapy showed any significant effect on higher grade toxicity. In the multivariate analysis, factors associated with higher grade

  4. Technetium-99m sestamibi uptake in human breast carcinoma cell lines displaying glutathione-associated drug-resistance

    International Nuclear Information System (INIS)

    Kabasakal, L.; Oezker, K.; Hayward, M.; Akansel, G.; Griffith, O.; Isitman, A.T.; Hellman, R.; Collier, D.

    1996-01-01

    An in vitro study was designed to evaluate the uptake of sestamibi (MIBI) in P-glycoprotein (Pgp) and glutathione-associated (GSH) multidrug-resistant (MDR) cell lines. MIBI uptake was studied in various human breast carcinoma cell lines, i.e. in wild-type (MCF7/wt) cells, in adriamycin-resistant (MCF7/adr) cells which express Pgp and in melphalan-resistant (MCF7/mph) cells with increased levels of GSH. The effects of buthiomine sulphoximine (BSO) and verapamil on MIBI uptake were also studied in the MCF7/mph and MCF7/adr cells respectively. The cells were incubated for 1 h with a dose of 0.1 MBq thallium-201 and technetium-99m MIBI. Both BIBI and 201 Tl uptakes were higher for MCF7/mph cells than for the other cells studied. The mean MIBI uptake in MCF7/adr cells was significantly lower than that in MCF7/wt cells (1.9%±0.5% vs 3.1%.0.6%; P 0.1). This study suggests that the uptake of MIBI is not diminished by glutathione-associated drug resistance and that MIBI uptake in a tumour sample does not necessarly indicate that a cancer is sensitive to drugs. (orig.)

  5. C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells.

    Science.gov (United States)

    Li, Wei; Xu, Ling; Che, Xiaofang; Li, Haizhou; Zhang, Ye; Song, Na; Wen, Ti; Hou, Kezuo; Yang, Yi; Zhou, Lu; Xin, Xing; Xu, Lu; Zeng, Xue; Shi, Sha; Liu, Yunpeng; Qu, Xiujuan; Teng, Yuee

    2018-05-02

    Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Our results suggested that c-Cbl can reverse tamoxifen

  6. Functional miRNAs in breast cancer drug resistance

    Directory of Open Access Journals (Sweden)

    Hu WZ

    2018-03-01

    Full Text Available Weizi Hu,1–3,* Chunli Tan,1–3,* Yunjie He,4 Guangqin Zhang,2 Yong Xu,3,5 Jinhai Tang1 1Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 2School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 3Nanjing Medical University Affiliated Cancer Hospital, 4The First Clinical School of Nanjing Medical University, 5Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance. Keywords: microRNA, exosome, breast cancer, drug resistance

  7. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, N.; Bartoňová, I.; Balušíková, K.; Kopperová, D.; Halada, Petr; Kovář, J.

    2015-01-01

    Roč. 333, č. 1 (2015), s. 1-10 ISSN 0014-4827 Institutional support: RVO:61388971 Keywords : Breast cancer * Taxane resistance * 2-D electrophoresis Subject RIV: CE - Biochemistry Impact factor: 3.378, year: 2015

  8. PI3K inhibition to overcome endocrine resistance in breast cancer.

    Science.gov (United States)

    Keegan, Niamh M; Gleeson, Jack P; Hennessy, Bryan T; Morris, Patrick G

    2018-01-01

    Activation of the phosphatidylinositol-3 kinase (PI3K) pathway is a critical step in oncogenesis and plays a role in the development of treatment resistance for both estrogen receptor (ER) positive and human epidermal growth factor receptor 2 (HER2) positive breast cancers. Hence, there have been efforts to therapeutically inhibit this pathway. Areas covered: Several inhibitors of PI3K are now progressing through clinical trials with varying degrees of efficacy and toxicity to date. Numerous unresolved questions remain concerning the optimal isoform selectivity of PI3K inhibitors and use of predictive biomarkers. This review examines the most important PI3K inhibitors in ER positive breast cancer to date, with a particular focus on their role in overcoming endocrine therapy resistance and the possible use of PIK3CA mutations as a predictive biomarker. Expert opinion: We discuss some of the emerging challenges and questions encountered during the development of PI3K inhibitors from preclinical to phase III studies, including other novel biomarkers and future combinations to overcome endocrine resistance.

  9. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies

    Directory of Open Access Journals (Sweden)

    Li B

    2012-01-01

    Full Text Available Bo Li1, Hui Xu2, Zhen Li1, Mingfei Yao1, Meng Xie1, Haijun Shen1, Song Shen1, Xinshi Wang1, Yi Jin11College of Pharmaceutical sciences, Zhejiang University, Hangzhou, 2No. 202 Hospital of People's Liberation Army, Shenyang, ChinaBackground: Multidrug resistance (MDR mediated by the overexpression of adenosine triphosphate (ATP-binding cassette (ABC transporters, such as P-glycoprotein (P-gp, remains one of the major obstacles to effective cancer chemotherapy. In this study, lipid/particle assemblies named LipoParticles (LNPs, consisting of a dimethyldidodecylammonium bromide (DMAB-modified poly(lactic-co-glycolic acid (PLGA nanoparticle core surrounded by a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC shell, were specially designed for anticancer drugs to bypass MDR in human breast cancer cells that overexpress P-gp.Methods: Doxorubicin (DOX, a chemotherapy drug that is a P-gp substrate, was conjugated to PLGA and encapsulated in the self-assembled LNP structure. Physiochemical properties of the DOX-loaded LNPs were characterized in vitro. Cellular uptake, intracellular accumulation, and cytotoxicity were compared in parental Michigan Cancer Foundation (MCF-7 cells and P-gp-overexpressing, resistant MCF-7/adriamycin (MCF-7/ADR cells.Results: This study found that the DOX formulated in LNPs showed a significantly increased accumulation in the nuclei of drug-resistant cells relative to the free drug, indicating that LNPs could alter intracellular traffic and bypass drug efflux. The cytotoxicity of DOX loaded-LNPs had a 30-fold lower half maximal inhibitory concentration (IC50 value than free DOX in MCF-7/ADR, measured by the colorimetric cell viability (MTT assay, correlated with the strong nuclear retention of the drug.Conclusion: The results show that this core-shell lipid/particle structure could be a promising strategy to bypass MDR.Keywords: chemotherapy, drug delivery, polymeric nanoparticles, multidrug resistance

  10. MicroRNA-3646 Contributes to Docetaxel Resistance in Human Breast Cancer Cells by GSK-3?/?-Catenin Signaling Pathway

    OpenAIRE

    Zhang, Xiaohui; Zhong, Shanliang; Xu, Yong; Yu, Dandan; Ma, Tengfei; Chen, Lin; Zhao, Yang; Chen, Xiu; Yang, Sujin; Wu, Yueqin; Tang, Jinhai; Zhao, Jianhua

    2016-01-01

    Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the ...

  11. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.

    Science.gov (United States)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-07-04

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns.

  12. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Clausen, Mathias Porsmose; Bennetzen, Martin

    2009-01-01

    , the compound is now also recognized as a multitargeting drug with diverse potential applications, for example, it has antiproliferative properties and it can reverse resistance toward antibiotics in bacteria. Furthermore, chlorpromazine can reverse multidrug resistance caused by overexpression of P......Tamoxifen resistance is a major clinical problem in the treatment of estrogen receptor a-positive breast tumors. It is, at present, unclear what exactly causes tamoxifen resistance. For decades, chlorpromazine has been used for treating psychotic diseases, such as schizophrenia. However......-sensitive breast cancer cell line, MCF-7, and in a tamoxifen-resistant cell line, established from the MCF-7 cells. Tamoxifen-sensitive and tamoxifen-resistant cells were killed equally well by combined treatment with chlorpromazine and tamoxifen. This synergistic effect could be prevented by addition of estrogen...

  13. Breast abscess caused by penicillin resistant Pneumococci

    Directory of Open Access Journals (Sweden)

    Boppe Appalaraju

    2011-01-01

    Full Text Available Breast abscess is mostly caused by Staphylococcus aureus. A 26-year-old immunocompetent lady was admitted with breast abscess. Incision and drainage (I/D was done and Pneumococci were isolated from the drained pus. The patient was earlier treated with Augmentin which was later changed to linezolid after testing for antibiotic susceptibility. This strain showed a high level of resistance to penicillin. It had been noticed that there was a slow increase in the number of penicillin resistant Pneumococci isolated in our hospitals. The increase in penicillin-resistant Pneumococci correlates with the intensive use of beta-lactam antibiotics. Hence, antibiotics should be used judiciously, avoiding their use particularly in mild self-limiting upper respiratory infections. Attention therefore, should focus on monitoring resistance in Pneumococci to prevent mortality and morbidity associated with this organism, which continues to take a heavy toll on children and the elderly.

  14. Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer

    Science.gov (United States)

    Nafi, Siti Norasikin Mohd; Generali, Daniele; Kramer-Marek, Gabriela; Gijsen, Merel; Strina, Carla; Cappelletti, Mariarosa; Andreis, Daniele; Haider, Syed; Li, Ji-Liang; Bridges, Esther; Capala, Jacek; Ioannis, Roxanis; Harris, Adrian L; Kong, Anthony

    2014-01-01

    The role of HER4 in breast cancer is controversial and its role in relation to trastuzumab resistance remains unclear. We showed that trastuzumab treatment and its acquired resistance induced HER4 upregulation, cleavage and nuclear translocation. However, knockdown of HER4 by specific siRNAs increased trastuzumab sensitivity and reversed its resistance in HER2 positive breast cancer cells. Preventing HER4 cleavage by a γ-secretase inhibitor and inhibiting HER4 tyrosine kinase activity by neratinib decreased trastuzumab-induced HER4 nuclear translocation and enhanced trastuzumab response. There was also increased nuclear HER4 staining in the tumours from BT474 xenograft mice and human patients treated with trastuzumab. Furthermore, nuclear HER4 predicted poor clinical response to trastuzumab monotherapy in patients undergoing a window study and was shown to be an independent poor prognostic factor in HER2 positive breast cancer. Our data suggest that HER4 plays a key role in relation to trastuzumab resistance in HER2 positive breast cancer. Therefore, our study provides novel findings that HER4 activation, cleavage and nuclear translocation influence trastuzumab sensitivity and resistance in HER2 positive breast cancer. Nuclear HER4 could be a potential prognostic and predictive biomarker and understanding the role of HER4 may provide strategies to overcome trastuzumab resistance in HER2 positive breast cancer. PMID:25153719

  15. MEL-18 loss mediates estrogen receptor-α downregulation and hormone independence.

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-05-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor-α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α-positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer.

  16. MEL-18 loss mediates estrogen receptor–α downregulation and hormone independence

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-01-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor–α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α–positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer. PMID:25822021

  17. Mechanisms of Resistance to Endocrine Therapy in Breast Cancer: Focus on Signaling Pathways, miRNAs and Genetically Based Resistance

    Science.gov (United States)

    García-Becerra, Rocío; Santos, Nancy; Díaz, Lorenza; Camacho, Javier

    2013-01-01

    Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients. PMID:23344024

  18. Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Claire Jackson

    2013-01-01

    Full Text Available Overexpression of human epidermal growth factor receptor (HER-2 occurs in 20–30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant 16HER-2 (results from exon 16 skipping increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention and p100 (results from intron 15 retention inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. “Individualised” strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.

  19. Endocrine resistance in breast cancer – an overview and update

    Science.gov (United States)

    Clarke, Robert; Tyson, John J.; Dixon, J. Michael

    2015-01-01

    Tumors that express detectable levels of the product of the ESR1 gene (estrogen receptor-α; ERα) represent the single largest molecular subtype of breast cancer. More women eventually die from ERα+ breast cancer than from either HER2+ disease (almost half of which also express ERα) and/or from triple negative breast cancer (ERα-negative, progesterone receptor-negative, and HER2-negative). Antiestrogens and aromatase inhibitors are largely indistinguishable from each other in their abilities to improve overall survival and almost 50% of ERα+ breast cancers will eventually fail one or more of these endocrine interventions. The precise reasons why these therapies fail in ERα+ breast cancer remain largely unknown. Pharmacogenetic explanations for Tamoxifen resistance are controversial. The role of ERα mutations in endocrine resistance remains unclear. Targeting the growth factors and oncogenes most strongly correlated with endocrine resistance has proven mostly disappointing in their abilities to improve overall survival substantially, particularly in the metastatic setting. Nonetheless, there are new concepts in endocrine resistance that integrate molecular signaling, cellular metabolism, and stress responses including endoplasmic reticulum stress and the unfolded protein response (UPR) that provide novel insights and suggest innovative therapeutic targets. Encouraging evidence that drug combinations with CDK4/CDK6 inhibitors can extend recurrence free survival may yet translate to improvements in overall survival. Whether the improvements seen with immunotherapy in other cancers can be achieved in breast cancer remains to be determined, particularly for ERα+ breast cancers. This review explores the basic mechanisms of resistance to endocrine therapies, concluding with some new insights from systems biology approaches further implicating autophagy and the UPR in detail, and a brief discussion of exciting new avenues and future prospects. PMID:26455641

  20. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer.

    Science.gov (United States)

    Canonici, Alexandra; Gijsen, Merel; Mullooly, Maeve; Bennett, Ruth; Bouguern, Noujoude; Pedersen, Kasper; O'Brien, Neil A; Roxanis, Ioannis; Li, Ji-Liang; Bridge, Esther; Finn, Richard; Siamon, Dennis; McGowan, Patricia; Duffy, Michael J; O'Donovan, Norma; Crown, John; Kong, Anthony

    2013-10-01

    Trastuzumab has been shown to improve the survival outcomes of HER2 positive breast cancer patients. However, a significant proportion of HER2-positive patients are either inherently resistant or develop resistance to trastuzumab. We assessed the effects of neratinib, an irreversible panHER inhibitor, in a panel of 36 breast cancer cell lines. We further assessed its effects with or without trastuzumab in several sensitive and resistant breast cancer cells as well as a BT474 xenograft model. We confirmed that neratinib was significantly more active in HER2-amplified than HER2 non-amplified cell lines. Neratinib decreased the activation of the 4 HER receptors and inhibited downstream pathways. However, HER3 and Akt were reactivated at 24 hours, which was prevented by the combination of trastuzumab and neratinib. Neratinib also decreased pHER2 and pHER3 in acquired trastuzumab resistant cells. Neratinib in combination with trastuzumab had a greater growth inhibitory effect than either drug alone in 4 HER2 positive cell lines. Furthermore, trastuzumab in combination with neratinib was growth inhibitory in SKBR3 and BT474 cells which had acquired resistance to trastuzumab as well as in a BT474 xenograft model. Innately trastuzumab resistant cell lines showed sensitivity to neratinib, but the combination did not enhance response compared to neratinib alone. Levels of HER2 and phospho-HER2 showed a direct correlation with sensitivity to neratinib. Our data indicate that neratinib is an effective anti-HER2 therapy and counteracted both innate and acquired trastuzumab resistance in HER2 positive breast cancer. Our results suggest that combined treatment with trastuzumab and neratinib is likely to be more effective than either treatment alone for both trastuzumab-sensitive breast cancer as well as HER2-positive tumors with acquired resistance to trastuzumab.

  1. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer

    International Nuclear Information System (INIS)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-01-01

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns. The online version of this article (doi:10.1186/s12885-016-2452-5) contains supplementary material, which is available to authorized users

  2. Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Y. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Shen, H. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Cao, Y. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Li, H. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Qin, R. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Chen, Q. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Long, L. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Zhu, X.L. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Xie, C.J. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Xu, W.L. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China)

    2014-01-10

    MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression implicated in cancer, which play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. The aim of this study was to investigate whether miR-30c mediated the resistance of breast cancer cells to the chemotherapeutic agent doxorubicin (ADR) by targeting tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ). miR-30c was downregulated in the doxorubicin-resistant human breast cancer cell lines MCF-7/ADR and MDA-MB-231/ADR compared with their parental MCF-7 and MDA-MB-231 cell lines, respectively. Furthermore, we observed that transfection of an miR-30c mimic significantly suppressed the ability of MCF-7/ADR to resist doxorubicin. Moreover, the anti-apoptotic gene YWHAZ was confirmed as a target of miR-30c by luciferase reporter assay, and further studies indicated that the mechanism for miR-30c on the sensitivity of breast cancer cells involved YWHAZ and its downstream p38 mitogen-activated protein kinase (p38MAPK) pathway. Together, our findings provided evidence that miR-30c was one of the important miRNAs in doxorubicin resistance by regulating YWHAZ in the breast cancer cell line MCF-7/ADR.

  3. Increased STAT1 signaling in endocrine-resistant breast cancer.

    Directory of Open Access Journals (Sweden)

    Rui Huang

    Full Text Available Proteomic profiling of the estrogen/tamoxifen-sensitive MCF-7 cell line and its partially sensitive (MCF-7/LCC1 and fully resistant (MCF-7/LCC9 variants was performed to identify modifiers of endocrine sensitivity in breast cancer. Analysis of the expression of 120 paired phosphorylated and non-phosphorylated epitopes in key oncogenic and tumor suppressor pathways revealed that STAT1 and several phosphorylated epitopes (phospho-STAT1(Tyr701 and phospho-STAT3(Ser727 were differentially expressed between endocrine resistant and parental controls, confirmed by qRT-PCR and western blotting. The STAT1 inhibitor EGCG was a more effective inhibitor of the endocrine resistant MCF-7/LCC1 and MCF-7/LCC9 lines than parental MCF-7 cells, while STAT3 inhibitors Stattic and WP1066 were equally effective in endocrine-resistant and parental lines. The effects of the STAT inhibitors were additive, rather than synergistic, when tested in combination with tamoxifen in vitro. Expression of STAT1 and STAT3 were measured by quantitative immunofluorescence in invasive breast cancers and matched lymph nodes. When lymph node expression was compared to its paired primary breast cancer expression, there was greater expression of cytoplasmic STAT1 (∼3.1 fold, phospho-STAT3(Ser727 (∼1.8 fold, and STAT5 (∼1.5 fold and nuclear phospho-STAT3(Ser727 (∼1.5 fold in the nodes. Expression levels of STAT1 and STAT3 transcript were analysed in 550 breast cancers from publicly available gene expression datasets (GSE2990, GSE12093, GSE6532. When treatment with tamoxifen was considered, STAT1 gene expression was nearly predictive of distant metastasis-free survival (DMFS, log-rank p = 0.067, while STAT3 gene expression was predictive of DMFS (log-rank p<0.0001. Analysis of STAT1 and STAT3 protein expression in a series of 546 breast cancers also indicated that high expression of STAT3 protein was associated with improved survival (DMFS, p = 0.006. These results suggest

  4. GP88 (PC-Cell Derived Growth Factor, progranulin stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    Directory of Open Access Journals (Sweden)

    Sabnis Gauri

    2011-06-01

    Full Text Available Abstract Background Aromatase inhibitors (AI that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+ breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88, also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.

  5. Mir-1307 regulates cisplatin resistance by targeting Mdm4 in breast cancer expressing wild type P53.

    Science.gov (United States)

    Wang, Xinyan; Zhu, Jianwei

    2018-04-26

    Many chemotherapy regimens are used to treat breast cancer; however, breast cancer cells often develop drug resistance that usually leads to relapse and poor prognosis. MicroRNAs (miRNAs) are short non-coding RNA molecules that post-transcriptionally regulate gene expression and play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. We investigated the roles of miRNAs in the development of drug resistance in human breast cancer cells. MiRNA expression was detected in human breast cancer cell lines MCF-7 and MDA-MB-468 via real time PCR; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, cell viability, colony formation, and luciferase reporter gene assays; Western blot; and immunohistochemistry. MiR-1307 was downregulated while MDM4 was upregulated in MCF-7/cisplatin (CDDP) and MDA-MB-468/CDDP cells compared with parental MCF-7 and MDA-MB-468 cells. in vitro drug sensitivity assay demonstrated that overexpression of miR-1307 sensitized MCF-7/CDDP cells to CDDP. Luciferase activity assay with a reporter containing sequences from the 3' untranslated region of Mdm4 in MCF-7/CDDP cells suggested that Mdm4 was the direct target gene of miR-1307. Ectopic miR-1307 expression reduced the MDM4 protein level and sensitized MCF-7/CDDP cells to CDDP-induced apoptosis. Our findings suggest, for the first time, that miR-1307 could play a role in the development of CDDP resistance in breast cancer, at least in part by modulating apoptosis by targeting Mdm4. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  6. Defining the cellular precursors to human breast cancer

    Science.gov (United States)

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  7. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S.; Rouchka, Eric C.; Hill, Bradford G.; Klinge, Carolyn M.

    2016-01-01

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  8. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S. [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Rouchka, Eric C. [Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292 (United States); Hill, Bradford G. [Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Klinge, Carolyn M., E-mail: carolyn.klinge@louisville.edu [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States)

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  9. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters

    International Nuclear Information System (INIS)

    Němcová-Fürstová, Vlasta; Kopperová, Dana; Balušíková, Kamila; Ehrlichová, Marie; Brynychová, Veronika; Václavíková, Radka; Daniel, Petr; Souček, Pavel; Kovář, Jan

    2016-01-01

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublines of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to

  10. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters

    Energy Technology Data Exchange (ETDEWEB)

    Němcová-Fürstová, Vlasta, E-mail: vlasta.furstova@lf3.cuni.cz [Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Kopperová, Dana; Balušíková, Kamila [Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Ehrlichová, Marie; Brynychová, Veronika; Václavíková, Radka [Toxicogenomics Unit, National Institute of Public Health, Prague (Czech Republic); Daniel, Petr [Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic); Souček, Pavel [Toxicogenomics Unit, National Institute of Public Health, Prague (Czech Republic); Kovář, Jan [Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague (Czech Republic)

    2016-11-01

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublines of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to

  11. Inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer

    Institute of Scientific and Technical Information of China (English)

    Zhao Li; Ma Yongjie; Gu Feng; Fu Li

    2014-01-01

    Background Paclitaxel (PAC) is the first-line chemotherapy drug for most breast cancer patients,but clinical studies showed that some breast cancer patients were insensitive to PAC,which led to chemotherapy failure.It was reported that Notch1 signaling participated in drug resistance of breast cancer.Here,we show whether Notch1 expression is related to PAC sensitivity of breast cancer.Methods We employed Notch1 siRNA and Notch1 inhibitor,N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT),to down regulate Notch1 expression in human breast cancer cells MDA-MB-231,and detected the inhibition effect by Western blotting and reverse trans cription-polymerase chain reaction,respectively.After 24 hours exposure to different concentration of PAC (0,1,5,10,15,20,and 25 μg/ml),the viability of the control group and experimental group cells was tested by MTT.We also examined the expression of Notch1 in PAC sensitive and nonsensitive breast cancer patients,respectively by immunohistochemistry (IHC).The PAC sensitivity of breast cancer patients were identified by collagen gel droplet embedded culture-drug sensitivity test (CD-DST).Results Down regulation of Notch1 expression by Notch1siRNA interference or Notch1 inhibitor increased the PAC sensitivity in MDA-MB-231 cells (P <0.05).Also,the expression of Notch1 in PAC sensitive patients was much lower than that of PAC non-sensitive patients (P <0.01).Conclusion Notch1 expression has an effect on PAC sensitivity in breast cancer patients,and the inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer.

  12. Aurora kinase B is important for antiestrogen resistant cell growth and a potential biomarker for tamoxifen resistant breast cancer

    DEFF Research Database (Denmark)

    Larsen, Sarah L; Yde, Christina W; Laenkholm, Anne-Vibeke

    2015-01-01

    BACKGROUND: Resistance to antiestrogen therapy is a major clinical challenge in the treatment of estrogen receptor α (ER)-positive breast cancer. The aim of the study was to explore the growth promoting pathways of antiestrogen resistant breast cancer cells to identify biomarkers and novel treatm...

  13. Tamoxifen-resistant breast cancer cells are resistant to DNA-damaging chemotherapy because of upregulated BARD1 and BRCA1.

    Science.gov (United States)

    Zhu, Yinghua; Liu, Yujie; Zhang, Chao; Chu, Junjun; Wu, Yanqing; Li, Yudong; Liu, Jieqiong; Li, Qian; Li, Shunying; Shi, Qianfeng; Jin, Liang; Zhao, Jianli; Yin, Dong; Efroni, Sol; Su, Fengxi; Yao, Herui; Song, Erwei; Liu, Qiang

    2018-04-23

    Tamoxifen resistance is accountable for relapse in many ER-positive breast cancer patients. Most of these recurrent patients receive chemotherapy, but their chemosensitivity is unknown. Here, we report that tamoxifen-resistant breast cancer cells express significantly more BARD1 and BRCA1, leading to resistance to DNA-damaging chemotherapy including cisplatin and adriamycin, but not to paclitaxel. Silencing BARD1 or BRCA1 expression or inhibition of BRCA1 phosphorylation by Dinaciclib restores the sensitivity to cisplatin in tamoxifen-resistant cells. Furthermore, we show that activated PI3K/AKT pathway is responsible for the upregulation of BARD1 and BRCA1. PI3K inhibitors decrease the expression of BARD1 and BRCA1 in tamoxifen-resistant cells and re-sensitize them to cisplatin both in vitro and in vivo. Higher BARD1 and BRCA1 expression is associated with worse prognosis of early breast cancer patients, especially the ones that received radiotherapy, indicating the potential use of PI3K inhibitors to reverse chemoresistance and radioresistance in ER-positive breast cancer patients.

  14. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer.

    Science.gov (United States)

    Le, Xiuning; Antony, Rajee; Razavi, Pedram; Treacy, Daniel J; Luo, Flora; Ghandi, Mahmoud; Castel, Pau; Scaltriti, Maurizio; Baselga, Jose; Garraway, Levi A

    2016-10-01

    PIK3CA (which encodes the PI3K alpha isoform) is the most frequently mutated oncogene in breast cancer. Small-molecule PI3K inhibitors have shown promise in clinical trials; however, intrinsic and acquired resistance limits their utility. We used a systematic gain-of-function approach to identify genes whose upregulation confers resistance to the PI3K inhibitor BYL719 in breast cancer cells. Among the validated resistance genes, Proviral Insertion site in Murine leukemia virus (PIM) kinases conferred resistance by maintaining downstream PI3K effector activation in an AKT-independent manner. Concurrent pharmacologic inhibition of PIM and PI3K overcame this resistance mechanism. We also observed increased PIM expression and activity in a subset of breast cancer biopsies with clinical resistance to PI3K inhibitors. PIM1 overexpression was mutually exclusive with PIK3CA mutation in treatment-naïve breast cancers, suggesting downstream functional redundancy. Together, these results offer new insights into resistance to PI3K inhibitors and support clinical studies of combined PIM/PI3K inhibition in a subset of PIK3CA-mutant cancers. PIM kinase overexpression confers resistance to small-molecule PI3K inhibitors. Combined inhibition of PIM and PI3K may therefore be warranted in a subset of breast cancers. Cancer Discov; 6(10); 1134-47. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1069. ©2016 American Association for Cancer Research.

  15. Epigenetic effects of human breast milk.

    Science.gov (United States)

    Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello

    2014-04-24

    A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant's health and his later life.

  16. Epigenetic Effects of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2014-04-01

    Full Text Available A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life.

  17. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines

    NARCIS (Netherlands)

    Scheffer, GL; Maliepaard, M; Pijnenborg, ACLM; van Gastelen, MA; Schroeijers, AB; Allen, JD; Ross, DD; van der Valk, P; Dalton, WS; Schellens, JHM; Scheper, RJ; de Jong, MC

    2000-01-01

    Tumor cells may display a multidrug resistant phenotype by overexpression of ATP-binding cassette transporters such as multidrug resistance (,MDR1) P-glycoprotein, multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). The presence of BCRP has thus far been reported

  18. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer

    International Nuclear Information System (INIS)

    Loh, Yan Ni; Hedditch, Ellen L; Baker, Laura A; Jary, Eve; Ward, Robyn L; Ford, Caroline E

    2013-01-01

    Acquired resistance to Tamoxifen remains a critical problem in breast cancer patient treatment, yet the underlying causes of resistance have not been fully elucidated. Abberations in the Wnt signalling pathway have been linked to many human cancers, including breast cancer, and appear to be associated with more metastatic and aggressive types of cancer. Here, our aim was to investigate if this key pathway was involved in acquired Tamoxifen resistance, and could be targeted therapeutically. An in vitro model of acquired Tamoxifen resistance (named TamR) was generated by growing the estrogen receptor alpha (ER) positive MCF7 breast cancer cell line in increasing concentrations of Tamoxifen (up to 5 uM). Alterations in the Wnt signalling pathway and epithelial to mesenchymal transition (EMT) in response to Tamoxifen and treatment with the Wnt inhibitor, IWP-2 were measured via quantitative RT-PCR (qPCR) and TOP/FOP Wnt reporter assays. Resistance to Tamoxifen, and effects of IWP-2 treatment were determined by MTT proliferation assays. TamR cells exhibited increased Wnt signalling as measured via the TOP/FOP Wnt luciferase reporter assays. Genes associated with both the β-catenin dependent (AXIN2, MYC, CSNK1A1) and independent arms (ROR2, JUN), as well as general Wnt secretion (PORCN) of the Wnt signalling pathway were upregulated in the TamR cells compared to the parental MCF7 cell line. Treatment of the TamR cell line with human recombinant Wnt3a (rWnt3a) further increased the resistance of both MCF7 and TamR cells to the anti-proliferative effects of Tamoxifen treatment. TamR cells demonstrated increased expression of EMT markers (VIM, TWIST1, SNAI2) and decreased CDH1, which may contribute to their resistance to Tamoxifen. Treatment with the Wnt inhibitor, IWP-2 inhibited cell proliferation and markers of EMT. These data support the role of the Wnt signalling pathway in acquired resistance to Tamoxifen. Further research into the mechanism by which activated Wnt

  19. Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies.

    Science.gov (United States)

    Murray, S; Briasoulis, E; Linardou, H; Bafaloukos, D; Papadimitriou, C

    2012-11-01

    Taxanes are established in the treatment of metastatic breast cancer (MBC) and early breast cancer (EBC) as potent chemotherapy agents. However, their therapeutic usefulness is limited by de-novo refractoriness or acquired resistance, which are common drawbacks to most anti-cancer cytotoxics. Considering that the taxanes will remain principle chemotherapeutic agents for the treatment of breast cancer, we reviewed known mechanisms of resistance in with an outlook of optimizing their clinical use. We searched the PubMed and MEDLINE databases for articles (from inception through to 9th January 2012; last search 10/01/2012) and journals known to publish information relevant to taxane chemotherapy. We imposed no language restrictions. Search terms included: cancer, breast cancer, response, resistance, taxane, paclitaxel, docetaxel, taxol. Due to the possibility of alternative mechanisms of resistance all combination chemotherapy treated data sets were removed from our overview. Over-expression of the MDR-1 gene product Pgp was extensively studied in vitro in association with taxane resistance, but data are conflicting. Similarly, the target components microtubules, which are thought to mediate refractoriness through alterations of the expression pattern of tubulins or microtubule associated proteins and the expression of alternative tubulin isoforms, failed to confirm such associations. Little consensus has been generated for reported associations between taxane-sensitivity and mutated p53, or taxane-resistance and overexpression of Bcl-2, Bcl-xL or NFkB. In contrary sufficient in vitro data support an association of spindle assembly checkpoint (SAC) defects with resistance. Clinical data have been limited and inconsistent, which relate to the variety of methods used, lack of standardization of cut-offs for quantitation, differences in clinical endpoints measured and in methods of tissue collection preparation and storage, and study/patient heterogeneity. The most

  20. Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0600 TITLE: Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers PRINCIPAL INVESTIGATOR: Dr...2017 4. TITLE AND SUBTITLE Dissecting the Mechanisms of Drug Resistance in BRCA1/2- Mutant Breast Cancers 5a. CONTRACT NUMBER W81XWH-16-1-0600 5b...therapeutic modality for targeting homologous recombination (HR) deficient tumors such as BRCA1 and BRCA2-mutated triple negative breast cancers

  1. Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Xinyu Wu

    Full Text Available The purpose of this study was to determine the role of long-chain fatty acyl-CoA synthetase 4 (ACSL4 in breast cancer. Public databases were utilized to analyze the relationship between ACSL4 mRNA expression and the presence of steroid hormone and human epidermal growth factor receptor 2 (HER2 in both breast cancer cell lines and tissue samples. In addition, cell lines were utilized to assess the consequences of either increased or decreased levels of ACSL4 expression. Proliferation, migration, anchorage-independent growth and apoptosis were used as biological end points. Effects on mRNA expression and signal transduction pathways were also monitored. A meta-analysis of public gene expression databases indicated that ACSL4 expression is positively correlated with a unique subtype of triple negative breast cancer (TNBC, characterized by the absence of androgen receptor (AR and therefore referred to as quadruple negative breast cancer (QNBC. Results of experiments in breast cancer cell lines suggest that simultaneous expression of ACSL4 and a receptor is associated with hormone resistance. Forced expression of ACSL4 in ACSL4-negative, estrogen receptor α (ER-positive MCF-7 cells resulted in increased growth, invasion and anchorage independent growth, as well as a loss of dependence on estrogen that was accompanied by a reduction in the levels of steroid hormone receptors. Sensitivity to tamoxifen, triacsin C and etoposide was also attenuated. Similarly, when HER2-positive, ACSL4-negative, SKBr3 breast cancer cells were induced to express ACSL4, the proliferation rate increased and the apoptotic effect of lapatinib was reduced. The growth stimulatory effect of ACSL4 expression was also observed in vivo in nude mice when MCF-7 control and ACSL4-expressing cells were utilized to induce tumors. Our data strongly suggest that ACSL4 can serve as both a biomarker for, and mediator of, an aggressive breast cancer phenotype.

  2. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of mi......+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer.......RNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...

  3. The Paradox of Oestradiol-Induced Breast Cancer Cell Growth and Apoptosis.

    Science.gov (United States)

    Maximov, Philipp Y; Lewis-Wambi, Joan S; Jordan, V Craig

    2009-05-01

    High dose oestrogen therapy was used as a treatment for postmenopausal patients with breast cancer from the 1950s until the introduction of the safer antioestrogen, tamoxifen in the 1970s. The anti-tumour mechanism of high dose oestrogen therapy remained unknown. There was no enthusiasm to study these signal transduction pathways as oestrogen therapy has almost completely been eliminated from the treatment paradigm. Current use of tamoxifen and the aromatase inhibitors seek to create oestrogen deprivation that prevents the growth of oestrogen stimulated oestrogen receptor (ER) positive breast cancer cells. However, acquired resistance to antihormonal therapy does occur, but it is through investigation of laboratory models that a vulnerability of the cancer cell has been discovered and is being investigated to provide new opportunities in therapy with the potential for discovering new cancer-specific apoptotic drugs. Laboratory models of resistance to raloxifene and tamoxifen, the selective oestrogen receptor modulators (SERMs) and aromatase inhibitors demonstrate an evolution of drug resistance so that after many years of oestrogen deprivation, the ER positive cancer cell reconfigures the survival signal transduction pathways so oestrogen now becomes an apoptotic trigger rather than a survival signal. Current efforts are evaluating the mechanisms of oestrogen-induced apoptosis and how this new biology of oestrogen action can be amplified and enhanced, thereby increasing the value of this therapeutic opportunity for the treatment of breast cancer. Several synergistic approaches to therapeutic enhancement are being advanced which involve drug combinations to impair survival signaling with the use of specific agents and to impair bcl-2 that protects the cancer cell from apoptosis. We highlight the historical understanding of oestrogen's role in cell survival and death and specifically illustrate the progress that has been made in the last five years to understand the

  4. Exosomes in development, metastasis and drug resistance of breast cancer.

    Science.gov (United States)

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  5. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Marilyn Carrier

    Full Text Available Retinoic acid (RA, the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the "kinome". Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα, which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression.

  6. Characterization of Candidate probionts isolated from human breast milk.

    Science.gov (United States)

    Khalkhali, S; Mojgani, N

    2017-05-20

    This study was designed to isolate and identify the potential probionts present in 32 healthy mothers' breast milk. Microbial culture media and 16SrRNA sequencing were used to isolate and identify the bacteria and all isolates were analyzed for their antagonistic potential, resistance to acidic pH, bile salts and survival under simulated gastric and intestinal conditions. The colonization potential was further assessed based on adherence to human enterocyte-like Caco-2 cell lines. The breast milk samples harbored significant numbers of Gram positive and catalase negative (85%) bacteria. Based on 16SrRNA sequencing, these isolates were identified as Lactobacillus casei, L.gasseri, L.fermentum, L.plantarum, Pediococcus acidilactici, and Enterococcus facieum. Among the isolates, P. acidilactici was the most frequent species (71%) present in these samples. Few Gram and catalase positive isolates, Staphylococcus aureus and S.hominiis were also observed. The isolates were viable and unviable in pH 3 and 1.5, respectively, while all isolates survived in 1.0% bile salt. As putative probionts, P.acidilactici 1C showed a significantly higher percentage of adhesion to Caco-2 cells (p< 0.05)than the other two isolates L.plantarum 7A and E.facieum 2C. Bacterial strains isolated from human breast milk were shown to have probiotic properties including anti-infective protection and may be considered as future therapeutics for infants.

  7. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  8. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  9. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque.

    Science.gov (United States)

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa

    2014-11-01

    Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.

  10. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells.

    Science.gov (United States)

    Shalviri, Alireza; Raval, Gaurav; Prasad, Preethy; Chan, Carol; Liu, Qiang; Heerklotz, Heiko; Rauth, Andrew Michael; Wu, Xiao Yu

    2012-11-01

    This work investigated the capability of a new nanoparticulate system, based on terpolymer of starch, polymethacrylic acid and polysorbate 80, to load and release doxorubicin (Dox) as a function of pH and to evaluate the anticancer activity of Dox-loaded nanoparticles (Dox-NPs) to overcome multidrug resistance (MDR) in human breast cancer cells in vitro. The Dox-NPs were characterized by Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The cellular uptake and cytotoxicity of the Dox-loaded nanoparticles were investigated using fluorescence microscopy, flow cytometry, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. The nanoparticles were able to load up to 49.7±0.3% of Dox with a high loading efficiency of 99.9±0.1%, while maintaining good colloidal stability. The nanoparticles released Dox at a higher rate at acidic pH attributable to weaker Dox-polymer molecular interactions evidenced by ITC. The Dox-NPs were taken up by the cancer cells in vitro and significantly enhanced the cytotoxicity of Dox against human MDR1 cells with up to a 20-fold decrease in the IC50 values. The results suggest that the new terpolymeric nanoparticles are a promising vehicle for the controlled delivery of Dox for treatment of drug resistant breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer.

    Science.gov (United States)

    Mercogliano, María F; De Martino, Mara; Venturutti, Leandro; Rivas, Martín A; Proietti, Cecilia J; Inurrigarro, Gloria; Frahm, Isabel; Allemand, Daniel H; Deza, Ernesto Gil; Ares, Sandra; Gercovich, Felipe G; Guzmán, Pablo; Roa, Juan C; Elizalde, Patricia V; Schillaci, Roxana

    2017-02-01

    Although trastuzumab administration improved the outcome of HER2-positive breast cancer patients, resistance events hamper its clinical benefits. We demonstrated that TNFα stimulation in vitro induces trastuzumab resistance in HER2-positive breast cancer cell lines. Here, we explored the mechanism of TNFα-induced trastuzumab resistance and the therapeutic strategies to overcome it. Trastuzumab-sensitive breast cancer cells, genetically engineered to stably overexpress TNFα, and de novo trastuzumab-resistant tumors, were used to evaluate trastuzumab response and TNFα-blocking antibodies effectiveness respectively. Immunohistochemistry and antibody-dependent cell cytotoxicity (ADCC), together with siRNA strategy, were used to explore TNFα influence on the expression and function of its downstream target, mucin 4 (MUC4). The clinical relevance of MUC4 expression was studied in a cohort of 78 HER2-positive breast cancer patients treated with adjuvant trastuzumab. TNFα overexpression turned trastuzumab-sensitive cells and tumors into resistant ones. Histopathologic findings revealed mucin foci in TNFα-producing tumors. TNFα induced upregulation of MUC4 that reduced trastuzumab binding to its epitope and impaired ADCC. Silencing MUC4 enhanced trastuzumab binding, increased ADCC, and overcame trastuzumab and trastuzumab-emtansine antiproliferative effects in TNFα-overexpressing cells. Accordingly, administration of TNFα-blocking antibodies downregulated MUC4 and sensitized de novo trastuzumab-resistant breast cancer cells and tumors to trastuzumab. In HER2-positive breast cancer samples, MUC4 expression was found to be an independent predictor of poor disease-free survival (P = 0.008). We identified TNFα-induced MUC4 expression as a novel trastuzumab resistance mechanism. We propose MUC4 expression as a predictive biomarker of trastuzumab efficacy and a guide to combination therapy of TNFα-blocking antibodies with trastuzumab. Clin Cancer Res; 23(3); 636-48.

  12. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance.

    Science.gov (United States)

    Jeselsohn, Rinath; Cornwell, MacIntosh; Pun, Matthew; Buchwalter, Gilles; Nguyen, Mai; Bango, Clyde; Huang, Ying; Kuang, Yanan; Paweletz, Cloud; Fu, Xiaoyong; Nardone, Agostina; De Angelis, Carmine; Detre, Simone; Dodson, Andrew; Mohammed, Hisham; Carroll, Jason S; Bowden, Michaela; Rao, Prakash; Long, Henry W; Li, Fugen; Dowsett, Mitchell; Schiff, Rachel; Brown, Myles

    2017-05-30

    The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases. Through the analysis of the ER cistrome in tamoxifen-resistant breast cancer cells, we have uncovered a role for an RUNX2-ER complex that stimulates the transcription of a set of genes, including most notably the stem cell factor SOX9, that promote proliferation and a metastatic phenotype. We show that up-regulation of SOX9 is sufficient to cause relative endocrine resistance. The gain of SOX9 as an ER-regulated gene associated with tamoxifen resistance was validated in a unique set of clinical samples supporting the need for the development of improved ER antagonists.

  13. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2007-05-01

    165-72. 60. Vestergaard J, Pedersen MW, Pedersen N, Ensinger C, Tumer Z, Tommerup N, et al. Hedgehog signaling in small-cell lung cancer : frequent......NUMBER Chemo Resistance of Breast Cancer Stem Cells 5b. GRANT NUMBER W81XWH-04-1-0471 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  14. Vitronectin in human breast carcinomas

    DEFF Research Database (Denmark)

    Aaboe, Mads; Offersen, Birgitte Vrou; Christensen, Anni

    2003-01-01

    We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters and in the subendothe......We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters...... and in the subendothelial area of some blood vessels. In normal tissue, vitronectin had a homogeneous periductal occurrence, with local accumulation much lower than that in the carcinomas. Using a new solid phase radioligand assay, the vitronectin concentrations of extracts of carcinomas and normal breast tissue were...... is not synthesised locally in breast tissue but derived by leakage from vessels, followed by extracellular accumulation in patterns distinctly different in carcinomas and normal tissue. The observation of a high vitronectin content in the carcinomas and its localisation in the tissue contributes to the clarification...

  15. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    International Nuclear Information System (INIS)

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-01-01

    β1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of β1 integrin signaling. We showed previously that β1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and β1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo

  16. beta 1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Catherine C.; Park, Catherine C.; Zhang, Hui J.; Yao, Evelyn S.; Park, Chong J.; Bissell, Mina J.

    2008-06-02

    {beta}1 integrin signaling has been shown to mediate cellular resistance to apoptosis after exposure to ionizing radiation (IR). Other signaling molecules that increase resistance include Akt, which promotes cell survival downstream of {beta}1 integrin signaling. We showed previously that {beta}1 integrin inhibitory antibodies, AIIB2, enhance apoptosis and decrease growth in human breast cancer cells in 3 dimensional laminin-rich extracellular matrix (3D lrECM) cultures and in vivo. Here we asked whether AIIB2 could synergize with IR to modify Akt-mediated IR resistance. We used 3D lrECM cultures to test the optimal combination of AIIB2 with IR treatment of two breast cancer cell lines, MCF-7 and HMT3522-T4-2, as well as T4-2 myr-Akt breast cancer colonies or HMT3522-S-1, which form normal organotypic structures in 3D lrECM. Colonies were assayed for apoptosis and {beta}1 integrin/Akt signaling pathways were evaluated using western blot. In addition, mice bearing MCF-7 xenografts were used to validate the findings in 3D lrECM. We report that AIIB2 increased apoptosis optimally post-IR by down regulating Akt in breast cancer colonies in 3D lrECM. In vivo, addition of AIIB2 after IR significantly enhanced tumor growth inhibition and apoptosis compared to either treatment alone. Remarkably, the degree of tumor growth inhibition using AIIB2 plus 2 Gy radiation was similar to that of 8 Gy alone. We showed previously that AIIB2 had no discernible toxicity in mice; here, its addition allowed for a significant reduction in the IR dose that was necessary to achieve comparable growth inhibition and apoptosis in breast cancer xenografts in vivo.

  17. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...... mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from...... nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides...

  18. Abrogating endocrine resistance by targeting ERα and PI3K in breast cancer

    International Nuclear Information System (INIS)

    Fox, Emily M.; Arteaga, Carlos L.; Miller, Todd W.

    2012-01-01

    Antiestrogen therapies targeting estrogen receptor α (ER) signaling are a mainstay for patients with ER+ breast cancer. While many cancers exhibit resistance to antiestrogen therapies, a large body of clinical and experimental evidence indicates that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway promotes antiestrogen resistance. In addition, continued ligand-independent ER signaling in the setting of estrogen deprivation may contribute to resistance to endocrine therapy. PI3K activates several proteins which promote cell cycle progression and survival. In ER+ breast cancer cells, PI3K promotes ligand-dependent and -independent ER transcriptional activity. Models of antiestrogen-resistant breast cancer often remain sensitive to estrogen stimulation and PI3K inhibition, suggesting that clinical trials with combinations of drugs targeting both the PI3K and ER pathways are warranted. Herein, we review recent findings on the roles of PI3K and ER in antiestrogen resistance, and clinical trials testing drug combinations which target both pathways. We also discuss the need for clinical investigation of ER downregulators in combination with PI3K inhibitors.

  19. Enhancer of the rudimentary gene homologue (ERH expression pattern in sporadic human breast cancer and normal breast tissue

    Directory of Open Access Journals (Sweden)

    Knüchel Ruth

    2008-05-01

    Full Text Available Abstract Background The human gene ERH (Enhancer of the Rudimentary gene Homologue has previously been identified by in silico analysis of four million ESTs as a gene differentially expressed in breast cancer. The biological function of ERH protein has not been fully elucidated, however functions in cell cycle progression, pyrimidine metabolism a possible interaction with p21(Cip1/Waf1 via the Ciz1 zinc finger protein have been suggested. The aim of the present study was a systematic characterization of ERH expression in human breast cancer in order to evaluate possible clinical applications of this molecule. Methods The expression pattern of ERH was analyzed using multiple tissue northern blots (MTN on a panel of 16 normal human tissues and two sets of malignant/normal breast and ovarian tissue samples. ERH expression was further analyzed in breast cancer and normal breast tissues and in tumorigenic as well as non-tumorigenic breast cancer cell lines, using quantitative RT-PCR and non-radioisotopic in situ hybridization (ISH. Results Among normal human tissues, ERH expression was most abundant in testis, heart, ovary, prostate, and liver. In the two MTN sets of malignant/normal breast and ovarian tissue,ERH was clearly more abundantly expressed in all tumours than in normal tissue samples. Quantitative RT-PCR analyses showed that ERH expression was significantly more abundant in tumorigenic than in non-tumorigenic breast cancer cell lines (4.5-fold; p = 0.05, two-tailed Mann-Whitney U-test; the same trend was noted in a set of 25 primary invasive breast cancers and 16 normal breast tissue samples (2.5-fold; p = 0.1. These findings were further confirmed by non-radioisotopic ISH in human breast cancer and normal breast tissue. Conclusion ERH expression is clearly up-regulated in malignant as compared with benign breast cells both in primary human breast cancer and in cell models of breast cancer. Since similar results were obtained for ovarian

  20. Everolimus downregulates estrogen receptor and induces autophagy in aromatase inhibitor-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Lui, Asona; New, Jacob; Ogony, Joshua; Thomas, Sufi; Lewis-Wambi, Joan

    2016-01-01

    mTOR inhibition of aromatase inhibitor (AI)-resistant breast cancer is currently under evaluation in the clinic. Everolimus/RAD001 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of combination therapy for AI-resistant breast cancer. This study was conducted to investigate the anti-proliferative and resistance mechanisms of everolimus in AI-resistant breast cancer cells. In this study we utilized two AI-resistant breast cancer cell lines, MCF-7:5C and MCF-7:2A, which were clonally derived from estrogen receptor positive (ER+) MCF-7 breast cancer cells following long-term estrogen deprivation. Cell viability assay, colony formation assay, cell cycle analysis and soft agar anchorage-independent growth assay were used to determine the efficacy of everolimus in inhibiting the proliferation and tumor forming potential of MCF-7, MCF-7:5C, MCF-7:2A and MCF10A cells. Confocal microscopy and transmission electron microscopy were used to evaluate LC3-II production and autophagosome formation, while ERE-luciferase reporter, Western blot, and RT-PCR analyses were used to assess ER expression and transcriptional activity. Everolimus inhibited the proliferation of MCF-7:5C and MCF-7:2A cells with relatively equal efficiency to parental MCF-7 breast cancer cells. The inhibitory effect of everolimus was due to G1 arrest as a result of downregulation of cyclin D1 and p21. Everolimus also dramatically reduced estrogen receptor (ER) expression (mRNA and protein) and transcriptional activity in addition to the ER chaperone, heat shock protein 90 protein (HSP90). Everolimus restored 4-hydroxy-tamoxifen (4OHT) sensitivity in MCF-7:5C cells and enhanced 4OHT sensitivity in MCF-7 and MCF-7:2A cells. Notably, we found that autophagy is one method of everolimus insensitivity in MCF-7 breast cancer cell lines. This study provides additional insight into the mechanism(s) of action of everolimus that can be used to enhance the utility of mTOR inhibitors as

  1. Adipokines in human breast milk.

    Science.gov (United States)

    Kratzsch, Juergen; Bae, Yoon Ju; Kiess, Wieland

    2018-01-01

    The review describes the molecular characteristics of so far detected breast milk adipokines and ranks their breast milk level compared to the respective levels in maternal and infant blood. Moreover, analytical knowledge for measurements of breast milk adipokines will be delineated. Next, we summarized data about two main potential influencing factors on adipokine concentration in breast milk, maternal weight and pasteurization of milk. Finally, associations between adipokines in breast milk and weight gain in infants as well as the putative mechanisms for effects of breast milk adipokines on food intake and weight gain in later life will debated. Our findings suggest that a source of adipokines in human breast milk cannot be uniformly defined. In dependence on the ratio between serum and breast milk levels the major quantity of these proteins may be derived from peripheral tissues, from the breast tissue itself or from both. Thus, leptin and in part adiponectin levels in breast milk are dependent on a plenty of influencing factors with an important relevance of maternal anthropometric characteristics There is some evidence that leptin, adiponectin and ghrelin levels in breast milk may be associated with growth gain of infants and even with increased risk for being overweight during infancy or childhood. We hypothesize that a dysregulation in adipokine homeostasis in early life could promote obesity and metabolic disturbance in later life. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Human Cell Surfaceome of Breast Tumors

    Science.gov (United States)

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  3. MicroRNA‑663b mediates TAM resistance in breast cancer by modulating TP73 expression.

    Science.gov (United States)

    Jiang, Hua; Cheng, Lin; Hu, Pan; Liu, Renbin

    2018-05-23

    Breast cancer is the second leading cause of cancer‑associated mortalities in women. Tamoxifen (TAM) is an endocrine therapy commonly used in the treatment of patients with breast cancer expressing estrogen receptor α. However, treatment often ends in failure due to the emergence of drug resistance. MicroRNAs (miRNAs), a family of small non‑coding RNAs, serve critical roles in the regulation of gene expression and cell events. To date, whether miRNA‑663b could mediate TAM resistance in breast cancer remains unknown. Therefore, the aim of the present study was to investigate the role of miRNA‑663b in TAM resistance in breast cancer. The results demonstrated that miRNA‑663b was upregulated in breast cancer with TAM resistance. Tumor protein 73 (TP73) was a direct target of miRNA‑663b, and was negatively regulated by miRNA‑663b in MCF‑7 cells. Furthermore, it was identified that downregulation of miRNA‑663b inhibited cell proliferation ability and promoted cell apoptosis, resulting in enhanced TAM sensitivity. In addition, these findings suggested that TP73 silencing may have eliminated the effects of miRNA‑663b inhibitor on breast cancer cells. In conclusion, the present study verified a novel molecular link between miRNA‑663b and TP73, and indicated that miRNA‑663b may be a critical therapeutic target in breast cancer.

  4. Melatonin: an Inhibitor of Breast Cancer

    Science.gov (United States)

    Hill, Steven M.; Belancio, Victoria P.; Dauchy, Robert T.; Xiang, Shulin; Brimer, Samantha; Mao, Lulu; Hauch, Adam; Lundberg, Peter W.; Summers, Whitney; Yuan, Lin; Frasch, Tripp; Blask, David E.

    2015-01-01

    This review discusses recent work on melatonin-mediated circadian regulation and metabolic and molecular signaling mechanisms involved in human breast cancer growth and associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin, via the MT1 receptor, suppresses ERα mRNA expression and ERα transcriptional activity. As well, melatonin regulates the transactivation of other members of the nuclear receptor super-family, estrogen metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (Warburg effect), and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways including inhibition of p38 MAPK and repression of epithelial-to-mesenchymal transition. Studies demonstrate that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models indicate that LEN induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer to drive breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms underpinning the epidemiologic demonstration of elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LEN. PMID:25876649

  5. Maintenance of prolactin receptors in human breast cancer

    International Nuclear Information System (INIS)

    Ben-David, M.; Dror, Y.; Biran, S.

    1981-01-01

    Breast tissue specimens of 110 women with various stages of breast cancer were tested in vitro to determine their specific binding sites for human prolactin. In contrast to the case of steroid receptors, binding sites for prolactin were found in the vast majority of breast cancer tissue. Distribution profiles giving amount of prolactin receptor and their affinity coefficients were found to be similar in the tissues of women whose ages, hormonal status, or stage of breast cancer varied. These findings show that in contrast to steroid receptors, human breast cancer tissue maintains binding sites for prolactin. The findings also indicate that there may be a higher dependency of breast cancer on prolactin than on steroids. Clinical trials must be carried out to determine the role of ''positive'' prolactin receptors in prognosis and prediction of response to future hormone therapy. (author)

  6. VAV3 mediates resistance to breast cancer endocrine therapy

    NARCIS (Netherlands)

    H. Aguilar (Helena); A. Urruticoechea (Ander); P. Halonen (Pasi); K. Kiyotani (Kazuma); T. Mushiroda (Taisei); X. Barril (Xavier); J. Serra-Musach (Jordi); A.B.M.M.K. Islam (Abul); L. Caizzi (Livia); L. Di Croce (Luciano); E. Nevedomskaya (Ekaterina); W. Zwart (Wilbert); J. Bostner (Josefine); E. Karlsson (Elin); G. Pérez Tenorio (Gizeh); T. Fornander (Tommy); D.C. Sgroi (Dennis); R. Garcia-Mata (Rafael); M.P.H.M. Jansen (Maurice); N. García (Nadia); N. Bonifaci (Núria); F. Climent (Fina); E. Soler (Eric); A. Rodríguez-Vida (Alejo); M. Gil (Miguel); J. Brunet (Joan); G. Martrat (Griselda); L. Gómez-Baldó (Laia); A.I. Extremera (Ana); J. Figueras; J. Balart (Josep); R. Clarke (Robert); K.L. Burnstein (Kerry); K.E. Carlson (Kathryn); J.A. Katzenellenbogen (John); M. Vizoso (Miguel); M. Esteller (Manel); A. Villanueva (Alberto); A.B. Rodríguez-Peña (Ana); X.R. Bustelo (Xosé); Y. Nakamura (Yusuke); H. Zembutsu (Hitoshi); O. Stål (Olle); R.L. Beijersbergen (Roderick); M.A. Pujana (Miguel)

    2014-01-01

    textabstractIntroduction: Endocrine therapies targeting cell proliferation and survival mediated by estrogen receptor α (ERα) are among the most effective systemic treatments for ERα-positive breast cancer. However, most tumors initially responsive to these therapies acquire resistance through

  7. ADAM10 mediates trastuzumab resistance and is correlated with survival in HER2 positive breast cancer

    Science.gov (United States)

    Feldinger, Katharina; Generali, Daniele; Kramer-Marek, Gabriela; Gijsen, Merel; Ng, Tzi Bun; Wong, Jack Ho; Strina, Carla; Cappelletti, Mariarosa; Andreis, Daniele; Li, Ji-Liang; Bridges, Esther; Turley, Helen; Leek, Russell; Roxanis, Ioannis; Capala, Jacek; Murphy, Gillian; Harris, Adrian L.; Kong, Anthony

    2014-01-01

    Trastuzumab prolongs survival in HER2 positive breast cancer patients. However, resistance remains a challenge. We have previously shown that ADAM17 plays a key role in maintaining HER2 phosphorylation during trastuzumab treatment. Beside ADAM17, ADAM10 is the other well characterized ADAM protease responsible for HER ligand shedding. Therefore, we studied the role of ADAM10 in relation to trastuzumab treatment and resistance in HER2 positive breast cancer. ADAM10 expression was assessed in HER2 positive breast cancer cell lines and xenograft mice treated with trastuzumab. Trastuzumab treatment increased ADAM10 levels in HER2 positive breast cancer cells (p≤0.001 in BT474; p≤0.01 in SKBR3) and in vivo (p≤0.0001) compared to control, correlating with a decrease in PKB phosphorylation. ADAM10 inhibition or knockdown enhanced trastuzumab response in naïve and trastuzumab resistant breast cancer cells. Trastuzumab monotherapy upregulated ADAM10 (p≤0.05); and higher pre-treatment ADAM10 levels correlated with decreased clinical response (p≤0.05) at day 21 in HER2 positive breast cancer patients undergoing a trastuzumab treatment window study. Higher ADAM10 levels correlated with poorer relapse-free survival (p≤0.01) in a cohort of HER2 positive breast cancer patients. Our studies implicate a role of ADAM10 in acquired resistance to trastuzumab and establish ADAM10 as a therapeutic target and a potential biomarker for HER2 positive breast cancer patients. PMID:24952873

  8. SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer.

    Science.gov (United States)

    Chen, Xu; Wang, Ya-Wen; Gao, Peng

    2018-05-09

    Spindlin1 (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development. Alterations of drug metabolizing enzymes and drug transporters are major determinants of chemoresistance in tumor cells. However, whether the metabolizing enzymes and transporters are under the control of SPIN1 in breast cancer chemoresistance has not yet been defined. SPIN1 expression in breast cancer cells and tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Chemosensitivity assays in vitro and in vivo were performed to determine the effect of SPIN1 on Adriamycin resistance. Downstream effectors of SPIN1 were screened by microarray and confirmed by qRT-PCR and Western blot. Luciferase assay and Western blot were used to identify miRNAs regulating SPIN1. We showed that SPIN1 was significantly elevated in drug-resistant breast cancer cell lines and tissues, compared with the chemosensitive ones. SPIN1 enhanced Adriamycin resistance of breast cancer cells in vitro, and downregulation of SPIN1 by miRNA could decrease Adriamycin resistance in vivo. Mechanistically, drug metabolizing enzymes and transporter CYP2C8, UGT2B4, UGT2B17 and ABCB4 were proven to be downstream effectors of SPIN1. Notably, SPIN1 was identified as a direct target of the miR-148/152 family (miR-148a-3p, miR-148b-3p and miR-152-3p). As expected, miR-148a-3p, miR-148b-3p or miR-152-3p could increase Adriamycin sensitivity in breast cancer cells in vitro. Moreover, high expression of SPIN1 or low expression of the miR-148/152 family predicted poorer survival in breast cancer patients. Our results establish that SPIN1, negatively regulated by the miR-148/152 family, enhances Adriamycin resistance in breast cancer via upregulating the expression of drug metabolizing enzymes and drug transporter.

  9. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    International Nuclear Information System (INIS)

    Zeng, Guo-fang; Cai, Shao-xi; Wu, Guang-Jer

    2011-01-01

    Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis

  10. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cai Shao-xi

    2011-03-01

    Full Text Available Abstract Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis, and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.

  11. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  12. Human breast milk immunology: a review.

    Science.gov (United States)

    Paramasivam, K; Michie, C; Opara, E; Jewell, A P

    2006-01-01

    Breast feeding has been shown to enhance the development of the immune system of the newborn as well as provide protection against enteric and respiratory infections. It has been suggested that implementation of breast feeding programs has the potential to save hundreds of thousands of lives worldwide. Human milk is a bodily fluid which, apart from being an excellent nutritional source for the growing infant, also contains a variety of immune components such as antibodies, growth factors, cytokines, antimicrobial compounds, and specific immune cells. These help to support the immature immune system of the newborn baby, and protect it against infectious risks during the postnatal period while its own immune system matures. This article reviews some of the factors in human breast milk that give it these important properties.

  13. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer.

    Science.gov (United States)

    Thewes, Verena; Simon, Ronald; Schroeter, Petra; Schlotter, Magdalena; Anzeneder, Tobias; Büttner, Reinhard; Benes, Vladimir; Sauter, Guido; Burwinkel, Barbara; Nicholson, Robert I; Sinn, Hans-Peter; Schneeweiss, Andreas; Deuschle, Ulrich; Zapatka, Marc; Heck, Stefanie; Lichter, Peter

    2015-02-15

    Endocrine treatment regimens for breast cancer that target the estrogen receptor-α (ERα) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor-α (ERRα) for ERα. To examine this hypothesis, we analyzed ERRα and ERα in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ERα, ERRα, and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ERα and ERRα target gene repertoires, both factors were engaged in similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERRα in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERRα sufficient to partly restore sensitivity to antiestrogens. In clinical specimens (n = 1041), increased expression of ERRα was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ERα-positive cases. In addition, increased ERRα expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ERα and ERRα cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERRα as a candidate drug target to treat endocrine-resistant breast cancer. ©2015 American Association for Cancer Research.

  14. Endocrine therapy of human breast cancer grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Osborne, C K; Spang-Thomsen, M

    1987-01-01

    mice bearing transplanted human breast tumors have been proposed as such a model. This review therefore discusses the use of the athymic nude mouse model of the study of human breast cancer biology, and focuses on four subjects: 1. biological characteristics of heterotransplanted breast tumors; 2...

  15. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells.

    Science.gov (United States)

    Karakas, Bahriye; Ozmay, Yeliz; Basaga, Huveyda; Gul, Ozgur; Kutuk, Ozgur

    2018-05-04

    Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    International Nuclear Information System (INIS)

    Yang, Ji Yeon; Ha, Seon-Ah; Yang, Yun-Sik; Kim, Jin Woo

    2010-01-01

    Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells. Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated. YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics. Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists

  17. Isolation of the human anionic glutathione S-transferase cDNA and the relation of its gene expression to estrogen-receptor content in primary breast cancer

    International Nuclear Information System (INIS)

    Moscow, J.A.; Townsend, A.J.; Goldsmith, M.E.; Whang-Peng, J.; Vickers, P.J.; Poisson, R.; Legault-Poisson, S.; Myers, C.E.; Cowan, K.H.

    1988-01-01

    The development of multidrug resistance in MCF7 human breast cancer cells is associated with overexpression of P-glycoprotein, changes in activities of several detoxication enzymes, and loss of hormone sensitivity and estrogen receptors (ERs). The authors have cloned the cDNA for one of the drug-detoxifying enzymes overexpressed in multidrug-resistant MCF7 cells (Adr R MCF7), the anionic isozyme of glutathione S-transferase (GSTπ). Hybridization with this GSTπ cDNA, GSTπ-1, demonstrated that increased GSTπ activity in Adr R MCF7 cells is associated with overexpression but not with amplification of the gene. They mapped the GSTπ gene to human chromosome 11q13 by in situ hybridization. Since multidrug resistance and GSTπ overexpression are associated with the loss of ERs in Adr R MCF7 cells, they examined several other breast cancer cell lines that were not selected for drug resistance. In each of these cell lines they found an inverse association between GSTπ expression and ER content. They also examined RNA from 21 primary breast cancers and found a similar association between GSTπ expression and ER content in vivo. The finding of similar patterns of expression of a drug-detoxifying enzyme and of ERs in vitro as well as in vivo suggests that ER-negative breast cancer cells may have greater protection against antineoplastic agents conferred by GSTπ than ER-positive tumors

  18. Polarized spectral features of human breast tissues through wavelet ...

    Indian Academy of Sciences (India)

    Abstract. Fluorescence characteristics of human breast tissues are investigated through wavelet transform and principal component analysis (PCA). Wavelet transform of polar- ized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate different tissue types.

  19. APC loss in breast cancer leads to doxorubicin resistance via STAT3 activation.

    Science.gov (United States)

    VanKlompenberg, Monica K; Leyden, Emily; Arnason, Anne H; Zhang, Jian-Ting; Stefanski, Casey D; Prosperi, Jenifer R

    2017-11-28

    Resistance to chemotherapy is one of the leading causes of death from breast cancer. We recently established that loss of Adenomatous Polyposis Coli (APC) in the Mouse Mammary Tumor Virus - Polyoma middle T (MMTV-PyMT) transgenic mouse model results in resistance to cisplatin or doxorubicin-induced apoptosis. Herein, we aim to establish the mechanism that is responsible for APC-mediated chemotherapeutic resistance. Our data demonstrate that MMTV-PyMT; Apc Min/+ cells have increased signal transducer and activator of transcription 3 (STAT3) activation. STAT3 can be constitutively activated in breast cancer, maintains the tumor initiating cell (TIC) population, and upregulates multidrug resistance protein 1 (MDR1). The activation of STAT3 in the MMTV-PyMT; Apc Min/+ model is independent of interleukin 6 (IL-6); however, enhanced EGFR expression in the MMTV-PyMT; Apc Min/+ cells may be responsible for the increased STAT3 activation. Inhibiting STAT3 with a small molecule inhibitor A69 in combination with doxorubicin, but not cisplatin, restores drug sensitivity. A69 also decreases doxorubicin enhanced MDR1 gene expression and the TIC population enhanced by loss of APC. In summary, these results have revealed the molecular mechanisms of APC loss in breast cancer that can guide future treatment plans to counteract chemotherapeutic resistance.

  20. Short-term incubation in vitro with precursors of nucleic acids on human primary tumors and metastases of carcinoma of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, M; Kubli, F; Volm, M; Fournier, D V; Reus, W [Heidelberg Univ. (Germany, F.R.). Frauenklinik; Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Experimentelle Pathologie)

    1978-04-01

    A technique of short-term tests in vitro by means of the incubation of tumor cell suspensions is utilized as a radioactive-biochemical method for pretherapeutic determination of the resistance in human cancers of the breast. Cell suspensions from primary tumors and metastases reveal individually different responses to cytostatics in vitro. It is possible, therewith, to differentiate two tumor collectives related to in vivo resistant or in vivo sensitive tumors. The responses of the primary lesion and the axillary lymphatic metastasis of the same carcinoma may in single cases also differ in vitro, according to clinical experience with the therapy of breast cancer. A distinct relation can be shown between the histological type of a carcinoma and its in vitro capacity of resistance.

  1. Hormone resistance in two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis and increased sensitivity to cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Euphemia Yee Leung

    2014-09-01

    Full Text Available The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume and resistance to mTOR inhibition. Here we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, docetaxel and hydrogen peroxide. The mechanisms underlying these changes have not yet been characterized but may include a shift from glycolysis to mitochondrial respiration. If this phenotype is found in clinical hormone-resistant breast cancers, conventional cytotoxic therapy may be a preferred option for treatment.

  2. "US-detonated nano bombs" facilitate targeting treatment of resistant breast cancer.

    Science.gov (United States)

    Shi, Jinjin; Liu, Wei; Fu, Yu; Yin, Na; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong

    2018-03-28

    Reversal of drug resistance and targeted therapy are the keys but remain challenging in resistant breast cancer treatment. Herein, low frequency ultrasound detonated "nano bombs" were rationally designed and used for treatment of resistant breast cancer. For the 'nano bombs', the ammunition (Doxorubicin, DOX) was loaded into the ammunition depot (hollow mesoporous TiO 2 , MTNs), and the safety device (dsDNA) was wrapped on the surface of MTNs to avoid the unexpected DOX release. We found the "US-detonated explosive" abilities of "nano bomb" MTNs (NBMTNs), including explosive generation of ROS, explosive release of DOX, US-triggered lysosome escape and mitochondrial targeting in the in vitro and in vivo studies. More importantly, the drug resistance of MCF-7/ADR cells could be reversed via the inhibition of mitochondrial energy supply approach caused by the "explosion" of NBMTNs. Furthermore, NBMTNs combined the superior chemotherapy efficacy of DOX and potent SDT efficacy in one single platform and significantly enhanced the anticancer efficacy. Our results demonstrate an approach for reversing resistance and specific targeting of tumors using 'US-detonated nano bombs'. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. microRNAs in High and Low Responders to Resistance Training in Breast Cancer Survivors.

    Science.gov (United States)

    Hagstrom, Amanda D; Denham, Joshua

    2018-04-26

    Accounting for one in three cancer diagnoses, breast cancer is the second most commonly diagnosed cancer in women. Exercise has a well-accepted role in the multi-disciplinary approach to rehabilitating breast cancer survivors. Despite the many known benefits of resistance training on women recovering from breast cancer, the molecular mechanisms are poorly understood. MicroRNAs are small non-coding RNAs that have crucial roles in growth and development. Here, we analysed the abundance of 9 miRNAs, with known roles in muscle physiology and some linked to cancer, in serum samples from 24 breast cancer survivors before and after a 16-week resistance training or usual care intervention. The resistance training group completed supervised thrice-weekly training. miRNA abundance was assessed before and after the intervention period using qPCR. There were no statistically significant changes in any of the miRNAs between groups after the intervention period (all p>0.05). After assessing miRNA abundance in context with high and low responders to resistance training, we observed that relative to low responders, high responders exhibited increased miR-133a-3p and a borderline statistically significant increase in miR-370-3p. Findings from our controlled study indicate the diverse interindividual miRNA responses to resistance training and reveal a discordant regulation between high and low responders. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan

    NARCIS (Netherlands)

    Jonker, JW; Smit, JW; Brinkhuis, RF; Maliepaard, M; Beijnen, JH; Schellens, JHM; Schinkel, AH

    2000-01-01

    Background and Methods: Breast cancer resistance protein (BCRP/MXR/ABCP) is a multidrug-resistance protein that is a member of the adenosine triphosphate-binding cassette family of drug transporters. BCRP can render tumor cells resistant to the anticancer drugs topotecan, mitoxantrone, doxorubicin,

  5. Breast self-examination: resistance to change.

    Science.gov (United States)

    Del Giudice, M Elisabeth; Tannenbaum, David; Goodwin, Pamela J

    2005-05-01

    To investigate whether Canadian family practitioners routinely teach breast self-examination (BSE) after publication of the 2001 Canadian Preventive Health Task Force guideline advising them to exclude teaching BSE from periodic health examinations. Self-administered cross-sectional mailed survey. Canada. A random sample of English-speaking general practitioners and physicians certified by the College of Family Physicians of Canada. Current and past BSE practices and opinions on the value of BSE. Response rate was 47.4%. Most respondents (88%) were aware of the new recommendations, yet only 16% had changed their usual practice of routinely teaching BSE. Most physicians agreed that before the recommendation they almost always taught BSE (74.3%). Only 9.5% agreed that physicians should follow the recommendation and not routinely teach BSE. A few also agreed that they now spend less time discussing BSE (25.7%) and that the recommendation has influenced them to stop teaching (12.4%) and encouraging (12.9%) women to practise BSE. Physicians who had changed their BSE practices were less likely to agree that BSE increases early detection of breast cancer and more likely to agree that BSE increases benign breast biopsies. They were also more likely to agree that screening mammography in women older than 50 decreases mortality from breast cancer. This survey, which assessed routine teaching of BSE, revealed poor adherence by Canadian family physicians to a well publicized evidence-based guideline update. Resistance to change could in part be attributed to a lack of knowledge of the supporting evidence, a lack of confidence in the evidence to date, and personal experiences with patients within their practices.

  6. Integrating molecular mechanisms and clinical evidence in the management of trastuzumab resistant or refractory HER-2⁺ metastatic breast cancer.

    Science.gov (United States)

    Wong, Hilda; Leung, Roland; Kwong, Ava; Chiu, Joanne; Liang, Raymond; Swanton, Charles; Yau, Thomas

    2011-01-01

    Human epidermal growth factor receptor (HER)-2(+) breast cancer is a distinct molecular and clinical entity, the prognosis of which is improved by trastuzumab. However, primary resistance to trastuzumab is observed in >50% of patients with HER-2(+) advanced breast cancer, and the majority of patients who initially respond to treatment eventually develop disease progression. To facilitate crosstrial comparisons and the understanding of resistance mechanisms, we propose a unifying definition of trastuzumab resistance as progression at first radiological reassessment at 8-12 weeks or within 3 months after first-line trastuzumab in the metastatic setting or new recurrences diagnosed during or within 12 months after adjuvant trastuzumab. In contrast, we define trastuzumab-refractory breast cancer as disease progression after two or more lines of trastuzumab-containing regimens that initially achieved disease response or stabilization at first radiological assessment. We review mechanisms of trastuzumab resistance mediated by p95HER-2 overexpression, phosphoinositide 3-kinase pathway activation, and signaling pathway activation driven by HER-3, epidermal growth factor receptor, and insulin-like growth factor 1 receptor. We distinguish in vitro from in vivo evidence, highlighting that most data describing trastuzumab resistance are derived from preclinical studies or small retrospective patient cohorts, and discuss targeted therapeutic approaches to overcome resistance. Prospective analysis through clinical trials with robust tissue collection procedures, prior to and following acquisition of resistance, integrated with next-generation tumor genome sequencing technologies, is identified as a priority area for development. The identification of predictive biomarkers is of paramount importance to optimize health economic costs and enhance stratification of anti-HER-2 targeted therapies.

  7. Global characterization of signalling networks associated with tamoxifen resistance in breast cancer

    DEFF Research Database (Denmark)

    Browne, Brigid C.; Hochgräfe, Falko; Wu, Jianmin

    2013-01-01

    R cells. Phosphorylation of the tyrosine kinase Yes and expression of the actin‐binding protein myristoylated alanine‐rich C‐kinase substrate (MARCKS) were increased two‐ and eightfold in TamR cells respectively, and these proteins were selected for further analysis. Knockdown of either protein in Tam......Acquired resistance to the anti‐estrogen tamoxifen remains a significant challenge in breast cancer management. In this study, we used an integrative approach to characterize global protein expression and tyrosine phosphorylation events in tamoxifen‐resistant MCF7 breast cancer cells (Tam...... was perturbed in TamR cells, together with pathways enriched for proteins associated with growth factor, cell–cell and cell matrix‐initiated signalling. Consistent with known roles for Ras/MAPK and PI3‐kinase signalling in tamoxifen resistance, tyrosine‐phosphorylated MAPK1, SHC1 and PIK3R2 were elevated in Tam...

  8. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1.

    Science.gov (United States)

    Wang, Ming-Yang; Chen, Pai-Sheng; Prakash, Ekambaranellore; Hsu, Hsing-Chih; Huang, Hsin-Yi; Lin, Ming-Tsan; Chang, King-Jen; Kuo, Min-Liang

    2009-04-15

    Connective tissue growth factor (CTGF) expression is elevated in advanced breast cancer and promotes metastasis. Chemotherapy response is only transient in most metastatic diseases. In the present study, we examined whether CTGF expression could confer drug resistance in human breast cancer. In breast cancer patients who received neoadjuvant chemotherapy, CTGF expression was inversely associated with chemotherapy response. Overexpression of CTGF in MCF7 cells (MCF7/CTGF) enhanced clonogenic ability, cell viability, and resistance to apoptosis on exposure to doxorubicin and paclitaxel. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) mitigated this drug resistance capacity. CTGF overexpression resulted in resistance to doxorubicin- and paclitaxel-induced apoptosis by up-regulation of Bcl-xL and cellular inhibitor of apoptosis protein 1 (cIAP1). Knockdown of Bcl-xL or cIAP1 with specific small interfering RNAs abolished the CTGF-mediated resistance to apoptosis induced by the chemotherapeutic agents in MCF7/CTGF cells. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 effectively reversed the resistance to apoptosis as well as the up-regulation of Bcl-xL and cIAP1 in MCF7/CTGF cells. A neutralizing antibody against integrin alpha(v)beta(3) significantly attenuated CTGF-mediated ERK1/2 activation and up-regulation of Bcl-xL and cIAP1, indicating that the integrin alpha(v)beta(3)/ERK1/2 signaling pathway is essential for CTGF functions. The Bcl-xL level also correlated with the CTGF level in breast cancer patients. We also found that a COOH-terminal domain peptide from CTGF could exert activities similar to full-length CTGF, in activation of ERK1/2, up-regulation of Bcl-xL/cIAP1, and resistance to apoptosis. We conclude that CTGF expression could confer resistance to chemotherapeutic agents through augmenting a survival pathway through ERK1/2-dependent Bcl-xL/cIAP1 up-regulation.

  9. Effect of 8 Weeks Resistance Training on Some Antioxidant/Oxidative Indexes in Postmenopausal Women with Breast Cancer

    Directory of Open Access Journals (Sweden)

    F. Fathollahi Shoorabeh

    2017-04-01

    Full Text Available Aims: Breast cancer is the most common cancer among women that usually begins with abnormal growth and division of different breast cells. There is some evidence that there is an inverse relationship between levels of antioxidants and the risk of breast cancer. The purpose of this study was to investigate the effect of 8 weeks resistance training on some antioxidant/oxidative indexes in postmenopausal women with breast cancer. Materials & Methods: In this semi-experimental study, in 2014, 30 postmenopausal women with breast cancer in Khorramabad city were selected by available sampling method and randomly divided into 2 groups: experimental group (n=16 and control group (n=14. The experimental group performed resistance training for 8 weeks, which started from 30% 1RM (one repetition maximum and reached 45-50% 1RM at the end of the eighth week. Blood samples were taken from subjects for the measurement of superoxide dismutase (SOD, glutathione peroxidase (GPX and malondialdehyde (MDA serum levels, 48 hours before and after the training protocol. Data were analyzed by SPSS 19 software using independent t-test and dependent t-test. Findings: After performing 8 weeks of resistance training, serum levels of SOD and GPX significantly increased and MDA levels decreased significantly (p0.05. Conclusion: Resistance training for 8 weeks increases antioxidant indexes and decreases oxidative indexes in postmenopausal women with breast cancer.

  10. Effect of 8 Weeks Resistance Training on Some Antioxidant/Oxidative Indexes in Postmenopausal Women with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fathollahi Shoorabeh F.

    2017-12-01

    Full Text Available Aims Breast cancer is the most common cancer among women that usually begins with abnormal growth and division of different breast cells. There is some evidence that there is an inverse relationship between levels of antioxidants and the risk of breast cancer. The purpose of this study was to investigate the effect of 8 weeks resistance training on some antioxidant/oxidative indexes in postmenopausal women with breast cancer. Materials & Methods In this semi-experimental study, in 2014, 30 postmenopausal women with breast cancer in Khorramabad city were selected by available sampling method and randomly divided into 2 groups: experimental group (n=16 and control group (n=14. The experimental group performed resistance training for 8 weeks, which started from 30% 1RM (one repetition maximum and reached 45-50% 1RM at the end of the eighth week. Blood samples were taken from subjects for the measurement of superoxide dismutase (SOD, glutathione peroxidase (GPX and malondialdehyde (MDA serum levels, 48 hours before and after the training protocol. Data were analyzed by SPSS 19 software using independent t-test and dependent t-test. Findings After performing 8 weeks of resistance training, serum levels of SOD and GPX significantly increased and MDA levels decreased significantly (p0.05. Conclusion Resistance training for 8 weeks increases antioxidant indexes and decreases oxidative indexes in postmenopausal women with breast cancer.

  11. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells.

    Science.gov (United States)

    Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee

    2018-05-28

    Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

  12. Identification of differentially expressed microRNAs in human male breast cancer

    Directory of Open Access Journals (Sweden)

    Schipper Elisa

    2010-03-01

    Full Text Available Abstract Background The discovery of small non-coding RNAs and the subsequent analysis of microRNA expression patterns in human cancer specimens have provided completely new insights into cancer biology. Genetic and epigenetic data indicate oncogenic or tumor suppressor function of these pleiotropic regulators. Therefore, many studies analyzed the expression and function of microRNA in human breast cancer, the most frequent malignancy in females. However, nothing is known so far about microRNA expression in male breast cancer, accounting for approximately 1% of all breast cancer cases. Methods The expression of 319 microRNAs was analyzed in 9 primary human male breast tumors and in epithelial cells from 15 male gynecomastia specimens using fluorescence-labeled bead technology. For identification of differentially expressed microRNAs data were analyzed by cluster analysis and selected statistical methods. Expression levels were validated for the most up- or down-regulated microRNAs in this training cohort using real-time PCR methodology as well as in an independent test cohort comprising 12 cases of human male breast cancer. Results Unsupervised cluster analysis separated very well male breast cancer samples and control specimens according to their microRNA expression pattern indicating cancer-specific alterations of microRNA expression in human male breast cancer. miR-21, miR519d, miR-183, miR-197, and miR-493-5p were identified as most prominently up-regulated, miR-145 and miR-497 as most prominently down-regulated in male breast cancer. Conclusions Male breast cancer displays several differentially expressed microRNAs. Not all of them are shared with breast cancer biopsies from female patients indicating male breast cancer specific alterations of microRNA expression.

  13. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222.

    Science.gov (United States)

    Yu, Dan-Dan; Wu, Ying; Zhang, Xiao-Hui; Lv, Meng-Meng; Chen, Wei-Xian; Chen, Xiu; Yang, Su-Jin; Shen, Hongyu; Zhong, Shan-Liang; Tang, Jin-Hai; Zhao, Jian-Hua

    2016-03-01

    Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism.

  14. Mechanisms of Acquired Resistance to Trastuzumab Emtansine in Breast Cancer Cells.

    Science.gov (United States)

    Li, Guangmin; Guo, Jun; Shen, Ben-Quan; Bumbaca Yadav, Daniela; Sliwkowski, Mark X; Crocker, Lisa M; Lacap, Jennifer A; Lewis Phillips, Gail D

    2018-04-25

    The receptor tyrosine kinase HER2 is overexpressed in approximately 20% of breast cancer, and its amplification is associated with reduced survival. Trastuzumab emtansine (Kadcyla®, T-DM1), an antibody-drug conjugate that is comprised of trastuzumab covalently linked to the anti-mitotic agent DM1 through a stable linker, was designed to selectively deliver DM1 to HER2-overexpressing tumor cells. T-DM1 is approved for the treatment of patients with HER2-positive metastatic breast cancer following progression on trastuzumab and a taxane. Despite the improvement in clinical outcome, many patients who initially respond to T-DM1 treatment eventually develop progressive disease. The mechanisms that contribute to T-DM1 resistance are not fully understood. To this end, we developed T-DM1-resistant in vitro models to examine the mechanisms of acquired T-DM1 resistance. We demonstrate that decreased HER2 and up-regulation of MDR1 contribute to T-DM1 resistance in KPL-4 T-DM1 resistant cells. In contrast, both loss of SLC46A3 and PTEN deficiency play a role in conferring resistance in BT-474M1 T-DM1 resistant cells. Our data suggest that these two cell lines acquire resistance through distinct mechanisms. Furthermore, we show that the KPL-4 T-DM1 resistance can be overcome by treatment with an inhibitor of MDR1, whereas a PI3K inhibitor can rescue PTEN loss-induced resistance in T-DM1-resistant BT-474M1 cells. Our results provide a rationale for developing therapeutic strategies to enhance T-DM1 clinical efficacy by combining T-DM1 and other inhibitors that target signaling transduction or resistance pathways. Copyright ©2018, American Association for Cancer Research.

  15. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Science.gov (United States)

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  16. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  17. Differential effect of EGFR inhibitors on tamoxifen-resistant breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Lee, Jeongmin; Oh, Soo Jin; Nam, Seok Jin; Lee, Jeong Eon

    2015-09-01

    Although tamoxifen is the most common and effective therapy for treatment of estrogen receptor-α (ER-α) breast cancer patients, resistance of endocrine therapy occurs, either de novo or acquired during therapy. Here, we investigated the clinical value of epidermal growth factor receptor (EGFR) in tamoxifen-resistant (TamR) patients and the differential effect of EGFR inhibitors, neratinib and gefitinib, on TamR breast cancer cell model. The morphology of TamR MCF7 cells showed mesenchymal phenotypes and did not induce cell death by tamoxifen treatment compared with tamoxifen‑sensitive (TamS) MCF7 cells. In addition, mesenchymal marker proteins, including N-cadherin (N-cad), fibronectin (FN), and Slug, significantly increased in TamR cells. In contrast, ER-α and E-cadherin (E-cad) were greatly decreased. We also found that the levels of EGFR and HER2 expression were increased in TamR cells. Furthermore, we observed that EGFR expression was directly involved with poor prognosis of tamoxifen-treated breast cancer patients using the GSE1378 date set. Thus, we treated TamR and TamS cells with EGFR inhibitors, neratinib and gefitinib, respectively. Interestingly, neratinib induced apoptotic cell death of TamR but not gefitinib. Cleaved PARP-1 expression was also increased by neratinib treatment in TamR cells. Therefore, we suggest that neratinib may be a potential therapeutic drug for treating TamR breast cancer.

  18. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    International Nuclear Information System (INIS)

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan

    2015-01-01

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  19. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  20. Identification of hormonal receptors in human breast cancer

    International Nuclear Information System (INIS)

    Rosa Pascual, M.; Lage, A.; Diaz, J.W.; Moreno, L.; Marta Diaz, T.

    1981-01-01

    The experience in the implementation of a technique for determining hormono-dependence of human breast cancer is presented. The results found with the use of the technique in 50 patients with malignant breast cancer treated at IOR are examined and discussed. (author)

  1. A review of obesity, insulin resistance, and the role of exercise in breast cancer patients.

    Science.gov (United States)

    Ghose, Abhimanyu; Kundu, Ria; Toumeh, Anis; Hornbeck, Catherine; Mohamed, Iman

    2015-01-01

    Breast cancer, the most common female malignancy in the world, has a strong association with obesity and insulin resistance. The importance of these risk factors goes up significantly in patients already affected by this cancer as they negatively affect the prognosis, recurrence rate, and survival by various mechanisms. The literature on the role of physical activity and aerobic exercise on modifying the above risks is debatable with data both for and against it. In this article, we have reviewed the risks of obesity and insulin resistance in breast cancer patients and the controversy associated with the impact of exercise. Ultimately, we have concluded that a randomized control trial is necessary with an individualized aerobic exercise program for a minimum duration of 20 wk on breast cancer patients, who are undergoing or recently completed chemotherapy, to study its effects on insulin resistance, weight, and clinical outcome.

  2. Minor drug-resistant HIV type-1 variants in breast milk and plasma of HIV type-1-infected Ugandan women after nevirapine single-dose prophylaxis.

    Science.gov (United States)

    Pilger, Daniel; Hauser, Andrea; Kuecherer, Claudia; Mugenyi, Kizito; Kabasinguzi, Rose; Somogyi, Sybille; Harms, Gundel; Kunz, Andrea

    2011-01-01

    Nevirapine single-dose (NVP-SD) reduces mother-to-child transmission of HIV type-1 (HIV-1), but frequently induces resistance mutations in the HIV-1 genome. Little is known about drug-resistant HIV-1 variants in the breast milk of women who have taken NVP-SD. Blood and breast milk samples of 39 HIV-1-infected Ugandan women were taken 6-12 weeks after NVP-SD intake. Samples were analysed by population sequencing and allele-specific real-time PCR (AS-PCR) with detection limits for NVP-resistant HIV-1 variants (K103N and Y181C) of D n = 5, G n = 2 and C n = 1). A total of 7 (37%) and 10 (53%) women carried NVP-resistant virus in breast milk and plasma, respectively. Overall, 71% (5/7) women with NVP-resistant HIV-1 in breast milk displayed >1 drug-resistant variant. Resistance in breast milk was higher at week 6 (6/13 samples [46%]) compared with week 12 (1/6 samples [17%]). In total, 10 drug-resistant populations harbouring the K103N and/or Y181C mutation were detected in the 19 breast milk samples; 7 (70%) were caused by resistant minorities (< 5% of the total HIV-1 population). In the four women with drug-resistant virus in both plasma and breast milk, the mutation patterns differed between the two compartments. Minor populations of drug-resistant HIV-1 were frequently found in breast milk of Ugandan women after exposure to NVP-SD. Further studies need to explore the role of minor drug-resistant variants in the postnatal transmission of (resistant) HIV-1.

  3. Black cohosh (Cimicifuga racemosa) in tamoxifen-treated breast cancer patients with climacteric complaints - a prospective observational study.

    Science.gov (United States)

    Rostock, Matthias; Fischer, Julia; Mumm, Andreas; Stammwitz, Ute; Saller, Reinhard; Bartsch, Hans Helge

    2011-10-01

    The antihormonal therapy of breast cancer patients with the antiestrogen tamoxifen often induces or aggravates menopausal complaints. As estrogen substitution is contraindicated, herbal alternatives, e.g. extracts of black cohosh are often used. A prospective observational study was carried out in 50 breast cancer patients with tamoxifen treatment. All patients had had surgery, most of them had undergone radiation therapy (87%) and approximately 50% had received chemotherapy. Every patient was treated with an isopropanolic extract of black cohosh (1-4 tablets, 2.5 mg) for 6 months. Patients recorded their complaints before therapy and after 1, 3, and 6 months of therapy using the menopause rating scale (MRS II). The reduction of the total MRS II score under black cohosh treatment from 17.6 to 13.6 was statistically significant. Hot flashes, sweating, sleep problems, and anxiety improved, whereas urogenital and musculoskeletal complaints did not change. In all, 22 patients reported adverse events, none of which were linked with the study medication; 90% reported the tolerability of the black cohosh extract as very good or good. Black cohosh extract seems to be a reasonable treatment approach in tamoxifen treated breast cancer patients with predominantly psychovegetative symptoms.

  4. [Breast is best--human milk for premature infants].

    Science.gov (United States)

    Riskin, Arieh; Bader, David

    2003-03-01

    Nutrition for preterm babies is aimed at achieving expected intrauterine growth and accretion of nutrients. Early trophic feedings should be started as soon as possible for gastrointestinal priming. Mother's (breast) milk is the best food for preterm babies. Its advantages are in host defence, nutritional components and suitability for gut absorption, as well as its psychological and developmental value. The limitations of human milk for preterm babies, mainly in protein and minerals, can be compensated for by using powdered human milk fortifier. Sucking skills usually mature around 34 weeks, corrected gestational age. Thus, small preemies are initially fed by orogastric tubes, meaning that expressed breast milk is used. Support of lactation in mothers of preemies mandates protection of the mother and child bonding process and early skin to skin contact ("kangeroo care"). Methods for storage of expressed breast milk and the recommended length of storage are discussed. Milk bank mandates pasteurization and freezing of the donors' milk. Most of the nutritional and immunological advantages of human milk are preserved after such treatments. Cytomegalovirus (CMV) infections in preterm infants, that were acquired from mother's expressed breast milk, are not uncommon, and require further attention.

  5. [Nutritional epigenetics and epigenetic effects of human breast milk].

    Science.gov (United States)

    Lukoyanova, O L; Borovik, T E

    The article provides an overview of the current literature on nutritional epigenetics. There are currently actively studied hypothesis that nutrition especially in early life or in critical periods of the development, may have a role in modulating gene expression, and, therefore, have later effects on health in adults. Nutritional epigenetics concerns knowledge about the possible effects of nutrients on gene expression. Human breast milk is well-known for its ability in preventing necrotizing enterocolitis, infectious diseases, and also non-communicable diseases, such as obesity and related disorders. This paper discusses about presumed epigenetic effects of human breast milk and some its components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are stillunclear.

  6. Low-risk susceptibility alleles in 40 human breast cancer cell lines

    International Nuclear Information System (INIS)

    Riaz, Muhammad; Elstrodt, Fons; Hollestelle, Antoinette; Dehghan, Abbas; Klijn, Jan GM; Schutte, Mieke

    2009-01-01

    Low-risk breast cancer susceptibility alleles or SNPs confer only modest breast cancer risks ranging from just over 1.0 to1.3 fold. Yet, they are common among most populations and therefore are involved in the development of essentially all breast cancers. The mechanism by which the low-risk SNPs confer breast cancer risks is currently unclear. The breast cancer association consortium BCAC has hypothesized that the low-risk SNPs modulate expression levels of nearby located genes. Genotypes of five low-risk SNPs were determined for 40 human breast cancer cell lines, by direct sequencing of PCR-amplified genomic templates. We have analyzed expression of the four genes that are located nearby the low-risk SNPs, by using real-time RT-PCR and Human Exon microarrays. The SNP genotypes and additional phenotypic data on the breast cancer cell lines are presented. We did not detect any effect of the SNP genotypes on expression levels of the nearby-located genes MAP3K1, FGFR2, TNRC9 and LSP1. The SNP genotypes provide a base line for functional studies in a well-characterized cohort of 40 human breast cancer cell lines. Our expression analyses suggest that a putative disease mechanism through gene expression modulation is not operative in breast cancer cell lines

  7. APC selectively mediates response to chemotherapeutic agents in breast cancer

    International Nuclear Information System (INIS)

    VanKlompenberg, Monica K.; Bedalov, Claire O.; Soto, Katia Fernandez; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor is mutated or hypermethylated in up to 70 % of sporadic breast cancers depending on subtype; however, the effects of APC mutation on tumorigenic properties remain unexplored. Using the Apc Min/+ mouse crossed to the Polyoma middle T antigen (PyMT) transgenic model, we identified enhanced breast tumorigenesis and alterations in genes critical in therapeutic resistance independent of Wnt/β-catenin signaling. Apc mutation changed the tumor histopathology from solid to squamous adenocarcinomas, resembling the highly aggressive human metaplastic breast cancer. Mechanistic studies in tumor-derived cell lines demonstrated that focal adhesion kinase (FAK)/Src/JNK signaling regulated the enhanced proliferation downstream of Apc mutation. Despite this mechanistic information, the role of APC in mediating breast cancer chemotherapeutic resistance is currently unknown. We have examined the effect of Apc loss in MMTV-PyMT mouse breast cancer cells on gene expression changes of ATP-binding cassette transporters and immunofluorescence to determine proliferative and apoptotic response of cells to cisplatin, doxorubicin and paclitaxel. Furthermore we determined the added effect of Src or JNK inhibition by PP2 and SP600125, respectively, on chemotherapeutic response. We also used the Aldefluor assay to measure the population of tumor initiating cells. Lastly, we measured the apoptotic and proliferative response to APC knockdown in MDA-MB-157 human breast cancer cells after chemotherapeutic treatment. Cells obtained from MMTV-PyMT;Apc Min/+ tumors express increased MDR1 (multidrug resistance protein 1), which is augmented by treatment with paclitaxel or doxorubicin. Furthermore MMTV-PyMT;Apc Min/+ cells are more resistant to cisplatin and doxorubicin-induced apoptosis, and show a larger population of ALDH positive cells. In the human metaplastic breast cancer cell line MDA-MB-157, APC knockdown led to paclitaxel and cisplatin

  8. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  9. HPW-RX40 restores anoikis sensitivity of human breast cancer cells by inhibiting integrin/FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Hua; Shih, Hsin-Chu [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Hsieh, Pei-Wen [Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan (China); Wu, Yang-Chang, E-mail: yachwu@mail.cmu.edu [School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan (China); Wu, Chin-Chung, E-mail: ccwu@kmu.edu.tw [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80708, Taiwan (China); Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2015-12-01

    Anoikis is defined as apoptosis, which is induced by inappropriate cell–matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis. - Highlights: • The β-nitrostyrene derivative, HPW-RX40, induces anoikis in human breast cancer cells. • HPW-RX40 inhibits the integrin/FAK signaling pathway. • The combination of HPW-RX40 with an EGFR inhibitor leads to enhanced anoikis. • HPW-RX40 may have a potential to prevent the spread of metastatic breast cancer.

  10. HPW-RX40 restores anoikis sensitivity of human breast cancer cells by inhibiting integrin/FAK signaling

    International Nuclear Information System (INIS)

    Chen, I-Hua; Shih, Hsin-Chu; Hsieh, Pei-Wen; Chang, Fang-Rong; Wu, Yang-Chang; Wu, Chin-Chung

    2015-01-01

    Anoikis is defined as apoptosis, which is induced by inappropriate cell–matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis. - Highlights: • The β-nitrostyrene derivative, HPW-RX40, induces anoikis in human breast cancer cells. • HPW-RX40 inhibits the integrin/FAK signaling pathway. • The combination of HPW-RX40 with an EGFR inhibitor leads to enhanced anoikis. • HPW-RX40 may have a potential to prevent the spread of metastatic breast cancer.

  11. Human Breast Cancer Histoid

    Science.gov (United States)

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R.; Ingram, Marylou

    2011-01-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue. PMID:22034518

  12. Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer.

    Science.gov (United States)

    Yang, Su-Jin; Wang, Dan-Dan; Li, Jian; Xu, Han-Zi; Shen, Hong-Yu; Chen, Xiu; Zhou, Si-Ying; Zhong, Shan-Liang; Zhao, Jian-Hua; Tang, Jin-Hai

    2017-08-05

    Anthracycline/taxane-based chemotherapy regimens are usually used as neoadjuvant chemotherapies to decrease tumour size and prevent metastasis of advanced breast cancer. However, patients have a high risk of developing chemo-resistance during treatment through still unknown mechanisms. Glutathione S-transferase P1 (GSTP1), which belongs to the family of phase II metabolic enzymes, has been reported to function in detoxifying several anti-cancer drugs by conjugating them with glutathione. Previous studies have identified GSTP1 as a predictor of prognosis and chemo-resistance in breast cancer patients, but the mechanisms governing GSTP1-dependent drug resistance are still unclear. We have found that GSTP1 expression is much higher in adriamycin-resistant cells and their corresponding exosomes. The role of GSTP1-containing exosomes in conferring drug resistance was analysed through cell apoptosis and immunofluorescence staining assays. Furthermore, we analysed 42 cases of paired breast cancer tissues collected before and after anthracycline/taxane-based neoadjuvant chemotherapy by immunohistochemistry. Higher GSTP1 expression was shown in the progressive disease (PD)/stable disease (SD) group than in the partial response (PR)/complete response (CR) group both in the samples collected before and after the chemotherapy treatment. Interestingly, GSTP1 partly re-localized from the cell nucleus to the cytoplasm upon treatment, and similar results were obtained for the exosomal marker Tumour susceptibility gene 101 protein (TSG101), which also increased in the cytoplasm after chemotherapy. After analysing the serum exosomes of 30 patients treated with anthracycline/taxane-based neoadjuvant chemotherapy, we discovered that the levels of GSTP1 in exosomes from patients in the PD/SD group were significantly higher than those in the PR/CR group. Here, for the first time, we investigated a novel role for GSTP1-containing exosomes and their capability to transfer drug resistance

  13. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  14. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance for...

  15. Cloning of Novel Oncogenes Involved in Human Breast Cancer

    National Research Council Canada - National Science Library

    Clark, Geoffrey

    1998-01-01

    .... In order to identify genes which may play a role in breast cancer we have begun a process of manufacturing cDNA expression libraries derived from human breast tumor cell lines in retroviral vectors...

  16. Comparison of breast cancer mucin (BCM) and CA 15-3 in human breast cancer

    NARCIS (Netherlands)

    Garcia, M.B.; Blankenstein, M.A.; Wall, E. van der; Nortier, J.W.R.; Schornagel, J.H.; Thijssen, J.H.H.

    1990-01-01

    The Breast Cancer Mucin (BCM) enzyme immunoassay utilizes two monoclonal antibodies (Mab), M85/34 and F36/22, for the identification of a mucin-like glycoprotein in serum of breast cancer patients. We have compared BCM with CA 15-3, another member of the human mammary epithelial antigen

  17. Breast abscess as a complication of human brucellosis.

    Science.gov (United States)

    Gurleyik, Emin

    2006-01-01

    Breast abscess caused by human brucellosis is extremely rare. A 46-year-old woman received the diagnosis of brucellosis with positive serologic tests. Two weeks after the onset of symptoms, the case was complicated by vertebral (L5-S1) abscess which was treated by surgical drainage. One month after the diagnosis of brucellosis, the patient noticed a mass in her left breast. Breast palpation revealed a painless, mobile, round mass that was hypoechoic on ultrasound imaging. Purulent material was obtained by needle aspiration. Besides treatment of the breast abscess by needle aspiration, brucellosis was successfully controlled by prolonged antimicrobial treatment.

  18. Storage of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Gamze Can

    2007-10-01

    Full Text Available Storage of human breast milk by freezing or refrigeration of milk has been recommended especially at some social circumstances of most mothers who are regularly separated from their infants because of work. The greatest fear that has hindered the prospects of in - vitro storage of breast milk for any considerable period of time is the possibility of bacterial contamination and growth of infectious pathogens in the stored milk, there by rendering them unsafe for human consumption. The storage container can influence the cell content of milk, as the cells adhere to the walls of a glass container but not to polyethylene or polypropylene containers. Bacteriological examination of refrigerated milks has proven their safety for human consumption for even up to 72 h. For a storage over longer periods up to 1 month, freezing at - 20 0C could be recommended, but the most preferred method, especially for longer storage would be fresh freezing at - 70 0C, if affordable or available. The nutrient value of human milk is essentially unchanged, but the immunological properties are reduced by various storage techniques. Boiling and microwave radiation have not been recommended. [TAF Prev Med Bull 2007; 6(5.000: 375-379

  19. Identification of a putative protein-profile associating with tamoxifen therapy-resistance in breast cancer

    NARCIS (Netherlands)

    A. Umar (Arzu); J.W.M. Martens (John); J.A. Foekens (John); L. Paša-Tolić (Ljiljana); H. Kang; A.M. Timmermans (Mieke); M.P. Look (Maxime); M.E. Meijer van Gelder (Marion); N. Jaitly (Navdeep); M.A. den Bakker (Michael)

    2009-01-01

    textabstractTamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical parameters can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards

  20. Human breast tissue disposition and bioactivity of limonene in women with early stage breast cancer

    Science.gov (United States)

    Miller, Jessica A.; Lang, Julie E.; Ley, Michele; Nagle, Ray; Hsu, Chiu-Hsieh; Thompson, Patricia A; Cordova, Catherine; Waer, Amy; Chow, H.-H. Sherry

    2013-01-01

    Limonene is a bioactive food component found in citrus peel oil that has demonstrated chemopreventive and chemotherapeutic activities in preclinical studies. We conducted an open label pilot clinical study to determine the human breast tissue disposition of limonene and its associated bioactivity. We recruited forty-three women with newly diagnosed operable breast cancer electing to undergo surgical excision to take 2 grams of limonene daily for 2 – 6 weeks before surgery. Blood and breast tissue were collected to determine drug/metabolite concentrations and limonene-induced changes in systemic and tissue biomarkers of breast cancer risk or carcinogenesis. Limonene was found to preferentially concentrate in the breast tissue, reaching high tissue concentration (mean=41.3 μg/g tissue) while the major active circulating metabolite, perillic acid, did not concentrate in the breast tissue. Limonene intervention resulted in a 22% reduction in cyclin D1 expression (P=0.002) in tumor tissue but minimal changes in tissue Ki67 and cleaved caspase 3 expression. No significant changes in serum leptin, adiponectin, TGF-β1, IGFBP-3 and IL-6 levels were observed following limonene intervention. There was a small but statistically significant post-intervention increase in IGF-1 levels. We conclude that limonene distributed extensively to human breast tissue and reduced breast tumor cyclin D1 expression that may lead to cell cycle arrest and reduced cell proliferation. Further placebo-controlled clinical trials and translational research are warranted to establish limonene’s role for breast cancer prevention or treatment. PMID:23554130

  1. Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer.

    Science.gov (United States)

    Miller, Jessica A; Lang, Julie E; Ley, Michele; Nagle, Ray; Hsu, Chiu-Hsieh; Thompson, Patricia A; Cordova, Catherine; Waer, Amy; Chow, H-H Sherry

    2013-06-01

    Limonene is a bioactive food component found in citrus peel oil that has shown chemopreventive and chemotherapeutic activities in preclinical studies. We conducted an open-label pilot clinical study to determine the human breast tissue disposition of limonene and its associated bioactivity. We recruited 43 women with newly diagnosed operable breast cancer electing to undergo surgical excision to take 2 grams of limonene daily for two to six weeks before surgery. Blood and breast tissue were collected to determine drug/metabolite concentrations and limonene-induced changes in systemic and tissue biomarkers of breast cancer risk or carcinogenesis. Limonene was found to preferentially concentrate in the breast tissue, reaching high tissue concentration (mean = 41.3 μg/g tissue), whereas the major active circulating metabolite, perillic acid, did not concentrate in the breast tissue. Limonene intervention resulted in a 22% reduction in cyclin D1 expression (P = 0.002) in tumor tissue but minimal changes in tissue Ki67 and cleaved caspase-3 expression. No significant changes in serum leptin, adiponectin, TGF-β1, insulin-like growth factor binding protein-3 (IGFBP-3), and interleukin-6 (IL-6) levels were observed following limonene intervention. There was a small but statistically significant postintervention increase in insulin-like growth factor I (IGF-I) levels. We conclude that limonene distributed extensively to human breast tissue and reduced breast tumor cyclin D1 expression that may lead to cell-cycle arrest and reduced cell proliferation. Furthermore, placebo-controlled clinical trials and translational research are warranted to establish limonene's role for breast cancer prevention or treatment.

  2. Fibroblast growth factor receptor 4 predicts failure on tamoxifen therapy in patients with recurrent breast cancer

    NARCIS (Netherlands)

    Meijer, Danielle; Sieuwerts, Anieta M.; Look, Maxime P.; van Agthoven, Ton; Foekens, John A.; Dorssers, Lambert C. J.

    2008-01-01

    Tamoxifen treatment of estrogen-dependent breast cancer ultimately loses its effectiveness due to the development of resistance. From a functional screen for identifying genes responsible for tamoxifen resistance in human ZR-75-1 breast cancer cells, fibroblast growth factor (FGF) 17 was recovered.

  3. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    Science.gov (United States)

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  4. A Novel Approach to Detect Therapeutic Resistance in Breast Cancer

    Science.gov (United States)

    2008-09-01

    Resistance in Breast Cancer PRINCIPAL INVESTIGATOR: Kamila Czene, Ph.D. CONTRACTING ORGANIZATION: Karolinska Institutet ...ORGANIZATION REPORT NUMBER Karolinska Institutet Stockholm, Sweden 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...analysis. The digital image analysis algorithms and software that have been developed at Karolinska Institutet consists of an optimized combination of

  5. Population of 224 realistic human subject-based computational breast phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David W. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Wells, Jered R., E-mail: jered.wells@duke.edu [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Sturgeon, Gregory M. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Dobbins, James T. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Segars, W. Paul [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Electrical and Computer Engineering and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2016-01-15

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range

  6. Human papilloma viruses (HPV and breast cancer.

    Directory of Open Access Journals (Sweden)

    James Sutherland Lawson

    2015-12-01

    Full Text Available Purpose: Human papillomaviruses (HPV may have a role in some breast cancers. The purpose of this study is to fill important gaps in the evidence. These gaps are: (i confirmation of the presence of high risk for cancer HPVs in breast cancers, (ii evidence of HPV infections in benign breast tissues prior to the development of HPV positive breast cancer in the same patients, (iii evidence that HPVs are biologically active and not harmless passengers in breast cancer.Methods: RNA-seq data from The Cancer Genome Atlas (TCGA was used to identify HPV RNA sequences in breast cancers. We also conducted a retrospective cohort study based on polymerase chain reaction (PCR analyses to identify HPVs in archival specimens from Australian women with benign breast biopsies who later developed breast cancer. To assess whether HPVs in breast cancer were biologically active, the expression of the oncogenic protein HPV E7 was assessed by immunohistochemistry (IHC.Results: Thirty (3.5% low risk and 20 (2.3% high risk HPV types were identified in 855 breast cancers from the TCGA data base. The high risk types were HPV 18 (48%, HPV 113 (24%, HPV 16 (10%, HPV 52 (10%. Data from the PCR cohort study, indicated that HPV type 18 was the most common type identified in breast cancer specimens (55% of 40 breast cancer specimens followed by HPV 16 (13%. The same HPV type was identified in both the benign and subsequent breast cancer in 15 patients. HPV E7 proteins were identified in 72% of benign breast specimens and 59% of invasive breast cancer specimens.Conclusions: There were 4 observations of particular interest: (i confirmation by both NGS and PCR of the presence of high risk HPV gene sequences in breast cancers, (ii a correlation between high risk HPV in benign breast specimens and subsequent HPV positive breast cancer in the same patient, (iii HPVs in breast cancer are likely to be biologically active (as shown by transcription of HPV DNA to RNA plus the expression of

  7. Proteomics analysis of human breast milk to assess breast cancer risk.

    Science.gov (United States)

    Aslebagh, Roshanak; Channaveerappa, Devika; Arcaro, Kathleen F; Darie, Costel C

    2018-02-01

    Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from eight women provided five paired-groups (cancer versus control) for analysis of dysregulatedproteins: two within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and three across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the five comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research. Data are available via ProteomeXchange with identifier

  8. lacZ transduced human breast cancer xenografts as an in vivo model for the study of invasion and metastasis

    DEFF Research Database (Denmark)

    Brünner, N; Thompson, E W; Spang-Thomsen, M

    1992-01-01

    in the animals by usual histological procedures would require extensive sectioning of the whole animal. To overcome this problem, we transduced human breast cancer cells with a replication-defective Moloney murine leukaemia retroviral vector (M-MuLV) containing both neoR (neomycin resistance) and lacZ genes...... but not the surrounding mouse tissue on either whole tissue blocks or histological sections. The staining procedure was highly sensitive, allowing detection of microfoci of human cancer cells, and quantitative estimation of the metastatic capacity of the cells. These results indicate that lacZ transduction of human...

  9. Inhibition of breast cancer resistance protein (ABCG2 in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-O Jin

    Full Text Available Breast cancer resistance protein (ABCG2, a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs. ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.

  10. Chemical Biomarkers of Human Breast Milk Pollution

    Directory of Open Access Journals (Sweden)

    Benedetta Marchi

    2008-01-01

    Full Text Available Human milk is, without question, the best source of nutrition for infants containing the optimal balance of fats, carbohydrates and proteins for developing babies. Breastfeeding provides a range of benefits for growth, immunity and development building a powerful bond between mother and her child. Recognition of the manifold benefits of breast milk has led to the adoption of breast-feeding policies by numerous health and professional organizations such as the World Health Organization and American Academy of Pediatrics.In industrially developed as well as in developing nations, human milk contamination by toxic chemicals such as heavy metals, dioxins and organohalogen compounds, however, is widespread and is the consequence of decades of inadequately controlled pollution. Through breastfeeding, the mother may transfer to the suckling infant potentially toxic chemicals to which the mother has previously been exposed.In the present review, environmental exposure, acquisition and current levels of old and emerging classes of breast milk pollutants are systematically presented. Although scientific evidences indicated that the advantages of breast-feeding outweigh any risks from contaminants, it is important to identify contaminant trends, to locate disproportionately exposed populations, and to take public health measures to improve chemical BM pollution as possible.

  11. Persistent organochlorines in human breast milk collected from primiparae in Dalian and Shenyang, China

    International Nuclear Information System (INIS)

    Kunisue, Tatsuya; Someya, Masayuki; Kayama, Fujio; Jin Yihe; Tanabe, Shinsuke

    2004-01-01

    The present study determined the concentrations of organochlorines (OCs) such as polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) and tris(4-chlorophenyl)methane (TCPMe) in human breast milk collected from primiparae in Dalian and Shenyang, northeastern China during 2002. In addition, dioxins and related compounds in pooled samples of human breast milk from Dalian and Shenyang were also analyzed. OCs were detected in all the human breast milk samples analyzed in this study. The predominant contaminants in human breast milk were HCHs, DDTs and HCB, and the levels were relatively higher than those in other countries. On the other hand, concentrations of dioxins and related compounds, PCBs, and CHLs were relatively low. Concentrations of OCs in human breast milk from Dalian, which is located along the coast of Bo Hai Strait, were significantly higher than those from Shenyang, implying that the residents in Dalian might be mainly exposed to these contaminants from seafood. When the relationship between concentrations of OCs in human breast milk and age of primiparae was examined, no significant correlation was observed. This might be caused by the limited sample numbers and narrow range of mother's age and/or recent ban of DDT and HCH production and use. Significant correlation between concentrations of TCPMe and DDTs in human breast milk suggested that technical DDT might be a source of TCPMe in the Chinese population. When daily intakes of DDTs and HCHs to infants through human breast milk were estimated, human breast milk from Dalian showed significantly higher contribution than Shenyang, implying that infants in Dalian might be at higher risk by these contaminants

  12. Modulation of TIP60 by Human Papilloma Virus in Breast Cancer

    Science.gov (United States)

    2013-04-01

    1 AG________ Award Number: W81XWH-11-1-0687 Title Modulation of TIP60 by Human Papilloma Virus in Breast Cancer... Human Papilloma Virus in Breast Cancer 5b. GRANT NUMBER 1 H 11 1 06 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Betty Diamond 5d. PROJECT...virus (EBV), Hepatitis B Virus (HBV), Hepatitis C virus (HCV), Human Papilloma virus (HPV), Human T-cell lymphotropic virus (HTLV-1) and Kaposi’s

  13. Resistive index in breast tumors; usefulness on differentiation between benign and malignant lesions

    International Nuclear Information System (INIS)

    An, Eun Joo; Choi, Hye Young; Baek, Seung Yon; Kim, Ah Young; Choe, Du Hwan

    1996-01-01

    We assessed the usefulness of resistive index(RI) on spectral analysis of doppler sonography for differential diagnosis of benign and malignant breast lesions. We retrospectively reviewed 29 benign and 22 malignant lesions of breast, which were examined preoperatively with color and duplex Doppler and were confirmed by histopathologically after operation. We analyzed the average and distribution of RI in benign and malignant lesions. Although, there was no difference in the average values of RI in benign and malignant breast lesions, the distribution of RI was below 0.7 in eighteen cases (62%) of benign lesions, and above 0.7 in eighteen cases (82%) of malignant lesions. Thus, RI is valuable for differentiation between benign and malignant lesions of breast. Measurement of RI in breast disease using color and duplex Doppler study is useful modality adjunct to the conventional ultrasonographic differentiation of benign and malignant lesions

  14. Effects of endoplasmic reticulum stress on the autophagy, apoptosis, and chemotherapy resistance of human breast cancer cells by regulating the PI3K/AKT/mTOR signaling pathway.

    Science.gov (United States)

    Zhong, Jia-Teng; Yu, Jian; Wang, Hai-Jun; Shi, Yu; Zhao, Tie-Suo; He, Bao-Xia; Qiao, Bin; Feng, Zhi-Wei

    2017-05-01

    Nowadays, although chemotherapy is an established therapy for breast cancer, the molecular mechanisms of chemotherapy resistance in breast cancer remain poorly understood. This study aims to explore the effects of endoplasmic reticulum stress on autophagy, apoptosis, and chemotherapy resistance in human breast cancer cells by regulating PI3K/AKT/mTOR signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the cell viability of six human breast cancer cell lines (MCF-7, ZR-75-30, T47D, MDA-MB-435s, MDA-MB-453, and MDA-MB-231) treated with tunicamycin (5 µM), after which MCF-7 cells were selected for further experiment. Then, MCF-7 cells were divided into the control (without any treatment), tunicamycin (8 µ), BEZ235 (5 µ), and tunicamycin + BEZ235 groups. Cell viability of each group was testified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Western blotting was applied to determine the expressions of endoplasmic reticulum stress and PI3K/AKT/mTOR pathway-related proteins and autophagy- and apoptosis-related proteins. Monodansylcadaverine and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for determination of cell autophagy and apoptosis. Furthermore, MCF-7 cells were divided into the control (without any treatment), tunicamycin (5 µM), cisplatin (16 µM), cisplatin (16 µM) + BEZ235 (5 µM), tunicamycin (5 µM) + cisplatin (16 µM), and tunicamycin (5 µM) + cisplatin (16 µM) + BEZ235 groups. Cell viability and apoptosis were also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining. In MCF-7 cells treated with tunicamycin, cell viability decreased significantly, but PEAK, eIF2, and CHOP were upregulated markedly and p-PI3K, p-AKT, and p-MTOR were downregulated in dose- and time-dependent manners. In the tunicamycin

  15. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  16. Detection of Volatile Metabolites of Garlic in Human Breast Milk

    Science.gov (United States)

    Scheffler, Laura; Sauermann, Yvonne; Zeh, Gina; Hauf, Katharina; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea

    2016-01-01

    The odor of human breast milk after ingestion of raw garlic at food-relevant concentrations by breastfeeding mothers was investigated for the first time chemo-analytically using gas chromatography−mass spectrometry/olfactometry (GC-MS/O), as well as sensorially using a trained human sensory panel. Sensory evaluation revealed a clear garlic/cabbage-like odor that appeared in breast milk about 2.5 h after consumption of garlic. GC-MS/O analyses confirmed the occurrence of garlic-derived metabolites in breast milk, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2). Of these, only AMS had a garlic-like odor whereas the other two metabolites were odorless. This demonstrates that the odor change in human milk is not related to a direct transfer of garlic odorants, as is currently believed, but rather derives from a single metabolite. The formation of these metabolites is not fully understood, but AMSO and AMSO2 are most likely formed by the oxidation of AMS in the human body. The excretion rates of these metabolites into breast milk were strongly time-dependent with large inter-individual differences. PMID:27275838

  17. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer

    DEFF Research Database (Denmark)

    Joshi, Tejal; Elias, Daniel; Stenvang, Jan

    2016-01-01

    and 14-3-3 family genes. Integrating the inferred miRNA-target relationships, we investigated the functional importance of 2 central genes, SNAI2 and FYN, which showed increased expression in TamR cells, while their corresponding regulatory miRNA were downregulated. Using specific chemical inhibitors......Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of miRNA......-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all Tam...

  18. The expression and significance of multi-drug resistance genes in breast cancer stem cells%乳腺癌干细胞多药耐药基因的表达及意义

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Chunping Liu; Yanli He; Jinghui Zhang; Tao Huang

    2008-01-01

    Objective:To approach the expressions of MDR1 and BCRP in breast cancer stem cells and differentiated cells.Methods:The breast cancer stem calls were separated from human breast cancer primary tissues and MCF-7 by flow cytometry.Then we measured the expressions of MDR1 and BCRP with different subset cells by Realtime-PCR.Results:Contrasted with breast cancer differentiated cells,the expressions of MDR1 and BCRP in breast cancer stem calls were higher (P<0.01),and the proportion of stem cells rose after chemotherapy (P<0.01).Conclusion:Contrasted with breast cancer differentiated cells,breast cancer stem cells have stronger ability of clrug-resistanca with higher level of multi-drug resistance genes,and it is one of key points for chemotherapy failure of breast cancer.

  19. Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma

    Directory of Open Access Journals (Sweden)

    Kim Il-Han

    2009-06-01

    Full Text Available Abstract Background Peroxiredoxins (Prxs are a novel group of peroxidases containing high antioxidant efficiency. The mammalian Prx family has six distinct members (Prx I-VI in various subcellular locations, including peroxisomes and mitochondria, places where oxidative stress is most evident. The function of Prx I in particular has been implicated in regulating cell proliferation, differentiation, and apoptosis. Since thioredoxin1 (Trx1 as an electron donor is functionally associated with Prx I, we investigated levels of expression of both Prx I and Trx1. Methods We investigated levels of expression of both Prx I and Trx1 in breast cancer by real-time polymerase chain reaction (RT-PCR and Western blot. Results Levels of messenger RNA (mRNA for both Prx I and Trx1 in normal human breast tissue were very low compared to other major human tissues, whereas their levels in breast cancer exceeded that in other solid cancers (colon, kidney, liver, lung, ovary, prostate, and thyroid. Among members of the Prx family (Prx I-VI and Trx family (Trx1, Trx2, Prx I and Trx1 were preferentially induced in breast cancer. Moreover, the expression of each was associated with progress of breast cancer and correlated with each other. Western blot analysis of different and paired breast tissues revealed consistent and preferential expression of Prx I and Trx1 protein in breast cancer tissue. Conclusion Prx I and Trx1 are overexpressed in human breast carcinoma and the expression levels are associated with tumor grade. The striking induction of Prx I and Trx1 in breast cancer may enable their use as breast cancer markers.

  20. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Sanlioglu, Ahter D; Dirice, Ercument; Aydin, Cigdem; Erin, Nuray; Koksoy, Sadi; Sanlioglu, Salih

    2005-01-01

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  1. Nonexpansive immediate breast reconstruction using human acellular tissue matrix graft (AlloDerm).

    Science.gov (United States)

    Salzberg, C Andrew

    2006-07-01

    Immediate breast reconstruction has become a standard of care following mastectomy for cancer, largely due to improved esthetic and psychologic outcomes achieved with this technique. However, the current historical standards--transverse rectus abdominis myocutaneous flap reconstruction and expander--implant surgery-still have limitations as regards patient morbidity, short-term body-image improvements, and even cost. To address these shortcomings, we employ a novel concept of human tissue replacement to enhance breast shape and provide total coverage, enabling immediate mound reconstruction without the need for breast expansion prior to permanent implant placement. AlloDerm (human acellular tissue matrix) is a human-derived graft tissue with extensive experience in various settings of skin and soft tissue replacement surgery. This report describes the success using acellular tissue matrix to provide total coverage over the prosthesis in immediate reconstruction, with limited muscle dissection. In this population, 49 patients (76 breasts) successfully underwent the acellular tissue matrix-based immediate reconstruction, resulting in durable breast reconstruction with good symmetry. These findings may predict that acellular tissue matrix-supplemented immediate breast reconstruction will become a new technique for the immediate reconstruction of the postmastectomy breast.

  2. Tight correlation between expression of the Forkhead transcription factor FOXM1 and HER2 in human breast cancer

    Directory of Open Access Journals (Sweden)

    Hartmann Arndt

    2008-02-01

    Full Text Available Abstract Background FOXM1 regulates expression of cell cycle related genes that are essential for progression into DNA replication and mitosis. Consistent with its role in proliferation, elevated expression of FOXM1 has been reported in a variety of human tumour entities. FOXM1 is a gene of interest because recently chemical inhibitors of FOXM1 were described to limit proliferation and induce apoptosis in cancer cells in vitro, indicating that FOXM1 inhibitors could represent useful anticancer therapeutics. Methods Using immunohistochemistry (IHC we systematically analysed FOXM1 expression in human invasive breast carcinomas (n = 204 and normal breast tissues (n = 46 on a tissue microarray. Additionally, using semiquantitative realtime PCR, a collection of paraffin embedded normal (n = 12 and cancerous (n = 25 breast tissue specimens as well as benign (n = 3 and malignant mammary cell lines (n = 8 were investigated for FOXM1 expression. SPSS version 14.0 was used for statistical analysis. Results FOXM1 was found to be overexpressed in breast cancer in comparison to normal breast tissue both on the RNA and protein level (e.g. 8.7 fold as measured by realtime PCR. We found a significant correlation between FOXM1 expression and the HER2 status determined by HER2 immunohistochemistry (P P = 0.110. Conclusion FOXM1 may represent a novel breast tumour marker with prognostic significance that could be included into multi-marker panels for breast cancer. Interestingly, we found a positive correlation between FOXM1 expression and HER2 status, pointing to a potential role of FOXM1 as a new drug target in HER2 resistant breast tumour, as FOXM1 inhibitors for cancer treatment were described recently. Further studies are underway to analyse the potential interaction between FOXM1 and HER2, especially whether FOXM1 directly activates the HER2 promoter.

  3. Human Papilloma Viruses and Breast Cancer - Assessment of Causality.

    Science.gov (United States)

    Lawson, James Sutherland; Glenn, Wendy K; Whitaker, Noel James

    2016-01-01

    High risk human papilloma viruses (HPVs) may have a causal role in some breast cancers. Case-control studies, conducted in many different countries, consistently indicate that HPVs are more frequently present in breast cancers as compared to benign breast and normal breast controls (odds ratio 4.02). The assessment of causality of HPVs in breast cancer is difficult because (i) the HPV viral load is extremely low, (ii) HPV infections are common but HPV associated breast cancers are uncommon, and (iii) HPV infections may precede the development of breast and other cancers by years or even decades. Further, HPV oncogenesis can be indirect. Despite these difficulties, the emergence of new evidence has made the assessment of HPV causality, in breast cancer, a practical proposition. With one exception, the evidence meets all the conventional criteria for a causal role of HPVs in breast cancer. The exception is "specificity." HPVs are ubiquitous, which is the exact opposite of specificity. An additional reservation is that the prevalence of breast cancer is not increased in immunocompromised patients as is the case with respect to HPV-associated cervical cancer. This indicates that HPVs may have an indirect causal influence in breast cancer. Based on the overall evidence, high-risk HPVs may have a causal role in some breast cancers.

  4. Circadian and Melatonin Disruption by Exposure to Light at Night Drives Intrinsic Resistance to Tamoxifen Therapy in Breast Cancer

    Science.gov (United States)

    Dauchy, Robert T.; Xiang, Shulin; Mao, Lulu; Brimer, Samantha; Wren, Melissa A.; Yuan, Lin; Anbalagan, Muralidharan; Hauch, Adam; Frasch, Tripp; Rowan, Brian G.; Blask, David E.; Hill, Steven M.

    2014-01-01

    Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to anti-estrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of ERα+ MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speeds the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characters were not produced in animals where circadian rhythms were not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to re-establish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen. PMID:25062775

  5. Degradation of endothelial basement membrane by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Yee, C.; Shiu, R.P.

    1986-01-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of [35S]methionine-labeled and [3H]proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer

  6. BMI-1 Promotes Self-Renewal of Radio- and Temozolomide (TMZ)-Resistant Breast Cancer Cells.

    Science.gov (United States)

    Yan, Yanfang; Wang, Ying; Zhao, Pengxin; Ma, Weiyuan; Hu, Zhigang; Zhang, Kaili

    2017-12-01

    Breast cancer is a hormone-dependent malignancy and is the most prevalent cause of cancer-related mortality among females. Radiation therapy and chemotherapy are common treatments of breast cancer. However, tumor relapse and metastasis following therapy are major clinical challenges. The importance of B-lymphoma Moloney murine leukemia virus insertion region-1 (BMI-1) was implicated in cell proliferation, stem cell maintenance, and tumor initiation. We established radio- and temozolomide (TMZ)-resistant (IRC-R) MCF-7 and MDA-MB-231 cell lines to investigate the mechanism involved in therapeutic resistance. Cell proliferation and sphere number were dramatically elevated, and BMI-1 was remarkably upregulated, in IRC-R cells compared to parental cells. Silencing BMI-1 by RNA interference only affected the cell proliferation of IRC-R but not parental cells, suggesting the critical role of BMI-1 in radio- and TMZ resistance. We used a xenograft mice model to elucidate that BMI-1 was necessary in tumor development by assessing tumor volume and Ki67 expression. We found that Hedgehog (Hhg) signaling exerted synergized functions together with BMI-1, implicating the importance of BMI-1 in Hhg signaling. Downregulation of BMI-1 could be an effective strategy to suppress tumor growth, which supports the potential clinical use of targeting BMI-1 in breast cancer treatment.

  7. Microparticles shed from multidrug resistant breast cancer cells provide a parallel survival pathway through immune evasion.

    Science.gov (United States)

    Jaiswal, Ritu; Johnson, Michael S; Pokharel, Deep; Krishnan, S Rajeev; Bebawy, Mary

    2017-02-06

    Breast cancer is the most frequently diagnosed cancer in women. Resident macrophages at distant sites provide a highly responsive and immunologically dynamic innate immune response against foreign infiltrates. Despite extensive characterization of the role of macrophages and other immune cells in malignant tissues, there is very little known about the mechanisms which facilitate metastatic breast cancer spread to distant sites of immunological integrity. The mechanisms by which a key healthy defense mechanism fails to protect distant sites from infiltration by metastatic cells in cancer patients remain undefined. Breast tumors, typical of many tumor types, shed membrane vesicles called microparticles (MPs), ranging in size from 0.1-1 μm in diameter. MPs serve as vectors in the intercellular transfer of functional proteins and nucleic acids and in drug sequestration. In addition, MPs are also emerging to be important players in the evasion of cancer cell immune surveillance. A comparative analysis of effects of MPs isolated from human breast cancer cells and non-malignant human brain endothelial cells were examined on THP-1 derived macrophages in vitro. MP-mediated effects on cell phenotype and functionality was assessed by cytokine analysis, cell chemotaxis and phagocytosis, immunolabelling, flow cytometry and confocal imaging. Student's t-test or a one-way analysis of variance (ANOVA) was used for comparison and statistical analysis. In this paper we report on the discovery of a new cellular basis for immune evasion, which is mediated by breast cancer derived MPs. MPs shed from multidrug resistant (MDR) cells were shown to selectively polarize macrophage cells to a functionally incapacitated state and facilitate their engulfment by foreign cells. We propose this mechanism may serve to physically disrupt the inherent immune response prior to cancer cell colonization whilst releasing mediators required for the recruitment of distant immune cells. These findings

  8. Multidrug Resistance in Breast Cancer: From In Vitro Models to Clinical Studies

    International Nuclear Information System (INIS)

    Wind, N.S.; Holen, I.

    2011-01-01

    The development of multidrug resistance (MDR) and subsequent relapse on therapy is a widespread problem in breast cancer, but our understanding of the underlying molecular mechanisms is incomplete. Numerous studies have aimed to establish the role of drug transporter pumps in MDR and to link their expression to response to chemotherapy. The ATP-binding cassette (ABC) transporters are central to breast cancer MDR, and increases in ABC expression levels have been shown to correlate with decreases in response to various chemotherapy drugs and a reduction in overall survival. But as there is a large degree of redundancy between different ABC transporters, this correlation has not been seen in all studies. This paper provides an introduction to the key molecules associated with breast cancer MDR and summarises evidence of their potential roles reported from model systems and clinical studies. We provide possible explanations for why despite several decades of research, the precise role of ABC transporters in breast cancer MDR remains elusive

  9. Differential expression of follistatin and FLRG in human breast proliferative disorders

    Directory of Open Access Journals (Sweden)

    Amaral Vania F

    2009-09-01

    Full Text Available Abstract Background Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases. Methods Paraffin embedded specimens of normal breast (NB - n = 8; florid hyperplasia without atypia (FH - n = 17; fibroadenoma (FIB - n = 17; ductal carcinoma in situ (DCIS - n = 10 and infiltrating ductal carcinoma (IDC - n = 15 were processed for follistatin and FLRG immunohistochemistry and in situ hybridization. The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively. Results Follistatin and FLRG were expressed both in normal tissue and in all the breast diseases investigated. Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels. Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed. Conclusion The present findings suggest a role for follistatin in breast benign disease, particularly in FIB, where its expression was increased in stromal cells. The up regulation of FLRG in IDC suggests a role for this protein in the progression of breast malignancy. As activin displays an anti-proliferative effect in human mammary cells, the

  10. [Effect of Evn-50 on cell growth and apoptosis in tamoxifen-resistance human breast cancer cell line MCF-7/TAM-R].

    Science.gov (United States)

    Hu, Hui-yong; Zhou, Jun; Wan, Fang; Dong, Li-feng; Zhang, Feng; Wang, Yi-ke; Chen, Fang-fang; Chen, Yi-ding

    2012-09-01

    To investigate the effect of Evn-50 extracted from Vitex negundo on human breast cancer cell line MCF-7 and MCF-7/TAM-R cells in vitro. MCF-7 and tamoxifen-resistant MCF-7/TAM-R cells were treated with Evn-50,tamoxifen or combination of Evn-50 and tamoxifen. Cell proliferation inhibition rates were determined by MTT assay. The apoptosis rate and the change of cell cycle were detected by PI staining flow cytometry. Protein expression of phospho-MAPK 44/42 (Thr202/Tyr204),MAPK P44/42, phospho-AKT (Ser473) and AKT were detected with Western blotting. The viability of MCF-7 cells was decreased in combination group [(28.65 ±11.43)%] and Evn-50 group [(53.02 ±15.14)%] compared with TAM group (PTAM-R in combination group [(42.11 ±14.30)%] was significantly lower than that in TAM group [(92.18 ±13.16)%] (PTAM-R cells,the expression of phosphorylation of AKT and MAPK44/42 protein was not changed in Evn-50 or TAM alone group,but significantly inhibited in the combination group at 72 h. Evn-50 can inhibit cell growth and induce apoptosis in MCF-7 and MCF-7/TAM-R cells,it can reverse tamoxifen-resistance of MCF-7/TAM-R cells.The mechanisms may be related to the down-regulation of phosphorylated ERK1/2 in MAPK signal pathway and phosphorylated AKT in AKT signal pathway.

  11. Bazedoxifene exhibits antiestrogenic activity in animal models of tamoxifen-resistant breast cancer: implications for treatment of advanced disease.

    Science.gov (United States)

    Wardell, Suzanne E; Nelson, Erik R; Chao, Christina A; McDonnell, Donald P

    2013-05-01

    There is compelling evidence to suggest that drugs that function as pure estrogen receptor (ER-α) antagonists, or that downregulate the expression of ER-α, would have clinical use in the treatment of advanced tamoxifen- and aromatase-resistant breast cancer. Although such compounds are currently in development, we reasoned, based on our understanding of ER-α pharmacology, that there may already exist among the most recently developed selective estrogen receptor modulators (SERM) compounds that would have usage as breast cancer therapeutics. Thus, our objective was to identify among available SERMs those with unique pharmacologic activities and to evaluate their potential clinical use with predictive models of advanced breast cancer. A validated molecular profiling technology was used to classify clinically relevant SERMs based on their impact on ER-α conformation. The functional consequences of these observed mechanistic differences on (i) gene expression, (ii) receptor stability, and (iii) activity in cellular and animal models of advanced endocrine-resistant breast cancer were assessed. The high-affinity SERM bazedoxifene was shown to function as a pure ER-α antagonist in cellular models of breast cancer and effectively inhibited the growth of both tamoxifen-sensitive and -resistant breast tumor xenografts. Interestingly, bazedoxifene induced a unique conformational change in ER-α that resulted in its proteasomal degradation, although the latter activity was dispensable for its antagonist efficacy. Bazedoxifene was recently approved for use in the European Union for the treatment of osteoporosis and thus may represent a near-term therapeutic option for patients with advanced breast cancer. ©2013 AACR.

  12. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents.

    Science.gov (United States)

    Francia, Giulio; Green, Shane K; Bocci, Guido; Man, Shan; Emmenegger, Urban; Ebos, John M L; Weinerman, Adina; Shaked, Yuval; Kerbel, Robert S

    2005-10-01

    Similar to other anticancer agents, intrinsic or acquired resistance to DNA-damaging chemotherapeutics is a major obstacle for cancer therapy. Current strategies aimed at overcoming this problem are mostly based on the premise that tumor cells acquire heritable genetic mutations that contribute to drug resistance. Here, we present evidence for an epigenetic, tumor cell adhesion-mediated, and reversible form of drug resistance that is associated with a reduction of DNA mismatch repair proteins PMS2 and/or MLH1 as well as other members of this DNA repair process. Growth of human breast cancer, human melanoma, and murine EMT-6 breast cancer cell lines as multicellular spheroids in vitro, which is associated with increased resistance to many chemotherapeutic drugs, including alkylating agents, is shown to lead to a reproducible down-regulation of PMS2, MLH1, or, in some cases, both as well as MHS6, MSH3, and MSH2. The observed down-regulation is in part reversible by treatment of tumor spheroids with the DNA-demethylating agent, 5-azacytidine. Thus, treatment of EMT-6 mouse mammary carcinoma spheroids with 5-azacytidine resulted in reduced and/or disrupted cell-cell adhesion, which in turn sensitized tumor spheroids to cisplatin-mediated killing in vitro. Our results suggest that antiadhesive agents might sensitize tumor spheroids to alkylating agents in part by reversing or preventing reduced DNA mismatch repair activity and that the chemosensitization properties of 5-azacytidine may conceivably reflect its role as a potential antiadhesive agent as well as reversal agent for MLH1 gene silencing in human tumors.

  13. Role of RBP2-Induced ER and IGF1R-ErbB Signaling in Tamoxifen Resistance in Breast Cancer.

    Science.gov (United States)

    Choi, Hee-Joo; Joo, Hyeong-Seok; Won, Hee-Young; Min, Kyueng-Whan; Kim, Hyung-Yong; Son, Taekwon; Oh, Young-Ha; Lee, Jeong-Yeon; Kong, Gu

    2018-04-01

    Despite the benefit of endocrine therapy, acquired resistance during or after treatment still remains a major challenge in estrogen receptor (ER)-positive breast cancer. We investigated the potential role of histone demethylase retinoblastoma-binding protein 2 (RBP2) in endocrine therapy resistance of breast cancer. Survival of breast cancer patients according to RBP2 expression was analyzed in three different breast cancer cohorts including METABRIC (n = 1980) and KM plotter (n = 1764). RBP2-mediated tamoxifen resistance was confirmed by invitro sulforhodamine B (SRB) colorimetric, colony-forming assays, and invivo xenograft models (n = 8 per group). RNA-seq analysis and receptor tyrosine kinase assay were performed to identify the tamoxifen resistance mechanism by RBP2. All statistical tests were two-sided. RBP2 was associated with poor prognosis to tamoxifen therapy in ER-positive breast cancer (P = .04 in HYU cohort, P = .02 in KM plotter, P = .007 in METABRIC, log-rank test). Furthermore, RBP2 expression was elevated in patients with tamoxifen-resistant breast cancer (P = .04, chi-square test). Knockdown of RBP2 conferred tamoxifen sensitivity, whereas overexpression of RBP2 induced tamoxifen resistance invitro and invivo (MCF7 xenograft: tamoxifen-treated control, mean [SD] tumor volume = 70.8 [27.9] mm3, vs tamoxifen-treated RBP2, mean [SD] tumor volume = 387.9 [85.1] mm3, P < .001). Mechanistically, RBP2 cooperated with ER co-activators and corepressors and regulated several tamoxifen resistance-associated genes, including NRIP1, CCND1, and IGFBP4 and IGFBP5. Furthermore, epigenetic silencing of IGFBP4/5 by RBP2-ER-NRIP1-HDAC1 complex led to insulin-like growth factor-1 receptor (IGF1R) activation. RBP2 also increased IGF1R-ErbB crosstalk and subsequent PI3K-AKT activation via demethylase activity-independent ErbB protein stabilization. Combinational treatment with tamoxifen and PI3K inhibitor could overcome RBP2-mediated tamoxifen

  14. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    Directory of Open Access Journals (Sweden)

    Long Wu

    Full Text Available P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound.The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions.3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds, paclitaxel (85 folds, daunorubicin (201 folds, and epirubicin (171 folds] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied.We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the

  15. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    Science.gov (United States)

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions. 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular

  16. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  17. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes.

    Science.gov (United States)

    Zhong, Shanliang; Chen, Xiu; Wang, Dandan; Zhang, Xiaohui; Shen, Hongyu; Yang, Sujin; Lv, Mengmeng; Tang, Jinhai; Zhao, Jianhua

    2016-04-12

    Exosomes have been shown to transmit drug resistance through delivering miRNAs. We aimed to explore their roles in breast cancer. Three resistant sublines were established by exposing parental MDA-MB-231 cell line to docetaxel, epirubicin and vinorelbine, respectively. Preneoadjuvant chemotherapy biopsies and paired surgically-resected specimens embedded in paraffin from 23 breast cancer patients were collected. MiRNA expression profiles of the cell lines and their exosomes were evaluated using microarray. The result showed that most miRNAs in exosomes had a lower expression level than that in cells, however, some miRNAs expressed higher in exosomes than in cells, suggesting a number of miRNAs is concentrated in exosomes. Among the dysregulated miRNAs, 22 miRNAs were consistently up-regulated in exosomes and their cells of origin. We further found that 12 of the 22 miRNAs were significantly up-regulated after preneoadjuvant chemotherapy. Further study of the role of these 12 miRNAs in acquisition of drug resistance is needed to clarify their contribution to chemoresistance.

  18. The effects of black cohosh on the regulation of estrogen receptor (ERα) and progesterone receptor (PR) in breast cancer cells.

    Science.gov (United States)

    Szmyd, Monica; Lloyd, Victoria; Hallman, Kelly; Aleck, Katie; Mladenovik, Viktoria; McKee, Christina; Morse, Mia; Bedgood, Tyler; Dinda, Sumi

    2018-01-01

    The North American plant Cimicifuga racemosa , also known as black cohosh (BC), is a herb that recently has gained attention for its hormonal effects. As the usage of hormone replacement therapy is declining due to its adverse effects in women with cancer, many are turning to herbal remedies like BC to treat menopausal symptoms. It is crucial to determine whether the effects of BC involve estrogen receptor-alpha (ERα). Previous studies from our laboratory have shown ERα to be a possible molecular target for BC. In this study, we examined the effects of BC (8% triterpene glycosides) alone and in combination with hormones and antihormones on the cellular viability, expression of ERα and progesterone receptor (PR)-A/B, and cytolocalization of ERα in ER (+) and PR-A/B (+) T-47D breast cancer cells. Cells were cultured and proteins were extracted and quantified. Western blot analysis revealed alterations in the expression of ERα and PR after treatment with BC (5-100 µM). BC induced a concentration-dependent decrease in ERα and PR protein levels when compared to the control. Image cytometric analysis with propidium iodide staining was used to enumerate changes in T-47D cell number and viability. A decrease in T-47D cell viability was observed upon treatment with 5-100 µM BC. The ideal concentration of BC (100 µM) was used in combination with hormones and antihormones in an effort to further understand the possible similarities between this compound and other known effectors of ERα and PR. After a 24-hour concomitant treatment with and/or in combination of BC, estradiol, ICI 182, 780, and Tamoxifen, downregulation of ERα and PR protein levels was observed. Delineating the role of BC in the regulation of ERα, PR, as well as its mechanisms of action, may be important in understanding the influence of BC on hormone receptors in breast cancer.

  19. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    Science.gov (United States)

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. CHL1 is involved in human breast tumorigenesis and progression

    Energy Technology Data Exchange (ETDEWEB)

    He, Li-Hong [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ma, Qin [Department of Oncology, The General Hospital of Tianjin Medical University, Tianjin (China); Shi, Ye-Hui [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie; Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Shu-Fen [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Tong, Zhong-Sheng, E-mail: 83352162@qq.com [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2013-08-23

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.

  1. CHL1 is involved in human breast tumorigenesis and progression

    International Nuclear Information System (INIS)

    He, Li-Hong; Ma, Qin; Shi, Ye-Hui; Ge, Jie; Zhao, Hong-Meng; Li, Shu-Fen; Tong, Zhong-Sheng

    2013-01-01

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression

  2. NFκBP65 transcription factor modulates resistance to doxorubicin through ABC transporters in breast cancer.

    Science.gov (United States)

    Velaei, Kobra; Samadi, Nasser; Soltani, Sina; Barazvan, Balal; Soleimani Rad, Jafar

    2017-07-01

    Shedding light on chemoresistance biology of breast cancer could contribute to enhance the clinical outcome. Intrinsic or acquired resistance to chemotherapy is a major problem in breast cancer treatment. The NFκB pathway by siRNAP65 and JSH-23 as a translocational inhibitor of NFκBP65 in the doxorubicin-resistant MCF-7 (MCF-7/Dox) and MCF-7 cells was blocked. Then, the ABC transporter expression and function were assessed by real-time qRT-PCR and flow cytometry, respectively. Induction of apoptosis was evaluated after inhibition of the NFΚB pathway as well. Our study underlined the upregulation of NFκBP65 and anti-apoptotic Bcl-2 and downregulation of pro-apoptotic Bax in the MCF-7/Dox cells compared with control MCF-7 cells. Here, we showed that interplay between nuclear factor kappa B P65 (NFkBP65) as a transcriptional regulator and ABC transporters in the MCF-7/Dox cancer cells. We found that inhibition of the elevated expression of NFκBP65 in the resistant breast cancer, whether translocational inhibition or silencing by siRNA, decreased the expression and function of MDR1 and MRP1 efflux pumps. Furthermore, the blockade of NFκBP65 promoted apoptosis via modulating Bcl-2 and BAX expression. After inhibition of the NFκBP65 signaling pathway, elevated baseline expression of survival Bcl-2 gene in the resistant breast cells significantly decreased. Suppression of the NFκB pathway has a profound dual impact on promoting the intrinsic apoptotic pathway and reducing ABC transporter function and expression, which are some of the chemoresistance features. It was speculated that the NFκB pathway directly acts on doxorubicin-induced MDR1 and MRP1 expression in MCF-7/Dox cells.

  3. HSA-based multi-target combination therapy: regulating drugs' release from HSA and overcoming single drug resistance in a breast cancer model.

    Science.gov (United States)

    Gou, Yi; Zhang, Zhenlei; Li, Dongyang; Zhao, Lei; Cai, Meiling; Sun, Zhewen; Li, Yongping; Zhang, Yao; Khan, Hamid; Sun, Hongbing; Wang, Tao; Liang, Hong; Yang, Feng

    2018-11-01

    Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the clinical success of multi-drug combination therapies to treat cancer. To this end, we used three different anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin (HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic efficacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs' release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA-NAMI-A-Cu(BpT)Br-DOX complex not only increases the targeting ability compared with a combination of the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-resistant breast cancer cell lines.

  4. 99MTC Alpha-Fetoprotein: A Novel, Specific Agent for the Detection of Human Breast Cancer

    National Research Council Canada - National Science Library

    Line, Bruce

    1998-01-01

    .... We have demonstrated that technetium-99m radiolabeled human alpha-fetoprotein (99mTc AFP) localizes in human breast cancer cells in-vivo, most likely concentrating in breast cancer cells due to a specific receptor not found in normal adult breast tissue...

  5. 99MTC Alpha-Fetoprotein: A Novel, Specific Agent for the Detection of Human Breast Cancer

    National Research Council Canada - National Science Library

    Line, Bruce

    1999-01-01

    .... We have demonstrated that technetium-99m radiolabeled human alpha-fetoprotein (99mTc AFP) localizes in human breast cancer cells in-vivo, most likely concentrating in breast cancer cells due to a specific receptor not found in normal adult breast tissue...

  6. New protein kinase inhibitors in breast cancer: afatinib and neratinib.

    Science.gov (United States)

    Zhang, Xiaosong; Munster, Pamela N

    2014-06-01

    Human epidermal growth factor receptor (HER) 2 is overexpressed in 20 - 25% of breast cancers, and has historically been a poor prognostic marker. The introduction of trastuzumab, the first fully humanized monoclonal antibody targeting HER2, has drastically changed the outcomes of metastatic breast cancers. However, despite initial response, most patients develop resistance. Recent data suggest that strategies targeting more than one member of HER family may circumvent trastuzumab resistance and confer synergistic effects. Following a literature search on PubMed, national meetings and clinicaltrials.gov using 'afatinib', 'neratinib', 'HER2' and 'breast cancer' as keywords, we critically analyzed the different HER2-targeted therapies for their drug development and evidence-based therapeutic strategies. Afatinib and neratinib, two second-generation tyrosine kinase inhibitors (TKIs) that irreversibly inhibit more than one HER family member, are being actively investigated in clinical trials either as monotherapy or in combination. We reviewed the efficacy and optimal use of these agents in various settings, such as systemic therapy for advanced breast cancer including brain metastases, and neoadjuvant therapy in early-stage breast cancer. HER2-targeted therapies have been widely used and greatly improved the outcome of HER2-positive breast cancer. Despite the accelerated advancement in recent years, several crucial questions remain unanswered, such as how to treat a prior resistance or affect a sanctuary site, that is, CNS metastasis. The novel next-generation TKIs, afatinib and neratinib, were rationally designed to overcome the resistance by targeting multiple HER family members and irreversibly binding the targets. In spite of the encouraging results of the afatinib and neratinib monotherapies, they have not been proven more efficacious in the combination therapies yet, even though multicenter international trials are still ongoing. The key tasks in the future are

  7. [Methicillin-resistant Staphylococcus aureus (MRSA) isolation in breast abscesses in a Public Maternity].

    Science.gov (United States)

    Boccaccio, Cristina; Verdaguer Babic, Virginia; Botto, Liliana; Cervetto, María M; Cetani, Silvia; Paladino, Silvina; Conti, Roxana; Lanzillota, Antonio; Herrera, Rosa; Amarante, Dora

    2014-01-01

    Mastitis and breast abscess in lactating women are risk factors for early breastfeeding cessation. This pathology is included in the group of skin and soft tissue infections. A descriptive study was performed with an advanced outlook. As of January 2007 through December 2011 a total of 137 breast abscesses were treated in our institution. We analyzed incidence, parity, postpartum days, risk factors, microbiological isolation and the adequacy of initial antibiotic treatment. In that period we observed a steady and significant increase in breast abscesses. Incidence from 0.19 to 0.84% in lactating women 2007 vs. 2011 p = 0.0001 IC 95% (-0.009; 0.003), 70.6% of them primiparous and a mean interval from delivery to breast abscess of 41.9 ± 35.8 days. The most frequent risk factors were sore nipples and breast engorgement. Staphylococcus aureus was isolated in 82.3 to 95.0%. Methicillin resistance was higher than 60%. These strains were susceptible to erythromycin, clindamycin, gentamicin, rifampicin, ciprofloxacin and trimethoprim-sulfamethoxazol. All the cases were surgically drained; the initial empirical treatment was inadequate in 60% of them, 90% of patients could maintain breast feeding after the procedure. these data emphasize the need to prevent risk factors associated to breast abscesses: sore nipples and breast engorgement. In order to determine the adequate antibiotic treatment, bacteriological studies are required at every collection because SAMR prevalence varies according to diverse populations and geographic location.

  8. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  9. Expression and Activity of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Distal Lung Epithelial Cells In Vitro.

    Science.gov (United States)

    Nickel, Sabrina; Selo, Mohammed Ali; Fallack, Juliane; Clerkin, Caoimhe G; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten

    2017-12-01

    Breast cancer resistance protein (BCRP/ABCG2) has previously been identified with high expression levels in human lung. The subcellular localisation and functional activity of the transporter in lung epithelia, however, remains poorly investigated. The aim of this project was to study BCRP expression and activity in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and to compare these findings with data obtained from the NCI-H441 cell line. BCRP expression levels in AT2 and AT1-like cells and in different passages of NCI-H441 cells were determined using q-PCR and immunoblot. Transporter localisation was confirmed by confocal laser scanning microscopy. Efflux and transport studies using the BCRP substrate BODIPY FL prazosin and the inhibitor Ko143 were carried out to assess BCRP activity in the different cell models. BCRP expression decreased during transdifferentiation from AT2 to AT1-like phenotype. Culturing NCI-H441 cells at an air-liquid interface or submersed did not change BCRP abundance, however, BCRP levels increased with passage number. BCRP was localised to the apical membrane and cytosol in NCI-H441 cells. In primary cells, the protein was found predominantly in the nucleus. Functional studies were consistent with expression data. BCRP is differently expressed in AT2 and AT1-like cells with lower abundance and activity in the latter ones. Nuclear BCRP might play a transcriptional role in distal lung epithelium. In NCI-H441 cells, BCRP is expressed in apical cell membranes and its activity is consistent with the localisation pattern.

  10. Alterations of the genes involved in the PI3K and estrogen-receptor pathways influence outcome in human epidermal growth factor receptor 2-positive and hormone receptor-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Takada, Mamoru; Miyazaki, Masaru; Sato-Otsubo, Aiko; Ogawa, Seishi; Kaneko, Yasuhiko; Higuchi, Toru; Tozuka, Katsunori; Takei, Hiroyuki; Haruta, Masayuki; Watanabe, Junko; Kasai, Fumio; Inoue, Kenichi; Kurosumi, Masafumi

    2013-01-01

    Chemotherapy with trastuzumab is widely used for patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but a significant number of patients with the tumor fail to respond, or relapse. The mechanisms of recurrence and biomarkers that indicate the response to the chemotherapy and outcome are not fully investigated. Genomic alterations were analyzed using single-nucleotide polymorphism arrays in 46 HER2 immunohistochemistry (IHC) 3+ or 2+/fluorescent in situ hybridization (FISH)+ breast cancers that were treated with neoadjuvant chemotherapy with paclitaxel, cyclophosphamid, epirubicin, fluorouracil, and trastuzumab. Patients were classified into two groups based on presence or absence of alterations of 65 cancer-associated genes, and the two groups were further classified into four groups based on genomic HER2 copy numbers or hormone receptor status (HR+/−). Pathological complete response (pCR) and relapse-free survival (RFS) rates were compared between any two of the groups. The pCR rate was 54% in 37 patients, and the RFS rate at 3 years was 72% (95% CI, 0.55-0.89) in 42 patients. The analysis disclosed 8 tumors with nonamplified HER2 and 38 tumors with HER2 amplification, indicating the presence of discordance in tumors diagnosed using current HER2 testing. The 8 patients showed more difficulty in achieving pCR (P=0.019), more frequent relapse (P=0.018), and more frequent alterations of genes in the PI3K pathway (P=0.009) than the patients with HER2 amplification. The alterations of the PI3K and estrogen receptor (ER) pathway genes generally indicated worse RFS rates. The prognostic significance of the alterations was shown in patients with a HR+ tumor, but not in patients with a HR- tumor when divided. Alterations of the PI3K and ER pathway genes found in patients with a HR+ tumor with poor outcome suggested that crosstalk between the two pathways may be involved in resistance to the current chemotherapy with trastuzumab. We

  11. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Tan, Jenny; Chorn, Guillaume

    2005-01-01

    Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

  12. Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk?

    Science.gov (United States)

    Gutiérrez-Repiso, Carolina; Velasco, Inés; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodríguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico; García-Fuentes, Eduardo

    2014-02-10

    Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1 μM potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk.

  13. Expression of Leukemia/Lymphoma-Related Factor (LRF/POKEMON) in Human Breast Carcinoma and Other Cancers

    Science.gov (United States)

    Aggarwal, Anshu; Hunter, William J.; Aggarwal, Himanshu; Silva, Edibaldo D.; Davey, Mary S.; Murphy, Richard F.; Agrawal, Devendra K.

    2010-01-01

    The POK family of proteins plays an important role in not only embryonic development and cell differentiation, but also in oncogenesis. Leukemia/lymphoma-related factor (LRF) belongs to the POK family of transcriptional repressors and is also known as POK erythroid myeloid ontogenic factor (POKEMON), which binds to short transcripts of HIV-1 (FBI-1) and TTF-1 interacting peptide (TIP21). Its oncogenic role is known only in lymphoma, non-small cell lung carcinoma, and malignant gliomas. The functional expression of LRF in human breast carcinoma has not yet been confirmed. The aim of this study was to investigate and compare the expression of LRF in human breast cancer tissues and other human tumors. The expression of LRF mRNA transcripts and protein was observed in twenty human benign and malignant breast biopsy tissues. Expression of LRF was observed in several formalin-fixed tissues by immunohistochemistry and immunofluorescence. All malignant breast tissues expressed mRNA transcripts and protein for LRF. However, 40% and 15% benign breast biopsy tissues expressed LRF mRNA transcripts and protein, respectively. The overall expression of LRF mRNA transcripts and total protein was significantly more in malignant breast tissues than the benign breast tissues. LRF expression was also observed in the nuclei of human colon, renal, lung, hepatocellular carcinomas and thymoma tumor cells. In general, a significantly higher expression of LRF was seen in malignant tissues than in the corresponding benign or normal tissue. Further studies are warranted to determine the malignant role of LRF in human breast carcinoma. PMID:20471975

  14. The effect of between-breast differences on human milk macronutrients content.

    Science.gov (United States)

    Pines, N; Mandel, D; Mimouni, F B; Moran Lev, H; Mangel, L; Lubetzky, R

    2016-07-01

    Little is known about the effect of maternal handedness and preferential side of breastfeeding upon macronutrients concentration in human milk (HM). We aimed to compare macronutrients content of HM from both breasts, taking into account the self-reported preferential feeding ('dominant') breast, breast size and handedness (right versus left). We tested the null hypothesis that macronutrients content of HM is not affected by breast dominancy, breast size or maternal handedness. Fifty-seven lactating mothers were recruited. HM macronutrients were measured after mid manual expression using infrared transmission spectroscopy. Out of the 57 mothers recruited, 12 were excluded from the analyses because they brought in insufficient samples. Among the 22 who reported a size difference, 16 (73%) had a larger left breast (Pmacronutrients between the right and the left breasts. In multiple stepwise backward regression analysis, fat, carbohydrate, protein and energy contents were unaffected by maternal handedness, breast side dominance or breast size asymmetry. Macronutrients content of mid expression HM is unaffected by maternal handedness, breast size or breast side dominance.

  15. Synergism between dipyridamole and cisplatin in human breast cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Janice R. Perussi

    2003-05-01

    Full Text Available Cisplatin is very effective in the treatment of metastatic breast cancer. However, the development of cellular resistance is a serious problem in cisplatin chemotherapy. In the present work, the effects of dipyridamole (DPM on the cellular accumulation and cytotoxicity of cisplatin was studied in cisplatinsensitive (MDA/S and cisplatinresistant (MDA/R human breast cancer cells. In the presence of 30 µM DPM, the IC50 of cisplatin was reduced by 39% for both cell lines. Combination index analysis revealed that cisplatin and dipyridamole interact synergistically in MDA/R cells. In the MDA/S cells, the cellular accumulation of cisplatin increased by 57 ± 8% in the presence of 30 µM DPM. In the MDA/R cells, the cellular accumulation of cisplatin remained the same with or without 30 µM DPM. The results suggest that the enhancement of cisplatin cytotoxicity by DPM in MDA/S cells may be related to a DPM-induced increase in cisplatin accumulation, but the enhanced cytotoxicity in MDA/R cells employs a mechanism that does not involve an increase in the cellular accumulation of cisplatin.

  16. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  17. Human Papilloma Viruses and Breast Cancer – Assessment of Causality

    Science.gov (United States)

    Lawson, James Sutherland; Glenn, Wendy K.; Whitaker, Noel James

    2016-01-01

    High risk human papilloma viruses (HPVs) may have a causal role in some breast cancers. Case–control studies, conducted in many different countries, consistently indicate that HPVs are more frequently present in breast cancers as compared to benign breast and normal breast controls (odds ratio 4.02). The assessment of causality of HPVs in breast cancer is difficult because (i) the HPV viral load is extremely low, (ii) HPV infections are common but HPV associated breast cancers are uncommon, and (iii) HPV infections may precede the development of breast and other cancers by years or even decades. Further, HPV oncogenesis can be indirect. Despite these difficulties, the emergence of new evidence has made the assessment of HPV causality, in breast cancer, a practical proposition. With one exception, the evidence meets all the conventional criteria for a causal role of HPVs in breast cancer. The exception is “specificity.” HPVs are ubiquitous, which is the exact opposite of specificity. An additional reservation is that the prevalence of breast cancer is not increased in immunocompromised patients as is the case with respect to HPV-associated cervical cancer. This indicates that HPVs may have an indirect causal influence in breast cancer. Based on the overall evidence, high-risk HPVs may have a causal role in some breast cancers. PMID:27747193

  18. [Soy isoflavones and human health: breast cancer and puberty timing].

    Science.gov (United States)

    Valladares, Luis; Garrido, Argelia; Sierralta, Walter

    2012-04-01

    Accumulated exposure to high levels of estrogen is associated with an increased incidence of breast cancer. Thus, factors such as early puberty, late menopause and hormone replacement therapy are considered to be risk factors, whereas early childbirth, breastfeeding and puberty at a later age are known to consistently decrease the lifetime breast cancer risk. Epidemiological studies suggest that consumption of isoflavones correlates with a lower incidence of breast cancer. Data from human intervention studies show that the effects of isoflavones on early breast cancer markers differ between pre- and post-menopausal women. The reports from experimental animals (rats and mice) on mammary tumors are variable. These results taken together with heterogeneous outcomes of human interventions, have led to a controversy surrounding the intake of isoflavones to reduce breast cancer risk. This review summarizes recent studies and analyzes factors that could explain the variability of results. In mammary tissue, from the cellular endocrine viewpoint, we analyze the effect of isoflavones on the estrogen receptor and their capacity to act as agonists or antagonists. On the issue of puberty timing, we analyze the mechanisms by which girls, but not boys, with higher prepuberal isoflavone intakes appear to enter puberty at a later age.

  19. Developing Breast Cancer Program at Xavier: Genomic and Proteomic Analysis of Signaling Pathways Involved in Xenohormone and MEK5 Regulation of Breast Cancer

    National Research Council Canada - National Science Library

    Wiese, Thomas E

    2005-01-01

    Xavier University (XU) and the Tulane Cancer Center (TCC) will build a core of human talent that will address scientific problems such as drug resistance and the effect of environmental agents on breast cancer (BC...

  20. Developing Breast Cancer Program at Xavier; Genomic and Proteomic Analysis of Signaling Pathways Involved in Xenohormone and MEK5 Regulation of Breast Cancer

    National Research Council Canada - National Science Library

    Wiese, Thomas E

    2006-01-01

    Xavier University (XU) and the Tulane Cancer Center (TCC) will build a core of human talent that will address scientific problems such as drug resistance and the effect of environmental agents on breast cancer (BC...

  1. Developing Breast Cancer Program at Xavier; Genomic and Proteomic Analysis of Signaling Pathways Involved in Xenohormone and MEK5 Regulation of Breast Cancer

    National Research Council Canada - National Science Library

    Wiese, Thomas E

    2007-01-01

    Xavier University (XU) and the Tulane Cancer Center (TCC) will build a core of human talent that will address scientific problems such as drug resistance and the effect of environmental agents on breast cancer (BC...

  2. Breast carcinoma - diagnostics, therapy and resistance

    International Nuclear Information System (INIS)

    Kuzma-Richert, A.; Saczko, J.; Kulbacka, J.

    2011-01-01

    Breast cancer is a pathologically and clinically heterogeneous disease with a variable prognosis. This type of cancer is the most common female cancer in Poland. According to data collected up to 2004, approximately 12,000 new breast cancer cases per year were diagnosed in women in Poland, and approximately 5000 patients died yearly of breast cancer. The authors present the histopathology, diagnostics, classification and general types of systemic therapy of breast cancer. (authors)

  3. Diaper dermatitis care of newborns human breast milk or barrier cream.

    Science.gov (United States)

    Gozen, Duygu; Caglar, Seda; Bayraktar, Sema; Atici, Funda

    2014-02-01

    To establish the effectiveness of human breast milk and barrier cream (40% zinc oxide with cod liver oil formulation) applied for the skincare of newborns in the neonatal intensive care unit on the healing process of diaper dermatitis. Diaper dermatitis is the most common dermatological condition in newborns who are cared for in the neonatal intensive care unit. Recently, there are several kinds of complementary skincare methods suggested for newborns, such as sunflower oil, human breast milk, etc. Also, some chemical formulations are still being used in many neonatal intensive care units. Randomised controlled, prospective, experimental. This study was carried out with a population including term and preterm newborns who developed diaper rash while being treated in the neonatal intensive care unit of a university hospital in Istanbul between February-October 2010. On completion of the research, a total of 63 newborns from human breast milk (n = 30) and barrier cream (n = 33) groups were contacted. Genders, mean gestation weeks, feeding method, antibiotic use, diaper area cleansing methods, diaper brands and prelesion scores of newborns in both groups were found to be comparable (p > 0·05). There was no statistically significant difference (p = 0.294) between the groups in terms of mean number of clinical improvement days, but postlesion score of the barrier cream group was statistically significantly lower (p = 0·002) than the human breast milk group. Barrier cream delivers more effective results than treatment with human breast milk, particularly in the treatment of newborns with moderate to severe dermatitis in the result of the study. This study will shed light on nursing care of skin for newborns who are treated in neonatal intensive care unit. © 2013 Blackwell Publishing Ltd.

  4. CLDN6 promotes chemoresistance through GSTP1 in human breast cancer

    Directory of Open Access Journals (Sweden)

    Minlan Yang

    2017-11-01

    Full Text Available Abstract Background Claudin-6 (CLDN6, a member of CLDN family and a key component of tight junction, has been reported to function as a tumor suppressor in breast cancer. However, whether CLDN6 plays any role in breast cancer chemoresistance remains unclear. In this study, we investigated the role of CLDN6 in the acquisition of chemoresistance in breast cancer cells. Methods We manipulated the expression of CLDN6 in MCF-7 and MCF-7/MDR cells with lv-CLDN6 and CLDN6-shRNA and investigated whether CLDN6 manipulation lead to different susceptibilities to several chemotherapeutic agents in these cells. The cytotoxicity of adriamycin (ADM, 5-fluorouracil (5-FU, and cisplatin (DDP was tested by cck-8 assay. Cell death was determined by DAPI nuclear staining. The enzyme activity of glutanthione S-transferase-p1 (GSTP1 was detected by a GST activity kit. Then lv-GSTP1 and GSTP1-shRNA plasmids were constructed to investigate the potential of GSTP1 in regulating chemoresistance of breast cancer. The TP53-shRNA was adopted to explore the regulation mechanism of GSTP1. Finally, immunohistochemistry was used to explore the relationship between CLDN6 and GSTP1 expression in breast cancer tissues. Results Silencing CLDN6 increased the cytotoxicity of ADM, 5-FU, and DDP in MCF-7/MDR cells. Whereas overexpression of CLDN6 in MCF-7, the parental cell line of MCF-7/MDR expressing low level of CLDN6, increased the resistance to the above drugs. GSTP1 was upregulated in CLDN6-overexpressed MCF-7 cells. RNAi –mediated silencing of CLDN6 downregulated both GSTP1 expression and GST enzyme activity in MCF-7/MDR cells. Overexpresssion of GSTP1 in CLDN6 silenced MCF-7/MDR cells restored chemoresistance, whereas silencing GSTP1 reduced the chemoresistance due to ectopic overexpressed of CLDN6 in MCF-7 cells. These observations were also repeated in TNBC cells Hs578t. We further confirmed that CLDN6 interacted with p53 and promoted translocation of p53 from nucleus to

  5. Biological responses of progestogen metabolites in normal and cancerous human breast.

    Science.gov (United States)

    Pasqualini, Jorge R; Chetrite, Gérard S

    2010-12-01

    At present, more than 200 progestogen molecules are available, but their biological response is a function of various factors: affinity to progesterone or other receptors, their structure, the target tissues considered, biological response, experimental conditions, dose, method of administration and metabolic transformations. Metabolic transformation is of huge importance because in various biological processes the metabolic product(s) not only control the activity of the maternal hormone but also have an important activity of its own. In this regard, it was observed that the 20-dihydro derivative of the progestogen dydrogesterone (Duphaston®) is significantly more active than the parent compound in inhibiting sulfatase and 17β-hydroxysteroid dehydrogenase in human breast cancer cells. Estrone sulfatase activity is also inhibited by norelgestromin, a norgestimate metabolite. Interesting information was obtained with a similar progestogen, tibolone, which is rapidly metabolized into the active 3α/3β-hydroxy and 4-ene metabolites. All these metabolites can inhibit sulfatase and 17β-hydroxysteroid dehydrogenase and stimulate sulfotransferase in human breast cancer cells. Another attractive aspect is the metabolic transformation of progesterone itself in human breast tissues. In the normal breast progesterone is mainly converted to 4-ene derivatives, whereas in the tumor tissue it is converted mostly to 5α-pregnane derivatives. 20α-Dihydroprogesterone is found mainly in normal breast tissue and possesses antiproliferative properties as well as the ability to act as an anti-aromatase agent. Consequently, this progesterone metabolite could be involved in the control of estradiol production in the normal breast and therefore implicated in one of the multifactorial mechanisms of the breast carcinogenesis process. In conclusion, a better understanding of both natural and synthetic hormone metabolic transformations and their control could potentially provide

  6. Characterization of human breast cancer by scanning acoustic microscopy

    Science.gov (United States)

    Chen, Di; Malyarenko, Eugene; Seviaryn, Fedar; Yuan, Ye; Sherman, Mark; Bandyopadhyay, Sudeshna; Gierach, Gretchen; Greenway, Christopher W.; Maeva, Elena; Strumban, Emil; Duric, Neb; Maev, Roman

    2013-03-01

    Objectives: The purpose of this study was to characterize human breast cancer tissues by the measurement of microacoustic properties. Methods: We investigated eight breast cancer patients using acoustic microscopy. For each patient, seven blocks of tumor tissue were collected from seven different positions around a tumor mass. Frozen sections (10 micrometer, μm) of human breast cancer tissues without staining and fixation were examined in a scanning acoustic microscope with focused transducers at 80 and 200 MHz. Hematoxylin and Eosin (H and E) stained sections from the same frozen breast cancer tissues were imaged by optical microscopy for comparison. Results: The results of acoustic imaging showed that acoustic attenuation and sound speed in cancer cell-rich tissue regions were significantly decreased compared with the surrounding tissue regions, where most components are normal cells/tissues, such as fibroblasts, connective tissue and lymphocytes. Our observation also showed that the ultrasonic properties were influenced by arrangements of cells and tissue patterns. Conclusions: Our data demonstrate that attenuation and sound speed imaging can provide biomechanical information of the tumor and normal tissues. The results also demonstrate the potential of acoustic microscopy as an auxiliary method for operative detection and localization of cancer affected regions.

  7. Cytotoxicity Study of Cyclopentapeptide Analogues of Marine Natural Product Galaxamide towards Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jignesh Lunagariya

    2017-01-01

    Full Text Available Herein, we report the cytotoxicity of cyclopentapeptide analogues of marine natural product galaxamide towards breast carcinoma cells and the underlying mechanisms. We examined the effect of the novel galaxamide analogues on cancer cell proliferation by MTT assay and also further examined the most active compound for morphological changes using Hoechst33342 staining technique, induction of apoptosis, cell cycle phases, mitochondrial membrane potential (MMP, and reactive oxygen species (ROS generation using flow cytometry in human breast cancer MCF-7 cells in vitro. Galaxamide and its analogues effectively induced toxicity in human hepatocellular carcinoma HepG2, human breast carcinoma MCF-7, human epitheloid cervix carcinoma HeLa, and human breast carcinoma MB-MDA-231 cell lines. Amongst them, compound 3 exhibited excellent toxicity towards MCF-7 cells. This galaxamide analogue significantly induced apoptosis in a dose-dependent manner in MCF-7 cells involves cell cycle arrest in the G1 phase, a reduction of MMP, and a marked increase in generation of ROS. Particularly, compound 3 of galaxamide analogues might be a potential candidate for the treatment of breast cancer.

  8. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei

    2017-05-02

    Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.

  9. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry

    NARCIS (Netherlands)

    de Wiele, Christophe Van; Phonteyne, Philippe; Pauwels, Patrick; Goethals, Ingeborg; Van den Broecke, Rudi; Cocquyt, Veronique; Dierckx, Rudi Andre

    This study reports on the uptake of (99m)Tc-RP527 by human breast carcinoma and its relationship to gastrin-releasing peptide receptor (GRIP-R) expression as measured by immunohistochemistry (IHC). Methods: Nine patients referred because of a clinical diagnosis suggestive of breast carcinoma and 5

  10. Prognostic value of human apurinic/apyrimidinic endonuclease 1 (APE1 expression in breast cancer.

    Directory of Open Access Journals (Sweden)

    Joohyun Woo

    Full Text Available Human apurinic/apyrimidinic endonuclease 1 (APE1 is an essential protein for DNA base excision repair (BER and redox regulation. The ability of cancer cells to recognize DNA damage and initiate DNA repair is an important mechanism for therapeutic resistance. Several recent studies have suggested that APE1 expression levels and/or subcellular dysregulation may be used to indicate the sensitivity of tumors to radiotherapy or chemotherapy. In this study, we assessed the prognostic significance of APE1 and differences in APE1 expression levels according to breast cancer molecular subtypes. We analyzed formalin-fixed, paraffin-embedded tumor tissue sections from 243 cases diagnosed as invasive breast cancer at Ewha Womans University Medical Center between January 2003 and December 2008. Immunohistochemistry was performed and the nuclear level of APE1 was scored by taking into account the percentage of positive cells. Medical records were reviewed to investigate clinicopathologic characteristics. We found that nuclear APE1 high-level expression (proportion ≥50% in breast cancer showed a tendency towards unfavorable prognosis regarding disease-free survival (p = 0.093. However, there was no significant difference in overall survival between low and high-level expression groups (p = 0.294. Interestingly, within the Ki-67 low-level expression group, APE1 low-level expression was significantly associated with poor overall survival (p = 0.007. A significant positive correlation was observed between APE1 nuclear expression and estrogen receptor status (75.7% vs. 59.7%, p = 0.022. Also, the luminal A subtype was the most commonly observed breast cancer subtype in the APE1 high-level expression group (61.6% vs. 45.2%, p = 0.000. This study suggests that APE1 expression may be associated with breast cancer prognosis. In particular, its role as a prognostic factor would be significant for breast cancers with a low Ki-67 proliferation index

  11. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    DEFF Research Database (Denmark)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn

    2001-01-01

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neopl...

  12. Knockdown of UbcH10 Enhances the Chemosensitivity of Dual Drug Resistant Breast Cancer Cells to Epirubicin and Docetaxel

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2015-03-01

    Full Text Available Breast cancer is one of the most common and lethal cancers in women. As a hub gene involved in a diversity of tumors, the ubiquitin-conjugating enzyme H10 (UbcH10, may also play some roles in the genesis and development of breast cancer. In the current study, we found that the expression of UbcH10 was up-regulated in some breast cancer tissues and five cell lines. We established a dual drug resistant cell line MCF-7/EPB (epirubicin/TXT (docetaxel and a lentiviral system expressing UbcH10 shRNA to investigate the effects of UbcH10 knockdown on the chemosensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel. The knockdown of UbcH10 inhibited the proliferation of both MCF-7 and MCF-7/EPB/TXT cells, due to the G1 phase arrest in cell cycle. Furthermore, UbcH10 knockdown increased the sensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel and promoted the apoptosis induced by these two drugs. Protein detection showed that, in addition to inhibiting the expression of Ki67 and cyclin D1, UbcH10 RNAi also impaired the increased BCL-2 and MDR-1 expression levels in MCF-7/EPB/TXT cells, which may contribute to abating the drug resistance in the breast cancer cells. Our research in the current study demonstrated that up-regulation of UbcH10 was involved in breast cancer and its knockdown can inhibit the growth of cancer cells and increase the chemosensitivity of the dual drug resistant breast cancer cells to epirubicin and docetaxel, suggesting that UbcH10 may be a promising target for the therapy of breast cancer.

  13. Imaging recognition of inhibition of multidrug resistance in human breast cancer xenografts using 99mTc-labeled sestamibi and tetrofosmin

    International Nuclear Information System (INIS)

    Liu Zhonglin; Stevenson, Gail D.; Barrett, Harrison H.; Furenlid, Lars R.; Wilson, Donald W.; Kastis, George A.; Bettan, Michael; Woolfenden, James M.

    2005-01-01

    Background: 99m Tc-sestamibi (MIBI) and 99m Tc-tetrofosmin (TF) are avid transport substrates recognized by the multidrug resistance (MDR) P-glycoprotein (Pgp). This study was designed to compare the properties of MIBI and TF in assessing the inhibition of Pgp by PSC833 in severe combined immunodeficient mice bearing MCF7 human breast tumors using SPECT imaging. Methods: Animals with drug-sensitive (MCF/WT) and drug-resistant (MCF7/AdrR) tumors were treated by PSC833 and by carrier vehicle 1 h before imaging, respectively. Dynamic images were acquired for 30 min after intravenous injection of MIBI/TF using a SPECT system, FastSPECT. The biodistribution of MIBI and TF was determined at the end of the imaging session. Results: MCF7/WT in the absence and presence of PSC833 could be visualized by MIBI and TF imaging within 5 min and remained detectable for 30 min postinjection. MCF7/AdrR could be visualized only 2-5 min without PSC833 treatment but could be detected for 30 min with PSC833, very similar to MCF7/WT. MCF7/AdrR without PSC833 showed significantly greater radioactive washout than MCF7/WT and MCF7/AdrR with PSC833 treatment. PSC833 increased the accumulation (%ID/g) in MCF7/AdrR 3.0-fold (1.62±0.15 vs. 0.55±0.05, P<.05) for TF and 1.9-fold (1.21±0.04 vs. 0.64±0.05, P<.05) for MIBI but did not affect MCF7/WT. Conclusions: The feasibility of MIBI and TF for assessment of MDR expression and inhibition was demonstrated in mice through FastSPECT imaging. The results indicate that TF may be at least comparable with MIBI in recognizing Pgp expression and modulation

  14. Nutrient-enriched formula milk versus human breast milk for preterm infants following hospital discharge.

    Science.gov (United States)

    Henderson, G; Fahey, T; McGuire, W

    2007-10-17

    Preterm infants are often growth-restricted at hospital discharge. Feeding infants after hospital discharge with nutrient-enriched formula milk instead of human breast milk might facilitate "catch-up" growth and improve development. To determine the effect of feeding nutrient-enriched formula compared with human breast milk on growth and development of preterm infants following hospital discharge. The standard search strategy of the Cochrane Neonatal Review Group was used. This included searches of the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 2, 2007), MEDLINE (1966 - May 2007), EMBASE (1980 - May 2007), CINAHL (1982 - May 2007), conference proceedings, and previous reviews. Randomised or quasi-randomised controlled trials that compared feeding preterm infants following hospital discharge with nutrient-enriched formula compared with human breast milk. The standard methods of the Cochrane Neonatal Review Group were used, with separate evaluation of trial quality and data extraction by two review authors. No eligible trials were identified. There are no data from randomised controlled trials to determine whether feeding preterm infants following hospital discharge with nutrient-enriched formula milk versus human breast milk affects growth and development. Mothers who wish to breast feed, and their health care advisors, would require very clear evidence that feeding with a nutrient-enriched formula milk had major advantages for their infants before electing not to feed (or to reduce feeding) with maternal breast milk. If evidence from trials that compared feeding preterm infants following hospital discharge with nutrient-enriched versus standard formula milk demonstrated an effect on growth or development, then this might strengthen the case for undertaking trials of nutrient-enriched formula milk versus human breast milk.

  15. A gene expression signature of retinoblastoma loss-of-function is a predictive biomarker of resistance to palbociclib in breast cancer cell lines and is prognostic in patients with ER positive early breast cancer.

    Science.gov (United States)

    Malorni, Luca; Piazza, Silvano; Ciani, Yari; Guarducci, Cristina; Bonechi, Martina; Biagioni, Chiara; Hart, Christopher D; Verardo, Roberto; Di Leo, Angelo; Migliaccio, Ilenia

    2016-09-13

    Palbociclib is a CDK4/6 inhibitor that received FDA approval for treatment of hormone receptor positive (HR+) HER2 negative (HER2neg) advanced breast cancer. To better personalize patients treatment it is critical to identify subgroups that would mostly benefit from it. We hypothesize that complex alterations of the Retinoblastoma (Rb) pathway might be implicated in resistance to CDK4/6 inhibitors and aim to investigate whether signatures of Rb loss-of-function would identify breast cancer cell lines resistant to palbociclib. We established a gene expression signature of Rb loss-of-function (RBsig) by identifying genes correlated with E2F1 and E2F2 expression in breast cancers within The Cancer Genome Atlas. We assessed the RBsig prognostic role in the METABRIC and in a comprehensive breast cancer meta-dataset. Finally, we analyzed whether RBsig would discriminate palbociclib-sensitive and -resistant breast cancer cells in a large RNA sequencing-based dataset. The RBsig was associated with RB1 genetic status in all tumors (p <7e-32) and in luminal or basal subtypes (p < 7e-11 and p < 0.002, respectively). The RBsig was prognostic in the METABRIC dataset (discovery: HR = 1.93 [1.5-2.4] p = 1.4e-08; validation: HR = 2.01 [1.6-2.5] p = 1.3e-09). Untreated and endocrine treated patients with estrogen receptor positive breast cancer expressing high RBsig had significantly worse recurrence free survival compared to those with low RBsig (HR = 2.37 [1.8 - 3.2] p = 1.87e-08 and HR = 2.62 [1.9- 3.5] p = 8.6e-11, respectively). The RBsig was able to identify palbociclib resistant and sensitive breast cancer cells (ROC AUC = 0,7778). Signatures of RB loss might be helpful in personalizing treatment of patients with HR+/HER2neg breast cancer. Further validation in patients receiving palbociclib is warranted.

  16. Fertility in Women of Reproductive Age After Breast Cancer Treatment: Practice Patterns and Outcomes.

    Science.gov (United States)

    McCray, Devina K S; Simpson, Ashley B; Flyckt, Rebecca; Liu, Yitian; O'Rourke, Colin; Crowe, Joseph P; Grobmyer, Stephen R; Moore, Halle C; Valente, Stephanie A

    2016-10-01

    Breast cancer is the most frequently occurring cancer in women of reproductive age, and systemic treatments may adversely affect childbearing plans. Use of assisted reproductive technologies and therapies for ovarian protection improve fertility prospects. We evaluated whether patients had a documented fertility discussion (FD) with their oncology physician prior to therapy, what options were chosen, and if pregnancy was achieved. A retrospective chart review from 2006 to 2014 was performed to evaluate women aged 40 years and younger who were diagnosed with breast cancer and treated with chemotherapy and/or antihormonal therapy. Patient demographics, treatment regimens, presence or absence of FD, in vitro fertilization (IVF) consultation, gonadotropin-releasing hormone (GnRH) agonist use, and subsequent successful pregnancy were analyzed. Among 303 patients meeting the inclusion criteria, 80 (26 %) had an FD with their physician documented; 71 of these 80 women (89 %) sought further fertility consultation and options. Sixteen (20 %) women were prescribed a GnRH agonist only for ovarian protection during chemotherapy, 50 (63 %) underwent IVF consultation only, and 5 (6 %) had both a GnRH agonist prescribed and an IVF consultation. The overall pregnancy rate was 7 % at a mean of 3 years post breast cancer treatment. Pregnancy after treatment was more common among those pursuing IVF consultation or prescribed a GnRH agonist. In treating young breast cancer patients, it is important to assess fertility desire, discuss treatment risks relating to fertility, and discuss preservation options. Although not every woman in this group desired pregnancy, 71/80 (89 %) women having a documented FD sought further fertility consultation and options.

  17. HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance

    Directory of Open Access Journals (Sweden)

    Babak Nami

    2017-04-01

    Full Text Available HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs. HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2, which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab.

  18. Immunomodulatory constituents of human breast milk and immunity from bronchiolitis.

    Science.gov (United States)

    Li, Chunyu; Liu, Yanbo; Jiang, Yanfang; Xu, Naijun; Lei, Jie

    2017-01-14

    The mother's immune status can be achieved by genetic and breastfeeding impact descendants of the immune system. The study aimed to determine whether a mother's immune status and breastfeeding practices were related to development of bronchiolitis in her infant. The frequency of T, B and natural kill (NK) cells in patients' blood and their mothers' breast milk was determined using flow cytometry. The concentrations of serum and breast milk IgG and IgD in individual patients and healthy control were determined by enzyme-linked immunosorbent assay (ELISA). The relationships between immunocytes, immunoglobulin and respiratory score (RS) were analyzed by Spearman's rank correlation test. The mothers of bronchiolitis patients had lower IgG concentrations in their breast milk when compared to the mothers of healthy children. There was no significant difference in the frequency of T cells, B cells, and NK cells in samples of breast milk. However, significant decreases of CD3+, CD8+ T cells, as well as significant increases of CD4+ T cells and CD19+ B cells were found in the serum of bronchiolitis infants. There were positive correlation relationships between RS and CD3+, CD4+ T cells, IgG and IgD concentrations. Our data suggested that the mothers of bronchiolitis patients had lower IgG concentration in their breast milk. The breast milk IgG might be absorbed by the breastfeeding infants, which could play important role in resistance of bronchiolitis.

  19. Widespread molecular patterns associated with drug sensitivity in breast cancer cell lines, with implications for human tumors.

    Directory of Open Access Journals (Sweden)

    Chad J Creighton

    Full Text Available BACKGROUND: Recent landmark studies have profiled cancer cell lines for molecular features, along with measuring the corresponding growth inhibitory effects for specific drug compounds. These data present a tool for determining which subsets of human cancer might be more responsive to particular drugs. To this end, the NCI-DREAM-sponsored DREAM7: Drug Sensitivity Prediction Challenge (sub-challenge 1 set out to predict the sensitivities of 18 breast cancer cell lines to 31 previously untested compounds, on the basis of molecular profiling data and a training subset of cell lines. METHODS AND RESULTS: With 47 teams submitting blinded predictions, team Creighton scored third in terms of overall accuracy. Team Creighton's method was simple and straightforward, incorporated multiple expression data types (RNA-seq, gene array, RPPA, and incorporated all profiled features (not only the "best" predictive ones. As an extension of the approach, cell line data, from public datasets of expression profiling coupled with drug sensitivities (Barretina, Garnett, Heiser were used to "predict" the drug sensitivities in human breast tumors (using data from The Cancer Genome Atlas. Drug sensitivity correlations within human breast tumors showed differences by expression-based subtype, with many associations in line with the expected (e.g. Lapatinib sensitivity in HER2-enriched cancers and others inviting further study (e.g. relative resistance to PI3K inhibitors in basal-like cancers. CONCLUSIONS: Molecular patterns associated with drug sensitivity are widespread, with potentially hundreds of genes that could be incorporated into making predictions, as well as offering biological clues as to the mechanisms involved. Applying the cell line patterns to human tumor data may help generate hypotheses on what tumor subsets might be more responsive to therapies, where multiple cell line datasets representing various drugs may be used, in order to assess consistency of

  20. Induction of apoptosis by eugenol in human breast cancer cells

    International Nuclear Information System (INIS)

    Vidhya, N.; Niranjali Devaraj, S.

    2011-01-01

    In the present study, potential anticancer effect of eugenol on inhibition of cell proliferation and induction of apoptosis in human MCF-7 breast cancer cells was investigated. Induction of cell death by eugenol was evaluated following MTT assay and monitoring lactate dehydrogenase released into the culture medium for cell viability and cytotoxicity, giemsa staining for morphological alterations, fluorescence microscopy analysis of cells using ethidium bromide and acridine orange and quantitation of DNA fragments for induction of apoptosis. Effect of eugenol on intracellular redox status of the human breast cancer cells was assessed by determining the level of glutathione and lipid peroxidation products (TBARS). Eugenol treatment inhibited the growth and proliferation of human MCF-7 breast cancer cells through induction of cell death, which was dose and time dependent. Microscopic examination of eugenol treated cells showed cell shrinkage, membrane blebbing and apoptotic body formation. Further, eugenol treatment also depleted the level of intracellular glutathione and increased the level of lipid peroxidation. The dose dependent increase in the percentage of apoptotic cells and DNA fragments suggested that apoptosis was involved in eugenol induced cell death and apoptosis might have played a role in the chemopreventive action of eugenol. (author)

  1. Induction of apoptosis in human breast adenocarcinoma MCF-7 ...

    African Journals Online (AJOL)

    Induction of apoptosis in human breast adenocarcinoma MCF-7 cells by tannic acid and resveratrol. Ahu Soyocak, Didem Turgut Cosan, Ayse Basaran, Hasan Veysi Gunes, Irfan Degirmenci, Fezan Sahin Mutlu ...

  2. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes.

    Science.gov (United States)

    Watson, Spencer S; Dane, Mark; Chin, Koei; Tatarova, Zuzana; Liu, Moqing; Liby, Tiera; Thompson, Wallace; Smith, Rebecca; Nederlof, Michel; Bucher, Elmar; Kilburn, David; Whitman, Matthew; Sudar, Damir; Mills, Gordon B; Heiser, Laura M; Jonas, Oliver; Gray, Joe W; Korkola, James E

    2018-03-28

    Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ∼2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-β1 (NRG1β), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Stability of Cortisol and Cortisone in Human Breast Milk During Holder Pasteurization.

    Science.gov (United States)

    van der Voorn, Bibian; de Waard, Marita; Dijkstra, Lisette R; Heijboer, Annemieke C; Rotteveel, Joost; van Goudoever, Johannes B; Finken, Martijn J J

    2017-12-01

    Human donor milk is the feeding of choice for preterm infants, when own mother's milk is not available. Holder pasteurization is necessary to secure the safety of donor milk, although it can affect milk quality by reduction of nutritional and bioactive components. Recently, research has focused on the potential role of breast milk glucocorticoids for infant development. At this moment, it is unknown whether pasteurization affects milk glucocorticoid levels. Therefore, we assessed whether Holder pasteurization, the most frequently used method nowadays, reduces breast milk cortisol and cortisone levels, using breast milk samples from 30 women who delivered at term. We found tight correlations between pre- and postpasteurization levels of cortisol (R = 0.99) and cortisone (R = 0.98), and good agreement in Passing and Bablok regression analysis. In conclusion, cortisol and cortisone in human term breast milk are not significantly affected by Holder pasteurization.

  4. Persistent organic pollutants in human breast milk from Asian countries

    International Nuclear Information System (INIS)

    Tanabe, Shinsuke; Kunisue, Tatsuya

    2007-01-01

    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk. - Contamination aspects of POPs in human breast milk from Asian countries were characterized

  5. Persistent organic pollutants in human breast milk from Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Shinsuke [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790 8577, Ehime Prefecture (Japan)]. E-mail: shinsuke@agr.ehime-u.ac.jp; Kunisue, Tatsuya [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790 8577, Ehime Prefecture (Japan)

    2007-03-15

    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk. - Contamination aspects of POPs in human breast milk from Asian countries were characterized.

  6. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    International Nuclear Information System (INIS)

    Lee, Kiwon; Liu, Yin; Mo, Jun Qin; Zhang, Jinsong; Dong, Zhongyun; Lu, Shan

    2008-01-01

    Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis. Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression

  7. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue

    International Nuclear Information System (INIS)

    Wang, Li-Shu; Huang, Yi-Wen; Liu, Suling; Yan, Pearlly; Lin, Young C

    2008-01-01

    Conjugated linoleic acid (CLA), a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E 2 ) stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam) and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA-MB-231 cells. These data, therefore, demonstrate that

  8. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue

    Directory of Open Access Journals (Sweden)

    Liu Suling

    2008-07-01

    Full Text Available Abstract Background Conjugated linoleic acid (CLA, a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. Methods The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. Results The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E2 stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA

  9. Novel Growth Factor as Prognostic Marker for Estrogen-Independence in Breast Cancer

    National Research Council Canada - National Science Library

    Serrero, Ginette

    2002-01-01

    ...-independence and tamoxifen resistance. Here, wave conducted a study with 206 paraffin embedded human breast cancer biopsies and measured PCDGF expression by immunohistochemistry using an anti-PCDGF developed in our laboratory...

  10. Paclitaxel-induced apoptosis is BAK-dependent, but BAX and BIM-independent in breast tumor.

    Directory of Open Access Journals (Sweden)

    Anna V Miller

    Full Text Available Paclitaxel (Taxol-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell death plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel treatment using bim(-/- MEFs (mouse embryonic fibroblasts, the bim(-/- mouse breast tumor model, and shRNA-mediated down-regulation of BIM in human breast cancer cells. In contrast, both bak (-/- MEFs and human breast cancer cells in which BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in bax(-/- MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1 degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1 degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.

  11. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line.

    Science.gov (United States)

    Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila M M; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy C R; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K

    2014-01-01

    Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.

  12. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    International Nuclear Information System (INIS)

    Fuchs, Dominik; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Naujokat, Cord

    2010-01-01

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  13. A novel imidazopyridine analogue as a phosphatidylinositol 3-kinase inhibitor against human breast cancer.

    Science.gov (United States)

    Lee, Hyunseung; Li, Guang-Yong; Jeong, Yujeong; Jung, Kyung Hee; Lee, Ju-Hee; Ham, Kyungrok; Hong, Sungwoo; Hong, Soon-Sun

    2012-05-01

    Potentiation of anti-breast cancer activity of an imidazopyridine-based PI3Kα inhibitor, HS-104, was investigated in human breast cancer cells. HS-104 shows strong inhibitory activity against recombinant PI3Kα isoform and the PI3K signaling pathway, resulting in anti-proliferative activity in breast cancer cells. It also induced cell cycle arrest at the G(2)/M phase as well as apoptosis. Furthermore, oral administration of HS-104 significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Therefore, HS-104 could be considered as a potential candidate for the treatment of human breast cancer. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Cancer-selective death of human breast cancer cells by leelamine is mediated by bax and bak activation.

    Science.gov (United States)

    Sehrawat, Anuradha; Kim, Su-Hyeong; Hahm, Eun-Ryeong; Arlotti, Julie A; Eiseman, Julie; Shiva, Sruti S; Rigatti, Lora H; Singh, Shivendra V

    2017-02-01

    The present study is the first to report inhibition of breast cancer cell growth in vitro and in vivo and suppression of self-renewal of breast cancer stem cells (bCSC) by a pine bark component (leelamine). Except for a few recent publications in melanoma, anticancer pharmacology of this interesting phytochemical is largely elusive. Leelamine (LLM) dose-dependently inhibited viability of MDA-MB-231 (triple-negative), MCF-7 (estrogen receptor-positive), and SUM159 (triple-negative) human breast cancer cells in association with apoptotic cell death induction. To the contrary, a normal mammary epithelial cell line derived from fibrocystic breast disease and spontaneously immortalized (MCF-10A) was fully resistant to LLM-mediated cell growth inhibition and apoptosis induction. LLM also inhibited self-renewal of breast cancer stem cells. Apoptosis induction by LLM in breast cancer cells was accompanied by a modest increase in reactive oxygen species production, which was not due to inhibition of mitochondrial electron transport chain complexes. Nevertheless, ectopic expression of manganese superoxide dismutase conferred partial protection against LLM-induced cell death but only at a lower yet pharmacologically relevant concentration. Exposure of breast cancer cells to LLM resulted in (a) induction and/or activation of multidomain proapoptotic proteins Bax and Bak, (b) caspase-9 activation, and (c) cytosolic release of cytochrome c. Bax and Bak deficiency in immortalized fibroblasts conferred significant protection against cell death by LLM. Intraperitoneal administration of LLM (7.5 mg/kg; 5 times/wk) suppressed the growth of orthotopic SUM159 xenografts in mice without any toxicity. In conclusion, the present study provides critical preclinical data to warrant further investigation of LLM. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Sensitivity of the human breast to cancer induction by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R H [Medical Research Council, Harwell (UK). Radiobiological Research Unit

    1978-06-01

    Available evidence for the induction of cancer in the human breast by small doses of radiation is reviewed. A comparison is made of risk estimates for the frequency of breast cancer in excess of controls, per rad of ionizing radiation, resulting from multiple fluoroscopy, radiotherapy of non-malignant diseases of the breast, or the exposure of Japanese bomb survivors. The significance of the age at exposure is discussed, and consideration is given to the application of the evidence to practical problems in radiography, radiotherapy, screening by mammography, and radiological protection for occupational exposure.

  16. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    Science.gov (United States)

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  17. The physiology of the normal human breast: an exploratory study.

    Science.gov (United States)

    Mills, Dixie; Gordon, Eva J; Casano, Ashley; Lahti, Sarah Michelle; Nguyen, Tinh; Preston, Alex; Tondre, Julie; Wu, Kuan; Yanase, Tiffany; Chan, Henry; Chia, David; Esfandiari, Mahtash; Himmel, Tiffany; Love, Susan M

    2011-12-01

    The physiology of the nonlactating human breast likely plays a key role in factors that contribute to the etiology of breast cancer and other breast conditions. Although there has been extensive research into the physiology of lactation, few reports explore the physiology of the resting mammary gland, including mechanisms by which compounds such as hormones, drugs, and potential carcinogens enter the breast ducts. The purpose of this study was to explore transport of exogenous drugs into ductal fluid in nonlactating women and determine if their concentrations in the fluid are similar to those observed in the breast milk of lactating women. We selected two compounds that have been well characterized during lactation, caffeine and cimetidine. Caffeine passively diffuses into breast milk, but cimetidine is actively transported and concentrated in breast milk. After ingestion of caffeine and cimetidine, 14 nonlactating subjects had blood drawn and underwent ductal lavage at five time points over 12 h to measure drug levels in the fluid and blood. The concentrations of both caffeine and cimetidine in lavage fluid were substantially less than those observed in breast milk. Our results support recent evidence that the cimetidine transporter is not expressed in the nonlactating mammary gland, and highlight intriguing differences in the physiology and molecular transport of the lactating and nonlactating breast. The findings of this exploratory study warrant further exploration into the physiology of the nonlactating mammary gland to elucidate factors involved in disease initiation and progression.

  18. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  19. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    Science.gov (United States)

    Narayanan, Ramesh; Dalton, James T.

    2016-01-01

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430

  20. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ramesh Narayanan

    2016-12-01

    Full Text Available Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER and human epidermal growth factor receptor (HER2 are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer.

  1. Clinicopathological significance of PTPN12 expression in human breast cancer

    International Nuclear Information System (INIS)

    Yuan, Xunyi; Yuan, Zhentao; Jiang, Dandan; Li, Funian

    2012-01-01

    Protein tyrosine phosphatase non-receptor type 12 (PTPN12) is a recently identified tumor suppressor gene (TSG) that is frequently compromised in human triple-negative breast cancer. In the present study, we investigated the expression of PTPN12 protein by patients with breast cancer in a Chinese population and the relationship between PTPN12 expression levels and patient clinicopathological features and prognosis. Additionally, we explored the underlying down-regulation mechanism from the perspective of an epigenetic alteration. We examined PTPN12 mRNA expression in five breast cancer cell lines using semi-quantitative reverse-transcription PCR, and detected PTPN12 protein expression using immunohistochemistry in 150 primary invasive breast cancer cases and paired adjacent non-tumor tissues. Methylation-specific PCR was performed to analyze the promoter CpG island methylation status of PTPN12. PTPN12 was significantly down-regulated in breast cancer cases (48/150) compared to adjacent noncancerous tissues (17/150; P < 0.05). Furthermore, low expression of PTPN12 showed a significant positive correlation with tumor size (P = 0.047), lymph node metastasis (P = 0.001), distant metastasis (P = 0.009), histological grade (P = 0.012), and survival time (P = 0.019). Additionally, promoter CpG island hypermethylation occurs more frequently in breast cancer cases and breast cancer cell lines with low PTPN12 expression. Our findings suggest that PTPN12 is potentially a methylation-silenced TSG for breast cancer that may play an important role in breast carcinogenesis and could potentially serve as an independent prognostic factor for invasive breast cancer patients

  2. Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Kang, Ju-Hee; Song, Ki-Hoon; Jeong, Kyung-Chae; Kim, Sunshin; Choi, Changsun; Lee, Chang Hoon; Oh, Seung Hyun

    2011-01-01

    A major problem with the use of current chemotherapy regimens for several cancers, including breast cancer, is development of intrinsic or acquired drug resistance, which results in disease recurrence and metastasis. However, the mechanisms underlying this drug resistance are unknown. To study the molecular mechanisms underlying the invasive and metastatic activities of drug-resistant cancer cells, we generated a doxorubicin-resistant MCF-7 breast cancer cell line (MCF-7/DOX). We used MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, flow cytometry assays, DNA fragmentation assays, Western blot analysis, cell invasion assays, small interfering RNA (siRNA) transfection, reverse transcription-polymerase chain reaction, experimental lung metastasis models, and gelatin and fibrinogen/plasminogen zymography to study the molecular mechanism of metastatic activities in MCF-7/DOX cells. We found that MCF-7/DOX acquired invasive activities. In addition, Western blot analysis showed increased expression of epidermal growth factor receptor (EGFR) and Cox-2 in MCF-7/DOX cells. Inhibition of Cox-2, phosphoinositide 3-kinase (PI3K)/Akt, or mitogen-activated protein kinase (MAPK) pathways effectively inhibited the invasive activities of MCF-7/DOX cells. Gelatin and fibrinogen/plasminogen zymography analysis showed that the enzymatic activities of matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator were markedly higher in MCF-7/DOX cells than in the MCF-7 cells. In vitro invasion assays and mouse models of lung metastasis demonstrated that MCF-7/DOX cells acquired invasive abilities. Using siRNAs and agonists specific for prostaglandin E (EP) receptors, we found that EP1 and EP3 played important roles in the invasiveness of MCF-7/DOX cells. We found that the invasive activity of MCF-7/DOX cells is mediated by Cox-2, which is induced by the EGFR-activated PI3K/Akt and MAPK pathways. In addition, EP1 and EP3 are important in

  3. News in the studies of multidrug resistance of breast cancer cells

    Directory of Open Access Journals (Sweden)

    A. A. Stavrovskaya

    2015-01-01

    Full Text Available Breast cancer (BC is the most common cancer among women in Russia. One of the main treatment methods of BC is systemic chemotherapy. Multidrug resistance of tumor cells (MDR is the important hindrance on the way to successful chemotherapy. The new data concerning molecular mechanisms of MDR will be presented in this review. The recent data concerning some new biological prognostic markers will be also discussed. There are data showing that transporters of ABC family (ABC transporters influence tumor progression not only by MDR induction but also by the influence on the traits of malignancy in tumor cells. The results of the studies of ABC transporters, participation in the processes of accumulation of tumor stem cells under the influence of chemotherapy will be discussed. The problem of the participation of ABC transporters in the phenomenon of influence of PI3K/AKT/PTEN signal transduction pathway on the MDR regulation is discussed. The results of the studies of the role of microRNA deregulation in breast cancer drug resistance as well as studies of some epigenetic mechanisms of MDR regulation will be considered. Protein phosphatase 2A (PP2A, serine/threonine phosphatase, PTK7 (protein tyrosine kinase 7. fascin (an actin bundling cytoskeletal protein multifunctional YB-1 protein will considered as new BC prognostic markers. The perspectives of MDR studies will be discussed as well.

  4. MicroRNAs in Breast Cancer: One More Turn in Regulation.

    Science.gov (United States)

    Eroles, Pilar; Asensio, Pilar E; Tormo, Eduardo; Martin, Eduardo T; Pineda, Begoña; Merlo, Begoña P; Espin, Estefanía; Armas, Estefanía E; Lluch, Ana; Hernández, Ana L

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that critically regulate the expression of genes. MiRNAs are involved in physiological cellular processes; however, their deregulation has been associated with several pathologies, including cancer. In human breast cancer, differently expressed levels of miRNAs have been identified from those in normal breast tissues. Moreover, several miRNAs have been correlated with pathological phenotype, cancer subtype and therapy response in breast cancer. The resistance to therapy is increasingly a problem in patient management, and miRNAs are emerging as novel therapeutic targets and potential predictive biomarkers for treatment. This review provides an overview of the current situation of miRNAs in breast cancer, focusing on their involvement in resistance and the circulating miRNA. The mechanisms of therapeutic resistance regulated by miRNAs, such as the regulation of receptors, the modification of enzymes of drug metabolism, the inhibition of cell cycle control or pro-apoptotic proteins, the alteration of histone activity and the regulation of DNA repair machinery among others, are discussed for breast cancer clinical subtypes. Additionally, in this review, we summarize the recent knowledge that has established miRNA detection in peripheral body fluids as a suitable biomarker. We review the detection of miRNA in liquid biopsies and its implications for the diagnosis and monitoring of breast cancer. This new generation of cancer biomarkers may lead to a significant improvement in patient management.

  5. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents.

    Directory of Open Access Journals (Sweden)

    Richard C Wang

    Full Text Available One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1. In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs than the non-resistant cells.Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT and the wild type parental cell line (MCF-7CC to examine if taxane-resistant breast cancer cells are sensitive to microtubule-destabilizing agents including vinca alkaloids and CSBAs. Cytotoxicity assays, immunoblotting, indirect immunofluorescence and live imaging were used to study drug resistance, apoptosis, mitotic arrest, microtubule formation, and microtubule dynamics.MCF-7TXT cells were demonstrated to be cross resistant to vinca alkaloids, but were more sensitive to treatment with colchicine compared to parental non-resistant MCF-7CC cells. Cytotoxicity assays indicated that the IC50 of MCF-7TXT cell to vinorelbine and vinblastine was more than 6 and 3 times higher, respectively, than that of MCF-7CC cells. By contrast, the IC50 of MCF-7TXT cell for colchincine was 4 times lower than that of MCF-7CC cells. Indirect immunofluorescence showed that all MTAs induced the disorganization of microtubules and the chromatin morphology and interestingly each with a unique pattern. In terms of microtubule and chromain morphology, MCF-7TXT cells were

  6. New developments in the treatment of HER2-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Nahta R

    2012-05-01

    Full Text Available Rita NahtaDepartments of Pharmacology and Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USAAbstract: Approximately 20%–30% of metastatic breast cancers show increased expression of the human epidermal growth factor receptor-2 (HER2 tyrosine kinase. Two HER2-specific therapies are currently approved for clinical treatment of patients with HER2-overexpressing metastatic breast cancer. Trastuzumab is a monoclonal antibody against HER2 and is approved for first-line treatment of HER2-positive metastatic breast cancer. Lapatinib is a small molecule dual inhibitor of epidermal growth factor receptor and HER2 tyrosine kinases, and is approved for trastuzumab-refractory disease. Although trastuzumab is a highly effective therapy for patients with HER2-overexpressing metastatic breast cancer, a significant number of patients in the initial clinical trials of trastuzumab monotherapy showed resistance to trastuzumab-based therapy. Further, among those who did respond, the initial trials indicated that the median time to progression was less than 1 year. Similarly, lapatinib is effective in a subset of trastuzumab-refractory cases, but the majority of patients display resistance. This review discusses the multiple molecular mechanisms of resistance that have been proposed in the literature. In addition, novel agents that are being tested for efficacy against HER2-positive breast cancer, including the antibodies pertuzumab and trastuzumab-DM1 and the immunotoxin affitoxin, are reviewed. The introduction of trastuzumab has revolutionized the clinical care of patients with HER2-positive metastatic breast cancer and has resulted in dramatic reductions in recurrences of early-stage HER2-positive breast cancer. The development and implementation of gene- and protein-based assays that measure potential molecular predictors of trastuzumab resistance will allow individualization of HER2-targeted therapeutic approaches

  7. Epstein-Barr virus, human papillomavirus and mouse mammary tumour virus as multiple viruses in breast cancer.

    Science.gov (United States)

    Glenn, Wendy K; Heng, Benjamin; Delprado, Warick; Iacopetta, Barry; Whitaker, Noel J; Lawson, James S

    2012-01-01

    The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk - EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer.

  8. Resistant starch: promise for improving human health.

    Science.gov (United States)

    Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M

    2013-11-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.

  9. Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer.

    Science.gov (United States)

    Gasca, Jessica; Flores, Maria Luz; Giráldez, Servando; Ruiz-Borrego, Manuel; Tortolero, María; Romero, Francisco; Japón, Miguel A; Sáez, Carmen

    2016-08-16

    FBXW7 is a component of SCF (complex of SKP1, CUL1 and F-box-protein)-type ubiquitin ligases that targets several oncoproteins for ubiquitination and degradation by the proteasome. FBXW7 regulates cellular apoptosis by targeting MCL1 for ubiquitination. Recently, we identified PLK1 as a new substrate of FBXW7 modulating the intra-S-phase DNA-damage checkpoint. Taxanes are frequently used in breast cancer treatments, but the acquisition of resistance makes these treatments ineffective. We investigated the role of FBXW7 and their substrates MCL1 and PLK1 in regulating the apoptotic response to paclitaxel treatment in breast cancer cells and their expression in breast cancer tissues. Paclitaxel-sensitive MDA-MB-468 and a paclitaxel-resistant MDA-MB-468R subclone were used to study the role of FBXW7 and substrates in paclitaxel-induced apoptosis. Forced expression of FBXW7 or downregulation of MCL1 or PLK1 restored sensitivity to paclitaxel in MDA-MB-468R cells. By contrary, FBXW7-silenced MDA-MB-468 cells became resistant to paclitaxel. The expression of FBXW7 and substrates were studied in 296 invasive carcinomas by immunohistochemistry and disease-free survival was analyzed in a subset of patients treated with paclitaxel. In breast cancer tissues, loss of FBXW7 correlated with adverse prognosis markers and loss of FBXW7 and MCL1 or PLK1 accumulation were associated with diminished disease-free survival in paclitaxel-treated patients. We conclude that FBXW7 regulates the response to paclitaxel by targeting MCL1 and PLK1 in breast cancer cells and thus targeting these substrates may be a valuable adjunct for paclitaxel treatment. Also, FBXW7, MCL1 and PLK1 may be relevant predictive markers of tumor progression and response to paclitaxel treatment.

  10. Inflammatory Markers and Breast Cancer Risk

    Science.gov (United States)

    2011-07-01

    breast cancer [26, 27] or cytologic atypia [28], while another observed elevated IL-6 levels among breast cancer cases with insulin resistance [29...Relation between insulin resistance and serum concentrations of IL-6 and TNF- alpha in overweight or obese women with early stage breast cancer...without oophorectomy, hysterectomy with uni- or bilateral oophorectomy), prior breast biopsy (no, yes), ever been pregnant (no, yes), and

  11. The transport of nifurtimox, an anti-trypanosomal drug, in an in vitro model of the human blood-brain barrier: evidence for involvement of breast cancer resistance protein.

    Science.gov (United States)

    Watson, Christopher P; Dogruel, Murat; Mihoreanu, Larisa; Begley, David J; Weksler, Babette B; Couraud, Pierre O; Romero, Ignacio A; Thomas, Sarah A

    2012-02-03

    Human African trypanosomiasis (HAT) is a parasitic disease affecting sub-Saharan Africa. The parasites are able to traverse the blood-brain barrier (BBB), which marks stage 2 (S2) of the disease. Delivery of anti-parasitic drugs across the BBB is key to treating S2 effectively and the difficulty in achieving this goal is likely to be a reason why some drugs require highly intensive treatment regimes to be effective. This study aimed to investigate not only the drug transport mechanisms utilised by nifurtimox at the BBB, but also the impact of nifurtimox-eflornithine combination therapy (NECT) and other anti-HAT drug combination therapies (CTs) on radiolabelled-nifurtimox delivery in an in vitro model of drug accumulation and the human BBB, the hCMEC/D3 cell line. We found that nifurtimox appeared to use several membrane transporters, in particular breast-cancer resistance protein (BCRP), to exit the BBB cells. The addition of eflornithine caused no change in the accumulation of nifurtimox, nor did the addition of clinically relevant doses of the other anti-HAT drugs suramin, nifurtimox or melarsoprol, but a significant increase was observed with the addition of pentamidine. The results provide evidence that anti-HAT drugs are interacting with membrane transporters at the human BBB and suggest that combination with known transport inhibitors could potentially improve their efficacy. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chandan Kanta Das

    2018-03-01

    Full Text Available Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC, and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6 of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549rDOX20 and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468r5-FU2000 cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549rDOX20 and MDA-MB-468r5-FU2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer.

  13. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells.

    Science.gov (United States)

    Das, Chandan Kanta; Linder, Benedikt; Bonn, Florian; Rothweiler, Florian; Dikic, Ivan; Michaelis, Martin; Cinatl, Jindrich; Mandal, Mahitosh; Kögel, Donat

    2018-03-01

    Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549 r DOX 20 ) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468 r 5-FU 2000 ) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549 r DOX 20 and MDA-MB-468 r 5-FU 2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways

    Directory of Open Access Journals (Sweden)

    Yang XL

    2014-06-01

    Full Text Available Xiao Li Yang, Feng Juan Lin, Ya Jie Guo, Zhi Min Shao, Zhou Luo Ou Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Cancer Hospital, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China Abstract: Chemoresistance is a major cause of cancer treatment failure and leads to a reduction in the survival rate of cancer patients. Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR and mitogen-activated protein kinase (MAPK pathways are aberrantly activated in many malignant tumors, including breast cancer, which may indicate an association with breast cancer chemoresistance. In this study, we generated a chemoresistant human breast cancer cell line, MDA-MB-231/gemcitabine (simplified hereafter as “231/Gem”, from MDA-MB-231 human breast cancer cells. Flow cytometry studies revealed that with the same treatment concentration of gemcitabine, 231/Gem cells displayed more robust resistance to gemcitabine, which was reflected by fewer apoptotic cells and enhanced percentage of S-phase cells. Through the use of inverted microscopy, Cell Counting Kit-8, and Transwell assays, we found that compared with parental 231 cells, 231/Gem cells displayed more morphologic projections, enhanced cell proliferative ability, and improved cell migration and invasion. Mechanistic studies revealed that the PI3K/AKT/mTOR and mitogen-activated protein kinase kinase (MEK/MAPK signaling pathways were activated through elevated expression of phosphorylated (p-extracellular signal-regulated kinase (ERK, p-AKT, mTOR, p-mTOR, p-P70S6K, and reduced expression of p-P38 and LC3-II (the marker of autophagy in 231/Gem in comparison to control cells. However, there was no change in the expression of Cyclin D1 and p-adenosine monophosphate-activated protein kinase (AMPK. In culture, inhibitors of PI3K/AKT and mTOR, but not of MEK/MAPK, could reverse the enhanced proliferative

  15. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Jin [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of); Kim, Gwangil [Department of Pathology, CHA Bundang Medical Center, CHA University, Seoul (Korea, Republic of); Park, Kyung-Soon, E-mail: kspark@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of)

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.

  16. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Ahn, Hee-Jin; Kim, Gwangil; Park, Kyung-Soon

    2013-01-01

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway

  17. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival

    International Nuclear Information System (INIS)

    Haaf, Anette ten; Bektas, Nuran; Serenyi, Sonja von; Losen, Inge; Arweiler, Elfriede Christel; Hartmann, Arndt; Knüchel, Ruth; Dahl, Edgar

    2009-01-01

    The transcription factor GLI1, a member of the GLI subfamily of Krüppel-like zinc finger proteins is involved in signal transduction within the hedgehog pathway. Aberrant hedgehog signalling has been implicated in the development of different human tumour entities such as colon and lung cancer and increased GLI1 expression has been found in these tumour entities as well. In this study we questioned whether GLI1 expression might also be important in human breast cancer development. Furthermore we correlated GLI1 expression with histopathological and clinical data to evaluate whether GLI1 could represent a new prognostic marker in breast cancer treatment. Applying semiquantitative realtime PCR analysis and immunohistochemistry (IHC) GLI1 expression was analysed in human invasive breast carcinomas (n = 229) in comparison to normal human breast tissues (n = 58). GLI1 mRNA expression was furthermore analysed in a set of normal (n = 3) and tumourous breast cell lines (n = 8). IHC data were statistically interpreted using SPSS version 14.0. Initial analysis of GLI1 mRNA expression in a small cohort of (n = 5) human matched normal and tumourous breast tissues showed first tendency towards GLI1 overexpression in human breast cancers. However only a small sample number was included into these analyses and values for GLI1 overexpression were statistically not significant (P = 0.251, two-tailed Mann-Whitney U-test). On protein level, nuclear GLI1 expression in breast cancer cells was clearly more abundant than in normal breast epithelial cells (P = 0.008, two-tailed Mann-Whitney U-test) and increased expression of GLI1 protein in breast tumours significantly correlated with unfavourable overall survival (P = 0.019), but also with higher tumour stage (P < 0.001) and an increased number of tumour-positive axillar lymph nodes (P = 0.027). Interestingly, a highly significant correlation was found between GLI1 expression and the expression of SHH, a central upstream molecule of

  18. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial.

    Science.gov (United States)

    Courneya, Kerry S; Segal, Roanne J; Mackey, John R; Gelmon, Karen; Reid, Robert D; Friedenreich, Christine M; Ladha, Aliya B; Proulx, Caroline; Vallance, Jeffrey K H; Lane, Kirstin; Yasui, Yutaka; McKenzie, Donald C

    2007-10-01

    Breast cancer chemotherapy may cause unfavorable changes in physical functioning, body composition, psychosocial functioning, and quality of life (QOL). We evaluated the relative merits of aerobic and resistance exercise in blunting these effects. We conducted a multicenter randomized controlled trial in Canada between 2003 and 2005 that randomly assigned 242 breast cancer patients initiating adjuvant chemotherapy to usual care (n = 82), supervised resistance exercise (n = 82), or supervised aerobic exercise (n = 78) for the duration of their chemotherapy (median, 17 weeks; 95% CI, 9 to 24 weeks). Our primary end point was cancer-specific QOL assessed by the Functional Assessment of Cancer Therapy-Anemia scale. Secondary end points were fatigue, psychosocial functioning, physical fitness, body composition, chemotherapy completion rate, and lymphedema. The follow-up assessment rate for our primary end point was 92.1%, and adherence to the supervised exercise was 70.2%. Unadjusted and adjusted mixed-model analyses indicated that aerobic exercise was superior to usual care for improving self-esteem (P = .015), aerobic fitness (P = .006), and percent body fat (adjusted P = .076). Resistance exercise was superior to usual care for improving self-esteem (P = .018), muscular strength (P exercise groups but did not reach statistical significance. Exercise did not cause lymphedema or adverse events. Neither aerobic nor resistance exercise significantly improved cancer-specific QOL in breast cancer patients receiving chemotherapy, but they did improve self-esteem, physical fitness, body composition, and chemotherapy completion rate without causing lymphedema or significant adverse events.

  19. An early history of human breast cancer: West meets East.

    Science.gov (United States)

    Yan, Shou-He

    2013-09-01

    Cancer has been increasingly recognized as a global issue. This is especially true in countries like China, where cancer incidence has increased likely because of changes in environment and lifestyle. However, cancer is not a modern disease; early cases have been recorded in ancient medical books in the West and in China. Here, we provide a brief history of cancer, focusing on cancer of the breast, and review the etymology of ai, the Chinese character for cancer. Notable findings from both Western and Chinese traditional medicine are presented to give an overview of the most important, early contributors to our evolving understanding of human breast cancer. We also discuss the earliest historical documents to record patients with breast cancer.

  20. Ceramide species are elevated in human breast cancer and are associated with less aggressiveness

    Science.gov (United States)

    Moro, Kazuki; Kawaguchi, Tsutomu; Tsuchida, Junko; Gabriel, Emmanuel; Qi, Qianya; Yan, Li; Wakai, Toshifumi; Takabe, Kazuaki; Nagahashi, Masayuki

    2018-01-01

    Sphingolipids have emerged as key regulatory molecules in cancer cell survival and death. Although important roles of sphingolipids in breast cancer progression have been reported in experimental models, their roles in human patients are yet to be revealed. The aim of this study was to investigate the ceramide levels and its biosynthesis pathways in human breast cancer patients. Breast cancer, peri-tumor and normal breast tissue samples were collected from surgical specimens from a series of 44 patients with breast cancer. The amount of sphingolipid metabolites in the tissue were determined by mass spectrometry. The Cancer Genome Atlas was used to analyze gene expression related to the sphingolipid metabolism. Ceramide levels were higher in breast cancer tissue compared to both normal and peri-tumor breast tissue. Substrates and enzymes that generate ceramide were significantly increased in all three ceramide biosynthesis pathways in cancer. Further, higher levels of ceramide in breast cancer were associated with less aggressive cancer biology presented by Ki-67 index and nuclear grade of the cancer. Interestingly, patients with higher gene expressions of enzymes in the three major ceramide synthesis pathways showed significantly worse prognosis. This is the first study to reveal the clinical relevance of ceramide metabolism in breast cancer patients. We demonstrated that ceramide levels in breast cancer tissue were significantly higher than those in normal tissue, with activation of the three ceramide biosynthesis pathways. We also identified that ceramide levels have a significant association with aggressive phenotype and its enzymes have prognostic impact on breast cancer patients. PMID:29731990

  1. Organochlorine Pesticides And Pcbs In Human Breast Milk ...

    African Journals Online (AJOL)

    One hundred and Fifty (150) samples of human breast milk (colostrums) collected from donors patronizing a postnatal center in Nigeria were analyzed for the levels of lindane, total DDT and total PCBs residues. Donors were stratified with respect to factors that may affect accumulation of these compounds such as age, ...

  2. Practical consensus recommendations on management of triple-negative metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    R Rangarao

    2018-01-01

    Full Text Available Patients with breast cancer along with metastatic estrogen and progesterone receptor (ER/PR- and human epidermal growth factor receptor 2 (HER2-negative tumors are referred to as having metastatic triple-negative breast cancer (mTNBC disease. Resistance to current standard therapies such as anthracyclines or taxanes limits the available options for previously treated patients with metastatic TNBC to a small number of non-cross-resistant regimens, and there is currently no preferred standard chemotherapy. Clinical experience suggests that many women with triple-negative metastatic breast cancer (MBC relapse quickly. Expert oncologist discussed about new chemotherapeutic strategies and agents used in treatment of mTNBC and the expert group used data from published literature, practical experience and opinion of a large group of academic oncologists to arrive at this practical consensus recommendations for the benefit of community oncologists.

  3. An integrative analysis of cellular contexts, miRNAs and mRNAs reveals network clusters associated with antiestrogen-resistant breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam Seungyoon

    2012-12-01

    Full Text Available Abstract Background A major goal of the field of systems biology is to translate genome-wide profiling data (e.g., mRNAs, miRNAs into interpretable functional networks. However, employing a systems biology approach to better understand the complexities underlying drug resistance phenotypes in cancer continues to represent a significant challenge to the field. Previously, we derived two drug-resistant breast cancer sublines (tamoxifen- and fulvestrant-resistant cell lines from the MCF7 breast cancer cell line and performed genome-wide mRNA and microRNA profiling to identify differential molecular pathways underlying acquired resistance to these important antiestrogens. In the current study, to further define molecular characteristics of acquired antiestrogen resistance we constructed an “integrative network”. We combined joint miRNA-mRNA expression profiles, cancer contexts, miRNA-target mRNA relationships, and miRNA upstream regulators. In particular, to reduce the probability of false positive connections in the network, experimentally validated, rather than prediction-oriented, databases were utilized to obtain connectivity. Also, to improve biological interpretation, cancer contexts were incorporated into the network connectivity. Results Based on the integrative network, we extracted “substructures” (network clusters representing the drug resistant states (tamoxifen- or fulvestrant-resistance cells compared to drug sensitive state (parental MCF7 cells. We identified un-described network clusters that contribute to antiestrogen resistance consisting of miR-146a, -27a, -145, -21, -155, -15a, -125b, and let-7s, in addition to the previously described miR-221/222. Conclusions By integrating miRNA-related network, gene/miRNA expression and text-mining, the current study provides a computational-based systems biology approach for further investigating the molecular mechanism underlying antiestrogen resistance in breast cancer cells. In

  4. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Sung Kook [Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of); Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Chung, Sooyoung [Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705 (Korea, Republic of); Kim, Hee-Dae [Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Lee, Ju Hyung [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Jang, Jaebong [College of Pharmacy, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Jeongah; Kim, Doyeon [Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of); Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Son, Gi Hoon [Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705 (Korea, Republic of); Oh, Young J. [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Suh, Young-Ger [College of Pharmacy, Seoul National University, Seoul, 151-742 (Korea, Republic of); Lee, Cheol Soon [Gachon Clinical Trials Center, Gachon University, Incheon, 417-842 (Korea, Republic of); and others

    2015-11-13

    Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer. - Highlights: • Cryptochrome inhibitor (KS15) has anti-tumor activity to human breast cancer cells. • KS15 induces differential changes in cell cycle regulators and pro-apoptotic genes. • KS15 inhibits MCF-7 cell growth and enhances susceptibility to anti-tumor drugs.

  5. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Chun, Sung Kook; Chung, Sooyoung; Kim, Hee-Dae; Lee, Ju Hyung; Jang, Jaebong; Kim, Jeongah; Kim, Doyeon; Son, Gi Hoon; Oh, Young J.; Suh, Young-Ger; Lee, Cheol Soon

    2015-01-01

    Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer. - Highlights: • Cryptochrome inhibitor (KS15) has anti-tumor activity to human breast cancer cells. • KS15 induces differential changes in cell cycle regulators and pro-apoptotic genes. • KS15 inhibits MCF-7 cell growth and enhances susceptibility to anti-tumor drugs.

  6. Energy intake from human milk covers the requirement of 6-month-old Senegalese exclusively breast-fed infants

    International Nuclear Information System (INIS)

    Agne-Djigo, Anta; Kwadjode, Komlan M.; Idohou-Dossou, Nicole; Diouf, Adama; Guiro, Amadou T.; Wade, Salimata

    2013-01-01

    Exclusive breast-feeding until 6 months is advised by the WHO as the best practice to feed infants. Yet, some studies have suggested a gap between energy requirements and the energy provided by human milk for many infants at 6 months. In order to assess the adequacy of WHO recommendations in 6-month-old Senegalese lactating infants, a comprehensive study was designed to measure human milk intake by the dose-to-the mother 2H2O turnover method. Infants energy intakes were calculated using daily breast milk intake and the energy content of milk was estimated on the basis of creamatocrit. Of the fifty-nine mother-infant pairs enrolled, fifteen infants were exclusively breast-fed (Ex) while forty-four were partially breast-fed Infants breast milk intake was significantly higher in the Ex group (993 (SD 135)g/d, n 15) compared with the Part group (828 (SD 222)g/d, n 44, P= 0.009). Breast milk energy content as well as infants growth was comparable in both groups. However, infants' energy intake from human milk was significantly higher (364 (SD 50)kJ/kg per d (2586 (SD 448)kJ/d)) in the Ex group than in the Part group (289 (SD 66)kJ/kg per d (2150 (SD 552)kJ/d), P<0.01). Compared with WHO recommendations, the results demonstrate that energy intake from breast milk was low in partially breast-fed infants while exclusively breast-fed 6-month-old Senegalese infants received adequate energy from human milk alone, the most complete food for infants. Therefore, advocacy of exclusive breast-feeding until 6 months should be strengthened.

  7. Breast Cancer Resistance to Cyclophosphamide and Other Oxazaphosphorines.

    Science.gov (United States)

    1997-10-01

    human breast adenocarcinoma MCF-7/0 cells. d-Limonene, a monoterpene abundantly present in citrus fruits and various other foods common to most diets...and ARE-B. e.g., catechol, inducers, Figure 12 and Table 3, vide supra. Given the foregoing, the expectation was that the monoterpenes would induce the...less effectively than ALDH-1 (data not shown). r I r I I (I) o 300 7 I~Cl) S20 E -- 0 1 O 25 cc 1 2 3 1 2 3 Monoterpene , log iM Monoterpene , log pM

  8. Evodiamine synergizes with doxorubicin in the treatment of chemoresistant human breast cancer without inhibiting P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Shengpeng Wang

    Full Text Available Drug resistance is one of the main hurdles for the successful treatment of breast cancer. The synchronous targeting of apoptosis resistance and survival signal transduction pathways may be a promising approach to overcome drug resistance. In this study, we determined that evodiamine (EVO, a major constituent of the Chinese herbal medicine Evodiae Fructus, could induce apoptosis of doxorubicin (DOX-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells in a caspase-dependent manner, as confirmed by significant increases of cleaved poly(ADP-ribose polymerase (PARP, caspase-7/9, and caspase activities. Notably, the reversed phenomenon of apoptosis resistance by EVO might be attributed to its ability to inhibit the Ras/MEK/ERK pathway and the expression of inhibitors of apoptosis (IAPs. Furthermore, our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp. Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer.

  9. MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial-mesenchymal transition, decreased ER alpha expression and AKT activation

    NARCIS (Netherlands)

    Liang, Yuan-Ke; Zeng, De; Xiao, Ying-Sheng; Wu, Yang; Ouyang, Yan-Xiu; Chen, Min; Li, Yao-Chen; Lin, Hao-Yu; Wei, Xiao-Long; Zhang, Yong-Qu; Kruyt, Frank A. E.; Zhang, Guo-Jun

    2017-01-01

    Tamoxifen resistance presents a prominent clinical challenge in endocrine therapy for hormone sensitive breast cancer. However, the underlying mechanisms that contribute to tamoxifen resistance are not fully understood. In this study, we established a tamoxifen resistant MCF-7 cell line

  10. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

    Science.gov (United States)

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A.; Schweiger, Martin; Arridge, Simon R.; Schnall, Mitchell D.; Yodh, Arjun G.

    2007-05-01

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

  11. Potential Angiogenic Role of Platelet-Activating Factor in Human Breast Cancer

    Science.gov (United States)

    Montrucchio, Giuseppe; Sapino, Anna; Bussolati, Benedetta; Ghisolfi, Gianpiero; Rizea-Savu, Simona; Silvestro, Luigi; Lupia, Enrico; Camussi, Giovanni

    1998-01-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34- and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested. PMID:9811351

  12. The sensitivity of the human breast to cancer induction by ionizing radiation

    International Nuclear Information System (INIS)

    Mole, R.H.

    1978-01-01

    Available evidence for the induction of cancer in the human breast by small doses of radiation is reviewed. A comparison is made of risk estimates for the frequency of breast cancer in excess of controls, per rad of ionizing radiation, resulting from multiple fluoroscopy, radiotherapy of non-malignant diseases of the breast, or the exposure of Japanese bomb survivors. The significance of the age at exposure is discussed, and consideration is given to the application of the evidence to practical problems in radiography, radiotherapy, screening by mammography, and radiological protection for occupational exposure. (U.K.)

  13. Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties

    DEFF Research Database (Denmark)

    Lin, Xue; Li, Jian; Yin, Guangliang

    2013-01-01

    Development of resistance to tamoxifen is an important clinical issue in the treatment of breast cancer. Tamoxifen resistance may be the result of acquisition of epigenetic regulation within breast cancer cells, such as DNA methylation, resulting in changed mRNA expression of genes pivotal for es...

  14. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    Science.gov (United States)

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.

  15. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  16. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    International Nuclear Information System (INIS)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-01-01

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics

  17. Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer.

    Directory of Open Access Journals (Sweden)

    Praveenkumar K Shetty

    Full Text Available Alternative survival pathways are commonly seen to be upregulated upon inhibition of receptor tyrosine kinases (RTK, including Her-2. It is established that treatment with Herceptin leads to selective overexpression and activation of epidermal growth factor receptor (EGFR and Src which further contributes to oncogenesis in Herceptin resistant and triple negative breast cancer (TNBC patients. Here, we show a co-regulated upregulation in the expression of Annexin A2 (AnxA2, a known substrate of Src and one of the regulators of EGFR receptor endocytosis, in Herceptin resistant and Her-2 negative breast cancer. Immunohistochemical expression analysis revealed a reciprocal regulation between Her-2 and AnxA2 in breast cancer clinical samples as well as in cell lines as confirmed by protein and RNA analysis. The siRNA and Herceptin mediated downregulation/inhibition of Her-2 in Her-2 amplified cells induced AnxA2 expression and membrane translocation. In this study we report a possible involvement of AnxA2 in maintaining constitutively activated EGFR downstream signaling intermediates and hence in cell proliferation, migration and viability. This effect was consistent in Herceptin resistant JIMT-1 cells as well as in Her-2 negative breast cancer. The siRNA mediated AnxA2 downregulation leads to increased apoptosis, decreased cell viability and migration. Our studies further indicate the role of AnxA2 in EGFR-Src membrane bound signaling complex and ligand induced activation of downstream signaling pathways. Targeting this AnxA2 dependent positive regulation of EGFR signaling cascade may be of therapeutic value in Her-2 negative breast cancer.

  18. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  19. Breast Cancer Mortality In Brazil: Correlation With Human Development Index

    Directory of Open Access Journals (Sweden)

    Mara Rejane Barroso Barcelos

    2017-01-01

    Full Text Available Background: Mortality from breast cancer decreased in high-income countries, while countries with middle and low incomes as Brazil still has upward trend. However, large geographical variations among the federal units are observed in the country. The aim of the study was to evaluate the trend of specific mortality from breast cancer in women over 20 years old years among different states of Brazil from 1996 to 2012.  Methods and Findings: Ecological study, using linear regression model for temporal analysis of specific mortality coefficient from malignant neoplasm of breast. We also checked the degree of its correlation with the HDI for the states of Brazil during the stated period. There was an increase in the specific mortality rate for malignant neoplasm of the breast in order of 33%, with range from 23.2 to 30.8 / 100,000 inhabitants. The states with the highest human development HDI in 2010, showed the largest specific mortality rates of breast cancer. Conclusion: Taking the trends of mortality from cancer an important role, this study confirms the need for improvements in mammography coverage, following radiological lesions suspected and access to appropriate therapy.

  20. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    Science.gov (United States)

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  1. Lapatinib Resistance in Breast Cancer Cells Is Accompanied by Phosphorylation-Mediated Reprogramming of Glycolysis.

    Science.gov (United States)

    Ruprecht, Benjamin; Zaal, Esther A; Zecha, Jana; Wu, Wei; Berkers, Celia R; Kuster, Bernhard; Lemeer, Simone

    2017-04-15

    HER2/ERBB2-overexpressing breast cancers targeted effectively by the small-molecule kinase inhibitor lapatinib frequently acquire resistance to this drug. In this study, we employed explorative mass spectrometry to profile proteome, kinome, and phosphoproteome changes in an established model of lapatinib resistance to systematically investigate initial inhibitor response and subsequent reprogramming in resistance. The resulting dataset, which collectively contains quantitative data for >7,800 proteins, >300 protein kinases, and >15,000 phosphopeptides, enabled deep insight into signaling recovery and molecular reprogramming upon resistance. Our data-driven approach confirmed previously described mechanisms of resistance (e.g., AXL overexpression and PIK3 reactivation), revealed novel pharmacologically actionable targets, and confirmed the expectation of significant heterogeneity in molecular resistance drivers inducing distinct phenotypic changes. Furthermore, our approach identified an extensive and exclusively phosphorylation-mediated reprogramming of glycolytic activity, supported additionally by widespread changes of corresponding metabolites and an increased sensitivity towards glycolysis inhibition. Collectively, our multi-omic analysis offers deeper perspectives on cancer drug resistance and suggests new biomarkers and treatment options for lapatinib-resistant cancers. Cancer Res; 77(8); 1842-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Inactivation of Zika virus in human breast milk by prolonged storage or pasteurization.

    Science.gov (United States)

    Pfaender, Stephanie; Vielle, Nathalie J; Ebert, Nadine; Steinmann, Eike; Alves, Marco P; Thiel, Volker

    2017-01-15

    Zika virus infection during pregnancy poses a serious risk for pregnant women as it can cause severe birth defects. Even though the virus is mainly transmitted via mosquitos, human-to-human transmission has been described. Infectious viral particles have been detected in breast milk of infected women which raised concerns regarding the safety of breastfeeding in areas of Zika virus transmission or in case of a suspected or confirmed Zika virus infection. In this study, we show that Zika virus is effectively inactivated in human breast milk after prolonged storage or upon pasteurization of milk. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. AIB1 is required for the acquisition of epithelial growth factor receptor-mediated tamoxifen resistance in breast cancer cells

    International Nuclear Information System (INIS)

    Zhao Wenhui; Zhang Qingyuan; Kang Xinmei; Jin Shi; Lou Changjie

    2009-01-01

    Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.

  4. A systematic review of dual targeting in HER2-positive breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Tuxen, Malgorzata K; Nielsen, Dorte Lisbet

    2014-01-01

    BACKGROUND: Human epidermal growth factor receptor 2 (HER2) is overexpresed in 15-20% of all breast cancers. Treatment with trastuzumab has led to an improved outcome and prolonged survival of HER2-positive breast cancer patients and today the drug is established as standard of care in both...... the adjuvant and metastatic settings. However, trastuzumab resistance is common and a major focus in the treatment of HER2-positive breast cancer has been developing therapeutic agents to either potentiate the effect of trastuzumab or to target cells which have become resistant to trastuzumab. The present...... of lapatinib, pertuzumab or trastuzumab-DM1 in combination with trastuzumab in the (neo)adjuvant and metastatic settings. Furthermore, combinations of trastuzumab and drugs targeting the downstream pathway are described. CONCLUSION: Dual blockade is likely to represent a substantial advance for patients...

  5. Coffee induces breast cancer resistance protein expression in Caco-2 cells.

    Science.gov (United States)

    Isshiki, Marina; Umezawa, Kazuo; Tamura, Hiroomi

    2011-01-01

    Coffee is a beverage that is consumed world-wide on a daily basis and is known to induce a series of metabolic and pharmacological effects, especially in the digestive tract. However, little is known concerning the effects of coffee on transporters in the gastrointestinal tract. To elucidate the effect of coffee on intestinal transporters, we investigated its effect on expression of the breast cancer resistance protein (BCRP/ABCG2) in a human colorectal cancer cell line, Caco-2. Coffee induced BCRP gene expression in Caco-2 cells in a coffee-dose dependent manner. Coffee treatment of Caco-2 cells also increased the level of BCRP protein, which corresponded to induction of gene expression, and also increased cellular efflux activity, as judged by Hoechst33342 accumulation. None of the major constituents of coffee tested could induce BCRP gene expression. The constituent of coffee that mediated this induction was extractable with ethyl acetate and was produced during the roasting process. Dehydromethylepoxyquinomicin (DHMEQ), an inhibitor of nuclear factor (NF)-κB, inhibited coffee-mediated induction of BCRP gene expression, suggesting involvement of NF-κB in this induction. Our data suggest that daily consumption of coffee might induce BCRP expression in the gastrointestinal tract and may affect the bioavailability of BCRP substrates.

  6. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    International Nuclear Information System (INIS)

    Eigėlienė, Natalija; Härkönen, Pirkko; Erkkola, Risto

    2006-01-01

    Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E 2 or MPA or with E 2 +MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E 2 -treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E 2 +MPA to multilayered but organised epithelium. The proliferative response to E 2 in comparison to control (p < 0.001) was more pronounced than to MPA (p < 0.05) or E 2 +MPA (p < 0.05) at 7 and 14 days for Ki-67 and PCNA. E 2 treatment also decreased the proportion of apoptotic cells after 7 (p < 0.01) and 14 (p < 0.01) days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  7. Elevated osteopontin and thrombospondin expression identifies malignant human breast carcinoma but is not indicative of metastatic status

    International Nuclear Information System (INIS)

    Wang-Rodriguez, Jessica; Urquidi, Virginia; Rivard, Amber; Goodison, Steve

    2003-01-01

    Our previous characterization of a human breast tumor metastasis model identified several candidate metastasis genes. The expression of osteopontin (OPN) correlated with the metastatic phenotype, whereas thrombospondin-1 (TSP-1) and tyrosinase-related protein-1 (TYRP-1) correlated with the nonmetastatic phenotype of independent MDA-MB-435 cell lines implanted orthotopically into athymic mice. The aim of the present study was to examine the cellular distribution of these molecules in human breast tissue and to determine whether the relative expression level of these three genes is associated with human breast tumor metastasis. Sixty-eight fresh, frozen specimens including 31 primary infiltrating ductal carcinomas, 22 nodal metastases, 10 fibroadenomas, and five normal breast tissues were evaluated for OPN expression, TSP-1 expression and TYRP-1 expression. Immunohistochemistry was performed to monitor the cellular distribution and to qualitatively assess expression. Quantitative analysis was achieved by enrichment of breast epithelial cells using laser-capture microdissection and subsequent real-time, quantitative PCR. The epithelial components of the breast tissue were the source of OPN and TSP-1 expression, whereas TYRP-1 was present in both the epithelial and stromal components. Both OPN and TSP-1 expression were significantly higher in malignant epithelial sources over normal and benign epithelial sources, but no difference in expression levels was evident between primary tumors with or without metastases, nor between primary and metastatic carcinomas. Elevated expression of OPN and TSP-1 may play a role in the pathogenesis of breast cancer. The multiplex analysis of these molecules may enhance our ability to diagnose and/or prognosticate human breast malignancy

  8. Radiosensitivity of drug-resistant human tumour xenografts

    International Nuclear Information System (INIS)

    Mattern, J.; Bak, M. Jr.; Volm, M.; Hoever, K.H.

    1989-01-01

    The radiosensitivity of three drug-resistant sublines of a human epidermoid lung carcinoma growing as xenografts in nude mice was investigated. Drug resistance to vincristine, actinomycin D and cisplatin was developed in vivo by repeated drug treatment. It was found that all three drug-resistant tumour lines were not cross-resistant to irradiation. (orig.) [de

  9. Influence resistance on human health

    Science.gov (United States)

    Abdul Harits, M.; Bahtiar, Yusuf; Achdan, M. Syahdani; Sunarno, .

    2010-05-01

    Health is an important part of human life. Every person in this world want healthy body, in other words free of any disease. When seeing the pattern of human life today is high activity, always eat instant foods and lack of exercise makes a very bad human health from year to year. Therefore, there is need for the health revolution that can keep human health in order to remain in the condition is always healthy. Eat healthy foods four plus five perfect diligent exercise is the real solution to maintain health. In addition also advisable to always check each month to the doctor so that our health can be controlled. Most people underestimate it, especially the routine checks once a month to the doctor, therefore I created a simple research that aims to get people to mengonytrol health at any time without having to check into the doctor. By utilizing the resistance in the human body's health so we can be controlled. By using a simple tool to measure human resistance by using the concept of the bridge. Bridge circuit used to convert impedance variations into voltage variations. One advantage of this circuit is the voltage produced can vary around 0. This means strengthening can be used to raise the voltage level so as sensitivity to variations in impedance also increases. Another application is the impedance measurement accuracy. The bridge is the simplest and most widely used is the Wheatstone bridge circuit. This circuit is used for signal conditioning applications where a sensor can change the resistance value when the process variable is changed.

  10. Dissection of a stem cell hierarchy in the human breast

    DEFF Research Database (Denmark)

    Rubner Fridriksdottir, Agla Jael

    and apoptosis during each menstrual cycle. These changes are most prominent during pregnancy, lactation and involution after breast feeding. These highly dynamic changes are thought to rely on the presence of a breast epithelial stem cell population (reviewed in (Fridriksdottir et al. 2005)). Nevertheless......, cellular pathways that contribute to adult human breast gland architecture and cell lineages have not been described. Here, I identify a candidate stem cell niche in ducts, and zones containing progenitor cells in lobules (Villadsen and Fridriksdottir et al. 2007). Putative stem cells residing in ducts......-rich extracellular matrix gel. Staining for the epithelial lineage markers, cytokeratins K14 and K19, further reveals multipotent cells in the stem cell zone and three lineage- restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  11. Monitoring Dynamic Interactions between Breast Cancer Cells and Human Bone Tissue in a Co-Culture Model

    Science.gov (United States)

    Contag, Christopher H.; Lie, Wen-Rong; Bammer, Marie C.; Hardy, Jonathan W.; Schmidt, Tobi L.; Maloney, William J.; King, Bonnie L.

    2015-01-01

    Purpose Bone is a preferential site of breast cancer metastasis and models are needed to study this process at the level of the microenvironment. We have used bioluminescence imaging (BLI) and multiplex biomarker immunoassays to monitor dynamic breast cancer cell behaviors in co-culture with human bone tissue. Procedures Femur tissue fragments harvested from hip replacement surgeries were co-cultured with luciferase-positive MDA-MB-231-fLuc cells. BLI was performed to quantify breast cell division and track migration relative to bone tissue. Breast cell colonization of bone tissues was assessed with immunohistochemistry. Biomarkers in co-culture supernatants were profiled with MILLIPLEX® immunoassays. Results BLI demonstrated increased MDA-MB-231-fLuc proliferation (pbones, and revealed breast cell migration toward bone. Immunohistochemistry illustrated MDA-MB-231-fLuc colonization of bone, and MILLIPLEX® profiles of culture supernatants suggested breast/bone crosstalk. Conclusions Breast cell behaviors that facilitate metastasis occur reproducibly in human bone tissue co-cultures and can be monitored and quantified using BLI and multiplex immunoassays. PMID:24008275

  12. Development of liposomal pemetrexed for enhanced therapy against multidrug resistance mediated by ABCC5 in breast cancer

    Directory of Open Access Journals (Sweden)

    Bai F

    2018-03-01

    Full Text Available Fang Bai,1–3,* You Yin,4,* Ting Chen,1,* Jihui Chen,1 Meixin Ge,2 Yunshu Lu,2 Fangyuan Xie,5 Jian Zhang,1 Kejin Wu,3 Yan Liu1,6 1Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 2Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 3Department of Breast Surgery, Obstetrics and Gynaecology Hospital, Fudan University, Shanghai, 4Department of Neurology, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, 5Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 6Department of Pharmacy, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: Breast cancer is the most common cancer among women. Pemetrexed, a new generation antifolate drug, is one of the primary treatments for breast cancer. However, multidrug resistance (MDR in breast cancer greatly hampers the therapeutic efficacy of chemotherapies such as pemetrexed. Nanomedicine is emerging as a promising alternative technique to overcome cancer MDR. Thus, pemetrexed-loaded d-alpha tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS liposomes (liposomal pemetrexed were developed as a strategy to overcome MDR to pemetrexed in breast cancer. Materials and methods: Liposomal pemetrexed was developed using the calcium acetate gradient method. The cytotoxic effects, apoptosis-inducing activity, in vivo distribution, and antitumor activity of liposomal pemetrexed were investigated. Results: Liposomal pemetrexed was small in size (160.77 nm, with a small polydispersity of <0.1. The encapsulation efficacy of liposomal pemetrexed was 63.5%, which is rather high for water-soluble drugs in liposomes. The IC50 of liposomal pemetrexed following treatment with MDR breast cancer cells (MCF-7 cells overexpressing ABCC5

  13. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: New findings and review of the literature

    International Nuclear Information System (INIS)

    Köhrmann, Andrea; Kammerer, Ulrike; Kapp, Michaela; Dietl, Johannes; Anacker, Jelena

    2009-01-01

    Matrix metalloproteinases (MMPs) are a family of structural and functional related endopeptidases. They play a crucial role in tumor invasion and building of metastatic formations because of their ability to degrade extracellular matrix proteins. Under physiological conditions their activity is precisely regulated in order to prevent tissue disruption. This physiological balance seems to be disrupted in cancer making tumor cells capable of invading the tissue. In breast cancer different expression levels of several MMPs have been found. To fill the gap in our knowledge about MMP expression in breast cancer, we analyzed the expression of all known human MMPs in a panel of twenty-five tissue samples (five normal breast tissues, ten grade 2 (G2) and ten grade 3 (G3) breast cancer tissues). As we found different expression levels for several MMPs in normal breast and breast cancer tissue as well as depending on tumor grade, we additionally analyzed the expression of MMPs in four breast cancer cell lines (MCF-7, MDA-MB-468, BT 20, ZR 75/1) commonly used in research. The results could thus be used as model for further studies on human breast cancer. Expression analysis was performed on mRNA and protein level using semiquantitative RT-PCR, Western blot, immunohistochemistry and immunocytochemistry. In summary, we identified several MMPs (MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28) with a stronger expression in breast cancer tissue compared to normal breast tissue. Of those, expression of MMP-8, -10, -12 and -27 is related to tumor grade since it is higher in analyzed G3 compared to G2 tissue samples. In contrast, MMP-7 and MMP-27 mRNA showed a weaker expression in tumor samples compared to healthy tissue. In addition, we demonstrated that the four breast cancer cell lines examined, are constitutively expressing a wide variety of MMPs. Of those, MDA-MB-468 showed the strongest mRNA and protein expression for most of the MMPs analyzed. MMP-1, -2

  14. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  15. Production and characterisation of monoclonal antibodies against RAI3 and its expression in human breast cancer

    International Nuclear Information System (INIS)

    Jörißen, Hannah; Klockenbring, Torsten; Bektas, Nuran; Dahl, Edgar; Hartmann, Arndt; Haaf, Anette ten; Di Fiore, Stefano; Kiefer, Hans; Thess, Andreas; Barth, Stefan

    2009-01-01

    RAI3 is an orphan G-protein coupled receptor (GPCR) that has been associated with malignancy and may play a role in the proliferation of breast cancer cells. Although its exact function in normal and malignant cells remains unclear and evidence supporting its role in oncogenesis is controversial, its abundant expression on the surface of cancer cells would make it an interesting target for the development of antibody-based therapeutics. To investigate the link with cancer and provide more evidence for its role, we carried out a systematic analysis of RAI3 expression in a large set of human breast cancer specimens. We expressed recombinant human RAI3 in bacteria and reconstituted the purified protein in liposomes to raise monoclonal antibodies using classical hybridoma techniques. The specific binding activity of the antibodies was confirmed by enzyme-linked immunosorbent assay (ELISA), western blot and immunocytochemistry. We carried out a systematic immunohistochemical analysis of RAI3 expression in human invasive breast carcinomas (n = 147) and normal breast tissues (n = 44) using a tissue microarray. In addition, a cDNA dot blot hybridisation assay was used to investigate a set of matched normal and cancerous breast tissue specimens (n = 50) as well as lymph node metastases (n = 3) for RAI3 mRNA expression. The anti-RAI3 monoclonal antibodies bound to recombinant human RAI3 protein with high specificity and affinity, as shown by ELISA, western blot and ICC. The cDNA dot blot and immunohistochemical experiments showed that both RAI3 mRNA and RAI3 protein were abundantly expressed in human breast carcinoma. However, there was no association between RAI3 protein expression and prognosis based on overall and recurrence-free survival. We have generated a novel, highly-specific monoclonal antibody that detects RAI3 in formaldehyde-fixed paraffin-embedded tissue. This is the first study to report a systematic analysis of RAI3 expression in normal and cancerous human

  16. Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts

    Directory of Open Access Journals (Sweden)

    Shunqiang Li

    2013-09-01

    Full Text Available To characterize patient-derived xenografts (PDXs for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation.

  17. A New Human-Derived Acellular Dermal Matrix for Breast Reconstruction Available for the European Market: Preliminary Results.

    Science.gov (United States)

    Folli, Secondo; Curcio, Annalisa; Melandri, Davide; Bondioli, Elena; Rocco, Nicola; Catanuto, Giuseppe; Falcini, Fabio; Purpura, Valeria; Mingozzi, Matteo; Buggi, Federico; Marongiu, Francesco

    2018-04-01

    The introduction of acellular dermal matrices (ADMs) contributed to the growing diffusion of direct-to-implant breast reconstruction (DTI-BR) following mastectomy for breast cancer. According to specific legislations, European specialists could not benefit from the use of human-derived ADMs, even though most evidence in the literature are available for this kind of device, showed optimal outcomes in breast reconstruction. The Skin Bank of the Bufalini Hospital (Cesena, Italy) obtained in 2009 the approval for the production and distribution of a new human cadaver-donor-derived ADM (named with the Italian acronym, MODA, for matrice omologa dermica acellulata) from the Italian National Transplant Center and National Health Institute. We report preliminary results of MODA application in direct-to-implant breast reconstruction following nipple-areola complex (NAC)-sparing mastectomy for breast cancer treatment. We prospectively enrolled all women undergoing NAC-sparing mastectomy for breast cancer and DTI-BR in our breast surgical unit from June 2015 to January 2017. We enrolled a selected population without previous chest wall irradiation, not being heavy tobacco smokers or diabetic, with a BMI MODA in direct-to-implant breast reconstruction following NAC-sparing mastectomy for breast cancer treatment. This is particularly relevant for the European market, where no other human-derived devices are available for breast reconstruction due to regulatory restrictions. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.

    Science.gov (United States)

    Darbre, Philippa D; Bakir, Ayse; Iskakova, Elzira

    2013-11-01

    Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8 μm pores of a membrane using xCELLigence technology. Long-term exposure (37 weeks) to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast. © 2013.

  19. The Role of Osteopontin in the Malignancy of Human Breast Carcinoma

    Science.gov (United States)

    1999-07-01

    1997; Yebra et al., 1996). 1990). Probes for human proteinase and uPAR genes The finding that human breast epithelial cells up- included: MMP-9 (92...680 -Senger DR and Perruzzi CA. (1996). Biochim. Biaphys. 69D.Adta., 1314, 13-24. Yebra M, Parry GCN, Str6mblad S, Mackman N,Shanmugamn V

  20. Benzyl isothiocyanate causes FoxO1-mediated autophagic death in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04 and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy and acidic vesicular organelles (acridine orange staining, cleavage of microtubule-associated protein 1 light chain 3 (LC3, and/or suppression of p62 (p62/SQSTM1 or sequestosome 1 expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1 in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy.

  1. A kinase inhibitor screen identifies Mcl-1 and Aurora kinase A as novel treatment targets in antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Thrane, S; Pedersen, A M; Thomsen, M B H

    2015-01-01

    Antiestrogen resistance is a major problem in breast cancer treatment. Therefore, the search for new therapeutic targets and biomarkers for antiestrogen resistance is crucial. In this study, we performed a kinase inhibitor screen on antiestrogen responsive MCF-7 cells and a panel of MCF-7-derived...

  2. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions

    NARCIS (Netherlands)

    Breedveld, Pauline; Zelcer, Noam; Pluim, Dick; Sönmezer, Ozgür; Tibben, Matthijs M.; Beijnen, Jos H.; Schinkel, Alfred H.; van Tellingen, Olaf; Borst, Piet; Schellens, Jan H. M.

    2004-01-01

    The antifolate drug methotrexate (MTX) is transported by breast cancer resistance protein (BCRP; ABCG2) and multidrug resistance-associated protein1-4 (MRP1-4; ABCC1-4). In cancer patients, coadministration of benzimidazoles and MTX can result in profound MTX-induced toxicity coinciding with an

  3. Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a german breast group 26/breast international group 03-05 study

    DEFF Research Database (Denmark)

    von Minckwitz, Gunter; du Bois, Andreas; Schmidt, Marcus

    2009-01-01

    PURPOSE: Trastuzumab shows clinical activity in human epidermal growth factor receptor 2 (HER-2)-positive early and advanced breast cancer. In the German Breast Group 26/Breast International Group 03-05 trial, we investigated if trastuzumab treatment should be continued beyond progression. METHODS......: Patients with HER-2-positive breast cancer that progresses during treatment with trastuzumab were randomly assigned to receive capecitabine (2,500 mg/m(2) body-surface area on days 1 through 14 [1,250 mg/m(2) semi-daily]) alone or with continuation of trastuzumab (6 mg/kg body weight) in 3-week cycles....... The primary end point was time to progression. RESULTS: We randomly assigned 78 patients to capecitabine and 78 patients to capecitabine plus trastuzumab. Sixty-five events and 38 deaths in the capecitabine group and 62 events and 33 deaths in the capecitabine-plus-trastuzumab group occurred during 15...

  4. Effects of vitamin D-binding protein-derived macrophage-activating factor on human breast cancer cells.

    Science.gov (United States)

    Pacini, Stefania; Punzi, Tiziana; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco

    2012-01-01

    Searching for additional therapeutic tools to fight breast cancer, we investigated the effects of vitamin D-binding protein-derived macrophage activating factor (DBP-MAF, also known as GcMAF) on a human breast cancer cell line (MCF-7). The effects of DBP-MAF on proliferation, morphology, vimentin expression and angiogenesis were studied by cell proliferation assay, phase-contrast microscopy, immunohistochemistry and western blotting, and chorioallantoic membrane (CAM) assay. DBP-MAF inhibited human breast cancer cell proliferation and cancer cell-stimulated angiogenesis. MCF-7 cells treated with DBP-MAF predominantly grew in monolayer and appeared to be well adherent to each other and to the well surface. Exposure to DBP-MAF significantly reduced vimentin expression, indicating a reversal of the epithelial/mesenchymal transition, a hallmark of human breast cancer progression. These results are consistent with the hypothesis that the known anticancer efficacy of DBP-MAF can be ascribed to different biological properties of the molecule that include inhibition of tumour-induced angiogenesis and direct inhibition of cancer cell proliferation, migration and metastatic potential.

  5. Expression of oncogen c-erbB-2 (neu/HER-2) in human breast cancer

    International Nuclear Information System (INIS)

    Michelin, Severino C.; Mayo, Jose

    2000-01-01

    Breast cancer continues to be one of the leading causes of death from cancer among women and represents the most serious challenge to therapeutic control. Amplification and overexpression of the c-erbB-2 proto-oncogene occurs in as many as 30 % of all breast cancers and has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. This gene know as neu, HER-2 or c-erbB-2 in among those most frequently altered in human cancer. It was first identified as a transforming gene activated in chemically induced rat neuroectodermal tumors. Early critical studies linked changes in erbB-2 expression and gene copy number to several human cancer, notably breast, ovarian and gastric cancer. Owing to its accessible location at the cell surface, erbB-2 is now under intensive scrutiny as a therapeutic target. In this review we will summarize the involvement of the c-erbB-2 gene in tumorigenesis. (author)

  6. The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression.

    Science.gov (United States)

    Dupouy, Sandra; Viardot-Foucault, Véronique; Alifano, Marco; Souazé, Frédérique; Plu-Bureau, Geneviève; Chaouat, Marc; Lavaur, Anne; Hugol, Danielle; Gespach, Christian; Gompel, Anne; Forgez, Patricia

    2009-01-01

    The neurotensin (NTS) and its specific high affinity G protein coupled receptor, the NT1 receptor (NTSR1), are considered to be a good candidate for one of the factors implicated in neoplastic progression. In breast cancer cells, functionally expressed NT1 receptor coordinates a series of transforming functions including cellular migration and invasion. we investigated the expression of NTS and NTSR1 in normal human breast tissue and in invasive ductal breast carcinomas (IDCs) by immunohistochemistry and RT-PCR. NTS is expressed and up-regulated by estrogen in normal epithelial breast cells. NTS is also found expressed in the ductal and invasive components of IDCs. The high expression of NTSR1 is associated with the SBR grade, the size of the tumor, and the number of metastatic lymph nodes. Furthermore, the NTSR1 high expression is an independent factor of prognosis associated with the death of patients. these data support the activation of neurotensinergic deleterious pathways in breast cancer progression.

  7. β-Elemene Reverses Chemoresistance of Breast Cancer Cells by Reducing Resistance Transmission via Exosomes

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2015-07-01

    Full Text Available Background: Currently, exosomes that act as mediators of intercellular communication are being researched extensively. Our previous studies confirmed that these exosomes contain microRNAs (miRNAs that could alter chemo-susceptibility, which is partly attributed to the successful intercellular transfer of multidrug resistance (MDR-specific miRNAs. We also confirmed that β-elemene could influence MDR-related miRNA expression and regulate the expression of the target genes PTEN and Pgp, which may lead to the reversal of the chemoresistant breast cancer (BCA cells. We are the first to report these findings, and we propose the following logical hypothesis: β-elemene can mediate MDR-related miRNA expression in cells, thereby affecting the exosome contents, reducing chemoresistance transmission via exosomes, and reversing the drug resistance of breast cancer cells. Methods: MTT-cytotoxic, miRNA microarray, real-time quantitative PCR, Dual Luciferase Activity Assay, and Western blot analysis were performed to investigate the impact of β-elemene on the expression of chemoresistance specific miRNA and PTEN as well as Pgp in chemoresistant BCA exosomes. Results: Drug resistance can be reversed by β-elemene related to exosomes. There were 104 differentially expressed miRNAs in the exosomes of two chemoresistant BCA cells: adriacin (Adr - resistant MCF-7 cells (MCF-7/Adr and docetaxel (Doc - resistant MCF-7 cells (MCF-7/Doc that underwent treatment. Of these, 31 miRNAs were correlated with the constant changes in the MDR. The expression of miR-34a and miR-452 can lead to changes in the characteristics of two chemoresistant BCA exosomes: MCF-7/Adr exosomes (A/exo and MCF-7/Doc exosomes (D/exo. The PTEN expression affected by β-elemene was significantly increased, and the Pgp expression affected by β-elemene was significantly decreased in both cells and exosomes. β-elemene induced a significant increase in the apoptosis rate in both MCF-7/Doc and MCF-7

  8. Breast cancers radiation-resistance: key role of the cancer stem cells marker CD24

    International Nuclear Information System (INIS)

    Bensimon, Julie

    2013-01-01

    This work focuses on the characterization of radiation-resistant breast cancer cells, responsible for relapse after radiotherapy. The 'Cancer Stem Cells' (CSC) theory describes a radiation-resistant cellular sub-population, with enhanced capacity to induce tumors and proliferate. In this work, we show that only the CSC marker CD24-/low defines a radiation resistant cell population, able to transmit the 'memory' of irradiation, expressed as long term genomic instability in the progeny of irradiated cells. We show that CD24 is not only a marker, but is an actor of radiation-response. So, CD24 expression controls cell proliferation in vitro and in vivo, and ROS level before and after irradiation. As a result, CD24-/low cells display enhanced radiation-resistance and genomic stability. For the first time, our results attribute a role to CD24-/low CSCs in the transmission of genomic instability. Moreover, by providing informations on tumor intrinsic radiation-sensitivity, CD24- marker could help to design new radiotherapy protocols. (author)

  9. Involvement of CUL4A in Regulation of Multidrug Resistance to P-gp Substrate Drugs in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yunshan Wang

    2013-12-01

    Full Text Available CUL4A encodes a core component of a cullin-based E3 ubiquitin ligase complex that regulates many critical processes such as cell cycle progression, DNA replication, DNA repair and chromatin remodeling by targeting a variety of proteins for ubiquitination and degradation. In the research described in this report we aimed to clarify whether CUL4A participates in multiple drug resistance (MDR in breast cancer cells. We first transfected vectors carrying CUL4A and specific shCUL4A into breast cancer cells and corresponding Adr cells respectively. Using reverse transcription polymerase chain reactions and western blots, we found that overexpression of CUL4A in MCF7 and MDA-MB-468 cells up-regulated MDR1/P-gp expression on both the transcription and protein levels, which conferred multidrug resistance to P-gp substrate drugs, as determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. On the other hand, silencing CUL4A in MCF7/Adr and MDA-MB-468/Adr cells led to the opposite effect. Moreover, ERK1/2 in CUL4A-overexpressing cells was highly activated and after treatment with PD98059, an ERK1/2-specific inhibitor, CUL4A-induced expression of MDR1/P-gp was decreased significantly. Lastly, immunohistochemistry in breast cancer tissues showed that P-gp expression had a positive correlation with the expression of CUL4A and ERK1/2. Thus, these results implied that CUL4A and ERK1/2 participated in multi-drug resistance in breast cancer through regulation of MDR1/P-gp expression.

  10. Presence of human papilloma virus in a series of breast carcinoma from Argentina.

    Directory of Open Access Journals (Sweden)

    Ana Laura Pereira Suarez

    Full Text Available The etiology and the molecular mechanisms related to breast carcinogenesis remain poorly understood. Some recent reports have examined the role of Human Papillomavirus (HPV in this disease. The purpose of this study was to determine the prevalence of HPV in breast cancer.Sixty one fresh frozen breast cancers samples were analyzed. Samples were tested for HPV by PCR, and products were automatically sequenced. Findings were correlated with clinical and pathological characteristics.The HPV DNA prevalence in the breast cancer samples was 26% (16/61. Clinical parameters were not statistically associated with HPV presence (p>0.05 χ(2 test. Sequence analysis in a subgroup of cases indicates the prevalence of low risk HPV11, followed by high risk HPV16. We found no HPV transcriptional activity.The present study demonstrated for the first time in Argentina the presence of HPV in a proportion of the malignant breast tissues. This finding suggests that HPV may have a biological significance in breast carcinogenesis.

  11. Interaction of CDCP1 with HER2 Enhances HER2-Driven Tumorigenesis and Promotes Trastuzumab Resistance in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Abdullah Alajati

    2015-04-01

    Full Text Available Understanding the molecular pathways that contribute to the aggressive behavior of HER2-positive breast cancers may aid in the development of novel therapeutic interventions. Here, we show that CDCP1 and HER2 are frequently co-overexpressed in metastatic breast tumors and associated with poor patient prognosis. HER2 and CDCP1 co-overexpression leads to increased transformation ability, cell migration, and tumor formation in vivo, and enhanced HER2 activation and downstream signaling in different breast cancer cell lines. Mechanistically, we demonstrate that CDCP1 binds to HER2 through its intracellular domain, thereby increasing HER2 interaction with the non-receptor tyrosine kinase c-SRC (SRC, leading to trastuzumab resistance. Taken together, our findings establish that CDCP1 is a modulator of HER2 signaling and a biomarker for the stratification of breast cancer patients with poor prognosis. Our results also provide a rationale for therapeutic targeting of CDCP1 in HER2-positive breast cancer patients.

  12. Levels of p21WAF1/CIP1 do not affect radiation-induced cell death in human breast epithelial cells

    International Nuclear Information System (INIS)

    Kim, Harold E.; Han, Sue J.; Waid, David; Lee, Yong J.; Kim, Hyeong-Reh Choi

    1997-01-01

    Purpose/Objective: Loss of the wild-type p53 activity and/or overexpression of the proto-oncogene bcl-2 are frequently detected in breast cancer and suggested to be related to resistance to chemotherapy and radiation therapy. The long-term goals of this study are to identify the downstream signaling molecules for anti-proliferative and apoptotic activities of p53 and to investigate the interaction of bcl-2 with p53 in human breast epithelial cells. We previously showed that overexpression of bcl-2 downregulates radiation-induced expression of p21 WAF1/CIP1 , a p53 downstream molecule that functions to inhibit cyclin dependent kinases, and suppresses radiation-induced apoptosis in human breast epithelial cell line (MCF10A). In this study, we investigated the role of p21 WAF1/CIP1 in radiation-induced cell death in MCF10A cells. Materials and Methods: To determine whether downregulation of p21 WAF1/CIP1 is required for anti-apoptotic activity of bcl-2, and to investigate the roles of p21 WAF1/CIP1 in cell death following irradiation, we transfected p21 WAF1/CIP1 expression vector into bcl-2 overexpressing MCF10A cells. The effects of p21 WAF1/CIP1 overexpression on cell growth, radiation-induced apoptosis and clonogenic cell survival were analyzed. Results: Overexpression of p21 WAF1/CIP1 resulted in marked growth inhibition, but no effect on dose-dependent radiation-induced cell lethality as determined by clonogenic survival assay. Radiation-induced apoptosis was not detected in bcl-2 overexpressing MCF10A cells independent of levels of p21 WAF1/CIP1 expression. Conclusion: This study suggests that bcl-2 downregulation of p21 WAF1/CIP1 is independent of anti-apoptotic activity of bcl-2 and that levels of p21 WAF1/CIP1 do not affect radiation-induced cell death in human breast epithelial cells

  13. Bisphenol A activates EGFR and ERK promoting proliferation, tumor spheroid formation and resistance to EGFR pathway inhibition in estrogen receptor negative inflammatory breast cancer cells

    Science.gov (United States)

    Background: Inflammatory breast cancer (IBC) is a distinct and the deadliest breast cancer variant, which shows a rapid rate of progression and acquired therapeutic resistance. Epidemiological studies suggest that chemical exposure in the environment and consumer products can aff...

  14. Association of ABCB1, β tubulin I, and III with multidrug resistance of MCF7/DOC subline from breast cancer cell line MCF7.

    Science.gov (United States)

    Li, Wentao; Zhai, Baoping; Zhi, Hui; Li, Yuhong; Jia, Linjiao; Ding, Chao; Zhang, Bin; You, Wei

    2014-09-01

    Docetaxel is a first-line chemotherapeutic agent for treating advanced breast cancer. The development of chemoresistance or multidrug resistance (MDR), however, results in breast cancer chemotherapy failure. This study aims to explore the molecular mechanisms underlying docetaxel-resistance in treatment of breast cancer. The docetaxel-resistant subline MCF7/DOC, derived from the parental sensitive breast cancer cell line MCF7, was established by intermittent exposure to moderate concentrations of docetaxel, followed by examination of its phenotypes. The MCF7/DOC subline showed cross resistance against paclitaxel, doxorubicin, methotrexate, and 5-Fu. Compared to the parental MCF7, MCF7/DOC cells were enlarged with heterogeneous sizes and a cobblestone and polygonal appearance. They were arrested at G2/M phase and proliferated slowly. The colony formation potential of MCF7/DOC in soft agar was significantly increased. MCF7/DOC cells showed reduced intracellular accumulation and increased efflux of rhodamine 123. The mRNA expression level of adenosine triphosphate binding cassette (ABC) transporter family, i.e., ABCB1, ABCC1, ABCC2, ABCG2, and β tubulin isotypes were characterized by quantitative PCR. High-level expression of ABCB1, βI, and βIII tubulin mRNA in MCF7/DOC was detected. Downregulation of ABCB1, βI, and βIII tubulin mediated by three combined siRNAs resulted in stronger growth inhibition of MCF7/DOC than inhibition of the expression of individual genes. ABCB1, βI, and βIII tubulin might contribute to the MDR of MCF7/DOC and be potential therapeutic targets for overcoming MDR of breast cancer.

  15. Metastasis of breast cancer cells to the bone, lung, and lymph nodes promotes resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Takamitsu [Gunma Prefectural College of Health Sciences, Department of Radiological Technology, School of Radiological Technology, Gunma, Maebashi (Japan); Iwadate, Manabu [Fukushima Medical University, Department of Thyroid and Endocrinology, School of Medicine, Fukushima (Japan); Tachibana, Kazunoshin [Fukushima Medical University, Department of Breast Surgery, School of Medicine, Fukushima (Japan); Waguri, Satoshi [Fukushima Medical University, Department of Anatomy and Histology, School of Medicine, Fukushima (Japan); Takenoshita, Seiichi [Fukushima Medical University, Advanced Clinical Research Center, Fukushima Global Medical Science Center, School of Medicine, Fukushima (Japan); Hamada, Nobuyuki [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo, Komae (Japan)

    2017-10-15

    Metastasis represents the leading cause of breast cancer deaths, necessitating strategies for its treatment. Although radiotherapy is employed for both primary and metastatic breast cancers, the difference in their ionizing radiation response remains incompletely understood. This study is the first to compare the radioresponse of a breast cancer cell line with its metastatic variants and report that such metastatic variants are more radioresistant. A luciferase expressing cell line was established from human basal-like breast adenocarcinoma MDA-MB-231 and underwent in vivo selections, whereby a cycle of inoculations into the left cardiac ventricle or the mammary fat pad of athymic nude mice, isolation of metastases to the bone, lung and lymph nodes visualized with bioluminescence imaging, and expansion of obtained cells was repeated twice or three times. The established metastatic cell lines were assessed for cell proliferation, wound healing, invasion, clonogenic survival, and apoptosis. The established metastatic cell lines possessed an increased proliferative potential in vivo and were more chemotactic, invasive, and resistant to X-ray-induced clonogenic inactivation and apoptosis in vitro. Breast cancer metastasis to the bone, lung, and lymph nodes promotes radioresistance. (orig.) [German] Metastasierung ist die Hauptursache fuer den toedlichen Verlauf von Brustkrebserkrankungen. Darauf muessen spezifische Behandlungsstrategien ausgerichtet werden. Sowohl primaere als auch metastatische Brustkrebsarten koennen mit einer Strahlentherapie behandelt werden, allerdings sind die Unterschiede in der Reaktion auf ionisierende Strahlung bis heute nicht vollstaendig verstanden. In dieser Studie wird zum ersten Mal die Strahlenantwort einer Brustkrebszelllinie mit der ihrer metastatischen Varianten verglichen und die erhoehte Strahlenresistenz der metastatischen Varianten gezeigt. Eine Luciferase-exprimierende Zelllinie wurde aus humanen basaloiden Brustadenokarzinomen

  16. Human Papilloma Virus Identification in Breast Cancer Patients with Previous Cervical Neoplasia.

    Science.gov (United States)

    Lawson, James S; Glenn, Wendy K; Salyakina, Daria; Clay, Rosemary; Delprado, Warick; Cheerala, Bharathi; Tran, Dinh D; Ngan, Christopher C; Miyauchi, Shingo; Karim, Martha; Antonsson, Annika; Whitaker, Noel J

    2015-01-01

    Women with human papilloma virus (HPV)-associated cervical neoplasia have a higher risk of developing breast cancer than the general female population. The purpose of this study was to (i) identify high-risk HPVs in cervical neoplasia and subsequent HPV positive breast cancers which developed in the same patients and (ii) determine if these HPVs were biologically active. A range of polymerase chain reaction and immunohistochemical techniques were used to conduct a retrospective cohort study of cervical precancers and subsequent breast cancers in the same patients. The same high-risk HPV types were identified in both the cervical and breast specimens in 13 (46%) of 28 patients. HPV type 18 was the most prevalent. HPVs appeared to be biologically active as demonstrated by the expression of HPV E7 proteins and the presence of HPV-associated koilocytes. The average age of these patients diagnosed with breast cancer following prior cervical precancer was 51 years, as compared to 60 years for all women with breast cancer (p for difference = 0.001). These findings indicate that high-risk HPVs can be associated with cervical neoplasia and subsequent young age breast cancer. However, these associations are unusual and are a very small proportion of breast cancers. These outcomes confirm and extend the observations of two similar previous studies and offer one explanation for the increased prevalence of serious invasive breast cancer among young women.

  17. Human papilloma virus identification in breast cancer patients with previous cervical neoplasia

    Directory of Open Access Journals (Sweden)

    James Sutherland Lawson

    2016-01-01

    Full Text Available Purpose: Women with human papilloma virus (HPV associated cervical neoplasia have a higher risk of developing breast cancer than the general female population. The purpose of this study was to (i identify high risk for cancer HPVs in cervical neoplasia and subsequent HPV positive breast cancers which developed in the same patients and (ii determine if these HPVs were biologically active.Methods: A range of polymerase chain reaction (PCR and immunohistochemical techniques were used to conduct a retrospective cohort study of cervical precancers and subsequent breast cancers in the same patients. Results: The same high risk HPV types were identified in both the cervical and breast specimens in 13 (46% of 28 patients. HPV type 18 was the most prevalent. HPVs appeared to be biologically active as demonstrated by the expression of HPV E7 proteins and the presence of HPV associated koilocytes. The average age of these patients diagnosed with breast cancer following prior cervical precancer was 51 years, as compared to 60 years for all women with breast cancer (p for difference = 0.001. Conclusions: These findings indicate that high risk HPVs can be associated with cervical neoplasia and subsequent young age breast cancer. However these associations are unusual and are a very small proportion of breast cancers. These outcomes confirm and extend the observations of 2 similar previous studies and offer one explanation for the increased prevalence of serious invasive breast cancer among young women.

  18. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  19. [Vancomycin-resistant enterococci - the nature of resistance and risk of transmission from animals to humans].

    Science.gov (United States)

    Hermanovská, Lýdia; Bardoň, Jan; Čermák, Pavel

    2016-06-01

    Enterococci are part of the normal intestinal flora of humans and animals. Under certain circumstances, they are capable of extraintestinal conversion to opportunistic pathogens. They cause endogenous as well as exogenous community and nosocomial infections. The gastrointestinal tract of mammals provides them with favorable conditions for acquisition and spread of resistance genes, for example to vancomycin (van), from other symbiotic bacteria. Thus, vancomycin-resistant enterococci (VRE) become potential reservoirs and vectors of the van genes. Their occurrence in the population of the Czech Republic was first reported by Kolář et al. in 1997. Some variants of the vanA gene cluster carried on Tn1546 which encode resistance to vancomycin are identical in humans and in animals. It means that animals, especially cattle, poultry and pigs, could be an important reservoir of VRE for humans. Kolář and Bardoň detected VRE in animals in the Czech Republic for the first time in 2000. In Europe, the glycopeptide antibiotic avoparcin, used as a growth stimulator, is responsible for selection of VRE strains in animals. Strains of Enterococcus faecium from animals may offer genes of antimicrobial resistance to other enterococci or they can be directly dangerous to human. This is demonstrated by finding isolates of E. faecalis from human patients and from pigs having very similar profiles of resistance and virulence genes. The goal of the paper was to point out the similarity between isolates of human and animal strains of enterococci resistant to vancomycin, and the possibility of their bilateral transfer between humans and animals.

  20. Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer.

    Science.gov (United States)

    Haricharan, Svasti; Punturi, Nindo; Singh, Purba; Holloway, Kimberly R; Anurag, Meenakshi; Schmelz, Jacob; Schmidt, Cheryl; Lei, Jonathan T; Suman, Vera; Hunt, Kelly; Olson, John A; Hoog, Jeremy; Li, Shunqiang; Huang, Shixia; Edwards, Dean P; Kavuri, Shyam M; Bainbridge, Matthew N; Ma, Cynthia X; Ellis, Matthew J

    2017-10-01

    Significant endocrine therapy-resistant tumor proliferation is present in ≥20% of estrogen receptor-positive (ER + ) primary breast cancers and is associated with disease recurrence and death. Here, we uncover a link between intrinsic endocrine therapy resistance and dysregulation of the MutL mismatch repair (MMR) complex ( MLH1/3 , PMS1/2 ), and demonstrate a direct role for MutL complex loss in resistance to all classes of endocrine therapy. We find that MutL deficiency in ER + breast cancer abrogates CHK2-mediated inhibition of CDK4, a prerequisite for endocrine therapy responsiveness. Consequently, CDK4/6 inhibitors (CDK4/6i) remain effective in MutL-defective ER + breast cancer cells. These observations are supported by data from a clinical trial where a CDK4/6i was found to strongly inhibit aromatase inhibitor-resistant proliferation of MutL-defective tumors. These data suggest that diagnostic markers of MutL deficiency could be used to direct adjuvant CDK4/6i to a population of patients with breast cancer who exhibit marked resistance to the current standard of care. Significance: MutL deficiency in a subset of ER + primary tumors explains why CDK4/6 inhibition is effective against some de novo endocrine therapy-resistant tumors. Therefore, markers of MutL dysregulation could guide CDK4/6 inhibitor use in the adjuvant setting, where the risk benefit ratio for untargeted therapeutic intervention is narrow. Cancer Discov; 7(10); 1168-83. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 1047 . ©2017 American Association for Cancer Research.

  1. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis

    International Nuclear Information System (INIS)

    Serce, Nuran Bektas; Knuechel, Ruth; Beckmann, Matthias W; Fasching, Peter A; Dahl, Edgar; Boesl, Andreas; Klaman, Irina; Serényi, Sonja von; Noetzel, Erik; Press, Michael F; Dimmler, Arno; Hartmann, Arndt; Sehouli, Jalid

    2012-01-01

    Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the

  2. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism

    Science.gov (United States)

    Goodman, C R; Sato, T; Peck, A R; Girondo, M A; Yang, N; Liu, C; Yanac, A F; Kovatich, A J; Hooke, J A; Shriver, C D; Mitchell, E P; Hyslop, T; Rui, H

    2016-01-01

    Therapy resistance remains a major problem in estrogen receptor-α (ERα)-positive breast cancer. A subgroup of ERα-positive breast cancer is characterized by mosaic presence of a minor population of ERα-negative cancer cells expressing the basal cytokeratin-5 (CK5). These CK5-positive cells are therapy resistant and have increased tumor-initiating potential. Although a series of reports document induction of the CK5-positive cells by progestins, it is unknown if other 3-ketosteroids share this ability. We now report that glucocorticoids and mineralocorticoids effectively expand the CK5-positive cell population. CK5-positive cells induced by 3-ketosteroids lacked ERα and progesterone receptors, expressed stem cell marker, CD44, and displayed increased clonogenicity in soft agar and broad drug-resistance in vitro and in vivo. Upregulation of CK5-positive cells by 3-ketosteroids required induction of the transcriptional repressor BCL6 based on suppression of BCL6 by two independent BCL6 small hairpin RNAs or by prolactin. Prolactin also suppressed 3-ketosteroid induction of CK5+ cells in T47D xenografts in vivo. Survival analysis with recursive partitioning in node-negative ERα-positive breast cancer using quantitative CK5 and BCL6 mRNA or protein expression data identified patients at high or low risk for tumor recurrence in two independent patient cohorts. The data provide a mechanism by which common pathophysiological or pharmacologic elevations in glucocorticoids or other 3-ketosteroids may adversely affect patients with mixed ERα+/CK5+ breast cancer. The observations further suggest a cooperative diagnostic utility of CK5 and BCL6 expression levels and justify exploring efficacy of inhibitors of BCL6 and 3-ketosteroid receptors for a subset of ERα-positive breast cancers. PMID:26096934

  3. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  4. Anticancer Effects of Different Seaweeds on Human Colon and Breast Cancers

    Directory of Open Access Journals (Sweden)

    Ghislain Moussavou

    2014-09-01

    Full Text Available Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.

  5. Analysis of CD83 antigen expression in human breast fibroadenoma and adjacent tissue.

    Science.gov (United States)

    Borges, Marcus Nascimento; Facina, Gil; Silva, Ismael Dale Cotrin Guerreiro; Waitzberg, Angela Flávia Logullo; Nazario, Afonso Celso Pinto

    2011-12-01

    Dendritic cell maturation is considered essential for starting an immune response. The CD83 antigen is an important marker of dendritic cell maturation. The objectives here were to analyze CD83 antigen expression in human breast fibroadenoma and breast tissue adjacent to the lesion and to identify clinical factors that might influence this expression. This was a retrospective study at a public university hospital, in which 29 histopathological samples of breast fibroadenoma and adjacent breast tissue, from 28 women of reproductive age, were analyzed. The immunohistochemistry method was used to analyze the cell expression of the antigen. The antigen expression in the cells was evaluated by means of random manual counting using an optical microscope. Positive expression of the CD83 antigen in the epithelial cells of the fibroadenoma (365.52; standard deviation ± 133.13) in relation to the adjacent breast tissue cells (189.59; standard deviation ± 140.75) was statistically larger (P fibroadenoma was positive and greater than in the adjacent breast tissue. Positive expression of the antigen in the adjacent breast tissue was influenced by parity, and was significantly more evident in nulliparous women.

  6. The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Sandra Dupouy

    Full Text Available BACKGROUND: The neurotensin (NTS and its specific high affinity G protein coupled receptor, the NT1 receptor (NTSR1, are considered to be a good candidate for one of the factors implicated in neoplastic progression. In breast cancer cells, functionally expressed NT1 receptor coordinates a series of transforming functions including cellular migration and invasion. METHODS AND RESULTS: we investigated the expression of NTS and NTSR1 in normal human breast tissue and in invasive ductal breast carcinomas (IDCs by immunohistochemistry and RT-PCR. NTS is expressed and up-regulated by estrogen in normal epithelial breast cells. NTS is also found expressed in the ductal and invasive components of IDCs. The high expression of NTSR1 is associated with the SBR grade, the size of the tumor, and the number of metastatic lymph nodes. Furthermore, the NTSR1 high expression is an independent factor of prognosis associated with the death of patients. CONCLUSION: these data support the activation of neurotensinergic deleterious pathways in breast cancer progression.

  7. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Syed M Meeran

    Full Text Available BACKGROUND: Sulforaphane (SFN, an isothiocyanate found in cruciferous vegetables, is a common dietary component that has histone deacetylase inhibition activity and exciting potential in cancer prevention. The mechanisms by which SFN imparts its chemopreventive properties are of considerable interest and little is known of its preventive potential for breast cancer. PRINCIPAL FINDINGS: We found that SFN significantly inhibits the viability and proliferation of breast cancer cells in vitro while it has negligible effects on normal breast cells. Inhibition of telomerase has received considerable attention because of its high expression in cancer cells and extremely low level of expression in normal cells. SFN treatment dose- and time-dependently inhibited human telomerase reverse transcriptase (hTERT, the catalytic regulatory subunit of telomerase, in both MCF-7 and MDA-MB-231 human breast cancer cells. DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3a, were also decreased in SFN-treated breast cancer cells suggesting that SFN may repress hTERT by impacting epigenetic pathways. Down-regulation of DNMTs in response to SFN induced site-specific CpG demethylation occurring primarily in the first exon of the hTERT gene thereby facilitating CTCF binding associated with hTERT repression. Chromatin immunoprecipitation (ChIP analysis of the hTERT promoter revealed that SFN increased the level of active chromatin markers acetyl-H3, acetyl-H3K9 and acetyl-H4, whereas the trimethyl-H3K9 and trimethyl-H3K27 inactive chromatin markers were decreased in a dose-dependent manner. SFN-induced hyperacetylation facilitated the binding of many hTERT repressor proteins such as MAD1 and CTCF to the hTERT regulatory region. Depletion of CTCF using siRNA reduced the SFN-induced down-regulation of hTERT mRNA transcription in these breast cancer cells. In addition, down-regulation of hTERT expression facilitated the induction of cellular apoptosis in human breast

  8. “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Carolina de la Torre Gomez

    2018-03-01

    Full Text Available Exosomes are biomolecular nanostructures released from cells. They carry specific biomolecular information and are mainly researched for their exquisite properties as a biomarker source and delivery system. We introduce exosomes in the context of other extracellular vesicles, describe their biophysical isolation and characterisation and discuss their biochemical profiling. Motivated by our interest in early-life nutrition and health, and corresponding studies enrolling lactating mothers and their infants, we zoom into exosomes derived from human breast milk. We argue that these should be more extensively studied at proteomic and micronutrient profiling level, because breast milk exosomes provide a more specific window into breast milk quality from an immunological (proteomics and nutritional (micronutrient perspective. Such enhanced breast milk exosome profiling would thereby complement and enrich the more classical whole breast milk analysis and is expected to deliver more functional insights than the rather descriptive analysis of human milk, or larger fractions thereof, such as milk fat globule membrane. We substantiate our arguments by a bioinformatic analysis of two published proteomic data sets of human breast milk exosomes.

  9. The Role of Interferon Regulatory Factor-1 (IRF1) in Overcoming Antiestrogen Resistance in the Treatment of Breast Cancer

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Shajahan, A.N.; Clarke, R.

    2011-01-01

    Resistance to endocrine therapy is common among breast cancer patients with estrogen receptor alpha-positive (ER+) tumors and limits the success of this therapeutic strategy. While the mechanisms that regulate endocrine responsiveness and cell fate are not fully understood, interferon regulatory factor-1 (IRF1) is strongly implicated as a key regulatory node in the underlying signaling network. IRF1 is a tumor suppressor that mediates cell fate by facilitating apoptosis and can do so with or without functional p53. Expression of IRF1 is down regulated in endocrine-resistant breast cancer cells, protecting these cells from IRF1-induced inhibition of proliferation and/or induction of cell death. Nonetheless, when IRF1 expression is induced following IFN treatment, antiestrogen sensitivity is restored by a process that includes the inhibition of pro survival BCL2 family members and caspase activation. These data suggest that a combination of endocrine therapy and compounds that effectively induce IRF1 expression may be useful for the treatment of many ER+ breast cancers. By understanding IRF1 signaling in the context of endocrine responsiveness, we may be able to develop novel therapeutic strategies and better predict how patients will respond to endocrine therapy

  10. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Liang Y

    2016-05-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Johannes D Aebi,2 Salman M Hyder1 1Dalton Cardiovascular Research Center and Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO, USA; 2Medicinal Chemistry, Roche Pharma Research and Early Development (pRED, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland Abstract: Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration; however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4'-[6-(allylmethylaminohexyloxy]-4-bromo-2'-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071 (RO, which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway, on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the

  11. Investigation on main source of dioxin analogues in human breast milk (second report)

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, H.; Nakao, T.; Aozasa, O.; Ohta, S. [Setsunan Univ., Hirakata (Japan); Iwamatsu, T. [Teijin Eco Science, Co. Ltd., Matsuyama (Japan); Fujimine, Y. [Otsuka Pharmaceutical Co. Ltd., Tokushima (Japan); Fukui, S. [Fukui Lactation Consultation, Amagasaki (Japan)

    2004-09-15

    In many countries, the breast milk sample has been used as a suitable indicator in order to examine human exposure level to Dioxins. In general, the breast milk level is considered to be reflecting to their accumulation level in the body. In addition, it is considered that ca. 60% of the accumulation amount of Dioxins is excreted to the baby through breast milk by nursing for a year. However, are these things true? In 1989, Frust et al. reported a time course of concentrations of Dioxins (abbreviated as Dioxins) in breast milk of one German during a period of 1 - 60 weeks after delivery. In the case of PCDFs, the level of 10 - 13 weeks after delivery was remarkably higher than that of 5 weeks. In addition, the PCBs level on the 10 to 13 weeks was also higher in comparison with on the 1 week. Thus, their pollution levels did not always decrease with a passing of time after childbirth. This suggests that all Dioxins in breast milk might be not derived from their storage in the body. Therefore, in 2001, we investigated the time alteration on the pollution level of Dioxins in breast milk from nine mothers and on their infants' daily intake of Dioxins by nursing. Consequently, it was revealed that the average daily intake of PCDD/DFs (PCDDs + PCDFs) was roughly constant during a period of 5 to 180 days after delivery. If all PCDD/DFs in breast milk are derived from only their body storage, the pollution level in milk must decrease in a linear course during a period of 5 to 180 days after delivery. However, thus linear decrease of pollution level was not observed in all tested mothers. These results indicated that PCDD/DFs in milk might be also delivered from other sources except for their storage in the body. Therefore, in this study, we tried to investigate the source of Dioxins in human breast milk.

  12. Impact of palbociclib combinations on treatment of advanced estrogen receptor-positive/human epidermal growth factor 2-negative breast cancer

    Directory of Open Access Journals (Sweden)

    Boér K

    2016-10-01

    Full Text Available Katalin Boér Department of Medical Oncology, Szent Margit Hospital, Budapest, Hungary Abstract: Breast cancer is a heterogeneous disease with multiple subgroups based on clinical and molecular characteristics. For the largest subgroup of breast cancers, hormone receptor-positive/human epidermal growth factor 2 (HER2-negative tumors, hormone treatment is the mainstay of therapy and is likely to result in significant improvement in disease outcomes. However, some of these cancers demonstrate de novo or acquired resistance to endocrine therapy. Despite intensive research to develop new strategies to enhance the efficacy of currently available treatment options for hormone receptor-positive breast cancer, progress has been slow, and there were few advances for a period of 10 years. In 2012, a new molecularly targeted therapeutic strategy, inhibition of mammalian target of rapamycin with everolimus, was introduced into clinical practice. Everolimus, in combination with a steroidal aromatase inhibitor, exemestane, resulted in an increase in progression-free survival, but not overall survival in patients with estrogen receptor (ER+ve advanced disease who had progressed on hormone therapy. In 2015, the first cyclin-dependent kinases 4/6 (CDK4/6 inhibitor, palbociclib, received accelerated US Food and Drug Administration approval for use in combination with letrozole for the treatment of postmenopausal ER+ve/HER2-ve advanced breast cancer as initial, endocrine-based therapy. The addition of palbociclib to endocrine therapy resulted in longer progression-free survival than letrozole alone. One year later, palbociclib received a new indication, use in combination with fulvestrant, in both premenopausal and postmenopausal females with advanced breast cancer of the same subtype with disease progression following endocrine therapy. Adding palbociclib to fulvestrant resulted in a significantly increased median progression-free survival compared to fulvestrant

  13. Resources for Precision Analysis of Human Breast Cancer

    Science.gov (United States)

    2000-08-01

    correlation chemistry are necessary to confirm this observation, the, is different between the in vitro and in vivo situations, pattern of expression is...Feunteun 44. Mandinova A, Atar D, Schafer BW, Spiess M, Aebi U, Heizmann C1 J, Schnitt S, Livingston DM: Location of BRCA1 in human breast and Distinct...with progression-free survival, in prostate cancer [20]. expression but strong staining by immunohisto-S • chemistry were positive by western blot

  14. Intrinsic radiation resistance in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A.

    2006-01-01

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16 ink4a , one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16 ink4a contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16 ink4a expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16 ink4a expression on chondrosarcoma cell resistance to low-dose γ-irradiation (1-5 Gy). p16 ink4a expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16 ink4a transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16 ink4a plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas

  15. High CDK6 protects cells from fulvestrant-mediated apoptosis and is a predictor of resistance to fulvestrant in estrogen receptor-positive metastatic breast cancer

    DEFF Research Database (Denmark)

    Alves, Carla Maria Lourenco; Elias, Daniel; Lyng, Maria B

    2016-01-01

    expression impaired fulvestrant-resistant cell growth and induced apoptosis. Treatment with palbociclib re-sensitized fulvestrant-resistant cells to fulvestrant through alteration of retinoblastoma protein phosphorylation. High CDK6 levels in metastatic samples from two independent cohorts of breast cancer...

  16. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    International Nuclear Information System (INIS)

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting; Song, Ran; Wang, Lu; Gu, Yan-Hong; Zeng, Guang-Zhi; Shen, Yan; Wu, Xue-Feng; Tan, Ning-Hua; Xu, Qiang; Sun, Yang

    2013-01-01

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT

  17. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xian-Ying; Chen, Wei [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Fan, Jun-Ting [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Song, Ran; Wang, Lu [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Gu, Yan-Hong [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zeng, Guang-Zhi [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Shen, Yan; Wu, Xue-Feng [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Tan, Ning-Hua, E-mail: nhtan@mail.kib.ac.cn [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Sun, Yang, E-mail: yangsun@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China)

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.

  18. [Targeting of the AKT/m-TOR Pathway: Biomarkers of Resistance to Cancer Therapy--
AKT/m-TOR Pathway and Resistance to Cancer Therapy].

    Science.gov (United States)

    Spirina, Liudmila V; Kondakova, Irina V; Tarasenko, Natalia V; Slonimskaya, Elena M; Usynin, Evgeny A; Gorbunov, Alexey K; Yurmazov, Zahar A; Chigevskaya, Svetlana Yu

    2018-01-20

    Resistance to cancer therapy continues to be a major limitation for the successful treatment of cancer. There are many published studies on therapy resistance in breast and prostate cancers; however, there are currently no data on molecular markers associated with resistance. The conflicting data were reported regarding the AKT/m-TOR signaling pathway components as markers predicting resistance. The AKT/m-TOR signaling pathway is involved in the development of many human cancers; its activation is related to cell proliferation, angiogenesis, apoptosis, as well as to therapy resistance. Molecular alterations in the AKT/m-TOR signaling pathway provide a platform to identify universal markers associated with the development of resistance to cancer therapy.

  19. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries.

    Directory of Open Access Journals (Sweden)

    Sonya Hui

    Full Text Available We recently identified sphingosine-1-phosphate (S1P signaling and the cystic fibrosis transmembrane conductance regulator (CFTR as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i express critical S1P signaling elements, (ii constrict in response to S1P and (iii lose myogenic responsiveness following S1P receptor antagonism (JTE013. However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.

  20. Native human autoantibodies targeting GIPC1 identify differential expression in malignant tumors of the breast and ovary

    International Nuclear Information System (INIS)

    Yavelsky, Victoria; Chan, Gerald; Kalantarov, Gavreel; Trakht, Ilya; Lobel, Leslie; Rohkin, Sarit; Shaco-Levy, Ruthy; Tzikinovsky, Alina; Amir, Tamar; Kohn, Hila; Delgado, Berta; Rabinovich, Alex; Piura, Benjamin

    2008-01-01

    We have been studying the native humoral immune response to cancer and have isolated a library of fully human autoantibodies to a variety of malignancies. We previously described the isolation and characterization of two fully human monoclonal antibodies, 27.F7 and 27.B1, from breast cancer patients that target the protein known as GIPC1, an accessory PDZ-domain binding protein involved in regulation of G-protein signaling. Human monoclonal antibodies, 27.F7 and 27.B1, to GIPC1 demonstrate specific binding to malignant breast cancer tissue with no reactivity with normal breast tissue. The current study employs cELISA, flow cytometry, Western blot analysis as well as immunocytochemistry, and immunohistochemistry. Data is analyzed statistically with the Fisher one-tail and two-tail tests for two independent samples. By screening several other cancer cell lines with 27.F7 and 27.B1 we found consistently strong staining of other human cancer cell lines including SKOV-3 (an ovarian cancer cell line). To further clarify the association of GIPC1 with breast and ovarian cancer we carefully studied 27.F7 and 27.B1 using immunocytochemical and immunohistochemical techniques. An immunohistochemical study of normal ovarian tissue, benign, borderline and malignant ovarian serous tumors, and different types of breast cancer revealed high expression of GIPC1 protein in neoplastic cells. Interestingly, antibodies 27.F7 and 27.B1 demonstrate differential staining of borderline ovarian tumors. Examination of different types of breast cancer demonstrates that the level of GIPC1 expression depends on tumor invasiveness and displays a higher expression than in benign tumors. The present pilot study demonstrates that the GIPC1 protein is overexpressed in ovarian and breast cancer, which may provide an important diagnostic and prognostic marker and will constitute the basis for further study of the role that this protein plays in malignant diseases. In addition, this study suggests that

  1. Rad51 expression levels predict synthetic lethality and metastatic potential in high grade breast cancers

    International Nuclear Information System (INIS)

    Wiegmans, A.P.; Al-Ejeh, F.; Khanna, K.K.

    2012-01-01

    Among women with breast cancer, 30-40% will develop metastatic disease and only achieve an overall survival of less than 5 years. Despite new-targeted therapy, breast tumors that harbour similar histology or molecular phenotype differ in their response to treatment. To uncover potential new therapeutic targets and improve outcome, we performed data mining of cancer micro array databases. We found that high expression of the homologous recombination protein, RAD51, was significantly associated with high-grade breast cancer, aggressive subtypes and increased risk of metastasis. We confirmed using immunohistochemistry that RAD5 1 was highly expressed in metastatic tumours and high-grade triple negative, HER2+ and luminal-B tumours. This provided a rationale for targeting RAD5 1 in high-grade, therapy-resistant breast cancers. Here, we report for the first time preclinical evaluation of RAD5 1 as a therapeutic target. We found that, in-vitro high RAD5 expressing cell lines were resistant to PARP inhibitor while knockdown reversed this resistance. In-vivo, knockdown of RAD5 1 inhibited metastatic progression using a syngeneic breast cancer model and the seeding of human xenografts to distant sites, including brain and lung. Concurrent PARP inhibition reduced primary tumor growth and delayed metastasis supporting synthetic lethality in-vivo. Together these insights provide pre-clinical data demonstrating RAD5 1 as a new biomarker and potential therapeutic target against aggressive metastatic breast cancer. (author)

  2. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    International Nuclear Information System (INIS)

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang Yiwen; Zuo Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-01-01

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ERα signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ERα was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ERα-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ERα-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.

  3. Human sodium iodide symporter (hNIS) in fibroadenoma breast--a immunohistochemical study.

    Science.gov (United States)

    Rai, Ruchi; Shrivastava, Ashutosh; Tandon, Ashwani; Godbole, Madan M; Kumar, Sandeep; Das, Vinita; Dwivedi, Varsha; Pal, Lily

    2011-02-01

    Human sodium iodide symporter (hNIS), responsible for the active transport of iodine is an integral plasma membrane glycoprotein present in the thyroid cells and extrathyroid tissues like breast and salivary glands. If its functional form is unequivocally shown in benign or malignant breast tissues, then it may serve as a basis for diagnosis and treatment using radioactive iodine. With an aim to analyze the hNIS expression in a distinct benign breast condition of fibroadenoma, biopsy proven fibroadenoma tissues, normal non-lactating breast tissue and biopsy proven infiltrating duct carcinoma tissues were examined for hNIS expression using immunohistochemistry. Out of 20 biopsy proven fibroadenoma tissues, 19 (95%) showed positivity for hNIS protein and only one was negative. Of these 10% were mildly positive, 50% cases were moderately positive and 35% showed intense positivity. None of the control tissue obtained from reduction mammoplasty specimens or normal breast tissues samples (5 cms away from the tumor) were positive, hNIS was also intensely positive in 9 out of 10 (90%) infiltrating duct carcinoma tissues and moderately positive in one case. These preliminary results show that hNIS was present in high frequency as demonstrated by immunohistochemistry in fibroadenoma breast.

  4. Randomized controlled trial to evaluate the effects of progressive resistance training compared to progressive muscle relaxation in breast cancer patients undergoing adjuvant radiotherapy: the BEST study

    International Nuclear Information System (INIS)

    Potthoff, Karin; Steindorf, Karen; Schmidt, Martina E; Wiskemann, Joachim; Hof, Holger; Klassen, Oliver; Habermann, Nina; Beckhove, Philipp; Debus, Juergen; Ulrich, Cornelia M

    2013-01-01

    Cancer-related fatigue (CRF) is one of the most common and distressing side effects of cancer and its treatment. During and after radiotherapy breast cancer patients often suffer from CRF which frequently impairs quality of life (QoL). Despite the high prevalence of CRF in breast cancer patients and the severe impact on the physical and emotional well-being, effective treatment methods are scarce. Physical activity for breast cancer patients has been reported to decrease fatigue, to improve emotional well-being and to increase physical strength. The pathophysiological and molecular mechanisms of CRF and the molecular-biologic changes induced by exercise, however, are poorly understood. In the BEST trial we aim to assess the effects of resistance training on fatigue, QoL and physical fitness as well as on molecular, immunological and inflammatory changes in breast cancer patients during adjuvant radiotherapy. The BEST study is a prospective randomized, controlled intervention trial investigating the effects of a 12-week supervised progressive resistance training compared to a 12-week supervised muscle relaxation training in 160 patients with breast cancer undergoing adjuvant radiotherapy. To determine the effect of exercise itself beyond potential psychosocial group effects, patients in the control group perform a group-based progressive muscle relaxation training. Main inclusion criterion is histologically confirmed breast cancer stage I-III after lumpectomy or mastectomy with indication for adjuvant radiotherapy. Main exclusion criteria are acute infectious diseases, severe neurological, musculosceletal or cardiorespiratory disorders. The primary endpoint is cancer-related fatigue; secondary endpoints include immunological and inflammatory parameters analyzed in peripheral blood, saliva and urine. In addition, QoL, depression, physical performance and cognitive capacity will be assessed. The BEST study is the first randomized controlled trial comparing progressive

  5. Profile of palbociclib in the treatment of metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Ehab M

    2016-05-01

    Full Text Available Moataz Ehab,1 Mohamad Elbaz2,31Department of Pharmacy Practice, 2Department of Pharmacology, Pharmacy School, Helwan University, Egypt; 3Department of Pathology, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USAAbstract: Breast cancer is the most common cancer diagnosed in women. Each year, thousands die either because of disease progression or failure of treatment. Breast cancer is classified into different subtypes based on the molecular expression of estrogen receptor (ER, progesterone receptor, and/or human epidermal growth factor receptor 2 (HER2. These receptors represent important therapeutic targets either through monoclonal antibodies or through small-molecule inhibitors directed toward them. However, up to 40% of patients develop either a primary or a secondary resistance to the current treatments. Therefore, there is an urgent need for investigating new targets in order to overcome the resistance and/or enhance the current therapies. Cell cycle is altered in many human cancers, especially in breast cancer. Cyclin-dependent kinases (CDKs, especially CDK4 and CDK6, play a pivotal role in cell cycle progression that makes them potential targets for new promising therapies. CDK inhibition has shown strong antitumor activities, ranging from cytostatic antiproliferative effects to synergistic effects in combination with other antitumor drugs. In order to overcome the drawbacks of the first-generation CDK inhibitors, recently, new CDK inhibitors have emerged that are more selective to CDK4 and CDK6 such as palbociclib, which is the most advanced CDK4/6 inhibitor in trials. In preclinical studies, palbociclib has shown a very promising antitumor activity, especially against ERα+ breast cancer subtype. Palbociclib has gained world attention, and US the Food and Drug Administration has accelerated its approval for first-line treatment in combination with letrozole for the first-line systematic

  6. A Role for Estrogen Receptor Phosphorylation in the Resistance to Tamoxifen

    International Nuclear Information System (INIS)

    De Leeuw, R.; Neefjes, J.; Michalides, R.

    2011-01-01

    About two thirds of all human breast cancer cases are estrogen receptor positive. The drug of first choice for these patients is tamoxifen. However, about half of the recurrences after removal of the primary tumor are or become resistant to this drug. While many mechanisms have been identified for tamoxifen resistance in the lab, at present only a few have been translated to the clinic. This paper highlights the role in tamoxifen resistance of phosphorylation by different kinases on different sites of the estrogen receptor. We will discuss the molecular pathways and kinases that are involved in phosphorylation of ERa and how these affect tamoxifen resistance. Finally, we will elaborate on the clinical translation of these observations and the possibility to predict tamoxifen responses in patient tumor samples before treatment onset. The findings made originally on the bench may translate into a better and personalized treatment of breast cancer patients using an old and safe anticancer drug: tamoxifen

  7. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    International Nuclear Information System (INIS)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-01-01

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer

  8. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  9. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    Science.gov (United States)

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  10. Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells

    Directory of Open Access Journals (Sweden)

    Phuc PV

    2011-06-01

    Full Text Available Pham Van Phuc, Phan Lu Chinh Nhan, Truong Hai Nhung, Nguyen Thanh Tam, Nguyen Minh Hoang, Vuong Gia Tue, Duong Thanh Thuy, Phan Kim NgocLaboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh, VietnamBackground: Cells within breast cancer stem cell populations have been confirmed to have a CD44+CD24- phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells.Methods: In this study, we reduced CD44 expression in CD44+CD24- breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44+CD24- breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug.Results: The proliferation of CD44 downregulated CD44+CD24- breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups.Conclusions: It would appear that expression of CD44 is integral among the CD44+CD24- cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy.Keywords: antitumor drugs, breast cancer stem cells, CD44, CD44+CD24- cells, doxorubicin

  11. Prolactin-inducible proteins in human breast cancer cells

    International Nuclear Information System (INIS)

    Shiu, R.P.; Iwasiow, B.M.

    1985-01-01

    The mechanism of action of prolactin in target cells and the role of prolactin in human breast cancer are poorly understood phenomena. The present study examines the effect of human prolactin (hPRL) on the synthesis of unique proteins by a human breast cancer cell line, T-47D, in serum-free medium containing bovine serum albumin. [ 35 S]Methionine-labeled proteins were analysed by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and fluorography. Treatment of cells with hPRL (1-1000 ng/ml) and hydrocortisone (1 microgram/ml) for 36 h or longer resulted in the synthesis and secretion of three proteins having molecular weights of 11,000, 14,000, and 16,000. Neither hPRL nor hydrocortisone alone induced these proteins. Of several other peptide hormones tested, only human growth hormone, a hormone structurally and functionally similar to hPRL, could replace hPRL in causing protein induction. These three proteins were, therefore, referred to as prolactin-inducible proteins (PIP). Each of the three PIPs was purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and specific antibodies were generated to them in rabbits. By immunoprecipitation and immunoblotting (Western blot) of proteins secreted by T-47D cells, it was demonstrated that the three PIPs were immunologically identical to one another. In addition, the 16-kDa and 14-kDa proteins (PIP-16 and PIP-14), and not the 11-kDa protein (PIP-11), incorporated [ 3 H]glycosamine. Furthermore, 2-deoxyglucose (2 mM) and tunicamycin (0.5 micrograms/ml), two compounds known to inhibit glycosylation, blocked the production of PIP-16 and PIP-14, with a concomitant increase in the accumulation of PIP-11

  12. Study of human breast tissues biochemistry by FT-Raman spectroscopy

    Science.gov (United States)

    Bitar, Renata A.; Jara, Walter Andres A.; Netto, Mário M.; Martinho, Herculano; Ramalho, Leandra Náira Z.; Martin, Airton A.

    2006-02-01

    In this work we employ the Fourier Transform Raman Spectroscopy to study the human breast tissues, both normal and pathological. In the present study we analyze 194 Raman spectra from breast tissues that were separated into 9 groups according to their corresponding histopathological diagnosis, which are as follows: Normal breast tissue, Fibrocystic condition, In Situ Duct Carcinoma, In Situ Duct Carcinoma with Necrosis, Infiltrating Duct Carcinoma, Infiltrating Duct Inflammatory Carcinoma, Infiltrating Duct Medullar Carcinoma, Infiltrating Duct Colloid Carcinoma, and Infiltrating Lobule Carcinoma. We found a strong lipids Raman band, and this structure was identified as abundant in the normal breast tissue spectra. The primary structure of proteins was identified through the shift of the amine acids bands. The identification of the secondary structure of proteins occurred through the peptide bands (Amide I and Amide III). In relation to the carbohydrates, the spectra of duct infiltrating colloid carcinoma, fibrocystic condition, and infiltrating duct carcinoma have been compared and identified. We observed an increase in the intensity of the 800-1200 cm -1 spectral region. This fact could indicate the presence of liquid cystic. We also notice alterations in the peaks in the region of 500 to 600 cm -1 and 2000 to 2100 cm -1 that may suggest changes in the nucleic acids of the cells.

  13. Estrogen receptor positive breast tumors resist chemotherapy by the overexpression of P53 in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Fatma Ashour

    2018-06-01

    Full Text Available Background and Objectives: Breast cancer (BC is classified according to estrogen receptor (ER status into ER+ and ER− tumors. ER+ tumors have a worse response to chemotherapy compared to ER− tumors. BCL-2, TP53, BAX and NF-ΚB are involved in drug resistance in the ER+ tumors. Recently it was shown that Cancer Stem Cells (CSCs play an important role in drug resistance. In this study we tested the hypothesis that CSCs of the ER+ tumors resist drug through the overexpression of BCL-2, TP53, BAX and NF-ΚB. Methods: CSCs were isolated by anoikis resistance assay from MCF7 (ER+ and MDA-MB-231 (ER− cell lines. Isolated CSCs were treated with doxorubicin (DOX and the mRNA expression levels of BCL-2, TP53, BAX and NFKB were investigated by quantitative real time PCR (qPCR with and without treatment. Results: BCL-2, BAX and NF-ΚB showed decreased expression in MCF7 bulk cancer cells after DOX treatment whereas only BCL-2 and BAX showed decreased expression in MDA-MB-231 bulk cancer cells. Interestingly TP53 was the only gene showed a considerable increase in its expression in CSCs of the ER+ MCF7 cell line compared to bulk cancer cells. Moreover, TP53 was the only gene showing exceptionally higher level of expression in MCF7-CSCs compared to MDA-MB-231-CSCs. Conclusion: Our results suggest that CSCs in the ER+ cells escape the effect of DOX treatment by the elevation of p53 expression. Keywords: Breast cancer, Cancer Stem Cells, Drug resistance, Estrogen receptors

  14. Immunoassay of serum polypeptide hormones by using 125I-labelled anti(-immunoglobulin G) antibodies.

    Science.gov (United States)

    Beck, P; Nicholas, H

    1975-03-01

    1. A technique for indirectly labelling antibodies to polypeptide hormones, by combining them with radioactively labelled anti-(immunoglobulin G) is described. (a) 125I-labelled anti-(rabbit immunoglobulin G) and anti-(guinea-pig immunoglobulin G) antibodies with high specific radioactivity were prepared after purification of the antibodies on immunoadsorbents containing the respective antigens. (b) Rabbit immunoglobulin G antibodies to human growth hormone, porcine glucagon and guinea-pig immunoglobulin G antibodies to bovine insulin and bovine parathyroid hormone were combined with immunoadsorbents containing the respective polypeptide hormone antigen. (c) The immunoglobulin G antibodies to the polypeptide hormones were reacted with 125-I-labelled anti-(immunoglobulin G) antibodies directed against the appropriate species of immunoglobulin G,and the anti-hormone antibodies were combined with the hormone-containing immunoadsorbent. (d) 125I-labelled anti-(immunoglobulin G) antibodies and anti-hormone antibodies were simultaneously eluted from the hormone-containing immunoadsorbent by dilute HCl, pH 2.0. After elution the anti-(immunoglobulin G) antibodies and antihormone antibodies were allowed to recombine at pH 8.0 and 4 degrees C. 2. The resultant immunoglobulin G-anti-immunoglobulin G complex was used in immunoradiometric (labelled antibody) and two-site assays of the respective polypeptide hormone. 3. By using these immunoassays, concentrations down to 90pg of human growth hormone/ml, 100 pg of bovine insulin/ml, 80 pg of bovine parathyroid hormone/ml and 150 pg of glucagon/ml were readily detected. Assays of human plasma for growth hormone and insulin by these methods showed good agreement with results obtained by using a directly 125I-labelled anti-hormone antibody in an immunoradiometric assay of human growth hormone or by radioimmunoassay of human insulin. 4. The method described allows immunoradiometric or two-site assays to be performed starting with as

  15. INHIBITION OF SPONTANEOUS APOPTOSIS IN HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    邵志敏; 江明; 吴炅; 余黎民; 韩企夏; 张延璆; 沈镇宙

    1996-01-01

    Breast tumorigenesis proceeds through an accumulation of specific genetic alteration. Breast malignant transformation is dependent on not only the rate of cell production but also on apoptcsis,a genetically prograined process of autonomous ceil death. We investigated whether breast tumorigenesis involved an altered susceptibility to apoptosis and proliferation by examining normal breast epithelium and breast cancer sampies. We found there is a great inhibition of spontaneous apoptosis in breast cancer ceils compared with normal breast epithelium. The inhibition of apoptosis in breast cancer may contribute to neoplastic transformation.

  16. Insights on the antitumor effects of kahweol on human breast cancer: Decreased survival and increased production of reactive oxygen species and cytotoxicity

    International Nuclear Information System (INIS)

    Cárdenas, Casimiro; Quesada, Ana R.; Medina, Miguel Ángel

    2014-01-01

    Highlights: • Kahweol inhibits growth and attachment-independent proliferation of tumor cells. • Kahweol induces apoptosis in MDA-MB231 human breast cancer cells. • Kahweol-induced apoptosis involves caspase activation and cytochrome c release. • Kahweol does not protect against hydrogen peroxide cytotoxicity. • Kahweol increases hydrogen peroxide production by human breast cancer cells. - Abstract: The present study aims to identify the modulatory effects of kahweol, an antioxidant diterpene present in coffee beans, on a panel of human tumor cell lines. Kahweol inhibits tumor cell proliferation and clonogenicity and induces apoptosis in several kinds of human tumor cells. In the estrogen receptor-negative MDA-MB231 human breast cancer, the mentioned effects are accompanied by caspases 3/7 and 9 activation and cytochrome c release. On the other hand, kahweol increases the production of reactive oxygen species and their cytotoxicity in human breast cancer cells but not in normal cells. Taken together, our data suggest that kahweol is an antitumor compound with inhibitory effects on tumor cell growth and survival, especially against MDA-MB231 breast cancer cells

  17. Insights on the antitumor effects of kahweol on human breast cancer: Decreased survival and increased production of reactive oxygen species and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas, Casimiro [Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga (Spain); IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga (Spain); Research Support Central Services (SCAI) of the University of Málaga, E-29071 Málaga (Spain); Quesada, Ana R. [Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga (Spain); IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga (Spain); CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga (Spain); Medina, Miguel Ángel, E-mail: medina@uma.es [Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga (Spain); IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga (Spain); CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga (Spain)

    2014-05-09

    Highlights: • Kahweol inhibits growth and attachment-independent proliferation of tumor cells. • Kahweol induces apoptosis in MDA-MB231 human breast cancer cells. • Kahweol-induced apoptosis involves caspase activation and cytochrome c release. • Kahweol does not protect against hydrogen peroxide cytotoxicity. • Kahweol increases hydrogen peroxide production by human breast cancer cells. - Abstract: The present study aims to identify the modulatory effects of kahweol, an antioxidant diterpene present in coffee beans, on a panel of human tumor cell lines. Kahweol inhibits tumor cell proliferation and clonogenicity and induces apoptosis in several kinds of human tumor cells. In the estrogen receptor-negative MDA-MB231 human breast cancer, the mentioned effects are accompanied by caspases 3/7 and 9 activation and cytochrome c release. On the other hand, kahweol increases the production of reactive oxygen species and their cytotoxicity in human breast cancer cells but not in normal cells. Taken together, our data suggest that kahweol is an antitumor compound with inhibitory effects on tumor cell growth and survival, especially against MDA-MB231 breast cancer cells.

  18. Autophagy in breast cancer and its implications for therapy

    Science.gov (United States)

    Jain, Kirti; Paranandi, Krishna S; Sridharan, Savitha; Basu, Alakananda

    2013-01-01

    Autophagy is an evolutionarily conserved process of cellular self-digestion that serves as a mechanism to clear damaged organelles and recycle nutrients. Since autophagy can promote cell survival as well as cell death, it has been linked to different human pathologies, including cancer. Although mono-allelic deletion of autophagy-related gene BECN1 in breast tumors originally indicated a tumor suppressive role for autophagy in breast cancer, the intense research during the last decade suggests a role for autophagy in tumor progression. It is now recognized that tumor cells often utilize autophagy to survive various stresses, such as oncogene-induced transformation, hypoxia, endoplasmic reticulum (ER) stress and extracellular matrix detachment. Induction of autophagy by tumor cells may also contribute to tumor dormancy and resistance to anticancer therapies, thus making autophagy inhibitors promising drug candidates for breast cancer treatment. The scientific endeavors continue to define a precise role for autophagy in breast cancer. In this article, we review the current literature on the role of autophagy during the development and progression of breast cancer, and discuss the potential of autophagy modulators for breast cancer treatment. PMID:23841025

  19. New use of an old drug: Inhibition of breast cancer stem cells by benztropine mesylate

    OpenAIRE

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells...

  20. The investigation of lactalbumin as a possible marker for human breast cancer

    International Nuclear Information System (INIS)

    Woods, K.L.; Cove, D.H.; Morrison, J.M.; Heath, D.A.

    1979-01-01

    Measurable amounts of the whey protein lactalbumin have been found in the cytosol of over a third of 89 primary breast cancers using a specific radioimmunoassay. With a modification of the method which prevents interference from endogenous antibodies, serum levels of lactalbumin have been measured in 83 subjects with breast cancer, 45 subjects with benign mammary dysplasic and 63 controls. In earlier studies of normal women, we found that circulating lactalbumin was not found in subjects aged over 45 yr but was commonly present below that age since the patients with benign dysplasia had a mean age of 35.0 yr and the breast carcinoma patients a mean age of 60.4 yr, separate control groups were necessary for the two patient groups. Circulating lactalbumin was found in 12% of patients with operable breast cancer, 24% of patients with metastatic disease and in none of the age-matched controls circulating lactalbumin was detected no more often in the patients with benign dysplasia than in corresponding controls. It appears that a sizeable minority of human breast carcinomas are able to synthesise lactalbumin in sufficient quantity to produce a measurable level in the blood. (author)

  1. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV, Bovine Leukemia Virus (BLV, Human Papilloma Virus (HPV, and Epstein–Barr Virus (EBV

    Directory of Open Access Journals (Sweden)

    James S. Lawson

    2018-01-01

    Full Text Available BackgroundAlthough the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV, bovine leukemia virus (BLV, human papilloma viruses (HPVs, and Epstein–Barr virus (EBV-also known as human herpes virus type 4. Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence.The evidenceMMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal.ConclusionThe influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  2. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV).

    Science.gov (United States)

    Lawson, James S; Salmons, Brian; Glenn, Wendy K

    2018-01-01

    Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  3. Novel Stromal Biomarkers in Human Breast Cancer Tissues Provide Evidence for the More Malignant Phenotype of Estrogen Receptor-Negative Tumors

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2011-01-01

    Full Text Available Research efforts were focused on genetic alterations in epithelial cancer cells. Epithelial-stromal interactions play a crucial role in cancer initiation, progression, invasion, angiogenesis, and metastasis; however, the active role of stroma in human breast tumorigenesis in relation to estrogen receptor (ER status of epithelial cells has not been explored. Using proteomics and biochemical approaches, we identified two stromal proteins in ER-positive and ER-negative human breast cancer tissues that may affect malignant transformation in breast cancer. Two putative biomarkers, T-cell receptor alpha (TCR-α and zinc finger and BRCA1-interacting protein with a KRAB domain (ZBRK1, were detected in leukocytes of ER-positive and endothelial cells of ER-negative tissues, respectively. Our data suggest an immunosuppressive role of leukocytes in invasive breast tumors, propose a multifunctional nature of ZBRK1 in estrogen receptor regulation and angiogenesis, and demonstrate the aggressiveness of ER-negative human breast carcinomas. This research project may identify new stromal drug targets for the treatment of breast cancer patients.

  4. Comprehensive profiling of DNA repair defects in breast cancer identifies a novel class of endocrine therapy resistance drivers.

    Science.gov (United States)

    Anurag, Meenakshi; Punturi, Nindo; Hoog, Jeremy; Bainbridge, Matthew N; Ellis, Matthew J; Haricharan, Svasti

    2018-05-23

    This study was undertaken to conduct a comprehensive investigation of the role of DNA damage repair (DDR) defects in poor outcome ER+ disease. Expression and mutational status of DDR genes in ER+ breast tumors were correlated with proliferative response in neoadjuvant aromatase inhibitor therapy trials (discovery data set), with outcomes in METABRIC, TCGA and Loi data sets (validation data sets), and in patient derived xenografts. A causal relationship between candidate DDR genes and endocrine treatment response, and the underlying mechanism, was then tested in ER+ breast cancer cell lines. Correlations between loss of expression of three genes: CETN2 (p<0.001) and ERCC1 (p=0.01) from the nucleotide excision repair (NER) and NEIL2 (p=0.04) from the base excision repair (BER) pathways were associated with endocrine treatment resistance in discovery data sets, and subsequently validated in independent patient cohorts. Complementary mutation analysis supported associations between mutations in NER and BER pathways and reduced endocrine treatment response. A causal role for CETN2, NEIL2 and ERCC1 loss in intrinsic endocrine resistance was experimentally validated in ER+ breast cancer cell lines, and in ER+ patient-derived xenograft models. Loss of CETN2, NEIL2 or ERCC1 induced endocrine treatment response by dysregulating G1/S transition, and therefore, increased sensitivity to CDK4/6 inhibitors. A combined DDR signature score was developed that predicted poor outcome in multiple patient cohorts. This report identifies DDR defects as a new class of endocrine treatment resistance drivers and indicates new avenues for predicting efficacy of CDK4/6 inhibition in the adjuvant treatment setting. Copyright ©2018, American Association for Cancer Research.

  5. High-risk human papillomavirus (HPV) DNA sequences in metaplastic breast carcinomas of Mexican women

    International Nuclear Information System (INIS)

    Herrera-Goepfert, Roberto; Vela-Chávez, Teresa; Carrillo-García, Adela; Lizano-Soberón, Marcela; Amador-Molina, Alfredo; Oñate-Ocaña, Luis F; Hallmann, Rita Sotelo-Regil

    2013-01-01

    Metaplastic carcinoma, an uncommon subtype of breast cancer, is part of the spectrum of basal-like, triple receptor-negative breast carcinomas. The present study examined 20 surgical specimens of metaplastic breast carcinomas, for the presence of high-risk Human papillomavirus (HPV), which is suspected to be a potential carcinogenic agent for breast carcinoma. Mastectomy specimens from patients harboring metaplastic breast carcinoma, as defined by the World Health Organization (WHO), and who attended the Instituto Nacional de Cancerologia in Mexico City, were retrieved from the files of the Department of Pathology accumulated during a 16-year period (1995–2008). Demographic and clinical information was obtained from patients’ medical records. DNA was extracted from formalin-fixed, paraffin-embedded tumors and HPV type-specific amplification was performed by means of Polymerase chain reaction (PCR). Quantitative Real-time (RT) PCR was conducted in HPV positive cases. Statistically, the association of continuous or categorical variables with HPV status was tested by the Student t, the Chi square, or Fisher’s exact tests, as appropriate. High-risk HPV DNA was detected in eight (40%) of 20 metaplastic breast carcinomas: seven (87.5%) HPV-16 and one (12.5%) HPV-18. Mean age of patients with HPV-positive cases was 49 years (range 24–72 years), the same as for HPV-negative cases (range, 30–73 years). There were not striking differences between HPV + and HPV– metaplastic carcinomas regarding clinical findings. Nearly all cases were negative for estrogen, progesterone and Human epidermal growth factor receptor 2 (HER2), but positive for Epidermal growth factor receptor (EGFR). High-risk HPV has been strongly associated with conventional breast carcinomas, although the subtle mechanism of neoplastic transformation is poorly understood. In Mexican patients, the prevalence of HPV infection among metaplastic breast carcinomas is higher than in non-metaplastic ones

  6. Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression.

    Science.gov (United States)

    Souazé, Frédérique; Dupouy, Sandra; Viardot-Foucault, Véronique; Bruyneel, Erik; Attoub, Samir; Gespach, Christian; Gompel, Anne; Forgez, Patricia

    2006-06-15

    Emerging evidence supports neurotensin as a trophic and antiapoptotic factor, mediating its control via the high-affinity neurotensin receptor (NT1 receptor) in several human solid tumors. In a series of 51 patients with invasive ductal breast cancers, 34% of all tumors were positive for neurotensin and 91% positive for NT1 receptor. We found a coexpression of neurotensin and NT1 receptor in a large proportion (30%) of ductal breast tumors, suggesting a contribution of the neurotensinergic signaling cascade within breast cancer progression. Functionally expressed NT1 receptor, in the highly malignant MDA-MB-231 human breast cancer cell line, coordinated a series of transforming functions, including cellular migration, invasion, induction of the matrix metalloproteinase (MMP)-9 transcripts, and MMP-9 gelatinase activity. Disruption of NT1 receptor signaling by silencing RNA or use of a specific NT1 receptor antagonist, SR48692, caused the reversion of these transforming functions and tumor growth of MDA-MB-231 cells xenografted in nude mice. Our findings support the contribution of neurotensin in human breast cancer progression and point out the utility to develop therapeutic molecules targeting neurotensin or NT1 receptor signaling cascade. These strategies would increase the range of therapeutic approaches and be beneficial for specific patients.

  7. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  8. Adjuverende medicinsk behandling tilpatienter med lokoregionalt recidiv af brystkræft

    DEFF Research Database (Denmark)

    Farooq, Farah Choudary; Kamby, Claus

    2016-01-01

    randomized trials of adjuvant medical treatment with chemotherapy, anti-hormonal and anti HER2 treatments for patients radically treated for ILRR. Certain groups of patients may benefit from adjuvant systemic treatment. However larger randomized trials are needed.......There is 10-30% risk of developing isolated locoregional recurrence (ILRR) after mastectomy for primary breast cancer. Currently, there is no standard treatment for ILRR and therefore patients with ILRR cause an oncological task. This review investigates existing literature concerning relevant...

  9. Recurrent Breast Abscesses due to Corynebacterium kroppenstedtii, a Human Pathogen Uncommon in Caucasian Women

    Directory of Open Access Journals (Sweden)

    Anne Le Flèche-Matéos

    2012-01-01

    Full Text Available Background. Corynebacterium kroppenstedtii (Ck was first described in 1998 from human sputum. Contrary to what is observed in ethnic groups such as Maori, Ck is rarely isolated from breast abscesses and granulomatous mastitis in Caucasian women. Case Presentation. We herein report a case of recurrent breast abscesses in a 46-year-old Caucasian woman. Conclusion. In the case of recurrent breast abscesses, even in Caucasian women, the possible involvement of Ck should be investigated. The current lack of such investigations, probably due to the difficulty to detect Ck, may cause the underestimation of such an aetiology.

  10. Alterations in mRNA profiles of trastuzumab‑resistant Her‑2‑positive breast cancer.

    Science.gov (United States)

    Zhao, Bin; Zhao, Yang; Sun, Yan; Niu, Haitao; Sheng, Long; Huang, Dongfang; Li, Li

    2018-05-07

    Breast cancer is one of the most common malignancies in women. Neoadjuvant trastuzumab therapy improves the prognosis of certain Her‑2‑positive breast cancer patients, however around two‑thirds of patients with Her‑2‑positive breast cancer do not benefit from Her‑2‑targeted therapy. To investigate the key mechanisms in trastuzumab resistance, potential biomarkers for neoadjuvant trastuzumab sensitivity were investigated using the gene expression omnibus (GEO) database for mRNA microarray data of Her‑2‑positive breast cancer patients who received neoadjuvant trastuzumab therapy. GEO profiles of 22 patients with a complete response and 48 patients with a partial response were identified in the GSE22358, GSE62327 and GSE66305 datasets. A total of 2,376, 1,000 and 1,152 differentially expressed genes in GSE22358, GSE62327 and GSE66305 datasets were demonstrated, respectively, utilizing GEO2R software. Furthermore, enriched gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were analyzed using the Database for Annotation, Visualization and Integrated Discovery software. Subsequently, a protein‑protein interaction network was established using STRING software. The results demonstrated that low sex‑determining region Y‑box 11 and high Bcl‑2 expression may be employed as markers for neoadjuvant trastuzumab therapy for Her‑2‑positive breast cancer. More importantly, phosphoinositide 3‑kinase/Akt and angiogenesis pathways, which are known to be the key targets of trastuzumab, were activated at a lower level in the partial response patients, while the Wnt and estrogen receptor signaling pathways were activated in these patients. Therefore, combination therapy of trastuzumab and anti‑Wnt or hormone therapy may be a promising treatment modality and should be tested in further studies.

  11. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells

    International Nuclear Information System (INIS)

    Flamant, Lionel; Roegiers, Edith; Pierre, Michael; Hayez, Aurélie; Sterpin, Christiane; De Backer, Olivier; Arnould, Thierry; Poumay, Yves; Michiels, Carine

    2012-01-01

    Hypoxia is a common characteristic of solid tumors associated with reduced response to radio- and chemotherapy, therefore increasing the probability of tumor recurrence. The aim of this study was to identify new mechanisms responsible for hypoxia-induced resistance in breast cancer cells. MDA-MB-231 and HepG2 cells were incubated in the presence of taxol or etoposide respectively under normoxia and hypoxia and apoptosis was analysed. A whole transcriptome analysis was performed in order to identify genes whose expression profile was correlated with apoptosis. The effect of gene invalidation using siRNA was studied on drug-induced apoptosis. MDA-MB-231 cells incubated in the presence of taxol were protected from apoptosis and cell death by hypoxia. We demonstrated that TMEM45A expression was associated with taxol resistance. TMEM45A expression was increased both in MDA-MB-231 human breast cancer cells and in HepG2 human hepatoma cells in conditions where protection of cells against apoptosis induced by chemotherapeutic agents was observed, i.e. under hypoxia in the presence of taxol or etoposide. Moreover, this resistance was suppressed by siRNA-mediated silencing of TMEM45A. Kaplan Meier curve showed an association between high TMEM45A expression and poor prognostic in breast cancer patients. Finally, TMEM45 is highly expressed in normal differentiated keratinocytes both in vitro and in vivo, suggesting that this protein is involved in epithelial functions. Altogether, our results unravel a new mechanism for taxol and etoposide resistance mediated by TMEM45A. High levels of TMEM45A expression in tumors may be indicative of potential resistance to cancer therapy, making TMEM45A an interesting biomarker for resistance

  12. Characterization of ERAS, a putative novel human oncogene, in skin and breast

    Energy Technology Data Exchange (ETDEWEB)

    Peña Avalos, B.L. de la

    2014-07-01

    Most human tumors have mutations in genes of the RAS small GTPase protein family. RAS works as a molecular switch for signaling pathways that modulate many aspects of cell behavior, including proliferation, differentiation, motility and death. Oncogenic mutations in RAS prevent GTP hydrolysis, locking RAS in a permanently active state, being the most common mutations in HRAS, KRAS and NRAS. The human RAS family consists of at least 36 different genes, many of which have been scarcely studied. One of these relatively unknown genes is ERAS (ES cell-expressed RAS), which is a constitutively active RAS protein, localized in chromosome X and expressed only in embryonic cells, being undetectable in adult tissues. New high throughput technologies have made it possible to screen complete cancer genomes for identification of mutations associated to cancer. Using the Sleeping Beauty (SB) transposon system, ERAS was identified as a putative novel oncogene in non-melanoma skin and breast cancers. The major aim of this project is to determine the general characteristics of ERAS as a putative novel human oncogene in skin and breast cells. Forced expression of ERAS results in drastic changes in cell shape, proliferation and motility. When ERAS is overexpressed in skin and breast human cells it is mainly localized in the cytoplasmic membrane. ERAS activates the phosphatidylinositol-3-OH kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway. ERAS-expressing cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and N-cadherin up-regulation and down-regulation of E-cadherin, which can be associated with increased malignancy, and invasive and metastatic potential. Our results suggest that inappropriate expression of ERAS lead to transformation of human cells. (Author)

  13. Human Listeriosis Presenting as Breast Abscess: Report of a Rare Case.

    Science.gov (United States)

    Kandi, Venkataramana

    2017-02-01

    An abscess is defined as a collection of pus in various tissues of the body including skin and other organs. Abscesses most commonly are formed on the skin under the armpits, groin areas, and rectal areas. Most abscesses involve microbial infections with few remaining sterile. The treatment of abscesses includes both medical and surgical intervention. In the era of multidrug resistance, isolation and identification of the causative microbe and testing for antimicrobial susceptible patterns assume greater significance for the better management of patients, thereby reducing the resultant morbidity and mortality. Listeria spp. are a group of aerobic and non-spore forming gram-positive bacilli. They are present in the environment, soil, and water. Listeria spp. have also been noted to be present as a normal intestinal flora of animals. They are known for their ability to thrive under both cold and hot environmental conditions. Human infections with Listeria spp. have not been frequently reported, mostly because of the difficulty in laboratory identification and complex clinical presentations. In humans, Listeria spp. have been frequently responsible for food poisoning and neonatal meningitis. Although not considered as a classic pathogen, Listeria spp. are associated with infections in elderly people, pregnant women, newborns, and persons with weakened immune systems. This report presents a case of breast abscess caused by Listeria spp. in a young lactating female belonging to rural India.

  14. Transcriptomic profiling of curcumin-treated human breast stem cells identifies a role for stearoyl-coa desaturase in breast cancer prevention.

    Science.gov (United States)

    Colacino, Justin A; McDermott, Sean P; Sartor, Maureen A; Wicha, Max S; Rozek, Laura S

    2016-07-01

    Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal, while remaining non-toxic to normal differentiated cells. We paired fluorescence-activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH-/CD44+/CD24-) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24- cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self-renewal. These results elucidate the mechanisms by which curcumin may act as a cancer-preventive compound and provide novel targets for cancer prevention and treatment.

  15. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.

    Science.gov (United States)

    Slamon, D J; Godolphin, W; Jones, L A; Holt, J A; Wong, S G; Keith, D E; Levin, W J; Stuart, S G; Udove, J; Ullrich, A

    1989-05-12

    Carcinoma of the breast and ovary account for one-third of all cancers occurring in women and together are responsible for approximately one-quarter of cancer-related deaths in females. The HER-2/neu proto-oncogene is amplified in 25 to 30 percent of human primary breast cancers and this alteration is associated with disease behavior. In this report, several similarities were found in the biology of HER-2/neu in breast and ovarian cancer, including a similar incidence of amplification, a direct correlation between amplification and over-expression, evidence of tumors in which overexpression occurs without amplification, and the association between gene alteration and clinical outcome. A comprehensive study of the gene and its products (RNA and protein) was simultaneously performed on a large number of both tumor types. This analysis identified several potential shortcomings of the various methods used to evaluate HER-2/neu in these diseases (Southern, Northern, and Western blots, and immunohistochemistry) and provided information regarding considerations that should be addressed when studying a gene or gene product in human tissue. The data presented further support the concept that the HER-2/neu gene may be involved in the pathogenesis of some human cancers.

  16. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    International Nuclear Information System (INIS)

    Klopfleisch, Robert; Lenze, Dido; Hummel, Michael; Gruber, Achim D

    2010-01-01

    Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a

  17. HDAC2 and HDAC5 Up-Regulations Modulate Survivin and miR-125a-5p Expressions and Promote Hormone Therapy Resistance in Estrogen Receptor Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Tsung Huang

    2017-12-01

    Full Text Available Intrinsic or acquired resistance to hormone therapy is frequently reported in estrogen receptor positive (ER+ breast cancer patients. Even though dysregulations of histone deacetylases (HDACs are known to promote cancer cells survival, the role of different HDACs in the induction of hormone therapy resistance in ER+ breast cancer remains unclear. Survivin is a well-known pro-tumor survival molecule and miR-125a-5p is a recently discovered tumor suppressor. In this study, we found that ER+, hormone-independent, tamoxifen-resistant MCF7-TamC3 cells exhibit increased expression of HDAC2, HDAC5, and survivin, but show decreased expression of miR-125a-5p, as compared to the parental tamoxifen-sensitive MCF7 breast cancer cells. Molecular down-regulations of HDAC2, HDAC5, and survivin, and ectopic over-expression of miR-125a-5p, increased the sensitivity of MCF7-TamC3 cells to estrogen deprivation and restored the sensitivity to tamoxifen. The same treatments also further increased the sensitivity to estrogen-deprivation in the ER+ hormone-dependent ZR-75-1 breast cancer cells in vitro. Kaplan–Meier analysis and receiver operating characteristic curve analysis of expression cohorts of breast tumor showed that high HDAC2 and survivin, and low miR-125a-5p, expression levels correlate with poor relapse-free survival in endocrine therapy and tamoxifen-treated ER+ breast cancer patients. Further molecular analysis revealed that HDAC2 and HDAC5 positively modulates the expression of survivin, and negatively regulates the expression miR-125a-5p, in ER+ MCF7, MCF7-TamC3, and ZR-75-1 breast cancer cells. These findings indicate that dysregulations of HDAC2 and HDAC5 promote the development of hormone independency and tamoxifen resistance in ERC breast cancer cells in part through expression regulation of survivin and miR-125a-5p.

  18. Increasing transmission of antibiotic resistance from animals to humans

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Frimodt-Møller, Niels

    2011-01-01

    usage of antibiotics which contributes most to resistance observed in humans, but also that the contribution from animals is large and larger than estimated just a few years ago. This indicates the need to implement restriction on antimicrobial usage for both humans and animals.......The importance of the animal reservoir for emergence of antimicrobial resistance in bacteria in humans is difficult to estimate. In this article we give our estimate of the importance and also highlight on which points we have become wiser during recent years. We conclude that it still is the human...

  19. Increasing transmission of antibiotic resistance from animals to humans

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Frimodt-Møller, Niels

    2011-01-01

    The importance of the animal reservoir for emergence of antimicrobial resistance in bacteria in humans is difficult to estimate. In this article we give our estimate of the importance and also highlight on which points we have become wiser during recent years. We conclude that it still is the human...... usage of antibiotics which contributes most to resistance observed in humans, but also that the contribution from animals is large and larger than estimated just a few years ago. This indicates the need to implement restriction on antimicrobial usage for both humans and animals....

  20. Analysis of CD83 antigen expression in human breast fibroadenoma and adjacent tissue

    Directory of Open Access Journals (Sweden)

    Marcus Nascimento Borges

    Full Text Available CONTEXT AND OBJECTIVE: Dendritic cell maturation is considered essential for starting an immune response. The CD83 antigen is an important marker of dendritic cell maturation. The objectives here were to analyze CD83 antigen expression in human breast fibroadenoma and breast tissue adjacent to the lesion and to identify clinical factors that might influence this expression. DESIGN AND SETTING: This was a retrospective study at a public university hospital, in which 29 histopathological samples of breast fibroadenoma and adjacent breast tissue, from 28 women of reproductive age, were analyzed. METHODS: The immunohistochemistry method was used to analyze the cell expression of the antigen. The antigen expression in the cells was evaluated by means of random manual counting using an optical microscope. RESULTS: Positive expression of the CD83 antigen in the epithelial cells of the fibroadenoma (365.52; standard deviation ± 133.13 in relation to the adjacent breast tissue cells (189.59; standard deviation ± 140.75 was statistically larger (P < 0.001. Several clinical features were analyzed, but only parity was shown to influence CD83 antigen expression in the adjacent breast tissue, such that positive expression was more evident in nulliparous women (P = 0.042. CONCLUSIONS: The expression of the CD83 antigen in the fibroadenoma was positive and greater than in the adjacent breast tissue. Positive expression of the antigen in the adjacent breast tissue was influenced by parity, and was significantly more evident in nulliparous women.

  1. miR-151-3p Targets TWIST1 to Repress Migration of Human Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ting-Chih Yeh

    Full Text Available TWIST1 is a highly conserved basic helix-loop-helix transcription factor that contributes to cancer metastasis by promoting an epithelial-mesenchymal transition and repressing E-cadherin gene expression in breast cancer. In this study, we explored the potential role of miR-151 in TWIST1 expression and cancer properties in human breast cancer cells. We found that the human TWIST1 3'UTR contains a potential binging site for miR-151-3p at the putative target sequence 5'-CAGUCUAG-3'. Using a TWIST1-3'UTR luciferase reporter assay, we demonstrated that the target sequence within the TWIST1 3'UTR is required for miR-151-3p regulation of TWIST1 expression. Moreover, we found that ectopic expression of miR-151-3p by infection with adenoviruses expressing miR-151 significantly decreased TWIST1 expression, migration and invasion, but did not affect cell growth and tumorsphere formation of human breast cancer cells. In addition, overexpression of the protein coding region without the 3'UTR of TWIST1 reversed the repression of cell migration by miR-151-3p. Furthermore, knockdown of miR-151-3p increased TWIST1 expression, reduced E-cadherin expression, and enhanced cell migration. In conclusion, these results suggest that miR-151-3p directly regulates TWIST1 expression by targeting the TWIST1 3'UTR and thus repressing the migration and invasion of human breast cancer cells by enhancing E-cadherin expression. Our findings add to accumulating evidence that microRNAs are involved in breast cancer progression by modulating TWIST1 expression.

  2. Efficacy and immunogenicity of live-attenuated human rotavirus vaccine in breast-fed and formula-fed European infants.

    Science.gov (United States)

    Vesikari, Timo; Prymula, Roman; Schuster, Volker; Tejedor, Juan-C; Cohen, Robert; Bouckenooghe, Alain; Damaso, Silvia; Han, Htay Htay

    2012-05-01

    Rotavirus is the main cause of severe gastroenteritis and diarrhea in infants and young children less than 5 years of age. Potential impact of breast-feeding on the efficacy and immunogenicity of human rotavirus G1P[8] vaccine was examined in this exploratory analysis. Healthy infants (N = 3994) aged 6-14 weeks who received 2 doses of human rotavirus vaccine/placebo according to a 0-1 or 0-2 month schedule were followed for rotavirus gastroenteritis during 2 epidemic seasons. Rotavirus IgA seroconversion rate (anti-IgA antibody concentration ≥ 20 mIU/mL) and geometric mean concentrations were measured prevaccination and 1-2 months post-dose 2. Vaccine efficacy against any and severe rotavirus gastroenteritis was analyzed according to the infants being breast-fed or exclusively formula-fed at the time of vaccination. Antirotavirus IgA seroconversion rate was 85.5% (95% confidence interval [CI]: 82.4-88.3) in breast-fed and 89.2% (95% CI: 84.2-93) in exclusively formula-fed infants; geometric mean concentrations in the respective groups were 185.8 U/mL (95% CI: 161.4-213.9) and 231.5 U/mL (95% CI: 185.9-288.2). Vaccine efficacy was equally high in breast-fed and exclusively formula-fed children in the first season but fell in breast-fed infants in the second rotavirus season. During the combined 2-year efficacy follow-up period, vaccine efficacy against any rotavirus gastroenteritis was 76.2% (95% CI: 68.7-82.1) and 89.8% (95% CI: 77.6-95.9) and against severe rotavirus gastroenteritis 88.4% (95% CI: 81.6-93) and 98.1% (95% CI: 88.2-100) in the breast-fed and exclusively formula-fed infants, respectively. The difference in immunogenicity of human rotavirus vaccine in breast-fed and exclusively formula-fed infants was small. Vaccine efficacy was equally high in breast-fed and exclusively formula-fed children in the first season. Breast-feeding seemed to reduce slightly the efficacy in the second season.

  3. Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    International Nuclear Information System (INIS)

    Peterson, Sarah M; Concino, Michael F; Liaw, Lucy; Martini, Paolo GV; Iskenderian, Andrea; Cook, Lynette; Romashko, Alla; Tobin, Kristen; Jones, Michael; Norton, Angela; Gómez-Yafal, Alicia; Heartlein, Michael W

    2010-01-01

    Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular

  4. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    Science.gov (United States)

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.

  5. Human health hazard from antimicrobial-resistant enterococci in animals and food

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Hammerum, Anette Marie; Collignon, P.

    2006-01-01

    The use of antimicrobial agents in the modern farm industry has created a reservoir of resistant bacteria in food animals. Foods of animal origin are often contaminated with enterococci that are likely to contribute resistance genes, virulence factors, or other properties to enterococci IN humans....... The potential hazard to human health from antimicrobial-resistant enterococci in animals is questioned by some scientists because of evidence of host specificity of enterococci. Similarly, the occurrences of specific nosocomial clones of enterococci in hospitals have lead to the misconception that antimicrobial-resistant...... to change the current view that antimicrobial-resistant enterococci from animals pose a threat to human health. On the contrary, antimicrobial resistance genes appear to spread freely between enterococci from different reservoirs, irrespective of their apparent host association....

  6. Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer

    International Nuclear Information System (INIS)

    Noetzel, Erik; Veeck, Jürgen; Niederacher, Dieter; Galm, Oliver; Horn, Felicitas; Hartmann, Arndt; Knüchel, Ruth; Dahl, Edgar

    2008-01-01

    Inhibitor of DNA binding/Inhibitor of differentiation 4 (ID4) is a critical factor for cell proliferation and differentiation in normal vertebrate development. ID4 has regulative functions for differentiation and growth of the developing brain. The role of ID1, ID2 and ID3 are expected to be oncogenic due to their overexpression in pancreatic cancer and colorectal adenocarcinomas, respectively. Aside from these findings, loss of ID3 expression was demonstrated in ovarian cancer. The aim of the present study was to reveal the factual role of ID4 in carcinogenesis in more detail, since its role for the pathogenesis of human breast cancer has been discussed controversially, assigning both oncogenic and tumour suppressive functions. ID4 promoter methylation, ID4 mRNA expression and ID4 protein expression were analysed in primary human breast cancer specimens using methylation-specific PCR (MSP) (n=170), semiquantitative realtime RT-PCR (n=46) and immunhistochemistry (n=3), respectively. In order to demonstrate a functional association of ID4 promoter methylation with its gene silencing, we performed DNA demethylation analysis with four human breast cell lines using MSP and semiquantitative realtime RT-PCR. In addition, we performed correlations of ID4 promoter methylation with ID4 mRNA and ID4 protein expression in matched samples of breast tumour and corresponding normal tissue. We carried out statistical analyses in order to find correlations between ID4 promoter methylation and clinicopathological parameters. Frequent ID4 promoter methylation was observed in primary breast cancer samples (69%, 117/170). We found a tight correlation (P<0.0001) between ID4 promoter methylation and loss of ID4 expression in primary breast cancer 3 specimens. Demethylating treatment with breast cancer cell lines was associated with clear ID4 mRNA re-expression. Tumours with ID4 promoter methylation showed distinct loss of ID4 expression on both transcription and protein level

  7. Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue.

    Science.gov (United States)

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R; Ingram, Marylou; Imam, S Ashraf

    2011-12-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue.

  8. Prevalence of mucosal and cutaneous human papillomavirus in Moroccan breast cancer

    Directory of Open Access Journals (Sweden)

    Amal ElAmrani

    2018-06-01

    Full Text Available Background: Due to recent technical improvements and some encouraging new results, there has been a resurgence of interest in the possibility that a substantial proportion of breast cancers (BCs may be caused by viral infections, including Human papillomavirus (HPV. The aim of this study was to determine the prevalence of mucosal and cutaneous HPV in tumours from Moroccan BC patients. Materials and methods: Frozen tumours from 76 BC cases and 12 controls were evaluated for the presence of 62 HPV-types using highly sensitive assays that combine multiplex polymerase chain reaction and bead-based Luminex technology. Results: HPV DNA was found in 25.0% of BC tumours and only 8.3% of controls. Beta and gamma HPV types were found in 10.5% and 6.6% of BC tumours, respectively. High-risk mucosal types HPV16 and 18 were not detected in the subjects, but other probable/possible high-risk or high-risk -HPV types (HPV51, 52, 58, 59, and 66 were found in 5.3% of BC tumours. Statistical analysis showed no significant difference between, controls, BC cases and the inflammatory status (p > 0.05. Conclusion: HPV DNA was found 3 times as frequently in the BC tumours as in the controls. However, this difference requires confirmation in a larger sample. Keywords: Breast cancer, Human papillomavirus, Inflammatory breast cancer, Type-specific multiplex genotyping, Morocco

  9. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  10. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  11. The assay of estrogen receptors in three components of human breast cancer tissue

    International Nuclear Information System (INIS)

    Lu Hanping; Gui Zhining

    1992-01-01

    The binding capacities of estrogen receptors in nuclear matrix, nuclei and cytosol of human breast cancer tissue (EmR, EnR, EcR) were estimated with radioligand binding assay of receptors. The average B max values of these components in 21 breast cancer specimens are 417.54 ± 170.95, 147.75 ± 98.32, 7.34 ± 5.33 fmol/mg protein, and those in 10 normal breast tissue specimens are 42.33 ± 8.49, 25.05 ± 7.81, 5.91 ± 2.28 fmol/mg protein. Comparing the cancer and normal breast tissues, there is significant difference in B max values of EmR and EnR (P max values of EcR (P > 0.10). The EmR/EnR value of 21 breast cancer tissue is 0.65 ± 0.10, and that of 10 normal breast tissue is 0.42 ± 0.04. There is statistical difference between the cancer and normal. 10 of 13 (77%) patients, who are EcR-positive, have higher EmR/EnR values (≥0.50). The results suggest that estrogen receptors are mainly located at the nuclear matrix, ER levels in nucleus, especially in nuclear matrix of breast cancer tissue are valuable parameters and may be useful for predicting whether the patient will be responsible to endocrine therapy

  12. Resistance to discontinuing breast cancer screening in older women: A qualitative study.

    Science.gov (United States)

    Housten, Ashley J; Pappadis, Monique R; Krishnan, Shilpa; Weller, Susan C; Giordano, Sharon H; Bevers, Therese B; Volk, Robert J; Hoover, Diana S

    2018-06-01

    Screening mammography is associated with reduced breast cancer-specific mortality; however, among older women, evidence suggests that the potential harms of screening may outweigh the benefits. We used a qualitative approach to examine the willingness of older women from different racial/ethnic groups to discontinue breast cancer screening. Women ≥70 years of age who reported having a screening mammogram in the past 3 years and/or reported that they intended to continue screening in the future were recruited for in-depth interviews. Participants who intended to continue screening were asked to describe how the following hypothetical scenarios would impact a decision to discontinue screening: health concerns or limited life expectancy, a physician's recommendation to discontinue, reluctance to undergo treatment, and recommendations from experts or governmental panels to stop screening. Semi-structured, face-to-face interviews were audio-recorded. Data coding and analysis followed inductive and deductive approaches. Regardless of the scenario, participants (n = 29) expressed a strong intention to continue screening. Based on the hypothetical physician recommendations, intentions to continue screening appeared to remain strong. They did not envision a change in their health status that would lead them to discontinue screening and were skeptical of expert/government recommendations. There were no differences observed according to age, race/ethnicity, or education. Among older women who planned to continue screening, intentions to continue breast cancer screening appear to be highly resilient and resistant to recommendations from physicians or expert/government panels. Copyright © 2018 John Wiley & Sons, Ltd.

  13. A Role for the NF-kb/Rel Transcription Factors in Human Breast Cancer

    National Research Council Canada - National Science Library

    Baldwin, Albert

    1998-01-01

    Human breast cancer is characterized by the inappropriate expression of growth factors, kinases and possibly certain transcription factors Our project has focused on the regulation of the NF-kB family...

  14. Prevalence and factors associated with breast milk donation in banks that receive human milk in primary health care units.

    Science.gov (United States)

    Meneses, Tatiana Mota Xavier de; Oliveira, Maria Inês Couto de; Boccolini, Cristiano Siqueira

    To estimate the prevalence and to analyze factors associated with breast milk donation at primary health care units in order to increase the human milk bank reserves. Cross-sectional study carried out in 2013 in Rio de Janeiro, Brazil. A representative sample of 695 mothers of children younger than 1 year attended to at the nine primary health care units with human milk donation services were interviewed. A hierarchical approach was used to obtain adjusted prevalence ratios (APR) by Poisson regression with robust variance. The final model included the variables associated with breast milk donation (p≤0.05). 7.3% of the mothers had donated breast milk. Having been encouraged to donate breast milk by healthcare professionals, relatives, or friends (APR=7.06), receiving information on breast milk expression by the primary health care unit (APR=3.65), and receiving help from the unit professionals to breastfeed (APR=2.24) were associated with a higher prevalence of donation. Admission of the newborn to the neonatal unit was associated with a lower prevalence of donation (APR=0.09). Encouragement to breast milk donation, and information and help provided by primary health care unit professionals to breastfeeding were shown to be important for the practice of human milk donation. Copyright © 2017. Published by Elsevier Editora Ltda.

  15. Glutathione Transferase GSTπ In Breast Tumors Evaluated By Three Techniques

    Directory of Open Access Journals (Sweden)

    Rafael Molina

    1993-01-01

    Full Text Available The glutathione transferases are involved in intracellular detoxification reactions. One of these, GSTπ, is elevated in some breast cancer cells, particularly cells selected for resistance to anticancer agents. We evaluated GSTπ expression in 60 human breast tumors by three techniques, immunohistochemistry, Northern hybridization, and Western blot analysis. There was a significant positive correlation between the three methods, with complete concordance seen in 64% of the tumors. There was strong, inverse relationship between GSTπ expression and steroid receptor status with all of the techniques utili zed. [n addition, there was a trend toward higher GSTπ expression in poorly differentiated tumors, but no correlation was found between tumor GSTπ content and DNA ploidy or %S-phase. GSTπ expression was also detected in adjacent benign breast tissue as well as infiltrating lymphocytes; this expression may contribute to GSTπ measurements using either Northern hybridization or Western blot analysis. These re sults suggest that immunohistochemistry is the method of choice for measuring GSTπ in breast tumors.

  16. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Franco-Molina Moisés A

    2010-11-01

    Full Text Available Abstract Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL and LD100 (14 ng/mL (*P Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  17. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.

    Science.gov (United States)

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Sierra-Rivera, Crystel A; Gómez-Flores, Ricardo A; Zapata-Benavides, Pablo; Castillo-Tello, Paloma; Alcocer-González, Juan Manuel; Miranda-Hernández, Diana F; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2010-11-16

    Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P colloidal silver. The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  18. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  19. 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer.

    Science.gov (United States)

    Klomp, Dennis W J; van de Bank, Bart L; Raaijmakers, Alexander; Korteweg, Mies A; Possanzini, Cecilia; Boer, Vincent O; van de Berg, Cornelius A T; van de Bosch, Maurice A A J; Luijten, Peter R

    2011-12-01

    This study demonstrates the feasibility of the noninvasive determination of important biomarkers of human (breast) tumor metabolism using high-field (7-T) MRI and MRS. (31) P MRSI at this field strength was used to provide a direct method for the in vivo detection and quantification of endogenous biomarkers. These encompass phospholipid metabolism, phosphate energy metabolism and intracellular pH. A double-tuned, dual-element transceiver was designed with focused radiofrequency fields for unilateral breast imaging and spectroscopy tuned for optimized sensitivity at 7 T. T(1) -weighted three-dimensional MRI and (1) H MRS were applied for the localization and quantification of total choline compounds. (31) P MRSI was obtained within 20 min per subject and mapped in three dimensions over the breast with pixel volumes of 10 mL. The feasibility of monitoring in vivo metabolism was demonstrated in two patients with breast cancer during neoadjuvant chemotherapy, validated by ex vivo high-resolution magic angle spinning NMR and compared with data from an age-matched healthy volunteer. Concentrations of total choline down to 0.4 mM could be detected in the human breast in vivo. Levels of adenosine and other nucleoside triphosphates, inorganic phosphate, phosphocholine, phosphoethanolamine and their glycerol diesters detected in glandular tissue, as well as in tumor, were mapped over the entire breast. Altered levels of these compounds were observed in patients compared with an age-matched healthy volunteer; modulation of these levels occurred in breast tumors during neoadjuvant chemotherapy. To our knowledge, this is the first comprehensive MRI and MRS study in patients with breast cancer, which reveals detailed information on the morphology and phospholipid metabolism from volumes as small as 10 mL. This endogenous metabolic information may provide a new method for the noninvasive assessment of prognostic and predictive biomarkers in breast cancer treatment. Copyright

  20. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    International Nuclear Information System (INIS)

    William Petersen, Ole; Lind Nielsen, Helga; Gudjonsson, Thorarinn; Villadsen, René; Rønnov-Jessen, Lone; Bissell, Mina J

    2001-01-01

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression

  1. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, Ren& #233; ; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  2. Are there biologic differences between male and female breast cancer explaining inferior outcome of men despite equal stage and treatment?

    International Nuclear Information System (INIS)

    Mueller, A.C.; Gani, C.; Rehm, H.M.E.; Eckert, F.; Bamberg, M.; Weinmann, M.; Hehr, T.

    2012-01-01

    Background: Reasons for inferior outcome of male compared to female breast cancer are still under debate. Therefore, we retrospectively analyzed male breast cancer cases to figure out possible treatment- and gender-related differences. Patients and methods: A total of 40 men (median age 62 years) were curatively treated with mastectomy and postoperative radiotherapy from 1982-2007. They presented predominantly in stages II and IIIb. Postoperative radiotherapy was applied with doses of 1.8-2.5 Gy to a median of 50 Gy including regional lymphatics in 22 patients. Adjuvant systemic treatment consisted of chemotherapy (22.5%) and antihormonal treatment (55%). For reasons of comparison, we estimated outcome of a virtual female matched cohort for no/equal to men/optimal adjuvant treatment with the Adjuvant.Online registered 8.0 algorithm. Results: After a median follow-up of 47 months, the estimated 5-year local control rate was 97%, disease-free and distant metastasis-free survival rates reached 79% and 82%, respectively. With update of survival data by tumor registry, mean overall survival reached 120 months with 5- and 10-year overall survival rates of 66% and 43%, respectively. Predominant prognostic factor was T-stage for overall survival (T1/2 vs. T4: > 80% vs. 30%). The generated virtual matched cohorts of women with equal characteristics reached superior 10-year-overall survival for no/equal to men/optimal adjuvant treatment with 55/59/68%. Conclusion: Compared to historical and virtual matched cohorts of women, male breast cancer patients had inferior outcome despite of equal stage and treatment which indicates that biological differences (of tumor or population) may contribute to worse prognosis. (orig.)

  3. Are there biologic differences between male and female breast cancer explaining inferior outcome of men despite equal stage and treatment?.

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.C.; Gani, C.; Rehm, H.M.E.; Eckert, F.; Bamberg, M.; Weinmann, M. [Tuebingen Univ. (Germany). Dept. of Radiooncology; Hehr, T. [Marienhospital Stuttgart (Germany). Dept. of Radiooncology

    2012-09-15

    Background: Reasons for inferior outcome of male compared to female breast cancer are still under debate. Therefore, we retrospectively analyzed male breast cancer cases to figure out possible treatment- and gender-related differences. Patients and methods: A total of 40 men (median age 62 years) were curatively treated with mastectomy and postoperative radiotherapy from 1982-2007. They presented predominantly in stages II and IIIb. Postoperative radiotherapy was applied with doses of 1.8-2.5 Gy to a median of 50 Gy including regional lymphatics in 22 patients. Adjuvant systemic treatment consisted of chemotherapy (22.5%) and antihormonal treatment (55%). For reasons of comparison, we estimated outcome of a virtual female matched cohort for no/equal to men/optimal adjuvant treatment with the Adjuvant.Online {sup registered} 8.0 algorithm. Results: After a median follow-up of 47 months, the estimated 5-year local control rate was 97%, disease-free and distant metastasis-free survival rates reached 79% and 82%, respectively. With update of survival data by tumor registry, mean overall survival reached 120 months with 5- and 10-year overall survival rates of 66% and 43%, respectively. Predominant prognostic factor was T-stage for overall survival (T1/2 vs. T4: > 80% vs. 30%). The generated virtual matched cohorts of women with equal characteristics reached superior 10-year-overall survival for no/equal to men/optimal adjuvant treatment with 55/59/68%. Conclusion: Compared to historical and virtual matched cohorts of women, male breast cancer patients had inferior outcome despite of equal stage and treatment which indicates that biological differences (of tumor or population) may contribute to worse prognosis. (orig.)

  4. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hekmat, Omid; Munk, Stephanie; Fogh, Louise

    2013-01-01

    may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated......Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass...... spectrometry to analyze global proteome and phosphoproteome differences of MCF-7 breast cancer cells expressing high or low levels of TIMP-1. In TIMP-1 high expressing cells, 312 proteins and 452 phosphorylation sites were up-regulated. Among these were the cancer drug targets topoisomerase 1, 2A and 2B, which...

  5. Investigating the effects of Pentoxifylline on human breast cancer cells using Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Peeyush N. Goel

    2015-03-01

    Full Text Available Breast cancer is one of the leading causes of cancer-related deaths in a global scenario. In the present study, biochemical changes exerted upon Pentoxifylline (PTX treatment had been appraised in human breast cancer cells using Raman spectroscopy. There are no clinically approved methods to monitor such therapeutic responses available. The spectral profiling is suggestive of changes in DNA, protein and lipid contents showing a linear relationship with drug dosage. Further, multivariate analysis using principal-component based linear-discriminant-analysis (PC-LDA was employed for classifying the control and the PTX treated groups. These findings support the feasibility of Raman spectroscopy as an alternate/adjunct label-free, objective method for monitoring drug-induced modifications against breast cancer cells.

  6. Metabolic fate of neutral human milk oligosaccharides in exclusively breast-fed infants.

    Science.gov (United States)

    Dotz, Viktoria; Rudloff, Silvia; Meyer, Christina; Lochnit, Günter; Kunz, Clemens

    2015-02-01

    Various biological effects have been postulated for human milk oligosaccharides (HMO), as deduced from in vitro, animal, and epidemiological studies. Little is known about their metabolic fate in vivo in the breast-fed infant, which is presented here. Human milk and infant urine and feces were collected from ten mother-child pairs and analyzed by MALDI-TOF MS (/MS), accompanied by high-performance anion-exchange chromatography with pulsed amperometric detection. Previously, we detected intact small and complex HMO in infant urine, which had been absorbed from gut, as verified via intrinsic (13) C-labeling. Our current work reveals the presence of novel HMO metabolites in urine and feces of breast-fed infants. The novel metabolites were identified as acetylated HMOs and other HMO-like structures, produced by the infants or by their gut microbiota. The finding of secretor- or Lewis-specific HMO in the feces/urine of infants fed with nonsecretor or Lewis-negative milk suggested a correspondent modification in the infant. Our study reveals new insights into the metabolism of neutral HMO in exclusively breast-fed infants and provides further indications for multiple factors influencing HMO metabolism and functions that should be considered in future in vivo investigations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data

    International Nuclear Information System (INIS)

    Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T. III

    2013-01-01

    Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphing technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n= 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the “base” and “target” for morphing. Several combinations of transformations were applied to morph between the “base’ and “target” datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing

  8. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xuchen Cao; Bowen Liu; Wenfeng Cao; Weiran Zhang; Fei Zhang; Hongmeng Zhao; Ran Meng

    2013-01-01

    Apigenin (4',5,7-trihydroxyflavone) is a member of the flavone subclass of flavonoids present in fruits and vegetables.The involvement of autophagy in the apigenin-induced apoptotic death of human breast cancer cells was investigated.Cell proliferation and viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays.Flow cytometry,fluorescent staining and Western blot analysis were employed to detect apoptosis and autophagy,and the role of autophagy was assessed using autophagy inhibitors.Apigenin dose-and time-dependently repressed the proliferation and clonogenic survival of the human breast cancer T47D and MDA-MB-231 cell lines.The death of T47D and MDA-MB-231 cells was due to apoptosis associated with increased levels of Caspase3,PARP cleavage and Bax/Bcl-2 ratios.The results from flow cytometry and fluorescent staining also verified the occurrence of apoptosis.In addition,the apigenin-treated cells exhibited autophagy,as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles (AVOs)by flow cytometry.Furthermore,the results of the Western blot analysis revealed that the level of LC3-Ⅱ,the processed form of LC3-Ⅰ,was increased.Treatment with the autophagy inhibitor,3-methyladenine (3-MA),significantly enhanced the apoptosis induced by apigenin,which was accompanied by an increase in the level of PARP cleavage.Similar results were also confirmed by flow cytometry and fluorescence microscopy.These results indicate that apigenin has apoptosis-and autophagy-inducing effects in breast cancer cells.Autophagy plays a cyto-protective role in apigenin-induced apoptosis,and the combination of apigenin and an autophagy inhibitor may be a promising strategy for breast cancer control.

  9. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.; Arold, Stefan T.; Chauhan, Gaurav B.; Blachno, Korina V.; Deng, Nanfu; Chang, Wei-Chao; Jin, Quanri; Huang, Tzu-Hsuan; Hsu, Jung-Mao; Brady, Samuel W.; Bartholomeusz, Chandra; Ladbury, John E.; Stone, Steve; Yu, Dihua; Hung, Mien-Chie; Esteva, Francisco J.

    2014-01-01

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  10. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  11. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  12. Compartmental modelling of the pharmacokinetics of a breast cancer resistance protein.

    Science.gov (United States)

    Grandjean, Thomas R B; Chappell, Mike J; Yates, James T W; Jones, Kevin; Wood, Gemma; Coleman, Tanya

    2011-11-01

    A mathematical model for the pharmacokinetics of Hoechst 33342 following administration into a culture medium containing a population of transfected cells (HEK293 hBCRP) with a potent breast cancer resistance protein inhibitor, Fumitremorgin C (FTC), present is described. FTC is reported to almost completely annul resistance mediated by BCRP in vitro. This non-linear compartmental model has seven macroscopic sub-units, with 14 rate parameters. It describes the relationship between the concentration of Hoechst 33342 and FTC, initially spiked in the medium, and the observed change in fluorescence due to Hoechst 33342 binding to DNA. Structural identifiability analysis has been performed using two methods, one based on the similarity transformation/exhaustive modelling approach and the other based on the differential algebra approach. The analyses demonstrated that all models derived are uniquely identifiable for the experiments/observations available. A kinetic modelling software package, namely FACSIMILE (MPCA Software, UK), was used for parameter fitting and to obtain numerical solutions for the system equations. Model fits gave very good agreement with in vitro data provided by AstraZeneca across a variety of experimental scenarios. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Identification of EPSTI1, a novel gene induced by epithelial-stromal interaction in human breast cancer

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Rønnov-Jessen, Lone; Villadsen, René

    2002-01-01

    reading frame (ORF) encoding a putative 307-amino-acid protein, and mapped to chromosome 13q13.3. EPSTI1 was highly upregulated in invasive breast carcinomas compared with normal breast. In a tissue mRNA panel the most prominent expression of EPSTI1 was found in placenta. Thus, EPSTI1 is a novel human...

  14. Assessment of in vitro drug resistance of human breast cancer cells subcultured from biopsy specimens

    Czech Academy of Sciences Publication Activity Database

    Krásná, Luboslava; Netíková, I.; Chaloupková, Alena; Taišlová, Eva; Zimovjanová, M.; Veselý, Pavel; Daneš, J.; Petruželka, L.; Matoušková, Eva

    2003-01-01

    Roč. 23, 3B (2003), s. 2593-2600 ISSN 0250-7005 R&D Projects: GA MZd NC6734 Institutional research plan: CEZ:AV0Z5052915 Keywords : Breast cancer * 3T3 feeder-layer culture technique * MTT test Subject RIV: EA - Cell Biology Impact factor: 1.347, year: 2003

  15. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk.

    Science.gov (United States)

    Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn

    2017-07-01

    Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.

  16. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis

    International Nuclear Information System (INIS)

    Wang, Yifan; Li, Shu Jie; Pan, Juncheng; Che, Yongzhe; Yin, Jian; Zhao, Qing

    2011-01-01

    Highlights: → Hv1 is specifically expressed in highly metastatic human breast tumor tissues. → Hv1 regulates breast cancer cytosolic pH. → Hv1 acidifies extracellular milieu. → Hv1 exacerbates the migratory ability of metastatic cells. -- Abstract: The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.

  17. Prolactin response to thyrotropin-releasing hormone in early and advanced human breast cancer

    International Nuclear Information System (INIS)

    Barni, S.; Lissoni, P.; Tancini, G.

    1986-01-01

    While prolactin (PRL) has been shown to stimulate the development of mammary carcinoma in several animal species, its role in human breast cancer remains to be established. To further investigate PRL secretion in human breast cancer, its basal levels and response to thyrotropin-releasing hormone (TRH) were evaluated in 16 patients (6 with no metastases and 10 with metastatic locations). The control group consisted of 19 healthy women. High PRL basal concentrations were seen in 2 patients only; no significant differences were found between the other patients and the normal subjects. The PRL increase induced by TRH administration was significantly higher in patients than in controls. Finally a change in the hormonal secretion was found after chemotherapy in 3 of the 5 patients in whom PRL response to TRH was evaluated either before or 10-12 days after a cycle of intravenous CMF adjuvant chemotherapy. These results demostrate the existence of an exaggerated response of PRL to TRH in patients with breast cancer, even in the presence of normal basal levels. Moreover, they would seem to suggest a possible influence of CMF on PRL response to TRH stimulation

  18. Transmission of antibiotic resistance from animals to humans

    NARCIS (Netherlands)

    Huijbers, P.M.C.

    2016-01-01

    Huijbers, P.M.C. (2016). Transmission of antibiotic resistance from animals to humans: Broilers as a reservoir of ESBL-producing bacteria. PhD thesis, Wageningen University, Wageningen, the Netherlands.

    Antibiotic resistance in animals becomes a public health issue when there is

  19. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells.

    Science.gov (United States)

    Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos

    2013-02-01

    Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.

  20. Prevalence and factors associated with breast milk donation in banks that receive human milk in primary health care units,

    Directory of Open Access Journals (Sweden)

    Tatiana Mota Xavier de Meneses

    Full Text Available Abstract Objective: To estimate the prevalence and to analyze factors associated with breast milk donation at primary health care units in order to increase the human milk bank reserves. Methods: Cross-sectional study carried out in 2013 in Rio de Janeiro, Brazil. A representative sample of 695 mothers of children younger than 1 year attended to at the nine primary health care units with human milk donation services were interviewed. A hierarchical approach was used to obtain adjusted prevalence ratios (APR by Poisson regression with robust variance. The final model included the variables associated with breast milk donation (p ≤ 0.05. Results: 7.3% of the mothers had donated breast milk. Having been encouraged to donate breast milk by healthcare professionals, relatives, or friends (APR = 7.06, receiving information on breast milk expression by the primary health care unit (APR = 3.65, and receiving help from the unit professionals to breastfeed (APR = 2.24 were associated with a higher prevalence of donation. Admission of the newborn to the neonatal unit was associated with a lower prevalence of donation (APR = 0.09. Conclusions: Encouragement to breast milk donation, and information and help provided by primary health care unit professionals to breastfeeding were shown to be important for the practice of human milk donation.

  1. Expression of Prostacyclin-Synthase in Human Breast Cancer: Negative Prognostic Factor and Protection against Cell Death In Vitro

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2015-01-01

    Full Text Available Endogenously formed prostacyclin (PGI2 and synthetic PGI2 analogues have recently been shown to regulate cell survival in various cell lines. To elucidate the significance of PGI2 in human breast cancer, we performed immunohistochemistry to analyze expression of prostacyclin-synthase (PGIS in 248 human breast cancer specimens obtained from surgical pathology files. We examined patients’ 10-year survival retrospectively by sending a questionnaire to their general practitioners and performed univariate analysis to determine whether PGIS expression correlated with patient survival. Lastly, the effects of PGI2 and its analogues on cell death were examined in a human breast cancer cell line (MCF-7 and a human T-cell leukemia cell line (CCRF-CEM. PGIS expression was observed in tumor cells in 48.7% of samples and was associated with a statistically significant reduction in 10-year survival (P=0.038; n=193. Transient transfection of PGIS into MCF-7 cells exposed to sulindac increased cell viability by 50% and exposure to carbaprostacyclin protected against sulindac sulfone induced apoptosis in CCRF-CEM cells. Expression of PGIS is correlated with a reduced patient survival and protects against cell death in vitro, suggesting that PGIS is a potential therapeutic target in breast cancer.

  2. Novel approaches to target HER2-positive breast cancer: trastuzumab emtansine

    International Nuclear Information System (INIS)

    Recondo, Gonzalo Jr; Vega, Maximo de la; Galanternik, Fernando; Díaz-Cantón, Enrique; Leone, Bernardo Amadeo; Leone, José Pablo

    2016-01-01

    The human epidermal growth factor receptor 2 (HER2) is overexpressed in 20% of breast carcinomas. Prior to the development of targeted therapies, HER2-positive breast cancer was associated with more aggressive disease and poor prognosis. Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that results from the combination of trastuzumab and DM1, a derivative of the antimicrotubule agent maytansine. This molecule has the ability to enhance cytotoxic drug delivery to specifically targeted cells that overexpress HER2, therefore, maximizing efficacy while sparing toxicity. In recent years, T-DM1 has shown to improve outcomes in metastatic HER2-positive breast cancer that is resistant to trastuzumab. In addition, T-DM1 is currently being tested in the neoadjuvant and adjuvant settings to identify patients who may benefit from this therapy. This review focuses on the mechanism of action, early and late-phase clinical trials, and ongoing studies of T-DM1 in HER2-positive breast cancer

  3. Establishment and characterization of two human breast carcinoma cell lines by spontaneous immortalization: Discordance between Estrogen, Progesterone and HER2/neu receptors of breast carcinoma tissues with derived cell lines

    Directory of Open Access Journals (Sweden)

    Kamalidehghan Behnam

    2012-10-01

    Full Text Available Abstract Background Breast cancer is one of the most common cancers among women throughout the world. Therefore, established cell lines are widely used as in vitro experimental models in cancer research. Methods Two continuous human breast cell lines, designated MBC1 and MBC2, were successfully established and characterized from invasive ductal breast carcinoma tissues of Malaysian patients. MBC1 and MBC2 have been characterized in terms of morphology analysis, population doubling time, clonogenic formation, wound healing assay, invasion assay, cell cycle, DNA profiling, fluorescence immunocytochemistry, Western blotting and karyotyping. Results MBC1 and MBC2 exhibited adherent monolayer epithelial morphology at a passage number of 150. Receptor status of MBC1 and MBC2 show (ER+, PR+, HER2+ and (ER+, PR-, HER2+, respectively. These results are in discordance with histopathological studies of the tumoral tissues, which were triple negative and (ER-, PR-, HER2+ for MBC1 and MBC2, respectively. Both cell lines were capable of growing in soft agar culture, which suggests their metastatic potential. The MBC1 and MBC2 metaphase spreads showed an abnormal karyotype, including hyperdiploidy and complex rearrangements with modes of 52–58 chromosomes per cell. Conclusions Loss or gain in secondary properties, deregulation and specific genetic changes possibly conferred receptor changes during the culturing of tumoral cells. Thus, we hypothesize that, among heterogenous tumoral cells, only a small minority of ER+/PR+/HER2+ and ER+/PR-/HER2+ cells with lower energy metabolism might survive and adjust easily to in vitro conditions. These cell lines will pave the way for new perspectives in genetic and biological investigations, drug resistance and chemotherapy studies, and would serve as prototype models in Malaysian breast carcinogenesis investigations.

  4. Hormones and breast cancer: can we use them in ways that could reduce the risk?

    Directory of Open Access Journals (Sweden)

    Khalid Mahmud

    2011-12-01

    Full Text Available Many hormones promote or inhibit breast cancer in different ways. These effects and the mechanisms involved are reviewed in order to suggest a potentially safer use of hormones. Natural estrogens, administered transdermally, and natural progesterone may be the safest combination of female hormones. Increased intake of cruciferous vegetables could provide additional safety by improving 2-hydoxyestrone and diminishing 16 alphahydroxyestrone. Testosterone and dehydroepiandrosterone (DHEA may directly inhibit breast cancer, but could potentially stimulate it by being aromatized into estrogen in the breast. Modest doses with blood level monitoring appear logical. Melatonin and oxytocin are inhibitory to breast and other cancers. Insulin is a growth factor for breast cancer. Managing insulin resistance before the onset of diabetes could reduce the risk. Tri-iodothyronine (T3 has multiple anti-breast cancer effects. Synthroid may not increase T3 levels adequately. Human growth hormone does not appear to increase risk; but it should not be given for performance enhancement.

  5. Pleurotus eous polysaccharides suppress angiogenesis and induce apoptosis via ROS-dependent JNK activation and mitochondrial mediated mechanisms in MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Jin-Kai Xu

    2015-03-01

    Full Text Available Breast cancer is one of the most prevalent cancers among women worldwide. Chemotherapy generally leads to drug resistance and severe side effects thus making it crucial to identify and develop highly efficient chemotherapeutic agents. Recently, edible mushrooms have been strongly investigated owing to their nutritional values and bioactive compounds with health benefits. The present study investigates the effects of polysaccharides isolated from the fruiting bodies of oyster mushroom, Pleutorus eous on MCF-7 human breast cancer cells. Viability of MCF-7 following exposure to P. eous polysaccharides (PEP (50 - 250 µg/mL were markedly decreased. A raise in the levels of Reactive Oxygen Species (ROS and apoptotic cell counts were observed following PEP treatment. Futhermore, PEP down-regulated VEGF and Bcl-2 and raised caspase-3, caspase-9, Bax, phospho-JNK expressions and as well caused a significant decrease in mitochondrial membrane potential of MCF-7 cells. Thus, PEP effectively suppressed angiogenesis by down-regulating VEGF, and induced apoptosis.

  6. Loss of heterozygosity on the X chromosome in human breast cancer.

    Science.gov (United States)

    Loupart, M L; Adams, S; Armour, J A; Walker, R; Brammar, W; Varley, J

    1995-08-01

    The analysis of loss of heterozygosity (LOH) in tumours can be a powerful tool for mapping the sites of tumour suppressor genes in the human genome. A panel of breast cancer patients was assembled as pairs of tumour and lymphocyte DNA samples and LOH studies carried out by Southern hybridisation with polymorphic loci mapping to the X chromosome with appropriate controls. Deletion mapping revealed a high frequency of small regionalised deletions, defining at least three independent regions, one of which is particularly well mapped to a 500 kb stretch of DNA in the distal portion of the pseudoautosomal region of Xp. A second region has been identified within the pseudoautosomal region close to the pseudoautosomal boundary, and there is a third discrete site of loss on distal Xq. Perturbations of sequences at these regions represent independent events in a number of patients. This study represents the first detailed analysis of LOH on the X chromosome in human breast tumours, the results of which indicate that at least three regions of this chromosome are involved in the disease.

  7. Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics.

    Science.gov (United States)

    Sotgia, Federica; Fiorillo, Marco; Lisanti, Michael P

    2017-09-15

    Here, we used a data-mining and informatics approach to discover new biomarkers of resistance to hormonal therapy in breast cancer. More specifically, we investigated whether nuclear-encoded genes associated with mitochondrial biogenesis can be used to predict tumor recurrence, distant metastasis and treatment failure in high-risk breast cancer patients. Overall, this strategy allowed us to directly provide in silico validation of the prognostic value of these mitochondrial components in large and clinically relevant patient populations, with >15 years of follow-up data. For this purpose, we employed a group of 145 ER(+) luminal A breast cancer patients, with lymph-node (LN) metastasis at diagnosis, that were treated with tamoxifen, but not any chemotherapy agents. Using this approach, we identified >60 new individual mitochondrial biomarkers that predicted treatment failure and tumor recurrence, with hazard-ratios (HR) of up to 4.17 ( p =2.2e-07). These include mitochondrial chaperones (HSPD1, HSPA9), membrane proteins (VDAC2, TOMM70A) and anti-oxidants (SOD2), as well as 18 different mitochondrial ribosomal proteins (MRPs) and >20 distinct components of the OXPHOS complexes. In addition, we combined 4 mitochondrial proteins (HSPD1, UQCRB, MRPL15, COX17), to generate a compact mitochondrial gene signature, associated with a HR of 5.34 ( p =1e-09). This signature also successfully predicted distant metastasis and was effective in larger groups of ER(+) ( N =2,447), basal ( N =540) and HER2(+) ( N =193) breast cancers. It was also effective in all breast cancers ( N =3,180), if considered together as a single group. Based on this analysis, we conclude that mitochondrial biogenesis should be considered as a new therapeutic target for overcoming tumor recurrence, distant metastasis and treatment failure in patients with breast cancer. In summary, we identified individual mitochondrial biomarkers and 2 compact mitochondrial gene signatures that can be used to predict

  8. Developing Breast Cancer Program at Xavier; Genomic and Proteomic Analysis of Signaling Pathways Involved in Xenohormone and MEK5 Regulation of Breast Cancer

    Science.gov (United States)

    2010-05-01

    Tagatose are rare. In this study we have determined the effect of these rare ketohexoses on breast cancer cell proliferation and estrogen signalling...Cancer Center (TCC) will build a core of human talent that will address scientific problems such as drug resistance and the effect of environmental agents...pathways for ER(+) (MCF-7) and ER(-) (MCF-7-MEK5) as potentially more effective therapeutic targets. 11 Abstract of RCMI proposal submitted to

  9. Influence of IFN-gamma and its receptors in human breast cancer

    Directory of Open Access Journals (Sweden)

    Paniagua Ricardo

    2007-08-01

    Full Text Available Abstract Background Interferons are a group of proteins that trigger multiple responses including prevention of viral replication, inhibition of cell growth, and modulation of cell differentiation. In different mammary carcinoma cell lines IFNγ induces growth arrest at mid-G1. At the present there are no in vivo studies in human breast. The aim of this study was to investigate the expression patterns of IFNγ and its two receptors (IFNγ-Rα and IFNγ-Rβ by Western blot and immunohistochemistry, in order to elucidate its role in the different types of human breast cancer (in situ and infiltrative. Methods Immunohistochemical and semiquantitative study of IFNγ, its receptors types (IFNγ-Rα and IFNγ-Rβ, cell proliferation (proliferating cell nuclear antigen, also named PCNA, and apoptosis (TUNEL method was carried between the three breast groups (fibrocystic lesions, in situ tumors and infiltrating tumors. Results In the three groups of patients, IFNγ and IFNγ-Rα immunoreactions appeared in the cytoplasm while IFNγ-Rβ also was found in the nucleus. The optical density to IFNγ was higher in in situ carcinoma than in benign and infiltrating tumors. When we observed IFNγ-Rα, the optical density was lower in infiltrating carcinoma than in benign and in situ tumors (the higher density. To IFNγ-Rβ, the optical density was similar in the three group samples. In tumor samples PCNA and TUNEL index was significantly higher; than in benign diseases. PCNA index increased with the malignance. No significant differences were found between cancer types to TUNEL. IFNγ could be a potential therapeutic tool in breast cancer. However, tumor cells are able to escape from the control of this cytokine in the early tumor stages; this is probably due to a decreased expression of IFNγ, or also to an alteration of either its receptors or some transduction elements. Conclusion We conclude that the decrease in the % positive samples that expressed IFN

  10. In vitro response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells exposed to 60Co at single fraction

    International Nuclear Information System (INIS)

    Andrade, Lidia Maria; Campos, Tarcisio Passos Ribeiro de; Leite, M.F.; Goes, A.M.

    2005-01-01

    Radiotherapy using gamma rays is a common modality of breast cancer treatment. The aim of this research is to investigate the biological response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells (PBMC) exposed in vitro to 60 Co irradiation at a single fraction of 10 Gy, 25 Gy and 50 Gy doses at 136,4 cGy.min -1 rate. Cells were irradiated at room temperature by the Theratron 80 radiotherapy system. Biological response was evaluated through cellular viability using MTT assay and nucleus damages visualized by Propidium Iodide assay and electrophoresis agarose gel after gamma irradiation. Nucleus damages induced by 60 Co irradiation were compared to damage caused by cell exposure to 10% methanol. The 50 Gy dose of irradiation did not stimulate nucleus damages at the same level as that affected by 10% methanol induction in the MDAMB-231. Further studies are necessary to understand these mechanisms in the MDAMB-231 human breast carcinoma cell line.(author)

  11. Regulation of gene expression in human mammary epithelium: effect of breast pumping

    Science.gov (United States)

    Little is known of the molecular regulation of human milk production because of limitations in obtaining mammary tissue from lactating women. Our objectives were to evaluate whether RNA isolated from breast milk fat globules (MFGs) could be an alternative to mammary biopsies and to determine whether...

  12. Identification of H-Ras-Specific Motif for the Activation of Invasive Signaling Program in Human Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Hae-Young Yong

    2011-02-01

    Full Text Available Increased expression and/or activation of H-Ras are often associated with tumor aggressiveness in breast cancer. Previously, we showed that H-Ras, but not N-Ras, induces MCF10A human breast epithelial cell invasion and migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. In an attempt to determine the sequence requirement directing the divergent phenotype induced by H-Ras and N-Ras with a focus on the induction of human breast cell invasion, we investigated the structural and functional relationships between H-Ras and N-Ras using domain-swap and site-directed mutagenesis approaches. Here, we report that the hypervariable region (HVR, consisting of amino acids 166 to 189 in H-Ras, determines the invasive/migratory signaling program as shown by the exchange of invasive phenotype by swapping HVR sequences between H-Ras and N-Ras. We also demonstrate that the H-Ras-specific additional palmitoylation site at Cys184 is not responsible for the signaling events that distinguish between H-Ras and N-Ras. Importantly, this work identifies the C-terminal HVR, especially the flexible linker domain with two consecutive proline residues Pro173 and Pro174, as a critical domain that contributes to activation of H-Ras and its invasive potential in human breast epithelial cells. The present study sheds light on the structural basis for the Ras isoform-specific invasive program of breast epithelial cells, providing information for the development of agents that specifically target invasion-related H-Ras pathways in human cancer.

  13. Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance.

    Directory of Open Access Journals (Sweden)

    Bálint Tegze

    Full Text Available BACKGROUND: Developing chemotherapy resistant cell lines can help to identify markers of resistance. Instead of using a panel of highly heterogeneous cell lines, we assumed that truly robust and convergent pattern of resistance can be identified in multiple parallel engineered derivatives of only a few parental cell lines. METHODS: Parallel cell populations were initiated for two breast cancer cell lines (MDA-MB-231 and MCF-7 and these were treated independently for 18 months with doxorubicin or paclitaxel. IC50 values against 4 chemotherapy agents were determined to measure cross-resistance. Chromosomal instability and karyotypic changes were determined by cytogenetics. TaqMan RT-PCR measurements were performed for resistance-candidate genes. Pgp activity was measured by FACS. RESULTS: All together 16 doxorubicin- and 13 paclitaxel-treated cell lines were developed showing 2-46 fold and 3-28 fold increase in resistance, respectively. The RT-PCR and FACS analyses confirmed changes in tubulin isofom composition, TOP2A and MVP expression and activity of transport pumps (ABCB1, ABCG2. Cytogenetics showed less chromosomes but more structural aberrations in the resistant cells. CONCLUSION: We surpassed previous studies by parallel developing a massive number of cell lines to investigate chemoresistance. While the heterogeneity caused evolution of multiple resistant clones with different resistance characteristics, the activation of only a few mechanisms were sufficient in one cell line to achieve resistance.

  14. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway

    International Nuclear Information System (INIS)

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-01-01

    Highlights: ► Cathepsins B and D were markedly enhanced by octylphenol (OP) in MCF-7 cells. ► OP may accelerate breast cancer cell growth and cathepsins via ER-mediated signaling. ► Breast cancer cells exposed with OP to mouse model were more aggressive. ► OP can promote metastasis through the amplification of cathepsins B and D via ER-mediated signaling pathway. -- Abstract: Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48 h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10 −6 M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of

  15. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer.

    Science.gov (United States)

    Zhang, Ting; Luo, Jingwen; Fu, Yao; Li, Hanmei; Ding, Rui; Gong, Tao; Zhang, Zhirong

    2017-02-01

    Paclitaxel (PTX) is a widely used antineoplastic drug in clinic. Due to poor aqueous solubility, it is administrated by intravenous infusion of cremophor EL containing formulation with serious adverse effects. The low oral bioavailability is a great challenge for oral formulation development. In addition, P-gp mediated multidrug resistance limit its clinical use in various resistant cancers. In this study, a novel super-antiresistant PTX micelle formulation for oral administration was developed. A P-gp inhibitor, bromotetrandrine (W198) was co-encapsulated in the micelle. The micelles were composed of Solutol HS 15 and d-a-tocopheryl polyethylene glycol succinate to avoid Cremophor EL induced toxicity. The micelles were round with a mean particle size of ∼13nm and an encapsulation efficiency of ∼90%. A series of in vitro evaluations were performed in non-resistant MCF-7 cells and resistant MCF-7/Adr cells. The super-antiresistant PTX micelles showed higher cell uptake efficiency, significantly increased cytotoxicity and antimitotic effect in drug resistant MCF-7/Adr cells when compared with Taxol and other PTX micelle formulations. Compared with Taxol, the super-antiresistant PTX micelles significantly improved bioavailability after oral administration in rats, and inhibited tumor growth in multidrug resistance xenografted MCF-7/Adr nude mice. In summary, the noval super-antiresistant PTX micelles showed a great potential for oral delivery of PTX against resistant breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Fucoidan cytotoxicity against human breast cancer T47D cell line increases with higher level of sulfate ester group

    Science.gov (United States)

    Saepudin, Endang; Alfita Qosthalani, Fildzah; Sinurat, Ellya

    2018-01-01

    The anticancer activity of different sulfate ester group content in different molecular weight was examined. The anticancer activity was achieved in vitro on human breast cancer T47D cell line. Fucoidan with lower molecular weight (5.79 kDa) tends to have lower sulfate ester group content (8.69%) and resulted in higher IC50 value (184.22 μg/mL). While fucoidan with higher molecular weight (785.12 kDa) tends to have higher sulfate level (18.63%) and achieved lower IC50 value (75.69 μg/mL). The result showed that in order to maintain fucoidan cytotoxic activity against human breast cancer T47D cell line, the sulfate content should be remain high. Keywords: fucoidan, sulfate ester group, human breast cancer

  17. Gene expression profiling of human breast tissue samples using SAGE-Seq.

    Science.gov (United States)

    Wu, Zhenhua Jeremy; Meyer, Clifford A; Choudhury, Sibgat; Shipitsin, Michail; Maruyama, Reo; Bessarabova, Marina; Nikolskaya, Tatiana; Sukumar, Saraswati; Schwartzman, Armin; Liu, Jun S; Polyak, Kornelia; Liu, X Shirley

    2010-12-01

    We present a powerful application of ultra high-throughput sequencing, SAGE-Seq, for the accurate quantification of normal and neoplastic mammary epithelial cell transcriptomes. We develop data analysis pipelines that allow the mapping of sense and antisense strands of mitochondrial and RefSeq genes, the normalization between libraries, and the identification of differentially expressed genes. We find that the diversity of cancer transcriptomes is significantly higher than that of normal cells. Our analysis indicates that transcript discovery plateaus at 10 million reads/sample, and suggests a minimum desired sequencing depth around five million reads. Comparison of SAGE-Seq and traditional SAGE on normal and cancerous breast tissues reveals higher sensitivity of SAGE-Seq to detect less-abundant genes, including those encoding for known breast cancer-related transcription factors and G protein-coupled receptors (GPCRs). SAGE-Seq is able to identify genes and pathways abnormally activated in breast cancer that traditional SAGE failed to call. SAGE-Seq is a powerful method for the identification of biomarkers and therapeutic targets in human disease.

  18. Human murine mammary tumour virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cancer cell lines or biopsies

    International Nuclear Information System (INIS)

    Mant, Christine; Gillett, Cheryl; D'Arrigo, Corrado; Cason, John

    2004-01-01

    It has been reported that a human murine mammary tumour virus (MMTV)-like virus (HMLV), which may be an endogenous human retrovirus (HERV), occurs in the human breast cancer cell lines T47D and MCF-7 and, in 38% of human breast cancer biopsies. As the aetiology of most breast cancers remains unknown, it is important to verify these observations in differing breast cancer populations worldwide. Thus, we sought to determine the genetic relationships between HMLVs, MMTVs, and HERVs, and to investigate the association between HMLVs and breast cancer biopsies from South London, UK. Phylogenetic analyses of the env/pol region indicated that HMLVs are indistinct from MMTVs, and that MMTVS/HMLVs exhibit only low sequence homologies with HERVs. A search of the human genome confirmed that HMLVs are not endogenous. Using MMTV polymerase chain reaction (PCR) primers described previously, we amplified DNA from all cell lines except MCF-7 and from 7 of 44 (16%) breast cancer biopsies. A restriction fragment length polymorphism assay was designed to distinguish between HMLVs and MMTVs, and upon analyses, PCR amplicons appeared to be HMLVs. To confirm these findings, amplicons from the T47D cell line and from four randomly selected breast cancer patients were sequenced. Of 106 DNA sequences obtained, 103 were homologous with a short arm of human chromosome (Chr) 3 (3p13), two with Chr 4, and one with Chr 8. None of the sequences exhibited significant nucleotide homology with MMTVs, HMLVs, or with HERVs (all <50%). Thus, we conclude that (i) HMLVs are integral members of the MMTV family; (ii) MMTVs/HMLVs are genetically distinct from HERVs; (iii) MMTV/HMLV DNA is not present in human breast cancer cell lines or clinical biopsies in our locality

  19. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    Welch, Danny R; Steeg, Patricia S; Rinker-Schaeffer, Carrie W

    2000-01-01

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  20. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer.

    Science.gov (United States)

    Richard, Vincent; Kindt, Nadège; Decaestecker, Christine; Gabius, Hans-Joachim; Laurent, Guy; Noël, Jean-Christophe; Saussez, Sven

    2014-08-01

    Macrophage migration inhibitory factor (MIF) and its receptor CD74 appear to be involved in tumorigenesis. We evaluated, by immunohistochemical staining, the tissue expression and distribution of MIF and CD74 in serial sections of human invasive breast cancer tumor specimens. The serum MIF level was also determined in breast cancer patients. We showed a significant increase in serum MIF average levels in breast cancer patients compared to healthy individuals. MIF tissue expression, quantified by a modified Allred score, was strongly increased in carcinoma compared to tumor-free specimens, in the cancer cells and in the peritumoral stroma, with fibroblasts the most intensely stained. We did not find any significant correlation with histoprognostic factors, except for a significant inverse correlation between tumor size and MIF stromal positivity. CD74 staining was heterogeneous and significantly decreased in cancer cells but increased in the surrounding stroma, namely in lymphocytes, macrophages and vessel endothelium. There was no significant variation according to classical histoprognostic factors, except that CD74 stromal expression was significantly correlated with triple-negative receptor (TRN) status and the absence of estrogen receptors. In conclusion, our data support the concept of a functional role of MIF in human breast cancer. In addition to auto- and paracrine effects on cancer cells, MIF could contribute to shape the tumor microenvironment leading to immunomodulation and angiogenesis. Interfering with MIF effects in breast tumors in a therapeutic perspective remains an attractive but complex challenge. Level of co-expression of MIF and CD74 could be a surrogate marker for efficacy of anti-angiogenic drugs, particularly in TRN breast cancer tumor.

  1. Hsp90 inhibitor 17-AAG reduces ErbB2 levels and inhibits proliferation of the trastuzumab resistant breast tumor cell line JIMT-1.

    Science.gov (United States)

    Zsebik, Barbara; Citri, Ami; Isola, Jorma; Yarden, Yosef; Szöllosi, János; Vereb, György

    2006-04-15

    ErbB2, a member of the EGF receptor family of tyrosine kinases is overexpressed on many tumor cells of epithelial origin and is the molecular target of trastuzumab (Herceptin), the first humanized antibody used in the therapy of solid tumors. Trastuzumab, which is thought to act, at least in part, by downregulating ErbB2 expression is only effective in approximately 30-40% of ErbB2 positive breast tumors. Geldanamycin and its derivative 17-AAG are potential antitumor agents capable of downregulating client proteins of Hsp90, including ErbB2. To investigate the ability of 17-AAG to downregulate ErbB2 in trastuzumab resistant breast cancer cells and the possibility of 17-AAG and trastuzumab potentiating each other's effect, the recently established trastuzumab resistant breast cancer cell line, JIMT-1 was compared to the known trastuzumab sensitive SKBR-3 line. Baseline and stimulus-evoked dimerization and activation levels of ErbB2, and the effects of trastuzumab and 17-AAG alone and in combination on cell proliferation and apoptosis, as well as on ErbB2 expression and phosphorylation have been measured. Baseline activation and amenability to activation and downregulation by trastuzumab was much lower in the resistant line. However, 17-AAG enhanced ErbB2 homodimerization after 5-10 min of treatment in both cell lines, and decreased proliferation with an IC50 of 70 nM for SKBR-3 and 10nM for JIMT-1. Thus, 17-AAG may be a useful drug in trastuzumab resistant ErbB2 overexpressing tumors. The antiproliferative effect of 17-AAG was positively correlated with phosphorylation and downregulation of ErbB2 and was dominated by apoptosis, although, especially at higher doses, necrosis was also present. Interestingly, IC50 values for ErbB2 downregulation and phosphorylation, in the 30-40 nM range, were not significantly different for the two cell lines. This observation and the negative correlation between resting ErbB2 levels and the antiproliferative effect of 17-AAG may

  2. Effects of Aerobic and Resistance Exercise on Metabolic Syndrome, Sarcopenic Obesity, and Circulating Biomarkers in Overweight or Obese Survivors of Breast Cancer: A Randomized Controlled Trial.

    Science.gov (United States)

    Dieli-Conwright, Christina M; Courneya, Kerry S; Demark-Wahnefried, Wendy; Sami, Nathalie; Lee, Kyuwan; Buchanan, Thomas A; Spicer, Darcy V; Tripathy, Debu; Bernstein, Leslie; Mortimer, Joanne E

    2018-03-20

    Purpose Metabolic syndrome is associated with an increased risk of cardiovascular disease, type 2 diabetes, and breast cancer recurrence in survivors of breast cancer. This randomized controlled trial assessed the effects of a 16-week combined aerobic and resistance exercise intervention on metabolic syndrome, sarcopenic obesity, and serum biomarkers among ethnically diverse, sedentary, overweight, or obese survivors of breast cancer. Methods Eligible survivors of breast cancer (N = 100) were randomly assigned to exercise (n = 50) or usual care (n = 50). The exercise group participated in supervised moderate-to-vigorous-65% to 85% of heart rate maximum-aerobic and resistance exercise three times per week for 16 weeks. Metabolic syndrome z-score (primary outcome), sarcopenic obesity, and serum biomarkers were measured at baseline, postintervention (4 months), and 3-month follow-up (exercise only). Results Participants were age 53 ± 10.4 years, 46% were obese, and 74% were ethnic minorities. Adherence to the intervention was 95%, and postintervention assessments were available in 91% of participants. Postintervention metabolic syndrome z-score was significantly improved in exercise versus usual care (between-group difference, -4.4; 95% CI, -5.9 to -2.7; P metabolic syndrome variables remained significantly improved compared with baseline in the exercise group ( P exercise effectively attenuated metabolic syndrome, sarcopenic obesity, and relevant biomarkers in an ethnically diverse sample of sedentary, overweight, or obese survivors of breast cancer. Our findings suggest a targeted exercise prescription for improving metabolic syndrome in survivors of breast cancer and support the incorporation of supervised clinical exercise programs into breast cancer treatment and survivorship care plans.

  3. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer.

    Science.gov (United States)

    Li, Xiu Juan; Ren, Zhao Jun; Tang, Jin Hai; Yu, Qiao

    2017-01-01

    Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246) as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2), indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics. © 2017 The Author(s). Published by S. Karger AG, Basel.

  4. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Xiu Juan Li

    2017-12-01

    Full Text Available Background/Aims: Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246 as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. Methods: The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. Results: In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2, indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Conclusions: Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics.

  5. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2.

    Science.gov (United States)

    Tu, Min; Lu, Cheng; Lv, Nan; Wei, Jishu; Lu, Zipeng; Xi, Chunhua; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Li, Qiang; Wu, Junli; Song, Guoxin; Wang, Shui; Gao, Wentao; Miao, Yi

    2016-12-28

    Vasohibin 2 (VASH2) is an angiogenic factor and cancer-related protein that acts via paracrine mechanisms. Here, we investigated the angiogenic function and mechanism of action of VASH2 in 200 human breast cancer tissues by performing immunohistochemical staining, western blot, indirect sandwich enzyme-linked immunosorbent assay (ELISA), and a semi-quantitative sandwich-based antibody array. Breast cancer cells stably overexpressing VASH2 or with knocked-down VASH2 were established and used for in vivo and in vitro models. In human luminal tissue, but not in HER2-positive or basal-like breast cancer tissues, VASH2 was positively correlated with CD31-positive microvascular density, induced angiogenesis in xenograft tumors, and promoted human umbilical vein endothelial cell tube formation in vitro. VASH2 expression was absent in the concentrated conditioned medium collected from knocked-down VASH2 and VASH2-overexpressing luminal breast cancer cells. Further, VASH2 regulated the expression of fibroblast growth factor 2 (FGF2) in human luminal breast cancer cells, and the pro-angiogenic effect induced by VASH2 overexpression was blocked by FGF2 neutralization in vitro. Additionally, dual luciferase reporter assay and Chromatin immunoprecipitation analysis results showed that FGF2 promoter was transcriptionally activated by VASH2 via histone modifications. In conclusion, VASH2 expression is positively correlated with FGF2 expression and promotes angiogenesis in human luminal breast cancer by transcriptional activation of fibroblast growth factor 2 through non-paracrine mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Antimicrobial-Resistant Enterococci in Animals and Meat: A Human Health Hazard?

    DEFF Research Database (Denmark)

    Hammerum, A.M.; Lester, C.H.; Heuer, Ole Eske

    2010-01-01

    clones predominate in certain animal species. This may suggest that antimicrobial-resistant E. faecium from animals could be regarded less hazardous to humans; however, due to their excellent ability to acquire and transfer resistance genes, E. faecium of animal origin may act as donors of antimicrobial...... resistance genes for other more virulent enterococci. For E. faecalis, the situation appears different, as similar clones of, for example, vancomycin-and gentamicin-resistant E. faecalis have been obtained from animals and from human patients. Continuous surveillance of antimicrobial resistance...... of avoparcin, gentamicin, and virginiamycin for growth promotion and therapy in food animals has lead to the emergence of vancomycin-and gentamicin-resistant enterococci and quinupristin/dalfopristin-resistant E. faecium in animals and meat. This implies a potential risk for transfer of resistance genes...

  7. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age

    DEFF Research Database (Denmark)

    Main, Katharina M; Mortensen, Gerda Krog; Kaleva, Marko M

    2006-01-01

    Phthalates adversely affect the male reproductive system in animals. We investigated whether phthalate monoester contamination of human breast milk had any influence on the postnatal surge of reproductive hormones in newborn boys as a sign of testicular dysgenesis.......Phthalates adversely affect the male reproductive system in animals. We investigated whether phthalate monoester contamination of human breast milk had any influence on the postnatal surge of reproductive hormones in newborn boys as a sign of testicular dysgenesis....

  8. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype

    DEFF Research Database (Denmark)

    Hopkinson, Branden Michael; Klitgaard, Marie Christine; Petersen, Ole William

    2017-01-01

    Understanding human cancer increasingly relies on insight gained from subtype specific comparisons between malignant and non-malignant cells. The most frequent subtype in breast cancer is the luminal. By far the most frequently used model for luminal breast cancer is the iconic estrogen receptor-...

  9. The Role of ABC Proteins in Drug Resistant Breast Cancer Cells

    Science.gov (United States)

    2008-04-01

    called the Plasmodium falciparum Chloroquine Transporter (PfCRT). While PfCRT is known to be the main molecular determinant of chloroquine resistance...proteins (such as human P-glycoprotein) and labeled PfCRT with a photoaffinity drug analogue . A manuscript is currently in preparation detailing my results...directly responsible for drug response, the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT) (Fidock et al 2000). While not a member of

  10. Targeting FASN for Breast Cancer Treatment by Repositioning PPIs

    Science.gov (United States)

    2017-01-01

    we found that fatty acid synthase (FASN) up-regulation causes resistance to multiple anticancer drugs including doxorubicine and cisplatin ...be accomplished to (1) investigate the mechanism of FASN action in drug resistance in breast cancers; (2) determine efficacy of PPIs as single agents...Tasks proposed in SOW for year 1. Major Task 1: Determine the mechanism of FASN function in breast cancer drug resistance (months 1- 16). For this

  11. An Acquired HER2T798I Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 Mutant-Driven Breast Cancer.

    Science.gov (United States)

    Hanker, Ariella B; Brewer, Monica Red; Sheehan, Jonathan H; Koch, James P; Sliwoski, Gregory R; Nagy, Rebecca; Lanman, Richard; Berger, Michael F; Hyman, David M; Solit, David B; He, Jie; Miller, Vincent; Cutler, Richard E; Lalani, Alshad S; Cross, Darren; Lovly, Christine M; Meiler, Jens; Arteaga, Carlos L

    2017-06-01

    We report a HER2 T798I gatekeeper mutation in a patient with HER2 L869R -mutant breast cancer with acquired resistance to neratinib. Laboratory studies suggested that HER2 L869R is a neratinib-sensitive, gain-of-function mutation that upon dimerization with mutant HER3 E928G , also present in the breast cancer, amplifies HER2 signaling. The patient was treated with neratinib and exhibited a sustained partial response. Upon clinical progression, HER2 T798I was detected in plasma tumor cell-free DNA. Structural modeling of this acquired mutation suggested that the increased bulk of isoleucine in HER2 T798I reduces neratinib binding. Neratinib blocked HER2-mediated signaling and growth in cells expressing HER2 L869R but not HER2 L869R/T798I In contrast, afatinib and the osimertinib metabolite AZ5104 strongly suppressed HER2 L869R/T798I -induced signaling and cell growth. Acquisition of HER2 T798I upon development of resistance to neratinib in a breast cancer with an initial activating HER2 mutation suggests HER2 L869R is a driver mutation. HER2 T798I -mediated neratinib resistance may be overcome by other irreversible HER2 inhibitors like afatinib. Significance: We found an acquired HER2 gatekeeper mutation in a patient with HER2 -mutant breast cancer upon clinical progression on neratinib. We speculate that HER2 T798I may arise as a secondary mutation following response to effective HER2 tyrosine kinase inhibitors (TKI) in other cancers with HER2 -activating mutations. This resistance may be overcome by other irreversible HER2 TKIs, such as afatinib. Cancer Discov; 7(6); 575-85. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 539 . ©2017 American Association for Cancer Research.

  12. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer.

    Science.gov (United States)

    Cheng, Qing; Chang, Jeffrey T; Geradts, Joseph; Neckers, Leonard M; Haystead, Timothy; Spector, Neil L; Lyerly, H Kim

    2012-04-17

    Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF

  13. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: a review of the literature with reference to new exposure data and regulatory status.

    Science.gov (United States)

    Darbre, Philippa D; Harvey, Philip W

    2014-09-01

    A framework for understanding the complexity of cancer development was established by Hanahan and Weinberg in their definition of the hallmarks of cancer. In this review, we consider the evidence that parabens can enable development in human breast epithelial cells of four of six of the basic hallmarks, one of two of the emerging hallmarks and one of two of the enabling characteristics. In Hallmark 1, parabens have been measured as present in 99% of human breast tissue samples, possess oestrogenic activity and can stimulate sustained proliferation of human breast cancer cells at concentrations measurable in the breast. In Hallmark 2, parabens can inhibit the suppression of breast cancer cell growth by hydroxytamoxifen, and through binding to the oestrogen-related receptor gamma may prevent its deactivation by growth inhibitors. In Hallmark 3, in the 10 nm-1 μm range, parabens give a dose-dependent evasion of apoptosis in high-risk donor breast epithelial cells. In Hallmark 4, long-term exposure (>20 weeks) to parabens leads to increased migratory and invasive activity in human breast cancer cells, properties that are linked to the metastatic process. As an emerging hallmark methylparaben has been shown in human breast epithelial cells to increase mTOR, a key regulator of energy metabolism. As an enabling characteristic parabens can cause DNA damage at high concentrations in the short term but more work is needed to investigate long-term, low-dose mixtures. The ability of parabens to enable multiple cancer hallmarks in human breast epithelial cells provides grounds for regulatory review of the implications of the presence of parabens in human breast tissue. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth......Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...

  15. Efficacy and mechanism of action of Proellex, an antiprogestin in aromatase overexpressing and Letrozole resistant T47D breast cancer cells.

    Science.gov (United States)

    Gupta, Akash; Mehta, Rajeshwari; Alimirah, Fatouma; Peng, Xinjian; Murillo, Genoveva; Wiehle, Ronald; Mehta, Rajendra G

    2013-01-01

    Aromatase inhibitors (AI) are considered as a first line therapy for ER+PR+ breast cancers. However, many patients acquire resistance to AI. In this study, we determined the response of antiprogestin CDB-4124 (Proellex) on the aromatase overexpressing and Letrozole resistant cell lines and also studies its mechanism of action in inhibition of breast cancer cell proliferation. For these studies we generated aromatase overexpressing T47D (T47Darom) and respective control (T47Dcon) breast cancer cell lines by stable transfection with plasmid containing CYP19A1 gene, or empty vector respectively. Letrozole resistant cell line (T47DaromLR) was generated by incubating T47Darom for 75 weeks in the presence of 10 μM Letrozole. Cell proliferation was determined by MTT or crystal violet assays. Gene expressions were quantified by QRT-PCR whereas proteins were identified by western blot analyses, flow cytometry and immunofluorescence staining. Aromatase activity was determined by estradiol ELISA. The effects of Proellex on the anchorage independent growth were measured by soft agar colony formation. Statistical differences between the various groups were determined by Student's 't' test or ANOVA followed by Bonferroni's post hoc test. Results showed that T47Darom and T47DaromLR cell lines had significantly higher aromatase expression (mRNA; 80-90 fold and protein) and as a result exhibited increased aromatization of testosterone to estradiol as compared to T47Dcon. Both these cell lines showed enhanced growth in the presence of Testosterone (50-60%). In T47DaromLR cells increased PR-B and EGFR expression as compared to T47Dcon cells was observed. Proellex and other known aromatase inhibitors (Letrozole, Anastrozole, and Exemestane) inhibited testosterone induced cell proliferation and anchorage independent growth of T47Darom cells. Cell growth inhibition was significantly greater when cells were treated with Proellex alone or in combination with other AIs as compared to AIs

  16. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain

    Science.gov (United States)

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi Reddy; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M.; Fidler, Isaiah J.; Cantley, Lewis C.; Locasale, Jason W.; Weihua, Zhang

    2014-01-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain-metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the non-oxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBPs) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis, and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. PMID:25511375

  17. Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

    OpenAIRE

    Gebreyes, Wondwossen A.; Thakur, Siddhartha

    2005-01-01

    Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans...

  18. A short synthetic peptide fragment of human C2ORF40 has therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chaoyang [Shandong Univ., Jinan (China); Zhang, Pengju [Shandong Univ., Jinan (China); Jiang, Anli [Shandong Univ., Jinan (China); Mao, Jian-Hua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Guangwei [Shandong Univ. School of Medicine, Jinan (China)

    2017-03-30

    C2ORF40 encodes a secreted protein which is cleaved to generate soluble peptides by proteolytic processing and this process is believed to be necessary for C2ORF40 to exert cell type specific biological activity. Here, we reported a short mimic peptide of human C2ORF40 acts potential therapeutic efficacy in human cancer cells in vitro and in vivo. We synthesized a short peptide of human C2ORF40, named C2ORF40 mimic peptide fragment and assessed its biological function on cancer cell growth, migration and tumorigenesis. Cell growth assay showed that C2ORF40 mimic peptide fragment significantly suppressed cell proliferation of breast and lung cancer cells. Moreover, C2ORF40 mimic peptide fragment significantly inhibited the migration and invasion of breast cancer cells. Furthermore, we showed that this peptide suppressed tumorigenesis in breast tumor xenograft model. Cell cycle assay indicated that the C2ORF40 mimic peptide fragment suppressed the growth of tumor cells through inducing mitotic phase arrest. In conclusion, our results firstly suggested that this short synthetic peptide of human C2ORF40 may be a candidate tumor therapeutic agent.

  19. AR Expression in Breast Cancer CTCs Associates with Bone Metastases.

    Science.gov (United States)

    Aceto, Nicola; Bardia, Aditya; Wittner, Ben S; Donaldson, Maria C; O'Keefe, Ryan; Engstrom, Amanda; Bersani, Francesca; Zheng, Yu; Comaills, Valentine; Niederhoffer, Kira; Zhu, Huili; Mackenzie, Olivia; Shioda, Toshi; Sgroi, Dennis; Kapur, Ravi; Ting, David T; Moy, Beverly; Ramaswamy, Sridhar; Toner, Mehmet; Haber, Daniel A; Maheswaran, Shyamala

    2018-04-01

    Molecular drivers underlying bone metastases in human cancer are not well understood, in part due to constraints in bone tissue sampling. Here, RNA sequencing was performed of circulating tumor cells (CTC) isolated from blood samples of women with metastatic estrogen receptor (ER) + breast cancer, comparing cases with progression in bone versus visceral organs. Among the activated cellular pathways in CTCs from bone-predominant breast cancer is androgen receptor (AR) signaling. AR gene expression is evident, as is its constitutively active splice variant AR-v7. AR expression within CTCs is correlated with the duration of treatment with aromatase inhibitors, suggesting that it contributes to acquired resistance to endocrine therapy. In an established breast cancer xenograft model, a bone-tropic derivative displays increased AR expression, whose genetic or pharmacologic suppression reduces metastases to bone but not to lungs. Together, these observations identify AR signaling in CTCs from women with bone-predominant ER + breast cancer, and provide a rationale for testing androgen inhibitors in this subset of patients. Implications: This study highlights a role for the AR in breast cancer bone metastasis, and suggests that therapeutic targeting of the AR may benefit patients with metastatic breast cancer. Mol Cancer Res; 16(4); 720-7. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. The sodium iodide symporter (NIS) and potential regulators in normal, benign and malignant human breast tissue.

    LENUS (Irish Health Repository)

    Ryan, James

    2011-01-01

    The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro.

  1. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Doublier Sophie

    2012-01-01

    Full Text Available Abstract Background Invasive micropapillary carcinoma (IMPC of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1 activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters. Methods HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1α to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay. Results In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1α inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl-1-benzylindazole (a widely used HIF-1α inhibitor or by transfecting cells with specific siRNA for HIF-1α significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids. Conclusions MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance.

  2. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7)

    International Nuclear Information System (INIS)

    Devi, P.S.; Kumar, M.S.; Das, A.S.M.

    2011-01-01

    Breast cancer is a leading cause of death in women worldwide both in the developed and developing countries. Thus effective treatment of breast cancer with potential antitumour drugs is important. In this paper, human breast cancer cell line MCF-7 has been employed to evaluate the antiproliferative activity of red sorghum bran anthocyanin. The present investigation showed that red sorghum bran anthocyanin induced growth inhibition of MCF-7 cells at significant level. The growth inhibition is dose dependent and irreversible in nature. When MCF-7 cells were treated with red sorghum bran anthocyanins due to activity of anthocyanin morphological changes were observed. The morphological changes were identified through the formation of apoptopic bodies. The fragmentation by these anthocyanins on DNA to oligonuleosomal-sized fragments, is a characteristic of apoptosis, and it was observed as concentration-dependent. Thus, this paper clearly demonstrates that human breast cancer cell MCF-7 is highly responsive by red sorghum bran anthocyanins result from the induction of apoptosis in MCF-7 cells.

  3. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  4. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression.

    Science.gov (United States)

    Zhou, Siying; Li, Jian; Xu, Hanzi; Zhang, Sijie; Chen, Xiu; Chen, Wei; Yang, Sujin; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai

    2017-07-30

    Emerging evidence suggests that curcumin can overcome drug resistance to classical chemotherapies, but poor bioavailability and low absorption have limited its clinical use and the mechanisms remain unclear. Also, Adriamycin (Adr) is one of the most active cytotoxic agents in breast cancer; however, the high resistant rate of Adr leads to a poor prognosis. We utilized encapsulation in liposomes as a strategy to improve the bioavailability of curcumin and demonstrated that liposomal curcumin altered chemosensitivity of Adr-resistant MCF-7 human breast cancer (MCF-7/Adr) by MTT assay. The miRNA and mRNA expression profiles of MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr cells were analyzed by microarray and further confirmed by real-time PCR. We focused on differentially expressed miR-29b-1-5p to explore the involvement of miR-29b-1-5p in the resistance of Adr. Candidate genes of dysregulated miRNAs were identified by prediction algorithms based on gene expression profiles. Networks of KEGG pathways were organized by the selected dysregulated miRNAs. Moreover, protein-protein interaction (PPI) was utilized to map protein interaction networks of curcumin regulated proteins. We first demonstrated liposomal curcumin could rescue part of Adriamycin resistance in breast cancer and further identified 67 differentially expressed microRNAs among MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr. The results showed that lower expressed miR-29b-1-5p decreased the IC50 of MCF-7/Adr cells and higher expressed miR-29b-1-5p, weaken the effects of liposomal curcumin to Adr-resistance. Besides, we found that 20 target genes (mRNAs) of each dysregulated miRNA were not only predicted by prediction algorithms, but also differentially expressed in the microarray. The results showed that MAPK, mTOR, PI3K-Akt, AMPK, TNF, Ras signaling pathways and several target genes such as PPARG, RRM2, SRSF1and EPAS1, may associate with drug resistance of breast cancer cells to Adr. We determined

  5. [A paclitaxel-resistant case of recurrent breast cancer responded to combination therapy of capecitabine and trastuzumab].

    Science.gov (United States)

    Marutaka, Masahito; Suguri, Takayasu; Miyake, Mikio; Yoshimura, Kouichi

    2005-12-01

    The patient was a 72-year-old female. Under the supervision of her former doctor, this patient had an operation and adjuvant chemotherapy for progressive breast cancer. During the following period, local recurrence of breast cancer and pulmonary lymphopathia developed. Although medication with paclitaxel was attempted, the focus was resistant to this treatment, and metastasis to the brain was also observed. Due to the dyscrasia above, the patient had difficulty breathing and became bedridden. Subsequently, combination treatment of capecitabine and trastuzumab was attempted. As a result,metastasis in the brain and pulmonary lymphopathia were improved. The patient recovered enough to be discharged at one time. However, his condition took a turn for the worse after the interruption of the combination treatment by a side effect. In conclusion, the combination treatment of capecitabine and trastuzumab is thought to be effective for non-responders to paclitaxel.

  6. In vivo detection of multidrug-resistant (MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancer patients

    International Nuclear Information System (INIS)

    Del Vecchio, S.; Ciarmiello, A.; Potena, M.I.; Carriero, M.V.; Mainolfi, C.; Botti, G.; Thomas, R.; Cerra, M.; D'Aiuto, G.; Tsuruo, T.; Salvatore, M.

    1997-01-01

    Technetium-99m sestamibi is a transport substrate recognised by the multidrug-resistant P-glycoprotein (Pgp). To test whether 99m Tc-sestamibi efflux is enhanced in breast carcinomas overexpressing Pgp, we determined the efflux rates of 99m Tc-sestamibi and Pgp levels in tumours from 30 patients with untreated breast carcinoma. Patients were intravenously injected with 740 MBq of 99m Tc-sestamibi and underwent a 15-min dynamic study followed by the acquisition of static planar images at 0.5, 1, 2 and 4 h. Tumour specimens were obtained from each patient 24 h after 99m Tc-sestamibi scan and Pgp levels were determined using 125 I-MRK16 monoclonal antibody and in vitro quantitative autoradiography. All breast carcinomas showed high uptake of 99m Tc-sestamibi and data from region of interest analysis on sequential images were fitted with a monoexponential function. The efflux rates of 99m Tc-sestamibi, calculated from decay-corrected time-activity curves, ranged between 0.00121 and 0.01690 min -1 and were directly correlated with Pgp levels measured in the same tumours (r=0.62; P 99m Tc-sestamibi efflux from tumours of group A was 2.7 times higher than that observed in tumours of group B (0.00686 ±0.00390 min -1 vs 0.00250 ±0.00090 min -1 , P 99m Tc-sestamibi showed a sensitivity and a specificity of 80% and 95%, respectively. In conclusion, the efflux rate of 99m Tc-sestamibi may be used for the in vivo identification of the multidrug resistant (MDR1) phenotype in untreated breast cancer patients. (orig.). With 7 figs., 3 tabs

  7. Mechanisms of quinolone resistance and implications for human and animal health

    Directory of Open Access Journals (Sweden)

    Velhner Maja

    2010-01-01

    Full Text Available Quinolone antibiotics have been widely used in human and veterinary medicine. This has caused the development of resistance and difficulties in the treatment of complicated bacterial infections in humans. The resistance to quinolones develops due to chromosome mutations and it can also be transferred by plasmids. The target enzyme for quinolones in Gram-negative bacteria is Gyrasa A, while the target enzyme in Grampositive bacteria is mostly topoisomerase IV. Gyrase A consists of two subunits encoded by genes gyrA and gyrB. The function of the enzyme is to introduce negative super coiling in DNA and therefore is essential for the replication of bacteria. Quinolone resistance develops if point mutations at 83 and/or 87 codon are introduced on gyrA. Establishing a minimal inhibitory concentration (MIC to this group of antimicrobials will reveal possible mutations. Recently it was discovered that quinolone resistance is transmittable by plasmid termed PMQR (plasmid mediated quinolone resistance. The target gene marked qnr encodes a pentapeptide repeat family protein. Pentapeptide repeats form sheets, involved in protein-protein interactions. Qnr protein binds to GyrA protecting the enzyme from the inhibitory effect of ciprofloxacin. The distribution of qnr related resistance is higher in humans than in animals. In poultry, however, this type of resistance is present more than in other animals. Plasmid mediated resistance contributes to the faster spread of quinolone resistance. Proper food handling will significantly contribute to decreasing the risk from infection to which people are exposed. In medical and veterinary laboratories antimicrobial resistance monitoring in clinical and environmental isolates is advised. Since correlation between antibiotics application and antimicrobial resistance is often suggested, antimicrobial use must be under strict control of the authorities both in human and in veterinary medicine. .

  8. Re-evaluation of the prolactin receptor expression in human breast cancer

    DEFF Research Database (Denmark)

    Galsgaard, Elisabeth Douglas; Rasmussen, Birgitte Bruun; Folkesson, Charlotta Grånäs

    2009-01-01

    , we evaluated the specificity of commercially available anti-human PRLR antibodies (B6.2, U5, PRLRi pAb, 1A2B1, 250448 and H-300). The latter three antibodies were found to specifically recognise PRLR. The relative PRLR expression level detected with these antibodies closely reflected the level...... to be sufficient to mediate PRL responsiveness in breast cancer cell lines....

  9. HUMAN RESISTANCE TO THE USE OF INFORMATION TECHNOLOGY IN CONSTRUCTION COMPANIES

    Directory of Open Access Journals (Sweden)

    Andi Andi

    2005-01-01

    Full Text Available The process of implementing information technology (IT often fails to bring the intended result because the human dimension is not given adequate consideration. Yet despite some evidence of failure, little has been written on the nature of human performance, compared to abundant resources about technical and procedural aspects, as it applies to the ideals of the IT philosophy. To combat people’s deficiencies, this paper focuses mainly on the question why people resist IT. It explores sources of human resistance to the use of IT. A survey is the conducted to personnel working for construction companies to examine the resistance sources. The result reveals personal money, habit, and threat to information security as most dominant sources for such resistance, instead of fear of employment instability as many previous researches have discussed. The paper discusses the resistances and suggests possible solutions to deal with them.

  10. Lactate dehydrogenase-B is silenced by promoter methylation in a high frequency of human breast cancers.

    Directory of Open Access Journals (Sweden)

    Nicola J Brown

    Full Text Available Under normoxia, non-malignant cells rely on oxidative phosphorylation for their ATP production, whereas cancer cells rely on Glycolysis; a phenomenon known as the Warburg effect. We aimed to elucidate the mechanisms contributing to the Warburg effect in human breast cancer.Lactate Dehydrogenase (LDH isoenzymes were profiled using zymography. LDH-B subunit expression was assessed by reverse transcription PCR in cells, and by Immunohistochemistry in breast tissues. LDH-B promoter methylation was assessed by sequencing bisulfite modified DNA.Absent or decreased expression of LDH isoenzymes 1-4, were seen in T-47D and MCF7 cells. Absence of LDH-B mRNA was seen in T-47D cells, and its expression was restored following treatment with the demethylating agent 5'Azacytadine. LDH-B promoter methylation was identified in T-47D and MCF7 cells, and in 25/25 cases of breast cancer tissues, but not in 5/5 cases of normal breast tissues. Absent immuno-expression of LDH-B protein (<10% cells stained, was seen in 23/26 (88% breast cancer cases, and in 4/8 cases of adjacent ductal carcinoma in situ lesions. Exposure of breast cancer cells to hypoxia (1% O(2, for 48 hours resulted in significant increases in lactate levels in both MCF7 (14.0 fold, p = 0.002, and T-47D cells (2.9 fold, p = 0.009, but not in MDA-MB-436 (-0.9 fold, p = 0.229, or MCF10AT (1.2 fold, p = 0.09 cells.Loss of LDH-B expression is an early and frequent event in human breast cancer occurring due to promoter methylation, and is likely to contribute to an enhanced glycolysis of cancer cells under hypoxia.

  11. Interest in Integrative Medicine Among Postmenopausal Hormone Receptor–Positive Breast Cancer Patients in the EvAluate-TM Study

    Science.gov (United States)

    Hack, Carolin C.; Fasching, Peter A.; Fehm, Tanja; de Waal, Johann; Rezai, Mahdi; Baier, Bernd; Baake, Gerold; Kolberg, Hans-Christian; Guggenberger, Martin; Warm, Mathias; Harbeck, Nadia; Wuerstlein, Rachel; Deuker, Jörg-Uwe; Dall, Peter; Richter, Barbara; Wachsmann, Grischa; Brucker, Cosima; Siebers, Jan W.; Fersis, Nikos; Kuhn, Thomas; Wolf, Christopher; Vollert, Hans-Walter; Breitbach, Georg-Peter; Janni, Wolfgang; Landthaler, Robert; Kohls, Andreas; Rezek, Daniela; Noesslet, Thomas; Fischer, Gunnar; Henschen, Stefan; Praetz, Thomas; Heyl, Volker; Kühn, Thorsten; Krauss, Thomas; Thomssen, Christoph; Hohn, Andre; Tesch, Hans; Mundhenke, Christoph; Hein, Alexander; Rauh, Claudia; Bayer, Christian M.; Jacob, Adib; Schmidt, Katja; Belleville, Erik; Hadji, Peyman; Brucker, Sara Y.; Wallwiener, Diethelm; Kümmel, Sherko; Beckmann, Matthias W.; Paepke, Daniela

    2016-01-01

    Background. Breast cancer patients often use complementary and alternative medicine, but few prospectively collected data on the topic are available specifically for postmenopausal breast cancer patients. A large prospective study was therefore conducted within a noninterventional study in order to identify the characteristics of patients interested in integrative medicine. Methods. The EvAluate-TM study is a prospective, multicenter noninterventional study in which treatment with the aromatase inhibitor letrozole was evaluated in postmenopausal women with hormone receptor–positive primary breast cancer. Between 2008 and 2009, 5045 postmenopausal patients were enrolled at 339 certified breast centers in Germany. As part of the data collection process, patients were asked at the baseline about their interest in and information needs relating to integrative medicine. Results. Of the 5045 patients recruited, 3411 responded to the questionnaire on integrative medicine and took part in the analysis, 1583 patients expressed an interest in integrative medicine, and 1828 patients declared no interest. Relevant predictors of interest in integrative medicine were age, body mass index, tumor size, previous chemotherapy, and use of concomitant medications for other medical conditions. Interest in integrative medicine declined highly significantly (P 65 years, 38.0%). Patients in favor of integrative medicine were significantly less satisfied with the information received about individual treatments and antihormonal therapy. Patients with interest in integrative medicine were more often interested in rehabilitation and fitness, nutritional counseling, and additional support from self-help organizations. These women were mostly interested in receiving information about their disease and integrative medicine from a physician, rather than from other sources. Conclusions. This study shows that a considerable proportion of postmenopausal breast cancer patients are interested in

  12. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar, E-mail: sekarashok@gmail.com

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  13. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    International Nuclear Information System (INIS)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-01-01

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER + and ER − breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen

  14. Molecular Mechanisms of Metastasis Suppression in Human Breast Cancer

    Science.gov (United States)

    1997-07-01

    immune system? Ann N Y Acad Sci, JR, 1986, The role of NK cells in tumour growth and 741, 212-15. metastasis in beige mice. Nature, 284, 622-4. 89. Stone ...77. Simmons ML and Brick JO, 1969, The Laboratory 96. Senger DR, Brown LF, Claffey KP and Dvorak HF, Mouse. Hollaender A, ed. Englewood Cliffs, NJ...ranfe of huan tumo sme I I su ding the human chromosome 11 into the highly metastatic MDA-MB-435 breast tumorigenic phenotype of several tumor lines

  15. Breast Cancer (For Kids)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Breast Cancer KidsHealth / For Kids / Breast Cancer What's in this ... for it when they are older. What Is Breast Cancer? The human body is made of tiny building ...

  16. Breast-feeding and human immunodeficiency virus infection: assessment of knowledge among clinicians in Kenya.

    Science.gov (United States)

    Murila, Florence; Obimbo, Moses M; Musoke, Rachel; Tsikhutsu, Isaac; Migiro, Santau; Ogeng'o, Julius

    2015-02-01

    In Kenya, human immunodeficiency virus (HIV) prevalence ranks among the highest in the world. Approximately 60 000 infections yearly are attributed to vertical transmission including the process of labour and breast-feeding. The vast of the population affected is in the developing world. Clinical officers and nurses play an important role in provision of primary health care to antenatal and postnatal mothers. There are a few studies that have explored the clinicians' knowledge on breast-feeding in the face of HIV and in relation to vertical transmission this being a vital component in prevention of maternal-to-child transmission. The aim of this study was to evaluate clinicians' knowledge on HIV in relation to breast-feeding in Kenya. A cross-sectional survey was conducted to assess knowledge of 161 clinical officers and nurses serving in the maternity and children' wards in various hospitals in Kenya. The participants were derived from all district and provincial referral facilities in Kenya. A preformatted questionnaire containing a series of questions on HIV and breast-feeding was administered to clinicians who were then scored and analyzed. All the 161 participants responded. Majority of clinicians (92%) were knowledgeable regarding prevention of mother-to-child transmission. Regarding HIV and breast-feeding, 49.7% thought expressed breast milk from HIV-positive mothers should be heated before being given. Majority (78.3%) thought breast milk should be given regardless of availability of alternatives. According to 74.5% of the participants, exclusive breast-feeding increased chances of HIV transmission. Two-thirds (66.5%) would recommend breast-feeding for mothers who do not know their HIV status (66.5%). This study observes that a majority of the clinicians have inadequate knowledge on breast-feeding in the face of HIV. There is need to promote training programmes on breast-feeding and transmission of HIV from mother to child. This can be done as in

  17. Organochlorine pesticide residues in human breast milk and placenta in Tohoku, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, K.; Suzuki, K.; Oka, T.; Sugawara, N.; Ohba, T.; Kameo, S.; Satoh, H. [Environmental Heath Sciences, Tohoku Univ. Graduate School of Medicine, Sendai (Japan); Nakamura, T.; Saitoh, Y. [Miyagi Prefectural Inst. of Piblic Health and Environment (Japan); Okamura, K. [Dept. of Obstetrics, Tohoku Univ. Graduate School of Medicine, Sendai (Japan)

    2004-09-15

    Recently, we have started a birth cohort study to examine the effects of exposure to persistent organochemical pollutants and heavy metals on neurodevelopment in Japanese children, The Tohoku Study of Child Development. In this cohort study, biological samples, including maternal peripheral blood, cord blood, placenta, cord tissue, and breast milk have been collected from more than six hundred mother-infant pairs for chemical determinations. The growth of infants has been monitored using neurodevelopmental tests, including the Brazelton Neonatal Behavioral Assessment Scale, the Bayley Scale of Infant Development, the Kyoto Scale of Psychological Development, and others. Exposures to dioxin and related compounds, polychlorinated biphenyls, methylmercury, and several heavy metals were assessed. Additionally, since perinatal exposure to organochlorine pesticides may affect the neurodevelopment of children, we examined the effects of those pesticides in the cohort study. In the present study, several organochlorine pesticides were analyzed in human breast milk and placenta from 20 mothers to identify the major pesticide compounds found in the cohort subjects. The relationship between pesticides in breast milk and the placenta was analyzed to examine the utilization of the placenta as the material for exposure assessment. Some information regarding the factors affecting the contamination of breast milk and the placenta with organochlorine pesticides are also discussed.

  18. Synthesis, characterization and in vitro evaluation of exquisite targeting SPIONs–PEG–HER in HER2+ human breast cancer cells

    International Nuclear Information System (INIS)

    Almaki, Javad Hamzehalipour; Nasiri, Rozita; Idris, Ani; Majid, Fadzilah Adibah Abdul; Wong, Tet Soon; Salouti, Mojtaba; Dabagh, Shadab; Marvibaigi, Mohsen; Amini, Neda

    2016-01-01

    A stable, biocompatible and exquisite SPIONs–PEG–HER targeting complex was developed. Initially synthesized superparamagnetic iron oxide nanoparticles (SPIONs) were silanized using 3-aminopropyltrimethoxysilane (APS) as the coupling agent in order to allow the covalent bonding of polyethylene glycol (PEG) to the SPIONs to improve the biocompatibility of the SPIONs. SPIONs–PEG were then conjugated with herceptin (HER) to permit the SPIONs–PEG–HER to target the specific receptors expressed over the surface of the HER2+ metastatic breast cancer cells. Each preparation step was physico-chemically analyzed and characterized by a number of analytical methods including AAS, FTIR spectroscopy, XRD, FESEM, TEM, DLS and VSM. The biocompatibility of SPIONs–PEG–HER was evaluated in vitro on HSF-1184 (human skin fibroblast cells), SK-BR-3 (human breast cancer cells, HER+), MDA-MB-231 (human breast cancer cells, HER−) and MDA-MB-468 (human breast cancer cells, HER−) cell lines by performing MTT and trypan blue assays. The hemolysis analysis results of the SPIONs–PEG–HER and SPIONs–PEG did not indicate any sign of lysis while in contact with erythrocytes. Additionally, there were no morphological changes seen in RBCs after incubation with SPIONs–PEG–HER and SPIONs–PEG under a light microscope. The qualitative and quantitative in vitro targeting studies confirmed the high level of SPION–PEG–HER binding to SK-BR-3 (HER2+ metastatic breast cancer cells). Thus, the results reflected that the SPIONs–PEG–HER can be chosen as a favorable biomaterial for biomedical applications, chiefly magnetic hyperthermia, in the future. (paper)

  19. Comparing exercise responses to aerobic plus resistance training between postmenopausal breast cancer survivors undergoing aromatase inhibitor therapy and healthy women.

    Science.gov (United States)

    Paulo, Thais R S de; Winters-Stone, Kerri M; Viezel, Juliana; Rossi, Fabricio E; Aro, Bruna L; Trindade, Ana Carolina A C; Codogno, Jamile S; Freitas Junior, Ismael F

    2018-04-12

    The aim of this study was to explore whether postmenopausal breast cancer survivors undergoing aromatase inhibitor therapy differ from healthy postmenopausal women in their response to the same aerobic + resistance training. The participants were separated into two groups: postmenopausal breast cancer survivors undergoing aromatase inhibitor therapy for an average of 20 months (18 women) and healthy postmenopausal women (24 women). We assessed aerobic capacity (predicted maximum oxygen uptake (VO 2 max) and maximum running velocity test (Vmax)) through a walking test, upper and lower body muscle strength using an estimated one-repetition maximum test, and body composition by dual-energy X-ray absorptiometry at baseline and at three, six, and nine months, respectively. The exercise program was performed three times/week over nine months and consisted of 40 min of machine-based strength training (seated cable row, bench press, leg extension, leg press, and leg curl, as well as bridge, abdominal, and standard plank exercises) followed by 30 min of treadmill walking. Analysis of variance (ANOVA) with repeated measures was used to compare the groups over time. Postmenopausal breast cancer survivors undergoing aromatase inhibitor therapy and healthy postmenopausal women presented similar improvements in estimated lower body strength, predicted VO 2max and V max , and body fat mass. For maximal upper body strength, there was a significant group x time interaction after six months of training (p = 0.01). The healthy postmenopausal women presented a significant increase in upper body strength after six months, while postmenopausal breast cancer survivors undergoing aromatase inhibitor therapy demonstrated an improvement only at nine months of training. The breast cancer survivors undergoing aromatase inhibitor therapy presented increased lean mass while healthy postmenopausal women maintained values over time (Breast cancer: 33.7 ± 3.9(Pre) vs. 34.1

  20. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Yurgel VC

    2014-03-01

    Full Text Available Virginia C Yurgel,1,* Catiuscia P Oliveira,2,* Karine R Begnini,1 Eduarda Schultze,1 Helena S Thurow,1 Priscila MM Leon,1 Odir A Dellagostin,1 Vinicius F Campos,1 Ruy CR Beck,2 Silvia S Guterres,2 Tiago Collares,1 Adriana R Pohlmann,2–4 Fabiana K Seixas11Programa de Pós-Graduação em Biotecnologia (PPGB, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil; 2Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 3Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 4Centro de Nanociência e Nanotecnologia, CNANO-UFRGS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil*These authors contributed equally to this workAbstract: Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt2] and MTX(OEt2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt2 solution and MTX(OEt2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231