WorldWideScience

Sample records for antigen-specific t-cell receptor

  1. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Todd M Brusko

    Full Text Available BACKGROUND: Therapies directed at augmenting regulatory T cell (Treg activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff activity as determined by tumor cell growth and luciferase reporter

  2. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  3. Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination.

    Science.gov (United States)

    Qi, Qian; Cavanagh, Mary M; Le Saux, Sabine; NamKoong, Hong; Kim, Chulwoo; Turgano, Emerson; Liu, Yi; Wang, Chen; Mackey, Sally; Swan, Gary E; Dekker, Cornelia L; Olshen, Richard A; Boyd, Scott D; Weyand, Cornelia M; Tian, Lu; Goronzy, Jörg J

    2016-03-30

    Diversity and size of the antigen-specific T cell receptor (TCR) repertoire are two critical determinants for successful control of chronic infection. Varicella zoster virus (VZV) that establishes latency during childhood can escape control mechanisms, in particular with increasing age. We examined the TCR diversity of VZV-reactive CD4 T cells in individuals older than 50 years by studying three identical twin pairs and three unrelated individuals before and after vaccination with live attenuated VZV. Although all individuals had a small number of dominant T cell clones, the breadth of the VZV-specific repertoire differed markedly. A genetic influence was seen for the sharing of individual TCR sequences from antigen-reactive cells but not for repertoire richness or the selection of dominant clones. VZV vaccination favored the expansion of infrequent VZV antigen-reactive TCRs, including those from naïve T cells with lesser boosting of dominant T cell clones. Thus, vaccination does not reinforce the in vivo selection that occurred during chronic infection but leads to a diversification of the VZV-reactive T cell repertoire. However, a single-booster immunization seems insufficient to establish new clonal dominance. Our results suggest that repertoire analysis of antigen-specific TCRs can be an important readout to assess whether a vaccination was able to generate memory cells in clonal sizes that are necessary for immune protection.

  4. Application of Adoptive T-Cell Therapy Using Tumor Antigen-Specific T-Cell Receptor Gene Transfer for the Treatment of Human Leukemia

    Directory of Open Access Journals (Sweden)

    Toshiki Ochi

    2010-01-01

    Full Text Available The last decade has seen great strides in the field of cancer immunotherapy, especially the treatment of melanoma. Beginning with the identification of cancer antigens, followed by the clinical application of anti-cancer peptide vaccination, it has now been proven that adoptive T-cell therapy (ACT using cancer antigen-specific T cells is the most effective option. Despite the apparent clinical efficacy of ACT, the timely preparation of a sufficient number of cancer antigen-specific T cells for each patient has been recognized as its biggest limitation. Currently, therefore, attention is being focused on ACT with engineered T cells produced using cancer antigen-specific T-cell receptor (TCR gene transfer. With regard to human leukemia, ACT using engineered T cells bearing the leukemia antigen-specific TCR gene still remains in its infancy. However, several reports have provided preclinical data on TCR gene transfer using Wilms' tumor gene product 1 (WT1, and also preclinical and clinical data on TCR gene transfer involving minor histocompatibility antigen, both of which have been suggested to provide additional clinical benefit. In this review, we examine the current status of anti-leukemia ACT with engineered T cells carrying the leukemia antigen-specific TCR gene, and discuss the existing barriers to progress in this area.

  5. Tumor Antigen Specific Activation of Primary Human T-Cells Expressing a Virally Encoded Chimeric T-Cell Receptor Specific for p185HER2

    Institute of Scientific and Technical Information of China (English)

    杨建民; MichaelSFRIEDMAN; ChristopherMREYNOLDS; MarianneTHUBEN; LeeWILKE; JenniferFULLER; 李桥; ZeligESHHAR; JamesJMULE; KevimTMCDONAGH

    2004-01-01

    We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments,retroviral vectors expressing the N297 or N29ξ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were vitally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal antibodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific immune responses. Both CD4+ and CD8+ T-cells transduced with the N297 or N29ξ chTCR demonstrated HER2-specific antigen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the feasibility of adoptive immunothempy with genetically modified T-cells expressing a chTCR specific for p185HER2.

  6. In Vitro Generation of Antigen-Specific T Cells from Induced Pluripotent Stem Cells of Antigen-Specific T Cell Origin.

    Science.gov (United States)

    Kaneko, Shin

    2016-01-01

    Induced pluripotent stem (iPS) cells derived from T lymphocyte (T-iPS cells) preserve the T cell receptor (TCR) α and β gene rearrangements identical to the original T cell clone. Re-differentiated CD8 single positive αβ T cells from the T-iPS cells exhibited antigen-specific cytotoxicity, improved proliferative response, and elongation of telomere indicating rejuvenation of antigen specific T cell immunity in vitro. To regenerate antigen specific cytotoxic T lymphocytes (CTL), first, we have optimized a method for reprogramming-resistant CD8 T cell clones into T-iPS cells by using sendaiviral vectors. Second, we have optimized stepwise differentiation methods for inducing hematopoietic progenitor cells, T cell progenitors, and functionally matured CD8 single positive CTL. These protocols provide useful in vitro tools and models both for research of antigen-specific T cell immunotherapy and for research of normal and pathological thymopoiesis.

  7. Role of 4-1BB receptor in the control played by CD8(+ T cells on IFN-gamma production by Mycobacterium tuberculosis antigen-specific CD4(+ T Cells.

    Directory of Open Access Journals (Sweden)

    Carla Palma

    Full Text Available BACKGROUND: Antigen-specific IFN-gamma producing CD4(+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-gamma production without affecting protective IFN-gamma is a challenge in tuberculosis research. METHODS AND FINDINGS: Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4(+ T cell-mediated IFN-gamma response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-gamma response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8(+ T cells which suppressed IFN-gamma-secreting CD4(+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-gamma responses by CD4(+ T cells in protein-boosted mice without affecting the low protective IFN-gamma-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8(+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-gamma inhibition did not require soluble IL-10, TGF-beta, XCL-1 and MIP-1beta. In vivo Ag85B stimulation induced 4-1BB expression on CD8(+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-gamma production and expansion of Ag85B-specific CD4(+ T cells of DNA-primed and protein-boosted mice. CONCLUSION/SIGNIFICANCE: Antigen-specific suppressor CD8(+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-gamma-secreting CD4(+ T cells. The selective

  8. Selective culling of high avidity antigen-specific CD4+ T cells after virulent Salmonella infection.

    Science.gov (United States)

    Ertelt, James M; Johanns, Tanner M; Mysz, Margaret A; Nanton, Minelva R; Rowe, Jared H; Aguilera, Marijo N; Way, Sing Sing

    2011-12-01

    Typhoid fever is a persistent infection caused by host-adapted Salmonella strains adept at circumventing immune-mediated host defences. Given the importance of T cells in protection, the culling of activated CD4+ T cells after primary infection has been proposed as a potential immune evasion strategy used by this pathogen. We demonstrate that the purging of activated antigen-specific CD4+ T cells after virulent Salmonella infection requires SPI-2 encoded virulence determinants, and is not restricted only to cells with specificity to Salmonella-expressed antigens, but extends to CD4+ T cells primed to expand by co-infection with recombinant Listeria monocytogenes. Unexpectedly, however, the loss of activated CD4+ T cells during Salmonella infection demonstrated using a monoclonal population of adoptively transferred CD4+ T cells was not reproduced among the endogenous repertoire of antigen-specific CD4+ T cells identified with MHC class II tetramer. Analysis of T-cell receptor variable segment usage revealed the selective loss and reciprocal enrichment of defined CD4+ T-cell subsets after Salmonella co-infection that is associated with the purging of antigen-specific cells with the highest intensity of tetramer staining. Hence, virulent Salmonella triggers the selective culling of high avidity activated CD4+ T-cell subsets, which re-shapes the repertoire of antigen-specific T cells that persist later after infection.

  9. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma......-associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined....

  10. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  11. Antigen specificity of invariant natural killer T-cells

    Directory of Open Access Journals (Sweden)

    Alysia M. Birkholz

    2015-12-01

    Full Text Available Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells, are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.

  12. Antigen specificity of invariant natural killer T-cells.

    Science.gov (United States)

    Birkholz, Alysia M; Kronenberg, Mitchell

    2015-12-01

    Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.

  13. T cell re-targeting to EBV antigens following TCR gene transfer: CD28-containing receptors mediate enhanced antigen-specific IFNgamma production

    NARCIS (Netherlands)

    N. van der Schaft (Niels); B. Lankiewicz (Birgit); H.A. Drexhage (Hemmo); C.A. Berrevoets (Cor); D.J. Moss (Denis); V. Levitsky (Victor); M. Bonneville (Marc); S.P. Lee (Steven); A.J. McMichael (Andrew); J.W. Gratama (Jan-Willem); R.L.H. Bolhuis (Reinder); R.A. Willemsen (Ralph); J.E.M.A. Debets (Reno)

    2006-01-01

    textabstractAbstract EBV is associated with a broad range of malignancies. Adoptive immunotherapy of these tumors with EBV-specific CTL proved useful. We generated a panel of primary human T cells specific to various EBV antigens (i.e. Epstein-Barr nuclear antigen 3A, 3B and BamHI-M leftward reading

  14. Circadian control of antigen-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Nobis CC

    2016-09-01

    Full Text Available Chloé C Nobis,1–3 Nathalie Labrecque,2–4 Nicolas Cermakian1,5–8 1Douglas Mental Health University Institute, 2Maisonneuve-Rosemont Hospital Research Centre, 3Department of Microbiology, Infectious Diseases and Immunology, 4Department of Medicine, University of Montreal, 5Department of Psychiatry, 6Department of Microbiology and Immunology, 7Department of Neurology and Neurosurgery, 8Department of Physiology, McGill University, Montreal, QC, Canada Abstract: The immune system is composed of two arms, the innate and the adaptive immunity. While the innate response constitutes the first line of defense and is not specific for a particular pathogen, the adaptive response is highly specific and allows for long-term memory of the pathogen encounter. T lymphocytes (or T cells are central players in the adaptive immune response. Various aspects of T cell functions vary according to the time of day. Circadian clocks located in most tissues and cell types generate 24-hour rhythms of various physiological processes. These clocks are based on a set of clock genes, and this timing mechanism controls rhythmically the expression of numerous other genes. Clock genes are expressed in cells of the immune system, including T cells. In this review, we provide an overview of the circadian control of the adaptive immune response, with emphasis on T cells, including their development, trafficking, response to antigen, and effector functions. Keywords: circadian clock, adaptive immune response, T lymphocyte, antigen, cytokine, proliferation

  15. In vitro expansion of antigen-specific CD8(+) T cells distorts the T-cell repertoire.

    Science.gov (United States)

    Koning, Dan; Costa, Ana I; Hasrat, Raiza; Grady, Bart P X; Spijkers, Sanne; Nanlohy, Nening; Keşmir, Can; van Baarle, Debbie

    2014-03-01

    Short-term in vitro expansion of antigen-specific T cells is an appreciated assay for the analysis of small memory T-cell populations. However, how well short-term expanded T cells represent the direct ex vivo situation remains to be elucidated. In this study we compared the clonality of Epstein-Barr virus (EBV) and cytomegalovirus (CMV)-specific CD8(+) T cells directly ex vivo and after in vitro stimulation with antigen. Our data show that the antigen-specific T cell repertoire significantly alters after in vitro culture. Clear shifts in clonotype hierarchy were observed, with the most dominant ex vivo clonotype decreasing after stimulation at the expense of several previously subdominant clonotypes. Notably, these alterations were more pronounced in polyclonal T-cell populations compared to mono- or oligoclonal repertoires. Furthermore, TCR diversity significantly increased after culture with antigen. These results suggest that the T-cell repertoire is highly subjective to variation after in vitro stimulation with antigen. Hence, although short-term expansion of T cells provides a simple and efficient tool to examine antigen-specific immune responses, caution is required if T-cell populations are expanded prior to detailed, clonotypic analyses or other repertoire-based investigations.

  16. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is ......Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen....... There is a particular interest in developing robust high-throughput assays as chicken vaccine trials usually comprise many individuals. In many respects, the avian immune system differs from the mammalian, and T cell assessment protocols must be adjusted accordingly to account for, e.g., differences in leukocyte...... responding to the stimulation. This method has been successfully applied to studies of chicken antigen-specific T cells....

  17. Nematode-Derived Proteins Suppress Proliferation and Cytokine Production of Antigen-Specific T Cells via Induction of Cell Death

    Science.gov (United States)

    Hartmann, Wiebke; Brenz, Yannick; Kingsley, Manchang Tanyi; Ajonina-Ekoti, Irene; Brattig, Norbert W.; Liebau, Eva; Breloer, Minka

    2013-01-01

    In order to establish long-lasting infections in their mammalian host, filarial nematodes have developed sophisticated strategies to dampen their host’s immune response. Proteins that are actively secreted by the parasites have been shown to induce the expansion of regulatory T cells and to directly interfere with effector T cell function. Here, we analyze the suppressive capacity of Onchocercavolvulus-derived excreted/secreted proteins. Addition of two recombinant O. volvulus proteins, abundant larval transcript-2 (OvALT-2) and novel larval transcript-1 (OvNLT-1) to cell cultures of T cell receptor transgenic CD4+ and CD8+ T cells suppressed antigen-specific stimulation in vitro. Ovalbumin-specific CD4+ DO11.10 and OT-II T cells that had been stimulated with their cognate antigen in the presence of OvALT-2 or OvNLT-1 displayed reduced DNA synthesis quantified by 3H-thymidine incorporation and reduced cell division quantified by CFSE dilution. Furthermore, the IL-2 and IFN-γ response of ovalbumin-specific CD8+ OT-I T cells was suppressed by OvALT-2 and OvNLT-1. In contrast, another recombinant O. volvulus protein, microfilariae surface-associated antigen (Ov103), did not modulate T cell activation, thus serving as internal control for non-ESP-mediated artifacts. Suppressive capacity of the identified ESP was associated with induction of apoptosis in T cells demonstrated by increased exposure of phosphatidylserine on the plasma membrane. Of note, the digestion of recombinant proteins with proteinase K did not abolish the suppression of antigen-specific proliferation although the suppressive capacity of the identified excreted/secreted products was not mediated by low molecular weight contaminants in the undigested preparations. In summary, we identified two suppressive excreted/secreted products from O. volvulus, which interfere with the function of antigen-specific T cells in vitro. PMID:23861729

  18. Nematode-derived proteins suppress proliferation and cytokine production of antigen-specific T cells via induction of cell death.

    Directory of Open Access Journals (Sweden)

    Wiebke Hartmann

    Full Text Available In order to establish long-lasting infections in their mammalian host, filarial nematodes have developed sophisticated strategies to dampen their host's immune response. Proteins that are actively secreted by the parasites have been shown to induce the expansion of regulatory T cells and to directly interfere with effector T cell function. Here, we analyze the suppressive capacity of Onchocercavolvulus-derived excreted/secreted proteins. Addition of two recombinant O. volvulus proteins, abundant larval transcript-2 (OvALT-2 and novel larval transcript-1 (OvNLT-1 to cell cultures of T cell receptor transgenic CD4(+ and CD8(+ T cells suppressed antigen-specific stimulation in vitro. Ovalbumin-specific CD4(+ DO11.10 and OT-II T cells that had been stimulated with their cognate antigen in the presence of OvALT-2 or OvNLT-1 displayed reduced DNA synthesis quantified by (3H-thymidine incorporation and reduced cell division quantified by CFSE dilution. Furthermore, the IL-2 and IFN-γ response of ovalbumin-specific CD8(+ OT-I T cells was suppressed by OvALT-2 and OvNLT-1. In contrast, another recombinant O. volvulus protein, microfilariae surface-associated antigen (Ov103, did not modulate T cell activation, thus serving as internal control for non-ESP-mediated artifacts. Suppressive capacity of the identified ESP was associated with induction of apoptosis in T cells demonstrated by increased exposure of phosphatidylserine on the plasma membrane. Of note, the digestion of recombinant proteins with proteinase K did not abolish the suppression of antigen-specific proliferation although the suppressive capacity of the identified excreted/secreted products was not mediated by low molecular weight contaminants in the undigested preparations. In summary, we identified two suppressive excreted/secreted products from O. volvulus, which interfere with the function of antigen-specific T cells in vitro.

  19. Fractionation of T cell subsets on Ig anti-Ig columns: isolation of helper T cells from nonresponder mice, demonstration of antigen-specific T suppressor cells, and selection of CD-3 negative variants of Jurkat T cells

    DEFF Research Database (Denmark)

    Rubin, B; Geisler, C; Kuhlmann, J

    1989-01-01

    In the present experiments we have explored the possibilities of a modified immunoadsorbent technique to select for (1) mutagenized T cell receptor (Tcr) negative variants of Jurkat T lymphoma cells and (2) purified CD-4+ or CD-8+ T lymphocytes. The basic principle was to make large numbers...... of immunoglobulin (Ig) negative T cells Ig+ by T cell subset-specific monoclonal antibodies (mAb), and to select such cells on Ig anti-Ig columns. Our results demonstrated that Thy-1+, Fc receptor positive, antigen-specific T cells regulate the immune response in mice nonresponders to pork insulin......." The most important finding is the demonstration of antigen-specific Thy-1+, CD-8+, and Fc receptor+ T suppressor cell that apparently react with antigen in a non-major histocompatibility complex-restricted manner....

  20. Antibody-targeted NY-ESO-1 to mannose receptor or DEC-205 in vitro elicits dual human CD8+ and CD4+ T cell responses with broad antigen specificity.

    Science.gov (United States)

    Tsuji, Takemasa; Matsuzaki, Junko; Kelly, Marcus P; Ramakrishna, Venky; Vitale, Laura; He, Li-Zhen; Keler, Tibor; Odunsi, Kunle; Old, Lloyd J; Ritter, Gerd; Gnjatic, Sacha

    2011-01-15

    Immunization of cancer patients with vaccines containing full-length tumor Ags aims to elicit specific Abs and both CD4(+) and CD8(+) T cells. Vaccination with protein Ags, however, often elicits only CD4(+) T cell responses without inducing Ag-specific CD8(+) T cells, as exogenous protein is primarily presented to CD4(+) T cells. Recent data revealed that Ab-mediated targeting of protein Ags to cell surface receptors on dendritic cells could enhance the induction of both CD4(+) and CD8(+) T cells. We investigated in this study if these observations were applicable to NY-ESO-1, a cancer-testis Ag widely used in clinical cancer vaccine trials. We generated two novel targeting proteins consisting of the full-length NY-ESO-1 fused to the C terminus of two human mAbs against the human mannose receptor and DEC-205, both internalizing molecules expressed on APC. These targeting proteins were evaluated for their ability to activate NY-ESO-1-specific human CD4(+) and CD8(+) T cells in vitro. Both targeted NY-ESO-1 proteins rapidly bound to their respective targets on APC. Whereas nontargeted and Ab-targeted NY-ESO-1 proteins similarly activated CD4(+) T cells, cross-presentation to CD8(+) T cells was only efficiently induced by targeted NY-ESO-1. In addition, both mannose receptor and DEC-205 targeting elicited specific CD4(+) and CD8(+) T cells from PBLs of cancer patients. Receptor-specific delivery of NY-ESO-1 to APC appears to be a promising vaccination strategy to efficiently generate integrated and broad Ag-specific immune responses against NY-ESO-1 in cancer patients.

  1. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    Directory of Open Access Journals (Sweden)

    Chansavath Phetsouphanh

    2015-08-01

    Full Text Available A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  2. Inhibition of effector antigen-specific T cells by intradermal administration of heme oxygenase-1 inducers.

    Science.gov (United States)

    Simon, Thomas; Pogu, Julien; Rémy, Séverine; Brau, Frédéric; Pogu, Sylvie; Maquigneau, Maud; Fonteneau, Jean-François; Poirier, Nicolas; Vanhove, Bernard; Blancho, Gilles; Piaggio, Eliane; Anegon, Ignacio; Blancou, Philippe

    2017-03-22

    Developing protocols aimed at inhibiting effector T cells would be key for the treatment of T cell-dependent autoimmune diseases including type 1 autoimmune diabetes (T1D) and multiple sclerosis (MS). While heme oxygenase-1 (HO-1) inducers are clinically approved drugs for non-immune-related diseases, they do have immunosuppressive properties when administered systemically in rodents. Here we show that HO-1 inducers inhibit antigen-specific effector T cells when injected intradermally together with the T cell cognate antigens in mice. This phenomenon was observed in both a CD8(+) T cell-mediated model of T1D and in a CD4(+) T cell-dependent MS model. Intradermal injection of HO-1 inducers induced the recruitment of HO-1(+) monocyte-derived dendritic cell (MoDCs) exclusively to the lymph nodes (LN) draining the site of intradermal injection. After encountering HO-1(+)MoDCs, effector T-cells exhibited a lower velocity and a reduced ability to migrate towards chemokine gradients resulting in impaired accumulation to the inflamed organ. Intradermal co-injection of a clinically approved HO-1 inducer and a specific antigen to non-human primates also induced HO-1(+) MoDCs to accumulate in dermal draining LN and to suppress delayed-type hypersensitivity. Therefore, in both mice and non-human primates, HO-1 inducers delivered locally inhibited effector T-cells in an antigen-specific manner, paving the way for repositioning these drugs for the treatment of immune-mediated diseases.

  3. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines.

    Science.gov (United States)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is a particular interest in developing robust high-throughput assays as chicken vaccine trials usually comprise many individuals. In many respects, the avian immune system differs from the mammalian, and T cell assessment protocols must be adjusted accordingly to account for, e.g., differences in leukocyte subsets.The carboxyfluorescein succinimidyl ester (CFSE) method described in this chapter has been adapted to chicken cells. In this test, cells of interest are stained with CFSE. The succinimidyl ester group covalently binds to cellular amines forming fluorescent conjugates that are retained in the cells even throughout division. This leads to daughter cells containing half the fluorescence of their parents. When lymphocytes are loaded with CFSE prior to ex vivo stimulation with specific antigen, the measurement of serial halving of its fluorescence by flow cytometry identifies the cells responding to the stimulation. This method has been successfully applied to studies of chicken antigen-specific T cells.

  4. Caspase-1 Dependent IL-1β Secretion and Antigen-Specific T-Cell Activation by the Novel Adjuvant, PCEP

    Directory of Open Access Journals (Sweden)

    Sunita Awate

    2014-06-01

    Full Text Available The potent adjuvant activity of the novel adjuvant, poly[di(sodiumcarboxylatoethylphenoxyphosphazene] (PCEP, with various antigens has been reported previously. However, very little is known about its mechanisms of action. We have recently reported that intramuscular injection of PCEP induces NLRP3, an inflammasome receptor gene, and inflammatory cytokines, including IL-1β and IL-18, in mouse muscle tissue. Caspase-1 is required for the processing of pro-forms of IL-1β and IL-18 into mature forms and is a critical constituent of the NLRP3 inflammasome. Hence, in the present study, we investigated the role of caspase-1 in the secretion of IL-1β and IL-18 in PCEP-stimulated splenic dendritic cells (DCs. Caspase inhibitor YVAD-fmk-treated splenic DCs showed significantly reduced IL-1β and IL-18 secretion in response to PCEP stimulation. Further, PCEP had no effect on the expression of MHC class II or co-stimulatory molecules, CD86 and CD40, suggesting that PCEP does not induce DC maturation. However, PCEP directly activated B-cells to induce significant production of IgM. In addition, PCEP+ovalbumin (OVA immunized mice showed significantly increased production of antigen-specific IFN-γ by CD4+ and CD8+ T-cells. We conclude that PCEP activates innate immunity, leading to increased antigen-specific T-cell responses.

  5. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    Science.gov (United States)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  6. Enhanced Dendritic Cell-Mediated Antigen-Specific CD4+ T Cell Responses: IFN-Gamma Aids TLR Stimulation

    Directory of Open Access Journals (Sweden)

    Kuo-Ching Sheng

    2013-01-01

    Full Text Available Phenotypic maturation and T cell stimulation are two functional attributes of DCs critical for immune induction. The combination of antigens, including those from cancer, with Toll-like receptor (TLR ligands induces far superior cellular immune responses compared to antigen alone. In this study, IFN-gamma treatment of bone marrow-derived DC, followed by incubation with the TLR2, TLR4, or TLR9 agonists, enhanced DC activation compared to TLR ligation alone. Most notably, the upregulation of CD40 with LPS stimulation and CD86 with CpG stimulation was observed in in vitro cultures. Similarly, IFN-gamma coinjected with TLR ligands was able to promote DC activation in vivo, with DCs migrating from the site of immunization to the popliteal lymph nodes demonstrating increased expression of CD80 and CD86. The heightened DC activation translated to a drastic increase in T cell stimulatory capacity in both antigen independent and antigen dependent fashions. This is the first time that IFN-gamma has been shown to have a combined effect with TLR ligation to enhance DC activation and function. The results demonstrate the novel use of IFN-gamma together with TLR agonists to enhance antigen-specific T cell responses, for applications in the development of enhanced vaccines and drug targets against diseases including cancer.

  7. Transforming growth factor-beta inhibits human antigen-specific CD4(+) T cell proliferation without modulating the cytokine response

    NARCIS (Netherlands)

    Tiemessen, MM; Kunzmann, S; Schmidt-Weber, CB; Garssen, J; Bruijnzeel-Koomen, CAFM; Knol, EF; Van Hoffen, E

    2003-01-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated y

  8. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  9. Presentation of antigen by B cells subsets. Pt. 2. The role of CD5 B cells in the presentation of antigen to antigen-specific T cells

    Energy Technology Data Exchange (ETDEWEB)

    Zimecki, Michal [Polish Academy of Sciences, Wroclaw (Poland). Institute of Immunology and Experimental Therapy; Kapp, Judith A. [Emory Univ., Atlanta, GA (United States). School of Medicine

    1994-12-31

    We demonstrate that peritoneal B cells have a much higher ability to present antigen to antigen-specific T cell lines splenic B cells. Presentation of antigen by B cells is abrogated or drastically reduced after removal of Lyb-5{sup +} cells from the population of splenic or peritoneal B cells. Peritoneal B cells, precultured for 7 days prior to the antigen presentation assay, retain their antigen presenting cell (APC) function. Enrichment for CD5{sup +} cells in the peritoneal B cell population results in a more effective antigen presentation. Lastly, stimulation of B cells via CD5 antigen, by treatment of cells with anti-CD5 antibodies or cross-linking of CD5 receptors, enhances APC function of these cells. The results indicate, both indirectly and directly, that CD5{sup +} B cells play a predominant role in the presentation of conventional antigens to antigen-specific T cells. (author). 30 refs, 6 tabs.

  10. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells.

    Science.gov (United States)

    Wang, Wenshi; Lau, Roy; Yu, Daohai; Zhu, Weiwei; Korman, Alan; Weber, Jeffrey

    2009-09-01

    Regulatory CD4(+)CD25(Hi) T cells (Treg) and programmed death-1 (PD-1) molecule have emerged as pivotal players in immune regulation. However, the underlying mechanisms by which they impact antigen-specific CD8(+) immune responses in cancer patients and how they interact with each other under physiologic conditions remain unclear. Herein, we examined the relationship of PD-1 and its abrogation to the function of Treg in patients with melanoma using short-term in vitro assays to generate melanoma-specific T cells. We identified Treg in the circulation of vaccinated melanoma patients and detected PD-1 expression on vaccine-induced melanoma antigen-specific CTLs, as well as on and within Treg from patients' peripheral blood. Programmed death ligand (PD-L) 1 expression was also detected on patients' Treg. PD-1 blockade promoted the generation of melanoma antigen-specific CTLs and masked their inhibition by Treg. The mechanisms by which PD-1 blockade mediated immune enhancement included direct augmentation of melanoma antigen-specific CTL proliferation, heightening their resistance to inhibition by Treg and direct limitation of the inhibitory ability of Treg. PD-1 blockade reversed the increased expression of PD-1 and PD-L1 on melanoma antigen-specific CTL by Treg, rescued INF-gamma and IL-2 or INF-gamma and tumor necrosis factor-alpha co-expression and expression of IL-7 receptor by melanoma antigen-specific CTL which were diminished by Treg. PD-1 blockade also resulted in down-regulation of intracellular FoxP3 expression by Treg. These data suggest that PD-1 is importantly implicated in the regulation of Treg function in melanoma patients.

  11. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+CD25Hi regulatory T cells

    Science.gov (United States)

    Lau, Roy; Yu, Daohai; Zhu, Weiwei; Korman, Alan; Weber, Jeffrey

    2009-01-01

    Regulatory CD4+CD25Hi T cells (Treg) and programmed death-1 (PD-1) molecule have emerged as pivotal players in immune regulation. However, the underlying mechanisms by which they impact antigen-specific CD8+ immune responses in cancer patients and how they interact with each other under physiologic conditions remain unclear. Herein, we examined the relationship of PD-1 and its abrogation to the function of Treg in patients with melanoma using short-term in vitro assays to generate melanoma-specific T cells. We identified Treg in the circulation of vaccinated melanoma patients and detected PD-1 expression on vaccine-induced melanoma antigen-specific CTLs, as well as on and within Treg from patients’ peripheral blood. Programmed death ligand (PD-L) 1 expression was also detected on patients’ Treg. PD-1 blockade promoted the generation of melanoma antigen-specific CTLs and masked their inhibition by Treg. The mechanisms by which PD-1 blockade mediated immune enhancement included direct augmentation of melanoma antigen-specific CTL proliferation, heightening their resistance to inhibition by Treg and direct limitation of the inhibitory ability of Treg. PD-1 blockade reversed the increased expression of PD-1 and PD-L1 on melanoma antigen-specific CTL by Treg, rescued INF-γ and IL-2 or INF-γ and tumor necrosis factor-α co-expression and expression of IL-7 receptor by melanoma antigen-specific CTL which were diminished by Treg. PD-1 blockade also resulted in down-regulation of intracellular FoxP3 expression by Treg. These data suggest that PD-1 is importantly implicated in the regulation of Treg function in melanoma patients. PMID:19651643

  12. An Enhanced ELISPOT Assay for Sensitive Detection of Antigen-Specific T Cell Responses to Borrelia burgdorferi

    Directory of Open Access Journals (Sweden)

    Gottfried H. Kellermann

    2013-09-01

    Full Text Available Lyme Borreliosis is an infectious disease caused by the spirochete Borrelia burgdorferi that is transmitted through the bite of infected ticks. Both B cell-mediated humoral immunity and T cell immunity develop during natural Borrelia infection. However, compared with humoral immunity, the T cell response to Borrelia infection has not been well elucidated. In this study, a novel T cell-based assay was developed and validated for the sensitive detection of antigen-specific T cell response to B. burgdorferi. Using interferon-g as a biomarker, we developed a new enzyme-linked immunospot method (iSpot Lyme™ to detect Borrelia antigen-specific effector/memory T cells that were activated in vivo by exposing them to recombinant Borrelia antigens ex vivo. To test this new method as a potential laboratory diagnostic tool, we performed a clinical study with a cohort of Borrelia positive patients and healthy controls. We demonstrated that the iSpot Lyme assay has a significantly higher specificity and sensitivity compared with the Western Blot assay that is currently used as a diagnostic measure. A comprehensive evaluation of the T cell response to Borrelia infection should, therefore, provide new insights into the pathogenesis, diagnosis, treatment and monitoring of Lyme disease.

  13. Molecular anatomy and number of antigen specific CD8 T cells required to cause type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Michael B A Oldstone

    Full Text Available We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glycoprotein (GP epitopes. CTLs to the immunodominant LCMV GP33-41 epitope accounted for 63% of the total (12.5% of tetramers. In situ hybridization analysis demonstrated only 1 to 2% of total infiltrating CD8 T cells were specific for GP33 CD8 T cell epitope, yet diabetes occurred in 94% of mice. The immunologic synapse between GP33 CD8 CTL and β cell contained LFA-1 and perforin. Silencing both immunodominant epitopes (GP33, GP276-286 in the infecting virus led to a four-fold reduction in viral specific CD8 CTL responses, negligible lymphocyte infiltration into islets and absence of diabetes.

  14. Phenotypic and Functional Analysis of LCMV gp33-41-Specific CD8 T Cells Elicited by Multiple Peptide Immunization in Mice Revealed the Up-regulation of PD-1 Expression on Antigen Specific CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    Yi Liu; Lihui Xu; Yiqun Jiang; Jianfang Sun; Xianhui He

    2007-01-01

    The phenotype and function of antigen-specific CD8 T cells are closely associated with the efficacy of a therapeutic vaccination. Here we showed that multiple immunizations with LCMV gp33-41 peptide (KAV) in Freund's adjuvant could induce KAV-specific CD8 T cells with low expression of CD127 and CD62L molecules. The inhibitory receptor PD-1 was also expressed on a substantial part of KAV-specific CD8 T cells, and its expression level on KAV-specific CD8 T cells in spleen and lymph nodes was much higher when compared to those in peripheral blood. Furthermore, KAV-specific CD8 T cells could specifically kill KAV-pulsed target cells in vivo but the efficiency was low. These data suggest that prime-boost vaccination schedule with peptide in Freund's adjuvant can elicit antigen-specific CD8 T cells of effector-like phenotype with partial functional exhaustion, which may only provide short-term protection against the pathogen.

  15. Antigen-specific T cells fully conserve antitumour function following cryopreservation

    Science.gov (United States)

    Galeano Niño, Jorge L; Kwan, Rain YQ; Weninger, Wolfgang; Biro, Maté

    2016-01-01

    Immunotherapies based on the autologous adoptive transfer of ex vivo-manipulated T cells are rapidly evolving for the treatment of both metastatic and primary malignancies. However, extended ex vivo culturing reduces the functionality of isolated T cells. Cryopreservation of rapidly expanded T cells for subsequent use throughout an immunotherapeutic regimen is a highly desirable recourse, thus far encumbered by a lack of studies investigating its effects on effector T-cell functionality. Here we directly compare murine tumour-reactive CD8+ T cells cryopreserved during ex vivo expansion to freshly isolated populations. We show that cryopreservation fully conserves the differentiation potential of effector T cells, secretion of pro-inflammatory cytokines, cytotoxic function and does not impair the three-dimensional scanning motility of T cells or their capacity to infiltrate and reject tumours. PMID:26754453

  16. Antigen-Specific Priming is Dispensable in Depletion of Apoptosis-Sensitive T Cells for GvHD Prophylaxis.

    Science.gov (United States)

    Yarkoni, Shai; Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir

    2014-01-01

    Prophylactic approaches to graft versus host disease (GvHD) have employed both phenotypic reduction of T cells and selective elimination of host-primed donor T cells in vitro and in vivo. An additional approach to GvHD prophylaxis by functional depletion of apoptosis-sensitive donor T cells without host-specific sensitization ex vivo showed remarkable reduction in GHD incidence and severity. We address the role and significance of antigen-specific sensitization of donor T cells and discuss the mechanisms of functional T cell purging by apoptosis for GvHD prevention. Host-specific sensitization is dispensable because migration is antigen-independent and donor T cell sensitization is mediated by multiple and redundant mechanisms of presentation of major and minor histocompatibility complex and tissue antigens by donor and host antigen-presenting cells. Our data suggest that potential murine and human GvH effectors reside within subsets of preactivated T cells susceptible to negative regulation by apoptosis prior to encounter of and sensitization to specific antigens.

  17. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C;

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......Effector T cells are a crucial component of the adaptive immune response to respiratory virus infections. Although it was previously reported that the chemokine receptors CCR5 and CXCR3 affect trafficking of respiratory virus-specific CD8(+) T cells, it is unclear whether these receptors govern......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype...

  18. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers.

  19. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  20. Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Kvistborg, Pia; Frøsig, Thomas Mørch;

    2012-01-01

    -dimensional combinatorial matrix, these eight fluorochromes are combined to generate 28 unique two-color codes. By the use of combinatorial encoding, a large number of different T cell populations can be detected in a single sample. The method can be used for T cell epitope mapping, and also for the monitoring of CD8...

  1. Induction and analysis of antigen-specific T cell responses in melanoma patients and animal models

    NARCIS (Netherlands)

    Bins, Adriaan Dirk

    2007-01-01

    This thesis introduces a novel T cell vaccination method that uses a tattoo machine to inject DNA in the skin of the vaccinee. In comparison to other experimental vaccination methods DNA tattooing is very strong: besides small laboratory animals also large animals mount strong T cell responses upon

  2. Early consequences of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on the activation and survival of antigen-specific T cells.

    Science.gov (United States)

    Funatake, Castle J; Dearstyne, Erica A; Steppan, Linda B; Shepherd, David M; Spanjaard, Elena S; Marshak-Rothstein, Ann; Kerkvliet, Nancy I

    2004-11-01

    TCDD is a potent immunotoxicant that suppresses adaptive immunity by mechanisms that are not well defined. To gain insight at the level of the T cell, we used the DO11.10 transgenic T-cell receptor (TCR) mouse model in an adoptive transfer approach to characterize the influence of TCDD on the responsiveness of antigen-specific CD4+ T cells in vivo. Flow cytometry was used to track the response of the OVA-specific transgenic CD4+ T cells in syngeneic recipients using an antibody specific for the transgenic TCR (KJ1-26 [KJ]). Consistent with a previous report, exposure of the recipient mice to TCDD (15 microg/kg po) did not alter the initial expansion of the CD4+KJ+ T cells in the spleen following immunization with OVA but resulted in a significant decline in the number of cells present on and after day 4. The degree of decline was dependent on the dose of TCDD. On day 3 after OVA injection, a higher percentage of the CD4+KJ+ T cells in the spleens of TCDD-treated mice had down-regulated the expression of CD62L, a phenotype associated with T-cell activation. Also on day 3, an increased number of CD4+KJ+ T cells were found in the blood of TCDD-treated mice. However, as in the spleen, the number of CD4+KJ+ T cells in the blood rapidly declined on day 4. CD4+KJ+ T cells in both the spleen and blood of TCDD-treated mice failed to up-regulate CD11a, an adhesion molecule important for sustained interaction between T cells and DC whereas the up-regulation of the adhesion molecule CD49d was not altered. Based on analysis of cell division history, CD4+KJ+ T cells in vehicle-treated mice continued to divide through day 4 whereas CD4+KJ+ T cells in TCDD-treated mice showed no further division after day 3. Increased annexin V staining on CD4+KJ+ T cells in TCDD-treated mice was also observed but not until days 5 and 6. Fas-deficient CD4+KJ+ T cells were depleted from the spleen of TCDD-treated mice in a manner similar to wild-type CD4+KJ+ T cells, suggesting that Fas signaling

  3. Antigen-Specific Inhibition of High-Avidity T Cell Target Lysis by Low-Avidity T Cells via Trogocytosis

    Directory of Open Access Journals (Sweden)

    Brile Chung

    2014-08-01

    Full Text Available Current vaccine conditions predominantly elicit low-avidity cytotoxic T lymphocytes (CTLs, which are non-tumor-cytolytic but indistinguishable by tetramer staining or enzyme-linked immunospot from high-avidity CTLs. Using CTL clones of high or low avidity for melanoma antigens, we show that low-avidity CTLs can inhibit tumor lysis by high-avidity CTLs in an antigen-specific manner. This phenomenon operates in vivo: high-avidity CTLs control tumor growth in animals but not in combination with low-avidity CTLs specific for the same antigen. The mechanism involves stripping of specific peptide-major histocompatibility complexes (pMHCs via trogocytosis by low-avidity melanoma-specific CTLs without degranulation, leading to insufficient levels of specific pMHC on target cell surface to trigger lysis by high-avidity CTLs. As such, peptide repertoire on the cell surface is dynamic and continually shaped by interactions with T cells. These results describe immune regulation by low-avidity T cells and have implications for vaccine design.

  4. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures

    DEFF Research Database (Denmark)

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania;

    2012-01-01

    Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded...... TILs from MM and HNSCC demonstrate a heterogeneous composition in frequency and magnitude of tumor associated antigen specific populations by Elispot IFN¿ quantitation. TILs from MM and HNSCC shared reactivity towards NY ESO-1, cyclin B1 and Bcl-x derived peptides. Additionally we show that dominating...... the heterogeneous tumors upon adoptive transfer; increasing the probability of tumor control by minimizing immune evasion by tumor cell escape variants....

  5. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Bakker, Arnold H; Shu, Chengyi J

    2009-01-01

    The use of fluorescently labeled major histocompatibility complex multimers has become an essential technique for analyzing disease- and therapy-induced T-cell immunity. Whereas classical major histocompatibility complex multimer analyses are well-suited for the detection of immune responses to a...

  6. MHC-based detection of antigen-specific CD8(+) T cell responses

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Schumacher, Nana Maria Pii

    2010-01-01

    The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of differe...

  7. Antigen-specific regulatory T cells and low dose of IL-2 in treatment of type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Minh N. Pham

    2016-01-01

    Full Text Available Regulatory T cells (Tregs play an important role in preventing effector T-cell (Teff targeting of self-antigens that can lead to tissue destruction in autoimmune settings, including type 1 diabetes (T1D. Autoimmunity is caused in part by an imbalance between Teff and Tregs. Early attempts to treat with immunosuppressive agents have led to serious side effects, thus requiring a more targeted approach. Low-dose IL-2 (LD IL-2 can provide immuno-regulation with few side effects by preferentially acting on Tregs to drive tolerance. The concept of LD IL-2 as a therapeutic approach is supported by data in mouse models where autoimmunity is cured and further strengthened by success in human clinical studies in Hepatitis C Virus (HCV induced vasculitis, chronic graft vs host disease (GVHD and Alopecia areata (AA. Treatment will require identification of a safe therapeutic window, which is a difficult task given that patients are reported to have deficient or defective IL-2 production or signalling and have experienced mild activation of NK cells and eosinophils with LD IL-2 therapy. In T1D, a LD IL-2 clinical trial concluded that Tregs can be safely expanded in humans; however, the study was not designed to address efficacy. Antigen-specific therapies have also aimed at regulation of the autoimmune response, but have been filled with disappointment despite an extensive list of diverse islet antigens tested in humans. This approach could be enhanced through the addition of LD IL-2 to the antigenic treatment regimen to improve the frequency and function of antigen-specific Tregs, without global immunosuppression. Here we will discuss the use of LD IL-2 and islet antigen to enhance antigen-specific Tregs in T1D and focus on what is known about their immunological impact, their safety and potential efficacy, and need for better methods to identify therapeutic effectiveness.

  8. Limitations in plasticity of the T-cell receptor repertoire.

    OpenAIRE

    Nanda, N K; Apple, R; Sercarz, E.

    1991-01-01

    How constrained is T-cell recognition? Is a truncated T-cell receptor (TCR) repertoire, missing half of its V beta components (where V indicates variable), still broad enough to produce an antigen-specific T-cell response to all determinants? These questions can be answered for certain T-cell antigenic determinants whose response in the wild type is limited to specific gene segments. Our results show that mice with such a deletion in their TCR V beta genes (V beta truncated haplotype, Va beta...

  9. Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy

    Science.gov (United States)

    2016-01-01

    CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.

  10. Foxp3+ regulatory T cells among tuberculosis patients: impact on prognosis and restoration of antigen specific IFN-γ producing T cells.

    Directory of Open Access Journals (Sweden)

    Amar Singh

    Full Text Available CD4(+CD25(+Foxp3(+ regulatory T cells (Treg and programmed death-1 (PD-1 molecules have emerged as pivotal players in immune suppression of chronic diseases. However, their impact on the disease severity, therapeutic response and restoration of immune response in human tuberculosis remains unclear. Here, we describe the possible role of Treg cells, their M. tuberculosis driven expansion and contribution of PD-1 pathway to the suppressive function of Treg cells among pulmonary tuberculosis (PTB patients. Multicolor flow cytometry, cell culture, cells sorting and ELISA were employed to execute the study. Our results showed significant increase in frequency of antigen-reactive Treg cells, which gradually declined during successful therapy and paralleled with decline of M. tuberculosis-specific IL-10 along with elevation of IFN-γ production, and raising the IFN-γ/IL-4 ratio. Interestingly, persistence of Treg cells tightly correlated with MDR tuberculosis. Also, we show that blocking PD-1/PD-L1 pathway abrogates Treg-mediated suppression, suggesting that the PD-1/PD-L1 pathway is required for Treg-mediated suppression of the antigen-specific T cells. Treg cells possibly play a role in dampening the effector immune response and abrogating PD-1 pathway on Treg cells significantly rescued protective T cell response, suggesting its importance in immune restoration among tuberculosis patients.

  11. TGF-β1-mediated Smad3 enhances PD-1 expression on antigen-specific T cells in cancer

    Science.gov (United States)

    Park, Benjamin V.; Freeman, Zachary T.; Ghasemzadeh, Ali; Chattergoon, Michael A.; Rutebemberwa, Alleluiah; Steigner, Jordana; Winter, Matthew E.; Huynh, Thanh V.; Sebald, Suzanne M.; Lee, Se-Jin; Pan, Fan; Pardoll, Drew M.; Cox, Andrea L.

    2017-01-01

    Programmed Death-1 (PD-1) is a co-inhibitory receptor that down-regulates the activity of tumor-infiltrating lymphocytes (TIL) in cancer and of virus-specific T cells in chronic infection. The molecular mechanisms driving high PD-1 expression on TIL have not been fully investigated. We demonstrate that transforming growth factor-β1 (TGF-β1) directly enhances antigen-induced PD-1 expression through Smad3-dependent, Smad2-independent transcriptional activation in T cells in vitro and in TIL in vivo. The PD-1hi subset seen in CD8+ TIL is absent in Smad3-deficient tumor-specific CD8+ TIL, resulting in enhanced cytokine production by TIL and in draining lymph nodes and of anti-tumor activity. In addition to TGF-β1’s previously known effects on T cell function, our findings suggest that TGF-β1 mediates T cell suppression via PD-1 upregulation in the TME. They highlight bidirectional crosstalk between effector TIL and TGF-β-producing cells that upregulates multiple components of the PD-1 signaling pathway to inhibit anti-tumor immunity. PMID:27683557

  12. The athymic nude rat. Immunobiological characteristics with special reference to establishment of non-antigen-specific T-cell reactivity and induction of antigen-specific immunity

    DEFF Research Database (Denmark)

    Hougen, H P

    1991-01-01

    and function of the thymus are briefly described. The thymus has two main functions: production of T lymphocytes and production of thymic hormones. The intrathymic T-cell ontogeny is described along with the two thymocyte selection mechanisms, positive and negative selection. Different thymic hormones...... cells. Little research has been performed on bone marrow of athymic nude rats but morphologically there seems to be no difference from findings in normal animals. The thymus-dependent areas of peripheral lymphoid organs, i.e. the paracortical area of lymph nodes, the periarteriolar sheet of the splenic...

  13. Effective Delivery of Antigen-Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection.

    Science.gov (United States)

    Choi, Bongseo; Moon, Hyojin; Hong, Sung Joon; Shin, Changsik; Do, Yoonkyung; Ryu, Seongho; Kang, Sebyung

    2016-08-23

    In cancer immunotherapy, robust and efficient activation of cytotoxic CD8(+) T cell immune responses is a promising, but challenging task. Dendritic cells (DCs) are well-known professional antigen presenting cells that initiate and regulate antigen-specific cytotoxic CD8(+) T cells that kill their target cells directly as well as secrete IFN-γ, a cytokine critical in tumor rejection. Here, we employed recently established protein cage nanoparticles, encapsulin (Encap), as antigenic peptide nanocarriers by genetically incorporating the OT-1 peptide of ovalbumin (OVA) protein to the three different positions of the Encap subunit. With them, we evaluated their efficacy in activating DC-mediated antigen-specific T cell cytotoxicity and consequent melanoma tumor rejection in vivo. DCs efficiently engulfed Encap and its variants (OT-1-Encaps), which carry antigenic peptides at different positions, and properly processed them within phagosomes. Delivered OT-1 peptides were effectively presented by DCs to naïve CD8(+) T cells successfully, resulting in the proliferation of antigen-specific cytotoxic CD8(+) T cells. OT-1-Encap vaccinations in B16-OVA melanoma tumor bearing mice effectively activated OT-1 peptide specific cytotoxic CD8(+) T cells before or even after tumor generation, resulting in significant suppression of tumor growth in prophylactic as well as therapeutic treatments. A large number of cytotoxic CD8(+) T cells that actively produce both intracellular and secretory IFN-γ were observed in tumor-infiltrating lymphocytes collected from B16-OVA tumor masses originally vaccinated with OT-1-Encap-C upon tumor challenges. The approaches we describe herein may provide opportunities to develop epitope-dependent vaccination systems that stimulate and/or modulate efficient and epitope-specific cytotoxic T cell immune responses in nonpathogenic diseases.

  14. FastDC derived from human monocytes within 48 h effectively prime tumor antigen-specific cytotoxic T cells.

    Science.gov (United States)

    Dauer, Marc; Schad, Katharina; Herten, Jan; Junkmann, Jana; Bauer, Christian; Kiefl, Rosemarie; Endres, Stefan; Eigler, Andreas

    2005-07-01

    Previously, we have shown that dendritic cells (DCs) with full T-cell stimulatory capacity can be derived from human monocytes after 48 h of in vitro culture (FastDC). Compared to a standard 7-day protocol, this new strategy not only reduces the time span and the amount of recombinant cytokines required, but may also resemble DC development in vivo more closely. Using a melanoma antigen model, we show here that FastDC prime CTL responses against tumor antigens as effectively as standard monocyte-derived DCs (moDCs). FastDC and moDCs derived from monocytes of HLA-A2(+) donors were loaded with the melanoma-associated, HLA-A(*)0201-restricted peptide Melan-A and cocultured with autologous CD3(+) T cells. After two weekly restimulations with freshly prepared, peptide-loaded FastDC or moDCs, binding of CD8(+) T cells to fluorescently labeled MHC-I/Melan-A-peptide complexes and intracellular cytokine staining revealed that the two DC preparations had an equal capacity to prime Melan-A-specific, IFN-gamma producing CD8(+) T cells. CTLs derived from cocultures with FastDC lysed Melan-A-loaded T2 cells even more effectively than CTLs primed by moDCs. Comparative analysis also revealed that FastDC possess an equal capacity to migrate in response to the chemokine receptor CCR-7 ligand 6Ckine. Importantly, DCs can be generated with higher yield and purity using the FastDC-protocol. The reliability and efficacy of this new strategy for DC development from monocytes may facilitate clinical investigation of DC-based tumor immunotherapy.

  15. CD8+ T cells specific for the islet autoantigen IGRP are restricted in their T cell receptor chain usage

    Science.gov (United States)

    Fuchs, Yannick F.; Eugster, Anne; Dietz, Sevina; Sebelefsky, Christian; Kühn, Denise; Wilhelm, Carmen; Lindner, Annett; Gavrisan, Anita; Knoop, Jan; Dahl, Andreas; Ziegler, Anette-G.; Bonifacio, Ezio

    2017-01-01

    CD8+ T cells directed against beta cell autoantigens are considered relevant for the pathogenesis of type 1 diabetes. Using single cell T cell receptor sequencing of CD8+ T cells specific for the IGRP265-273 epitope, we examined whether there was expansion of clonotypes and sharing of T cell receptor chains in autoreactive CD8+ T cell repertoires. HLA-A*0201 positive type 1 diabetes patients (n = 19) and controls (n = 18) were analysed. TCR α- and β-chain sequences of 418 patient-derived IGRP265-273-multimer+ CD8+ T cells representing 48 clonotypes were obtained. Expanded populations of IGRP265-273-specific CD8+ T cells with dominant clonotypes that had TCR α-chains shared across patients were observed. The SGGSNYKLTF motif corresponding to TRAJ53 was contained in 384 (91.9%) cells, and in 20 (41.7%) patient-derived clonotypes. TRAJ53 together with TRAV29/DV5 was found in 15 (31.3%) clonotypes. Using next generation TCR α-chain sequencing, we found enrichment of one of these TCR α-chains in the memory CD8+ T cells of patients as compared to healthy controls. CD8+ T cell clones bearing the enriched motifs mediated antigen-specific target cell lysis. We provide the first evidence for restriction of T cell receptor motifs in the alpha chain of human CD8+ T cells with specificity to a beta cell antigen. PMID:28300170

  16. Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies.

    Science.gov (United States)

    Protti, M P; De Monte, L; Monte, L D; Di Lullo, G; Lullo, G D

    2014-04-01

    CD4(+) T cells comprise a large fraction of tumor infiltrating lymphocytes and it is now established that they may exert an important role in tumor immune-surveillance. Several CD4(+) T cell subsets [i.e. T helper (Th)1, Th2, T regulatory (Treg), Th17, Th22 and follicular T helper (Tfh)] have been described and differentiation of each subset depends on both the antigen presenting cells responsible for its activation and the cytokine environment present at the site of priming. Tumor antigen-specific CD4(+) T cells with different functional activity have been found in the blood of cancer patients and different CD4(+) T cell subsets have been identified at the tumor site by the expression of specific transcription factors and the profile of secreted cytokines. Importantly, depending on the subset, CD4(+) T cells may exert antitumor versus pro-tumor functions. Here we review the studies that first identified the presence of tumor-specific CD4(+) T cells in cancer patients, the techniques used to identify the tumor antigens recognized, the role of the different CD4(+) T cell subsets in tumor immunity and in cancer prognosis and the development of therapeutic strategies aimed at activating efficient antitumor CD4(+) T cell effectors.

  17. An oral recombinant Salmonella enterica serovar Typhimurium mutant elicits systemic antigen-specific CD8+ T cell cytokine responses in mice

    Directory of Open Access Journals (Sweden)

    Chin'ombe Nyasha

    2009-04-01

    Full Text Available Abstract Background The induction of antigen-specific CD8+ T cell cytokine responses against an attenuated, oral recombinant Salmonella enterica serovar Typhimurium vaccine expressing a green fluorescent protein (GFP model antigen was investigated. A GFP expression plasmid was constructed in which the gfp gene was fused in-frame with the 5' domain of the Escherichia coli β-galactosidase α-gene fragment with expression under the lac promoter. Groups of mice were orally immunized three times with the bacteria and systemic CD8+ T cell cytokine responses were evaluated. Results High level of the GFP model antigen was expressed by the recombinant Salmonella vaccine vector. Systemic GFP-specific CD8+ T cell cytokine (IFN-γ and IL-4 immune responses were detected after mice were orally vaccinated with the bacteria. It was shown that 226 net IFN-γ and 132 net IL-4 GFP-specific SFUs/10e6 splenocytes were formed in an ELISPOT assay. The level of IFN-γ produced by GFP peptide-stimulated cells was 65.2-fold above background (p Conclusion These results suggested that a high expressing recombinant Salmonella vaccine given orally to mice would elicit antigen-specific CD8+ T cell responses in the spleen. Salmonella bacteria may, therefore, be used as potential mucosal vaccine vectors.

  18. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T ce

  19. Subset- and Antigen-Specific Effects of Treg on CD8+ T Cell Responses in Chronic HIV Infection.

    Science.gov (United States)

    Nikolova, Maria; Wiedemann, Aurélie; Muhtarova, Maria; Achkova, Daniela; Lacabaratz, Christine; Lévy, Yves

    2016-11-01

    We, and others, have reported that in the HIV-negative settings, regulatory CD4+CD25highFoxP3+ T cells (Treg) exert differential effects on CD8 subsets, and maintain the memory / effector CD8+ T cells balance, at least in part through the PD-1/PD-L1 pathway. Here we investigated Treg-mediated effects on CD8 responses in chronic HIV infection. As compared to Treg from HIV negative controls (Treg/HIV-), we show that Treg from HIV infected patients (Treg/HIV+) did not significantly inhibit polyclonal autologous CD8+ T cell function indicating either a defect in the suppressive capacity of Treg/HIV+ or a lack of sensitivity of effector T cells in HIV infection. Results showed that Treg/HIV+ inhibited significantly the IFN-γ expression of autologous CD8+ T cells stimulated with recall CMV/EBV/Flu (CEF) antigens, but did not inhibit HIV-Gag-specific CD8+ T cells. In cross-over cultures, we show that Treg/HIV- inhibited significantly the differentiation of either CEF- or Gag-specific CD8+ T cells from HIV infected patients. The expression of PD-1 and PD-L1 was higher on Gag-specific CD8+ T cells as compared to CEF-specific CD8+ T cells, and the expression of these markers did not change significantly after Treg depletion or co-culture with Treg/HIV-, unlike on CEF-specific CD8+ T cells. In summary, we show a defect of Treg/HIV+ in modulating both the differentiation and the expression of PD-1/PD-L1 molecules on HIV-specific CD8 T cells. Our results strongly suggest that this particular defect of Treg might contribute to the exhaustion of HIV-specific T cell responses.

  20. Lenalidomide enhances antigen-specific activity and decreases CD45RA expression of T cells from patients with multiple myeloma.

    Science.gov (United States)

    Neuber, Brigitte; Herth, Isabelle; Tolliver, Claudia; Schoenland, Stefan; Hegenbart, Ute; Hose, Dirk; Witzens-Harig, Mathias; Ho, Anthony D; Goldschmidt, Hartmut; Klein, Bernard; Hundemer, Michael

    2011-07-15

    The aim of this study was to investigate whether the specific T cell response against the multiple myeloma Ag HM1.24 is enhanced by the immunomodulatory drug lenalidomide (Revlimid). Ag-specific CD3(+)CD8(+) T cells against the HM1.24 Ag were expanded in vitro by dendritic cells in 29 healthy donors and 26 patients with plasma cell dyscrasias. Ag-specific activation was analyzed by IFN-γ, granzyme B, and perforin secretion using ELISA, ELISPOT assay, and intracellular staining, and generation of Ag-specific T cells was analyzed by tetramer staining. Expression of T cell maturation markers (CD45RA, CD45R0, CCR7, and CD28) was investigated by flow cytometry. We found that activation of HM1.24-specific T cells from healthy donors and patients with plasma cell dyscrasias was enhanced significantly by lenalidomide and furthermore that the impact of lenalidomide on T cells depends on the duration of the exposure. Notably, lenalidomide supports the downregulation of CD45RA on T cells upon activation, observed in healthy donors and in patients in vitro and also in patients during lenalidomide therapy in vivo. We showed for the first time, to our knowledge, that lenalidomide enhances the Ag-specific activation of T cells and the subsequent downregulation of CD45RA expression of T cells in vitro and in vivo.

  1. T Cell Receptor (Tcr)-Mediated Repertoire Selection and Loss of Tcr Vβ Diversity during the Initiation of a Cd4+ T Cell Response in Vivo

    OpenAIRE

    Fassò, Marcella; Anandasabapathy, Niroshana; Crawford, Frances; Kappler, John; Fathman, C. Garrison; Ridgway, William M.

    2000-01-01

    We recently described a novel way to isolate populations of antigen-reactive CD4+ T cells with a wide range of reactivity to a specific antigen, using immunization with a fixed dose of nominal antigen and FACS® sorting by CD4high expression. Phenotypic, FACS®, functional, antibody inhibition, and major histocompatibility complex–peptide tetramer analyses, as well as T cell receptor Vβ sequence analyses, of the antigen-specific CD4high T cell populations demonstrated that a diverse sperm whale...

  2. Antigen-Specific B Cells Reactivate an Effective Cytotoxic T Cell Response against Phagocytosed Salmonella through Cross-Presentation

    NARCIS (Netherlands)

    de Wit, J.; Souwer, Y.; Jorritsma, T.; Bos, H.; ten Brinke, A.; Neefjes, J.; Ham, S.M.

    2010-01-01

    Background: The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+) T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8(+) T cell response vi

  3. Comprehensive mapping of antigen specific T cell responses in hepatitis C virus infected patients with or without spontaneous viral clearance

    Science.gov (United States)

    Cui, Yuanyuan; Wang, Shasha; Yan, Hongqing; Li, Dongmei; Zhang, Yonghong; Tu, Zhengkun; Hao, Pei; Chen, Xinyue; Zhong, Jin; Niu, Junqi; Jin, Xia

    2017-01-01

    Elucidating protective immunity against HCV is important for the development of a preventative vaccine. We hypothesize that spontaneous resolution of acute HCV infection offers clue to protective immune responses, and that DAA therapy affects the quality and quantity of HCV-specific T cell responses. To test these hypotheses, we performed T cell epitope mapping in 111 HCV-infected individuals including 61 chronically HCV-1b (CHC-1b) infected, 24 chronically HCV-2a (CHC-2a) infected and 26 spontaneously recovered (SPR) patients with 376 overlapping peptides covering the entire HCV polyprotein. Selected T cell epitopes were then used to evaluate T cell responses in another 22 chronically HCV-1b infected patients on DAA therapy. Results showed that SPR had better HCV-specific T cell responses than CHC, as manifested by higher response rate, greater magnitude and broader epitope coverage. In addition, SPR recognized novel epitopes in Core, E1, E2, NS4B, NS5A regions that were not present in the CHC. Furthermore, during the first 24 weeks of DAA therapy, there was no functional immune reconstitution of HCV-specific T cells. These results indicate that T cell responses may be a correlate of protection. Therefore, effective preventative vaccines should elicit a robust T cell response. Although various DAA regimens efficiently cleared viruses from the blood of HCV-infected patients, there was no contemporaneous early T cell immune reconstitution, suggesting that early treatment is needed for preserving the functions of HCV-specific T cells. PMID:28170421

  4. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells.

    Science.gov (United States)

    Pinz, K; Liu, H; Golightly, M; Jares, A; Lan, F; Zieve, G W; Hagag, N; Schuster, M; Firor, A E; Jiang, X; Ma, Y

    2016-03-01

    Peripheral T-cell lymphomas (PTCLs) are aggressive lymphomas with no effective upfront standard treatment and ineffective options in relapsed disease, resulting in poorer clinical outcomes as compared with B-cell lymphomas. The adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) is a promising new approach for treatment of hematological malignancies. However, preclinical reports of targeting T-cell lymphoma with CARs are almost non-existent. Here we have designed a CAR, CD4CAR, which redirects the antigen specificity of CD8+ cytotoxic T cells to CD4-expressing cells. CD4CAR T cells derived from human peripheral blood mononuclear cells and cord blood effectively redirected T-cell specificity against CD4+ cells in vitro. CD4CAR T cells efficiently eliminated a CD4+ leukemic cell line and primary CD4+ PTCL patient samples in co-culture assays. Notably, CD4CAR T cells maintained a central memory stem cell-like phenotype (CD8+CD45RO+CD62L+) under standard culture conditions. Furthermore, in aggressive orthotropic T-cell lymphoma models, CD4CAR T cells efficiently suppressed the growth of lymphoma cells while also significantly prolonging mouse survival. Combined, these studies demonstrate that CD4CAR-expressing CD8+ T cells are efficacious in ablating malignant CD4+ populations, with potential use as a bridge to transplant or stand-alone therapy for the treatment of PTCLs.

  5. Antigen-specific B cells reactivate an effective cytotoxic T cell response against phagocytosed Salmonella through cross-presentation.

    Directory of Open Access Journals (Sweden)

    Jelle de Wit

    Full Text Available BACKGROUND: The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+ T cell response. Dendritic cells (DCs are considered to orchestrate the cytotoxic CD8(+ T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8(+ T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8(+ T cells is dependent on CD4(+ T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis. CONCLUSIONS/SIGNIFICANCE: B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection.

  6. Fever-range whole-body heat treatment stimulates antigen-specific T-cell responses in humans.

    Science.gov (United States)

    Kobayashi, Yasunobu; Ito, Yusuke; Ostapenko, Valentina V; Sakai, Mayuko; Matsushita, Norimasa; Imai, Kenichiro; Shimizu, Koichi; Aruga, Atsushi; Tanigawa, Keishi

    2014-11-01

    Increase in body temperature has been thought to play an important role in the regulation of immune responses, although its precise mechanisms are still under investigation. Here, we examined the effects of physiologically relevant thermal stress on the cytokine production from human peripheral T cells. Volunteers were heated using a whole-body hyperthermia device, the rectal temperature was maintained above 38.5 °C for more than 60 min, and peripheral blood mononuclear cells (PBMCs) were obtained before and after the treatment. When T cells were stimulated with anti-CD3/CD28 antibodies, marked increases in the production of interferon-γ (IFN-γ) and interleukin-2 were observed in PBMCs prepared immediately after and 24h after the treatment. Similarly, enhanced production of IFN-γ in response to the tuberculin purified protein derivative or antigenic viral peptides was also observed immediately after and 24h after the treatment. Fluorescence photo-bleaching analyses showed heat-induced increase of membrane fluidity in T cells, which probably enables them to induce rapid and efficient cluster formation of molecules involved in antigen recognition and signal transduction for T-cell stimulation. We concluded that physiologically relevant thermal stress could efficiently modify T-cell responsiveness to various stimuli, including enhanced responses to specific antigens.

  7. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Lynette Beattie

    2010-03-01

    Full Text Available Kupffer cells (KCs represent the major phagocytic population within the liver and provide an intracellular niche for the survival of a number of important human pathogens. Although KCs have been extensively studied in vitro, little is known of their in vivo response to infection and their capacity to directly interact with antigen-specific CD8(+ T cells. Here, using a combination of approaches including whole mount and thin section confocal microscopy, adoptive cell transfer and intra-vital 2-photon microscopy, we demonstrate that KCs represent the only detectable population of mononuclear phagocytes within granulomas induced by Leishmania donovani infection that are capable of presenting parasite-derived peptide to effector CD8(+ T cells. This restriction of antigen presentation to KCs within the Leishmania granuloma has important implications for the identification of new candidate vaccine antigens and for the design of novel immuno-therapeutic interventions.

  8. Activation and exhaustion of antigen-specific CD8(+) T cells occur in different splenic compartments during infection with Plasmodium berghei.

    Science.gov (United States)

    Bayarsaikhan, Ganchimeg; Miyakoda, Mana; Yamamoto, Kazuo; Kimura, Daisuke; Akbari, Masoud; Yuda, Masao; Yui, Katsuyuki

    2017-06-01

    The spleen is the major organ in which T cells are primed during infection with malaria parasites. However, little is known regarding the dynamics of the immune responses and their localization within the splenic tissue during malaria infection. We examined murine CD8(+) T cell responses during infection with Plasmodium berghei using recombinant parasites expressing a model antigen ovalbumin (OVA) protein and compared the responses with those elicited by Listeria monocytogenes expressing the same antigen. OVA-specific CD8(+) T cells were mainly activated in the white pulp of the spleen during malaria infection, as similarly observed during Listeria infection. However, the fates of these activated CD8(+) T cells were distinct. During infection with malaria parasites, activated CD8(+) T cells preferentially accumulated in the red pulp and/or marginal zone, where cytokine production of OVA-specific CD8(+) T cells decreased, and the expression of multiple inhibitory receptors increased. These cells preferentially underwent apoptosis, suggesting that T cell exhaustion mainly occurred in the red pulp and/or marginal zone. However, during Listeria infection, OVA-specific CD8(+) T cells only transiently expressed inhibitory receptors in the white pulp and maintained their ability to produce cytokines and become memory cells. These results highlighted the distinct fates of CD8(+) T cells during infection with Plasmodium parasites and Listeria, and suggested that activation and exhaustion of specific CD8(+) T cells occurred in distinct spleen compartments during infection with malaria parasites.

  9. SIV antigen immunization induces transient antigen-specific T cell responses and selectively activates viral replication in draining lymph nodes in retroviral suppressed rhesus macaques

    Directory of Open Access Journals (Sweden)

    Barry Peter A

    2011-07-01

    Full Text Available Abstract Background HIV infection causes a qualitative and quantitative loss of CD4+ T cell immunity. The institution of anti-retroviral therapy (ART restores CD4+ T cell responses to many pathogens, but HIV-specific responses remain deficient. Similarly, therapeutic immunization with HIV antigens of chronically infected, ART treated subjects results in poor induction of HIV-specific CD4 responses. In this study, we used a macaque model of ART treatment during chronic infection to study the virologic consequences of SIV antigen stimulation in lymph nodes early after immunization. Rhesus CMV (RhCMV seropositive, Mamu A*01 positive rhesus macaques were chronically infected with SIVmac251 and treated with ART. The immune and viral responses to SIV gag and RhCMV pp65 antigen immunization in draining lymph nodes and peripheral blood were analyzed. Animals were immunized on contralateral sides with SIV gag and RhCMV pp65 encoding plasmids, which allowed lymph nodes draining each antigen to be obtained at the same time from the same animal for direct comparison. Results We observed that both SIV and RhCMV immunizations stimulated transient antigen-specific T cell responses in draining lymph nodes. The RhCMV-specific responses were potent and sustained (50 days post-immunization in the periphery, while the SIV-specific responses were transient and extinguished quickly. The SIV antigen stimulation selectively induced transient SIV replication in draining lymph nodes. Conclusions The data are consistent with a model whereby viral replication in response to SIV antigen stimulation limits the generation of SIV antigen-specific responses and suggests a potential mechanism for the early loss and poor HIV-specific CD4+ T cell response observed in HIV-infected individuals.

  10. A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression

    Directory of Open Access Journals (Sweden)

    Shen CC

    2011-11-01

    Full Text Available Chien-Chang Shen1, Hong-Jen Liang2, Chia-Chi Wang3, Mei-Hsiu Liao4, Tong-Rong Jan1 1Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 2Innovation and Incubation Center, Yuanpei University, Hsinchu, 3School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 4Division of Isotope Application, Institute of Energy Research, Taoyuan, Taiwan Background: Accumulating evidence indicates that iron oxide nanoparticles modulate immune responses, and induce oxidative stress in macrophages. It was recently reported that iron oxide nanoparticles attenuated antigen-specific immunity in vivo, though the underlying mechanism remains elusive. The present study investigates the direct effect of iron oxide nanoparticles on antigen-specific cytokine expression by T cells, and potential underlying mechanisms. Methods: Ovalbumin-primed splenocytes were exposed to iron oxide nanoparticles, followed by restimulation with ovalbumin. Cell viability, cytokine production, and cellular levels of glutathione and reactive oxygen species were measured. Results: The splenocyte viability and the production of interleukin-2 and interleukin-4 were unaffected, whereas interferon-γ production was markedly attenuated by iron oxide nanoparticles (10–100 µg iron/mL in a concentration-dependent manner. Iron oxide nanoparticles also transiently diminished the intracellular level of glutathione, with a peak response at 6 hours posttreatment. The effects of iron oxide nanoparticles on interferon-γ and glutathione were attenuated by the presence of N-acetyl-L-cysteine, a precursor of glutathione. However, iron oxide nanoparticles did not influence the generation of reactive oxygen species. Conclusion: Iron oxide nanoparticles induced a differential effect on antigen-specific cytokine expression by T cells, in which the T helper 1 cytokine IFN-γ was sensitive, whereas the T helper 2 cytokine interleukin-4 was

  11. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.

    Science.gov (United States)

    Anelone, Anet J N; Spurgeon, Sarah K

    2016-01-01

    Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.

  12. Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade.

    Science.gov (United States)

    Olson, Brian M; Jankowska-Gan, Ewa; Becker, Jordan T; Vignali, Dario A A; Burlingham, William J; McNeel, Douglas G

    2012-12-15

    Regulatory T cells play important roles in cancer development and progression by limiting the generation of innate and adaptive anti-tumor immunity. We hypothesized that in addition to natural CD4(+)CD25(+) regulatory T cells (Tregs) and myeloid-derived suppressor cells, tumor Ag-specific Tregs interfere with the detection of anti-tumor immunity after immunotherapy. Using samples from prostate cancer patients immunized with a DNA vaccine encoding prostatic acid phosphatase (PAP) and a trans-vivo delayed-type hypersensitivity (tvDTH) assay, we found that the detection of PAP-specific effector responses after immunization was prevented by the activity of PAP-specific regulatory cells. These regulatory cells were CD8(+)CTLA-4(+), and their suppression was relieved by blockade of CTLA-4, but not IL-10 or TGF-β. Moreover, Ag-specific CD8(+) Tregs were detected prior to immunization in the absence of PAP-specific effector responses. These PAP-specific CD8(+)CTLA-4(+) suppressor T cells expressed IL-35, which was decreased after blockade of CTLA-4, and inhibition of either CTLA-4 or IL-35 reversed PAP-specific suppression of tvDTH response. PAP-specific CD8(+)CTLA-4(+) T cells also suppressed T cell proliferation in an IL-35-dependent, contact-independent fashion. Taken together, these findings suggest a novel population of CD8(+)CTLA-4(+) IL-35-secreting tumor Ag-specific Tregs arise spontaneously in some prostate cancer patients, persist during immunization, and can prevent the detection of Ag-specific effector responses by an IL-35-dependent mechanism.

  13. The impact of HLA class I and EBV latency-II antigen-specific CD8(+) T cells on the pathogenesis of EBV(+) Hodgkin lymphoma.

    Science.gov (United States)

    Jones, K; Wockner, L; Brennan, R M; Keane, C; Chattopadhyay, P K; Roederer, M; Price, D A; Cole, D K; Hassan, B; Beck, K; Gottlieb, D; Ritchie, D S; Seymour, J F; Vari, F; Crooks, P; Burrows, S R; Gandhi, M K

    2016-02-01

    In 40% of cases of classical Hodgkin lymphoma (cHL), Epstein-Barr virus (EBV) latency-II antigens [EBV nuclear antigen 1 (EBNA1)/latent membrane protein (LMP)1/LMP2A] are present (EBV(+) cHL) in the malignant cells and antigen presentation is intact. Previous studies have shown consistently that HLA-A*02 is protective in EBV(+) cHL, yet its role in disease pathogenesis is unknown. To explore the basis for this observation, gene expression was assessed in 33 cHL nodes. Interestingly, CD8 and LMP2A expression were correlated strongly and, for a given LMP2A level, CD8 was elevated markedly in HLA-A*02(-) versus HLA-A*02(+) EBV(+) cHL patients, suggesting that LMP2A-specific CD8(+) T cell anti-tumoral immunity may be relatively ineffective in HLA-A*02(-) EBV(+) cHL. To ascertain the impact of HLA class I on EBV latency antigen-specific immunodominance, we used a stepwise functional T cell approach. In newly diagnosed EBV(+) cHL, the magnitude of ex-vivo LMP1/2A-specific CD8(+) T cell responses was elevated in HLA-A*02(+) patients. Furthermore, in a controlled in-vitro assay, LMP2A-specific CD8(+) T cells from healthy HLA-A*02 heterozygotes expanded to a greater extent with HLA-A*02-restricted compared to non-HLA-A*02-restricted cell lines. In an extensive analysis of HLA class I-restricted immunity, immunodominant EBNA3A/3B/3C-specific CD8(+) T cell responses were stimulated by numerous HLA class I molecules, whereas the subdominant LMP1/2A-specific responses were confined largely to HLA-A*02. Our results demonstrate that HLA-A*02 mediates a modest, but none the less stronger, EBV-specific CD8(+) T cell response than non-HLA-A*02 alleles, an effect confined to EBV latency-II antigens. Thus, the protective effect of HLA-A*02 against EBV(+) cHL is not a surrogate association, but reflects the impact of HLA class I on EBV latency-II antigen-specific CD8(+) T cell hierarchies.

  14. HLA micropolymorphisms strongly affect peptide-MHC multimer-based monitoring of antigen-specific CD8+ T cell responses.

    Science.gov (United States)

    van Buuren, Marit M; Dijkgraaf, Feline E; Linnemann, Carsten; Toebes, Mireille; Chang, Cynthia X L; Mok, Juk Yee; Nguyen, Melanie; van Esch, Wim J E; Kvistborg, Pia; Grotenbreg, Gijsbert M; Schumacher, Ton N M

    2014-01-15

    Peptide-MHC (pMHC) multimers have become one of the most widely used tools to measure Ag-specific T cell responses in humans. With the aim of understanding the requirements for pMHC-based personalized immunomonitoring, in which individuals expressing subtypes of the commonly studied HLA alleles are encountered, we assessed how the ability to detect Ag-specific T cells for a given peptide is affected by micropolymorphic differences between HLA subtypes. First, analysis of a set of 10 HLA-A*02:01-restricted T cell clones demonstrated that staining with pMHC multimers of seven distinct subtypes of the HLA-A*02 allele group was highly variable and not predicted by sequence homology. Second, to analyze the effect of minor sequence variation in a clinical setting, we screened tumor-infiltrating lymphocytes of an HLA-A*02:06 melanoma patient with either subtype-matched or HLA-A*02:01 multimers loaded with 145 different melanoma-associated Ags. This revealed that of the four HLA-A*02:06-restricted melanoma-associated T cell responses observed in this patient, two responses were underestimated and one was overlooked when using subtype-mismatched pMHC multimer collections. To our knowledge, these data provide the first demonstration of the strong effect of minor sequence variation on pMHC-based personalized immunomonitoring, and they provide tools to prevent this issue for common variants within the HLA-A*02 allele group.

  15. Sensitivity and specificity of tritiated thymidine incorporation and ELISPOT assays in identifying antigen specific T cell immune responses

    Directory of Open Access Journals (Sweden)

    MacLeod Beth

    2007-09-01

    Full Text Available Abstract Background Standardization of cell-based immunologic monitoring is becoming increasingly important as methods for measuring cellular immunity become more complex. We assessed the ability of two commonly used cell-based assays, tritiated thymidine incorporation (proliferation and IFN-gamma ELISPOT, to predict T cell responses to HER-2/neu, tetanus toxoid (tt, and cytomegalovirus (CMV antigens. These antigens were determined to be low (HER-2/neu, moderate (tt, and robustly (CMV immunogenic proteins. Samples from 27 Stage II, III, and IV HER-2/neu positive breast cancer patients, vaccinated against the HER-2/neu protein and tt, were analyzed by tritiated thymidine incorporation and IFN-gamma ELISPOT for T cell response. Results Linear regression analysis indicates that both stimulation index (SI (p = 0.011 and IFN-gamma secreting precursor frequency (p Conclusion These data underscore the importance of taking into consideration the performance characteristics of assays used to measure T cell immunity. This consideration is particularly necessary when determining which method to utilize for assessing responses to immunotherapeutic manipulations in cancer patients.

  16. Antigen-specific regulatory T-cell subsets in transplantation tolerance regulatory T-cell subset quality reduces the need for quantity.

    NARCIS (Netherlands)

    Koenen, H.J.P.M.; Joosten, I.

    2006-01-01

    Regulatory T cells (Treg) are critical controllers of the immune response. Disturbed Treg function results in autoimmunity, whereas in transplantation Treg are crucial in graft survival and transplant tolerance. Hence therapeutic modalities that influence Treg numbers or function hold great clinical

  17. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    Directory of Open Access Journals (Sweden)

    Gomez Bianca P

    2012-10-01

    Full Text Available Abstract Background Merkel cell carcinoma (MCC is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV. The MCPyV-encoded large T (LT antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT, as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the

  18. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G;

    1998-01-01

    GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN......We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived (r...

  19. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G

    1998-01-01

    We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived (r......GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN...

  20. Induction of hematopoietic microchimerism by gene-modified BMT elicits antigen-specific B and T cell unresponsiveness toward gene therapy products

    Directory of Open Access Journals (Sweden)

    Jérémie Martinet

    2016-09-01

    Full Text Available Background: Gene therapy is a promising treatment option for hemophilia and other protein deficiencies. However, immune responses against the transgene product represent an obstacle to safe and effective gene therapy, urging for the implementation of tolerization strategies. Induction of a hematopoietic chimerism via bone marrow transplantation (BMT is a potent means for inducing immunological tolerance in solid organ transplantation. Objectives: We reasoned here that the same viral vector could be used firstly to transduce BM cells for inducing chimerism-associated transgene-specific immune tolerance and, secondly, for correcting protein deficiencies by vector-mediated systemic production of the deficient coagulation factor.Methods: Evaluation of strategies to induce B and T cell tolerance was performed using ex vivo gene transfer with lentiviral vectors encoding coagulation factor IX (FIX or the SIINFEKL epitope of ovalbumin. Following induction of microchimerism via BMT, animals were challenged with in vivo gene transfer with lentiviral vectors.Results: The experimental approach prevented humoral immune response against FIX, resulting in persistence of therapeutic levels of circulating FIX after lentiviral-mediated gene transfer in vivo. In an ovalbumin model, we also demonstrated that this approach effectively tolerized the CD8+ T cell compartment in an antigen-specific manner.Conclusions: These results provide the proof-of-concept that inducing a microchimerism by gene-modified BMT is a powerful tool to provide transgene-specific B and T cell tolerance in a gene therapy setting.

  1. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients.

    Science.gov (United States)

    Fourcade, Julien; Kudela, Pavol; Andrade Filho, Pedro A; Janjic, Bratislav; Land, Stephanie R; Sander, Cindy; Krieg, Arthur; Donnenberg, Albert; Shen, Hongmei; Kirkwood, John M; Zarour, Hassane M

    2008-10-01

    Analog peptides represent a promising tool to further optimize peptide-based vaccines in promoting the expansion of tumor antigen-specific cytotoxic T lymphocytes. Here, we report the results of a pilot trial designed to study the immunogenicity of the analog peptide NY-ESO-1 157-165V in combination with CpG 7909/PF3512676 and Montanide ISA 720 in patients with stage III/IV NY-ESO-1-expressing melanoma. Eight patients were immunized either with Montanide and CpG (arm 1, 3 patients); Montanide and peptide NY-ESO-1 157-165V (arm 2, 2 patients); or with Montanide, CpG, and peptide NY-ESO-1 157-165V (arm 3, 3 patients). Only the 3 patients immunized with Montanide, CpG, and peptide NY-ESO-1 157-165V in arm 3 developed a rapid increase of effector-memory NY-ESO-1-specific CD8+ T cells, detectable ex vivo. The majority of these cells exhibited an intermediate/late-stage differentiated phenotype (CD28-). Our study further demonstrated that our vaccine approach stimulated spontaneous tumor-reactive NY-ESO-1-specific CD8+ T cells in 2 patients with advanced disease, but failed to prime tumor-reactive NY-ESO-1-specific T cells in 1 patient with no spontaneously tumor-induced CD8+ T-cell responses to NY-ESO-1. Collectively, our data support the capability of the analog peptide NY-ESO-1 157-165V in combination with CpG and Montanide to promote the expansion of NY-ESO-1-specific CD8+ T cells in patients with advanced cancer. They also suggest that the presence of tumor-induced NY-ESO-1-specific T cells of well-defined clonotypes is critical for the expansion of tumor-reactive NY-ESO-1-specific CD8+ T cells after peptide-based vaccine strategies.

  2. Standardized Serum-Free Cryomedia Maintain Peripheral Blood Mononuclear Cell Viability, Recovery, and Antigen-Specific T-Cell Response Compared to Fetal Calf Serum-Based Medium

    Science.gov (United States)

    Schulz, Julia C.; Kemp-Kamke, Beatrice; Zimmermann, Heiko; von Briesen, Hagen

    2011-01-01

    The ability to analyze cryopreserved peripheral blood mononuclear cells (PBMCs) from biobanks for antigen-specific T-cell immunity is necessary to evaluate responses to immune-based therapies. Comprehensive studies have demonstrated that the quality of frozen PBMCs is critical and the maintenance of cell viability and functionality by using appropriate cryopreservation techniques is a key to the successful outcome of assays using PBMCs. Different cryomedia additives affect cell viability. The most common additive is fetal calf serum (FCS), although it is widely known that each FCS lot has to be tested before usage to prevent nonspecific stimulation of T-cells. Also, shipping of samples containing FCS is critical because of many import restrictions. Often, dimethyl sulfoxide (DMSO) is added as a cryoprotectant. However, DMSO concentration has to be reduced significantly because of its toxic effect on cells at room temperature. Therefore, we have developed freezing approaches to minimize cytotoxicity of cryoprotectants and maintain T-cell functionality. We compared different additives to the widely used FCS and found bovine serum albumin fraction V to be an appropriate substitute for the potentially immune-modulating FCS. We also found that DMSO concentration can be reduced by the addition of hydroxyethyl starch. Using our serum-free cryomedia, the PBMC recovery was more than 83% and the PBMC viability was more than 98%. Also, the T-cell functionality measured by enzyme-linked immunospot (ELISpot) was optimal after cryopreservation with our new cryomedia. On the basis of our experimental results, we could finally design 2 different, fully working cryomedia that are standardized, serum free, and manufactured under GMP conditions. PMID:21977240

  3. An Essential Role of the Avidity of T-Cell Receptor in Differentiation of Self-Antigen-reactive CD8+ T Cells.

    Science.gov (United States)

    Kondo, Kenta; Fujiki, Fumihiro; Nakajima, Hiroko; Yatsukawa, Erika; Morimoto, Soyoko; Tatsumi, Naoya; Nishida, Sumiyuki; Nakata, Jun; Oka, Yoshihiro; Tsuboi, Akihiro; Hosen, Naoki; Oji, Yusuke; Sugiyama, Haruo

    2016-04-01

    Many studies demonstrated crucial roles of avidity of T-cell receptor (TCR) in T-cell fate. However, majority of these findings resulted from analysis of non-self-antigen-specific CD8 T cells, and little is known about roles of TCR avidity in the fate of self-antigen-specific CD8 T cells. Wilms tumor gene 1 (WT1) protein is a self-antigen most suitable for addressing this issue because WT1 protein is a highly immunogenic, typical self-antigen. Here, we isolated 2 distinct and functional TCRs, TCR1 and TCR2, from murine WT1 peptide (RMFPNAPYL)-specific cytotoxic T lymphocytes (WT1-CTLs) and generated TCR1-retrogenic (Rg) and TCR2-Rg mice under T and B-cell-deficient and -reconstituted conditions. TCR1-transduced CD8 T (TCR1-T) cells had approximately 2-fold higher avidity to WT1 peptide than TCR2-transduced CD8 T (TCR2-T) cells. Cytokine production profiles and cell surface phenotypes showed that TCR1-T cells were more differentiated than TCR2-T cells under both conditions. Therefore, TCR1-T cells with TCR avidity higher than that of TCR2-T cells are more differentiated compared with TCR2-T cells. Furthermore, TCR1-T cells that developed under T and B-cell-reconstituted conditions displayed cytotoxicity against endogenously WT1-expressing tumor cells, whereas TCR2 T cells that developed under the same conditions did not. Thus, it was demonstrated, for the first time, that TCR avidity played an essential role in differentiation of self-antigen-reactive T cells, through the success of establishment of two distinct WT1-CTLs with a difference in only TCR avidity under the identical genetic background. Present results should provide us with an insight for elucidation of the differentiation mechanisms of self-antigen-reactive T cells, including tumor antigen-reactive T cells.

  4. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance.

    Directory of Open Access Journals (Sweden)

    Emily Xie

    Full Text Available The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.

  5. Characterization of the antigen-specific CD4+ T cell response induced by prime-boost strategies with CAF01 and CpG adjuvants administered by the intranasal and subcutaneous routes

    Directory of Open Access Journals (Sweden)

    Annalisa eCiabattini

    2015-08-01

    Full Text Available The design of heterologous prime-boost vaccine combinations that optimally shape the immune response is of critical importance for the development of next generation vaccines. Here we tested different prime-boost combinations using the tuberculosis vaccine antigen H56 with CAF01 or CpG ODN 1821 adjuvants, administered by the parenteral and nasal routes. By using peptide-MHC class II tetramers, antigen-specific CD4+ T cells were tracked following primary and booster immunizations. Both parenteral priming with H56 plus CAF01 and nasal priming with H56 plus CpG elicited significant expansion of CD4+ tetramer-positive T cells in the spleen, however only parenterally primed cells responded to booster immunization. Subcutaneous priming with H56 and CAF01 followed by nasal boosting with H56 and CpG showed the greater expansion of CD4+ tetramer-positive T cells in the spleen and lungs compared to all the other homologous and heterologous prime-boost combinations. Nasal boosting exerted a recruitment of primed CD4+ T cells into lungs that was stronger in subcutaneously than nasally primed mice, in accordance with different chemokine receptor expression induced by primary immunization. These data demonstrate that subcutaneous priming is fundamental for eliciting CD4+ T cells that can be efficiently boosted by the nasal route and results in the recruitment of antigen-experienced cells into the lungs. Combination of different vaccine formulations and routes of delivery for priming and boosting is a strategic approach for improving and directing vaccine-induced immune responses.

  6. SLAP deficiency increases TCR avidity leading to altered repertoire and negative selection of cognate antigen-specific CD8+ T cells.

    Science.gov (United States)

    Friend, Samantha F; Peterson, Lisa K; Kedl, Ross M; Dragone, Leonard L

    2013-03-01

    How T cell receptor (TCR) avidity influences CD8(+) T cell development and repertoire selection is not yet fully understood. To fill this gap, we utilized Src-like adaptor protein (SLAP)-deficient mice as a tool to increase TCR avidity on double positive (DP) thymocytes. We generated SLAP(-/-) mice with the transgenic MHC class I-restricted TCR (OT-1) and SLAP(-/-) Vβ5 mice, expressing only the β-chain of the TCR OT-1 transgene, to examine the effects of increased TCR surface levels on CD8(+) T cell development and repertoire selection. In comparing SLAP(-/-) OT-1 and Vβ5 mice with wild-type controls, we performed compositional analysis and assessed thymocyte signaling by measuring CD5 levels. In addition, we performed tetramer and compositional staining to measure affinity for the cognate antigen, ovalbumin (OVA) peptide, presented by MHC. Furthermore, we quantified differences in α-chain repertoire in SLAP(-/-) Vβ5 mice. We have found that SLAP(-/-) OT-1 mice have fewer CD8(+) thymocytes but have increased CD5 expression. SLAP(-/-) OT-1 mice have fewer DP thymocytes expressing Vα2, signifying increased endogenous α-chain rearrangement, and more non-OVA-specific CD8(+) splenocytes upon tetramer staining. Our data demonstrate that SLAP(-/-) Vβ5 mice also have fewer OVA-specific cells and increased Vα2 usage in the peripheral Vβ5 CD8(+) T cells that were non-OVA-specific, demonstrating differences in α-chain repertoire. These studies provide direct evidence that increased TCR avidity in DP thymocytes enhances CD8(+) T cell negative selection deleting thymocytes with specificity for cognate antigen, an antigen the mature T cells may never encounter. Collectively, these studies provide new insights into how TCR avidity during CD8(+) T cell development influences repertoire selection.

  7. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine : In vivo tracking and evaluation of antigen-specific CD8+ T cell immune response

    NARCIS (Netherlands)

    Rahimian, Sima; Kleinovink, Jan Willem; Fransen, Marieke F.; Mezzanotte, Laura; Gold, Henrik; Wisse, Patrick; Overkleeft, Hermen; Amidi, Maryam; Jiskoot, Wim; Lo¨wik, Clemens W.; Ossendorp, Ferry; Hennink, Wim E.

    2015-01-01

    Particulate antigen delivery systems aimed at the induction of antigen-specific T cells form a promising approach in immunotherapy to replace pharmacokinetically unfavorable soluble antigen formulations. In this study, we developed a delivery system using the model protein antigen ovalbumin (OVA) en

  8. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    OpenAIRE

    Au-Yeung, Byron B.; Zikherman, Julie; James L. Mueller; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M; Weiss, Arthur

    2014-01-01

    Biochemical signals triggered by the T-cell receptor (TCR) are required for stimulating T cells and can be initiated within seconds. However, a hallmark of T-cell activation, cell division, occurs hours after TCR signaling has begun, implying that T cells require a minimum duration and/or accumulate TCR signaling events to drive proliferation. To visualize the accumulated signaling experienced by T cells, we used a fluorescent reporter gene that is activated by TCR stimulation. This technique...

  9. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control.

  10. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Directory of Open Access Journals (Sweden)

    Karasuyama Hajime

    2011-04-01

    Full Text Available Abstract Background There have been few reports on the role of Fc receptors (FcRs and immunoglobulin G (IgG in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa. Methods In FcγRIIB deficient (KO and C57BL/6 (WT mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA. Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL. Results In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously. Conclusion Antigen-specific IgG ameliorates

  11. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  12. Subdominant H60 antigen-specific CD8 T-cell response precedes dominant H4 antigen-specific response during the initial phase of allogenic skin graft rejection.

    Science.gov (United States)

    Yoo, Kang Il; Jeon, Ji Yeong; Ryu, Su Jeong; Nam, Giri; Youn, Hyewon; Choi, Eun Young

    2015-02-13

    In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.

  13. Ly-6A is required for T cell receptor expression and protein tyrosine kinase fyn activity.

    Science.gov (United States)

    Lee, S K; Su, B; Maher, S E; Bothwell, A L

    1994-05-01

    To characterize the function of the Ly-6A antigen in T cell activation, antisense Ly-6 RNA was expressed in a stably transfected antigen-specific T cell clone. Reduced Ly-6A expression results in inhibition of responses to antigen, anti-TCR (anti-T cell receptor) crosslinking and concanavalin A plus recombinant interleukin 1 and causes impairment of in vitro fyn tyrosine kinase activity. More substantial reduction of Ly-6A results in reduction of TCR expression. Analysis of mRNA species indicates that the reduction is specific for the TCR beta chain. These data demonstrate that Ly-6A may regulate TCR expression and may be involved in early events of T cell activation via regulation of fyn tyrosine kinase activity.

  14. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases.

    Science.gov (United States)

    Levite, M

    2016-01-01

    Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs

  15. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  16. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse.

    Science.gov (United States)

    Baixauli, Francesc; Martín-Cófreces, Noa B; Morlino, Giulia; Carrasco, Yolanda R; Calabia-Linares, Carmen; Veiga, Esteban; Serrador, Juan M; Sánchez-Madrid, Francisco

    2011-04-06

    During antigen-specific T-cell activation, mitochondria mobilize towards the vicinity of the immune synapse. We show here that the mitochondrial fission factor dynamin-related protein 1 (Drp1) docks at mitochondria, regulating their positioning and activity near the actin-rich ring of the peripheral supramolecular activation cluster (pSMAC) of the immune synapse. Mitochondrial redistribution in response to T-cell receptor engagement was abolished by Drp1 silencing, expression of the phosphomimetic mutant Drp1S637D and the Drp1-specific inhibitor mdivi-1. Moreover, Drp1 knockdown enhanced mitochondrial depolarization and T-cell receptor signal strength, but decreased myosin phosphorylation, ATP production and T-cell receptor assembly at the central supramolecular activation cluster (cSMAC). Our results indicate that Drp1-dependent mitochondrial positioning and activity controls T-cell activation by fuelling central supramolecular activation cluster assembly at the immune synapse.

  17. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...

  18. Differential T cell receptor-mediated signaling in naive and memory CD4 T cells.

    Science.gov (United States)

    Farber, D L; Acuto, O; Bottomly, K

    1997-08-01

    Naive and memory CD4 T cells differ in cell surface phenotype, function, activation requirements, and modes of regulation. To investigate the molecular bases for the dichotomies between naive and memory CD4 T cells and to understand how the T cell receptor (TCR) directs diverse functional outcomes, we investigated proximal signaling events triggered through the TCR/CD3 complex in naive and memory CD4 T cell subsets isolated on the basis of CD45 isoform expression. Naive CD4 T cells signal through TCR/CD3 similar to unseparated CD4 T cells, producing multiple tyrosine-phosphorylated protein species overall and phosphorylating the T cell-specific ZAP-70 tyrosine kinase which is recruited to the CD3zeta subunit of the TCR. Memory CD4 T cells, however, exhibit a unique pattern of signaling through TCR/CD3. Following stimulation through TCR/CD3, memory CD4 T cells produce fewer species of tyrosine-phosphorylated substrates and fail to phosphorylate ZAP-70, yet unphosphorylated ZAP-70 can associate with the TCR/CD3 complex. Moreover, a 26/28-kDa phosphorylated doublet is associated with CD3zeta in resting and activated memory but not in naive CD4 T cells. Despite these differences in the phosphorylation of ZAP-70 and CD3-associated proteins, the ZAP-70-related kinase, p72syk, exhibits similar phosphorylation in naive and memory T cell subsets, suggesting that this kinase could function in place of ZAP-70 in memory CD4 T cells. These results indicate that proximal signals are differentially coupled to the TCR in naive versus memory CD4 T cells, potentially leading to distinct downstream signaling events and ultimately to the diverse functions elicited by these two CD4 T cell subsets.

  19. Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Valeria de Turris

    Full Text Available Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.

  20. Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses.

    Science.gov (United States)

    de Turris, Valeria; Teloni, Raffaela; Chiani, Paola; Bromuro, Carla; Mariotti, Sabrina; Pardini, Manuela; Nisini, Roberto; Torosantucci, Antonella; Gagliardi, Maria Cristina

    2015-01-01

    Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.

  1. T cell retargeting with MHC class I-restricted antibodies: the CD28 costimulatory domain enhances antigen-specific cytotoxicity and cytokine production

    NARCIS (Netherlands)

    R.A. Willemsen (Ralph); C. Ronteltap; P. Chames; J.E.M.A. Debets (Reno); R.L.H. Bolhuis (Reinder)

    2005-01-01

    textabstractT cells require both primary and costimulatory signals for optimal activation. The primary Ag-specific signal is delivered by engagement of the TCR. The second Ag-independent costimulatory signal is mediated by engagement of the T cell surface costimulatory molecule CD2

  2. B cells enhance antigen-specific CD4 T cell priming and prevent bacteria dissemination following Chlamydia muridarum genital tract infection.

    Science.gov (United States)

    Li, Lin-Xi; McSorley, Stephen J

    2013-10-01

    B cells can contribute to acquired immunity against intracellular bacteria, but do not usually participate in primary clearance. Here, we examined the endogenous CD4 T cell response to genital infection with Chlamydia muridarum using MHC class-II tetramers. Chlamydia-specific CD4 T cells expanded rapidly and persisted as a stable memory pool for several months after infection. While most lymph node Chlamydia-specific CD4 T cells expressed T-bet, a small percentage co-expressed Foxp3, and RORγt-expressing T cells were enriched within the reproductive tract. Local Chlamydia-specific CD4 T cell priming was markedly reduced in mice lacking B cells, and bacteria were able to disseminate to the peritoneal cavity, initiating a cellular infiltrate and ascites. However, bacterial dissemination also coincided with elevated systemic Chlamydia-specific CD4 T cell responses and resolution of primary infection. Together, these data reveal heterogeneity in pathogen-specific CD4 T cell responses within the genital tract and an unexpected requirement for B cells in regulating local T cell activation and bacterial dissemination during genital infection.

  3. Recognition of antigen-specific B-cell receptors from chronic lymphocytic leukemia patients by synthetic antigen surrogates.

    Science.gov (United States)

    Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas

    2014-12-18

    In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe nonpeptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used to identify other classes of antigen surrogates.

  4. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  5. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  6. Deep Sequencing of the T-cell Receptor Repertoire Demonstrates Polyclonal T-cell Infiltrates in Psoriasis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jamie L. Harden

    2015-08-01

    Full Text Available It is well known that infiltration of pathogenic T-cells plays an important role in psoriasis pathogenesis. However, the antigen specificity of these activated T-cells is relatively unknown. Previous studies using T-cell receptor polymerase chain reaction technology (TCR-PCR have suggested there are expanded T-cell receptor (TCR clones in psoriatic skin, suggesting a response to an unknown psoriatic antigen. Here we describe the results of high-throughput deep sequencing of the entire αβ- and γδ- TCR repertoire in normal healthy skin and psoriatic lesional and non-lesional skin. From this study, we were able to determine that there is a significant increase in the abundance of unique β- and γ- TCR sequences in psoriatic lesional skin compared to non-lesional and normal skin, and that the entire T-cell repertoire in psoriasis is polyclonal, with similar diversity to normal and non-lesional skin. Comparison of the αβ- and γδ- TCR repertoire in paired non-lesional and lesional samples showed many common clones within a patient, and these close were often equally abundant in non-lesional and lesional skin, again suggesting a diverse T-cell repertoire. Although there were similar (and low amounts of shared β-chain sequences between different patient samples, there was significantly increased sequence sharing of the γ-chain in psoriatic skin from different individuals compared to those without psoriasis. This suggests that although the T-cell response in psoriasis is highly polyclonal, particular γδ- T-cell subsets may be associated with this disease. Overall, our findings present the feasibility of this technology to determine the entire αβ- and γδ- T-cell repertoire in skin, and that psoriasis contains polyclonal and diverse αβ- and γδ- T-cell populations.

  7. Paternal antigen-specific proliferating regulatory T cells are increased in uterine-draining lymph nodes just before implantation and in pregnant uterus just after implantation by seminal plasma-priming in allogeneic mouse pregnancy.

    Science.gov (United States)

    Shima, Tomoko; Inada, Kumiko; Nakashima, Akitoshi; Ushijima, Akemi; Ito, Mika; Yoshino, Osamu; Saito, Shigeru

    2015-04-01

    Paternal antigen-specific regulatory T (PA-specific Treg) cells play an important role in feto-maternal tolerance. To detect the PA-specific Tregs, female BALB/c mice were mated with male DBA/2 mice. Mls Ia antigen on DBA/2 mice is recognized by the T-cell receptor Vβ6; thus, CD4(+)Foxp3(+)Vβ6(+) cells are recognized as PA-specific Treg cells. CD4(+)CD25(+)Vβ6(+) cells effectively suppressed the allo-reactive proliferation of lymphocytes compared with that of CD4(+)CD25(+)Vβ6(-) cells. Vβ6(+) PA-specific Treg cells expressed CCR4 and CCR5 on their surface. The frequency of Ki67(+) PA-specific Treg cells among Treg cells was significantly increased in draining lymph nodes on day 3.5 post-coitus (pc; 6.8±1.1%, ppregnant mice compared with that in nonpregnant mice (2.7±0.2%). The frequency of Ki67(+) PA-specific Treg cells in the uterus increased significantly after day 5.5 pc in allogeneic pregnant mice compared with that in nonpregnant mice (8.8±2.8% vs. 1.2±1.3%, puterus in BALB/c×DBA/2 (SVX) allogeneic mating mice. These findings suggest that the priming by seminal fluid is important for the induction of proliferating PA-specific Tregs in uterine-draining lymph nodes just before implantation and pregnant uterus after implantation, resulting in successful implantation and the maintenance of allogeneic pregnancy.

  8. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: In vivo tracking and evaluation of antigen-specific CD8(+) T cell immune response.

    Science.gov (United States)

    Rahimian, Sima; Kleinovink, Jan Willem; Fransen, Marieke F; Mezzanotte, Laura; Gold, Henrik; Wisse, Patrick; Overkleeft, Hermen; Amidi, Maryam; Jiskoot, Wim; Löwik, Clemens W; Ossendorp, Ferry; Hennink, Wim E

    2015-01-01

    Particulate antigen delivery systems aimed at the induction of antigen-specific T cells form a promising approach in immunotherapy to replace pharmacokinetically unfavorable soluble antigen formulations. In this study, we developed a delivery system using the model protein antigen ovalbumin (OVA) encapsulated in nanoparticles based on the hydrophilic polyester poly(lactide-co-hydroxymethylglycolic acid) (pLHMGA). Spherical nanoparticles with size 300-400 nm were prepared and characterized and showed a strong ability to deliver antigen to dendritic cells for cross-presentation to antigen-specific T cells in vitro. Using near-infrared (NIR) fluorescent dyes covalently linked to both the nanoparticle and the encapsulated OVA antigen, we tracked the fate of this formulation in mice. We observed that the antigen and the nanoparticles are efficiently co-transported from the injection site to the draining lymph nodes, in a more gradual and durable manner than soluble OVA protein. OVA-loaded pLHMGA nanoparticles efficiently induced antigen cross-presentation to OVA-specific CD8+ T cells in the lymph nodes, superior to soluble OVA vaccination. Together, these data show the potential of pLHMGA nanoparticles as attractive antigen delivery vehicles.

  9. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species.

    Science.gov (United States)

    Kusmartsev, Sergei; Nefedova, Yulia; Yoder, Daniel; Gabrilovich, Dmitry I

    2004-01-15

    Tumor growth is associated with the accumulation of immature myeloid cells (ImC), which in mice are characterized by the expression of Gr-1 and CD11b markers. These cells suppress Ag-specific CD8+ T cells via direct cell-cell contact. However, the mechanism of immunosuppressive activity of tumor-derived ImC remains unclear. In this study we analyzed the function of ImC isolated from tumor-free control and tumor-bearing mice. Only ImC isolated from tumor-bearing mice, not those from their control counterparts, were able to inhibit the Ag-specific response of CD8+ T cells. ImC obtained from tumor-bearing mice had significantly higher levels of reactive oxygen species (ROS) than ImC isolated from tumor-free animals. Accumulation of H2O2, but not superoxide or NO, was a major contributor to this increased pool of ROS. It appears that arginase activity played an important role in H2O2 accumulation in these cells. Inhibition of ROS in ImC completely abrogated the inhibitory effect of these cells on T cells, indicating that ImC generated in tumor-bearing hosts suppress the CD8+ T cell response via production of ROS. Interaction of ImC with Ag-specific T cells in the presence of specific Ags resulted in a significant increase in ROS production compared with control Ags. That increase was independent of IFN-gamma production by T cells, but was mediated by integrins CD11b, CD18, and CD29. Blocking of these integrins with specific Abs abrogated ROS production and ImC-mediated suppression of CD8+ T cell responses. This study demonstrates a new mechanism of Ag-specific T cell inhibition mediated by ROS produced by ImCs in cancer.

  10. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Pramod K Giri

    Full Text Available Activation of both CD4(+ and CD8(+ T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in naïve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+ and CD8(+ splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+ and CD8(+ T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.

  11. Human CD4(+) T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity.

    Science.gov (United States)

    Angelo, Michael A; Grifoni, Alba; O'Rourke, Patrick H; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A; Kirkpatrick, Beth D; Whitehead, Stephen S; Durbin, Anna P; Sette, Alessandro; Weiskopf, Daniela

    2017-03-01

    Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8(+) T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4(+) T cell responses after live vaccination is important because CD4(+) T cells are known contributors to host immunity, including cytokine production, help for CD8(+) T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4(+) T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4(+) T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4(+) cell responses closely mirroring those observed in a population associated with natural immunity.IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4(+) responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against

  12. Vaccination against Experimental Allergic Encephalomyelitis with T Cell Receptor Peptides

    Science.gov (United States)

    Howell, Mark D.; Winters, Steven T.; Olee, Tsaiwei; Powell, Henry C.; Carlo, Dennis J.; Brostoff, Steven W.

    1989-11-01

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system mediated by CD4+ T cells reactive with myelin basic protein (MBP). Rats were rendered resistant to the induction of EAE by vaccination with synthetic peptides corresponding to idiotypic determinants of the β chain VDJ region and Jα regions of the T cell receptor (TCR) that are conserved among encephalitogenic T cells. These findings demonstrate the utility of TCR peptide vaccination for modulating the activity of autoreactive T cells and represent a general therapeutic approach for T cell--mediated pathogenesis.

  13. The administration route is decisive for the ability of the vaccine adjuvant CAF09 to induce antigen-specific CD8(+) T-cell responses

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Khadke, Swapnil; Korsholm, Karen Smith

    2016-01-01

    A prerequisite for vaccine-mediated induction of CD8(+) T-cell responses is the targeting of dendritic cell (DC) subsets specifically capable of cross-presenting antigen epitopes to CD8(+) T cells. Administration of a number of cationic adjuvants via the intraperitoneal (i.p.) route has been shown.......p. immunization, is required for the subsequent activation of cross-presenting lymphoid organ-resident CD8α(+) DCs. In contrast, s.c. or i.m. immunization usually results in the formation of a depot at the site of injection (SOI), which hinders the self-drainage and targeting of the vaccine to cross-presenting CD......8α(+) DCs. We investigated this hypothesis by correlating the biodistribution pattern and the adjuvanticity of the strong CD8(+) T-cell inducing liposomal cationic adjuvant formulation 09 (CAF09), which is composed of dimethyldioctadecylammonium bromide/monomycoloyl glycerol liposomes...

  14. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  15. Toxicities of chimeric antigen receptor T cells: recognition and management.

    Science.gov (United States)

    Brudno, Jennifer N; Kochenderfer, James N

    2016-06-30

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy.

  16. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    Science.gov (United States)

    Au-Yeung, Byron B.; Zikherman, Julie; Mueller, James L.; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M.; Weiss, Arthur

    2014-01-01

    T-cell antigen receptor (TCR) signaling is essential for activation, proliferation, and effector function of T cells. Modulation of both intensity and duration of TCR signaling can regulate these events. However, it remains unclear how individual T cells integrate such signals over time to make critical cell-fate decisions. We have previously developed an engineered mutant allele of the critical T-cell kinase zeta-chain-associated protein kinase 70 kDa (Zap70) that is catalytically inhibited by a small molecule inhibitor, thereby blocking TCR signaling specifically and efficiently. We have also characterized a fluorescent reporter Nur77–eGFP transgenic mouse line in which T cells up-regulate GFP uniquely in response to TCR stimulation. The combination of these technologies unmasked a sharp TCR signaling threshold for commitment to cell division both in vitro and in vivo. Further, we demonstrate that this threshold is independent of both the magnitude of the TCR stimulus and Interleukin 2. Similarly, we identify a temporal threshold of TCR signaling that is required for commitment to proliferation, after which T cells are able to proliferate in a Zap70 kinase-independent manner. Taken together, our studies reveal a sharp threshold for the magnitude and duration of TCR signaling required for commitment of T cells to proliferation. These results have important implications for understanding T-cell responses to infection and optimizing strategies for immunomodulatory drug delivery. PMID:25136127

  17. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  18. Loss of receptor on tuberculin-reactive T-cells marks active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Mathias Streitz

    Full Text Available BACKGROUND: Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10 based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface marker expression and functionality of mycobacterial antigen specific T-cells. METHODOLOGY/PRINCIPAL FINDINGS: Flow-cytometry was used to examine over-night antigen-stimulated T-cells from tuberculosis patients and controls. Tuberculin and/or the relatively M. tuberculosis specific ESAT-6 protein were used as stimulants. A set of classic surface markers of T-cell naïve/memory differentiation was selected and IFN-gamma production was used to identify T-cells recognizing these antigens. The percentage of tuberculin-specific T-helper-cells lacking the surface receptor CD27, a state associated with advanced differentiation, varied considerably between individuals (from less than 5% to more than 95%. Healthy BCG vaccinated individuals had significantly fewer CD27-negative tuberculin-reactive CD4 T-cells than patients with smear and/or culture positive pulmonary tuberculosis, discriminating these groups with high sensitivity and specificity, whereas individuals with latent tuberculosis infection exhibited levels in between. CONCLUSIONS/SIGNIFICANCE: Smear and/or culture positive pulmonary tuberculosis can be diagnosed by a rapid and reliable immunological test based on the distribution of CD27 expression on peripheral blood tuberculin specific T-cells. This test works very well even in a BCG vaccinated population. It is simple and will be of great utility in situations where sputum specimens are difficult to obtain or sputum-smear is negative. It will also help

  19. Superiority of needle-free transdermal plasmid delivery for the induction of antigen-specific IFNgamma T cell responses in the dog.

    Science.gov (United States)

    Goubier, A; Fuhrmann, L; Forest, L; Cachet, N; Evrad-Blanchard, M; Juillard, V; Fischer, L

    2008-04-24

    Although successful needle-free DNA vaccination has been described on several occasions, the true benefit of this delivery technology over needle-based injections for DNA vaccination of dogs has not yet been documented. We conducted a side-by-side comparison of needle-free transdermal plasmid delivery vs. intramuscular vs. intradermal needle-based delivery of the same plasmid in dogs. Our data confirmed the importance of the route of plasmid delivery and further established the unique potential of needle-free transdermal plasmid delivery to elicit strong antigen-specific, hTyr-specific IFNgamma T in the dog. Further, this study demonstrated that properly enabled DNA vaccination has the potential to trigger very significant cell-based immune responses in dogs, establishing needle-free transdermal plasmid delivery as a critical technology for successful immunotherapy of cancer and/or chronic infectious diseases in companion animal medicine.

  20. NK cells require antigen-specific memory CD4+ T cells to mediate superior effector functions during HSV-2 recall responses in vitro.

    Science.gov (United States)

    Chen, Branson; Lee, Amanda J; Chew, Marianne V; Ashkar, Ali A

    2016-12-14

    Natural killer (NK) cells have an important role in mounting protective innate responses against genital herpes simplex virus type 2 (HSV-2) infections. However their role as effectors in adaptive immune responses against HSV-2 is unclear. Here, we demonstrate that NK cells from C57BL/6 mice in an ex vivo splenocyte culture produce significantly more interferon γ (IFN-γ) upon re-exposure to HSV-2 antigens in a mouse model of genital HSV-2 immunization. We find that naïve NK cells do not require any prior stimulation or priming to be activated to produce IFN-γ. Our results demonstrate that HSV-2-experienced CD4(+) T cells have a crucial role in coordinating NK cell activation and that their presence during HSV-2 antigen presentation is required to activate NK cells in this model of secondary immune response. We also examined the requirement of cell-to-cell contacts for both CD4(+) T cells and NK cells. NK cells are dependent on direct interactions with other HSV-2-experienced splenocytes, and CD4(+) T cells need to be in close proximity to NK cells to activate them. This study revealed that NK cells do not exhibit any memory toward HSV-2 antigens and, in fact, require specific interactions with HSV-2-experienced CD4(+) T cells to produce IFN-γ.

  1. Effective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Danielle N Renner

    Full Text Available Glioblastoma (GBM is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257-264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257-264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257-264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.

  2. Effective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses.

    Science.gov (United States)

    Renner, Danielle N; Jin, Fang; Litterman, Adam J; Balgeman, Alexis J; Hanson, Lisa M; Gamez, Jeffrey D; Chae, Michael; Carlson, Brett L; Sarkaria, Jann N; Parney, Ian F; Ohlfest, John R; Pirko, Istvan; Pavelko, Kevin D; Johnson, Aaron J

    2015-01-01

    Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257-264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257-264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257-264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.

  3. Dendritic cells engineered to express defined allo-HLA peptide complexes induce antigen-specific cytotoxic T cells efficiently killing tumour cells

    DEFF Research Database (Denmark)

    Stronen, E; Abrahamsen, I W; Gaudernack, G;

    2009-01-01

    presented by a non-self human leucocyte antigen (HLA) molecule and transferred to cancer patients expressing that HLA molecule. Obtaining allo-restricted CTL of high-avidity and low cross-reactivity has, however, proven difficult. Here, we show that dendritic cells transfected with mRNA encoding HLA-A*0201...... and efficiently killed HLA-A*0201(+) melanoma cells, whilst sparing HLA-A*0201(+) B-cells. Allo-restricted CTL specific for peptides from the leukaemia-associated antigens CD33 and CD19 were obtained with comparable efficiency. Collectively, the results show that dendritic cells engineered to express defined allo......Most tumour-associated antigens (TAA) are non-mutated self-antigens. The peripheral T cell repertoire is devoid of high-avidity TAA-specific cytotoxic T lymphocytes (CTL) due to self-tolerance. As tolerance is major histocompatibility complex-restricted, T cells may be immunized against TAA...

  4. Rac activation by the T-cell receptor inhibits T cell migration.

    Directory of Open Access Journals (Sweden)

    Eva Cernuda-Morollón

    Full Text Available BACKGROUND: T cell migration is essential for immune responses and inflammation. Activation of the T-cell receptor (TCR triggers a migration stop signal to facilitate interaction with antigen-presenting cells and cell retention at inflammatory sites, but the mechanisms responsible for this effect are not known. METHODOLOGY/PRINCIPAL FINDINGS: Migrating T cells are polarized with a lamellipodium at the front and uropod at the rear. Here we show that transient TCR activation induces prolonged inhibition of T-cell migration. TCR pre-activation leads to cells with multiple lamellipodia and lacking a uropod even after removal of the TCR signal. A similar phenotype is induced by expression of constitutively active Rac1, and TCR signaling activates Rac1. TCR signaling acts via Rac to reduce phosphorylation of ezrin/radixin/moesin proteins, which are required for uropod formation, and to increase stathmin phosphorylation, which regulates microtubule stability. T cell polarity and migration is partially restored by inhibiting Rac or by expressing constitutively active moesin. CONCLUSIONS/SIGNIFICANCE: We propose that transient TCR signaling induces sustained inhibition of T cell migration via Rac1, increased stathmin phosphorylation and reduced ERM phosphorylation which act together to inhibit T-cell migratory polarity.

  5. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed...... whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays...

  6. CD8+ T Cell Fate and Function Influenced by Antigen-Specific Virus-Like Nanoparticles Co-Expressing Membrane Tethered IL-2.

    Directory of Open Access Journals (Sweden)

    Daniela Wojta-Stremayr

    Full Text Available A variety of adjuvants fostering humoral immunity are known as of today. However, there is a lack of adjuvants or adjuvant strategies, which directly target T cellular effector functions and memory. We here determined whether systemically toxic cytokines such as IL-2 can be restricted to the site of antigen presentation and used as 'natural adjuvants'. Therefore, we devised antigen-presenting virus-like nanoparticles (VNP co-expressing IL-2 attached to different membrane-anchors and assessed their potency to modulate CD8+ T cell responses in vitro and in vivo. Efficient targeting of IL-2 to lipid rafts and ultimately VNP was achieved by fusing IL-2 at its C-terminus to a minimal glycosylphosphatidylinositol (GPI-anchor acceptor sequence. To identify optimal membrane-anchor dimensions we inserted one (1Ig, two (2Ig or four (4Ig immunoglobulin(Ig-like domains of CD16b between IL-2 and the minimal GPI-anchor acceptor sequence of CD16b (GPI. We found that the 2IgGPI version was superior to all other evaluated IL-2 variants (IL-2v in terms of its i degree of targeting to lipid rafts and to the VNP surface, ii biological activity, iii co-stimulation of cognate T cells in the absence of bystander activation and iv potency to induce differentiation and acquisition of CD8+ T cell effector functions in vitro and in vivo. In contrast, the GPI version rather favored memory precursor cell formation. These results exemplify novel beneficial features of membrane-bound IL-2, which in addition to its mere T cell stimulatory capacity include the induction of differential effector and memory functions in CD8+ T lymphocytes.

  7. Computational Prediction and Identification of Epstein-Barr Virus Latent Membrane Protein 2A Antigen-Specific CD8+ T-Cell Epitopes

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Kun Yao; Genyan Liu; Fangyi Xie; Feng Zhou; Yun Chen

    2009-01-01

    Epstein-Barr virus (EBV) associated nasopharyngeal carcinoma (NPC) is a high incidence tumor in Southeast Asia. Among EBV encoded proteins, latent membrane protein 2A (LMP2A) is an important antigen for T cell therapy of EBV. In this study, we predicted six HLA-A2 restricted CTL candidate epitopes of LMP2A by SYFPEITHI, NetMHC and MHCPred methods combined with the polynomial method. Subsequently, biological functions of these peptides were tested by experiments in vitro. In ELISPOT assay, the positive response of the LMP2A specific CTL stimulated by three (LMP2A264-272, LMP2A426-434 and LMP2A356-364) of six peptides respectively showed that the numbers of spots forming cells (SFC) ranged from 55.7 to 80.6 SFC/5 × 104 CD8+ T cells and the responding index (RI) ranged from 5.4 to 7. These three epitope-specific CTLs could effectively kill specific HLA-A2-expressing target cells. As a result, LMP2A264-272 (QLSPLLGAV), LMP2A426-434 (CLGGLLTMV) and LMP2A356-364 (FLYALALLL) were identified as LMP2A-specific CD8+ T-cell epitopes. It would be useful to clarify immune response toward EBV and to develop a vaccine against EBV-correlative NPC. Cellular & Molecular Immunology.

  8. Tolerogenic Dendritic Cells from Poorly Compensated Type 1 Diabetes Patients Have Decreased Ability To Induce Stable Antigen-Specific T Cell Hyporesponsiveness and Generation of Suppressive Regulatory T Cells

    DEFF Research Database (Denmark)

    Dáňová, Klára; Grohová, Anna; Strnadová, Pavla

    2017-01-01

    -loaded tolDCs from well-controlled patients decreased significantly primary Th1/Th17 responses, induced stable GAD65-specific T cell hyporesponsiveness, and suppressed markedly control DC-induced GAD65-specific T cell activation compared with poorly controlled patients. The ability of tolDCs from poorly...

  9. T-cell receptor-like antibodies: novel reagents for clinical cancer immunology and immunotherapy.

    Science.gov (United States)

    Noy, Roy; Eppel, Malka; Haus-Cohen, Maya; Klechevsky, Einav; Mekler, Orian; Michaeli, Yaeil; Denkberg, Galit; Reiter, Yoram

    2005-06-01

    Major histocompatibility complex class I molecules play a central role in the immune response against a variety of cells that have undergone malignant transformation by shaping the T-cell repertoire and presenting peptide antigens from endogeneous antigens to CD8+ cytotoxic T-cells. Diseased tumor or virus-infected cells are present on class I major histocompatibility complex molecule peptides that are derived from tumor-associated antigens or viral-derived proteins. Due to their unique specificity, such major histocompatibility complex-peptide complexes are a desirable target for novel approaches in immunotherapy. Targeted delivery of toxins or other cytotoxic drugs to cells which express specific major histocompatibility complex-peptide complexes that are involved in the immune response against cancer or viral infections would allow for a specific immunotherapeutic treatment of these diseases. It has recently been demonstrated that antibodies with the antigen-specific, major histocompatibility complex-restricted specificity of T-cells can be generated by taking advantage of the selection power of phage display technology. In addition to their tumor targeting capabilities, antibodies that mimic the fine specificity of T-cell receptors can serve as valuable research reagents that enable study of human class I peptide-major histocompatibility complex ligand presentation, as well as T-cell receptor peptide-major histocompatibility complex interactions. T-cell receptor-like antibody molecules may prove to be useful tools for studying major histocompatibility complex class I antigen presentation in health and disease as well as for therapeutic purposes in cancer, infectious diseases and autoimmune disorders.

  10. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Jun-O Jin

    Full Text Available Fucoidan, a sulfated polysaccharide purified from brown algae, has a variety of immune-modulation effects, including promoting antigen uptake and enhancing anti-viral and anti-tumor effects. However, the effect of fucoidan in vivo, especially its adjuvant effect on in vivo anti-tumor immune responses, was not fully investigated. In this study, we investigated the effect of fucoidan on the function of spleen dendritic cells (DCs and its adjuvant effect in vivo. Systemic administration of fucoidan induced up-regulation of CD40, CD80 and CD86 expression and production of IL-6, IL-12 and TNF-α in spleen cDCs. Fucoidan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in an IL-12-dependent manner. When used as an adjuvant in vivo with ovalbumin (OVA antigen, fucoidan promoted OVA-specific antibody production and primed IFN-γ production in OVA-specific T cells. Moreover, fucoidan enhanced OVA-induced up-regulation of MHC class I and II on spleen cDCs and strongly prompted the proliferation of OVA-specific CD4 and CD8 T cells. Finally, OVA immunization with fucoidan as adjuvant protected mice from the challenge with B16-OVA tumor cells. Taken together, these results suggest that fucoidan can function as an adjuvant to induce Th1 immune response and CTL activation, which may be useful in tumor vaccine development.

  11. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    Science.gov (United States)

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  12. Inducible T-cell receptor expression in precursor T-cells for leukemia control

    Science.gov (United States)

    Hoseini, Shahabuddin S; Hapke, Martin; Herbst, Jessica; Wedekind, Dirk; Baumann, Rolf; Heinz, Niels; Schiedlmeier, Bernhard; Vignali, Dario AA; van den Brink, Marcel R.M.; Schambach, Axel; Blazar, Bruce R.; Sauer, Martin G.

    2015-01-01

    Co-transplantation of hematopoietic stem cells with those engineered to express leukemia-reactive T cell receptors (TCRs) and differentiated ex vivo into precursor T cells (preTs) may reduce the risk of leukemia relapse. Since expression of potentially self-(leukemia-) reactive TCRs will lead to negative selection or provoke autoimmunity upon thymic maturation, we investigated a novel concept whereby TCR expression set under the control of an inducible promoter would allow timely controlled TCR expression. After in vivo maturation and gene induction, preTs developed potent anti-leukemia effects. Engineered preTs provided protection even after repeated leukemia challenges by giving rise to effector and central memory cells. Importantly, adoptive transfer of TCR-transduced allogeneic preTs mediated anti-leukemia effect without evoking graft-versus-host disease (GVHD). Earlier transgene induction forced CD8+ T cell development, was required to obtain a mature T cell subset of targeted specificity, allowed engineered T cells to efficiently pass positive selection and abrogated the endogenous T cell repertoire. Later induction favored CD4 differentiation and failed to produce a leukemia-reactive population emphasizing the dominant role of positive selection. Taken together, we provide new functional insights for the employment of TCR-engineered precursor cells as a controllable immunotherapeutic modality with significant anti-leukemia activity. PMID:25652739

  13. Continuous activation of the CD122/STAT-5 signaling pathway during selection of antigen-specific regulatory T cells in the murine thymus.

    Directory of Open Access Journals (Sweden)

    Jérémie D Goldstein

    Full Text Available Signaling events affecting thymic selection of un-manipulated polyclonal natural CD25(+foxp3(+ regulatory T cells (nTreg have not been established ex vivo. Here, we report a higher frequency of phosphorylated STAT-5 (pSTAT-5 in nTreg cells in the adult murine thymus and to a lesser extent in the periphery, compared to other CD4(+CD8(- subsets. In the neonatal thymus, the numbers of pSTAT-5(+ cells in CD25(+foxp3(- and nTreg cells increased in parallel, suggesting that pSTAT-5(+CD25(+foxp3(- cells might represent the precursors of foxp3(+ regulatory T cells. This "specific" pSTAT-5 expression detected in nTreg cells ex vivo was likely due to a very recent signal given by IL-2/IL-15 cytokines in vivo since (i it disappeared rapidly if cells were left unstimulated in vitro and (ii was also observed if total thymocytes were stimulated in vitro with saturating amounts of IL-2 and/or IL-15 but not IL-7. Interestingly, STAT-5 activation upon IL-2 stimulation correlated better with foxp3 and CD122 than with CD25 expression. Finally, we show that expression of an endogenous superantigen strongly affected the early Treg cell repertoire but not the proportion of pSTAT-5(+ cells within this repertoire. Our results reveal that continuous activation of the CD122/STAT-5 signaling pathway characterize regulatory lineage differentiation in the murine thymus.

  14. Depletion of regulatory T lymphocytes reverses the imbalance between pro- and anti-tumor immunities via enhancing antigen-specific T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Yu-Li Chen

    Full Text Available BACKGROUND: The regulatory T cells (Tregs can actively suppress the immune responses. However, literature about detailed changes of host effective and suppressive immunities before and after depletion of Tregs in ovarian carcinomas, is rare. MATERIALS AND METHODS: Ovarian cancer patients and the ascitogenic animal model were employed. Immunologic profiles with flow cytometric analyses, immunohistochemistric staining, RT-PCR, ELISA, and ELISPOT assays were performed. In vivo depletion of Treg cells with the mAb PC61was also performed in the animal model. RESULTS: The cytokines, including IL-4 (p=0.017 and TNF-α (p=0.046, significantly decreased while others such as TGF-β (p=0.013, IL-6 (p=0.016, and IL-10 (p=0.018 were elevated in ascites of ovarian cancer patients, when the disease progressed to advanced stages. The ratio of CD8(+ T cell/Treg cell in ascites was also lower in advanced diseases than in early diseases (advanced 7.37 ± 0.64 vs. early 14.25 ± 3.11, p=0.037. The kinetic low-dose CD25 Ab depletion group had significantly lower intra-peritoneal tumor weight (0.20 ± 0.03 g than the sequential high-dose (0.69 ± 0.06 g and sequential low-dose (0.67 ± 0.07 g CD25 Ab deletion groups (p=0.001 after 49 days of tumor challenge in the animal. The kinetic low-dose CD25 Ab depletion group generated the highest number of IFN-γ-secreting, mesothelin-specific T lymphocytes compared to the other groups (p<0.001. CONCLUSIONS: The imbalance between effective and suppressive immunities becomes more severe as a tumor progresses. The depletion of Treg cells can correct the imbalance of immunologic profiles and generate potent anti-tumor effects. Targeting Treg cells can be a new strategy for the immunotherapy of ovarian carcinoma.

  15. Chemokine receptor expression by inflammatory T cells in EAE.

    Science.gov (United States)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  16. Acute Exacerbations of Chronic Hepatitis B Are Accompanied by Decline of Core Antigen-Specific Regulatory T-Cell Frequencies: Implications for Successful Anti-HBV Treatments

    Directory of Open Access Journals (Sweden)

    Sun-Lung Tsai

    2007-11-01

    Full Text Available Background and Aims: Acute exacerbations (AEs of perinatally-acquired chronic hepatitis B (CHB are accompanied by increased T cell responses to hepatitis B core and e antigens (HBcAg & HBeAg. Naturally-arising forkhead transcription factor Foxp3 (forkhead box p3-expressing CD4+CD25+ regulatory T (Treg cells are thought to be important in the control of infectious diseases. This study aimed to investigate whether HBcAg-specific Treg cells play a role in modulating spontaneous AEs and in influencing the outcome of anti-hepatitis B virus (HBV treatments.Methods: The SYFPEITHI scoring system was employed to predict epitope peptides on HBcAg overlapping with HBeAg for the construction of peptide-HLA class II tetramers to measure HBcAg-specific Treg cell frequencies (Treg f . Results: HBcAg-specific Treg f declined significantly in association with increased HBcAg-specific cytotoxic T lymphocyte frequencies during spontaneous AEs without treatment. Vigorous in vitro expansion of CD4+CD25+ Treg cells from CHB patients responding to HBcAg and/or its peptides plus interleukin-2 (IL-2 was consistently detected. Depletion of Treg cells from peripheral blood mononuclear cells enhanced proliferation to HBcAg. In contrast, patients with AEs who received anti-HBV treatments with oral nucleoside analogues or interferon-alpha injection revealed that more post-treatment increase of HBcAg-specific Treg f correlated with a higher sustained remission rate to the therapy.Conclusions: These data indicate that HBcAg-specific Treg cells from perinatally-acquired CHB patients are proliferative to HBcAg and its peptides and exhibit suppressor activity. They play a crucial role in modulating spontaneous AEs and in successful anti-HBV treatments.

  17. Tumor Progression Locus 2 Promotes Induction of IFNλ, Interferon Stimulated Genes and Antigen-Specific CD8+ T Cell Responses and Protects against Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Teneema Kuriakose

    2015-08-01

    Full Text Available Mitogen-activated protein kinase (MAP cascades are important in antiviral immunity through their regulation of interferon (IFN production as well as virus replication. Although the serine-threonine MAP kinase tumor progression locus 2 (Tpl2/MAP3K8 has been implicated as a key regulator of Type I (IFNα/β and Type II (IFNγ IFNs, remarkably little is known about how Tpl2 might contribute to host defense against viruses. Herein, we investigated the role of Tpl2 in antiviral immune responses against influenza virus. We demonstrate that Tpl2 is an integral component of multiple virus sensing pathways, differentially regulating the induction of IFNα/β and IFNλ in a cell-type specific manner. Although Tpl2 is important in the regulation of both IFNα/β and IFNλ, only IFNλ required Tpl2 for its induction during influenza virus infection both in vitro and in vivo. Further studies revealed an unanticipated function for Tpl2 in transducing Type I IFN signals and promoting expression of interferon-stimulated genes (ISGs. Importantly, Tpl2 signaling in nonhematopoietic cells is necessary to limit early virus replication. In addition to early innate alterations, impaired expansion of virus-specific CD8+ T cells accompanied delayed viral clearance in Tpl2-/- mice at late time points. Consistent with its critical role in facilitating both innate and adaptive antiviral responses, Tpl2 is required for restricting morbidity and mortality associated with influenza virus infection. Collectively, these findings establish an essential role for Tpl2 in antiviral host defense mechanisms.

  18. MHC multimer-guided and cell culture-independent isolation of functional T cell receptors from single cells facilitates TCR identification for immunotherapy.

    Directory of Open Access Journals (Sweden)

    Georg Dössinger

    Full Text Available Adoptive therapy using T cells redirected to target tumor- or infection-associated antigens is a promising strategy that has curative potential and broad applicability. In order to accelerate the screening process for suitable antigen-specific T cell receptors (TCRs, we developed a new approach circumventing conventional in vitro expansion-based strategies. Direct isolation of paired full-length TCR sequences from non-expanded antigen-specific T cells was achieved by the establishment of a highly sensitive PCR-based T cell receptor single cell analysis method (TCR-SCAN. Using MHC multimer-labeled and single cell-sorted HCMV-specific T cells we demonstrate a high efficacy (approximately 25% and target specificity of TCR-SCAN receptor identification. In combination with MHC-multimer based pre-enrichment steps, we were able to isolate TCRs specific for the oncogenes Her2/neu and WT1 even from very small populations (original precursor frequencies of down to 0.00005% of CD3(+ T cells without any cell culture step involved. Genetic re-expression of isolated receptors demonstrates their functionality and target specificity. We believe that this new strategy of TCR identification may provide broad access to specific TCRs for therapeutically relevant T cell epitopes.

  19. SHP-1 phosphatase activity counteracts increased T cell receptor affinity.

    Science.gov (United States)

    Hebeisen, Michael; Baitsch, Lukas; Presotto, Danilo; Baumgaertner, Petra; Romero, Pedro; Michielin, Olivier; Speiser, Daniel E; Rufer, Nathalie

    2013-03-01

    Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.

  20. T cells and gene regulation: the switching on and turning up of genes after T cell receptor stimulation in CD8 T cells

    Directory of Open Access Journals (Sweden)

    James M Conley

    2016-02-01

    Full Text Available Signaling downstream of the T cell receptor (TCR is directly regulated by the dose and affinity of peptide antigen. The strength of TCR signaling drives a multitude of T cell functions from development to differentiation. CD8 T cells differentiate into a diverse pool of effector and memory cells after activation, a process that is critical for pathogen clearance and is highly regulated by TCR signal strength. T cells rapidly alter their gene expression upon activation. Multiple signaling pathways downstream of the TCR activate transcription factors, which are critical for this process. The dynamics between proximal TCR signaling, transcription factor activation, and CD8 T cell function are discussed here. We propose that Inducible T cell kinase (ITK acts as a rheostat for gene expression. This unique regulation of TCR signaling by ITK provides a possible signaling mechanism for the promotion of a diverse T cell repertoire in response to pathogen.

  1. T Cells and Gene Regulation: The Switching On and Turning Up of Genes after T Cell Receptor Stimulation in CD8 T Cells

    Science.gov (United States)

    Conley, James M.; Gallagher, Michael P.; Berg, Leslie J.

    2016-01-01

    Signaling downstream of the T cell receptor (TCR) is directly regulated by the dose and affinity of peptide antigen. The strength of TCR signaling drives a multitude of T cell functions from development to differentiation. CD8 T cells differentiate into a diverse pool of effector and memory cells after activation, a process that is critical for pathogen clearance and is highly regulated by TCR signal strength. T cells rapidly alter their gene expression upon activation. Multiple signaling pathways downstream of the TCR activate transcription factors, which are critical for this process. The dynamics between proximal TCR signaling, transcription factor activation and CD8 T cell function are discussed here. We propose that inducible T cell kinase (ITK) acts as a rheostat for gene expression. This unique regulation of TCR signaling by ITK provides a possible signaling mechanism for the promotion of a diverse T cell repertoire in response to pathogen. PMID:26973653

  2. Deletional rearrangement in the human T-cell receptor. cap alpha. -chain locus

    Energy Technology Data Exchange (ETDEWEB)

    de Villartay, J.P.; Lewis, D.; Hockett, R.; Waldmann, T.A.; Korsmeyer, S.J.; Cohen, D.I.

    1987-12-01

    The antigen-specific receptor on the surface of mature T lymphocytes is a heterodimer consisting of polypeptides termed ..cap alpha.. and ..beta... In the course of characterizing human T-cell tumors with an immature (CD4/sup -/, CD8/sup -/) surface phenotype, the authors detected a 2-kilobase ..cap alpha..-related transcript. Analysis of cDNA clones corresponding to this transcript established that a genetic element (which they call TEA, for T early ..cap alpha..) located between the ..cap alpha..-chain variable- and joining-region genes had been spliced to the ..cap alpha.. constant region. The TEA transcript is present early in thymocyte ontogeny, and its expression declines during T-cell maturation. More important, the TEA area functions as an active site for rearrangement within the ..cap alpha.. gene locus. Blot hybridization of restriction enzyme-digested DNA with a TEA probe revealed a narrowly limited pattern of rearrangement in polyclonal thymic DNA, surprisingly different from the pattern expected for the mature ..cap alpha.. gene with its complex diversity. These DNA blots also showed that TEA is generally present in the germ-line configuration in cells expressing the ..gamma..delta heterodimeric receptor and is deleted from mature (..cap alpha beta..-expressing) T-lymphocyte tumors and lines. Moreover, the TEA transcript lacked a long open reading frame for protein but instead possessed multiple copies of a repetitive element resembling those utilized in the heavy-chain class switch of the immunoglobulin genes. The temporal nature of the rearrangements and expression detected by TEA suggests that this recombination could mediate a transition between immature (..gamma..delta-expressing) T cells and mature (..cap alpha beta..-expressing) T cells.

  3. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    Directory of Open Access Journals (Sweden)

    Nyambayar Dashtsoodol

    Full Text Available Invariant Vα14 natural killer T (NKT cells, characterized by the expression of a single invariant T cell receptor (TCR α chain encoded by rearranged Trav11 (Vα14-Traj18 (Jα18 gene segments in mice, and TRAV10 (Vα24-TRAJ18 (Jα18 in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  4. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice.

    Science.gov (United States)

    Tormo, Damia; Ferrer, Aleix; Bosch, Pilar; Gaffal, Evelyn; Basner-Tschakarjan, Etiena; Wenzel, Jörg; Tüting, Thomas

    2006-05-15

    Malignant melanoma is an attractive model disease for the development of antigen-specific immunotherapy because many antigens recognized by tumor-specific T cells have been identified. In C57BL/6 mice, genetic immunization with recombinant adenovirus encoding xenogeneic human tyrosinase-related protein 2 (Ad-hTRP2) induces protective but not therapeutic cellular immunity against growth of transplanted B16 melanoma cells. Here, we additionally applied CpG DNA and synthetic double-stranded RNA, which activate the innate immune system via Toll-like receptors (TLR). Both adenoviral vaccination and peritumoral injections of TLR ligands were required for rejection of established B16 melanoma in the skin. To more closely mimic the clinical situation in patients with melanoma, we evaluated this combined immunotherapeutic strategy in genetically modified mice, which overexpress hepatocyte growth factor (HGF) and carry an oncogenic mutation in the cyclin-dependent kinase 4 (CDK4)(R24C). HGF x CDK4(R24C) mice rapidly develop multiple invasive melanomas in the skin following neonatal carcinogen treatment, which spontaneously metastasize to lymph nodes and lungs. Vaccination with Ad-hTRP2 followed by injections of TLR ligands resulted in delayed growth of autochthonous primary melanomas in the skin and reduction in the number of spontaneous lung metastases but did not induce tumor regression. Carcinogen-treated HGF x CDK4(R24C) mice bearing multiple autochthonous melanomas did not reject transplanted B16 melanoma despite treatment with Ad-hTRP2 and TLR ligands, suggesting the development of tumor immunotolerance. Further investigations in our novel genetic melanoma model may help to better understand the role of the immune system in the pathogenesis and treatment of this life-threatening disease.

  5. EXPRESSION OF T CELL RECEPTOR Vα GENE FAMILIES IN INTRATHYROIDAL T CELLS OF CHINESE PATIENTS WITH GRAVES' DISEASE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. Patients with Graves' disease (GD) have marked lymphocytic infiltration in their thyroid glands. We examined the gene for the variable regions of the α-chain of the Chinese T-cell receptor( Vα gene) in intrathyroidal Tcells to determine the role of T cells in the pathogenesis of GD and offer potential for the development of immunothera-peutic remedies for GD. Methods. We used the reverse transcription and polymerase chain reaction(RT-PCR) to amplify complementary DNA(cDNA) for the 18 known families of the Vα gene in intrathyroidal T cells from 5 patients with Graves' disease.The findings were compared with the results of peripheral blood T cells in the same patients as well as those in normalsubjects. Results. We found that marked restriction in the expression of T cell receptor Vα genes by T cells from the thyroidtissue of Chinese patients with GD(P < 0.001). An average of only 4.6 ± 1.52 of the 18 Vα genes were expressed insuch samples, as compared with 10.4 ± 2.30Vα genes expressed in peripheral blood T cells from the same patients.The pattem of expressed Vα genes differed from patient to patient with no clear predominance. Condusions. Expression of intrathyroidal T cell receptor Vα genes in GD is highly restricted suggesting the prima-cy of T cells in causing the disorders.

  6. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination.

    Science.gov (United States)

    Bonifaz, Laura C; Bonnyay, David P; Charalambous, Anna; Darguste, Dara I; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K; Moltedo, Bruno; Moran, Thomas M; Steinman, Ralph M

    2004-03-15

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic alpha-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the alphaDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell-mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models.

  7. New Strategies in Engineering T-cell Receptor Gene-Modified T cells to More Effectively Target Malignancies.

    Science.gov (United States)

    Schmitt, Thomas M; Stromnes, Ingunn M; Chapuis, Aude G; Greenberg, Philip D

    2015-12-01

    The immune system, T cells in particular, have the ability to target and destroy malignant cells. However, antitumor immune responses induced from the endogenous T-cell repertoire are often insufficient for the eradication of established tumors, as illustrated by the failure of cancer vaccination strategies or checkpoint blockade for most tumors. Genetic modification of T cells to express a defined T-cell receptor (TCR) can provide the means to rapidly generate large numbers of tumor-reactive T cells capable of targeting tumor cells in vivo. However, cell-intrinsic factors as well as immunosuppressive factors in the tumor microenvironment can limit the function of such gene-modified T cells. New strategies currently being developed are refining and enhancing this approach, resulting in cellular therapies that more effectively target tumors and that are less susceptible to tumor immune evasion.

  8. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keiko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka (Japan); Fujimoto, Takahiro [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Okamura, Tadashi [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ogawa, Masahiro [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tanaka, Yoko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Mototani, Yasumasa; Goto, Motohito [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ota, Takeharu; Matsuzaki, Hiroshi [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Kuroki, Masahide [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tsunoda, Toshiyuki [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Sasazuki, Takehiko [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Shirasawa, Senji, E-mail: sshirasa@fukuoka-u.ac.jp [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  9. High-throughput identification of antigen-specific TCRs by TCR gene capture

    DEFF Research Database (Denmark)

    Linnemann, Carsten; Heemskerk, Bianca; Kvistborg, Pia;

    2013-01-01

    The transfer of T cell receptor (TCR) genes into patient T cells is a promising approach for the treatment of both viral infections and cancer. Although efficient methods exist to identify antibodies for the treatment of these diseases, comparable strategies to identify TCRs have been lacking. We...... the quantitative nature of TCR gene capture, we show the feasibility of identifying antigen-specific TCRs in oligoclonal T cell populations from either human material or TCR-humanized mice. Finally, we demonstrate the ability to identify tumor-reactive TCRs within intratumoral T cell subsets without knowledge...

  10. Characterization of T cell receptors of Th1 cells infiltrating inflamed skin of a novel murine model of palladium-induced metal allergy.

    Directory of Open Access Journals (Sweden)

    Hiroshi Kobayashi

    Full Text Available Metal allergy is categorized as a delayed-type hypersensitivity reaction, and is characterized by the recruitment of lymphocytes into sites of allergic inflammation. Because of the unavailability of suitable animal models for metal allergy, the role of T cells in the pathogenesis of metal allergy has not been explored. Thus, we developed a novel mouse model for metal allergy associated with infiltration of T cells by multiple injections of palladium (Pd plus lipopolysaccharide into the footpad. Using this model, we characterized footpad-infiltrating T cells in terms of phenotypic markers, T cell receptor (TCR repertoires and cytokine expression. CD3+ CD4+ T cells accumulated in the allergic footpads 7 days after Pd challenge. The expression levels of CD25, interleukin-2, interferon-γ and tumor necrosis factor, but not interleukin-4 and interleukin-5, increased in the footpads after challenge, suggesting CD4+ T helper 1 (Th1 cells locally expanded in response to Pd. Infiltrated T cells in the footpads frequently expressed AV18-1 and BV8-2 T cell receptor (TCR chains compared with T cells in the lymph nodes and exhibited oligoclonality. T-cell clones identified from Pd-allergic mouse footpads shared identical CDR3 sequences containing AV18-1 and BV8-2. These results suggest that TCR AV18-1 and BV8-2 play dominant and critical parts in the antigen specificity of Pd-specific Th1 cells.

  11. Designing T-cells with desired T-cell receptor make-up for immunotherapy

    NARCIS (Netherlands)

    Loenen, Margaretha Magdalena van

    2011-01-01

    TCR gene transfer is a strategy that enables the rapid engineering of anti-leukemic T-cells with defined specificity, resulting in a so called ‘off the shelf ‘ therapy. An elegant strategy to promote persistence of TCR modified T-cells may be TCR gene transfer into CMV- and EBV-specific T-cells, whi

  12. Broad T-cell receptor repertoire in T-lymphocytes derived from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Chang

    Full Text Available Human induced pluripotent stem cells (hiPSCs have enormous potential for the treatment of inherited and acquired disorders. Recently, antigen-specific T lymphocytes derived from hiPSCs have been reported. However, T lymphocyte populations with broad T cell receptor (TCR diversity have not been generated. We report that hiPSCs derived from skin biopsy are capable of producing T lymphocyte populations with a broad TCR repertoire. In vitro T cell differentiation follows a similar developmental program as observed in vivo, indicated by sequential expression of CD7, intracellular CD3 and surface CD3. The γδ TCR locus is rearranged first and is followed by rearrangement of the αβ locus. Both γδ and αβ T cells display a diverse TCR repertoire. Upon activation, the cells express CD25, CD69, cytokines (TNF-α, IFN-γ, IL-2 and cytolytic proteins (Perforin and Granzyme-B. These results suggest that most, if not all, mechanisms required to generate functional T cells with a broad TCR repertoire are intact in our in vitro differentiation protocol. These data provide a foundation for production of patient-specific T cells for the treatment of acquired or inherited immune disorders and for cancer immunotherapy.

  13. Building and optimizing a virus-specific T cell receptor library for targeted immunotherapy in viral infections.

    Science.gov (United States)

    Banu, Nasirah; Chia, Adeline; Ho, Zi Zong; Garcia, Alfonso Tan; Paravasivam, Komathi; Grotenbreg, Gijsbert M; Bertoletti, Antonio; Gehring, Adam J

    2014-02-25

    Restoration of antigen-specific T cell immunity has the potential to clear persistent viral infection. T cell receptor (TCR) gene therapy can reconstitute CD8 T cell immunity in chronic patients. We cloned 10 virus-specific TCRs targeting 5 different viruses, causing chronic and acute infection. All 10 TCR genetic constructs were optimized for expression using a P2A sequence, codon optimization and the addition of a non-native disulfide bond. However, maximum TCR expression was only achieved after establishing the optimal orientation of the alpha and beta chains in the expression cassette; 9/10 TCRs favored the beta-P2A-alpha orientation over alpha-P2A-beta. Optimal TCR expression was associated with a significant increase in the frequency of IFN-gamma+ T cells. In addition, activating cells for transduction in the presence of Toll-like receptor ligands further enhanced IFN-gamma production. Thus, we have built a virus-specific TCR library that has potential for therapeutic intervention in chronic viral infection or virus-related cancers.

  14. Rational design of T cell receptors with enhanced sensitivity for antigen.

    Directory of Open Access Journals (Sweden)

    Rajshekhar Alli

    Full Text Available Enhancing the affinity of therapeutic T cell receptors (TCR without altering their specificity is a significant challenge for adoptive immunotherapy. Current efforts have primarily relied on empirical approaches. Here, we used structural analyses to identify a glycine-serine variation in the TCR that modulates antigen sensitivity. A G at position 107 within the CDR3β stalk is encoded within a single mouse and human TCR, TRBV13-2 and TRBV12-5 respectively. Most TCR bear a S107. The S hydroxymethyl side chain intercalates into the core of the CDR3β loop, stabilizing it. G107 TRBV possess a gap in their CDR3β where this S hydroxymethyl moiety would fit. We predicted based on modeling and molecular dynamics simulations that a G107S substitution would increase CDR3β stability and thereby augment receptor sensitivity. Experimentally, a G107S replacement led to an ∼10-1000 fold enhanced antigen sensitivity in 3 of 4 TRBV13-2(+ TCR tested. Analysis of fine specificity indicated a preserved binding orientation. These results support the feasibility of developing high affinity antigen specific TCR for therapeutic purposes through the identification and manipulation of critical framework residues. They further indicate that amino acid variations within TRBV not directly involved in ligand contact can program TCR sensitivity, and suggest a role for CDR3 stability in this programming.

  15. Inactivation of T cell receptor peptide-specific CD4 regulatory T cells induces chronic experimental autoimmune encephalomyelitis (EAE)

    OpenAIRE

    1996-01-01

    T cell receptor (TCR)-recognizing regulatory cells, induced after vaccination with self-reactive T cells or TCR peptides, have been shown to prevent autoimmunity. We have asked whether this regulation is involved in the maintenance of peripheral tolerance to myelin basic protein (MBP) in an autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). Antigen-induced EAE in (SJL x B10.PL)F1 mice is transient in that most animals recover permanently from the disease. Most of the i...

  16. In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination

    Science.gov (United States)

    Bonifaz, Laura C.; Bonnyay, David P.; Charalambous, Anna; Darguste, Dara I.; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K.; Moltedo, Bruno; Moran, Thomas M.; Steinman, Ralph M.

    2004-01-01

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic α-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the αDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell–mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models. PMID:15024047

  17. Expression of recombination-activating genes and T cell receptor gene recombination in the human T cell leukemia cell line

    Institute of Scientific and Technical Information of China (English)

    ZOU Hong-yun; MA Li; MENG Min-jie; YAO Xin-sheng; LIN Ying; WU Zhen-qiang; HE Xiao-wei; WANG Ju-fang; WANG Xiao-ning

    2007-01-01

    Background Recent studies have suggested that mature T cells can change their specificity through reexpression of recombination-activating genes (RAG) and RAG-mediated V(D)J recombination. This process is named receptor revision and has been observed in mature peripheral T cells from transgenic mice and human donors. However, whether the receptor revision in mature T cells is a random or orientated process remains poorly understood. Here we used the Jurkat human T cell line, which represents a mature stage of T cell development, as a model to investigate the regulation of T cell receptor (TCR) gene recombination.Methods TCR Dβ-Jβ signal joint T cell receptor excision DNA circles (sjTRECs) were determined by nested and seminested PCR. Double-strand DNA breaks at recombination signal sequences (RSSs) in the TCRVβ chain locus were detected by ligation-mediated-PCR. Further analysis of the complementarity-determining region 3 (CDR3) size of the TCRVβ chain was examined by the TCR GeneScan technique.Results RAG1, RAG2, and three crucial components of the nonhomologous DNA end-joining (NHEJ) pathway were readily detected in Jurkat. Characteristics of junctional diversity of Dβ2-Jβ2 signal joints and ds RSS breaks associated with the Dβ25' and Dβ 23' sites were detected in DNA from Jurkat cells. CDR3 size and the gene sequences of the TCRVβ chain did not change during cell proliferation.Conclusions RAG1 and RAG2 and ongoing TCR gene recombination are coexpressed in Jurkat cells, but the ongoing recombination process may not play a role in modification of the TCR repertoire. However, the results suggest that Jurkat could be used as a model for studying the regulation of RAGs and V(D)J recombination and as a "special" model of the coexistence of TCR gene rearrangements and "negative" receptor revision.

  18. A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells.

    Science.gov (United States)

    Eckle, Sidonia B G; Birkinshaw, Richard W; Kostenko, Lyudmila; Corbett, Alexandra J; McWilliam, Hamish E G; Reantragoon, Rangsima; Chen, Zhenjun; Gherardin, Nicholas A; Beddoe, Travis; Liu, Ligong; Patel, Onisha; Meehan, Bronwyn; Fairlie, David P; Villadangos, Jose A; Godfrey, Dale I; Kjer-Nielsen, Lars; McCluskey, James; Rossjohn, Jamie

    2014-07-28

    Mucosal-associated invariant T (MAIT) cells express an invariant T cell receptor (TCR) α-chain (TRAV1-2 joined to TRAJ33, TRAJ20, or TRAJ12 in humans), which pairs with an array of TCR β-chains. MAIT TCRs can bind folate- and riboflavin-based metabolites restricted by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. However, the impact of MAIT TCR and MR1-ligand heterogeneity on MAIT cell biology is unclear. We show how a previously uncharacterized MR1 ligand, acetyl-6-formylpterin (Ac-6-FP), markedly stabilized MR1, potently up-regulated MR1 cell surface expression, and inhibited MAIT cell activation. These enhanced properties of Ac-6-FP were attributable to structural alterations in MR1 that subsequently affected MAIT TCR recognition via conformational changes within the complementarity-determining region (CDR) 3β loop. Analysis of seven TRBV6-1(+) MAIT TCRs demonstrated how CDR3β hypervariability impacted on MAIT TCR recognition by altering TCR flexibility and contacts with MR1 and the Ag itself. Ternary structures of TRBV6-1, TRBV6-4, and TRBV20(+) MAIT TCRs in complex with MR1 bound to a potent riboflavin-based antigen (Ag) showed how variations in TRBV gene usage exclusively impacted on MR1 contacts within a consensus MAIT TCR-MR1 footprint. Moreover, differential TRAJ gene usage was readily accommodated within a conserved MAIT TCR-MR1-Ag docking mode. Collectively, MAIT TCR heterogeneity can fine-tune MR1 recognition in an Ag-dependent manner, thereby modulating MAIT cell recognition.

  19. Molecular analysis of T-cell receptor beta genes in cutaneous T-cell lymphoma reveals Jbeta1 bias.

    Science.gov (United States)

    Morgan, Suzanne M; Hodges, Elizabeth; Mitchell, Tracey J; Harris, Susan; Whittaker, Sean J; Smith, John L

    2006-08-01

    Molecular characterization of T-cell receptor junctional region sequences in cutaneous T-cell lymphoma had not been previously reported. We have examined in detail the features of the T-cell receptor beta (TCRB) gene rearrangements in 20 individuals with well-defined stages of cutaneous T-cell lymphoma (CTCL) comprising 10 cases with early-stage mycosis fungoides (MF) and 10 cases with late-stage MF or Sezary syndrome. Using BIOMED-2 PCR primers, we detected a high frequency of clonally rearranged TCR gamma and TCRB genes (17/20 and 15/20 cases, respectively). We carried out sequencing analysis of each complete clonal variable (V)beta-diversity (D)beta-joining(J)beta fingerprint generated by PCR amplification, and determined the primary structure of the Vbeta-Dbeta-Jbeta junctional regions. We observed considerable diversity in the T-cell receptor Vbeta gene usage and complementarity-determining region 3 loops. Although we found that TCRB gene usage in CTCL and normal individuals share common features, our analysis also revealed preferential usage of Jbeta1 genes in all cases with advanced stages of disease.

  20. Quantitative Phosphoproteomic Analysis of T-Cell Receptor Signaling.

    Science.gov (United States)

    Ahsan, Nagib; Salomon, Arthur R

    2017-01-01

    TCR signaling critically depends on protein phosphorylation across many proteins. Localization of each phosphorylation event relative to the T-cell receptor (TCR) and canonical T-cell signaling proteins will provide clues about the structure of TCR signaling networks. Quantitative phosphoproteomic analysis by mass spectrometry provides a wide-scale view of cellular phosphorylation networks. However, analysis of phosphorylation by mass spectrometry is still challenging due to the relative low abundance of phosphorylated proteins relative to all proteins and the extraordinary diversity of phosphorylation sites across the proteome. Highly selective enrichment of phosphorylated peptides is essential to provide the most comprehensive view of the phosphoproteome. Optimization of phosphopeptide enrichment methods coupled with highly sensitive mass spectrometry workflows significantly improves the sequencing depth of the phosphoproteome to over 10,000 unique phosphorylation sites from complex cell lysates. Here we describe a step-by-step method for phosphoproteomic analysis that has achieved widespread success for identification of serine, threonine, and tyrosine phosphorylation. Reproducible quantification of relative phosphopeptide abundance is provided by intensity-based label-free quantitation. An ideal set of mass spectrometry analysis parameters is also provided that optimize the yield of identified sites. We also provide guidelines for the bioinformatic analysis of this type of data to assess the quality of the data and to comply with proteomic data reporting requirements.

  1. CTLA4 blockade broadens the peripheral T cell receptor repertoire

    Science.gov (United States)

    Robert, Lidia; Tsoi, Jennifer; Wang, Xiaoyan; Emerson, Ryan; Homet, Blanca; Chodon, Thinle; Mok, Stephen; Huang, Rong Rong; Cochran, Alistair J.; Comin-Anduix, Begonya; Koya, Richard C.; Graeber, Thomas G.; Robins, Harlan; Ribas, Antoni

    2014-01-01

    Purpose To evaluate the immunomodulatory effects of CTLA-4 blockade with tremelimumab in peripheral blood mononuclear cells (PBMC). Experimental Design We used next generation sequencing to study the complementarity determining region 3 (CDR3) from the rearranged T cell receptor (TCR) variable beta (V-beta) in PBMC of 21 patients, at baseline and 30–60 days after receiving tremelimumab. Results After receiving tremelimumab there was a median of 30% increase in unique productive sequences of TCR V-beta CDR3 in 19 out of 21 patients, and a median decrease of 30% in only 2 out of 21 patients. These changes were significant for richness (p=0.01) and for Shannon index diversity (p=0.04). In comparison, serially collected PBMC from four healthy donors did not show a significant change in TCR V-beta CDR3 diversity over one year. There was a significant difference in the total unique productive TCR V-beta CDR3 sequences between patients experiencing toxicity with tremelimumab compared to patients without toxicity (p=0.05). No relevant differences were noted between clinical responders and non-responders. Conclusions CTLA4 blockade with tremelimumab diversifies the peripheral T cell pool, representing a pharmacodynamic effect of how this class of antibodies modulates the human immune system. PMID:24583799

  2. Mother and child T cell receptor repertoires: deep profiling study

    Directory of Open Access Journals (Sweden)

    Ekaterina V Putintseva

    2013-12-01

    Full Text Available The relationship between maternal and child immunity has been actively studied in the context of complications during pregnancy, autoimmune diseases, and haploidentical transplantation of hematopoietic stem cells (HSC and solid organs. Here, we have for the first time used high-throughput Illumina HiSeq sequencing to perform deep quantitative profiling of T-cell receptor (TCR repertoires for peripheral blood samples of three mothers and their six children. Advanced technology allowed accurate identification of 5х105–2х106 TCR beta clonotypes per individual. We performed comparative analysis of these TCR repertoires with the aim of revealing characteristic features that distinguish related mother-child pairs, such as relative TRBV segment usage frequency and relative overlap of TCR beta CDR3 repertoires. We show that thymic selection essentially and similarly shapes the initial output of the TCR recombination machinery in both related and unrelated pairs, with minor effect from inherited differences. The achieved depth of TCR profiling also allowed us to test the hypothesis that mature T cells transferred across the placenta during pregnancy can expand and persist as functional microchimeric clones in their new host, using characteristic TCR beta CDR3 variants as clonal identifiers.

  3. Mutation in Fas Ligand Impairs Maturation of Thymocytes Bearing Moderate Affinity T Cell Receptors

    OpenAIRE

    2003-01-01

    Fas ligand, best known as a death-inducer, is also a costimulatory molecule required for maximal proliferation of mature antigen-specific CD4+ and CD8+ T cells. We now extend the role of Fas ligand by showing that it can also influence thymocyte development. T cell maturation in some, but not all, strains of TCR transgenic mice is severely impaired in thymocytes expressing mutant Fas ligand incapable of interacting with Fas. Mutant Fas ligand inhibits neither negative selection nor death by n...

  4. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Backstrom, T; Lauritsen, JP

    1998-01-01

    The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR and the ......The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...... the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed....

  5. T-cell receptor gene rearrangement analysis: cutaneous T cell lymphoma, peripheral T cell lymphoma, and premalignant and benign cutaneous lymphoproliferative disorders.

    Science.gov (United States)

    Zelickson, B D; Peters, M S; Muller, S A; Thibodeau, S N; Lust, J A; Quam, L M; Pittelkow, M R

    1991-11-01

    T-cell receptor gene rearrangement analysis is a useful technique to detect clonality and determine lineage of lymphoid neoplasms. We examined 103 patients with mycosis fungoides, Sézary syndrome, peripheral T cell lymphoma, potentially malignant lymphoproliferative disorders including pre-Sézary syndrome, large plaque parapsoriasis, lymphomatoid papulosis and follicular mucinosis, and various benign inflammatory infiltrates. A clonal rearrangement was detected in skin samples in 20 of 24 patients with mycosis fungoides and in peripheral blood samples in 19 of 21 patients with Sézary syndrome. A clonal population was also detected in seven of eight cases classified as peripheral T cell lymphoma. The potentially malignant dermatoses tended to have clonal rearrangement, with the exception of large plaque parapsoriasis, and further follow-up is needed to correlate clonality with the disease course. These studies demonstrate the value of molecular genetics as an adjunct to morphology in the examination of patients with cutaneous lymphoproliferative disease.

  6. Gut-homing CD4+ T cell receptor alpha beta+ T cells in the pathogenesis of murine inflammatory bowel disease

    DEFF Research Database (Denmark)

    Rudolphi, A; Boll, G; Poulsen, S S;

    1994-01-01

    We studied which T cell subsets from the gut-associated lymphoid tissue (GALT) can migrate out of the gut mucosa and repopulate GALT compartments of an immunodeficient (semi)syngeneic host. Many distinct lymphocyte subsets were found in GALT of immunocompetent H-2d (BALB/c, BALB/cdm2, C.B-17......+/+) mice. No antigen receptor-expressing lymphoid cells were found in GALT of congenic C.B-17 scid/scid (scid) mice. The heterotopic transplantation of a full-thickness gut wall graft from the ileum or colon of immunocompetent (C.B-17+/+, BALB/cdm2) donor mice onto immunodeficient scid mice selectively...... reconstituted a CD3+ T cell receptor alpha beta+ CD4+ T cell subset. CD4+ cells of this subset expressed the surface phenotype of mucosa-seeking, memory T cells. In the immunodeficient scid host, this gut-derived CD4+ T cell subset was found in spleen, peritoneal cavity, mesenteric lymph nodes (LN), epithelial...

  7. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells.

    Science.gov (United States)

    Dorner, Brigitte G; Dorner, Martin B; Zhou, Xuefei; Opitz, Corinna; Mora, Ahmed; Güttler, Steffen; Hutloff, Andreas; Mages, Hans W; Ranke, Katja; Schaefer, Michael; Jack, Robert S; Henn, Volker; Kroczek, Richard A

    2009-11-20

    The expression of the chemokine receptor XCR1 and the function of its ligand XCL1 (otherwise referred to as ATAC, lymphotactin, or SCM-1) remained elusive to date. In the present report we demonstrated that XCR1 is exclusively expressed on murine CD8(+) dendritic cells (DCs) and showed that XCL1 is a potent and highly specific chemoattractant for this DC subset. CD8(+) T cells abundantly secreted XCL1 8-36 hr after antigen recognition on CD8(+) DCs in vivo, in a period in which stable T cell-DC interactions are known to occur. Functionally, XCL1 increased the pool of antigen-specific CD8(+) T cells and their capacity to secrete IFN-gamma. Absence of XCL1 impaired the development of cytotoxicity to antigens cross-presented by CD8(+) DCs. The XCL1-XCR1 axis thus emerges as an integral component in the development of efficient cytotoxic immunity in vivo.

  8. Five layers of receptor signalling in γδ T cell differentiation and activation

    Directory of Open Access Journals (Sweden)

    Sérgio T. Ribeiro

    2015-01-01

    Full Text Available The contributions of gamma-delta T cells to immunity to infection or tumours critically depend on their activation and differentiation into effectors capable of secreting cytokines and killing infected or transformed cells. These processes are molecularly controlled by surface receptors that capture key extracellular cues and convey downstream intracellular signals that regulate gamma-delta T cell physiology. The understanding of how environmental signals are integrated by gamma-delta T cells is critical for their manipulation in clinical settings. Here we discuss how different classes of surface receptors impact on human and murine gamma-delta T cell differentiation, activation and expansion. In particular, we review the role of five receptor types: the T cell receptor (TCR, costimulatory receptors, cytokine receptors, NK receptors and inhibitory receptors. Some of the key players are the costimulatory receptors CD27 and CD28, which differentially impact on pro-inflammatory subsets of gamma-delta T cells; the cytokine receptors IL-2R, IL-7R and IL-15R, which drive functional differentiation and expansion of gamma-delta T cells; the NK receptor NKG2D and its contribution to gamma-delta T cell cytotoxicity; and the inhibitory receptors PD-1 and BTLA that control gamma-delta T cell homeostasis. We discuss these and other receptors in the context of a five-step model of receptor signalling in gamma-delta T cell differentiation and activation, and discuss its implications for the manipulation of gamma-delta T cells in immunotherapy.

  9. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    Directory of Open Access Journals (Sweden)

    Manami Miyai

    Full Text Available Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01 in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB gene next generation sequencing (NGS to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3 rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF. Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133% even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB

  10. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    Science.gov (United States)

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS

  11. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters

    Energy Technology Data Exchange (ETDEWEB)

    Manz, Boryana N. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Univ. of California, Berkeley, CA (United States); Jackson, Bryan L. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petit, Rebecca S. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dustin, Michael L. [New York School of Medicine, New York, NY (United States); Groves, Jay [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-05-31

    T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. In this study, we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC content within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. In conclusion, this threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.

  12. Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells.

    Science.gov (United States)

    Round, June L; Tomassian, Tamar; Zhang, Min; Patel, Viresh; Schoenberger, Stephen P; Miceli, M Carrie

    2005-02-07

    Lipid raft membrane compartmentalization and membrane-associated guanylate kinase (MAGUK) family molecular scaffolds function in establishing cell polarity and organizing signal transducers within epithelial cell junctions and neuronal synapses. Here, we elucidate a role for the MAGUK protein, Dlgh1, in polarized T cell synapse assembly and T cell function. We find that Dlgh1 translocates to the immune synapse and lipid rafts in response to T cell receptor (TCR)/CD28 engagement and that LckSH3-mediated interactions with Dlgh1 control its membrane targeting. TCR/CD28 engagement induces the formation of endogenous Lck-Dlgh1-Zap70-Wiskott-Aldrich syndrome protein (WASp) complexes in which Dlgh1 acts to facilitate interactions of Lck with Zap70 and WASp. Using small interfering RNA and overexpression approaches, we show that Dlgh1 promotes antigen-induced actin polymerization, synaptic raft and TCR clustering, nuclear factor of activated T cell activity, and cytokine production. We propose that Dlgh1 coordinates TCR/CD28-induced actin-driven T cell synapse assembly, signal transduction, and effector function. These findings highlight common molecular strategies used to regulate cell polarity, synapse assembly, and transducer organization in diverse cellular systems.

  13. Co-introduced functional CCR2 potentiates in vivo anti-lung cancer functionality mediated by T cells double gene-modified to express WT1-specific T-cell receptor.

    Directory of Open Access Journals (Sweden)

    Hiroaki Asai

    Full Text Available BACKGROUND AND PURPOSE: Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR or chimeric antigen receptor (CAR has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. METHODOLOGY/PRINCIPAL FINDINGS: Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1, and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402(+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8(+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1(235-243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3(+ T cells both in vitro and in vivo. Double gene-modified CD3(+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modified CD3(+ T cells. CONCLUSION/SIGNIFICANCE: Introduction of the CCL2/CCR2 axis successfully potentiated in

  14. The vitamin d receptor and T cell function

    DEFF Research Database (Denmark)

    Kongsbak, Martin; Levring, Trine B; Geisler, Carsten

    2013-01-01

    ultimately to increase their chance of survival. Immune modulatory therapies that enhance VDR expression and activity are therefore considered in the clinic today to a greater extent. As T cells are of great importance for both protective immunity and development of inflammatory diseases a variety of studies...... have been engaged investigating the impact of VDR expression in T cells and found that VDR expression and activity plays an important role in both T cell development, differentiation and effector function. In this review we will analyze current knowledge of VDR regulation and function in T cells...

  15. BDC12-4.1 T-cell receptor transgenic insulin-specific CD4 T cells are resistant to in vitro differentiation into functional Foxp3+ T regulatory cells.

    Science.gov (United States)

    Sarikonda, Ghanashyam; Fousteri, Georgia; Sachithanantham, Sowbarnika; Miller, Jacqueline F; Dave, Amy; Juntti, Therese; Coppieters, Ken T; von Herrath, Matthias

    2014-01-01

    The infusion of ex vivo-expanded autologous T regulatory (Treg) cells is potentially an effective immunotherapeutic strategy against graft-versus-host disease (GvHD) and several autoimmune diseases, such as type 1 diabetes (T1D). However, in vitro differentiation of antigen-specific T cells into functional and stable Treg (iTreg) cells has proved challenging. As insulin is the major autoantigen leading to T1D, we tested the capacity of insulin-specific T-cell receptor (TCR) transgenic CD4(+) T cells of the BDC12-4.1 clone to convert into Foxp3(+) iTreg cells. We found that in vitro polarization toward Foxp3(+) iTreg was effective with a majority (>70%) of expanded cells expressing Foxp3. However, adoptive transfer of Foxp3(+) BDC12-4.1 cells did not prevent diabetes onset in immunocompetent NOD mice. Thus, in vitro polarization of insulin-specific BDC12-4.1 TCR transgenic CD4(+) T cells toward Foxp3+ cells did not provide dominant tolerance in recipient mice. These results highlight the disconnect between an in vitro acquired Foxp3(+) cell phenotype and its associated in vivo regulatory potential.

  16. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy

    Science.gov (United States)

    Li Pira, Giuseppina; Di Cecca, Stefano; Biagini, Simone; Girolami, Elia; Cicchetti, Elisabetta; Bertaina, Valentina; Quintarelli, Concetta; Caruana, Ignazio; Lucarelli, Barbarella; Merli, Pietro; Pagliara, Daria; Brescia, Letizia Pomponia; Bertaina, Alice; Montanari, Mauro; Locatelli, Franco

    2017-01-01

    Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification. PMID:28386262

  17. Interleukin-1 receptors are differentially expressed in normal and psoriatic T cells.

    Science.gov (United States)

    Bebes, Attila; Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4(+)CD25(-) effector and CD4(+)CD25(+)CD127(low) regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.

  18. Intranasal Vaccination Affords Localization and Persistence of Antigen-Specific CD8+ T Lymphocytes in the Female Reproductive Tract

    Directory of Open Access Journals (Sweden)

    Shailbala Singh

    2016-03-01

    Full Text Available Immunization strategies generating large numbers of antigen-specific T cells in the female reproductive tract (FRT can provide barrier protection against sexually-transmitted pathogens, such as the human immunodeficiency virus (HIV and human papillomaviruses (HPV. The kinetics and mechanisms of regulation of vaccine-induced adaptive T cell-mediated immune responses in FRT are less well defined. We present here evidence for intranasal delivery of the model antigen ovalbumin (OVA along with alpha-galactosylceramide adjuvant as a protein vaccine to induce significantly higher levels of antigen-specific effector and memory CD8+ T cells in the FRT, relative to other systemic and mucosal tissues. Antibody blocking of the CXCR3 receptor significantly reduced antigen-specific CD8+ T cells subsequent to intranasal delivery of the protein vaccine suggesting an important role for the CXCR3 chemokine-receptor signaling for T cell trafficking. Further, intranasal vaccination with an adenoviral vector expressing OVA or HIV-1 envelope was as effective as intramuscular vaccination for generating OVA- or ENV-specific immunity in the FRT. These results support the application of the needle-free intranasal route as a practical approach to delivering protein as well as DNA/virus vector-based vaccines for efficient induction of effector and memory T cell immunity in the FRT.

  19. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Bäckström, T; Lauritsen, J P

    1998-01-01

    The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR and the ...... the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed.......The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...... and the mechanisms involved in the sorting events following PKC-induced internalization are not known. In this study, we demonstrated that following PKC-induced internalization, the TCR is recycled back to the cell surface in a functional state. TCR recycling was dependent on dephosphorylation of CD3gamma, probably...

  20. Inactivation of T cell receptor peptide-specific CD4 regulatory T cells induces chronic experimental autoimmune encephalomyelitis (EAE).

    Science.gov (United States)

    Kumar, V; Stellrecht, K; Sercarz, E

    1996-11-01

    T cell receptor (TCR)-recognizing regulatory cells, induced after vaccination with self-reactive T cells or TCR peptides, have been shown to prevent autoimmunity. We have asked whether this regulation is involved in the maintenance of peripheral tolerance to myelin basic protein (MBP) in an autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). Antigen-induced EAE in (SJL x B10.PL)F1 mice is transient in that most animals recover permanently from the disease. Most of the initial encephalitogenic T cells recognize MBP Ac1-9 and predominantly use the TCR V beta 8.2 gene segment. In mice recovering from MBP-induced EAE, regulatory CD4+ T cells (Treg) specific for a single immunodominant TCR peptide B5 (76-101) from framework region 3 of the V beta 8.2 chain, become primed. We have earlier shown that cloned B5-reactive Treg can specifically downregulate responses to Ac1-9 and also protect mice from EAE. These CD4 Treg clones predominantly use the TCR V beta 14 or V beta 3 gene segments. Here we have directly tested whether deletion/blocking of the Treg from the peripheral repertoire affects the spontaneous recovery from EAE. Treatment of F1 mice with appropriate V beta-specific monoclonal antibodies resulted in an increase in the severity and duration of the disease; even relapses were seen in one-third to one-half of the Treg-deleted mice. Interestingly, chronic disease in treated mice appears to be due to the presence of Ac1-9-specific T cells. Thus, once self-tolerance to MBP is broken by immunization with the antigen in strong adjuvant, TCR peptide-specific CD4 Treg cells participate in reestablishing peripheral tolerance. Thus, a failure to generate Treg may be implicated in chronic autoimmune conditions.

  1. A role for Peroxisome Proliferator-Activated Receptor Beta in T cell development

    Science.gov (United States)

    Mothe-Satney, Isabelle; Murdaca, Joseph; Sibille, Brigitte; Rousseau, Anne-Sophie; Squillace, Raphaëlle; Le Menn, Gwenaëlle; Rekima, Akila; Larbret, Frederic; Pelé, Juline; Verhasselt, Valérie; Grimaldi, Paul A.; Neels, Jaap G.

    2016-01-01

    Metabolism plays an important role in T cell biology and changes in metabolism drive T cell differentiation and fate. Most research on the role of metabolism in T lymphocytes focuses on mature T cells while only few studies have investigated the role of metabolism in T cell development. In this study, we report that activation or overexpression of the transcription factor Peroxisome Proliferator-Activated Receptor β (PPARβ) increases fatty acid oxidation in T cells. Furthermore, using both in vivo and in vitro models, we demonstrate that PPARβ activation/overexpression inhibits thymic T cell development by decreasing proliferation of CD4−CD8− double-negative stage 4 (DN4) thymocytes. These results support a model where PPARβ activation/overexpression favours fatty acid- instead of glucose-oxidation in developing T cells, thereby hampering the proliferative burst normally occurring at the DN4 stage of T cell development. As a consequence, the αβ T cells that are derived from DN4 thymocytes are dramatically decreased in peripheral lymphoid tissues, while the γδ T cell population remains untouched. This is the first report of a direct role for a member of the PPAR family of nuclear receptors in the development of T cells. PMID:27680392

  2. TCR-engineered T cells meet new challenges to treat solid tumors: choice of antigen, t cell fitness, and sensitization of tumor milieu

    NARCIS (Netherlands)

    Straetemans, T.; Govers, C.C.F.M.

    2013-01-01

    Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to target immunogenic epitopes that are re

  3. Detection of autoreactive CD4 T cells using major histocompatibility complex class II dextramers

    OpenAIRE

    Kuszynski Charles; Gangaplara Arunakumar; Upadhyaya Bijaya; Massilamany Chandirasegaran; Reddy Jay

    2011-01-01

    Abstract Background Tetramers are useful tools to enumerate the frequencies of antigen-specific T cells. However, unlike CD8 T cells, CD4 T cells - especially self-reactive cells - are challenging to detect with major histocompatibility complex (MHC) class II tetramers because of low frequencies and low affinities of their T cell receptors to MHC-peptide complexes. Here, we report the use of fluorescent multimers, designated MHC dextramers that contain a large number of peptide-MHC complexes ...

  4. IgE production after antigen-specific and cognate activation of HLA-DPw4-restricted T-cell clones, by 78% of randomly selected B-cell donors

    NARCIS (Netherlands)

    Baselmans, PJ; Pollabauer, EM; van Reijsen, FC; Heystek, HC; Hren, A; Stumptner, P; Tilanus, MGJ; Vooijs, WC; Mudde, GC

    2000-01-01

    The frequency of expression of the MHC class II antigen, HLA-DPw4, in the caucasoid population is approximately 78%, and is unmatched by phenotypic frequencies of other HLA class II molecules. Here we describe three human Der-P1-specific T-cell clones (TCC), restricted by the HLA-DPw4-variant HLA-DP

  5. Isolation of human CD4/CD8 double-positive, graft-versus-host disease-protective, minor histocompatibility antigen-specific regulatory T cells and of a novel HLA-DR7-restricted HY-specific CD4 clone.

    Science.gov (United States)

    Eljaafari, Assia; Yuruker, Ozel; Ferrand, Christophe; Farre, Annie; Addey, Caroline; Tartelin, Marie-Laure; Thomas, Xavier; Tiberghien, Pierre; Simpson, Elizabeth; Rigal, Dominique; Scott, Diane

    2013-01-01

    Minor histocompatibility (H) Ags are classically described as self-peptides derived from intracellular proteins that are expressed at the cell surface by MHC class I and class II molecules and that induce T cell alloresponses. We have isolated three different T cell populations from a skin biopsy of a patient suffering from acute graft-versus-host disease following sex-mismatched HLA-identical bone marrow transplantation. The first population was: 1) CD4(+)/CD8(+) double-positive; 2) specific for an HLA class I-restricted autosomal Ag; 3) expressed a Tr1 profile with high levels of IL-10, but low IL-2 and IFN-γ; and 4) exerted regulatory function in the presence of recipient APCs. The second was CD8 positive, specific for an HLA class I-restricted autosomally encoded minor H Ag, but was only weakly cytotoxic. The third was CD4 single positive, specific for an HLA-DR7-restricted HY epitope and exerted both proliferative and cytotoxic functions. Identification of the peptide recognized by these latter cells revealed a new human HY epitope, TGKIINFIKFDTGNL, encoded by RPS4Y and restricted by HLA-DR7. In this paper, we show human CD4/CD8 double-positive, acute graft-versus-host disease-protective, minor H Ag-specific regulatory T cells and identify a novel HLA-DR7/ HY T cell epitope, encoded by RPS4Y, a potential new therapeutic target.

  6. T Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon Gamma.

    Science.gov (United States)

    Sun, Xue Nan; Li, Chao; Liu, Yuan; Du, Lin-Juan; Zeng, Meng-Ru; Zheng, Xiao Jun; Zhang, Wu Chang; Liu, Yan; Zhu, Mingjiang; Kong, Deping; Zhou, Li; Lu, Limin; Shen, Zhu-Xia; Yi, Yi; Du, Lili; Qin, Mu; Liu, Xu; Hua, Zichun; Sun, Shuyang; Yin, Huiyong; Zhou, Bin; Yu, Ying; Zhang, Zhiyuan; Duan, Sheng-Zhong

    2017-03-15

    Rationale: Hypertension remains to be a global public health burden and demands novel intervention strategies such as targeting T cells and T cell-derived cytokines. Mineralocorticoid receptor (MR) antagonists have been clinically used to treat hypertension. However, the function of T cell MR in blood pressure (BP) regulation has not been elucidated. Objective: We aim to determine the role of T cell MR in BP regulation and to explore the mechanism. Methods and Results: Using T cell MR knockout (TMRKO) mouse in combination with angiotensin II (AngII)-induced hypertensive mouse model, we demonstrated that MR deficiency in T cells strikingly decreased both systolic and diastolic BP, and attenuated renal and vascular damage. Flow cytometric analysis showed that TMRKO mitigated AngII-induced accumulation of interferon-gamma (IFNγ)-producing T cells, particularly CD8(+) population, in both kidneys and aortas. Similarly, eplerenone attenuated AngII-induced elevation of BP and accumulation of IFNγ-producing T cells in wild type mice. In cultured CD8(+) T cells, TMRKO suppressed IFNγ expression whereas T cell MR overexpression and aldosterone both enhanced IFNγ expression. At the molecular level, MR interacted with nuclear factor of activated T-cells 1 (NFAT1) and activator protein-1 (AP-1) in T cells. Finally, T cell MR overexpressing mice manifested more elevated BP compared to control mice after AngII infusion and such difference was abolished by IFNγ-neutralizing antibodies. Conclusions: MR may interact with NFAT1 and AP-1 to control IFNγ in T cells, and to regulate target organ damage and ultimately BP. Targeting MR in T cells specifically may be an effective novel approach for hypertension treatment.

  7. Catalytic activity of the mouse guanine nucleotide exchanger mSOS is activated by Fyn tyrosine protein kinase and the T-cell antigen receptor in T cells.

    OpenAIRE

    1996-01-01

    mSOS, a guanine nucleotide exchange factor, is a positive regulator of Ras. Fyn tyrosine protein kinase is a potential mediator in T-cell antigen receptor signal transduction in subsets of T cells. We investigated the functional and physical interaction between mSOS and Fyn in T-cell hybridoma cells. Stimulation of the T-cell antigen receptor induced the activation of guanine nucleotide exchange activity in mSOS immunoprecipitates. Overexpression of Fyn mutants with an activated kinase mutati...

  8. Novel primary thymic defect with T lymphocytes expressing gamma delta T cell receptor

    DEFF Research Database (Denmark)

    Geisler, C; Pallesen, G; Platz, P

    1989-01-01

    Flow cytometric analysis of the peripheral blood mononuclear cells in a six year old girl with a primary cellular immune deficiency showed a normal fraction of CD3 positive T cells. Most (70%) of the CD3 positive cells, however, expressed the gamma delta and not the alpha beta T cell receptor....... Immunoprecipitation and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that most of the gamma delta T cell receptors existed as disulphide-linked heterodimers. Proliferative responses to mitogens were severely reduced, but specific antibody responses after vaccination could be detected...... deficiency associated with a high proportion of T cells expressing the gamma delta T cell receptor has been described in nude mice, and it is suggested that the immune deficiency of this patient may represent a human analogue....

  9. T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/γcnull mice.

    Science.gov (United States)

    Shirakura, Yoshitaka; Mizuno, Yukari; Wang, Linan; Imai, Naoko; Amaike, Chisaki; Sato, Eiichi; Ito, Mamoru; Nukaya, Ikuei; Mineno, Junichi; Takesako, Kazutoh; Ikeda, Hiroaki; Shiku, Hiroshi

    2012-01-01

    Adoptive cell therapy with lymphocytes that have been genetically engineered to express tumor-reactive T-cell receptors (TCR) is a promising approach for cancer immunotherapy. We have been exploring the development of TCR gene therapy targeting cancer/testis antigens, including melanoma-associated antigen (MAGE) family antigens, that are ideal targets for adoptive T-cell therapy. The efficacy of TCR gene therapy targeting MAGE family antigens, however, has not yet been evaluated in vivo. Here, we demonstrate the in vivo antitumor activity in immunodeficient non-obese diabetic/SCID/γc(null) (NOG) mice of human lymphocytes genetically engineered to express TCR specific for the MAGE-A4 antigen. Polyclonal T cells derived from human peripheral blood mononuclear cells were transduced with the αβ TCR genes specific for MAGE-A4, then adoptively transferred into NOG mice inoculated with MAGE-A4 expressing human tumor cell lines. The transferred T cells maintained their effector function in vivo, infiltrated into tumors, and inhibited tumor growth in an antigen-specific manner. The combination of adoptive cell therapy with antigen peptide vaccination enhanced antitumor activity, with improved multifunctionality of the transferred cells. These data suggest that TCR gene therapy with MAGE-A4-specific TCR is a promising strategy to treat patients with MAGE-A4-expressing tumors; in addition, the acquisition of multifunctionality in vivo is an important factor to predict the quality of the T-cell response during adoptive therapy with human lymphocytes.

  10. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  11. Recombinant T-cell receptors : An immunologic link to cancer therapy

    NARCIS (Netherlands)

    Calogero, A; de Leij, YFMH; Mulder, NH; Hospers, GAP

    2000-01-01

    Cytotoxic T cells can specifically kill target cells that express antigens recognized by the T-cell receptor. These are membrane-bound proteins that are not ubiquitous and thus are difficult to purify and study at the protein level. The advent of recombinant DNA technology has facilitated these obje

  12. Thymic selection of T-cell receptors as an extreme value problem

    CERN Document Server

    Kosmrlj, Andrej; Kardar, Mehran; Shakhnovich, Eugene I

    2009-01-01

    T lymphocytes (T cells) orchestrate adaptive immune responses upon activation. T cell activation requires sufficiently strong binding of T cell receptors (TCRs) on their surface to short peptides (p) derived from foreign proteins, which are bound to major histocompatibility (MHC) gene products (displayed on antigen presenting cells). A diverse and self-tolerant T cell repertoire is selected in the thymus. We map thymic selection processes to an extreme value problem and provide an analytic expression for the amino acid compositions of selected TCRs (which enable its recognition functions).

  13. FTY720, Sphingosine 1-Phosphate Receptor Modulator, Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibition of T Cell Infiltration

    Institute of Scientific and Technical Information of China (English)

    Hirotoshi Kataoka; Kunio Sugahara; Kyoko Shimano; Koji Teshima; Mamoru Koyama; Atsushi Fukunari; Kenji Chiba

    2005-01-01

    FTY720, a sphingosine 1-phosphate receptor modulator, induces a marked decrease in the number of peripheral blood lymphocytes and exerts immunomodulating activity in various experimental allograft and autoimmune disease models. In this study, we evaluated the effect of FTY720 and its active metabolite, (S)-enantiomer of FTY720-phosphate [(S)-FTY720-P] on experimental autoimmune encephalomyelitis (EAE) in rats and mice.Prophylactic administration of FTY720 at 0.1 to 1 mg/kg almost completely prevented the development of EAE,and therapeutic treatment with FTY720 significantly inhibited the progression of EAE and EAE-associated histological change in the spinal cords of LEW rats induced by immunization with myelin basic protein. Consistent with rat EAE, the development of proteolipid protein-induced EAE in SJL/J mice was almost completely prevented and infiltration of CD4+ T cells into spinal cord was decreased by prophylactic treatment with FTY720 and (S)-FTY720-P. When FTY720 or (S)-FTY720-P was given after establishment of EAE in SJL/J mice, the relapse of EAE was markedly inhibited as compared with interferon-β, and the area of demyelination and the infiltration of CD4+ T cells were decreased in spinal cords of EAE mice. Similar therapeutic effect by FTY720 was obtained in myelin oligodendrocyte glycoprotein-induced EAE in C57BL/6 mice. These results indicate that FTY720 exhibits not only a prophylactic but also a therapeutic effect on EAE in rats and mice, and that the effect of FTY720 on EAE appears to be due to a reduction of the infiltration of myelin antigen-specific CD4+ T cells into the inflammation site.

  14. Integrating signals from the T-cell receptor and the interleukin-2 receptor.

    Directory of Open Access Journals (Sweden)

    Tilo Beyer

    2011-08-01

    Full Text Available T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.

  15. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali;

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  16. Regulator T cells: specific for antigen and/or antigen receptors?

    Science.gov (United States)

    Rubin, B; de Durana, Y Diaz; Li, N; Sercarz, E E

    2003-05-01

    Adaptive immune responses are regulated by many different molecular and cellular effectors. Regulator T cells are coming to their rights again, and these T cells seem to have ordinary alpha/beta T-cell receptors (TCRs) and to develop in the thymus. Autoimmune responses are tightly regulated by such regulatory T cells, a phenomenon which is beneficial to the host in autoimmune situations. However, the regulation of autoimmune responses to tumour cells is harmful to the host, as this regulation delays the defence against the outgrowth of neoplastic cells. In the present review, we discuss whether regulatory T cells are specific for antigen and/or for antigen receptors. Our interest in these phenomena comes from the findings that T cells produce many more TCR-alpha and TCR-beta chains than are necessary for surface membrane expression of TCR-alphabeta heterodimers with CD3 complexes. Excess TCR chains are degraded by the proteasomes, and TCR peptides thus become available to the assembly pathway of major histocompatibility complex class I molecules. Consequently, do T cells express two different identification markers on the cell membrane, the TCR-alphabeta clonotype for recognition by B-cell receptors and clonotypic TCR-alphabeta peptides for recognition by T cells?

  17. Transient Cannabinoid Receptor 2 Blockade during Immunization Heightens Intensity and Breadth of Antigen-specific Antibody Responses in Young and Aged mice

    Science.gov (United States)

    Dotsey, Emmanuel; Ushach, Irina; Pone, Egest; Nakajima, Rie; Jasinskas, Algis; Argueta, Donovan A.; Dillon, Andrea; DiPatrizio, Nicholas; Davies, Huw; Zlotnik, Albert; Crompton, Peter D.; Felgner, Philip L.

    2017-01-01

    The hallmark of vaccines is their ability to prevent the spread of infectious pathogens and thereby serve as invaluable public health tool. Despite their medical relevance, there is a gap in our understanding of the physiological factors that mediate innate and adaptive immune response to vaccines. The endocannabinoid (eCB) system is a critical modulator of homeostasis in vertebrates. Our results indicate that macrophages and dendritic cells produce the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG) upon antigen activation. We have also established that 2-AG levels are upregulated in the serum and in the lymph node of mice during vaccination. We hypothesized that the intrinsic release of eCBs from immune cells during activation by pathogenic antigens mitigate inflammation, but also suppress overall innate and adaptive immune response. Here we demonstrate, for the first time, that transient administration of the cannabinoid receptor 2 antagonist AM630 (10 mg/kg) or inverse agonist JTE907 (3 mg/kg) during immunization heightens the intensity and breadth of antigen-specific immune responses in young and aged mice through the upregulation of immunomodulatory genes in secondary lymphoid tissues. PMID:28209996

  18. Interleukin-1 Receptors Are Differentially Expressed in Normal and Psoriatic T Cells

    Directory of Open Access Journals (Sweden)

    Attila Bebes

    2014-01-01

    Full Text Available This study was carried out to examine the possible role of interleukin-1 (IL-1 in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4+CD25− effector and CD4+CD25+CD127low regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2 was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1 mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2 upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.

  19. Disruption of PTH Receptor 1 in T Cells Protects against PTH-Induced Bone Loss

    Science.gov (United States)

    Tawfeek, Hesham; Bedi, Brahmchetna; Li, Jau-Yi; Adams, Jonathan; Kobayashi, Tatsuya; Weitzmann, M. Neale; Kronenberg, Henry M.; Pacifici, Roberto

    2010-01-01

    Background Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH) treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs) and osteoblasts (OBs). Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs. Methodology/Principal Findings Here we show that silencing of PTH receptor 1 (PPR) in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor α (TNF). Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio. Conclusions/Significance These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism. PMID:20808842

  20. Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss.

    Directory of Open Access Journals (Sweden)

    Hesham Tawfeek

    Full Text Available BACKGROUND: Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs and osteoblasts (OBs. Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that silencing of PTH receptor 1 (PPR in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor alpha (TNF. Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism.

  1. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Directory of Open Access Journals (Sweden)

    Rohit Mittal

    Full Text Available While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.

  2. A highly restricted T-cell receptor dominates the CD8+ T-cell response to parvovirus B19 infection in HLA-A*2402-positive individuals

    DEFF Research Database (Denmark)

    Kasprowicz, V; Jeffery, K; Broliden, K;

    2006-01-01

    Six of seven HLA-A*2402-positive individuals with acute parvovirus B19 infections made vigorous CD8-positive cytotoxic T-cell (CTL) responses to the viral epitope FYTPLADQF. All responders showed highly focused T-cell receptor (TCR) usage, using almost exclusively BV5.1. The BV5.1 TCR dominated...

  3. The T cell antigen receptor: the Swiss army knife of the immune system.

    Science.gov (United States)

    Attaf, M; Legut, M; Cole, D K; Sewell, A K

    2015-07-01

    The mammalian T cell receptor (TCR) orchestrates immunity by responding to many billions of different ligands that it has never encountered before and cannot adapt to at the protein sequence level. This remarkable receptor exists in two main heterodimeric isoforms: αβ TCR and γδ TCR. The αβ TCR is expressed on the majority of peripheral T cells. Most αβ T cells recognize peptides, derived from degraded proteins, presented at the cell surface in molecular cradles called major histocompatibility complex (MHC) molecules. Recent reports have described other αβ T cell subsets. These 'unconventional' T cells bear TCRs that are capable of recognizing lipid ligands presented in the context of the MHC-like CD1 protein family or bacterial metabolites bound to the MHC-related protein 1 (MR1). γδ T cells constitute a minority of the T cell pool in human blood, but can represent up to half of total T cells in tissues such as the gut and skin. The identity of the preferred ligands for γδ T cells remains obscure, but it is now known that this receptor can also functionally engage CD1-lipid, or immunoglobulin (Ig) superfamily proteins called butyrophilins in the presence of pyrophosphate intermediates of bacterial lipid biosynthesis. Interactions between TCRs and these ligands allow the host to discriminate between self and non-self and co-ordinate an attack on the latter. Here, we describe how cells of the T lymphocyte lineage and their antigen receptors are generated and discuss the various modes of antigen recognition by these extraordinarily versatile receptors.

  4. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn;

    2014-01-01

    a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...

  5. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  6. Regulating CAR T Cells: A Remote Control Approach.

    Science.gov (United States)

    2016-09-01

    Researchers have synthesized small organic molecules called adaptors that have a tumor-specific ligand on one end and FITC on the other. Instead of engineering a different chimeric antigen receptor (CAR) on T cells for each unique tumor antigen, these antigen-specific adaptors can be used to bridge FITC-binding CAR T and tumor cells.

  7. Receptor pre-clustering and T cell responses: insights into molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Mario eCastro

    2014-04-01

    Full Text Available T~cell activation, initiated by T~cell receptor (TCR mediated recognition of pathogen derived peptides presented by major histocompatibility complex class I or II molecules (pMHC, shows exquisite specificity and sensitivity, even though the TCR-pMHC binding interaction is of low affinity. Recent experimental work suggests that TCR pre-clustering may be a mechanism via which T~cells can achieve such high sensitivity. The unresolved stoichiometry of the TCR makes TCR-pMHC binding and TCR triggering an open question. We formulate a mathematical model to characterise the pre-clustering of T~cell receptors (TCRs on the surface of T~cells, motivated by the experimentally-observed distribution of TCR clusters on the surface of naive and memory T~cells. We extend a recently-introduced stochastic criterion to compute the timescales of T~cell responses, assuming that ligand-induced cross-linked TCR is the minimum signalling unit. We derive an approximate formula for the mean time to signal initiation. Our results show that pre-clustering reduces the mean activation time. However, additional mechanisms favouring the existence of clusters are required to explain the difference between naive and memory T~cell responses. We discuss the biological implications of our results, and both the compatibility and complementarity of our approach with other existing mathematical models.

  8. The receptor for advanced glycation end products (RAGE) affects T cell differentiation in OVA induced asthma.

    Science.gov (United States)

    Akirav, Eitan M; Henegariu, Octavian; Preston-Hurlburt, Paula; Schmidt, Ann Marie; Clynes, Raphael; Herold, Kevan C

    2014-01-01

    The receptor for glycation end products (RAGE) has been previously implicated in shaping the adaptive immune response. RAGE is expressed in T cells after activation and constitutively in T cells from patients with diabetes. The effects of RAGE on adaptive immune responses are not clear: Previous reports show that RAGE blockade affects Th1 responses. To clarify the role of RAGE in adaptive immune responses and the mechanisms of its effects, we examined whether RAGE plays a role in T cell activation in a Th2 response involving ovalbumin (OVA)-induced asthma in mice. WT and RAGE deficient wild-type and OT-II mice, expressing a T cell receptor specific for OVA, were immunized intranasally with OVA. Lung cellular infiltration and T cell responses were analyzed by immunostaining, FACS, and multiplex bead analyses for cytokines. RAGE deficient mice showed reduced cellular infiltration in the bronchial alveolar lavage fluid and impaired T cell activation in the mediastinal lymph nodes when compared with WT mice. In addition, RAGE deficiency resulted in reduced OT-II T cell infiltration of the lung and impaired IFNγ and IL-5 production when compared with WT mice and reduced infiltration when transferred into WT hosts. When cultured under conditions favoring the differentiation of T cells subsets, RAGE deficient T cells showed reduced production of IFNγ but increased production of IL-17. Our data show a stimulatory role for RAGE in T activation in OVA-induced asthma. This role is largely mediated by the effects of RAGE on T cell proliferation and differentiation. These findings suggest that RAGE may play a regulatory role in T cell responses following immune activation.

  9. Thymic Selection of T-Cell Receptors as an Extreme Value Problem

    Science.gov (United States)

    Kosmrlj, Andrej; Chakraborty, Arup K.; Kardar, Mehran; Shakhnovich, Eugene I.

    2010-03-01

    T lymphocytes (T cells) orchestrate adaptive immune responses that clear pathogens from infected hosts. T cells recognize short peptides (p) derived from foreign proteins, which are bound to major histocompatibility complex (MHC) gene products (displayed on antigen- presenting cells). Recognition occurs when T cell receptor (TCR) proteins expressed on T cells bind sufficiently strongly to antigen- derived pMHC complexes on the surface of antigen-presenting cells. A diverse repertoire of self-tolerant TCR sequences is shaped during development of T cells in the thymus by processes called positive and negative selection. We map thymic selection processes to an extreme value problem and provide analytic expression for the amino acid composition of selected TCR sequences (which enable its recognition functions).

  10. Chimeric antigen receptor T cell therapy in AML: How close are we?

    Science.gov (United States)

    Gill, Saar

    2016-12-01

    The majority of patients presenting with acute myeloid leukemia (AML) initially respond to chemotherapy but post-remission therapy is required to consolidate this response and achieve long-term disease-free survival. The most effective form of post-remission therapy relies on T cell immunotherapy in the form of allogeneic hematopoietic cell transplantation (HCT). However, patients with active disease cannot usually expect to be cured with HCT. This inherent dichotomy implies that traditional T cell-based immunotherapy in the form of allogeneic HCT stops being efficacious somewhere between the measurable residual disease (MRD) and the morphologically obvious range. This is in part because the full power of T cells must be restrained in order to avoid lethal graft-versus-host disease (GVHD) and partly because only a sub-population of donor T cells are expected to be able to recognize AML cells via their T cell receptor. Chimeric antigen receptor (CAR) T cell therapy, most advanced in the treatment of patients with B-cell malignancies, may circumvent some of these limitations. However, major challenges remain to be overcome before CAR T cell therapy can be safely applied to AML.

  11. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  12. Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells.

    Science.gov (United States)

    Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig

    2014-05-01

    Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease.

  13. Rules of chemokine receptor association with T cell polarization in vivo

    OpenAIRE

    2001-01-01

    Current concepts of chemokine receptor (CKR) association with Th1 and Th2 cell polarization and effector function have largely ignored the diverse nature of effector and memory T cells in vivo. Here, we systematically investigated the association of 11 CKRs, singly or in combination, with CD4 T cell polarization. We show that Th1, Th2, Th0, and nonpolarized T cells in blood and tissue can express any of the CKRs studied but that each CKR defines a characteristic pool of polarized and nonpolar...

  14. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M;

    1996-01-01

    Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required f...

  15. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  16. Role of T-cell receptor V beta 8.3 peptide vaccine in the prevention of experimental autoimmune uveoretinitis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui; Aize Kijlstra; YANG Pei-zeng; WU Chang-you; JIN Hao-li; LI Bing; HUANG Xiang-kun; ZHOU Hong-yan; GAO Yang; ZHU Lian-xiang

    2006-01-01

    Background T-cell receptor (TCR) plays an important role in the development of autoimmune diseases.Recently, it was reported that immunization of animals with TCR peptide derived from the pathogenic cells could prevent autoimmune diseases. The aim of this study was to investigate whether vaccination with a synthetic peptide from the hypervariable region of TCR Vβ 8.3, an experimental autoimmune uveoretinitis (EAU)-associated gene, was able to prevent the disease.Methods EAU was induced in Lewis rats by immunization with IRBP R16 peptide emulsified in complete Freund's adjuvant (CFA). The clinical and histological appearances were scored. Delayed type hypersensitivity (DTH) and lymphocyte proliferation were detected. Cytokine levels of aqueous humour, supernatants of cells from spleen and draining lymph nodes were measured by enzyme linked immunosorbent assay (ELISA). Gene expression of TCR Vβ 8.3 on CD4+ T cells was examined by real time quantitative polymerase chain reaction (PCR).Results After vaccination, the intraocular inflammation was significantly mitigated, antigen specific DTH and lymphocyte proliferation responses were suppressed, interleukin (IL)-2 in aqueous humour, interferon (IFN)-γand IL-2 produced by the spleen and draining lymph node cells were significantly decreased, whereas the production of IL-4 and IL-10 were increased. The response of draining lymph node cells to TCR Vβ 8.3 peptide was enhanced after vaccination. Inoculation with CFA alone did not affect the severity of EAU and the above parameters. The suppression of EAU was much stronger in the group of four fold inoculations than the group of two fold inoculations. The expression of TCR Vβ 8.3 gene was significantly reduced in the group of fourfold inoculations.Conclusion Vaccination with the synthetic TCR Vβ 8.3 peptide could remarkably inhibit the development of EAU.

  17. Chimeric antigen receptor T cells: a novel therapy for solid tumors.

    Science.gov (United States)

    Yu, Shengnan; Li, Anping; Liu, Qian; Li, Tengfei; Yuan, Xun; Han, Xinwei; Wu, Kongming

    2017-03-29

    The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.

  18. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model

    Science.gov (United States)

    Martini, Elisa; Roselli, Giuliana; Morone, Diego; Angioni, Roberta; Cianciotti, Beatrice Claudia; Trovato, Anna Elisa; Franchina, Davide Giuseppe; Castino, Giovanni Francesco; Vignali, Debora; Erreni, Marco; Marchesi, Federica; Rumio, Cristiano; Kallikourdis, Marinos

    2016-01-01

    In recent years, tumor Adoptive Cell Therapy (ACT), using administration of ex vivo-enhanced T cells from the cancer patient, has become a promising therapeutic strategy. However, efficient homing of the anti-tumoral T cells to the tumor or metastatic site still remains a substantial hurdle. Yet the tumor site itself attracts both tumor-promoting and anti-tumoral immune cell populations through the secretion of chemokines. We attempted to identify these chemokines in a model of spontaneous metastasis, in order to “hijack” their function by expressing matching chemokine receptors on the cytotoxic T cells used in ACT, thus allowing us to enhance the recruitment of these therapeutic cells. Here we show that this enabled the modified T cells to preferentially home into spontaneous lymph node metastases in the TRAMP model, as well as in an inducible tumor model, E.G7-OVA. Due to the improved homing, the modified CD8+ T cells displayed an enhanced in vivo protective effect, as seen by a significant delay in E.G7-OVA tumor growth. These results offer a proof of principle for the tailored application of chemokine receptor modification as a means of improving T cell homing to the target tumor, thus enhancing ACT efficacy. Surprisingly, we also uncover that the formation of the peri-tumoral fibrotic capsule, which has been shown to impede T cell access to tumor, is partially dependent on host T cell presence. This finding, which would be impossible to observe in immunodeficient model studies, highlights possible conflicting roles that T cells may play in a therapeutic context. PMID:27177227

  19. Intranasal Vaccination Affords Localization and Persistence of Antigen-Specific CD8⁺ T Lymphocytes in the Female Reproductive Tract.

    Science.gov (United States)

    Singh, Shailbala; Schluns, Kimberly S; Yang, Guojun; Anthony, Scott M; Barry, Michael A; Sastry, K Jagannadha

    2016-03-17

    Immunization strategies generating large numbers of antigen-specific T cells in the female reproductive tract (FRT) can provide barrier protection against sexually-transmitted pathogens, such as the human immunodeficiency virus (HIV) and human papillomaviruses (HPV). The kinetics and mechanisms of regulation of vaccine-induced adaptive T cell-mediated immune responses in FRT are less well defined. We present here evidence for intranasal delivery of the model antigen ovalbumin (OVA) along with alpha-galactosylceramide adjuvant as a protein vaccine to induce significantly higher levels of antigen-specific effector and memory CD8⁺ T cells in the FRT, relative to other systemic and mucosal tissues. Antibody blocking of the CXCR3 receptor significantly reduced antigen-specific CD8⁺ T cells subsequent to intranasal delivery of the protein vaccine suggesting an important role for the CXCR3 chemokine-receptor signaling for T cell trafficking. Further, intranasal vaccination with an adenoviral vector expressing OVA or HIV-1 envelope was as effective as intramuscular vaccination for generating OVA- or ENV-specific immunity in the FRT. These results support the application of the needle-free intranasal route as a practical approach to delivering protein as well as DNA/virus vector-based vaccines for efficient induction of effector and memory T cell immunity in the FRT.

  20. Current status and regulatory perspective of chimeric antigen receptor-modified T cell therapeutics.

    Science.gov (United States)

    Kim, Mi-Gyeong; Kim, Dongyoon; Suh, Soo-Kyung; Park, Zewon; Choi, Min Joung; Oh, Yu-Kyoung

    2016-04-01

    Chimeric antigen receptor-modified T cells (CAR-T) have emerged as a new modality for cancer immunotherapy due to their potent efficacy against terminal cancers. CAR-Ts are reported to exert higher efficacy than monoclonal antibodies and antibody-drug conjugates, and act via mechanisms distinct from T cell receptor-engineered T cells. These cells are constructed by transducing genes encoding fusion proteins of cancer antigen-recognizing single-chain Fv linked to intracellular signaling domains of T cell receptors. CAR-Ts are classified as first-, second- and third-generation, depending on the intracellular signaling domain number of T cell receptors. This review covers the current status of CAR-T research, including basic proof-of-concept investigations at the cell and animal levels. Currently ongoing clinical trials of CAR-T worldwide are additionally discussed. Owing to the lack of existing approved products, several unresolved concerns remain with regard to safety, efficacy and manufacturing of CAR-T, as well as quality control issues. In particular, the cytokine release syndrome is the major side-effect impeding the successful development of CAR-T in clinical trials. Here, we have addressed the challenges and regulatory perspectives of CAR-T therapy.

  1. Yersinia pseudotuberculosis supports Th17 differentiation and limits de novo regulatory T cell induction by directly interfering with T cell receptor signaling.

    Science.gov (United States)

    Pasztoi, Maria; Bonifacius, Agnes; Pezoldt, Joern; Kulkarni, Devesha; Niemz, Jana; Yang, Juhao; Teich, René; Hajek, Janina; Pisano, Fabio; Rohde, Manfred; Dersch, Petra; Huehn, Jochen

    2017-04-04

    Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4(+) T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4(+) T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3(+) regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4(+) T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4(+) T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3(+) Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4(+) T cell subsets by altering their TCR downstream signaling.

  2. Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies

    Directory of Open Access Journals (Sweden)

    Angharad eLloyd

    2013-08-01

    Full Text Available Recent early-stage clinical trials evaluating the adoptive transfer of patient CD8+ T-cells re-directed with antigen receptors recognising tumours have shown very encouraging results. These reports provide strong support for further development of the therapeutic concept as a curative cancer treatment. In this respect combining the adoptive transfer of tumour-specific T-cells with therapies that increase their anti-tumour capacity is viewed as a promising strategy to improve treatment outcome. The ex-vivo genetic engineering step that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery with the targeting of cell intrinsic pathways that restrict T-cell effector functions. Recent progress in genome editing technologies such as protein- and RNA-guided endonucleases raise the possibility of disrupting gene expression in T-cells in order to enhance effector functions or to bypass tumour immune suppression. This approach would avoid the systemic administration of compounds that disrupt immune homeostasis, potentially avoiding autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive therapies.

  3. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Nansen, Anneline; Moos, Torben;

    2004-01-01

    T-cells play an important role in controlling viral infections inside the CNS. To study the role of the chemokine receptor CXCR3 in the migration and positioning of virus-specific effector T-cells within the brain, CXCR3-deficient mice were infected intracerebrally with lymphocytic choriomeningitis......-cell-mediated immunopathology. Quantitative analysis of the cellular infiltrate in CSF of infected mice revealed modest, if any, decrease in the number of mononuclear cells recruited to the meninges in the absence of CXCR3. However, immunohistological analysis disclosed a striking impairment of CD8+ T-cells from CXCR3......-deficient mice to migrate from the meninges into the outer layers of the brain parenchyma despite similar localization of virus-infected target cells. Reconstitution of CXCR3-deficient mice with wild-type CD8+ T-cells completely restored susceptibility to LCMV-induced meningitis. Thus, taken together, our...

  4. Mechanisms behind functional avidity maturation in T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak, Martin; Geisler, Carsten

    2012-01-01

    During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor...... (TCR) cannot undergo affinity maturation. Nevertheless, antigen-primed T cells significantly increase their antigen responsiveness compared to antigen-inexperienced (naïve) T cells in a process called functional avidity maturation. This paper covers studies that describe differences in T-cell antigen...... responsiveness during T-cell differentiation along with examples of the mechanisms behind functional avidity maturation in T cells....

  5. Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Larmonie, Nicole S D; Dik, Willem A; Meijerink, Jules P P; Homminga, Irene; van Dongen, Jacques J M; Langerak, Anton W

    2013-08-01

    Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leukemia is still poorly understood. We performed a comprehensive in silico and ex vivo evaluation of 117 breakpoint sites from 22 different T-cell receptor translocation partners as well as 118 breakpoint sites from non-T-cell receptor chromosomal aberrations. Based on this extensive set of breakpoint data, we provide a comprehensive overview of T-cell receptor and oncogene involvement in T-ALL. Moreover, we assessed the role of the V(D)J recombination machinery in the formation of chromosomal aberrations, and propose an up-dated mechanistic classification on how the V(D)J recombination machinery contributes to the formation of T-cell receptor and non-T-cell receptor aberrations in human T-cell acute lymphoblastic leukemia.

  6. DMPD: Toll-like receptors: paving the path to T cell-driven autoimmunity? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17888644 Toll-like receptors: paving the path to T cell-driven autoimmunity? Marsla...nd BJ, Kopf M. Curr Opin Immunol. 2007 Dec;19(6):611-4. Epub 2007 Sep 21. (.png) (.svg) (.html) (.csml) Show Toll-...like receptors: paving the path to T cell-driven autoimmunity? PubmedID 17888644 Title Toll-like recep...tors: paving the path to T cell-driven autoimmunity? Authors Marsland BJ, Kopf M.

  7. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    Science.gov (United States)

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases.

  8. Ultra-deep T cell receptor sequencing reveals the complexity and intratumour heterogeneity of T cell clones in renal cell carcinomas.

    Science.gov (United States)

    Gerlinger, Marco; Quezada, Sergio A; Peggs, Karl S; Furness, Andrew J S; Fisher, Rosalie; Marafioti, Teresa; Shende, Vishvesh H; McGranahan, Nicholas; Rowan, Andrew J; Hazell, Steven; Hamm, David; Robins, Harlan S; Pickering, Lisa; Gore, Martin; Nicol, David L; Larkin, James; Swanton, Charles

    2013-12-01

    The recognition of cancer cells by T cells can impact upon prognosis and be exploited for immunotherapeutic approaches. This recognition depends on the specific interaction between antigens displayed on the surface of cancer cells and the T cell receptor (TCR), which is generated by somatic rearrangements of TCR α- and β-chains (TCRb). Our aim was to assess whether ultra-deep sequencing of the rearranged TCRb in DNA extracted from unfractionated clear cell renal cell carcinoma (ccRCC) samples can provide insights into the clonality and heterogeneity of intratumoural T cells in ccRCCs, a tumour type that can display extensive genetic intratumour heterogeneity (ITH). For this purpose, DNA was extracted from two to four tumour regions from each of four primary ccRCCs and was analysed by ultra-deep TCR sequencing. In parallel, tumour infiltration by CD4, CD8 and Foxp3 regulatory T cells was evaluated by immunohistochemistry and correlated with TCR-sequencing data. A polyclonal T cell repertoire with 367-16 289 (median 2394) unique TCRb sequences was identified per tumour region. The frequencies of the 100 most abundant T cell clones/tumour were poorly correlated between most regions (Pearson correlation coefficient, -0.218 to 0.465). 3-93% of these T cell clones were not detectable across all regions. Thus, the clonal composition of T cell populations can be heterogeneous across different regions of the same ccRCC. T cell ITH was higher in tumours pretreated with an mTOR inhibitor, which could suggest that therapy can influence adaptive tumour immunity. These data show that ultra-deep TCR-sequencing technology can be applied directly to DNA extracted from unfractionated tumour samples, allowing novel insights into the clonality of T cell populations in cancers. These were polyclonal and displayed ITH in ccRCC. TCRb sequencing may shed light on mechanisms of cancer immunity and the efficacy of immunotherapy approaches.

  9. Spotlight on chimeric antigen receptor engineered T cell research and clinical trials in China.

    Science.gov (United States)

    Luo, Can; Wei, Jianshu; Han, Weidong

    2016-04-01

    T cell mediated adoptive immune response has been characterized as the key to anti-tumor immunity. Scientists around the world including in China, have been trying to harness the power of T cells against tumors for decades. Recently, the biosynthetic chimeric antigen receptor engineered T cell (CAR-T) strategy was developed and exhibited encouraging clinical efficacy, especially in hematological malignancies. Chimeric antigen receptor research reports began in 2009 in China according to our PubMed search results. Clinical trials have been ongoing in China since 2013 according to the trial registrations on clinicaltrials. gov.. After years of assiduous efforts, research and clinical scientists in China have made their own achievements in the CAR-T therapy field. In this review, we aim to highlight CAR-T research and clinical trials in China, to provide an informative reference for colleagues in the field.

  10. T Cell Receptor Activation of NF-κB in Effector T Cells: Visualizing Signaling Events Within and Beyond the Cytoplasmic Domain of the Immunological Synapse.

    Science.gov (United States)

    Traver, Maria K; Paul, Suman; Schaefer, Brian C

    2017-01-01

    The T cell receptor (TCR) to NF-κB signaling pathway plays a critical role in regulation of proliferation and effector T cell differentiation and function. In naïve T cells, data suggest that most or all key cytoplasmic NF-κB signaling occurs in a TCR-proximal manner at the immunological synapse (IS). However, the subcellular organization of cytoplasmic NF-κB-activating complexes in effector T cells is more complex, involving signaling molecules and regulatory mechanisms beyond those operative in naïve cells. Additionally, in effector T cells, much signaling occurs at cytoplasmic locations distant from the IS. Visualization of these cytoplasmic signaling complexes has provided key insights into the complex and dynamic regulation of NF-κB signal transduction in effector T cells. In this chapter, we provide in-depth protocols for activating and preparing effector T cells for fluorescence imaging, as well as a discussion of the effective application of distinct imaging methodologies, including confocal and super-resolution microscopy and imaging flow cytometry.

  11. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10.

    Science.gov (United States)

    Hamilton, Kristia S; Phong, Binh; Corey, Catherine; Cheng, Jing; Gorentla, Balachandra; Zhong, Xiaoping; Shiva, Sruti; Kane, Lawrence P

    2014-06-10

    Signaling to the mechanistic target of rapamycin (mTOR) regulates diverse cellular processes, including protein translation, cellular proliferation, metabolism, and autophagy. Most models place Akt upstream of the mTOR complex, mTORC1; however, in T cells, Akt may not be necessary for mTORC1 activation. We found that the adaptor protein Carma1 [caspase recruitment domain (CARD)-containing membrane-associated protein 1] and at least one of its associated proteins, the paracaspase MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1), were required for optimal activation of mTOR in T cells in response to stimulation of the T cell receptor (TCR) and the co-receptor CD28. However, Bcl10, which binds to Carma1 and MALT1 to form a complex that mediates signals from the TCR to the transcription factor NF-κB (nuclear factor κB), was not required. The catalytic activity of MALT1 was required for the proliferation of stimulated CD4+ T cells, but not for early TCR-dependent activation events. Consistent with an effect on mTOR, MALT1 activity was required for the increased metabolic flux in activated CD4+ T cells. Together, our data suggest that Carma1 and MALT1 play previously unappreciated roles in the activation of mTOR signaling in T cells after engagement of the TCR.

  12. FcγReceptors and the complement system in T cell activation

    NARCIS (Netherlands)

    Jong, Judith Maria Hendrika de

    2007-01-01

    Dendritic Cells (DC) are the major Antigen Presenting Cells (APC) of the immune system that are involved in initiation of CD4+ and CD8+ T cell responses, as DC display many receptors involved in antigen uptake, including several types of FcgammaR. However, other APC, like B cells and macrophages als

  13. Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling.

    Science.gov (United States)

    Börner, Christine; Smida, Michal; Höllt, Volker; Schraven, Burkhart; Kraus, Jürgen

    2009-12-18

    The aim of this study was to characterize inhibitory mechanisms on T cell receptor signaling mediated by the cannabinoid receptors CB1 and CB2. Both receptors are coupled to G(i/o) proteins, which are associated with inhibition of cyclic AMP formation. In human primary and Jurkat T lymphocytes, activation of CB1 by R(+)-methanandamide, CB2 by JWH015, and both by Delta9-tetrahydrocannabinol induced a short decrease in cyclic AMP lasting less than 1 h. However, this decrease was followed by a massive (up to 10-fold) and sustained (at least up to 48 h) increase in cyclic AMP. Mediated by the cyclic AMP-activated protein kinase A and C-terminal Src kinase, the cannabinoids induced a stable phosphorylation of the inhibitory Tyr-505 of the leukocyte-specific protein tyrosine kinase (Lck). By thus arresting Lck in its inhibited form, the cannabinoids prevented the dephosphorylation of Lck at Tyr-505 in response to T cell receptor activation, which is necessary for the subsequent initiation of T cell receptor signaling. In this way the cannabinoids inhibited the T cell receptor-triggered signaling, i.e. the activation of the zeta-chain-associated protein kinase of 70 kDa, the linker for activation of T cells, MAPK, the induction of interleukin-2, and T cell proliferation. All of the effects of the cannabinoids were blocked by the CB1 and CB2 antagonists AM281 and AM630. These findings help to better understand the immunosuppressive effects of cannabinoids and explain the beneficial effects of these drugs in the treatment of T cell-mediated autoimmune disorders like multiple sclerosis.

  14. Direct and Indirect Role of Toll-Like Receptors in T Cell Mediated Immunity

    Institute of Scientific and Technical Information of China (English)

    DamoXu; HaiyingLiu; MousaKomai-Koma

    2004-01-01

    Toll-like receptors (TLR) are pathogen-associated molecular patterns (PAMPs) recognition receptors that play an important role in protective immunity against infection and inflammation. They act as central integrators of a wide variety of signals, responding to diverse agonists of microbial products. Stimulation of Toll-like receptors by microbial products leads to signaling pathways that activate not only innate, but also adaptive immunity by APC dependent or independent mechanisms. Recent evidence revealed that TLR signals played a determining role in the skewing of naive T cells towards either Thl or Th2 responses. Activation of Toll-like receptors also directly or indirectly influences regulatory T cell functions. Therefore, TLRs are required in both immune activation and immune regulation. Study of TLRs has significantly enhanced our understanding of innate and adaptive immune responses and provides novel therapeutic approaches against infectious and inflammatory diseases. Cellular & Molecular Immunology.

  15. Direct and Indirect Role of Toll-Like Receptors in T Cell Mediated Immunity

    Institute of Scientific and Technical Information of China (English)

    Damo Xu; Haiying Liu; Mousa Komai-Koma

    2004-01-01

    Toll-like receptors (TLR) are pathogen-associated molecular patterns (PAMPs) recognition receptors that play an important role in protective immunity against infection and inflammation. They act as central integrators of a wide variety of signals, responding to diverse agonists of microbial products. Stimulation of Toll-like receptors by microbial products leads to signaling pathways that activate not only innate, but also adaptive immunity by APC dependent or independent mechanisms. Recent evidence revealed that TLR signals played a determining role in the skewing of na(i)ve T cells towards either Th1 or Th2 responses. Activation of Toll-like receptors also directly or indirectly influences regulatory T cell functions. Therefore, TLRs are required in both immune activation and immune regulation. Study of TLRs has significantly enhanced our understanding of innate and adaptive immune responses and provides novel therapeutic approaches against infectious and inflammatory diseases.

  16. Expression of a highly antigenic and native-like folded extracellular domain of the human α1 subunit of muscle nicotinic acetylcholine receptor, suitable for use in antigen specific therapies for Myasthenia Gravis.

    Directory of Open Access Journals (Sweden)

    Athanasios Niarchos

    Full Text Available We describe the expression of the extracellular domain of the human α1 nicotinic acetylcholine receptor (nAChR in lepidopteran insect cells (i-α1-ECD and its suitability for use in antigen-specific therapies for Myasthenia Gravis (MG. Compared to the previously expressed protein in P. pastoris (y-α1-ECD, i-α1-ECD had a 2-fold increased expression yield, bound anti-nAChR monoclonal antibodies and autoantibodies from MG patients two to several-fold more efficiently and resulted in a secondary structure closer to that of the crystal structure of mouse α1-ECD. Our results indicate that i-α1-ECD is an improved protein for use in antigen-specific MG therapeutic strategies.

  17. Expression and function of TNF and IL-1 receptors on human regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Frances Mercer

    Full Text Available Regulatory T cells (Tregs suppress immune activation and are critical in preventing autoimmune diseases. While the ability of Tregs to inhibit proliferation of other T cells is well established, it is not yet clear whether Tregs also modulate inflammatory cytokines during an immune response. Here, we show that the expression of inflammatory cytokine receptors IL-1R1 and TNFR2 were higher on resting mature Tregs compared to naïve or memory T cells. While upon activation through the T cell receptor (TCR, expression of IL-1R1 and TNFR2 were upregulated on all T cell subsets, IL-1R1 maintained significantly higher expression on activated Tregs as compared to other T cell subsets. The decoy receptor for IL-1 (IL-1R2 was not expressed by any of the resting T cells but was rapidly upregulated and preferentially expressed upon TCR-stimulation on Tregs. In addition, we found that Tregs also expressed high levels of mRNA for IL-1 antagonist, IL-1RA. TCR-stimulation of naïve T cells in the presence of TGFbeta, which induces FOXP3 expression, however did not result in upregulation of IL-1R1 or IL-1R2. In addition, ectopic expression of FOXP3 in non-Tregs, while causing significant upregulation of IL-1R1 and IL-1R2, did not achieve the levels seen in bona fide Tregs. We also determined that resting human Tregs expressing IL-1R1 did not have higher suppressive capacity compared to IL-1R1- Tregs, suggesting that IL-1R1 does not discriminate suppressive resting Tregs in healthy individuals. Functionally, activated human Tregs displayed a capacity to neutralize IL-1beta, which suggests a physiological significance for the expression of IL-1 decoy receptor on Tregs. In conclusion, our findings that human Tregs preferentially express receptors for TNF and IL-1 suggest a potential function in sensing and dampening local inflammation.

  18. Development of a T cell receptor targeting an HLA-A*0201 restricted epitope from the cancer-testis antigen SSX2 for adoptive immunotherapy of cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Abate-Daga

    Full Text Available The clinical success of adoptive immunotherapy of cancer relies on the selection of target antigens that are highly expressed in tumor cells but absent in essential normal tissues. A group of genes that encode the cancer/testis or cancer germline antigens have been proposed as ideal targets for immunotherapy due to their high expression in multiple cancer types and their restricted expression in immunoprivileged normal tissues. In the present work we report the isolation and characterization of human T cell receptors (TCRs with specificity for synovial sarcoma X breakpoint 2 (SSX2, a cancer/testis antigen expressed in melanoma, prostate cancer, lymphoma, multiple myeloma and pancreatic cancer, among other tumors. We isolated seven HLA-A2 restricted T cell receptors from natural T cell clones derived from tumor-infiltrated lymph nodes of two SSX2-seropositive melanoma patients, and selected four TCRs for cloning into retroviral vectors. Peripheral blood lymphocytes (PBL transduced with three of four SSX2 TCRs showed SSX241-49 (KASEKIFYV peptide specific reactivity, tumor cell recognition and tetramer binding. One of these, TCR-5, exhibited tetramer binding in both CD4 and CD8 cells and was selected for further studies. Antigen-specific and HLA-A*0201-restricted interferon-γ release, cell lysis and lymphocyte proliferation was observed following culture of TCR engineered human PBL with relevant tumor cell lines. Codon optimization was found to increase TCR-5 expression in transduced T cells, and this construct has been selected for development of clinical grade viral vector producing cells. The tumor-specific pattern of expression of SSX2, along with the potent and selective activity of TCR-5, makes this TCR an attractive candidate for potential TCR gene therapy to treat multiple cancer histologies.

  19. Evaluation of bovine thymic function by measurement of signal joint T-cell receptor excision circles.

    Science.gov (United States)

    Hisazumi, Rinnosuke; Kayumi, Miya; Zhang, Weidong; Kikukawa, Ryuji; Nasu, Tetuo; Yasuda, Masahiro

    2016-01-01

    A signal joint T-cell receptor excision circle (sjTREC) is a circular DNA produced by T-cell receptor α gene rearrangement in the thymus. Measurements of sjTREC values have been used to evaluate thymic function. We recently established a quantitative PCR (QPCR) assay of bovine sjTREC. In the present study, we used this QPCR assay to measure the sjTREC value in bovine peripheral blood mononuclear cells and we then evaluated the relationships between sjTREC values and peripheral blood T-cell number, growth stage, gender, and meteorological season. The sjTREC value was highest at the neonatal stage, and its value subsequently decreased with age. On the other hand, the peripheral T-cell number increased with age. The sjTREC value in calves up to 50-days old was significantly higher for males than for females, suggesting that thymic function might differ by gender. In addition, the sjTREC value and the peripheral T-cell number were significantly higher in calves in the summer season than in calves in the winter season. These data suggest that bovine thymic function is highly variable and varies according to the growth stage, gender, and environmental factors such as air temperature or the UV index.

  20. Charged MVB protein 5 is involved in T-cell receptor signaling.

    Science.gov (United States)

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-29

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling.

  1. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies.

    Science.gov (United States)

    Gill, Saar; June, Carl H

    2015-01-01

    On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.

  2. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells.

    Science.gov (United States)

    Frigault, Matthew J; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J N; Platt, Jesse M; Johnson, F Brad; Paulos, Chrystal M; Zhao, Yangbing; Kalos, Michael; Milone, Michael C; June, Carl H

    2015-04-01

    This study compared second-generation chimeric antigen receptors (CAR) encoding signaling domains composed of CD28, ICOS, and 4-1BB (TNFRSF9). Here, we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T cells with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to 3 months following a single stimulation through the T-cell receptor (TCR). Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet (TBX21), EOMES, and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-κB, AKT, ERK, and NFAT. The propagated CAR T cells retained a diverse TCR repertoire, and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore, the design of CARs that have a nonconstitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or nonconstitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials.

  3. T cell receptor transgenic lymphocytes infiltrating murine tumors are not induced to express foxp3

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2011-11-01

    Full Text Available Abstract Regulatory T cells (Treg that express the transcription factor Foxp3 are enriched within a broad range of murine and human solid tumors. The ontogeny of these Foxp3 Tregs - selective accumulation or proliferation of natural thymus-derived Treg (nTreg or induced Treg (iTreg converted in the periphery from naïve T cells - is not known. We used several strains of mice in which Foxp3 and EGFP are coordinately expressed to address this issue. We confirmed that Foxp3-positive CD4 T cells are enriched among tumor-infiltrating lymphocytes (TIL and splenocytes (SPL in B16 murine melanoma-bearing C57BL/6 Foxp3EGFP mice. OT-II Foxp3EGFP mice are essentially devoid of nTreg, having transgenic CD4 T cells that recognize a class II-restricted epitope derived from ovalbumin; Foxp3 expression could not be detected in TIL or SPL in these mice when implanted with ovalbumin-transfected B16 tumor (B16-OVA. Likewise, TIL isolated from B16 tumors implanted in Pmel-1 Foxp3EGFP mice, whose CD8 T cells recognize a class I-restricted gp100 epitope, were not induced to express Foxp3. All of these T cell populations - wild-type CD4, pmel CD8 and OTII CD4 - could be induced in vitro to express Foxp3 by engagement of their T cell receptor (TCR and exposure to transforming growth factor β (TGFβ. B16 melanoma produces TGFβ and both pmel CD8 and OTII CD4 express TCR that should be engaged within B16 and B16-OVA respectively. Thus, CD8 and CD4 transgenic T cells in these animal models failed to undergo peripheral induction of Foxp3 in a tumor microenvironment.

  4. 输注胰岛抗原特异性Treg细胞延长同系NOD小鼠移植胰岛的存活时间%Prolonged islet isograft survival in NOD mice treated with islet antigen-specific regulatory T cells

    Institute of Scientific and Technical Information of China (English)

    李永海; 张淦; 水丽君; 房爱芳; 郭峰; 向莹; 张伟杰

    2013-01-01

    Objective To investigate the survival of islet isograft in NOD mice treated with islet antigen-specific regulatory T cells.Methods GAD-65 antigen pulsed immature dendritic cells (imDC) were used to induce naive T cells into islet antigen-specific regulatory T cells.NOD mice which had progressed to type 1 diabetes (T1DM),as the recipients,received islet isografts (500 IEQ) under renal capsule from NOD mice without T1DM.In NOD mice in control group without transplantation,the changes in blood glucose (BG) were observed.NOD mice in simple islet transplantation group were given islet isograft without Treg infusion.In experiment group,NOD mice were infused with 1 × 106 islet antigen-specific regulatory T cells on the 1st day before transplantation,subsequently underwent islet isotransplantation.The survival of the islet isograft was evaluated by BG levels and the pathological changes were observed.Results BG levels were sustained above 11.1 mmol/L in control group.In simple islet transplantation group,BG level was decreased to the normal level in 1 ~2 days after transplantation,and began to rebound in 7~ 17 days posttransplantation and maintained at the preoperative level.The mean survival of the islet isograft in the NOD mice was (12.2 ± 2.6) day;In experiment group,BG level was decreased to the normal level in 1 ~2 days after transplantation,rebounded above 11.1 mmol/L in some mice on the 27th day after transplantation,and rebounded above 11.1 rnmol/L on the 43th day in all mice.The mean survival of the islet isograft in the NOD mice was (35.2 ± 4.3) days,which was significantly prolonged compared to simple islet transplantation group (P< 0.01).In simple islet transplantation group,the islet isograft was infiltrated by many lymph cells and damaged severely,and only few residual islet cells secreted insulin without complete islet existing in insulin staining.The islet isograft in experiment group was intact on the 15th day,with little lymph cell infiltration

  5. SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors.

    Science.gov (United States)

    De Calisto, Jaime; Wang, Ninghai; Wang, Guoxing; Yigit, Burcu; Engel, Pablo; Terhorst, Cox

    2014-01-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF) of receptors, whose expression is essential for T, NK, and B-cell responses. Additionally, the expression of SAP in double-positive thymocytes is mandatory for natural killer T (NKT) cells and, in mouse, for innate CD8(+) T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1 + 6](-/-) and Slamf[1 + 5 + 6](-/-) B6 mice have ~70% reduction of NKT cells compared to wild-type B6 mice. Unexpectedly, the proportion of innate CD8(+) T cells slightly increased in the Slamf[1 + 5 + 6](-/-) , but not in the Slamf[1 + 6](-/-) strain, suggesting that Slamf5 may function as a negative regulator of innate CD8(+) T cell development. Accordingly, Slamf5(-/-) B6 mice showed an exclusive expansion of innate CD8(+) T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7(-/-) strain showed an expansion of both splenic innate CD8(+) T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3(-/-) BALB/c mice, the proportions of thymic promyelocytic leukemia zinc finger (PLZF(hi)) NKT cells and innate CD8(+) T cells significantly increased in the SAP-independent Slamf8(-/-) BALB/c strain. In summary, these results show that NKT and innate CD8(+) T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8(+) T cells.

  6. SAP-independent and -dependent regulation of innate T cell development involving SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Jaime eDe Calisto

    2014-04-01

    Full Text Available Signaling lymphocytic activation molecule (SLAM-associated protein (SAP plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF of receptors, whose expression is essential for T, NK, and B cell responses. Additionally, the expression of SAP in double-positive (DP thymocytes is mandatory for natural killer T (NKT cells and, in mouse, for innate CD8+ T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1+6]-/- and Slamf[1+5+6]-/- B6 mice have an approximately 70% reduction of NKT cells compared to wild-type (WT B6 mice. Unexpectedly, the proportion of innate CD8+ T cells slightly increased in the Slamf[1+5+6]-/-, but not in the Slamf[1+6]-/- strain, suggesting that Slamf5 may function as a negative regulator of innate CD8+ T cell development. Accordingly, Slamf5-/- B6 mice showed an exclusive expansion of innate CD8+ T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7-/- strain showed an expansion of both splenic innate CD8+ T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3-/- BALB/c mice, the proportions of thymic PLZFhi NKT cells and innate CD8+ T cells significatively increased in the SAP-independent Slamf8-/- BALB/c strain. In summary, these results show that NKT and innate CD8+ T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8+ T cells.

  7. Construction and molecular characterization of a T-cell receptor-like antibody and CAR-T cells specific for minor histocompatibility antigen HA-1H.

    Science.gov (United States)

    Inaguma, Y; Akahori, Y; Murayama, Y; Shiraishi, K; Tsuzuki-Iba, S; Endoh, A; Tsujikawa, J; Demachi-Okamura, A; Hiramatsu, K; Saji, H; Yamamoto, Y; Yamamoto, N; Nishimura, Y; Takahashi, T; Kuzushima, K; Emi, N; Akatsuka, Y

    2014-06-01

    The genetic transfer of T-cell receptors (TCRs) directed toward target antigens into T lymphocytes has been used to generate antitumor T cells efficiently without the need for the in vitro induction and expansion of T cells with cognate specificity. Alternatively, T cells have been gene-modified with a TCR-like antibody or chimeric antigen receptor (CAR). We show that immunization of HLA-A2 transgenic mice with tetramerized recombinant HLA-A2 incorporating HA-1 H minor histocompatibility antigen (mHag) peptides and β2-microglobulin (HA-1 H/HLA-A2) generate highly specific antibodies. One single-chain variable region moiety (scFv) antibody, #131, demonstrated high affinity (KD=14.9 nM) for the HA-1 H/HLA-A2 complex. Primary human T cells transduced with #131 scFV coupled to CD28 transmembrane and CD3ζ domains were stained with HA-1 H/HLA-A2 tetramers slightly more intensely than a cytotoxic T lymphocyte (CTL) clone specific for endogenously HLA-A2- and HA-1 H-positive cells. Although #131 scFv CAR-T cells required >100-fold higher antigen density to exert cytotoxicity compared with the cognate CTL clone, they could produce inflammatory cytokines against cells expressing HLA-A2 and HA-1 H transgenes. These data implicate that T cells with high-affinity antigen receptors reduce the ability to lyse targets with low-density peptide/MHC complexes (~100 per cell), while they could respond at cytokine production level.

  8. Role of IL-33 and Its Receptor in T Cell-Mediated Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Qing Zhao

    2014-01-01

    Full Text Available Interleukin-33 (IL-33 is a new cytokine of interleukin-1 family, whose specific receptor is ST2. IL-33 exerts its functions via its target cells and plays different roles in diseases. ST2 deletion and exclusion of IL-33/ST2 axis are accompanied by enhanced susceptibility to dominantly T cell-mediated organ-specific autoimmune diseases. It has been reported that IL-33/ST2 pathway plays a key role in host defense and immune regulation in inflammatory and infectious diseases. This review focuses on new findings in the roles of IL-33 and ST2 in several kinds of T cell-mediated autoimmune diseases.

  9. Safety and therapeutic efficacy of adoptive p53-specific T cell antigen receptor (TCR) gene transfer

    OpenAIRE

    2014-01-01

    Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endoge...

  10. Dominant and shared T cell receptor beta chain variable regions of T cells inducing synovial hyperplasia in rheumatoid arthritis.

    Science.gov (United States)

    Mima, T; Ohshima, S; Sasai, M; Nishioka, K; Shimizu, M; Murata, N; Yasunami, R; Matsuno, H; Suemura, M; Kishimoto, T; Saeki, Y

    1999-09-16

    Previously, we demonstrated the presence of at least two distinct subpopulations of patients with rheumatoid arthritis (RA) employing a cell-transfer experiment using severe combined immunodeficient (SCID) mice. One group of patients, whose T cells derived from the rheumatoid joints, induced synovial hyperplasia (SH) in the SCID mice (the positive group). The other group did not display the induction of SH (the negative group). TCR/Vbeta gene usage analysis indicated that some dominant T cell subpopulations were oligoclonally expanding only in the rheumatoid joints, and not in the periphery of the patients of the positive group. Moreover, these T cell subpopulations were not seen in the joints of patients in the negative group or in non-RA patients. In addition, the preferential uses of certain TCR/Vbetas (Vbeta8, Vbeta12, Vbeta13, and Vbeta14) genes were demonstrated in these T cells. In this study, to investigate whether these T cells are driven by a certain antigen(s), the third complementarity determining regions (CDR3s) of TCR/Vbeta, especially Vbeta8 and Vbeta14 PCR products, were cloned and sequenced. As a result, a dominant CDR3 sequence, CASS-PRERAT-YEQ, was found in Vbeta14+ T cells from the rheumatoid joint of a patient (Patient 1) of the positive group with a Vbeta14 skew. The identical CDR3 sequence also predominated in Vbeta14+ T cells from the rheumatoid joint of another patient (Patient 7) of the positive group with a Vbeta14 skew. In addition, in the patients (Patients 4, 7, 8) of the positive group with a Vbeta8 skew, other dominant CDR3 sequences, CASS-ENS-YEQ and CASS-LTEP-DTQ, were found as in the case of Vbeta14. However, no identical CDR3 sequences were detected dominantly in the joints of the patients in the negative group or in non-RA patients. A Vbeta14+ T cell clone (TCL), named G3, with the identical CDR3 sequence, CASS-PRERAT-YEQ, was isolated successfully from Patient 1, and cell transfer of G3 with autologous irradiated peripheral

  11. Identification of putative human T cell receptor delta complementary DNA clones

    Energy Technology Data Exchange (ETDEWEB)

    Hata, S.; Brenner, M.B.; Krangel, M.S.

    1987-10-30

    A novel T cell receptor (TCR) subunit termed TCR delta, associated with TCY ..gamma.. and CD3 polypeptides, were recently found on a subpopulation of human T lymphocytes. T cell-specific complementary DNA clones present in a human TCR..gamma..delta T cell complementary DNA library were obtained and characterized in order to identify candidate clones encoding TCR delta. One cross-hybridizing group of clones detected transcripts that are expressed in lymphocytes bearing TCR ..gamma..delta but not in other T lymphocytes and are encoded by genes that are rearranged in TCR ..gamma..delta lymphocytes but deleted in other T lymphocytes. Their sequences indicate homology to the variable, joining, and constant elements of other TCR and immunoglobulin genes. These characteristics are strong evidence that the complementary DNA clones encode TCR delta.

  12. A new way to generate cytolytic tumor-specific T cells: electroporation of RNA coding for a T cell receptor into T lymphocytes.

    Science.gov (United States)

    Schaft, Niels; Dörrie, Jan; Müller, Ina; Beck, Verena; Baumann, Stefanie; Schunder, Tanja; Kämpgen, Eckhart; Schuler, Gerold

    2006-09-01

    Effective T cell receptor (TCR) transfer until now required stable retroviral transduction. However, retroviral transduction poses the threat of irreversible genetic manipulation of autologous cells. We, therefore, used optimized RNA transfection for transient manipulation. The transfection efficiency, using EGFP RNA, was >90%. The electroporation of primary T cells, isolated from blood, with TCR-coding RNA resulted in functional cytotoxic T lymphocytes (CTLs) (>60% killing at an effector to target ratio of 20:1) with the same HLA-A2/gp100-specificity as the parental CTL clone. The TCR-transfected T cells specifically recognized peptide-pulsed T2 cells, or dendritic cells electroporated with gp100-coding RNA, in an IFNgamma-secretion assay and retained this ability, even after cryopreservation, over 3 days. Most importantly, we show here for the first time that the electroporated T cells also displayed cytotoxicity, and specifically lysed peptide-loaded T2 cells and HLA-A2+/gp100+ melanoma cells over a period of at least 72 h. Peptide-titration studies showed that the lytic efficiency of the RNA-transfected T cells was similar to that of retrovirally transduced T cells, and approximated that of the parental CTL clone. Functional TCR transfer by RNA electroporation is now possible without the disadvantages of retroviral transduction, and forms a new strategy for the immunotherapy of cancer.

  13. A Natural Variant of the T Cell Receptor-Signaling Molecule Vav1 Reduces Both Effector T Cell Functions and Susceptibility to Neuroinflammation

    Science.gov (United States)

    Kassem, Sahar; Bernard, Isabelle; Dejean, Anne S.; Liblau, Roland; Fournié, Gilbert J.; Colacios, Céline

    2016-01-01

    The guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1R63W). Using this model, we show that Vav1R63W mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-γ, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1R63W mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1R63W variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation. PMID:27438086

  14. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4(+)CD25(+)Foxp3(+) regulatory T cells

    NARCIS (Netherlands)

    Schulz, V.J.; Smit, J.J.; Bol-Schoenmakers, M.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H.

    2012-01-01

    Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic CD4(+)CD25(

  15. Epigallocatechin-3-gallate inhibits expression of receptors for T cell regulatory cytokines and their downstream signaling in mouse CD4+ T cells

    Science.gov (United States)

    We previously showed a suppressive effect of epigallocatechin-3-gallate (EGCG) on T cell cycling and expansion as well as a paradoxical effect on IL-2 levels (up-regulating) and IL-2 receptor (IL-2R)alpha expression (down-regulating). Thus, in the current study we tested the hypothesis that EGCG aff...

  16. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy.

    Science.gov (United States)

    Mock, Ulrike; Nickolay, Lauren; Philip, Brian; Cheung, Gordon Weng-Kit; Zhan, Hong; Johnston, Ian C D; Kaiser, Andrew D; Peggs, Karl; Pule, Martin; Thrasher, Adrian J; Qasim, Waseem

    2016-08-01

    Novel cell therapies derived from human T lymphocytes are exhibiting enormous potential in early-phase clinical trials in patients with hematologic malignancies. Ex vivo modification of T cells is currently limited to a small number of centers with the required infrastructure and expertise. The process requires isolation, activation, transduction, expansion and cryopreservation steps. To simplify procedures and widen applicability for clinical therapies, automation of these procedures is being developed. The CliniMACS Prodigy (Miltenyi Biotec) has recently been adapted for lentiviral transduction of T cells and here we analyse the feasibility of a clinically compliant T-cell engineering process for the manufacture of T cells encoding chimeric antigen receptors (CAR) for CD19 (CAR19), a widely targeted antigen in B-cell malignancies. Using a closed, single-use tubing set we processed mononuclear cells from fresh or frozen leukapheresis harvests collected from healthy volunteer donors. Cells were phenotyped and subjected to automated processing and activation using TransAct, a polymeric nanomatrix activation reagent incorporating CD3/CD28-specific antibodies. Cells were then transduced and expanded in the CentriCult-Unit of the tubing set, under stabilized culture conditions with automated feeding and media exchange. The process was continuously monitored to determine kinetics of expansion, transduction efficiency and phenotype of the engineered cells in comparison with small-scale transductions run in parallel. We found that transduction efficiencies, phenotype and function of CAR19 T cells were comparable with existing procedures and overall T-cell yields sufficient for anticipated therapeutic dosing. The automation of closed-system T-cell engineering should improve dissemination of emerging immunotherapies and greatly widen applicability.

  17. Rules of chemokine receptor association with T cell polarization in vivo

    Science.gov (United States)

    Kim, Chang H.; Rott, Lusijah; Kunkel, Eric J.; Genovese, Mark C.; Andrew, David P.; Wu, Lijun; Butcher, Eugene C.

    2001-01-01

    Current concepts of chemokine receptor (CKR) association with Th1 and Th2 cell polarization and effector function have largely ignored the diverse nature of effector and memory T cells in vivo. Here, we systematically investigated the association of 11 CKRs, singly or in combination, with CD4 T cell polarization. We show that Th1, Th2, Th0, and nonpolarized T cells in blood and tissue can express any of the CKRs studied but that each CKR defines a characteristic pool of polarized and nonpolarized CD4 T cells. Certain combinations of CKRs define populations that are markedly enriched in major subsets of Th1 versus Th2 cells. For example, although Th0, Th1, and Th2 cells are each found among blood CD4 T cells coordinately expressing CXCR3 and CCR4, Th1 but not Th2 cells can be CXCR3+CCR4–, and Th2 but only rare Th1 cells are CCR4+CXCR3–. Contrary to recent reports, although CCR7– cells contain a higher frequency of polarized CD4 T cells, most Th1 and Th2 effector cells are CCR7+ and thus may be capable of lymphoid organ homing. Interestingly, Th1-associated CKRs show little or no preference for Th1 cells except when they are coexpressed with CXCR3. We conclude that the combinatorial expression of CKRs, which allow tissue- and subset-dependent targeting of effector cells during chemotactic navigation, defines physiologically significant subsets of polarized and nonpolarized T cells. PMID:11696578

  18. Heterogeneous differentiation patterns of individual CD8+ T cells.

    Science.gov (United States)

    Gerlach, Carmen; Rohr, Jan C; Perié, Leïla; van Rooij, Nienke; van Heijst, Jeroen W J; Velds, Arno; Urbanus, Jos; Naik, Shalin H; Jacobs, Heinz; Beltman, Joost B; de Boer, Rob J; Schumacher, Ton N M

    2013-05-03

    Upon infection, antigen-specific CD8(+) T lymphocyte responses display a highly reproducible pattern of expansion and contraction that is thought to reflect a uniform behavior of individual cells. We tracked the progeny of individual mouse CD8(+) T cells by in vivo lineage tracing and demonstrated that, even for T cells bearing identical T cell receptors, both clonal expansion and differentiation patterns are heterogeneous. As a consequence, individual naïve T lymphocytes contributed differentially to short- and long-term protection, as revealed by participation of their progeny during primary versus recall infections. The discordance in fate of individual naïve T cells argues against asymmetric division as a singular driver of CD8(+) T cell heterogeneity and demonstrates that reproducibility of CD8(+) T cell responses is achieved through population averaging.

  19. Multiple receptor-ligand interactions direct tissue resident gamma delta T cell activation

    Directory of Open Access Journals (Sweden)

    Deborah A. Witherden

    2014-11-01

    Full Text Available Gamma delta T cells represent a major T cell population in epithelial tissues, such as skin, intestine, and lung, where they function in maintenance of the epithelium and provide a crucial first line defense against environmental and pathogenic insults. Despite their importance, the molecular mechanisms directing their activation and function have remained elusive. Epithelial resident gamma delta T cells function through constant communication with neighboring cells, either via direct cell-to-cell contact or cell-to-matrix interactions. These intimate relationships allow gamma delta T cells to facilitate the maintenance of epithelial homeostasis, tissue repair following injury, inflammation, and protection from malignancy. Recent studies have identified a number of molecules involved in these complex interactions, under both homeostatic conditions, as well as following perturbation of these barrier tissues. These interactions are crucial to the timely production of cytokines, chemokines, growth factors and extracellular matrix proteins for restoration of homeostasis. In this review, we discuss recent advances in understanding the mechanisms directing epithelial-T cell crosstalk and the distinct roles played by individual receptor-ligand pairs of cell surface molecules in this process.

  20. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor

    Science.gov (United States)

    Shah, Neel H; Wang, Qi; Yan, Qingrong; Karandur, Deepti; Kadlecek, Theresa A; Fallahee, Ian R; Russ, William P; Ranganathan, Rama; Weiss, Arthur; Kuriyan, John

    2016-01-01

    The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens. DOI: http://dx.doi.org/10.7554/eLife.20105.001 PMID:27700984

  1. Selection of functional T cell receptor mutants from a yeast surface-display library.

    Science.gov (United States)

    Kieke, M C; Shusta, E V; Boder, E T; Teyton, L; Wittrup, K D; Kranz, D M

    1999-05-11

    The heterodimeric alphabeta T cell receptor (TCR) for antigen is the key determinant of T cell specificity. The structure of the TCR is very similar to that of antibodies, but the engineering of TCRs by directed evolution with combinatorial display libraries has not been accomplished to date. Here, we report that yeast surface display of a TCR was achieved only after the mutation of specific variable region residues. These residues are located in two regions of the TCR, at the interface of the alpha- and beta-chains and in the beta-chain framework region that is thought to be in proximity to the CD3 signal-transduction complex. The mutations are encoded naturally in many antibody variable regions, indicating specific functional differences that have not been appreciated between TCRs and antibodies. The identification of these residues provides an explanation for the inherent difficulties in the display of wild-type TCRs compared with antibodies. Yeast-displayed mutant TCRs bind specifically to the peptide/MHC antigen, enabling engineering of soluble T cell receptors as specific T cell antagonists. This strategy of random mutagenesis followed by selection for surface expression may be of general use in the directed evolution of other eukaryotic proteins that are refractory to display.

  2. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions.

    Science.gov (United States)

    Detre, Cynthia; Keszei, Marton; Romero, Xavier; Tsokos, George C; Terhorst, Cox

    2010-06-01

    One or more of the signaling lymphocytic activation molecule (SLAM) family (SLAMF) of cell surface receptors, which consists of nine transmembrane proteins, i.e., SLAMF1-9, are expressed on most hematopoietic cells. While most SLAMF receptors serve as self-ligands, SLAMF2 and SLAMF4 use each other as counter structures. Six of the receptors carry one or more copies of a unique intracellular tyrosine-based switch motif, which has high affinity for the single SH2-domain signaling molecules SLAM-associated protein and EAT-2. Whereas SLAMF receptors are costimulatory molecules on the surface of CD4+, CD8+, and natural killer (NK) T cells, they also involved in early phases of lineage commitment during hematopoiesis. SLAMF receptors regulate T lymphocyte development and function and modulate lytic activity, cytokine production, and major histocompatibility complex-independent cell inhibition of NK cells. Furthermore, they modulate B cell activation and memory generation, neutrophil, dendritic cell, macrophage and eosinophil function, and platelet aggregation. In this review, we will discuss the role of SLAM receptors and their adapters in T cell function, and we will examine the role of these receptors and their adapters in X-linked lymphoproliferative disease and their contribution to disease susceptibility in systemic lupus erythematosus.

  3. Visualizing T cell migration in-situ

    Directory of Open Access Journals (Sweden)

    Alexandre P Benechet

    2014-07-01

    Full Text Available Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell-cell and cell-extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen specific T cells persist as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in-situ visualization of T cell responses. Here we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naive, effector and memory T cells.

  4. TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Bisgin Atil

    2010-08-01

    Full Text Available Abstract Background Rheumatoid Arthritis (RA is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28 using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4 and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis.

  5. T cell avidity and tumor recognition: implications and therapeutic strategies

    Directory of Open Access Journals (Sweden)

    Roszkowski Jeffrey J

    2005-09-01

    Full Text Available Abstract In the last two decades, great advances have been made studying the immune response to human tumors. The identification of protein antigens from cancer cells and better techniques for eliciting antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor recognition by T cells. Yet, much remains to be learned about the intricate details of T cell – tumor cell interactions. Though the strength of interaction between T cell and target is thought to be a key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or tumor cells reveal complex relationships. Coincident with these investigations, therapeutic strategies have been developed to enhance tumor recognition using antigens with altered peptide structures and T cells modified by the introduction of new antigen binding receptor molecules. The profound effects of these strategies on T cell – tumor interactions and the clinical implications of these effects are of interest to both scientists and clinicians. In recent years, the focus of much of our work has been the avidity and effector characteristics of tumor reactive T cells. Here we review concepts and current results in the field, and the implications of therapeutic strategies using altered antigens and altered effector T cells.

  6. Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells

    Directory of Open Access Journals (Sweden)

    Mariagrazia Valentini

    2014-01-01

    Full Text Available A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs, pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota.

  7. Characterization of feline T cell receptor gamma (TCRG) variable region genes for the molecular diagnosis of feline intestinal T cell lymphoma.

    Science.gov (United States)

    Moore, Peter F; Woo, Jennifer C; Vernau, William; Kosten, Sandra; Graham, Petra S

    2005-07-15

    A diagnosis of intestinal lymphoma is currently made on the basis of clinical and morphologic criteria. This can prove problematic for many reasons that include inadequate sample size, the coexistence of lymphoma and inflammation, and the inability to assess architectural integrity of all tissue compartments in biopsy specimens obtained endoscopically. The detection of a clonal population of cells in a lymphoproliferative lesion represents an important criterion for the diagnosis of neoplasia, but this has not been assessed in feline intestinal lymphoma. T cell receptor gamma (TCRG) gene rearrangement analysis using polymerase chain reaction (PCR) is a methodology that can be used to detect clonality in T cell populations. The basis of this assay depends on the assessment of the junctional diversity that results from rearrangement of TCRG V (variable) and J (joining) gene segments. Feline TCRG transcripts from normal small intestine and spleen were obtained using a rapid amplification of cDNA ends (5'RACE) method. Limited diversity of TCRG V and J gene segments was observed. The high degree of sequence homology in the TCRG V and J gene segments was exploited to develop a PCR test for the assessment of TCRG V--J junctional diversity and hence clonality determination of T cell populations in cats. Molecular clonality determination was applied to feline intestinal lymphoplasmacytic inflammatory bowel disease (IBD) (9 cats), and transmural and mucosal T cell lymphoma (28 cats). Clonal rearrangement of the TCRG V--J junction was detected in 22 of 28 intestinal T cell lymphomas, and oligoclonality was detected in 3 intestinal T cell lymphomas. This contrasted with the detection of polyclonal rearrangement in normal intestinal tissues (3 cats) and in lymphoplasmacytic IBD (9 cats). It is proposed that assessment of TCRG V--J junctional diversity for the detection of clonality represents an important adjunctive tool for the diagnosis of T cell lymphoma in the cat.

  8. The utility of the in situ detection of T-cell receptor Beta rearrangements in cutaneous T-cell-dominant infiltrates.

    Science.gov (United States)

    Magro, Cynthia M; Nuovo, Gerard J; Crowson, A Neil

    2003-09-01

    The diagnostic assessment of cutaneous T-cell infiltrates is problematic for dermatopathologists. A variety of conditions, including lymphomatoid hypersensitivity reactions and lymphomatoid lupus erythematosus, can demonstrate lymphoid atypia and phenotypic changes that can mimic cutaneous T-cell lymphoma (CTCL). A similar issue revolves around lymphoid dyscrasias, which includes parapsoriasis, atypical pigmentary purpura, pityriasis lichenoides chronica, indeterminate lymphocytic lobular panniculitis, and lymphomatoid papulosis, which can progress to CTCL. A reverse transcription (RT) in situ PCR assay for T-cell receptor beta rearrangements (TCRbeta) was used to assess T-cell clonality in formalin-fixed, paraffin-embedded tissues. In 7 of 8 cases of classic CTCL, the RT in situ PCR assay for TCRbeta rearrangement showed monoclonality; the other was biclonal. Further, in cases with multiple lesions over time, the same T-cell clone could be detected including in those patients whose biopsies showed large-cell transformation. Monoclonality was also demonstrated in each of 2 cases of cutaneous lymphomatoid papulosis. Demonstration of oligoclonality (and one case of biclonality) by RT in situ PCR was confined to those cases that either represented prelymphomatous conditions such as large plaque parapsoriasis or pityriasis lichenoides or lesions of drug-induced lymphomatoid hypersensitivity that all demonstrated clinical regression. In conclusion, RT in situ PCR for TCRbeta, which can be done on formalin-fixed biopsies and allows direct correlation of the molecular data with the histology, is a useful adjunctive test in the differentiation of CTCL from its mimics.

  9. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases.

    Science.gov (United States)

    Kato, Seiichi; Asano, Naoko; Miyata-Takata, Tomoko; Takata, Katsuyoshi; Elsayed, Ahmed Ali; Satou, Akira; Takahashi, Emiko; Kinoshita, Tomohiro; Nakamura, Shigeo

    2015-04-01

    Among Epstein-Barr virus (EBV)-positive cytotoxic T/NK-cell lymphoma, there are only a few reports on the clinicopathologic features of patients with primary nodal presentation (nodal EBV cytotoxic T-cell lymphoma [CTL]). Here, we compared the clinicopathologic profiles of 39 patients with nodal EBV CTL with those of 27 cases of "extranasal" NK/T-cell lymphoma of nasal type (ENKTL), especially addressing their T-cell receptor (TCR) phenotype. Histologically, 22 of 39 nodal EBV CTL cases (56%) were unique in having centroblastoid appearance, which was contrasted with the lower incidence of this feature in ENKTL (15%, P=0.001). In contrast, pleomorphic appearance was more frequently seen in ENKTL than in nodal EBV CTL (67% vs. 23%, P=0.001). Thirty-three of 39 nodal EBV CTL cases (85%) were of T-cell lineage on the basis of TCR expression and/or TCRγ gene rearrangement; in detail, 18 cases (46%) were TCRβ positive (αβ T), 5 (13%) were TCRγ and/or δ positive (γδ T), and 10 (26%) were TCR-silent type with clonal TCRγ gene rearrangement but no expression of TCRβ, γ, or δ. These results were clearly contrasted by a lower incidence of T-cell lineage in ENKTL (7 cases, 26%, PEBV CTL is distinct from ENKTL.

  10. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909.

    Science.gov (United States)

    Speiser, Daniel E; Liénard, Danielle; Rufer, Nathalie; Rubio-Godoy, Verena; Rimoldi, Donata; Lejeune, Ferdy; Krieg, Arthur M; Cerottini, Jean-Charles; Romero, Pedro

    2005-03-01

    The induction of potent CD8+ T cell responses by vaccines to fight microbes or tumors remains a major challenge, as many candidates for human vaccines have proved to be poorly immunogenic. Deoxycytidyl-deoxyguanosin oligodeoxynucleotides (CpG ODNs) trigger Toll-like receptor 9, resulting in dendritic cell maturation that can enhance immunogenicity of peptide-based vaccines in mice. We tested whether a synthetic ODN, CpG 7909, could improve human tumor antigen-specific CD8+ T cell responses. Eight HLA-A2+ melanoma patients received 4 monthly vaccinations of low-dose CpG 7909 mixed with melanoma antigen A (Melan-A; identical to MART-1) analog peptide and incomplete Freund's adjuvant. All patients exhibited rapid and strong antigen-specific T cell responses: the frequency of Melan-A-specific T cells reached over 3% of circulating CD8+ T cells. This was one order of magnitude higher than the frequency seen in 8 control patients treated similarly but without CpG and 1-3 orders of magnitude higher than that seen in previous studies with synthetic vaccines. The enhanced T cell populations consisted primarily of effector memory cells, which in part secreted IFN- and expressed granzyme B and perforin ex vivo. In vitro, T cell clones recognized and killed melanoma cells in an antigen-specific manner. Thus, CpG 7909 is an efficient vaccine adjuvant that promotes strong antigen-specific CD8+ T cell responses in humans.

  11. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient.

    Science.gov (United States)

    Qasim, Waseem; Brunetto, Maurizia; Gehring, Adam J; Xue, Shao-An; Schurich, Anna; Khakpoor, Atefeh; Zhan, Hong; Ciccorossi, Pietro; Gilmour, Kimberly; Cavallone, Daniela; Moriconi, Francesco; Farzhenah, Farzin; Mazzoni, Alessandro; Chan, Lucas; Morris, Emma; Thrasher, Adrian; Maini, Mala K; Bonino, Ferruccio; Stauss, Hans; Bertoletti, Antonio

    2015-02-01

    HBV-DNA integration frequently occurs in HBV-related hepatocellular carcinoma (HCC), but whether HBV antigens are expressed in HCC cells and can be targeted by immune therapeutic strategies remains controversial. Here, we first characterized HBV antigen expression in HCC metastases, occurring in a patient who had undergone liver transplantation for HBV-related HCC. We then deployed for the first time in HCC autologous T cells, genetically modified to express an HBsAg specific T cell receptor, as therapy against chemoresistant extrahepatic metastases. We confirmed that HBV antigens were expressed in HCC metastases (but not in the donor liver) and demonstrated that tumour cells were recognized in vivo by lymphocytes, engineered to express an HBV-specific T cell receptor (TCR). Gene-modified T cells survived, expanded and mediated a reduction in HBsAg levels without exacerbation of liver inflammation or other toxicity. Whilst clinical efficacy was not established in this subject with end-stage metastatic disease, we confirm the feasibility of providing autologous TCR-redirected therapy against HCC and advocate this strategy as a novel therapeutic opportunity in hepatitis B-associated malignancies.

  12. Receptors for T cell-replacing factor/interleukin 5. Specificity, quantitation, and its implication

    OpenAIRE

    1988-01-01

    T cell-replacing factor (TRF)/IL-5 is a glycosylated polypeptide that acts as a key factor for B cell growth and differentiation. Since IL-5 action is probably mediated by specific cell surface receptor(s), we have characterized the binding of IL-5 to cells using biosynthetically [35S]methionine-labeled IL-5 and 125I-IL-5 that had been prepared using Bolton-Hunter reagent. The radiolabeled IL-5 binds specifically to BCL1- B20 (in vitro line) (a murine chronic B cell leukemic cell line previou...

  13. High Throughput Sequencing of T Cell Antigen Receptors Reveals a Conserved TCR Repertoire

    Science.gov (United States)

    Hou, Xianliang; Lu, Chong; Chen, Sisi; Xie, Qian; Cui, Guangying; Chen, Jianing; Chen, Zhi; Wu, Zhongwen; Ding, Yulong; Ye, Ping; Dai, Yong; Diao, Hongyan

    2016-01-01

    Abstract The T-cell receptor (TCR) repertoire is a mirror of the human immune system that reflects processes caused by infections, cancer, autoimmunity, and aging. Next-generation sequencing has become a powerful tool for deep TCR profiling. Herein, we used this technology to study the repertoire features of TCR beta chain in the blood of healthy individuals. Peripheral blood samples were collected from 10 healthy donors. T cells were isolated with anti-human CD3 magnetic beads according to the manufacturer's protocol. We then combined multiplex-PCR, Illumina sequencing, and IMGT/High V-QUEST to analyze the characteristics and polymorphisms of the TCR. Most of the individual T cell clones were present at very low frequencies, suggesting that they had not undergone clonal expansion. The usage frequencies of the TCR beta variable, beta joining, and beta diversity gene segments were similar among T cells from different individuals. Notably, the usage frequency of individual nucleotides and amino acids within complementarity-determining region (CDR3) intervals was remarkably consistent between individuals. Moreover, our data show that terminal deoxynucleotidyl transferase activity was biased toward the insertion of G (31.92%) and C (27.14%) over A (21.82%) and T (19.12%) nucleotides. Some conserved features could be observed in the composition of CDR3, which may inform future studies of human TCR gene recombination. PMID:26962778

  14. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.

    Science.gov (United States)

    Borroto, Aldo; Reyes-Garau, Diana; Jiménez, M Angeles; Carrasco, Esther; Moreno, Beatriz; Martínez-Pasamar, Sara; Cortés, José R; Perona, Almudena; Abia, David; Blanco, Soledad; Fuentes, Manuel; Arellano, Irene; Lobo, Juan; Heidarieh, Haleh; Rueda, Javier; Esteve, Pilar; Cibrián, Danay; Martinez-Riaño, Ana; Mendoza, Pilar; Prieto, Cristina; Calleja, Enrique; Oeste, Clara L; Orfao, Alberto; Fresno, Manuel; Sánchez-Madrid, Francisco; Alcamí, Antonio; Bovolenta, Paola; Martín, Pilar; Villoslada, Pablo; Morreale, Antonio; Messeguer, Angel; Alarcon, Balbino

    2016-12-21

    Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases.

  15. Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

    Science.gov (United States)

    Murugan, Anand; Mora, Thierry; Walczak, Aleksandra M; Callan, Curtis G

    2012-10-02

    Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

  16. Influenza virus-specific TCR-transduced T cells as a model for adoptive immunotherapy.

    Science.gov (United States)

    Berdien, Belinda; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Kröger, Nicolaus; Atanackovic, Djordje; Fehse, Boris

    2013-06-01

    Adoptive transfer of T lymphocytes equipped with tumor-antigen specific T-cell receptors (TCRs) represents a promising strategy in cancer immunotherapy, but the approach remains technically demanding. Using influenza virus (Flu)-specific T-cell responses as a model system we compared different methods for the generation of T-cell clones and isolation of antigen-specific TCRs. Altogether, we generated 12 CD8(+) T-cell clones reacting to the Flu matrix protein (Flu-M) and 6 CD4(+) T-cell clones reacting to the Flu nucleoprotein (Flu-NP) from 4 healthy donors. IFN-γ-secretion-based enrichment of antigen-specific cells, optionally combined with tetramer staining, was the most efficient way for generating T-cell clones. In contrast, the commonly used limiting dilution approach was least efficient. TCR genes were isolated from T-cell clones and cloned into both a previously used gammaretroviral LTR-vector, MP91 and the novel lentiviral self-inactivating vector LeGO-MP that contains MP91-derived promotor and regulatory elements. To directly compare their functional efficiencies, we in parallel transduced T-cell lines and primary T cells with the two vectors encoding identical TCRs. Transduction efficiencies were approximately twice higher with the gammaretroviral vector. Secretion of high amounts of IFN-γ, IL-2 and TNF-α by transduced cells after exposure to the respective influenza target epitope proved efficient specificity transfer of the isolated TCRs to primary T-cells for both vectors, at the same time indicating superior functionality of MP91-transduced cells. In conclusion, we have developed optimized strategies to obtain and transfer antigen-specific TCRs as well as designed a novel lentiviral vector for TCR-gene transfer. Our data may help to improve adoptive T-cell therapies.

  17. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells.

    Science.gov (United States)

    Rowan, Aileen G; Witkover, Aviva; Melamed, Anat; Tanaka, Yuetsu; Cook, Lucy B M; Fields, Paul; Taylor, Graham P; Bangham, Charles R M

    2016-11-01

    There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.

  18. A fast and robust method to clone and functionally validate T-cell receptors.

    Science.gov (United States)

    Birkholz, Katrin; Hofmann, Christian; Hoyer, Stefanie; Schulz, Birgit; Harrer, Thomas; Kämpgen, Eckhart; Schuler, Gerold; Dörrie, Jan; Schaft, Niels

    2009-07-31

    Sequencing, cloning and functional testing of T-cell-receptor (TCR) alpha- and beta-chains from T-cell clones is often required in immunotherapy and in immunological research. However, the determination of the TCR chains by a simple PCR is not possible, since, in contrast to the 3' constant domain and untranslated region (UTR), no conserved sequences are present in the 5' region. Furthermore, subsequent functional testing of cloned TCRs requires laborious cell culture experiments, often involving primary human material and time-consuming viral transduction strategies. Here we present a universal PCR-based protocol, adapted from the capswitch technology, that allows for amplification of the TCR alpha- and beta-chain mRNAs without knowledge of the TCR variable domain subtype by attaching a designed sequence to the mRNA's 5' end. Two different MelanA/HLA-A2-specific and one HIVgag/HLA-A2-specific TCR were cloned that way, and were functionally tested by a newly developed easy, fast, and low-cost method: we electroporated Jurkat T cells simultaneously with TCR-encoding RNA and an NFAT-reporter construct, and measured the activation status of the cells upon specific stimulation. The results of this assay correlated with the cytokine release, functional avidity, proliferative activity, and the ability to recognize MelanA/HLA-A2-presenting tumor cells of bulk T cells electroporated with RNA encoding the same TCR. Together these two protocols represent a rapid and low-cost tool for the identification and functional testing of TCRs of T-cell clones, which can then be applied in immunotherapy or immunological research.

  19. Extensive junctional diversity of rearranged human T cell receptor delta genes.

    Science.gov (United States)

    Hata, S; Satyanarayana, K; Devlin, P; Band, H; McLean, J; Strominger, J L; Brenner, M B; Krangel, M S

    1988-06-10

    The human T cell receptor delta (TCR delta) gene encodes one component of the TCR gamma delta-CD3 complex found on subsets of peripheral blood and thymic T cells. Human TCR delta diversity was estimated by characterizing rearrangements in TCR gamma delta cell lines and determining the structures of complementary DNA clones representing functional and nonfunctional transcripts in these cell lines. One V delta segment and one J delta segment were identified in all functional transcripts, although a distinct J delta segment was identified in a truncated transcript. Further, one D delta element was identified, and evidence for the use of an additional D delta element was obtained. Thus human TCR delta genes appear to use a limited number of germline elements. However, the apparent use of two D delta elements in tandem coupled with imprecise joining and extensive incorporation of N nucleotides generates unprecedented variability in the junctional region.

  20. Blockade of murine T cell activation by antagonists of P2Y6 and P2X7 receptors.

    Science.gov (United States)

    Tsukimoto, Mitsutoshi; Tokunaga, Akihiro; Harada, Hitoshi; Kojima, Shuji

    2009-07-10

    Extracellular nucleotides and their metabolites activate ionotropic P2X and metabotropic P2Y receptors on the surface of various types of cells. Here, we investigated the involvement of P2X and P2Y receptor-mediated signaling in TCR-dependent T cell activation. Murine T cells were activated by stimulation of TCR, and both CD25 expression and interleukin (IL)-2 production were observed in activated T cells. Ecto-nucleotidase apyrase and P2Y6 antagonist MRS2578 significantly blocked the increases of both CD25 expression and IL-2 production, and P2X7 antagonists A438079 and oxidized ATP inhibited IL-2 production rather than CD25 expression, suggesting the involvement of P2Y6 and P2X7 receptors in different processes of T cell activation. MRS2578 also blocked TCR-dependent elevation of cytosolic Ca2+ in T cells. The P2X7 and P2Y6 receptors were expressed in murine CD4 T cells. In conclusion, our results indicate that activation of P2Y6 and P2X7 receptors contributes to T cell activation via TCR.

  1. Expanding antigen-specific regulatory networks to treat autoimmunity.

    Science.gov (United States)

    Clemente-Casares, Xavier; Blanco, Jesus; Ambalavanan, Poornima; Yamanouchi, Jun; Singha, Santiswarup; Fandos, Cesar; Tsai, Sue; Wang, Jinguo; Garabatos, Nahir; Izquierdo, Cristina; Agrawal, Smriti; Keough, Michael B; Yong, V Wee; James, Eddie; Moore, Anna; Yang, Yang; Stratmann, Thomas; Serra, Pau; Santamaria, Pere

    2016-02-25

    Regulatory T cells hold promise as targets for therapeutic intervention in autoimmunity, but approaches capable of expanding antigen-specific regulatory T cells in vivo are currently not available. Here we show that systemic delivery of nanoparticles coated with autoimmune-disease-relevant peptides bound to major histocompatibility complex class II (pMHCII) molecules triggers the generation and expansion of antigen-specific regulatory CD4(+) T cell type 1 (TR1)-like cells in different mouse models, including mice humanized with lymphocytes from patients, leading to resolution of established autoimmune phenomena. Ten pMHCII-based nanomedicines show similar biological effects, regardless of genetic background, prevalence of the cognate T-cell population or MHC restriction. These nanomedicines promote the differentiation of disease-primed autoreactive T cells into TR1-like cells, which in turn suppress autoantigen-loaded antigen-presenting cells and drive the differentiation of cognate B cells into disease-suppressing regulatory B cells, without compromising systemic immunity. pMHCII-based nanomedicines thus represent a new class of drugs, potentially useful for treating a broad spectrum of autoimmune conditions in a disease-specific manner.

  2. Characteristics of T cell's immune response to hepatitis B virus antigen-specificity protein in population with different types of the infections%乙型肝炎病毒感染人群T细胞对其抗原蛋白免疫应答的特征分析

    Institute of Scientific and Technical Information of China (English)

    廖崇伦; 陈萍

    2013-01-01

    目的 研究不同类型的乙型肝炎病毒(HBV)感染者的HBV抗原特异性T细胞免疫应答水平,为临床免疫调节治疗HBV感染提供诊断依据.方法 回顾性分析2010年1月-2011年1月医院就诊并且符合纳入标准的受试者80例,按照慢性乙型肝炎类型分为3组,分别是肝炎肝硬化(LC)组、无症状慢性HBV携带者(ASC)组、慢性乙型病毒性肝炎(CHB)组,所有患者均采取酶联接免疫吸附剂测定的方法(ELISA法)测定T细胞因子的免疫应答水平.结果 LC组、ASC组、CHB组的一般资料,组间比较差异无统计学意义,具有可比性;LC组和CHB组的INF-r细胞因子表达水平(1.21±0.16)、(1.57±0.21)明显高于ACS组(1.13±0.12),在INF-r、TGF-β-1、IL-17、IL-10 4个细胞因子代表的T细胞亚组CHB平均水平最高,分别为(1.57±0.21)、(3.55±0.25)、(1.36±0.12)、(32.66±11.22),差异有统计学意义(P<0.05).结论 不同HBV感染者的抗原特异性T细胞的免疫应答不同,在一定程度上,对临床免疫调节治疗有指导意义.%OBJECTIVE To study the T cell's immune response to HBV antigen-specificity protein in the patients with different types of hepatitis B virus (HBV) infections so as to guide the treatment of HBV infections with immunomodulatory.METHODS A total of 80 patients who met the standard and have been treated at the hospital from Jan 2010 to Jan 2011 were selected as the study objects,the clinical data were retrospectively analyzed.The patients were divided into three groups according to the types of chronic hepatitis B,namely the hepatitis with hepatic cirrhosis (LC) group,the chronic hepatitis b virus carrier without symptoms (ASC) group,and the chronic hepatitis B (CHB) group.The levels of T cell's immune response of all the patients were determined by using enzyme-linked immunosorbent assay method.RESULTS The difference in the general data between the LC group,ASC group,and the CHB group was not statistically significant

  3. αβ T cell receptor germline CDR regions moderate contact with MHC ligands and regulate peptide cross-reactivity.

    Science.gov (United States)

    Attaf, Meriem; Holland, Stephan J; Bartok, Istvan; Dyson, Julian

    2016-10-24

    αβ T cells respond to peptide epitopes presented by major histocompatibility complex (MHC) molecules. The role of T cell receptor (TCR) germline complementarity determining regions (CDR1 and 2) in MHC restriction is not well understood. Here, we examine T cell development, MHC restriction and antigen recognition where germline CDR loop structure has been modified by multiple glycine/alanine substitutions. Surprisingly, loss of germline structure increases TCR engagement with MHC ligands leading to excessive loss of immature thymocytes. MHC restriction is, however, strictly maintained. The peripheral T cell repertoire is affected similarly, exhibiting elevated cross-reactivity to foreign peptides. Our findings are consistent with germline TCR structure optimising T cell cross-reactivity and immunity by moderating engagement with MHC ligands. This strategy may operate alongside co-receptor imposed MHC restriction, freeing germline TCR structure to adopt this novel role in the TCR-MHC interface.

  4. The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors

    Institute of Scientific and Technical Information of China (English)

    Alan DGuerrero; Judy SMoyes; Laurence JN Cooper

    2014-01-01

    The adoptive transfer of T cells is a promising approach to treat cancers. Primary human T cells can be modified using viral and non-viral vectors to promote the specific targeting of cancer cells via the introduction of exogenous T-cell receptors (TCRs) or chimeric antigen receptors (CARs). This gene transfer displays the potential to increase the specificity and potency of the anticancer response while decreasing the systemic adverse effects that arise from conventional treatments that target both cancerous and healthy cells. This review highlights the generation of clinical-grade T cells expressing CARs for immunotherapy, the use of these cels to target B-cellmalignancies and, particularly, the first clinical trials deploying the Sleeping Beauty gene transfer system, which engineers T cells to target CD19+ leukemia and non-Hodgkin’s lymphoma.

  5. Bisphenol A modulates the metabolic regulator oestrogen-related receptor-α in T-cells.

    Science.gov (United States)

    Cipelli, Riccardo; Harries, Lorna; Okuda, Katsuhiro; Yoshihara, Shin'ichi; Melzer, David; Galloway, Tamara

    2014-01-01

    Bisphenol A (BPA) is a widely used plastics constituent that has been associated with endocrine, immune and metabolic effects. Evidence for how BPA exerts significant biological effects at chronic low levels of exposure has remained elusive. In adult men, exposure to BPA has been associated with higher expression of two nuclear receptors, oestrogen receptor-β (ERβ) and oestrogen-related-receptor-α (ERRα), in peripheral white blood cells in vivo. In this study, we explore the expression of ESR2 (ERβ) and ESRRA (ERRα) in human leukaemic T-cell lymphoblasts (Jurkat cells) exposed to BPA in vitro. We show that exposure to BPA led to enhanced expression of ESRRA within 6 h of exposure (mean±s.e.m.: 1.43±0.08-fold increase compared with the control, PESRRA remained significantly enhanced at concentrations of BPA ≥1 nM. Oxidative metabolism of BPA by rat liver S9 fractions yields the potent oestrogenic metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP). Exposure of cells to 1-100 nM MBP increased the expression of both ESRRA (significantly induced, P<0.05, at 1, 10, 100 nM) and ESR2 (1.32±0.07-fold increase at 100 nM exposure, P<0.01). ERRα is a major control point for oxidative metabolism in many cell types, including T-cells. Following exposure to both BPA and MBP, we found that cells showed a decrease in cell proliferation rate. Taken together, these results confirm the bioactivity of BPA against putative T-cell targets in vitro at concentrations relevant to general human exposure.

  6. Characterization of human platelet binding of recombinant T cell receptor ligand

    Directory of Open Access Journals (Sweden)

    Meza-Romero Roberto

    2010-11-01

    Full Text Available Abstract Background Recombinant T cell receptor ligands (RTLs are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS. RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE. The mechanisms by which RTLs impede local recruitment and retention of inflammatory cells in the CNS, however, are not completely understood. Methods We have recently shown that RTLs bind strongly to B cells, macrophages, and dendritic cells, but not to T cells, in an antigenic-independent manner, raising the question whether peripheral blood cells express a distinct RTL-receptor. Our study was designed to characterize the molecular mechanisms by which RTLs bind human blood platelets, and the ability of RTL to modulate platelet function. Results Our data demonstrate that human blood platelets support binding of RTL. Immobilized RTL initiated platelet intracellular calcium mobilization and lamellipodia formation through a pathway dependent upon Src and PI3 kinases signaling. The presence of RTL in solution reduced platelet aggregation by collagen, while treatment of whole blood with RTL prolonged occlusive thrombus formation on collagen. Conclusions Platelets, well-known regulators of hemostasis and thrombosis, have been implicated in playing a major role in inflammation and immunity. This study provides the first evidence that blood platelets express a functional RTL-receptor with a putative role in modulating pathways of neuroinflammation.

  7. Magnetic-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells.

    Science.gov (United States)

    Govers, Coen; Berrevoets, Cor; Treffers-Westerlaken, Elike; Broertjes, Marieke; Debets, Reno

    2012-06-01

    T cell-sorting technologies with peptide-MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100(280-288)/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide-MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide-MHC multimers, we observed that Streptamer(®), when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide-MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide-MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4(+) T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4(+) T cells.

  8. Clinicopathology, immunophenotype, T cell receptor gene rearrangement, Epstein-Barr virus status and p53 gene mutation of cutaneous extranodal NK/T-cell lymphoma, nasal-type

    Institute of Scientific and Technical Information of China (English)

    WANG Ting-ting; XU Chen; LIU Shan-ling; KAN Bei; RAN Yu-ping; LIU Wei-ping; LI Gan-di

    2013-01-01

    Background Extranodal natural killer/T-cell (NK/T cell) lymphoma,nasal-type,is a rare lymphoma.Skin is the second most common site of involvement after the nasal cavity/nasalpharynx.The aim of this study was to investigate the clinicopathologic features,immunophenotype,T cell receptor (TCR) gene rearrangement,the association with Epstein-Barr virus (EBV) infection and p53 gene mutations of the lymphoma.Methods The clinicopathologic analysis,immunohistochemistry,in situ hybridization for EBER1/2,TCR gene rearrangement by polymerase chain reaction (PCR),mutations of p53 gene analyzed by PCR and sequence analysis were employed in this study.Results In the 19 cases,the tumor primarily involved the dermis and subcutaneous layer.Immunohistochemical staining showed that most of the cases expressed CD45RO,CD56,CD3ε,TIA-1 and GrB.Three cases were positive for CD3 and two cases were positive for CD30.Monoclonal TCRY gene rearrangement was found in 7 of 18 cases.The positive rate of EBER1/2 was 100%.No p53 gene mutation was detected on the exon 4-9 in the 18 cases.Fifteen cases showed Pro (proline)/Arg (arginine) single nucleotide polymorphisms (SNPs) on the exon 4 at codon 72.The expression of p53 protein was 72% (13/18) immunohistochemically.Conclusions Cutaneous NK/T-cell lymphoma is a rare but highly aggressive lymphoma with poor prognosis.No p53 gene mutation was detected on the exon 4-9,and Pro/Arg SNPs on p53 codon 72 were detected in the cutaneous NK/T-cell lymphoma.The overexpression of p53 protein may not be the result of p53 gene mutation.

  9. Failure to synthesize the human T-cell CD3-zeta chain and its consequence for the T-cell receptor-CD3 complex expression

    DEFF Research Database (Denmark)

    Geisler, C; Kuhlmann, J; Plesner, T;

    1989-01-01

    The T-cell antigen receptor is composed of two variable chains (alpha and beta, termed TcR) which confer ligand specificity, and four constant chains (gamma, delta, epsilon, and zeta, collectively termed CD3) whose functions are not fully understood. To explore the role of the individual CD3...... components, the human T-cell tumour line Jurkat was chemically mutagenized followed by negative selection with F101.01 (a monoclonal antibody against the TcR-CD3 complex), and cloning. Growing clones were analysed for TcR-CD3 expression by immunofluorescence. One clone, J79, was found to express greatly...... the normal intracellular fate of the TcR-CD3 complex, and that the CD3-zeta is necessary for the intracellular transport and expression at the cell surface of the TcR-CD3 complex....

  10. The effect of aging and caloric restriction on murine CD8+ T cell chemokine receptor gene expression

    Directory of Open Access Journals (Sweden)

    Mo RuRan

    2007-11-01

    Full Text Available Abstract Background The mechanism explaining the increased disease susceptibility in aging is not well understood. CD8+ T cells are crucial in anti-viral and anti-tumor responses. Although the chemokine system plays a critical role in CD8+ T cell function, very little is known about the relationship between aging and the T cell chemokine system. Results In this study we have examined the effect of aging on murine CD8+ T cell chemokine receptor gene expression. Freshly isolated splenic CD8+ T cells from old C57BL/6 mice were found to have higher CCR1, CCR2, CCR4, CCR5 and CXCR5, and lower CCR7 gene expression compared to their younger cohort. Anti-CD3/anti-CD28 stimulation elicited a similar robust chemokine receptor response from young and old CD8+ T cells. Western blot analyses confirmed elevated protein level of CCR4 and CCR5 in aged CD8+ T cells. Increases in T cell CCR1 and CCR5 expression also correlate to increased in vitro chemotaxis response to macrophage-inflammatory protein-1 α(MIP-1α. Finally, caloric restriction selectively prevents the loss of CD8+ T cell CCR7 gene expression in aging to the level that is seen in young CD8+ T cells. Conclusion These findings are consistent with the notion that aging exists in a state of low grade pro-inflammatory environment. In addition, our results provide a potential mechanism for the reported aging-associated impaired T cell lymphoid homing and allograft response, and reduced survival in sepsis.

  11. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells.

    Science.gov (United States)

    Li, Dapeng; Romain, Gabrielle; Flamar, Anne-Laure; Duluc, Dorothée; Dullaers, Melissa; Li, Xiao-Hua; Zurawski, Sandra; Bosquet, Nathalie; Palucka, Anna Karolina; Le Grand, Roger; O'Garra, Anne; Zurawski, Gerard; Banchereau, Jacques; Oh, Sangkon

    2012-01-16

    Dendritic cells (DCs) can initiate and shape host immune responses toward either immunity or tolerance by their effects on antigen-specific CD4(+) T cells. DC-asialoglycoprotein receptor (DC-ASGPR), a lectinlike receptor, is a known scavenger receptor. Here, we report that targeting antigens to human DCs via DC-ASGPR, but not lectin-like oxidized-LDL receptor, Dectin-1, or DC-specific ICAM-3-grabbing nonintegrin favors the generation of antigen-specific suppressive CD4(+) T cells that produce interleukin 10 (IL-10). These findings apply to both self- and foreign antigens, as well as memory and naive CD4(+) T cells. The generation of such IL-10-producing CD4(+) T cells requires p38/extracellular signal-regulated kinase phosphorylation and IL-10 induction in DCs. We further demonstrate that immunization of nonhuman primates with antigens fused to anti-DC-ASGPR monoclonal antibody generates antigen-specific CD4(+) T cells that produce IL-10 in vivo. This study provides a new strategy for the establishment of antigen-specific IL-10-producing suppressive T cells in vivo by targeting whole protein antigens to DCs via DC-ASGPR.

  12. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1 into Diverse Memory T-Cell Populations.

    Directory of Open Access Journals (Sweden)

    Drew C Deniger

    Full Text Available T cells modified with chimeric antigen receptors (CARs targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1 is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28 or CD137 (designated ROR1RCD137 and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC, which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.

  13. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations

    Science.gov (United States)

    Deniger, Drew C.; Yu, Jianqiang; Huls, M. Helen; Figliola, Matthew J.; Mi, Tiejuan; Maiti, Sourindra N.; Widhopf, George F.; Hurton, Lenka V.; Thokala, Radhika; Singh, Harjeet; Olivares, Simon; Champlin, Richard E.; Wierda, William G.; Kipps, Thomas J.; Cooper, Laurence J. N.

    2015-01-01

    T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire. PMID:26030772

  14. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1.

    Science.gov (United States)

    Staal, Jens; Driege, Yasmine; Bekaert, Tine; Demeyer, Annelies; Muyllaert, David; Van Damme, Petra; Gevaert, Kris; Beyaert, Rudi

    2011-05-04

    The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) is central to lymphocyte activation and lymphomagenesis. MALT1 mediates antigen receptor signalling to NF-κB by acting as a scaffold protein. Furthermore, MALT1 has proteolytic activity that contributes to optimal NF-κB activation by cleaving the NF-κB inhibitor A20. Whether MALT1 protease activity is involved in other signalling pathways, and the identity of the relevant substrates, is unknown. Here, we show that T-cell receptors (TCR) activation, as well as overexpression of the oncogenic API2-MALT1 fusion protein, results in proteolytic inactivation of CYLD by MALT1, which is specifically required for c-jun N-terminal kinase (JNK) activation and the inducible expression of a subset of genes. These results indicate a novel role for MALT1 proteolytic activity in TCR-induced JNK activation and reveal CYLD cleavage as the underlying mechanism.

  15. Inhibitory effects of mesenchymal stem cells on antigen-specific T cells and antigen presenting cells in experimental autoimmune uveitis%间充质干细胞对EAU大鼠抗原特异性T细胞和抗原递呈细胞功能的抑制作用

    Institute of Scientific and Technical Information of China (English)

    白伶伶; 张灵君; 郑慧; 王梅艳; 东莉洁; 李筱荣; 张晓敏

    2015-01-01

    lower than that in the PBS group (t=3.825,5.100,4.250,3.400, all at P<0.05).Compared with the PBS group, the proportions of IFN-γ positive CD4+ T cells in spleen and draining lymph notes were considerably decreased in the MSCs group (t =5.651,4.376, both at P<0.05) , so were the IL-17+ CD4+ T cells (t =3.300,4.925, both at P<0.05).However,the proportions of Foxp3 + CD4+ T cells in spleen and draining lymph notes were statistically raised in the MSCs group compared with the PBS group (t =-5.172,-2.825,both at P<0.05).The proliferation index of T cells increased with the rise of R16 dose in the PBS cocultured group, and the proliferation indexes were all declined in the MSCs cocultured group compared with the PBS cocultured group under the stimulation of 0.3,1.0 and 10.0 μg/ml of R16 (P =0.027,0.000,0.000).In addition, significant reduces of proliferation indexes of T cells were seen in the PBS-MSCs cross-cultured group and MSCs-PBS cross-cultured group in comparison with the PBS cocultured group when stimulated by 1.0 μg/ml and 10.0 μg/ml R16 (1.0 μg/ml R16 : P =0.001,0.000;10.0 μg/ml R16:P=0.000,0.000).Conclusions MSCs can ameliorate EAU by inhibiting the functions of antigen-specific T cells and APCs and up-regulating T regulatory cells in EAU rats.%背景 我们前期研究发现,间充质干细胞(MSCs)可以有效治疗大鼠实验性自身免疫性葡萄膜炎(EAU),减轻组织损害,但其具体作用机制仍在研究中.目的 研究MSCs对大鼠EAU模型中T细胞亚群和抗原递呈细胞(APCs)的影响.方法 收集6只清洁级4~6周龄Wistar雄性大鼠双侧股骨、胫骨骨髓,采用贴壁培养法纯化Wistar大鼠骨髓MSCs.采用随机数字表法将12只清洁级Lewis雌性大鼠分为MSCs组和PBS组,每组6只.于Lewis大鼠单后足及背部皮下注射200μl含30μg光感受器间维生素A类结合蛋白(IRBP) 1177-1191多肽片段R16及完全弗氏佐剂(CFA)的乳化液以建立EAU模型,造模后于裂隙灯显微镜下观

  16. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  17. NAADP-mediated Ca2+ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist

    Science.gov (United States)

    Dammermann, Werner; Zhang, Bo; Nebel, Merle; Cordiglieri, Chiara; Odoardi, Francesca; Kirchberger, Tanja; Kawakami, Naoto; Dowden, James; Schmid, Frederike; Dornmair, Klaus; Hohenegger, Martin; Flügel, Alexander; Guse, Andreas H.; Potter, Barry V. L.

    2009-01-01

    The nucleotide NAADP was recently discovered as a second messenger involved in the initiation and propagation of Ca2+ signaling in lymphoma T cells, but its impact on primary T cell function is still unknown. An optimized, synthetic, small molecule inhibitor of NAADP action, termed BZ194, was designed and synthesized. BZ194 neither interfered with Ca2+ mobilization by d-myo-inositol 1,4,5-trisphosphate or cyclic ADP-ribose nor with capacitative Ca2+ entry. BZ194 specifically and effectively blocked NAADP-stimulated [3H]ryanodine binding to the purified type 1 ryanodine receptor. Further, in intact T cells, Ca2+ mobilization evoked by NAADP or by formation of the immunological synapse between primary effector T cells and astrocytes was inhibited by BZ194. Downstream events of Ca2+ mobilization, such as nuclear translocation of “nuclear factor of activated T cells” (NFAT), T cell receptor-driven interleukin-2 production, and proliferation in antigen-experienced CD4+ effector T cells, were attenuated by the NAADP antagonist. Taken together, specific inhibition of the NAADP signaling pathway constitutes a way to specifically and effectively modulate T-cell activation and has potential in the therapy of autoimmune diseases. PMID:19541638

  18. T Cell Receptor Excision Circle (TREC) Monitoring after Allogeneic Stem Cell Transplantation; a Predictive Marker for Complications and Clinical Outcome

    Science.gov (United States)

    Gaballa, Ahmed; Sundin, Mikael; Stikvoort, Arwen; Abumaree, Muhamed; Uzunel, Mehmet; Sairafi, Darius; Uhlin, Michael

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a well-established treatment modality for a variety of malignant diseases as well as for inborn errors of the metabolism or immune system. Regardless of disease origin, good clinical effects are dependent on proper immune reconstitution. T cells are responsible for both the beneficial graft-versus-leukemia (GVL) effect against malignant cells and protection against infections. The immune recovery of T cells relies initially on peripheral expansion of mature cells from the graft and later on the differentiation and maturation from donor-derived hematopoietic stem cells. The formation of new T cells occurs in the thymus and as a byproduct, T cell receptor excision circles (TRECs) are released upon rearrangement of the T cell receptor. Detection of TRECs by PCR is a reliable method for estimating the amount of newly formed T cells in the circulation and, indirectly, for estimating thymic function. Here, we discuss the role of TREC analysis in the prediction of clinical outcome after allogeneic HSCT. Due to the pivotal role of T cell reconstitution we propose that TREC analysis should be included as a key indicator in the post-HSCT follow-up. PMID:27727179

  19. Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity.

    Directory of Open Access Journals (Sweden)

    Danushka K Wijesundara

    Full Text Available With the hope of understanding how interleukin (IL-4 and IL-13 modulated quality of anti-viral CD8(+ T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus. Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα was significantly down-regulated on anti-viral CD8(+ T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT mice with vaccinia virus (VV or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6 were required to increase IL-4Rα expression on CD8(+ T cells, but not interferon (IFN-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+ T cells was a feature of poor quality anti-viral CD8(+ T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+ T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+ T cell immunity. Our findings have important implications in understanding anti-viral CD8(+ T cell immunity and designing effective vaccines against chronic viral infections.

  20. T cell homeostasis requires G protein-coupled receptor-mediated access to trophic signals that promote growth and inhibit chemotaxis

    OpenAIRE

    Cinalli, Ryan M.; Herman, Catherine E.; Lew, Brian O.; Wieman, Heather L.; Thompson, Craig B.; Rathmell, Jeffrey C.

    2005-01-01

    Signals that regulate T cell homeostasis are not fully understood. G protein-coupled receptors (GPCR), such as the chemokine receptors, may affect homeostasis by direct signaling or by guiding T cell migration to distinct location-restricted signals. Here, we show that blockade of Gαi-associated GPCR signaling by treatment with pertussis toxin led to T cell atrophy and shortened life-span in T cell-replete hosts and prevented T cell homeostatic growth and proliferation in T cell-deficient hos...

  1. Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells.

    Science.gov (United States)

    Alrifai, Doraid; Sarker, Debashis; Maher, John

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) engineered T-cells is emerging as a powerful new approach to cancer immunotherapy. CARs are fusion molecules that couple the antibody-like binding of a native cell surface target to the delivery of a bespoke T-cell activating signal. Recent studies undertaken by several centers have demonstrated highly compelling efficacy in patients with acute and chronic B-cell malignancies. However, comparable therapeutic activity has not been achieved in solid tumors. Modern management of pancreatic ductal adenocarcinoma (PDAC) remains ineffective, reflected in the virtual equivalence of annual incidence and mortality statistics for this tumor type. Increasing evidence indicates that these tumors are recognized by the immune system, but deploy powerful evasion strategies that limit natural immune surveillance and render efforts at immunotherapy challenging. Here, we review preclinical and clinical studies that have been initiated or completed in an effort to develop CAR-based immunotherapy for PDAC. We also consider the hurdles to the effective clinical development of this exciting new therapeutic modality.

  2. A Novel Loop Domain in Superantigens Extends Their T Cell Receptor Recognition Site

    Energy Technology Data Exchange (ETDEWEB)

    Gunther,S.; Varma, A.; Moza, B.; Kasper, K.; Wyatt, A.; Zhu, P.; Nur-ur Rahman, A.; Li, Y.; Mariuzza, R.; et al.

    2007-01-01

    Superantigens (SAGs) interact with host immune receptors to induce a massive release of inflammatory cytokines that can lead to toxic shock syndrome and death. Bacterial SAGs can be classified into five distinct evolutionary groups. Group V SAGs are characterized by the {alpha}3-{beta}8 loop, a unique {approx}15 amino acid residue extension that is required for optimal T cell activation. Here, we report the X-ray crystal structures of the group V SAG staphylococcal enterotoxin K (SEK) alone and in complex with the TCR hV{beta}5.1 domain. SEK adopts a unique TCR binding orientation relative to other SAG-TCR complexes, which results in the {alpha}3-{beta}8 loop contacting the apical loop of framework region 4, thereby extending the known TCR recognition site of SAGs. These interactions are absolutely required for TCR binding and T cell activation by SEK, and dictate the TCR V{beta} domain specificity of SEK and other group V SAGs.

  3. Promiscuous Behavior of HPV16E6 Specific T Cell Receptor Beta Chains Hampers Functional Expression in TCR Transgenic T Cells, Which Can Be Restored in Part by Genetic Modification

    Directory of Open Access Journals (Sweden)

    Kirsten B. J. Scholten

    2010-01-01

    Full Text Available Background: T cell receptor gene transfer is a promising strategy to treat patients suffering from HPV induced malignancies. Therefore we isolated the TCRαβ open reading frames of an HPV16E6 specific CTL clone and generated TCR transgenic T cells. In general low level expression of the transgenic TCR in recipient human T cells is observed as well as the formation of mixed TCRs dimers. Here we addressed both issues employing three different expression platforms.

  4. Assessment of thymic output in common variable immunodeficiency patients by evaluation of T cell receptor excision circles

    Science.gov (United States)

    GUAZZI, V; AIUTI, F; MEZZAROMA, I; MAZZETTA, F; ANDOLFI, G; Mortellaro, A; Pierdominici, M; FANTINI, R; MARZIALI, M; AIUTI, A

    2002-01-01

    Common variable immunodeficiency (CVID) is a heterogeneous syndrome characterized by repeated infections and hypogammaglobulinaemia. Additionally, T-cell abnormalities including lymphopenia, decreased proliferation to mitogens and antigens, and the reduced production and expression of cytokines, have also been observed. In this study we have investigated the expression of naive, memory and activation markers in T-cell subpopulations in 17 CVID patients in comparison to age-matched normal controls. The numbers of CD4+ T cells, including CD45RA+CD62L+ and, to a lesser extent, CD45RA−CD62L+/RA+CD62L− were significantly reduced in patients, whereas CD8+ T cells were within normal range. In contrast, HLA-DR+ cells were increased both in CD4+ and CD8+ T cells. To assess the thymic output, we analysed the presence of T-cell receptor excision circles (TRECs) in CD4+ and CD8+ T cells by quantitative PCR. TRECs were decreased significantly in patients and the rate of TREC loss was higher with increasing age. TRECs correlated with naive CD4+ T cells, whereas there was an inverse relationship between TRECs and CD8+HLA−DR+ and CD8+CD45RA−CD62L+/RA+CD62L− T cells. Our results suggest the presence of a defect in the naive T cell compartment with origin at the thymic level in CVID, and indicate that TREC may be a useful marker to monitor thymic function in this primary immunodeficiency. PMID:12165093

  5. Rapid, Nonradioactive Detection of Clonal T-Cell Receptor Gene Rearrangements in Lymphoid Neoplasms

    Science.gov (United States)

    Bourguin, Anne; Tung, Rosann; Galili, Naomi; Sklar, Jeffrey

    1990-11-01

    Southern blot hybridization analysis of clonal antigen receptor gene rearrangements has proved to be a valuable adjunct to conventional methods for diagnosing lymphoid neoplasia. However, Southern blot analysis suffers from a number of technical disadvantages, including the time necessary to obtain results, the use of radioactivity, and the susceptibility of the method to various artifacts. We have investigated an alternative approach for assessing the clonality of antigen receptor gene rearrangements in lymphoid tissue biopsy specimens. This approach involves the amplification of rearranged γ T-cell receptor genes by the polymerase chain reaction and analysis of the polymerase chain reaction products by denaturing gradient gel electrophoresis. By use of this approach, clonal rearrangements from neoplastic lymphocytes constituting as little as 0.1-1% of the total cells in the tissue are detected as discrete bands in the denaturing gel after the gel is stained with ethidium bromide and viewed under ultraviolet light. In contrast, polyclonal rearrangements from reactive lymphocytes appear as a diffuse smear along the length of the gel. Our findings suggest that polymerase chain reaction combined with denaturing gradient gel electrophoresis may offer a rapid, nonradioactive, and sensitive alternative to Southern blot analysis for the diagnostic evaluation of lymphoid tissue biopsy specimens.

  6. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation

    DEFF Research Database (Denmark)

    Kivisäkk, P; Trebst, C; Liu, Z

    2002-01-01

    It is believed that chemokines and their receptors are involved in trafficking of T-cells to the central nervous system (CNS). The aim of the current study was to define the expression on cerebrospinal fluid (CSF) T-cells of six chemokine receptors associated with trafficking to sites...... is not sufficient for the trafficking of CD3+T-cells to the CSF. We hypothesize that CXCR3 is the principal inflammatory chemokine receptor involved in intrathecal accumulation of T-cells in MS. Through interactions with its ligands, CXCR3 is proposed to mediate retention of T-cells in the inflamed CNS....

  7. GRB2 Nucleates T Cell Receptor-Mediated LAT Clusters That Control PLC-γ1 Activation and Cytokine Production.

    Science.gov (United States)

    Bilal, Mahmood Yousif; Houtman, Jon C D

    2015-01-01

    GRB2 is a ubiquitously expressed adaptor protein required for signaling downstream of multiple receptors. To address the role of GRB2 in receptor-mediated signaling, the expression of GRB2 was suppressed in human CD4+ T cells and its role downstream of the T cell receptor (TCR) was examined. Interestingly, GRB2 deficient T cells had enhanced signaling from complexes containing the TCR. However, GRB2 deficient T cells had substantially reduced production of IL-2 and IFN-γ. This defect was attributed to diminished formation of linker for activation of T cells (LAT) signaling clusters, which resulted in reduced MAP kinase activation, calcium flux, and PLC-γ1 recruitment to LAT signaling clusters. Add back of wild-type GRB2, but not a novel N-terminal SH3 domain mutant, rescued LAT microcluster formation, calcium mobilization, and cytokine release, providing the first direct evidence that GRB2, and its ability to bind to SH3 domain ligands, is required for establishing LAT microclusters. Our data demonstrate that the ability of GRB2 to facilitate protein clusters is equally important in regulating TCR-mediated functions as its capacity to recruit effector proteins. This highlights that GRB2 regulates signaling downstream of adaptors and receptors by both recruiting effector proteins and regulating the formation of signaling complexes.

  8. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors.

    Science.gov (United States)

    Schenk, Ursula; Frascoli, Michela; Proietti, Michele; Geffers, Robert; Traggiai, Elisabetta; Buer, Jan; Ricordi, Camillo; Westendorf, Astrid M; Grassi, Fabio

    2011-03-01

    Extracellular nucleotides are pleiotropic regulators of mammalian cell function. Adenosine triphosphate (ATP) released from CD4(+) helper T cells upon stimulation of the T cell receptor (TCR) contributes in an autocrine manner to the activation of mitogen-activated protein kinase (MAPK) signaling through purinergic P2X receptors. Increased expression of p2rx7, which encodes the purinergic receptor P2X7, is part of the transcriptional signature of immunosuppressive CD4(+)CD25(+) regulatory T cells (T(regs)). Here, we show that the activation of P2X7 by ATP inhibits the suppressive potential and stability of T(regs). The inflammatory cytokine interleukin-6 (IL-6) increased ATP synthesis and P2X7-mediated signaling in T(regs), which induced their conversion to IL-17-secreting T helper 17 (T(H)17) effector cells in vivo. Moreover, pharmacological antagonism of P2X receptors promoted the cell-autonomous conversion of naïve CD4(+) T cells into T(regs) after TCR stimulation. Thus, ATP acts as an autocrine factor that integrates stimuli from the microenvironment and cellular energetics to tune the developmental and immunosuppressive program of the T cell in adaptive immune responses.

  9. T-cell receptor/CD28 engagement when combined with prostaglandin E2 treatment leads to potent activation of human T-cell leukemia virus type 1.

    Science.gov (United States)

    Dumais, Nancy; Paré, Marie-Eve; Mercier, Simon; Bounou, Salim; Marriot, Susan J; Barbeau, Benoit; Tremblay, Michel J

    2003-10-01

    Infection with human T-cell leukemia virus type 1 (HTLV-1) is characterized by long latency periods, indicating that viral gene expression is under tight control. There is presently little information available regarding the nature of extracellular stimuli that can transactivate the regulatory elements of HTLV-1 (i.e., long terminal repeat [LTR]). To gain insight into the biological importance of externally induced activation pathways in virus gene expression, primary and established T cells were transfected with HTLV-1-based reporter gene vectors and then were treated with agents that cross-linked the T-cell receptor (TCR) or the costimulatory CD28 molecule with prostaglandin E(2) (PGE(2)). We demonstrated that a potent induction of HTLV-1 LTR-driven reporter gene activity was seen only when the three agents were used in combination. Interestingly, similar observations were made when using C91/PL, a cell line that carries integrated HTLV-1 proviral DNA. This TCR-CD28-PGE(2)-mediated increase in virus transcription was dependent on protein kinase A activation and induction of the cAMP response element binding protein. Experiments with a mutated reporter construct further revealed the importance of the Tax-responsive elements in the HTLV-1 LTR in the observed up regulation of virus gene expression when TCR/CD28 engagement was combined with PGE(2) treatment. The protein tyrosine kinases p56(lck) and the transmembrane tyrosine phosphatase CD45 were all found to be involved in TCR-CD28-PGE(2)-directed increase in HTLV-1 LTR activity. This study presents new information on the possible mechanisms underlying reactivation of this retrovirus.

  10. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A [Maryland

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explains how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.

  11. T cells induce extended class II MHC compartments in dendritic cells in a Toll-like receptor-dependent manner.

    Science.gov (United States)

    Boes, Marianne; Bertho, Nicolas; Cerny, Jan; Op den Brouw, Marjolein; Kirchhausen, Tomas; Ploegh, Hidde

    2003-10-15

    Interaction of Ag-loaded dendritic cells with Ag-specific CD4 T cells induces the formation of long tubular class II MHC-positive compartments that polarize toward the T cell. We show involvement of a Toll-like receptor-mediated signal in this unusual form of intracellular class II MHC trafficking. First, wild-type dendritic cells loaded with LPS-free Ag failed to show formation of class II-positive tubules upon Ag-specific T cell engagement, but did so upon supplementation of the Ag with low concentrations of LPS. Second, Ag-loaded myeloid differentiation factor 88 -deficient dendritic cells failed to form these tubules upon interaction with T cells, regardless of the presence of LPS. Finally, inclusion of a cell-permeable peptide that blocks TNFR-associated factor 6 function, downstream of myeloid differentiation factor 88, blocked T cell-dependent tubulation. A Toll-like receptor-dependent signal is thus required to allow Ag-loaded dendritic cells to respond to T cell contact by formation of extended endosomal compartments. This activation does not result in massive translocation of class II MHC molecules to the cell surface.

  12. CD19-Targeted chimeric antigen receptor-modified T-cell immunotherapy for B-cell malignancies.

    Science.gov (United States)

    Turtle, C J; Riddell, S R; Maloney, D G

    2016-09-01

    Chimeric antigen receptors (CARs) comprise a tumor-targeting moiety, often in the form of a single chain variable fragment derived from a monoclonal antibody, fused to one or more intracellular T-cell signaling sequences. Lymphodepletion chemotherapy followed by infusion of T cells that are genetically modified to express a CD19-specific CAR is a promising therapy for patients with refractory CD19(+) B-cell malignancies, producing rates of complete remission that are remarkably high in acute lymphoblastic leukemia and encouraging in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Responses are often durable, although additional studies are needed to define the role of CAR-T cell immunotherapy in the context of other treatments. CAR-modified T-cell immunotherapy can be complicated by cytokine release syndrome and neurologic toxicity, which in most cases are manageable and reversible. Here we review recent clinical trial data and discuss issues for the field.

  13. Structure of the T cell receptor in a Ti alpha V beta 2, alpha V beta 8-positive T cell line

    DEFF Research Database (Denmark)

    Hou, X; Dietrich, J; Kuhlmann, J

    1994-01-01

    alpha V beta 2 in the lysate, and likewise, depleting the lysate of Ti alpha V beta with anti-V beta 2 mAb did not reduce the amount of Ti alpha V beta 8. Comodulation experiments showed that V beta 8 and V beta 2 did not comodulate with each other. Furthermore, functional tests demonstrated that Tc......The T cell receptor (TcR) is composed of at least six different polypeptide chains consisting of the clonotypic Ti heterodimer (Ti alpha beta or Ti gamma delta) and the noncovalently associated CD3 chains (CD3 gamma delta epsilon zeta). The exact number of subunits constituting the TcR is still...... not known; however, it has been suggested that each TcR contains two Ti dimers. To gain insight into the structure of the TcR we constructed a Ti alpha V beta 2, alpha V beta 8-positive T cell line which expressed the endogenous human TiV beta 8 and the transfected mouse TiV beta 2 both in association...

  14. Diagnosis of cutaneous T-cell lymphoma detecting T-cell receptor gamma chain gene monoclonality by denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Lapière, K; Dhaene, K; Matthieu, L; Hübner, R; Lambert, J; Van Marck, E

    1999-04-01

    Cutaneous T-cell lymphomas represent a group of malignant lymphoproliferative disorders characterised by the occurrence of a monoclonal population of T-lymphocytes. Diagnosis of early stages of this disease is a difficult challenge for both the dermatologist and the dermatopathologist. With the aid of the polymerase chain reaction it is possible to amplify specific regions of the T-cell receptor gamma gene. The amplification products can then be separated by denaturing gradient gel electrophoresis in order to detect a monoclonal population of T-lymphocytes in the infiltrate. We studied 4 patients with the clinicopathologic diagnosis of mycosis fungoides and 2 patients diagnosed as large plaque parapsoriasis. A monoclonal population was detected in 3 of the 4 mycosis fungoides cases and in 1 of the patients with large plaque parapsoriasis. This indicates that our analysis can help us establishing a diagnosis, and it can also help us to identify patients with a possible early stage of the disease, which clinically or histologically is not yet recognised as such.

  15. Evaluation of Epstein-Barr Virus Latent Membrane Protein 2 Specific T-Cell Receptors Driven by T-Cell Specific Promoters Using Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Dongchang Yang

    2011-01-01

    Full Text Available Transduction of latent membrane protein 2 (LMP2-specific T-cell receptors into activated T lymphocytes may provide a universal, MHC-restricted mean to treat EBV-associated tumors in adoptive immunotherapy. We compared TCR-specific promoters of distinct origin in lentiviral vectors, that is, Vβ6.7, delta, luria, and Vβ5.1 to evaluate TCR gene expression in human primary peripheral blood monocytes and T cell line HSB2. Vectors containing Vβ 6.7 promoter were found to be optimal for expression in PBMCs, and they maintained expression of the transduced TCRs for up to 7 weeks. These cells had the potential to recognize subdominant EBV latency antigens as measured by cytotoxicity and IFN-γ secretion. The nude mice also exhibited significant resistance to the HLA-A2 and LMP2-positive CNE tumor cell challenge after being infused with lentiviral transduced CTLs. In conclusion, LMP2-specific CTLs by lentiviral transduction have the potential use for treatment of EBV-related tumors.

  16. Cholera Toxin Inhibits the T-Cell Antigen Receptor-Mediated Increases in Inositol Trisphosphate and Cytoplasmic Free Calcium

    Science.gov (United States)

    Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.

    1986-08-01

    The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.

  17. Human immunodeficiency virus type 1 infection of antigen-specific CD4 cytotoxic T lymphocytes.

    Science.gov (United States)

    Robbins, P A; Roderiquez, G L; Peden, K W; Norcross, M A

    1998-11-01

    The effect of macrophage (M)-tropic and T cell line (T)-tropic human immunodeficiency virus type 1 (HIV-1) infection on antigen-specific CD4 cytotoxic T lymphocytes (CTLs) has been studied using a CD4 CTL line specific for a peptide from influenza B virus hemagglutinin. In the absence of antigen presentation, the production of CC chemokines was low. Both the M-tropic HIV-1 strain (HIV-1AD) and the T-tropic HIV-1 strain (HIV-1LAI) established productive infections in the CD4 CTLs, decreasing antigen-specific cytotoxicity. Peptide presented to the CD4 CTLs increased their secretion of RANTES and MIP-1beta, suppressed M-tropic HIV-1 replication, downmodulated CCR5 expression, and preserved CTL recognition. The suppression of M-tropic HIV-1 replication and downmodulation of the CCR5 receptor likely resulted from CC chemokine secretion since antibodies to CC chemokines restored M-tropic HIV-1 replication. Antigen presentation did not protect CD4 CTLs from T-tropic HIV-1 infection or preserve their CTL recognition. Thus, these CD4 CTLs do not make suppressor factors that inhibit the T-tropic HIV-1LAI isolate. The results indicate that these CD4 CTLs can either harbor or suppress M-tropic HIV-1 infection, depending on whether antigen is present. CD4 CTLs might therefore provide some protection in the early stages of HIV-1 infection when M-tropic isolates are present.

  18. A novel murine T-cell receptor targeting NY-ESO-1.

    Science.gov (United States)

    Rosati, Shannon F; Parkhurst, Maria R; Hong, Young; Zheng, Zhili; Feldman, Steven A; Rao, Mahadev; Abate-Daga, Daniel; Beard, Rachel E; Xu, Hui; Black, Mary A; Robbins, Paul F; Schrump, David A; Rosenberg, Steven A; Morgan, Richard A

    2014-04-01

    Cancer testis antigens, such as NY-ESO-1, are expressed in a variety of prevalent tumors and represent potential targets for T-cell receptor (TCR) gene therapy. DNA encoding a murine anti-NY-ESO-1 TCR gene (mTCR) was isolated from immunized HLA-A*0201 transgenic mice and inserted into a γ-retroviral vector. Two mTCR vectors were produced and used to transduce human PBL. Transduced cells were cocultured with tumor target cell lines and T2 cells pulsed with the NY-ESO-1 peptide, and assayed for cytokine release and cell lysis activity. The most active TCR construct was selected for production of a master cell bank for clinical use. mTCR-transduced PBL maintained TCR expression in short-term and long-term culture, ranging from 50% to 90% efficiency 7-11 days after stimulation and 46%-82% 10-20 days after restimulation. High levels of interferon-γ secretion were observed (1000-12000 pg/mL), in tumor coculture assays and recognition of peptide-pulsed cells was observed at 0.1 ng/mL, suggesting that the new mTCR had high avidity for antigen recognition. mTCR-transduced T cells also specifically lysed human tumor targets. In all assays, the mTCR was equivalent or better than the comparable human TCR. As the functional activity of TCR-transduced cells may be affected by the formation of mixed dimers, mTCRs, which are less likely to form mixed dimers with endogenous hTCRs, may be more effective in vivo. This new mTCR targeted to NY-ESO-1 represents a novel potential therapeutic option for adoptive cell-transfer therapy for a variety of malignancies.

  19. A practical approach to T-cell receptor cloning and expression.

    Directory of Open Access Journals (Sweden)

    Sébastien Wälchli

    Full Text Available Although cloning and expression of T-cell Receptors (TcRs has been performed for almost two decades, these procedures are still challenging. For example, the use of T-cell clones that have undergone limited expansion as starting material to limit the loss of interesting TcRs, must be weighed against the introduction of mutations by excess PCR cycles. The recent interest in using specific TcRs for cancer immunotherapy has, however, increased the demand for practical and robust methods to rapidly clone and express TcRs. Two main technologies for TcR cloning have emerged; the use of a set of primers specifically annealing to all known TcR variable domains, and 5'-RACE amplification. We here present an improved 5'-RACE protocol that represents a fast and reliable way to identify a TcR from 10(5 cells only, making TcR cloning feasible without a priori knowledge of the variable domain sequence. We further present a detailed procedure for the subcloning of TcRα and β chains into an expression system. We show that a recombination-based cloning protocol facilitates simple and rapid transfer of the TcR transgene into different expression systems. The presented comprehensive method can be performed in any laboratory with standard equipment and with a limited amount of starting material. We finally exemplify the straightforwardness and reliability of our procedure by cloning and expressing several MART-1-specific TcRs and demonstrating their functionality.

  20. From T cell "exhaustion" to anti-cancer immunity.

    Science.gov (United States)

    Verdeil, Grégory; Fuertes Marraco, Silvia A; Murray, Timothy; Speiser, Daniel E

    2016-01-01

    The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.

  1. Human HLA-A*02:01/CHM1+ allo-restricted T cell receptor transgenic CD8+ T cells specifically inhibit Ewing sarcoma growth in vitro and in vivo.

    Science.gov (United States)

    Blaeschke, Franziska; Thiel, Uwe; Kirschner, Andreas; Thiede, Melanie; Rubio, Rebeca Alba; Schirmer, David; Kirchner, Thomas; Richter, Günther H S; Mall, Sabine; Klar, Richard; Riddell, Stanley; Busch, Dirk H; Krackhardt, Angela; Grunewald, Thomas G P; Burdach, Stefan

    2016-07-12

    The endochondral bone protein Chondromodulin-I (CHM1) provides oncogene addiction in Ewing sarcoma (ES). We pre-clinically tested the targetability of CHM1 by TCR transgenic, allo-restricted, peptide specific T cells to treat ES. We previously generated allo-restricted wildtype CD8+ T cells directed against the ES specific antigen CHM1319 causing specific responses against ES. However, utilization of these cells in current therapy protocols is hampered due to high complexity in production, relatively low cell numbers, and rapid T cell exhaustion.In order to provide off-the-shelf products in the future, we successfully generated HLA-A*02:01-restricted T cell receptor (TCR) transgenic T cells directed against CHM1319 by retroviral transduction.After short-term expansion a 100% purified CHM1319-TCR-transgenic T cell population expressed a CD62L+/CD45RO and CD62L+/CD45RA+ phenotype. These cells displayed specific in vitro IFNg and granzyme B release in co-culture with HLA-A*02:01+ ES cell lines expressing CHM1. When co-injected with ES cells in Rag2-/-É£c-/- mice, CHM1-specific TCR-transgenic T cells significantly inhibited the formation of lung and liver metastases in contrast to control mice. Lungs and livers of representative mice displayed CD8+ T cell infiltration in the presence (control group treated with unspecific T cells) and in the absence (study group) of metastatic disease, respectively. Furthermore, mice receiving unspecific T cells showed signs of graft-versus-host-disease in contrast to all mice, receiving CHM1319-TCR-transgenic T cells.CHM1319 specific TCR-transgenic T cells were successfully generated causing anti-ES responses in vitro and in vivo. In the future, CHM1319-TCR-transgenic T cells may control minimal residual disease rendering donor lymphocyte infusions more efficacious and less toxic.

  2. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains

    DEFF Research Database (Denmark)

    Lefranc, Marie-Paule; Pommié, Christelle; Kaas, Quentin

    2005-01-01

    IMGT, the international ImMunoGeneTics information system (http://imgt.cines.fr) provides a common access to expertly annotated data on the genome, proteome, genetics and structure of immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins...

  3. N-terminal truncated human RAG1 proteins can direct T-cell receptor but not immunoglobulin gene rearrangements

    NARCIS (Netherlands)

    J.G. Noordzij; N.S. Verkaik (Nicole); N.G. Hartwig (Nico); R. de Groot (Ronald); D.C. van Gent (Dik); J.J.M. van Dongen (Jacques)

    2000-01-01

    textabstractThe proteins encoded by RAG1 and RAG2 can initiate gene recombination by site-specific cleavage of DNA in immunoglobulin and T-cell receptor (TCR) loci. We identified a new homozygous RAG1 gene mutation (631delT) that leads to a premature stop codon in the 5

  4. Loss of Receptor on Tuberculin-Reactive T-Cells Marks Active Pulmonary Tuberculosis

    OpenAIRE

    2007-01-01

    BACKGROUND: Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10) based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface ...

  5. Antigen-Experienced T cells Limit the Priming of Naïve T cells During Infection with Leishmania major1

    Science.gov (United States)

    Gray, Peter M.; Reiner, Steven L.; Smith, Deborah F.; Kaye, Paul M.; Scott, Phillip

    2009-01-01

    One mechanism to control immune responses following infection is to rapidly down regulate antigen presentation, which has been observed in acute viral and bacterial infections. Here we describe experiments designed to address whether antigen presentation is decreased after an initial response to Leishmania major. Naïve α-β-Leishmania-specific (ABLE) T cell receptor transgenic T cells were adoptively transferred into mice at various times after L. major infection to determine the duration of presentation of parasite-derived antigens. ABLE T cells responded vigorously at the initiation of infection, but the ability to prime these cells quickly diminished, independent of IL-10, regulatory T cells or antigen load. However, antigen-experienced clonal and polyclonal T cell populations could respond, indicating that the diminution in naïve ABLE cell responses was not due to lack of antigen presentation. Since naïve T cell priming could be restored by removal of the endogenous T cell population, or adoptive transfer of antigen pulsed dendritic cells, it appears that T cells that have previously encountered antigen during infection compete with naïve antigen-specific T cells. These results suggest that during L. major infection antigen-experienced T cells, rather than naïve T cells, may be primarily responsible for sustaining the immune response. PMID:16818747

  6. Increasing the ex vivo antigen-specific IFN-γ production in subpopulations of T cells and NKp46+ cells by anti-CD28, anti-CD49d and recombinant IL-12 costimulation in cattle vaccinated with recombinant proteins from Mycobacterium avium subspecies paratuberculosis

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Riber, Ulla; Davis, William C.;

    2013-01-01

    cells. Addition of rIL-12 induced a significant additive effect leading to a maximum increase in responder frequency of Ag-specific T cell subsets or NKp46+ cells with a heavy bias toward IFN-γ production by CD4 T cells. We provide the first description of using aCD28/aCD49d costimulation to potentiate...

  7. Gammadelta receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro.

    Science.gov (United States)

    Kahaleh, M B; Fan, P S; Otsuka, T

    1999-05-01

    In view of the documented perivascular mononuclear cell infiltration in the involved organs in scleroderma (SSc) and the reported accumulation of gammadelta-T cells in SSc skin and lung, we evaluated gammadelta-T cell interaction with endothelial cells (EC) in vitro. gammadelta- and alphabeta-T cells were isolated from BPMN of SSc patients with early diffuse disease and of matched control subjects by an immunomagnetic method after stimulation with mycobacterium lysate and interleukin-2 for 2 weeks. Lymphocyte adhesion, proliferation, and cytotoxicity to EC were investigated. SSc gammadelta-T cells adhered to cultured EC and proliferated at higher rates than control cells. Furthermore, significant EC cytotoxicity by SSc gammadelta was seen. The cytotoxicity was blocked by addition of anti-gammadelta-TCR antibody and by anti-granzyme A antibody but not by anti-MHC class I and II antibodies. Expression of granzyme A mRNA was seen in five/five SSc gammadelta-T cells and in one/five control cells. alphabeta-T cells from both SSc and control subjects were significantly less interactive with EC than gammadelta-T cells. The data demonstrate EC recognition by SSc gammadelta-T cells and propose gammadelta-T cells as a possible effector cell type in the immune pathogenesis of SSc.

  8. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR.

    Science.gov (United States)

    Kamimura, Daisuke; Katsunuma, Kokichi; Arima, Yasunobu; Atsumi, Toru; Jiang, Jing-jing; Bando, Hidenori; Meng, Jie; Sabharwal, Lavannya; Stofkova, Andrea; Nishikawa, Naoki; Suzuki, Hironao; Ogura, Hideki; Ueda, Naoko; Tsuruoka, Mineko; Harada, Masaya; Kobayashi, Junya; Hasegawa, Takanori; Yoshida, Hisahiro; Koseki, Haruhiko; Miura, Ikuo; Wakana, Shigeharu; Nishida, Keigo; Kitamura, Hidemitsu; Fukada, Toshiyuki; Hirano, Toshio; Murakami, Masaaki

    2015-06-17

    KDEL receptors are responsible for retrotransporting endoplasmic reticulum (ER) chaperones from the Golgi complex to the ER. Here we describe a role for KDEL receptor 1 (KDELR1) that involves the regulation of integrated stress responses (ISR) in T cells. Designing and using an N-ethyl-N-nitrosourea (ENU)-mutant mouse line, T-Red (naïve T-cell reduced), we show that a point mutation in KDELR1 is responsible for the reduction in the number of naïve T cells in this model owing to an increase in ISR. Mechanistic analysis shows that KDELR1 directly regulates protein phosphatase 1 (PP1), a key phosphatase for ISR in naïve T cells. T-Red KDELR1 does not associate with PP1, resulting in reduced phosphatase activity against eIF2α and subsequent expression of stress responsive genes including the proapoptotic factor Bim. These results demonstrate that KDELR1 regulates naïve T-cell homeostasis by controlling ISR.

  9. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever.

    Directory of Open Access Journals (Sweden)

    Luzia Maria de-Oliveira-Pinto

    Full Text Available Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+ cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH and CD127(LOW markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response

  10. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever.

    Science.gov (United States)

    de-Oliveira-Pinto, Luzia Maria; Marinho, Cíntia Ferreira; Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C; Alves, Ada M B; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by

  11. Genetic recombination within the human T-cell receptor. cap alpha. -chain gene complex

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, M.A.; Kindt, T.J.

    1987-12-01

    Genetic analyses of the human T-cell receptor (TCR) ..cap alpha..-chain genes indicate that recombination events may occur frequently within this gene complex. Examination of the inheritance of restriction fragment length polymorphisms (RFLP) detected by using probes for constant or variable region gene segments made it possible to assign TCR..cap alpha.. haplotypes to the 16 parents and 43 offspring of eight families studied. A total of six RFLP, three for the constant region and three for variable region segments, were examined in the present studies. Most enzyme and probe combinations tested revealed no polymorphism and those finally selected for the study showed limited polymorphism in that only two or, in one case, three allelic forms of the gene were seen. In spite of limited variability at this level, extensive heterogeneity was observed for the combinations of markers present in haplotypes, suggesting that frequent recombination events have occurred. Most strikingly, multiple combinations of RFLP occurring in close proximity of the TCR..cap alpha.. constant region gene were observed in this study. A high recombination frequency for the TCR..cap alpha.. gene complex is further supported by the observation that two children, one in each of two families, inherited recombinant TCR..cap alpha.. haplotypes.

  12. Genomic organization of the human T-cell antigen-receptor alpha/delta locus.

    Science.gov (United States)

    Satyanarayana, K; Hata, S; Devlin, P; Roncarolo, M G; De Vries, J E; Spits, H; Strominger, J L; Krangel, M S

    1988-11-01

    Two clusters of overlapping cosmid clones comprising about 100 kilobases (kb) at the human T-cell antigen-receptor alpha/delta locus were isolated from a genomic library. The structure of the germ-line V delta 1 variable gene segment was determined. V delta 1 is located 8.5 kb downstream of the V alpha 13.1 gene segment, and both V segments are arranged in the same transcriptional orientation. The V alpha 17.1 segment is located between V delta 1 and the D delta, J delta, C delta region (containing the diversity, joining, and constant gene segments). Thus, V delta and V alpha segments are interspersed along the chromosome. The germ-line organization of the D delta 2, J delta 1, and J delta 2 segments was determined. Linkage of C delta to the J alpha region was established by identification of J alpha segments within 20 kb downstream of C delta. The organization of the locus was also analyzed by field-inversion gel electrophoresis. The unrearranged V delta 1 and D delta, J delta, C delta regions are quite distant from each other, apparently separated by a minimum of 175-180 kb.

  13. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination.

    Science.gov (United States)

    Pageon, Sophie V; Tabarin, Thibault; Yamamoto, Yui; Ma, Yuanqing; Bridgeman, John S; Cohnen, André; Benzing, Carola; Gao, Yijun; Crowther, Michael D; Tungatt, Katie; Dolton, Garry; Sewell, Andrew K; Price, David A; Acuto, Oreste; Parton, Robert G; Gooding, J Justin; Rossy, Jérémie; Rossjohn, Jamie; Gaus, Katharina

    2016-09-13

    Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR-CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR-CD3 complexes. We found that only TCR-CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR-pMHC affinity determined the density of TCR-CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR-CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination.

  14. Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor

    Science.gov (United States)

    Kumar, Amit; Delogu, Francesco

    2017-02-01

    The present work focuses on the dynamical aspects of cross-reactivity between myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient suffering from multiple sclerosis (MS). The study aims at highlighting the chemical interactions underlying recognition mechanisms between TCR and the peptides presented by Major Histocompatibility Complex (MHC) proteins, which form a crucial component in adaptive immune response against foreign antigens. Since the ability of a TCR to recognize different peptide antigens presented by MHC depends on its cross-reactivity, we used molecular dynamics methods to obtain atomistic detail on TCR-peptide-MHC complexes. Our results show how the dynamical basis of Hy.1B11 TCR’s cross-reactivity is rooted in a similar bridging interaction pattern across the TCR-peptide-MHC interface. Our simulations confirm the importance of TCR CDR3α E98 residue interaction with MHC and a predominant role of P6 peptide residue in MHC binding affinity. Altogether, our study provides energetic and dynamical insights into factors governing peptide recognition by the cross-reactive Hy.1B11 TCR, found in MS patient.

  15. T-cell receptor polymorphisms in Tlingit Indians with rheumatoid arthritis.

    Science.gov (United States)

    Charmley, P; Nelson, J L; Hansen, J A; Branchaud, A; Barrington, R A; Templin, D; Boyer, G; Lanier, A P; Concannon, P

    1994-01-01

    Rheumatoid arthritis (RA) develops as a result of the interaction of both genetic and environmental factors. Among the genes in humans that have been suggested as candidate susceptibility genes in RA are those encoding the T cell receptor for antigen (TCR). A high prevalence and early age of onset of RA has previously been reported in Alaskan Tlingit Indians. In this study, the frequency of seven different restriction fragment length polymorphisms (RFLPs) in the TCR alpha and beta gene complexes were measured in a population of Alaskan Tlingit Indians. No statistically significant differences were noted when the frequencies of these RFLPs were compared between Tlingits with RA and healthy controls (p > 0.05). These results do not support the hypothesis of an RA-susceptibility allele in the vicinity of these TCR alpha or beta genes. Since TCR RFLPs have not been extensively studied in native American populations, TCR polymorphism frequencies in the Tlingits were also compared to the frequencies observed in a second control group of healthy Caucasians. Statistically significant differences were observed in these comparisons implying a different distribution of individuals in these populations with different TCR repertoires.

  16. Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor

    Science.gov (United States)

    Kumar, Amit; Delogu, Francesco

    2017-01-01

    The present work focuses on the dynamical aspects of cross-reactivity between myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient suffering from multiple sclerosis (MS). The study aims at highlighting the chemical interactions underlying recognition mechanisms between TCR and the peptides presented by Major Histocompatibility Complex (MHC) proteins, which form a crucial component in adaptive immune response against foreign antigens. Since the ability of a TCR to recognize different peptide antigens presented by MHC depends on its cross-reactivity, we used molecular dynamics methods to obtain atomistic detail on TCR-peptide-MHC complexes. Our results show how the dynamical basis of Hy.1B11 TCR’s cross-reactivity is rooted in a similar bridging interaction pattern across the TCR-peptide-MHC interface. Our simulations confirm the importance of TCR CDR3α E98 residue interaction with MHC and a predominant role of P6 peptide residue in MHC binding affinity. Altogether, our study provides energetic and dynamical insights into factors governing peptide recognition by the cross-reactive Hy.1B11 TCR, found in MS patient. PMID:28195200

  17. Isolation of anti-T cell receptor scFv mutants by yeast surface display.

    Science.gov (United States)

    Kieke, M C; Cho, B K; Boder, E T; Kranz, D M; Wittrup, K D

    1997-11-01

    Yeast surface display and sorting by flow cytometry have been used to isolate mutants of an scFv that is specific for the Vbeta8 region of the T cell receptor. Selection was based on equilibrium binding by two fluorescently labeled probes, a soluble Vbeta8 domain and an antibody to the c-myc epitope tag present at the carboxy-terminus of the scFv. The mutants that were selected in this screen included a scFv with threefold increased affinity for the Vbeta8 and scFv clones that were bound with reduced affinities by the anti-c-myc antibody. The latter finding indicates that the yeast display system may be used to map conformational epitopes, which cannot be revealed by standard peptide screens. Equilibrium antigen binding constants were estimated within the surface display format, allowing screening of isolated mutants without necessitating subcloning and soluble expression. Only a relatively small library of yeast cells (3 x 10[5]) displaying randomly mutagenized scFv was screened to identify these mutants, indicating that this system will provide a powerful tool for engineering the binding properties of eucaryotic secreted and cell surface proteins.

  18. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment.

    Directory of Open Access Journals (Sweden)

    Keith R Miller

    Full Text Available A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2, with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with (64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.

  19. Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma.

    Science.gov (United States)

    Chen, Cheng; Li, Kesang; Jiang, Hua; Song, Fei; Gao, Huiping; Pan, Xiaorong; Shi, Bizhi; Bi, Yanyu; Wang, Huamao; Wang, Hongyang; Li, Zonghai

    2017-04-01

    Adoptive immunotherapy leveraging chimeric antigen receptor-modified T (CAR-T) cells holds great promise for the treatment of cancer. However, tumor-associated antigens often have low expression levels in normal tissues, which can cause on-target, off-tumor toxicity. Recently, we reported that GPC3-targeted CAR-T cells could eradicate hepatocellular carcinoma (HCC) xenografts in mice. However, it remains unknown whether on-target, off-tumor toxicity can occur. Therefore, we proposed that dual-targeted CAR-T cells co-expressing glypican-3 (GPC3) and asialoglycoprotein receptor 1 (ASGR1) (a liver tissue-specific protein)-targeted CARs featuring CD3ζ and 28BB (containing both CD28 and 4-1BB signaling domains), respectively, may have reduced on-target, off-tumor toxicity. Our results demonstrated that dual-targeted CAR-T cells caused no cytotoxicity to ASGR1(+)GPC3(-) tumor cells, but they exhibited a similar cytotoxicity against GPC3(+)ASGR1(-) and GPC3(+)ASGR1(+) HCC cells in vitro. We found that dual-targeted CAR-T cells showed significantly higher cytokine secretion, proliferation and antiapoptosis ability against tumor cells bearing both antigens than single-targeted CAR-T cells in vitro. Furthermore, the dual-targeted CAR-T cells displayed potent growth suppression activity on GPC3(+)ASGR1(+) HCC tumor xenografts, while no obvious growth suppression was seen with single or double antigen-negative tumor xenografts. Additionally, the dual-targeted T cells exerted superior anticancer activity and persistence against single-targeted T cells in two GPC3(+)ASGR1(+) HCC xenograft models. Together, T cells carrying two complementary CARs against GPC3 and ASGR1 may reduce the risk of on-target, off-tumor toxicity while maintaining relatively potent antitumor activities on GPC3(+)ASGR1(+) HCC.

  20. Uncoupling of T Cell Receptor Zeta Chain Function during the Induction of Anergy by the Superantigen, Staphylococcal Enterotoxin A

    Directory of Open Access Journals (Sweden)

    William D. Cornwell

    2010-06-01

    Full Text Available Staphylococcus aureus enterotoxins have immunomodulatory properties. In this study, we show that Staphylococcal enterotoxin A (SEA induces a strong proliferative response in a murine T cell clone independent of MHC class II bearing cells. SEA stimulation also induces a state of hypo-responsiveness (anergy. We characterized the components of the T cell receptor (TCR during induction of anergy by SEA. Most interestingly, TCR zeta chain phosphorylation was absent under SEA anergizing conditions, which suggests an uncoupling of zeta chain function. We characterize here a model system for studying anergy in the absence of confounding costimulatory signals.

  1. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires

    DEFF Research Database (Denmark)

    Strønen, Erlend; Toebes, Mireille; Kelderman, Sander

    2016-01-01

    Accumulating evidence suggests that clinically efficacious cancer immunotherapies are driven by T cell reactivity against DNA mutation-derived neoantigens. However, among the large number of predicted neoantigens, only a minority is recognized by autologous patient T cells, and strategies...... a rationale for the use of such "outsourced" immune responses in cancer immunotherapy....

  2. Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bingfen Yang

    Full Text Available CD244 (2B4 is a member of the signaling lymphocyte activation molecule (SLAM family of immune cell receptors and it plays an important role in modulating NK cell and CD8(+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4(+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4(+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4(+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4(+ T cells, CD244/2B4-bright CD4(+ T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4(+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4(+ T cell function.

  3. Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells.

    Science.gov (United States)

    Yin, Wenjie; Gorvel, Laurent; Zurawski, Sandra; Li, Dapeng; Ni, Ling; Duluc, Dorothée; Upchurch, Katherine; Kim, JongRok; Gu, Chao; Ouedraogo, Richard; Wang, Zhiqing; Xue, Yaming; Joo, HyeMee; Gorvel, Jean-Pierre; Zurawski, Gerard; Oh, SangKon

    2016-03-01

    Dendritic cells (DCs) are major antigen-presenting cells that can efficiently prime and cross-prime antigen-specific T cells. Delivering antigen to DCs via surface receptors is thus an appealing strategy to evoke cellular immunity. Nonetheless, which DC surface receptor to target to yield the optimal CD8(+) and CD4(+) T cell responses remains elusive. Herein, we report the superiority of CD40 over 9 different lectins and scavenger receptors at evoking antigen-specific CD8(+) T cell responses. However, lectins (e.g., LOX-1 and Dectin-1) were more efficient than CD40 at eliciting CD4(+) T cell responses. Common and distinct patterns of subcellular and intracellular localization of receptor-bound αCD40, αLOX-1 and αDectin-1 further support their functional specialization at enhancing antigen presentation to either CD8(+) or CD4(+) T cells. Lastly, we demonstrate that antigen targeting to CD40 can evoke potent antigen-specific CD8(+) T cell responses in human CD40 transgenic mice. This study provides fundamental information for the rational design of vaccines against cancers and viral infections.

  4. Breast and other cancer dormancy as a therapeutic endpoint: speculative recombinant T cell receptor ligand (RTL adjuvant therapy worth considering?

    Directory of Open Access Journals (Sweden)

    Mehrishi Jitendra N

    2010-06-01

    Full Text Available Abstract Background Most individuals who died of trauma were found to harbour microscopic primary cancers at autopsies. Surgical excision of the primary tumour, unfortunately, seems to disturb tumour dormancy in over half of all metastatic relapses. Presentation of the hypothesis A recently developed immune model suggested that the evolutionary pressure driving the creation of a T cell receptor repertoire was primarily the homeostatic surveillance of the genome. The model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected T cell receptors and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. The repertoire is maintained by continuous peripheral stimulation via soluble forms of self-peptide-presenting major histocompatibility complex molecules governed by the law of mass action. The model states that foreign peptides inhibit the complementary interactions between the major histocompatibility complexes and T cell receptors. Since the vast majority of clinically detected cancers present self-peptides the model assumes that tumour cells are, paradoxically, under homeostatic T cell control. The novelty of our hypothesis therefore is that resection of the primary tumour mass is perceived as loss of 'normal' tissue cells. Consequently, T cells striving to reconstitute homeostasis stimulate rather than inhibit the growth of dormant tumour cells and avascular micrometastases. Here we suggest that such kick-start growths could be prevented by a recombinant T cell receptor ligand therapy that modifies T cell behaviour through a partial activation mechanism. Testing the hypothesis The homeostatic T cell regulation of tumours can be tested in a tri-transgenic mice model engineered to express potent oncogenes in a doxycycline-dependent manner. We suggest seeding dissociated

  5. Cannabinoid receptor 2-mediated attenuation of CXCR4-tropic HIV infection in primary CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Cristina Maria Costantino

    Full Text Available Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1R and CB(2R and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2R, but not CB(1R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.

  6. Inhibitory receptor expression depends more dominantly on differentiation and activation than exhaustion of human CD8 T cells

    Directory of Open Access Journals (Sweden)

    Amandine eLegat

    2013-12-01

    Full Text Available Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed exhaustion. Expression of inhibitory Receptors (iRs is often regarded as a hallmark of exhaustion. Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160 and KLRG-1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term (chronic antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking upregulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells.

  7. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro.

    Science.gov (United States)

    Gargett, Tessa; Fraser, Cara K; Dotti, Gianpietro; Yvon, Eric S; Brown, Michael P

    2015-01-01

    Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors.

  8. Nippostrongylus-induced intestinal hypercontractility requires IL-4 receptor alpha-responsiveness by T cells in mice.

    Directory of Open Access Journals (Sweden)

    Saskia Schmidt

    Full Text Available Gut-dwelling helminthes induce potent IL-4 and IL-13 dominated type 2 T helper cell (T(H2 immune responses, with IL-13 production being essential for Nippostrongylus brasiliensis expulsion. This T(H2 response results in intestinal inflammation associated with local infiltration by T cells and macrophages. The resulting increased IL-4/IL-13 intestinal milieu drives goblet cell hyperplasia, alternative macrophage activation and smooth muscle cell hypercontraction. In this study we investigated how IL-4-promoted T cells contributed to the parasite induced effects in the intestine. This was achieved using pan T cell-specific IL-4 receptor alpha-deficient mice (iLck(creIL-4Rα(-/lox and IL-4Rα-responsive control mice. Global IL-4Rα(-/- mice showed, as expected, impaired type 2 immunity to N. brasiliensis. Infected T cell-specific IL-4Rα-deficient mice showed comparable worm expulsion, goblet cell hyperplasia and IgE responses to control mice. However, impaired IL-4-promoted T(H2 cells in T cell-specific IL-4Rα deficient mice led to strikingly reduced IL-4 production by mesenteric lymph node CD4(+ T cells and reduced intestinal IL-4 and IL-13 levels, compared to control mice. This reduced IL-4/IL-13 response was associated with an impaired IL-4/IL-13-mediated smooth muscle cell hypercontractility, similar to that seen in global IL-4Rα(-/- mice. These results demonstrate that IL-4-promoted T cell responses are not required for the resolution of a primary N. brasiliensis infection. However, they do contribute significantly to an important physiological manifestation of helminth infection; namely intestinal smooth muscle cell-driven hypercontractility.

  9. Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma

    Science.gov (United States)

    Chodon, Thinle; Comin-Anduix, Begonya; Chmielowski, Bartosz; Koya, Richard C; Wu, Zhongqi; Auerbach, Martin; Ng, Charles; Avramis, Earl; Seja, Elizabeth; Villanueva, Arturo; McCannel, Tara A.; Ishiyama, Akira; Czernin, Johannes; Radu, Caius G.; Wang, Xiaoyan; Gjertson, David W.; Cochran, Alistair J.; Cornetta, Kenneth; Wong, Deborah J.L.; Kaplan-lefko, Paula; Hamid, Omid; Samlowski, Wolfram; Cohen, Peter A.; Daniels, Gregory A.; Mukherji, Bijay; Yang, Lili; Zack, Jerome A.; Kohn, Donald B.; Heath, James R.; Glaspy, John A.; Witte, Owen N.; Baltimore, David; Economou, James S.; Ribas, Antoni

    2014-01-01

    Purpose It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. Experimnetal Design A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. Results 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Conclusion Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses. PMID:24634374

  10. Limited T-cell receptor diversity in liver-infiltrating lymphocytes from patients with primary biliary cirrhosis.

    Science.gov (United States)

    Diu, A; Moebius, U; Ferradini, L; Genevée, C; Roman-Roman, S; Claudon, M; Delorme, D; Meuer, S; Hercend, T; Praz, F

    1993-10-01

    Primary biliary cirrhosis is associated with the presence of high-titer anti-mitochondrial autoantibodies as well as T-cell infiltration of the liver, suggesting the involvement of autoimmune mechanisms. We have studied here the sequences of T-cell receptor alpha and beta chains expressed by T-cell clones derived from liver-infiltrating lymphocytes of two patients with primary biliary cirrhosis. Among the eight clones studied from the first patient, four expressed the same member of the V beta 6 subfamily, associated with either V alpha 4 (three clones) or V alpha 21 (one clone) gene segment. Two other clones expressed an identical V beta 12 transcript, and two in-frame alpha chain transcripts, involving V alpha 2 and V alpha 7 gene segments. From the second patient, eight out of the nine clones were found to rearrange V beta 17-J beta 2.1 and V alpha 3 gene segments. The remaining clone expressed distinct T-cell receptor chains, involving V beta 9 and V alpha 11 gene segments. As deduced from the analysis of their junctional regions, the eight T-cell clones expressing V beta 17/V alpha 3 gene segments derived from only three different T cells. Furthermore, conserved amino acid motifs were found to be encoded in both the alpha and the beta-chain junctional regions. Together, these data show a local amplification of unique T lymphocytes in both patients. The use of identical V beta J beta and V alpha gene segments with similar junctional sequences by three different cells, evidenced in one of the two cases, strengthens the view that liver-infiltrating T lymphocytes are selected locally by autoantigens in PBC.

  11. Physical and functional association between thymic shared antigen-1/stem cell antigen-2 and the T cell receptor complex.

    Science.gov (United States)

    Kosugi, A; Saitoh, S; Noda, S; Miyake, K; Yamashita, Y; Kimoto, M; Ogata, M; Hamaoka, T

    1998-05-15

    Thymic shared antigen-1 (TSA-1)/stem cell Ag-2 (Sca-2) is a glycosylphosphatidylinositol (GPI)-anchored antigen expressed on lymphocytes. We have previously demonstrated that a signal via TSA-1/Sca-2 inhibits T cell receptor (TCR)-mediated T cell activation and apoptosis. To elucidate a molecular mechanism for TSA-1-mediated modulation of the TCR-signaling pathway, we examined whether TSA-1 is physically coupled to the TCR in the present study. TSA-1 was clearly associated with CD3zeta chains in T cell hybridomas, activated T cells, and COS-7 cells transfected with TSA-1 and CD3zeta cDNA. The physical association was confirmed on the surface of T cells in immunoprecipitation and confocal microscopy. The analysis using stable and transient transfectants expressing a transmembrane form of TSA-1 revealed that the association of CD3zeta did not require the GPI anchor of TSA-1. Finally, tyrosine phosphorylation of CD3zeta chains was induced after stimulation with anti-TSA-1, suggesting that a functional association between these two molecules also exists. These results imply that the physical association to CD3zeta underlies a regulatory role of TSA-1/Sca-2 in the TCR-signaling pathway.

  12. Characterization of T cell receptor assembly and expression in a Ti gamma delta-positive cell line

    DEFF Research Database (Denmark)

    Kuhlmann, J; Caspar-Bauguil, S; Geisler, C;

    1993-01-01

    of the various components of this multimeric protein complex is still not fully understood. In this report, the human leukemic T cell line Lyon which expresses a Ti-gamma delta/CD3 complex, was characterized and compared to another human leukemic T cell line Jurkat (Ti-alpha beta/CD3). Membrane TCR-/CD3......T cell antigen receptor (TcR) heterodimers of both the Ti-alpha beta and Ti-gamma delta types are expressed at the surface of T cells noncovalently associated with the CD3 complex composed of the monomorphic chains gamma, delta, epsilon and zeta. The structural relationship and assembly......- variants of the T cell Lyon were induced and found to produce all of the Ti/CD3 components, with the exception of Ti-delta. Biochemical analysis indicated that: (1) Ti-gamma/CD3 gamma, delta, epsilon complexes were formed in the endoplasmic reticulum in the absence of Ti-delta; (2) the CD3-zeta chain did...

  13. Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    2011-02-01

    Full Text Available Abstract Background Recent advances in massively parallel sequencing have increased the depth at which T cell receptor (TCR repertoires can be probed by >3log10, allowing for saturation sequencing of immune repertoires. The resolution of this sequencing is dependent on its accuracy, and direct assessments of the errors formed during high throughput repertoire analyses are limited. Results We analyzed 3 monoclonal TCR from TCR transgenic, Rag-/- mice using Illumina® sequencing. A total of 27 sequencing reactions were performed for each TCR using a trifurcating design in which samples were divided into 3 at significant processing junctures. More than 20 million complementarity determining region (CDR 3 sequences were analyzed. Filtering for lower quality sequences diminished but did not eliminate sequence errors, which occurred within 1-6% of sequences. Erroneous sequences were pre-dominantly of correct length and contained single nucleotide substitutions. Rates of specific substitutions varied dramatically in a position-dependent manner. Four substitutions, all purine-pyrimidine transversions, predominated. Solid phase amplification and sequencing rather than liquid sample amplification and preparation appeared to be the primary sources of error. Analysis of polyclonal repertoires demonstrated the impact of error accumulation on data parameters. Conclusions Caution is needed in interpreting repertoire data due to potential contamination with mis-sequence reads. However, a high association of errors with phred score, high relatedness of erroneous sequences with the parental sequence, dominance of specific nt substitutions, and skewed ratio of forward to reverse reads among erroneous sequences indicate approaches to filter erroneous sequences from repertoire data sets.

  14. Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells.

    Science.gov (United States)

    Sasaki, Katsuhiro; Takada, Kensuke; Ohte, Yuki; Kondo, Hiroyuki; Sorimachi, Hiroyuki; Tanaka, Keiji; Takahama, Yousuke; Murata, Shigeo

    2015-01-01

    Positive selection in the thymus provides low-affinity T-cell receptor (TCR) engagement to support the development of potentially useful self-major histocompatibility complex class I (MHC-I)-restricted T cells. Optimal positive selection of CD8(+) T cells requires cortical thymic epithelial cells that express β5t-containing thymoproteasomes (tCPs). However, how tCPs govern positive selection is unclear. Here we show that the tCPs produce unique cleavage motifs in digested peptides and in MHC-I-associated peptides. Interestingly, MHC-I-associated peptides carrying these tCP-dependent motifs are enriched with low-affinity TCR ligands that efficiently induce the positive selection of functionally competent CD8(+) T cells in antigen-specific TCR-transgenic models. These results suggest that tCPs contribute to the positive selection of CD8(+) T cells by preferentially producing low-affinity TCR ligand peptides.

  15. Alphavirus replicon particles acting as adjuvants promote CD8+ T cell responses to co-delivered antigen.

    Science.gov (United States)

    Thompson, Joseph M; Whitmore, Alan C; Staats, Herman F; Johnston, Robert E

    2008-08-05

    Alphavirus replicon particles induce strong antibody and CD8+ T cell responses to expressed antigens in numerous experimental systems. We have recently demonstrated that Venezuelan equine encephalitis virus replicon particles (VRP) possess adjuvant activity for systemic and mucosal antibody responses. In this report, we demonstrate that VRP induced an increased and balanced serum IgG subtype response to co-delivered antigen, with simultaneous induction of antigen-specific IgG1 and IgG2a antibodies, and increased both systemic and mucosal antigen-specific CD8+ T cell responses, as measured by an IFN-gamma ELISPOT assay. Additionally, VRP further increased antigen-specific T cell immunity in an additive fashion following co-delivery with the TLR ligand, CpG DNA. VRP infection led to recruitment of CD8+ T cells into the mucosal compartment, possibly utilizing the mucosal homing receptor, as this integrin was upregulated on CD8+ T cells in the draining lymph node of VRP-infected animals, where VRP-infected dendritic cells reside. This newly recognized ability of VRP to mediate increased T cell response towards co-delivered antigen provides the potential to both define the molecular basis of alphavirus-induced immunity, and improve alphavirus-based vaccines.

  16. Increasing the ex vivo antigen-specific IFN-γ production in subpopulations of T cells and NKp46+ cells by anti-CD28, anti-CD49d and recombinant IL-12 costimulation in cattle vaccinated with recombinant proteins from Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Thakur, Aneesh; Riber, Ulla; Davis, William C; Jungersen, Gregers

    2013-10-01

    T cells, which encounter specific antigen (Ag), require additional signals to mount a functional immune response. Here, we demonstrate activation of signal 2, by anti-CD28 mAb (aCD28) and other costimulatory molecules (aCD49d, aCD5), and signal 3, by recombinant IL-12, enhance Ag-specific IFN-γ secretion by CD4, CD8, γδ T cells and NK cells. Age matched male jersey calves, experimentally infected with Mycobacterium avium subsp. paratuberculosis (MAP), were vaccinated with a cocktail of recombinant MAP proteins or left unvaccinated. Vaccine induced ex vivo recall responses were measured through Ag-specific IFN-γ production by ELISA and flow cytometry. There was a significant increase in production of IFN-γ by T cell subsets or NKp46+ cells cultured in the presence of Ag and aCD28/aCD49d. The increase was accompanied by an increase in the integrated median fluorescence intensity (iMFI) of activated T cells. Addition of rIL-12 induced a significant additive effect leading to a maximum increase in responder frequency of Ag-specific T cell subsets or NKp46+ cells with a heavy bias toward IFN-γ production by CD4 T cells. We provide the first description of using aCD28/aCD49d costimulation to potentiate an Ag-specific increase in the production of IFN-γ in bovine immunology. The study also shows the degree of signaling in T cells is regulated by the costimulatory environment.

  17. T Cell Receptors and the Evolution of Recognition Mechanisms in Immunity.

    Science.gov (United States)

    Inchley, C. J.

    1986-01-01

    Discusses recent advances in the study of mammalian immunology. Explains the roles of two families of lymphocytes, the B cells and T cells. Also examines evolutionary mechanisms related to the immune system. (ML)

  18. Diversity, molecular characterization and expression of T cell receptor γ in a teleost fish, the sea bass (Dicentrarchus labrax, L.

    Directory of Open Access Journals (Sweden)

    Francesco Buonocore

    Full Text Available Two lineages of T cells, expressing either the αβ T cell receptor (TR or the γδ TR, exist in Gnathostomes. The latter type of T cells account for 1-10 % of T cells in blood and up to 30 % in the small intestine. They may recognize unconventional antigens (phosphorylated microbial metabolites, lipid antigens without the need of major histocompatibility class I (MH1 or class II (MH2 presentation. In this work we have described cloning and structural characterization of TR -chain (TRG from the teleost Dicentrarchus labrax. Further, by means of quantitative PCR analysis, we analyzed TRG expression levels both in poly I:C stimulated leukocytes in vitro, and following infection with betanodavirus in vivo. Two full length cDNAs relative to TRG, with the highest peptide and nucleotide identity with Japanese flounder, were identified. A multiple alignment analysis showed the conservation of peptides fundamental for TRG biological functions, and of the FGXG motif in the FR4 region, typical of most TR and immunoglobulin light chains. A 3D structure consisting of two domains mainly folded as beta strands with a sandwich architecture for each domain was also reported. TRG CDR3 of 8-18 AA in length and diversity in the TRG rearrangements expressed in thymus and intestine for a given V/C combination were evidenced by junction length spectratyping. TRG mRNA expression levels were high in basal conditions both in thymus and intestine, while in kidney and gut leukocytes they were up-regulated after in vitro stimulation by poly I:C. Finally, in juveniles the TRG expression levels were up-regulated in the head kidney and down-regulated in intestine after in vivo infection with betanodavirus. Overall, in this study the involvement of TRG-bearing T cells during viral stimulation was described for the first time, leading to new insights for the identification of T cell subsets in fish.

  19. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma.

    Science.gov (United States)

    Ali, Syed Abbas; Shi, Victoria; Maric, Irina; Wang, Michael; Stroncek, David F; Rose, Jeremy J; Brudno, Jennifer N; Stetler-Stevenson, Maryalice; Feldman, Steven A; Hansen, Brenna G; Fellowes, Vicki S; Hakim, Frances T; Gress, Ronald E; Kochenderfer, James N

    2016-09-29

    Therapies with novel mechanisms of action are needed for multiple myeloma (MM). B-cell maturation antigen (BCMA) is expressed in most cases of MM. We conducted the first-in-humans clinical trial of chimeric antigen receptor (CAR) T cells targeting BCMA. T cells expressing the CAR used in this work (CAR-BCMA) specifically recognized BCMA-expressing cells. Twelve patients received CAR-BCMA T cells in this dose-escalation trial. Among the 6 patients treated on the lowest 2 dose levels, limited antimyeloma activity and mild toxicity occurred. On the third dose level, 1 patient obtained a very good partial remission. Two patients were treated on the fourth dose level of 9 × 10(6) CAR(+) T cells/kg body weight. Before treatment, the first patient on the fourth dose level had chemotherapy-resistant MM, making up 90% of bone marrow cells. After treatment, bone marrow plasma cells became undetectable by flow cytometry, and the patient's MM entered a stringent complete remission that lasted for 17 weeks before relapse. The second patient on the fourth dose level had chemotherapy-resistant MM making up 80% of bone marrow cells before treatment. Twenty-eight weeks after this patient received CAR-BCMA T cells, bone marrow plasma cells were undetectable by flow cytometry, and the serum monoclonal protein had decreased by >95%. This patient is in an ongoing very good partial remission. Both patients treated on the fourth dose level had toxicity consistent with cytokine-release syndrome including fever, hypotension, and dyspnea. Both patients had prolonged cytopenias. Our findings demonstrate antimyeloma activity of CAR-BCMA T cells. This trial was registered to www.clinicaltrials.gov as #NCT02215967.

  20. CD19-Chimeric Antigen Receptor T Cells for Treatment of Chronic Lymphocytic Leukaemia and Acute Lymphoblastic Leukaemia

    DEFF Research Database (Denmark)

    Lorentzen, C L; thor Straten, Per

    2015-01-01

    Adoptive cell therapy (ACT) for cancer represents a promising new treatment modality. ACT based on the administration of cytotoxic T cells genetically engineered to express a chimeric antigen receptor (CAR) recognizing CD19 expressed by B cell malignancies has been shown to induce complete lasting......-associated toxicities, which needs attention. Herein we review current data and discuss key aspects of this powerful approach to treat and potentially cure B cell malignancies....

  1. Targeting Hepatitis B Virus-Infected Cells with a T-Cell Receptor-Like Antibody▿ †

    Science.gov (United States)

    Sastry, Konduru S. R.; Too, Chien Tei; Kaur, Kaval; Gehring, Adam J.; Low, Lionel; Javiad, Alia; Pollicino, Teresa; Li, Li; Kennedy, Patrick T. F.; Lopatin, Uri; Macary, Paul A.; Bertoletti, Antonio

    2011-01-01

    Virus-specific CD8 T cells are activated when their T-cell receptors (TCRs) recognize the specific viral peptide/major histocompatibility complex (MHC) class I (pMHC) complexes present on the surface of infected cells. Antibodies able to recognize the specific pMHC can mimic TCR specificity and both represent a valuable biological tool to visualize pMHC complexes on infected cells and serve as a delivery system for highly targeted therapies. To evaluate these possibilities, we created a monoclonal antibody able to specifically recognize a hepatitis B virus (HBV) envelope epitope (Env at positions 183 to 91 [Env183-91]) presented by the HLA-A201 molecule, and we tested its ability to recognize HBV-infected hepatocytes and to deliver a cargo to a specific target. We demonstrate that this antibody detects and visualizes the processed product of HBV proteins produced in naturally HBV-infected cells, is not inhibited by soluble HBV proteins present in patient sera, and mediates the intracellular delivery of a fluorescent molecule to target cells. Additionally, compared to CD8 T cells specific for the same HBV epitope, the TCR-like antibody has both a superior sensitivity and a specificity focused on distinct amino acids within the epitope. These data demonstrate that a T-cell receptor-like antibody can be used to determine the quantitative relationship between HBV replication and specific antigen presentation to CD8 T cells and serves as a novel therapeutic delivery platform for personalized health care for HBV-infected patients. PMID:21159876

  2. [Analyses of the rearrangement of T-cell receptor- and immunoglobulin genes in the diagnosis of lymphoproliferative disorders].

    Science.gov (United States)

    Griesser, D H

    1995-01-01

    Rearrangements are developmentally regulated genetic recombinations in T and B cells which generate functional T cell receptor (TcR) and immunoglobulin genes, respectively. Different variable, sometimes diversity, and joining gene segments which are discontinuously spread out within their chromosomal location in germline configuration, are randomly assembled in individual lymphocytes. These rearrangements can be detected by Southern Blot analysis if more than 5% of a total lymphocyte population in a biopsy specimen carries the same clonal rearrangement. We analyzed DNA from 324 snap-frozen biopsy specimens from lympho-proliferative disorders. None of the 20 reactive lesions and four malignant myelomonocytic tumors had a clonal antigen receptor gene rearrangement. All 117 malignant B cell lymphomas of different subtypes and 95 of 97 malignant T cell lymphomas showed a clonal gene rearrangement. Only two angioimmunoblastic lymphadenopathy(AILD)-type T cell lymphomas did not have immune receptor gene rearrangements. They were morphologically indistinguishable from the other 47 T/AILD lymphomas with clonal rearrangement patterns. In most cases TcR beta and immunoglobulin heavy chain (IgH) gene probes were sufficient for lineage assignment of the clonal T or B lymphocyte population. In 18% of B lymphomas, however, a cross-lineage rearrangement of TcR beta genes, and in 20% of the T cell lymphomas a clonal IgH gene rearrangement was detected. After exclusion of centrocytic, large cell anaplastic lymphomas (LCAL) of B-type, and T/AILD lymphomas which are overrepresented in our study, only 10% of the remaining 147 T and B cell lymphomas had aberrant rearrangements. TcR rearrangements other than those of the beta chain genes were extremely rare in B cell lymphomas, as were Ig kappa rearrangements in T lymphomas. Only two T/AILD lymphomas had IgH and Ig kappa rearrangement in addition to their clonal T cell receptor gene rearrangements. Both samples likely contain a clonal B

  3. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels.

    Directory of Open Access Journals (Sweden)

    Didi Matza

    Full Text Available The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1 α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling.

  4. T-cell receptor Vβ skewing frequently occurs in refractory cytopenia of childhood and is associated with an expansion of effector cytotoxic T cells: a prospective study by EWOG-MDS.

    Science.gov (United States)

    Aalbers, A M; van den Heuvel-Eibrink, M M; Baumann, I; Beverloo, H B; Driessen, G J; Dworzak, M; Fischer, A; Göhring, G; Hasle, H; Locatelli, F; De Moerloose, B; Noellke, P; Schmugge, M; Stary, J; Yoshimi, A; Zecca, M; Zwaan, C M; van Dongen, J J M; Pieters, R; Niemeyer, C M; van der Velden, V H J; Langerak, A W

    2014-05-02

    Immunosuppressive therapy (IST), consisting of antithymocyte globulin and cyclosporine A, is effective in refractory cytopenia of childhood (RCC), suggesting that, similar to low-grade myelodysplastic syndromes in adult patients, T lymphocytes are involved in suppressing hematopoiesis in a subset of RCC patients. However, the potential role of a T-cell-mediated pathophysiology in RCC remains poorly explored. In a cohort of 92 RCC patients, we prospectively assessed the frequency of T-cell receptor (TCR) β-chain variable (Vβ) domain skewing in bone marrow and peripheral blood by heteroduplex PCR, and analyzed T-cell subsets in peripheral blood by flow cytometry. TCRVβ skewing was present in 40% of RCC patients. TCRVβ skewing did not correlate with bone marrow cellularity, karyotype, transfusion history, HLA-DR15 or the presence of a PNH clone. In 28 patients treated with IST, TCRVβ skewing was not clearly related with treatment response. However, TCRVβ skewing did correlate with a disturbed CD4(+)/CD8(+) T-cell ratio, a reduction in naive CD8(+) T cells, an expansion of effector CD8(+) T cells and an increase in activated CD8(+) T cells (defined as HLA-DR(+), CD57(+) or CD56(+)). These data suggest that T lymphocytes contribute to RCC pathogenesis in a proportion of patients, and provide a rationale for treatment with IST in selected patients with RCC.

  5. Value of T cell receptor gamma alternate reading frame protein and keratin 5 in endometrial carcinoma

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-jun; LI Xiao-ping; QI Wen-juan; WANG Jian-liu; WEI Li-hui

    2013-01-01

    Background Tumors with different gene expression develop and progress in different ways.To deepen our understanding of the progression in endometrial cancer,and provide a useful tool for accurate diagnosis and prognosis assessment,we identified the new molecular prognostic markers in endometrial carcinoma and analyzed the relationship of them with clinical and pathological features of endometrial carcinoma.Methods Ninety-four cases of endometrial endometrioid adenocarcinoma with complete data from the Peking University People's Hospital from 2000 to 2008 and 40 cases of normal endometrium were enrolled.Among these,30 endometrial endometrioid adenocarcinoma samples of different International Federation of Gynecology and Obstetrics (FIGO) stage were selected for further Agilent genome-wide microarray analysis.Significance analysis of microarrays (SAM) was used to identify genes that are significantly associated with tumor progress.Immunohistochemistry was utilized to identify the genes of interest in endometrial carcinoma and normal endometrium.The relationship between the genes and the age,clinical stage,histological grade,myometrium invaded depth,lymph node metastasis status,and the expression of ER,PR,P53,and PTEN were analyzed by x2 test.Results Analysis between FIGO 1988 stage Ⅰ and stage Ⅲ identified a 362-gene "progress signature"; 171 downregulated and 191 up-regulated genes.Among the alterative genes,TARP (T cell receptor gamma alternate reading frame protein) and KRT5 (keratin 5) decreased 3.57 fold and 5.8 fold in FIGO stage Ⅲ patients.The expression of TARP in endometrial carcinoma increased compared to normal endometrium,while that of KRT5 decreased (P<0.05).The expression of TARP and KRT5 decreased when stage,histological grading,myometrium invaded depth increased (P<0.05).In the cases with lymph node metastasis,the expression of TARP decreased,while the expression of KRT5 did not differ (both P<0.05) both.The expression of P53 had a

  6. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Brigid M O'Flaherty

    Full Text Available Idiopathic pulmonary fibrosis (IPF, one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68 infection of interferon gamma receptor deficient (IFNγR-/- mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice.

  7. Glucocorticoid-induced TNF receptor expression by T cells is reciprocally regulated by NF-kappaB and NFAT.

    Science.gov (United States)

    Zhan, Yifan; Gerondakis, Steve; Coghill, Elise; Bourges, Dorothee; Xu, Yuekang; Brady, Jamie L; Lew, Andrew M

    2008-10-15

    Although the transcription factor Foxp3 is implicated in regulating glucocorticoid-induced TNF receptor (GITR) expression in the T regulatory cell lineage, little is known about how GITR is transcriptionally regulated in conventional T cells. In this study, we provide evidence that TCR-mediated GITR expression depends on the ligand affinity and the maturity of conventional T cells. A genetic dissection of GITR transcriptional control revealed that of the three transcription factors downstream of the classical NF-kappaB pathway (RelA, cRel, and NF-kappaB1), RelA is a critical positive regulator of GITR expression, although cRel and NF-kappaB1 also play a positive regulatory role. Consistent with this finding, inhibiting NF-kappaB using Bay11-7082 reduces GITR up-regulation. In contrast, NFAT acts as a negative regulator of GITR expression. This was evidenced by our findings that agents suppressing NFAT activity (e.g., cyclosporin A and FK506) enhanced TCR-mediated GITR expression, whereas agents enhancing NFAT activity (e.g., lithium chloride) suppressed TCR-mediated GITR up-regulation. Critically, the induction of GITR was found to confer protection to conventional T cells from TCR-mediated apoptosis. We propose therefore that two major transcriptional factors activated downstream of the TCR, namely, NF-kappaB and NFAT, act reciprocally to balance TCR-mediated GITR expression in conventional T cells, an outcome that appears to influence cell survival.

  8. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    Directory of Open Access Journals (Sweden)

    Key Michael

    2008-04-01

    Full Text Available Abstract Background We have recently demonstrated that all-trans-retinoic acid (ATRA and 9-cis-retinoic acid (9-cis RA promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA, and the retinoic acid receptor-α (RAR-α-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR. Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production.

  9. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    Science.gov (United States)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  10. CXCL10 and trafficking of virus-specific T cells during coronavirus-induced demyelination.

    Science.gov (United States)

    Stiles, Linda N; Liu, Michael T; Kane, Joy A C; Lane, Thomas E

    2009-09-01

    Chronic expression of CXC chemokine ligand 10 (CXCL10) in the central nervous system (CNS) following infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) is associated with an immune-mediated demyelinating disease. Treatment of mice with anti-CXCL10 neutralizing antibody results in limited CD4+ T cell infiltration into the CNS accompanied by a reduction in white matter damage. The current study determines the antigen-specificity of the T lymphocytes present during chronic disease and evaluates how blocking CXCL10 signaling affects retention of virus-specific T cells within the CNS. CXCL10 neutralization selectively reduced accumulation and/or retention of virus-specific CD4+ T cells, yet exhibited limited effect on virus-specific CD8+ T cells. The response of CXCL10 neutralization on virus-specific T cell subsets is not due to differential expression of the CXCL10 receptor CXCR3 on T cells as there was no appreciable difference in receptor expression on virus-specific T cells during either acute or chronic disease. These findings emphasize the importance of virus-specific CD4+ T cells in amplifying demyelination in JHMV-infected mice. In addition, differential signals are required for trafficking and retention of virus-specific CD4+ and CD8+ T cells during chronic demyelination in JHMV-infected mice.

  11. An IFN-gamma-IL-18 signaling loop accelerates memory CD8+ T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yoshiko Iwai

    Full Text Available Rapid proliferation is one of the important features of memory CD8(+ T cells, ensuring rapid clearance of reinfection. Although several cytokines such as IL-15 and IL-7 regulate relatively slow homeostatic proliferation of memory T cells during the maintenance phase, it is unknown how memory T cells can proliferate more quickly than naïve T cells upon antigen stimulation. To examine antigen-specific CD8(+ T cell proliferation in recall responses in vivo, we targeted a model antigen, ovalbumin(OVA, to DEC-205(+ dendritic cells (DCs with a CD40 maturation stimulus. This led to the induction of functional memory CD8(+ T cells, which showed rapid proliferation and multiple cytokine production (IFN-gamma, IL-2, TNF-alpha during the secondary challenge to DC-targeted antigen. Upon antigen-presentation, IL-18, an IFN-gamma-inducing factor, accumulated at the DC:T cell synapse. Surprisingly, IFN-gamma receptors were required to augment IL-18 production from DCs. Mice genetically deficient for IL-18 or IFN-gamma-receptor 1 also showed delayed expansion of memory CD8(+ T cells in vivo. These results indicate that a positive regulatory loop involving IFN-gamma and IL-18 signaling contributes to the accelerated memory CD8(+ T cell proliferation during a recall response to antigen presented by DCs.

  12. Selective depletion of non-specific T cells as an early event in T cell response to bacterial and viral infections

    Institute of Scientific and Technical Information of China (English)

    JIANG Jiu

    2005-01-01

    @@ Early T cell depletion occurs prior to the development of an effective immune response to infections.Both antigen-specific and non-specific T cells are induced to express early activation markers soon after microbial infections.This is followed by massive depletion of non-specific T cells and extensive proliferation of antigen-specific T cells.Proliferating antigen-specific cells exhibit a broad spectrum of late activation markers while non-specific cells exhibit no sign of further activation before succumbing to apoptosis.These results have crucial implications for the understanding of early events in the development of a robust T cell response.

  13. Regulatory T cells and toll-like receptors : regulating the regulators

    NARCIS (Netherlands)

    Sutmuller, R.P.M.; Garritsen, A.; Adema, G.J.

    2007-01-01

    Regulatory T cells (Treg) play a crucial role in maintaining control of leucocytes. Several studies have shown that in vivo Treg depletion results in autoimmune syndromes like thyroiditis, gastritis, diabetes mellitus and colitis, but at the same time, may also result in improved anti-tumour vaccina

  14. Participation of the cell polarity protein PALS1 to T-cell receptor-mediated NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Gabrielle Carvalho

    Full Text Available BACKGROUND: Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR-mediated activation. METHODOLOGY/PRINCIPAL FINDINGS: By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered TCR-driven activation of the transcription factor NF-κB. CONCLUSIONS: The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-κB following TCR stimulation.

  15. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  16. Antigen-specific immune reactions to ischemic stroke

    Directory of Open Access Journals (Sweden)

    Xabier eUrra

    2014-09-01

    Full Text Available Brain proteins are detected in the CSF and blood of stroke patients and their concentration is related to the extent of brain damage. Antibodies against brain antigens develop after stroke, suggesting a humoral immune response to the brain injury. Furthermore, induced immune tolerance is beneficial in animal models of cerebral ischemia. The presence of circulating T cells sensitized against brain antigens, and antigen presenting cells (APCs carrying brain antigens in draining lymphoid tissue of stroke patients support the notion that stroke might induce antigen-specific immune responses. After stroke, brain proteins that are normally hidden from the periphery, inflammatory mediators, and danger signals can exit the brain through several efflux routes. They can reach the blood after leaking out of the damaged blood-brain barrier or following the drainage of interstitial fluid to the dural venous sinus, or reach the cervical lymph nodes through the nasal lymphatics following CSF drainage along the arachnoid sheaths of nerves across the nasal submucosa. The route and mode of access of brain antigens to lymphoid tissue could influence the type of response. Central and peripheral tolerance prevents autoimmunity, but the actual mechanisms of tolerance to brain antigens released into the periphery in the presence of inflammation, danger signals, and APCs, are not fully characterized. Stroke does not systematically trigger autoimmunity, but under certain circumstances, such as pronounced systemic inflammation or infection, autoreactive T cells could escape the tolerance controls. Further investigation is needed to elucidate whether antigen-specific immune events could underlie neurological complications impairing stroke outcome.

  17. Direct assessment of junctional diversity in rearranged T cell receptor β chain encoding genes by combined heteroduplex and single strand conformation polymorphism (SSCP) analysis

    NARCIS (Netherlands)

    Offermans, M.T.C.; Struyk, L.; Geus, B. de; Breedveld, F.C.; Elsen, P.J. van den; Rozing, J.

    1996-01-01

    In order to define the extent of T cell heterogeneity and clonality, unique DNA sequences in the junctional region in rearranged T cell receptor (TcR) genes can be studied. For this purpose we have adapted a non-denaturing nucleic acid gel electrophoresis procedure to detect TcR junctional diversity

  18. Increased frequency of {gamma}{delta} T cells in cerebrospinal fluid and peripheral blood of patients with multiple sclerosis: Reactivity, cytotoxicity, and T cell receptor V gene rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Stinissen, P.; Vandevyver, C.; Medaer, R. [Dr. L. Willems Institute, Diepenbeek (Belgium)] [and others

    1995-05-01

    Infiltrating {gamma}{delta} T cells are potentially involved in the central nervous system demyelination in multiple sclerosis (MS). To further study this hypothesis, we analyzed the frequency and functional properties of {gamma}{delta} T cells in peripheral blood (PB) and paired cerebrospinal fluid (CSF) of patients with MS and control subjects, including patients with other neurologic diseases (OND) and healthy individuals. The frequency analysis was performed under limiting dilution condition using rIL-2 and PHA. After PHA stimulation, a significantly increased frequency of {gamma}{delta} T cells was observed in PB and in CSF of MS patients as compared with PB and CSF of patients with OND. The frequency was represented equally in OND patients and normal individuals. Similarly, the IL-2-responsive {gamma}{delta} T cells occurred at a higher frequency in PB of MS than of control subjects. Forty-three percent of the {gamma}{delta} T cell clones isolates from PB and CSF of MS patients responded to heat shock protein (HSP70) but not HSP65, whereas only 2 of 30 control {gamma}{delta} T cell clones reacted to the HSP. The majority of the {gamma}{delta} T cell clones were able to induce non-MHC-restricted cytolysis of Daudi cells. All clones displayed a substantial reactivity to bacterial superantigens staphylococcal enterotoxin B and toxic shock syndrome toxin-1, irrespective of their {gamma}{delta} V gene usage. Furthermore, the {gamma}{delta} T cell clones expressed predominantly TCRDV2 and GV2 genes, whereas the clones derived from CSF of MS patients expressed either DV1 or DV2 genes. The obtained {gamma}{delta} clones, in general, represented rather heterogeneous clonal origins, even though a predominant clonal origin was found in a set of 10 {gamma}{delta} clones derived from one patient with MS. The present study provides new evidence supporting a possible role of {gamma}{delta} T cells in the secondary inflammatory processes in MS. 39 refs., 5 figs., 4 tabs.

  19. Recombinant T cell receptor molecules can prevent and reverse experimental autoimmune encephalomyelitis: dose effects and involvement of both CD4 and CD8 T cells.

    Science.gov (United States)

    Kumar, V; Coulsell, E; Ober, B; Hubbard, G; Sercarz, E; Ward, E S

    1997-11-15

    Autoimmune diseases are often characterized by spontaneous remission followed by relapses. Although the mechanism(s) controlling pathogenic self-reactive T cells are not fully understood, recent data in experimental autoimmune encephalomyelitis (EAE), a prototype for CD4 T cell-mediated autoimmune diseases, indicate that spontaneous recovery is mediated by regulatory T cells (Treg) specific for peptides derived from the beta-chain of the TCR. Here we have tested whether recombinant single-chain TCRs (scTCRs) containing Vbeta domains can be used as vaccines for efficient priming of Treg. A single injection of mice with these recombinant proteins leads to efficient in vivo priming of Treg and almost complete protection from Ag-induced EAE. Significantly, administration of scTCRs during ongoing disease at a 10-fold lower dose than that required for prophylactic treatment also reverses established EAE. However, if a higher dose of scTCR is administered during ongoing disease, paralytic symptoms become exacerbated and the majority of treated animals die from severe and chronic EAE. Furthermore, we demonstrate that regulatory determinants are processed and presented from scTCRs resulting in the recruitment of both CD4 and CD8 regulatory T cells which are required for efficient regulation induced by scTCR. Reversal of established disease following an optimum dose of recombinant TCRs suggests that proteins expressing appropriate Vbeta domains could be used for the treatment of a variety of T cell-mediated pathologic conditions.

  20. Soluble T Cell Receptor Vβ Domains Engineered for High-Affinity Binding to Staphylococcal or Streptococcal Superantigens

    Directory of Open Access Journals (Sweden)

    Preeti Sharma

    2014-01-01

    Full Text Available Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs, so-called because they stimulate a large fraction of an individual’s T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR on a T cell and a class II product of the major histocompatibility complex (MHC on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1 or S. pyogenes (SpeA and SpeC have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  1. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens.

    Science.gov (United States)

    Sharma, Preeti; Wang, Ningyan; Kranz, David M

    2014-01-28

    Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs), so-called because they stimulate a large fraction of an individual's T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR) on a T cell and a class II product of the major histocompatibility complex (MHC) on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V) of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1) or S. pyogenes (SpeA and SpeC) have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.

  2. Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles

    DEFF Research Database (Denmark)

    Lima, K; Abrahamsen, Gitte Meldgaard; Foelling, I

    2010-01-01

    Thymic hypoplasia is a frequent feature of the 22q11.2 deletion syndrome, but we know little about patients' age-related thymic output and long-term consequences for their immune system. We measured the expression of T cell receptor rearrangement excision circles (TREC) and used flow cytometry...

  3. Antigen-specific memory B cell development.

    Science.gov (United States)

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2005-01-01

    Helper T (Th) cell-regulated B cell immunity progresses in an ordered cascade of cellular development that culminates in the production of antigen-specific memory B cells. The recognition of peptide MHC class II complexes on activated antigen-presenting cells is critical for effective Th cell selection, clonal expansion, and effector Th cell function development (Phase I). Cognate effector Th cell-B cell interactions then promote the development of either short-lived plasma cells (PCs) or germinal centers (GCs) (Phase II). These GCs expand, diversify, and select high-affinity variants of antigen-specific B cells for entry into the long-lived memory B cell compartment (Phase III). Upon antigen rechallenge, memory B cells rapidly expand and differentiate into PCs under the cognate control of memory Th cells (Phase IV). We review the cellular and molecular regulators of this dynamic process with emphasis on the multiple memory B cell fates that develop in vivo.

  4. I spy alloreactive T cells.

    Science.gov (United States)

    Alegre, Maria-Luisa

    2015-01-28

    High-throughput sequencing of the T cell receptor Vβ CDR3 region allowed longitudinal tracking of alloreactive T cells in kidney transplant patients, revealing clonal deletion as a mechanism of transplantation tolerance (Morris et al., this issue).

  5. Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy.

    Science.gov (United States)

    Rasmussen, Anne-Marie; Borelli, Gabriel; Hoel, Hanna Julie; Lislerud, Kari; Gaudernack, Gustav; Kvalheim, Gunnar; Aarvak, Tanja

    2010-04-15

    Adoptive T cell therapy is a promising treatment strategy for patients with different types of cancer. The methods used for generation of high numbers of tumor specific T cells usually require long-term ex vivo culture, which frequently lead to generation of terminally differentiated effector cells, demonstrating low persistence in vivo. Therefore, optimization of protocols for generation of T cells for adoptive cell therapy is warranted. The aim of this work was to develop a protocol for expansion of antigen-specific T cells using Dynabeads CD3/CD28 to obtain T cells expressing markers important for in vivo persistence and survival. To achieve high numbers of antigen-specific T cells following expansion, we have tested the effect of depleting regulatory T cells using Dynabeads CD25 and including a pre-stimulation step with peptide prior to the non-specific expansion with Dynabeads. Our data demonstrate that virus- and tumor specific T cells can be expanded to high numbers using Dynabeads CD3/CD28 following optimization of the culture conditions. The expansion protocol presented here results in enrichment of antigen-specific CD8(+) T cells with an early/intermediate memory phenotype. This is observed even when the antigen-specific CD8(+) T cells demonstrated a terminal effector phenotype prior to expansion. This protocol thus results in expanded T cells with a phenotypic profile which may increase the chance of retaining long-term persistence following adoptive transfer. Based on these data we have developed a cGMP protocol for expansion of tumor specific T cells for adoptive T cell therapy.

  6. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate......)) whereas the exocytic rate constant was unaffected. Thus, the TCR becomes a rapidly cycling receptor with kinetics similar to classical cycling receptors subsequent to PKC activation. This results in a reduction of the half-life of cell surface expressed TCR from approximately 58 to 6 min and allows rapid...... constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1...

  7. Toll-like receptors 2 and 4 regulate the frequency of IFNγ-producing CD4+ T-cells during pulmonary infection with Chlamydia pneumoniae.

    Directory of Open Access Journals (Sweden)

    Nina Wantia

    Full Text Available TLR2 and TLR4 are crucial for recognition of Chlamydia pneumoniae in vivo, since infected TLR2/4 double-deficient mice are unable to control the infection as evidenced by severe loss of body weight and progressive lethal pneumonia. Unexpectedly, these mice display higher pulmonary levels of the protective cytokine IFNγ than wild type mice. We show here, that antigen-specific CD4(+ T-cells are responsible for the observed IFNγ-secretion in vivo and their frequency is higher in TLR2/4 double-deficient than in wild type mice. The capacity of TLR2/4 double-deficient dendritic cells to re-stimulate CD4(+ T-cells did not differ from wild type dendritic cells. However, the frequency of CD4(+CD25(+Foxp3(+ T-cells was considerably higher in wild type compared to TLR2/4 double-deficient mice and was inversely related to the number of IFNγ-secreting CD4(+ effector T-cells. Despite increased IFNγ-levels, at least one IFNγ-mediated response, protective NO-secretion, could not be induced in the absence of TLR2 and 4. In summary, CD4(+CD25(+Foxp3(+ regulatory T-cells fail to expand in the absence of TLR2 and TLR4 during pulmonary infection with C. pneumoniae, which in turn enhances the frequency of CD4(+IFNγ(+ effector T-cells. Failure of IFNγ to induce NO in TLR2/4 double-deficient cells represents one possible mechanism why TLR2/4 double-deficient mice are unable to control pneumonia caused by C. pneumoniae and succumb to the infection.

  8. Enhancing the Efficacy of Prostate Cancer Immunotherapy by Manipulating T-Cell Receptor Signaling in Order to Alter Peripheral Regulatory T-Cell Activity

    Science.gov (United States)

    2011-07-01

    Splenocytes were treated for twenty four hours with mPSCA83-91 and IL-2, with Brefeldin-A being added in the last six hours in order to arrest the Golgi ... apparatus of the cells, thus allowing detectable levels of IFNγ to build up in the cytoplasm of activated T cells. Splenocytes were washed and

  9. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    DEFF Research Database (Denmark)

    Kløverpris, Henrik N; McGregor, Reuben; McLaren, James E

    2014-01-01

    ) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated...

  10. Radically altered T cell receptor signaling in glycopeptide-specific T cell hybridoma induced by antigen with minimal differences in the glycan group

    DEFF Research Database (Denmark)

    Jensen, T; Nielsen, M; Gad, Monika;

    2001-01-01

    A T cell hybridoma raised against the synthetic glycopeptide T(72)(Tn) was used to study whether the initial TCR signaling events are markedly different when the hybridoma is stimulated with glycopeptides closely related to the cognate glycopeptide antigen. T(72)(Tn) has an alpha-D-GalNAc group O...

  11. Supernatant from a cloned helper T cell stimulates resting B cells to express transferrin and IL-2 receptors.

    Science.gov (United States)

    Diu, A; Leclercq, L; Dautry-Varsat, A; Theze, J

    1987-07-01

    We describe the properties of the supernatant from a murine cloned helper T cell (clone 52.3) which is able to polyclonally activate most resting B cells in the absence of any additional stimulus. We hypothesize that an activity which we call BCAF (B-cell-activating factor(s] exists in our supernatant which can activate resting B cells alone or in conjunction with other lymphokines. In the present report, we investigate changes in the surface antigen pattern induced on resting B cells by BCAF-containing supernatant. Analysis of the cells by flow cytometry shows that transferrin receptor and IL-2 receptor expression increase on a large fraction of B cells after 2 days of activation by the T-helper-cell clone supernatant. Monoclonal anti-transferrin receptor antibody inhibits cell division but does not affect blastogenesis, while IL-2 has no effect in our experimental system. Our present results confirm that BCAF-containing supernatants can act on most resting B cells and replace helper T cells in inducing B-cell activation and proliferation.

  12. A novel mechanism of soluble HLA-G mediated immune modulation: downregulation of T cell chemokine receptor expression and impairment of chemotaxis.

    Directory of Open Access Journals (Sweden)

    Fabio Morandi

    Full Text Available BACKGROUND: In recent years, many immunoregulatory functions have been ascribed to soluble HLA-G (sHLA-G. Since chemotaxis is crucial for an efficient immune response, we have investigated for the first time the effects of sHLA-G on chemokine receptor expression and function in different human T cell populations. METHODOLOGY/PRINCIPAL FINDINGS: T cell populations isolated from peripheral blood were stimulated in the presence or absence of sHLA-G. Chemokine receptors expression was evaluated by flow cytometry. sHLA-G downregulated expression of i CCR2, CXCR3 and CXCR5 in CD4(+ T cells, ii CXCR3 in CD8(+ T cells, iii CXCR3 in Th1 clones iv CXCR3 in TCR Vdelta2gamma9 T cells, and upregulated CXCR4 expression in TCR Vdelta2gamma9 T cells. sHLA-G inhibited in vitro chemotaxis of i CD4(+ T cells towards CCL2, CCL8, CXCL10 and CXCL11, ii CD8(+ T cells towards CXCL10 and CXCL11, iii Th1 clones towards CXCL10, and iv TCR Vdelta2gamma9 T cells towards CXCL10 and CXCL11. Downregulation of CXCR3 expression on CD4+ T cells by sHLA-G was partially reverted by adding a blocking antibody against ILT2/CD85j, a receptor for sHLA-G, suggesting that sHLA-G downregulated chemokine receptor expression mainly through the interaction with ILT2/CD85j. Follicular helper T cells (T(FH were isolated from human tonsils and stimulated as described above. sHLA-G impaired CXCR5 expression in T(FH and chemotaxis of the latter cells towards CXCL13. Moreover, sHLA-G expression was detected in tonsils by immunohistochemistry, suggesting a role of sHLA-G in local control of T(FH cell chemotaxis. Intracellular pathways were investigated by Western Blot analysis on total extracts from CD4+ T cells. Phosphorylation of Stat5, p70 s6k, beta-arrestin and SHP2 was modulated by sHLA-G treatment. CONCLUSIONS/SIGNIFICANCE: Our data demonstrated that sHLA-G impairs expression and functionality of different chemokine receptors in T cells. These findings delineate a novel mechanism whereby s

  13. 4-1BB Costimulation Ameliorates T Cell Exhaustion Induced by Tonic Signaling of Chimeric Antigen Receptors

    Science.gov (United States)

    Long, Adrienne H.; Haso, Waleed M.; Shern, Jack F.; Wanhainen, Kelsey M.; Murgai, Meera; Ingaramo, Maria; Smith, Jillian P.; Walker, Alec J.; Kohler, M. Eric; Venkateshwara, Vikas R.; Kaplan, Rosandra N.; Patterson, George H.; Fry, Terry J.; Orentas, Rimas J.; Mackall, Crystal L.

    2015-01-01

    Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic anti-tumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We discovered that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR scFvs, can induce early exhaustion of CAR T cells that limits anti-tumor efficacy. Such activation is present to varying degrees in all CARs studied, with the exception of the highly effective CD19 CAR. We further identify that CD28 costimulation augments, while 4-1BB costimulation ameliorates, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the dramatic anti-tumor effects of CD19 CARs and for the observations that CD19.BBz CAR T cells are more persistent than CD19.28z CAR T cells in clinical trials. PMID:25939063

  14. Toll-Like Receptor Mediated Modulation of T Cell Response by Commensal Intestinal Microbiota as a Trigger for Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Rebecca Rogier

    2015-01-01

    Full Text Available In autoimmune diseases, a disturbance of the balance between T helper 17 (Th17 and regulatory T cells (Tregs is often observed. This disturbed balance is also the case in rheumatoid arthritis (RA. Genetic predisposition to RA confers the presence of several polymorphisms mainly regulating activation of T lymphocytes. However, the presence of susceptibility factors is neither necessary nor sufficient to explain the disease development, emphasizing the importance of environmental factors. Multiple studies have shown that commensal gut microbiota is of great influence on immune homeostasis and can trigger the development of autoimmune diseases by favoring induction of Th17 cells over Tregs. However the mechanism by which intestinal microbiota influences the Th cell balance is not completely understood. Here we review the current evidence supporting the involvement of commensal intestinal microbiota in rheumatoid arthritis, along with a potential role of Toll-like receptors (TLRs in modulating the relevant Th cell responses to trigger autoimmunity. A better understanding of TLR triggering by intestinal microbiota and subsequent T cell activation might offer new perspectives for manipulating the T cell response in RA patients and may lead to the discovery of new therapeutic targets or even preventive measures.

  15. Crystal Structure of Staphylococcal Enterotoxin G (SEG) in Complex with a Mouse T-cell Receptor Beta Chain

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M.M.; Robinson, H.; Cho, S.; De Marzi, M. C.; Kerzic, M. C.; Mariuzza, R. A.; Malchiodi, E. L.

    2011-01-14

    Superantigens (SAgs) are bacterial or viral toxins that bind MHC class II (MHC-II) molecules and T-cell receptor (TCR) in a nonconventional manner, inducing T-cell activation that leads to inflammatory cytokine production, which may result in acute toxic shock. In addition, the emerging threat of purpura fulminans and community-associated meticillin-resistant Staphylococcus aureus emphasizes the importance of a better characterization of SAg binding to their natural ligands that may allow the development of reagents to neutralize their action. The three-dimensional structure of the complex between a mouse TCR {beta} chain (mV{beta}8.2) and staphylococcal enterotoxin G (SEG) at 2.0 {angstrom} resolution revealed a binding site that does not conserve the 'hot spots' present in mV{beta}8.2-SEC2, mV{beta}8.2-SEC3, mV{beta}8.2-SEB, and mV{beta}8.2-SPEA complexes. Analysis of the mV{beta}8.2-SEG interface allowed us to explain the higher affinity of this complex compared with the others, which may account for the early activation of T-cells bearing mV{beta}8.2 by SEG. This mode of interaction between SEG and mV{beta}8.2 could be an adaptive advantage to bestow on the pathogen a faster rate of colonization of the host.

  16. Cloning analysis of HBV-specific CD8 T cell receptor gene in patients with acute hepatitis B

    Directory of Open Access Journals (Sweden)

    Ning DING

    2011-05-01

    Full Text Available Objective To investigate the molecular mechanism of T cell receptor(TCR in CD8 T cell-mediated immune response to HBV in patients with acute hepatitis B(AHB.Methods Peripheral blood mononuclear cells(PBMCs were collected from HLA-A2-positive AHB patients.To determine HBsAg183-191 and HBsAg335-343-specific CD8 T cell frequencies,the PBMCs were stained by fluorescence-labeled anti-CD3,anti-CD8 and pentamers,and analyzed by flow cytometry.PBMCs from 6 patients were stimulated with epitopic peptide HBsAg335-343 in vitro for 3 to 4 weeks.HBV-specific CD8 T cells were isolated by magnetic activated cell sorting followed by flow florescence activated cell sorting.The mRNA of sorted cells was extracted after expanding by IL-2,anti-CD3 and anti-CD8.The full-length gene fragments of variable region of TCR α and β chains were gained by 5’-RACE,and then cloned and sequenced(≥50 clones for single chain of each sample.The gene families of TCR α and β chains were identified and the sequence characters of CDR3 were compared.Results Analysis of more than 600 cloned gene sequences of TCR α and β chains showed that the proliferated HBV-specific CD8 T cells from 6 AHB patients presented a predominant expression in TCR α and chains,with 2-4 α chain families and 1-4 chain families in each case.The α2,α14,α15,β3,β13 and 23 families were detected in more than one case.The chain genes were all 13 for all tested clones in one case.For the same α chain or-chain family,CDR3 sequences tended to be identical in one case but different among cases.Conclusions HBV-specific CD8 T cells with antigenic peptide-induced proliferation present predominance in the usage of TCR α and β chains.This property might be one of the important molecular factors influencing anti-HBV immunity.

  17. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...... capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding...... to reverse multiple tumor immune evasion mechanisms, avoid CAR immunogenicity, and overcome problems in cancer gene therapy with engineered nanoconstructs....

  18. p59fyn tyrosine kinase associates with multiple T-cell receptor subunits through its unique amino-terminal domain.

    OpenAIRE

    1992-01-01

    Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn bin...

  19. Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVβ20-1, altering pHLA recognition.

    Directory of Open Access Journals (Sweden)

    Stephan Watkins

    Full Text Available T cell receptors (TCR containing Vβ20-1 have been implicated in a wide range of T cell mediated disease and allergic reactions, making it a target for understanding these. Mechanics of T cell receptors are largely unexplained by static structures available from x-ray crystallographic studies. A small number of molecular dynamic simulations have been conducted on TCR, however are currently lacking either portions of the receptor or explanations for differences between binding and non-binding TCR recognition of respective peptide-HLA. We performed molecular dynamic simulations of a TCR containing variable domain Vβ20-1, sequenced from drug responsive T cells. These were initially from a patient showing maculopapular eruptions in response to the sulfanilamide-antibiotic sulfamethoxazole (SMX. The CDR2β domain of this TCR was found to dock SMX with high affinity. Using this compound as a perturbation, overall mechanisms involved in responses mediated by this receptor were explored, showing a chemical action on the TCR free from HLA or peptide interaction. Our simulations show two completely separate modes of binding cognate peptide-HLA complexes, with an increased affinity induced by SMX bound to the Vβ20-1. Overall binding of the TCR is mediated through a primary recognition by either the variable β or α domain, and a switch in recognition within these across TCR loops contacting the peptide and HLA occurs when SMX is present in the CDR2β loop. Large binding affinity differences are induced by summed small amino acid changes primarily by SMX modifying only three critical CDR2β loop amino acid positions. These residues, TYRβ57, ASPβ64, and LYSβ65 initially hold hydrogen bonds from the CDR2β to adjacent CDR loops. Effects from SMX binding are amplified and traverse longer distances through internal TCR hydrogen bonding networks, controlling the overall TCR conformation. Thus, the CDR2β of Vβ20-1 acts as a ligand controlled switch

  20. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...... responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune......-reactive T cells that recognize such targets may be activated due to the strong activation signal given by their cognate targets. The current review describes the existing knowledge regarding these self-reactive anti-Tregs, providing examples of antigen-specific anti-Tregs and discussing their possible roles...

  1. Re-adapting T cells for cancer therapy: from mouse models to clinical trials.

    Science.gov (United States)

    Stromnes, Ingunn M; Schmitt, Thomas M; Chapuis, Aude G; Hingorani, Sunil R; Greenberg, Philip D

    2014-01-01

    Adoptive T-cell therapy involves the isolation, expansion, and reinfusion of T lymphocytes with a defined specificity and function as a means to eradicate cancer. Our research has focused on specifying the requirements for tumor eradication with antigen-specific T cells and T cells transduced to express a defined T-cell receptor (TCR) in mouse models and then translating these strategies to clinical trials. Our design of T-cell-based therapy for cancer has reflected efforts to identify the obstacles that limit sustained effector T-cell activity in mice and humans, design approaches to enhance T-cell persistence, develop methods to increase TCR affinity/T-cell functional avidity, and pursue strategies to overcome tolerance and immunosuppression. With the advent of genetic engineering, a highly functional population of T cells can now be rapidly generated and tailored for the targeted malignancy. Preclinical studies in faithful and informative mouse models, in concert with knowledge gained from analyses of successes and limitations in clinical trials, are shaping how we continue to develop, refine, and broaden the applicability of this approach for cancer therapy.

  2. Investigation of T-cell receptor-γ gene rearrangement in gastrointestinal lymphomas by PCR-SSCP analysis

    Institute of Scientific and Technical Information of China (English)

    Xi-Qun Han; Li He; Lan-Ying Shong; Hui-Yong Jiang; Mei-Gang Zhu; Tong Zhao

    2004-01-01

    AIM: To analyze the characterization of T-cell receptor-γ (TCR-γ) gene rearrangement in the gastrointestinal lymphomas and evaluate the value of PCR-SSCP analysis in gastrointestinal lymphomas investigation.METHODS: TCR-γgene rearrangement segments of gastrointestinal lymphomas were cloned and sequenced.Single clone plasmid and mixed clone plsamids were subsequently submitted to PCR-SSCP analysis to investigate the relationship between the number of amplified clones and band patterns of the amplified products. The PCR products of TCR-γgene rearrangement of 40 gastrointestinal lymphomas were electrophoresed on agarose gels and the positive cases on agarose gels were studied by SSCP analysis.RESULTS: The sequencing showed that TCR-γ gene rearrangement of the gastrointestinal lymphomas included functional gene and pseudogene with extensive variety in the junctional regions. In SSCP analysis, the number of the single-stranded bands was about two times of the number of amplified clones, and double-stranded band became broad with the increased number of the amplified clones. Thirteen of the 25 B-cell gastrointestinal lymphomas and 14 of the 15 gastrointestinal T-cell lymphomas were positive detected on agarose gel electrophoresis. Of the positive cases detected by SSCP analysis, 3 B-cell lymphomas and 13 T-cell lymphomas showed positive bands. The other cases showed only smears. The rearranged pattern included 13 monoallelic gene rearrangements and 3 biallelic or oligoclonal gene rearrangements.CONCLUSION: The pattern of TCR-γ, gene rearrangement in gastrointestinal lymphomas are similar to that of the nodular lymphomas. PCR-SSCP analysis for TCR-γ gene rearrangement can be applied both for adjuvant diagnosis of gastrointestinal lymphomas and analysis of the gene rearrangement pattern. The ratio of TCR-γ gene rearrangements occurred in T-cell gastrointestinal lymphomas is significantly higher than that in B-cell gastrointestinal lymphomas. The gene rearrangement

  3. NKG2D stimulation of CD8+ T cells during priming promotes their capacity to produce cytokines in response to viral infection in mice.

    Science.gov (United States)

    Kavazović, Inga; Lenartić, Maja; Jelenčić, Vedrana; Jurković, Slaven; Lemmermann, Niels A W; Jonjić, Stipan; Polić, Bojan; Wensveen, Felix M

    2017-04-04

    NKG2D is an activating receptor that is expressed on most cytotoxic cells of the immune system, including NK cells, γδ and CD8(+) T cells. It is still a matter of debate whether and how NKG2D mediates priming of CD8(+) T cells in vivo, due to a lack of studies where NKG2D is eliminated exclusively in these cells. Here we studied the impact of NKG2D on effector CD8(+) T-cell formation. NKG2D-deficiency that is restricted to murine CD8(+) T cells did not impair antigen-specific T-cell expansion following mCMV and LCMV infection, but reduced their capacity to produce cytokines. Upon infection, conventional dendritic cells induce NKG2D ligands, which drive cytokine production on CD8(+) T cells via the Dap10 signaling pathway. T-cell development, homing and proliferation were not affected by NKG2D deficiency and cytotoxicity was only impaired when strong T-cell receptor stimuli were used. Transfer of antigen-specific CD8(+) T cells demonstrated that NKG2D-deficiency attenuated their capacity to reduce viral loads. The inability of NKG2D-deficient cells to produce cytokines could be overcome with injection of IL-15 super-agonist during priming. In summary, our data shows that NKG2D has a non-redundant role in priming of CD8(+) T cells to produce antiviral cytokines. Upon viral infection, classical Dendritic cells induce expression of the NKG2D ligand H60. NKG2D stimulation during priming enhances the ability of CD8 T cells to produce cytokines but not increases cytotoxic potential upon T cell receptor engagement in the periphery. This article is protected by copyright. All rights reserved.

  4. Assembly of the T-cell antigen receptor. Participation of the CD3 omega chain

    DEFF Research Database (Denmark)

    Neisig, A; Vangsted, A; Zeuthen, J

    1993-01-01

    The human TCR is composed of the Ti alpha beta heterodimer in association with the CD3 chains CD3 gamma delta epsilon zeta 2. Another chain, referred to as CD3 omega, has recently been described in T cells. CD3 omega is an intracellular protein transiently associated with the CD3 complex during...... the assembly of the TCR in the endoplasmic reticulum (ER) and it is not expressed on the cell surface. The function of CD3 omega is unknown but it has been suggested that it plays an important role in the assembly of the TCR. We have studied the possible function of CD3 omega in the human leukemic T-cell line...... Jurkat and different variants of this cell line. Cells were metabolically labeled, subjected to lysis, immunoprecipitated, and analyzed by SDS-PAGE. The results indicate that: 1) CD3 omega associates primarily with the CD3 delta epsilon complex; 2) CD3 omega is not associated with single Ti alpha or Ti...

  5. A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale.

    Science.gov (United States)

    Shaikh, Saame Raza; Boyle, Sarah; Edidin, Michael

    2015-09-01

    Cell culture studies show that the nanoscale lateral organization of surface receptors, their clustering or dispersion, can be altered by changing the lipid composition of the membrane bilayer. However, little is known about similar changes in vivo, which can be effected by changing dietary lipids. We describe the use of a newly developed method, k-space image correlation spectroscopy, kICS, for analysis of quantum dot fluorescence to show that a high fat diet can alter the nanometer-scale clustering of the murine T cell receptor, TCR, on the surface of naive CD4(+) T cells. We found that diets enriched primarily in saturated fatty acids increased TCR nanoscale clustering to a level usually seen only on activated cells. Diets enriched in monounsaturated or n-3 polyunsaturated fatty acids had no effect on TCR clustering. Also none of the high fat diets affected TCR clustering on the micrometer scale. Furthermore, the effect of the diets was similar in young and middle aged mice. Our data establish proof-of-principle that TCR nanoscale clustering is sensitive to the composition of dietary fat.

  6. IL-4 and IL-4 receptor expression is dispensable for the development and function of natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Archna Sharma

    Full Text Available CD4 T cells acquire functional properties including cytokine production upon antigenic stimulation through the T cell receptor (TCR and differentiate into T helper (Th cells. Th1 cells produce interferon (IFN-γ and Th2 cells produce interleukin (IL-4. Th1 and 2 cells utilize IFN-γ and IL-4 for further maturation and maintenance, respectively. Promyelocytic leukemia zinc finger (PLZF-expressing invariant natural killer T (iNKT cells develop in the thymus and acquire functional ability to produce IL-4 and IFN-γ in the thymus in the absence of antigenic stimulation. In response to antigenic stimulation, iNKT cells rapidly produce IFN-γ and IL-4. However, it is still unknown as to whether iNKT cells require these cytokines for maturation or survival in vivo. In this study, using IL-4- and IL-4 receptor- (IL-4R deficient mice, we demonstrate that IL-4 as well as IL-4R expression is dispensable for the development, function and maintenance of iNKT cells.

  7. Analysis of T cell receptor alpha beta variability in lymphocytes infiltrating melanoma primary tumours and metastatic lesions

    DEFF Research Database (Denmark)

    Schøller, J; thor Straten, P; Jakobsen, Annette Birck;

    1994-01-01

    The T cell receptor (TCR) alpha beta variable (V) gene family usage of tumour-infiltrating lymphocytes (TIL) in four different primary human malignant melanomas and their corresponding metastatic lesions was characterized using a recently developed method based on the reverse-transcription-couple......The T cell receptor (TCR) alpha beta variable (V) gene family usage of tumour-infiltrating lymphocytes (TIL) in four different primary human malignant melanomas and their corresponding metastatic lesions was characterized using a recently developed method based on the reverse...... usage of the TCR V gene families V alpha 4, V alpha 5, V alpha 22 and V beta 8, whereas the V beta 3 gene family appeared to be expressed together with HLA-A1. Other highly expressed V gene families, apparently not restricted to either HLA-A1 or -A2, were V alpha 1 (expressed in three of four primary...... tumours) and V alpha 21 (expressed in two of four tumours). We found no evidence suggesting any correlations between the haplotypes HLA-A1 and -A2 and preferential V gene family expression in the metastatic lesions, and the only common feature was V alpha 8, which was found to be highly expressed in two...

  8. Distribution of T-cell receptor-bearing lymphocytes in the synovial membrane from patients with rheumatoid arthritis.

    Science.gov (United States)

    Chaouni, I; Radal, M; Simony-Lafontaine, J; Combe, B; Sany, J; Rème, T

    1990-12-01

    Using immunohistology and monoclonal antibodies directed to the T-cell receptor (TCR) chains, we have analysed the distribution of TCR-bearing lymphocytes within the membrane of rheumatoid arthritis (RA) patients. Alkaline phosphatase staining for TCR alpha beta-bearing lymphocytes showed a distribution paralleling that of the total T cells. Staining for the TCR gamma delta chains revealed a moderate and rather homogeneous distribution of T gamma delta lymphocytes within the RA synovium. As evidenced by simultaneous staining for alpha beta and gamma delta receptors, the relative count of T gamma delta to alpha beta-expressing cells is close to the peripheral count (e.g.5%), and lower than that previously observed in the synovial fluid. Interestingly, the peripheral type V gamma 9-J gamma P rearrangement using the T gamma delta cell subset was relatively decreased in the synovial membrane, as compared to synovial fluid and peripheral blood, suggesting that the T gamma delta distribution in the rheumatoid synovium resembles a thymic-like situation.

  9. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Yong; Lim, Ju Hyun [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Choi, Sung Won [Department of Molecular Biology, School of Arts and Sciences (S.W.C), Cornell University, Ithaca, NY 18450 (United States); Kim, Miyoung; Kim, Seong-Tae [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Kim, Min-Seon; Cho, You Sook [Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-600 (Korea, Republic of); Chun, Eunyoung, E-mail: chun.eunyoung@gmail.com [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Ki-Young, E-mail: thylee@med.skku.ac.kr [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of)

    2010-04-09

    Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.

  10. Assessment of T-cell clonality via T-cell receptor-gamma rearrangements in cutaneous T-cell-dominant infiltrates using polymerase chain reaction and single-stranded DNA conformational polymorphism assay.

    Science.gov (United States)

    Chen, Michael; Deng, April; Crowson, A Neil; Srinivasan, Mythily; Yearsley, Kurtis H; Jewell, Scott; Morrison, Carl; Long, Susan; Werling, Robert; Magro, Cynthia

    2004-12-01

    Discerning the pathologic significance of cutaneous T-cell infiltrates can pose a diagnostic challenge for dermatopathologists. Reactive conditions such as drug-associated lymphomatoid hypersensitivity and lymphomatoid lupus erythematosus can demonstrate lymphoid atypia and a phenotype resembling cutaneous T-cell lymphoma (CTCL). Further, lymphoid dyscrasias such as pityriasis lichenoides chronica, large plaque parapsoriasis, and atypical pigmentary purpura confuse the picture because they not only mimic CTCL but also represent prelymphomatous states with inherent malignant potential. Although the emergence of a dominant clone has been considered a clue indicative of a T-cell dyscrasia, there are reports concerning the identification of monoclonality in biopsies of reactive lymphoid infiltrates. We have conducted a modified single-stranded DNA conformational polymorphism (SSCP) assay using paraffin-embedded, formalin-fixed tissue on 92 T-cell-rich biopsies to determine the relative specificity and sensitivity of this methodology. In addition, laser capture microdissection (LCM) was performed on 22 of the 92 samples to isolate the area of interest and to compare its specificity and sensitivity with those SSCP assays performed without LCM. We found that monoclonality or oligoclonality is 86% specific for preneoplastic and neoplastic states, whereas the finding of polyclonality appears to be relatively specific for a reactive process. Some cases of reversible T-cell dyscrasia produced a molecular profile mimicking lymphoma or prelymphomatous states by virtue of monoclonality or oligoclonality. Although LCM appears to improve the sensitivity for detecting preneoplastic conditions, the relative specificity appears to be the same as that encountered with routine SSCP.

  11. Fcγ receptor IIb strongly regulates Fcγ receptor-facilitated T cell activation by dendritic cells

    NARCIS (Netherlands)

    N. van Montfoort (Nadine); P.A.C. 't Hoen (Peter); S.M. Mangsbo (Sara); M. Camps (Marcel); P. Boross (Peter); C.J.M. Melief (Cornelis); F. Ossendorp (Ferry); J.S. Verbeek (Sjef)

    2012-01-01

    textabstractFcγR ligation by Ag-Ab immune complexes (IC) not only mediates effective Ag uptake, but also strongly initiates dendritic cell (DC) maturation, a requirement for effective T cell activation. Besides the activating FcγRI, FcγRIII, and FcγRIV, the inhibitory FcγRIIb is expressed on DCs. It

  12. Antigen-specific T cell–mediated gene therapy in collagen-induced arthritis

    Science.gov (United States)

    Nakajima, Atsuo; Seroogy, Christine M.; Sandora, Matthew R.; Tarner, Ingo H.; Costa, Gina L.; Taylor-Edwards, Cariel; Bachmann, Michael H.; Contag, Christopher H.; Fathman, C. Garrison

    2001-01-01

    Autoantigen-specific T cells have tissue-specific homing properties, suggesting that these cells may be ideal vehicles for the local delivery of immunoregulatory molecules. We tested this hypothesis by using type II collagen–specific (CII-specific) CD4+ T hybridomas or primary CD4+ T cells after gene transfer, as vehicles to deliver an immunoregulatory protein for the treatment of collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). CII-specific T cells or hybridomas were transduced using retroviral vectors to constitutively express the IL-12 antagonist, IL-12 p40. Transfer of engineered CD4+ T cells after immunization significantly inhibited the development of CIA, while cells transduced with vector control had no effect. The beneficial effect on CIA of IL-12 p40-transduced T cells required TCR specificity against CII, since transfer of T cells specific for another antigen producing equivalent amounts of IL-12 p40 had no effect. In vivo cell detection using bioluminescent labels and RT-PCR showed that transferred CII-reactive T-cell hybridomas accumulated in inflamed joints in mice with CIA. These results indicate that the local delivery of IL-12 p40 by T cells inhibited CIA by suppressing autoimmune responses at the site of inflammation. Modifying antigen-specific T cells by retroviral transduction for local expression of immunoregulatory proteins thus offers a promising strategy for treating RA. PMID:11375419

  13. Young T cells age during a redirected anti-tumour attack: chimeric antigen receptor (CAR-provided dual costimulation is half the battle.

    Directory of Open Access Journals (Sweden)

    Andreas A Hombach

    2013-06-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells showed spectacular efficacy in the treatment of leukaemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG-1+ CD57+ CD7- CCR7- phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134 stimulation. We discuss the strategy with respect to prolong the anti-tumour response and to improve the over-all efficacy of adoptive cell therapy.

  14. IL-7 receptor recovery on CD8 T-cells isolated from HIV+ patients is inhibited by the HIV Tat protein.

    Directory of Open Access Journals (Sweden)

    Elliott M Faller

    Full Text Available Expression of the IL-7 receptor α-chain (CD127 is decreased on CD8 T-cells in HIV infected patients and partially recovers in those receiving antiretroviral therapy with sustained viral suppression. We have shown that soluble HIV Tat protein down regulates CD127 expression on CD8 T-cells isolated from healthy HIV-negative individuals. Tat is taken up by CD8 T-cells via endocytosis, exits the endosome and then translocates to the inner leaflet of the cell membrane where it binds to the cytoplasmic tail of CD127 inducing receptor internalization and degradation by the proteasome. This down regulation of CD127 by Tat results in impaired CD8 T-cell function. Interestingly, suppression of CD127 by Tat is reversible and requires the continual presence of Tat in the culture media. We thus questioned whether the low IL-7 receptor expression evident on CD8 T-cells in HIV+ patients was similarly reversible and if suppression of the receptor could be maintained ex vivo by Tat protein alone. We show here that when CD8 T-cells isolated from HIV+ patients are incubated alone in fresh medium, low CD127 expression on the cell surface recovers to normal levels. This recovery of CD127, however, is completely inhibited by the addition of HIV Tat protein to the culture media. This study then provides evidence that soluble factor(s are responsible for low CD127 expression on circulating CD8 T-cells in HIV+ individuals and further implicates Tat in suppressing this receptor essential to CD8 T-cell proliferation and function.

  15. IL-7 Receptor Recovery on CD8 T-Cells Isolated from HIV+ Patients Is Inhibited by the HIV Tat Protein

    Science.gov (United States)

    Faller, Elliott M.; McVey, Mark J.; MacPherson, Paul A.

    2014-01-01

    Expression of the IL-7 receptor α-chain (CD127) is decreased on CD8 T-cells in HIV infected patients and partially recovers in those receiving antiretroviral therapy with sustained viral suppression. We have shown that soluble HIV Tat protein down regulates CD127 expression on CD8 T-cells isolated from healthy HIV-negative individuals. Tat is taken up by CD8 T-cells via endocytosis, exits the endosome and then translocates to the inner leaflet of the cell membrane where it binds to the cytoplasmic tail of CD127 inducing receptor internalization and degradation by the proteasome. This down regulation of CD127 by Tat results in impaired CD8 T-cell function. Interestingly, suppression of CD127 by Tat is reversible and requires the continual presence of Tat in the culture media. We thus questioned whether the low IL-7 receptor expression evident on CD8 T-cells in HIV+ patients was similarly reversible and if suppression of the receptor could be maintained ex vivo by Tat protein alone. We show here that when CD8 T-cells isolated from HIV+ patients are incubated alone in fresh medium, low CD127 expression on the cell surface recovers to normal levels. This recovery of CD127, however, is completely inhibited by the addition of HIV Tat protein to the culture media. This study then provides evidence that soluble factor(s) are responsible for low CD127 expression on circulating CD8 T-cells in HIV+ individuals and further implicates Tat in suppressing this receptor essential to CD8 T-cell proliferation and function. PMID:25033393

  16. Rapid T-cell receptor CD4+ repertoire reconstitution and immune recovery in unrelated umbilical cord blood transplanted pediatric leukemia patients.

    Science.gov (United States)

    Finocchi, Andrea; Romiti, Maria Luisa; Di Cesare, Silvia; Puliafito, Pamela; Pensieroso, Simone; Rana, Ippolita; Pinto, Rita; Cancrini, Caterina; De Rossi, Giulio; Caniglia, Maurizio; Rossi, Paolo

    2006-07-01

    Umbilical cord blood transplantation has been successfully employed for treatment of many immune and hematologic disorders. The aim of this study was to evaluate the quality of immune reconstitution after umbilical cord blood transplantation in 6 leukemia children. T-cell receptor Vbeta third complementary region spectratyping was used for monitoring the contribution of the thymic pathway in patients' immune reconstitution. Absolute numbers of lymphocyte subsets (T, B, and natural killer), and lymphoproliferative in vitro response to mitogens, recovered within 12 months after transplantation. Furthermore, an overall diversification of T-cell receptor complexity in the repopulating T cells, with a polyclonal Gaussian profiles in most (74%) of total families was observed. Noteworthy, we showed a wider and more rapid reconstitution of T-cell receptor CD4+ T cell families compared with T-cell receptor CD8+ T ones still exhibiting some perturbations at 24 months. These data show that umbilical cord blood transplantation allows immune reconstitution already within 12 months with generation of newly diversified CD4+ T lymphocyte subsets.

  17. T cell receptor gene recombinations in human tumor specimen exome files: detection of T cell receptor-β VDJ recombinations associates with a favorable oncologic outcome for bladder cancer.

    Science.gov (United States)

    Samy, Mohammad D; Tong, Wei Lue; Yavorski, John M; Sexton, Wade J; Blanck, George

    2017-03-01

    Understanding tumor-resident T cells is important for cancer prognosis and treatment options. Conventional, solid tumor specimen exome files can be searched directly for recombined T cell receptor (TcR)-α segments; RNASeq files can include TcR-β VDJ recombinations. To learn whether there are medically relevant uses of exome-based detection of TcR V(D)J recombinations in the tumor microenvironment, we searched cancer genome atlas and Moffitt Cancer Center, tumor specimen exome files for TcR-β, TcR-γ, and TcR-δ recombinations, for bladder and stomach cancer. We found that bladder cancer exomes with productive TcR-β recombinations had a significant association with No Subsequent Tumors and a positive response to drug treatments, with p < 0.004, p < 0.05, and p < 0.004, depending on the sample sets examined. We also discovered the opportunity to detect productive TcR-γ and TcR-δ recombinations in the tumor microenvironment, via the tumor specimen exome files.

  18. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity.

    Science.gov (United States)

    Liu, Yang; Blanchfield, Lori; Ma, Victor Pui-Yan; Andargachew, Rakieb; Galior, Kornelia; Liu, Zheng; Evavold, Brian; Salaita, Khalid

    2016-05-17

    T cells are triggered when the T-cell receptor (TCR) encounters its antigenic ligand, the peptide-major histocompatibility complex (pMHC), on the surface of antigen presenting cells (APCs). Because T cells are highly migratory and antigen recognition occurs at an intermembrane junction where the T cell physically contacts the APC, there are long-standing questions of whether T cells transmit defined forces to their TCR complex and whether chemomechanical coupling influences immune function. Here we develop DNA-based gold nanoparticle tension sensors to provide, to our knowledge, the first pN tension maps of individual TCR-pMHC complexes during T-cell activation. We show that naïve T cells harness cytoskeletal coupling to transmit 12-19 pN of force to their TCRs within seconds of ligand binding and preceding initial calcium signaling. CD8 coreceptor binding and lymphocyte-specific kinase signaling are required for antigen-mediated cell spreading and force generation. Lymphocyte function-associated antigen 1 (LFA-1) mediated adhesion modulates TCR-pMHC tension by intensifying its magnitude to values >19 pN and spatially reorganizes the location of TCR forces to the kinapse, the zone located at the trailing edge of migrating T cells, thus demonstrating chemomechanical crosstalk between TCR and LFA-1 receptor signaling. Finally, T cells display a dampened and poorly specific response to antigen agonists when TCR forces are chemically abolished or physically "filtered" to a level below ∼12 pN using mechanically labile DNA tethers. Therefore, we conclude that T cells tune TCR mechanics with pN resolution to create a checkpoint of agonist quality necessary for specific immune response.

  19. Antigen-specific active immunotherapy for ovarian cancer

    NARCIS (Netherlands)

    Leffers, N.; Daemen, T.; Helfrich, W.; Boezen, H. M.; Cohlen, B. J.; Melief, Cornelis; Nijman, H. W.

    2010-01-01

    BACKGROUND: Despite advances in chemotherapy, prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce a tumour-antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: To assess feasibility of antigen-specific ac

  20. T-cell Receptor Excision Circles (TREC) in CD4+ and CD8+ T-cell Subpopulations in Atopic Dermatitis and Psoriasis Show Major Differences in the Emission of Recent Thymic Emigrants

    DEFF Research Database (Denmark)

    Just, Helle; Deleuran, Mette; Vestergaard, Christian;

    2008-01-01

    We used T-cell receptor excision circles (TREC) to evaluate thymic function in adult patients with atopic dermatitis and psoriasis. We observed that men, but not women, with atopic dermatitis had a significantly faster decline in TREC content with increasing age compared with healthy men. In cont......-cells, this indicates that atopic dermatitis patients can have compensatory emissions of thymic emigrants, whereas psoriatic patients do not, thus supporting different thymic function in these two diseases....

  1. Stable, Nonviral Expression of Mutated Tumor Neoantigen-specific T-cell Receptors Using the Sleeping Beauty Transposon/Transposase System.

    Science.gov (United States)

    Deniger, Drew C; Pasetto, Anna; Tran, Eric; Parkhurst, Maria R; Cohen, Cyrille J; Robbins, Paul F; Cooper, Laurence Jn; Rosenberg, Steven A

    2016-06-01

    Neoantigens unique to each patient's tumor can be recognized by autologous T cells through their T-cell receptor (TCR) but the low frequency and/or terminal differentiation of mutation-specific T cells in tumors can limit their utility as adoptive T-cell therapies. Transfer of TCR genes into younger T cells from peripheral blood with a high proliferative potential could obviate this problem. We generated a rapid, cost-effective strategy to genetically engineer cancer patient T cells with TCRs using the clinical Sleeping Beauty transposon/transposase system. Patient-specific TCRs reactive against HLA-A*0201-restriced neoantigens AHNAK(S2580F) or ERBB2(H473Y) or the HLA-DQB*0601-restricted neoantigen ERBB2IP(E805G) were assembled with murine constant chains and cloned into Sleeping Beauty transposons. Patient peripheral blood lymphocytes were coelectroporated with SB11 transposase and Sleeping Beauty transposon, and transposed T cells were enriched by sorting on murine TCRβ (mTCRβ) expression. Rapid expansion of mTCRβ(+) T cells with irradiated allogeneic peripheral blood lymphocytes feeders, OKT3, interleukin-2 (IL-2), IL-15, and IL-21 resulted in a preponderance of effector (CD27(-)CD45RA(-)) and less-differentiated (CD27(+)CD45RA(+)) T cells. Transposed T cells specifically mounted a polyfunctional response against cognate mutated neoantigens and tumor cell lines. Thus, Sleeping Beauty transposition of mutation-specific TCRs can facilitate the use of personalized T-cell therapy targeting unique neoantigens.

  2. Analysis of T-cell receptor variability in transplanted patients with acute graft-versus-host disease.

    Science.gov (United States)

    Dietrich, P Y; Caignard, A; Diu, A; Genevee, C; Pico, J L; Henry-Amar, M; Bosq, J; Angevin, E; Triebel, F; Hercend, T

    1992-11-01

    T lymphocytes play a pivotal role in graft-versus-host disease (GVHD) and largely contribute to the graft-versus-leukemia (GVL) effect. Most mature T lymphocytes specifically recognize antigens through the alpha/beta T-cell receptor (TCR). Each alpha/beta TCR chain includes a constant region and a variable region, the latter being encoded by V-J alpha or V-D-J beta rearranged gene segments. To better characterize T cells involved in GVHD, V alpha and V beta gene segment usage was analyzed, after cDNA amplification, in peripheral blood mononuclear cells (PBMC) and skin samples from three patients with grade II cutaneous GVHD. At time of GVHD diagnosis (days 11, 22, and 25), when first signs of engraftment were detectable, virtually all V alpha and V beta subfamilies were represented in PBMC RNAs of the three recipients. These results suggest that diversified TCR gene segment expression is observed early after allogenic bone marrow transplantation (alloBMT). Lymphocytes infiltrating GVHD skin also expressed a large series of V alpha and V beta subfamily specificities. However, analysis of the V alpha and V beta amplified products showed substantial differences between PBMC and the skin lymphocyte RNAs. These observations indicate that a large variety of T lymphocytes are present at the disease site, while some of them may be specifically amplified or decreased in response to minor histocompatibility antigens (miHA). Further characterization of the latter T-cell subpopulations should lead to a better understanding of human in vivo responses directed at miHA.

  3. Expression of the IL-7 receptor alpha-chain is down regulated on the surface of CD4 T-cells by the HIV-1 Tat protein.

    Directory of Open Access Journals (Sweden)

    Denny McLaughlin

    Full Text Available HIV infection elicits defects in CD4 T-cell homeostasis in both a quantitative and qualitative manner. Interleukin-7 (IL-7 is essential to T-cell homeostasis and several groups have shown reduced levels of the IL-7 receptor alpha-chain (CD127 on both CD4 and CD8 T-cells in viremic HIV+ patients. We have shown previously that soluble HIV Tat protein specifically down regulates cell surface expression of CD127 on human CD8 T-cells in a paracrine fashion. The effects of Tat on CD127 expression in CD4 T-cells has yet to be described. To explore this effect, CD4 T-cells were isolated from healthy individuals and expression levels of CD127 were examined on cells incubated in media alone or treated with Tat protein. We show here that, similar to CD8 T-cells, the HIV-1 Tat protein specifically down regulates CD127 on primary human CD4 T-cells and directs the receptor to the proteasome for degradation. Down regulation of CD127 in response to Tat was seen on both memory and naive CD4 T-cell subsets and was blocked using either heparin or anti-Tat antibodies. Tat did not induce apoptosis in cultured primary CD4 T-cells over 72 hours as determined by Annexin V and PI staining. Pre-incubation of CD4 T-cells with HIV-1 Tat protein did however reduce the ability of IL-7 to up regulate Bcl-2 expression. Similar to exogenous Tat, endogenously expressed HIV Tat protein also suppressed CD127 expression on primary CD4 T-cells. In view of the important role IL-7 plays in lymphocyte proliferation, homeostasis and survival, down regulation of CD127 by Tat likely plays a central role in immune dysregulation and CD4 T-cell decline. Understanding this effect could lead to new approaches to mitigate the CD4 T-cell loss evident in HIV infection.

  4. Enhanced Cysteinyl-Leukotriene Type 1 Receptor Expression in T Cells from House Dust Mite-Allergic Individuals following Stimulation with Der p

    Directory of Open Access Journals (Sweden)

    Maryse Thivierge

    2015-01-01

    Full Text Available In order to determine the potential for allergen to modulate T cell expression of the CysLT1 receptor and responsiveness to leukotrienes, peripheral blood mononuclear cells from house dust mite-allergic or nonallergic individuals were incubated with D. pteronyssinus allergen (Der p. Baseline CysLT1 expression was similar in both groups of donors, but Der p significantly enhanced CysLT1 expression in CD4+ and CD8+ T cells of only allergic individuals and induced enhanced responsiveness of CD4+ T cells to LTD4 in terms of calcium mobilisation. This effect was prevented by the CysLT1 antagonist MK571. Der p also induced IL-4 and IL-10 production, and neutralizing antibody to IL-4 prevented both the enhanced CysLT1 expression and the enhanced responsiveness of T cells to LTD4 induced by Der p. In allergic individuals, Der p also induced T cell proliferation and a Th2-biased phenotype. Our data suggest that, in allergen-sensitized individuals, exposure to allergen can enhance T cell expression of CysLT1 receptors through a mechanism involving IL-4 production. This, in turn, would induce CD4+ T cell responsiveness to cysteinyl-leukotrienes and Th2 cell activation.

  5. Coexpressed Catalase Protects Chimeric Antigen Receptor-Redirected T Cells as well as Bystander Cells from Oxidative Stress-Induced Loss of Antitumor Activity.

    Science.gov (United States)

    Ligtenberg, Maarten A; Mougiakakos, Dimitrios; Mukhopadhyay, Madhura; Witt, Kristina; Lladser, Alvaro; Chmielewski, Markus; Riet, Tobias; Abken, Hinrich; Kiessling, Rolf

    2016-01-15

    Treatment of cancer patients by adoptive T cell therapy has yielded promising results. In solid tumors, however, T cells encounter a hostile environment, in particular with increased inflammatory activity as a hallmark of the tumor milieu that goes along with abundant reactive oxygen species (ROS) that substantially impair antitumor activity. We present a strategy to render antitumor T cells more resilient toward ROS by coexpressing catalase along with a tumor specific chimeric Ag receptor (CAR) to increase their antioxidative capacity by metabolizing H2O2. In fact, T cells engineered with a bicistronic vector that concurrently expresses catalase, along with the CAR coexpressing catalase (CAR-CAT), performed superior over CAR T cells as they showed increased levels of intracellular catalase and had a reduced oxidative state with less ROS accumulation in both the basal state and upon activation while maintaining their antitumor activity despite high H2O2 levels. Moreover, CAR-CAT T cells exerted a substantial bystander protection of nontransfected immune effector cells as measured by CD3ζ chain expression in bystander T cells even in the presence of high H2O2 concentrations. Bystander NK cells, otherwise ROS sensitive, efficiently eliminate their K562 target cells under H2O2-induced oxidative stress when admixed with CAR-CAT T cells. This approach represents a novel means for protecting tumor-infiltrating cells from tumor-associated oxidative stress-mediated repression.

  6. Characterization of a novel single-chain bispecific antibody for retargeting of T cells to tumor cells via the TCR co-receptor CD8.

    Directory of Open Access Journals (Sweden)

    Irene Michalk

    Full Text Available There is currently growing interest in retargeting of effector T cells to tumor cells via bispecific antibodies (bsAbs. Usually, bsAbs are directed on the one hand to the CD3 complex of T cells and on the other hand to a molecule expressed on the surface of the target cell. A bsAb-mediated cross-linkage via CD3 leads to an activation of CD8+ T cells and consequently to killing of the target cells. In parallel, CD4+ T cells including TH1, TH2, TH17 cells and even regulatory T cells (Tregs will be activated as well. Cytokines produced by CD4+ T cells can contribute to severe side effects e. g. life-threatening cytokine storms and, thinking of the immunosupressive function of Tregs, can even be counterproductive. Therefore, we asked whether or not it is feasible to limit retargeting to CD8+ T cells e. g. via targeting of the co-receptor CD8 instead of CD3. In order to test for proof of concept, a novel bsAb with specificity for CD8 and a tumor-associated surface antigen was constructed. Interestingly, we found that pre-activated (but not freshly isolated CD8+ T cells can be retargeted via CD8-engaging bsAbs leading to an efficient lysis of target cells.

  7. Novel function of perforin in negatively regulating CD4+T cell activation by affecting calcium signaling

    Institute of Scientific and Technical Information of China (English)

    Enguang Bi; Kairui Mao; Jia Zou; Yuhan Zheng; Bing Sun; Chunjian Huang; Yu Hu; Xiaodong Wu; Weiwen Deng; Guomei Lin; Zhiduo Liu; Lin Tian; Shuhui Sun

    2009-01-01

    Perforin is a pore-forming protein engaged mainly in mediating target T cell death and is employed by cytotoxic Tlymphocytes (CTLs) and natural killer cells. However, whether it also plays a role in conventional CD4+ T cell func-tion remains unclear. Here we report that in perforin-deficient (PKO) mice, CD4+ T cells are hyperproliferative in response to T cell receptor (TCR) stimulation. This feature of hyperproliferation is accompanied by the enhancement both in cell division and in IL-2 secretion. It seems that the perforin deficiency does not influence T cell development in thymus spleen and lymph node. In vivo, perforin deficiency results in increased antigen-specific T cell prolifera-tion and antibody production. Furthermore, PKO mice are more susceptible to experimental autoimmune uveitis. To address the molecular mechanism, we found that after TCR stimulation, CD44 T cells from PKO mice display an increased intracellular calcium flux and subsequently enhance activation of transcription factor NFATI. Our results indicate that perforin plays a negative role in regulating CD4+ T cell activation and immune response by affecting TCR-dependent Ca2+ signaling.

  8. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer.

    Science.gov (United States)

    Péguillet, Isabelle; Milder, Maud; Louis, Delphine; Vincent-Salomon, Anne; Dorval, Thierry; Piperno-Neumann, Sophie; Scholl, Suzy M; Lantz, Olivier

    2014-04-15

    CD4(+) T cells influence tumor immunity in complex ways that are not fully understood. In this study, we characterized a population of human differentiated effector CD4(+) T cells that is defined by low levels of the interleukin (IL)-2 and IL-7 receptors (CD25(-)CD127(-)). We found that this cell population expands in patients with various types of cancer, including breast cancer, to represent 2% to 20% of total CD4(+) blood T lymphocytes as compared with only 0.2% to 2% in healthy individuals. Notably, these CD25(-)CD127(-)CD4 T cells expressed effector markers such as CD244 and CD11b with low levels of CD27, contrasting with the memory phenotype dominating this population in healthy individuals. These cells did not cycle in patients, nor did they secrete IL-10 or IL-17, but instead displayed cytotoxic features. Moreover, they encompassed oligoclonal expansions paralleling an expansion of effector CD8(+) T cells that included tumor antigen-specific T cells. During neoadjuvant chemotherapy in patients with breast cancer, we found that the increase in CD25(-)CD127(-) CD4(+) T cells correlated with tumor regression. This observation suggested that CD4(+) T cells included tumor antigen-specific cells, which may be generated by or participate in tumor regressions during chemotherapy. In summary, our results lend support to the hypothesis that CD4(+) T cells are involved in human antitumor responses.

  9. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency.

    Science.gov (United States)

    Partiseti, M; Le Deist, F; Hivroz, C; Fischer, A; Korn, H; Choquet, D

    1994-12-23

    Stimulation of antigen receptors of lymphocytes triggers a transitory release of Ca2+ from internal stores and the opening of a transmembrane Ca2+ conductive pathway. The latter underlies the sustained increase of intracellular free calcium concentration, and it seems to be a key event in the Ca(2+)-dependent biochemical cascade leading to T cell proliferation. Alternatively, pharmacological depletion of internal stores by itself activates Ca2+ influx. This has led to the hypothesis that antigen-triggered Ca2+ influx is secondary to Ca2+ release from internal stores. However, the precise relationship between antigen and Ca2+ release-activated Ca2+ currents remains unclear, particularly since neither of them has been electrophysiologically recorded in normal lymphocytes. Using the whole-cell and the perforated configurations of the patch clamp technique on peripheral blood lymphocytes, we found that a low amplitude Ca(2+)-selective current was triggered when intracellular stores were depleted by stimuli such as the intracellular perfusion of inositol triphosphate or thapsigargin and the extracellular perfusion of ionomycin. A similar current was elicited by the cross-linking of the T cell receptor-CD3 complex. This current displayed an inward rectification below 0 mV and was completely blocked by the divalent cation Cd2+. It was very selective for Ca2+ over Na+ and insensitive to changes in chloride concentration. The physiological relevance of this conductance was investigated with the analysis of abnormal Ca2+ signaling in lymphocytes from a patient suffering from a primary immunodeficiency associated with a defective T cell proliferation. Using fura-2 video imaging, an absence of Ca2+ influx was established in the patient's lymphocytes, whereas the Ca2+ release from internal stores was normal. This was the case whether cells were stimulated physiologically through their antigen receptors or with store depleting pharmacological agents. Most importantly, no Ca(2

  10. In vivo anti-tumor activity of marine hematopoietic stem cells expressing a p185HER2-specific chimeric T-cell receptor gene

    Institute of Scientific and Technical Information of China (English)

    JIAN MIN YANG; MICHAEL S FRIEDMAN; MARIANNE T HUBEN; JENNIFER FULLER; QIAO LI; ALFRED E CHANG; JAMES J MULE; KEVIN T MCDONAGH

    2006-01-01

    We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HER2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test the feasibility of chimeric T-cell receptor in a bone marrow transplantation model, we first, made two murine tumor cell lines: MT901 and MCA-205, to express human p185HER2by retroviral gene transduction. Murine bone marrow cells were retrovirally transduced to express the chimeric T-cell receptor and gene-modified bone marrow cells were transplanted into lethally irradiated mouse. Six months post transplantation, p185HER2-positive tumor cells: MT-901/HER2 or MCA-205/HER2 was subcutaneously or intravenously injected to make mouse models simulating primary breast cancer or pulmonary metastasis. The in vivo anti-tumor effects were monitored by the size of the subcutaneous tumor or counting the tumor nodules in the lungs after India ink staining. The size of the subcutaneous tumor was significantly inhibited and the number of pulmonary nodules were significantly decreased in mouse recipients transplanted with chimeric T-cell receptor modified bone marrow cells compared with the control group. Our results suggest the efficient in vivo anti-tumor activities of chimeric T-cell receptor gene modified bone marrow cells.

  11. A facile, branched DNA assay to quantitatively measure glucocorticoid receptor auto-regulation in T-cell acute lymphoblastic leukemia

    Institute of Scientific and Technical Information of China (English)

    Jason R. Schwartz; Purvaba J. Sarvaiya; Lily E. Leiva; Maria C. Velez; Tammuella C. Singleton; Lolie C. Yu; Wayne V. Vedeckis

    2012-01-01

    Glucocorticoid (GC) steroid hormones are used to treat acute lymphoblastic leukemia (ALL) because of their pro-apoptotic effects in hematopoietic cells.However,not all leukemia cells are sensitive to GC,and no assay to stratify patients is available.In the GC-sensitive T-cell ALL cell line CEM-C7,auto-up-regulation of RNA transcripts for the glucocorticoid receptor (GR) correlates with increased apoptotic response.This study aimed to determine if a facile assay of GR transcript levels might be promising for stratifying ALL patients into hormone-sensitive and hormone-resistant populations.The GR transcript profiles of various lymphoid cell lines and 4 bone marrow samples from patients with T-cell ALL were analyzed using both an optimized branched DNA (bDNA) assay and a real-time quantitative reverse transcription-polymerase chain reaction assay.There were significant correlations between both assay platforms when measuring total GR (exon 5/6) transcripts in various cell lines and patient samples,but not for a probe set that detects a specific,low abundance GR transcript (exon 1A3).Our resul