WorldWideScience

Sample records for antigen-specific t-cell receptor

  1. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Todd M Brusko

    2010-07-01

    Full Text Available Therapies directed at augmenting regulatory T cell (Treg activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition.To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff activity as determined by tumor cell growth and luciferase reporter-based imaging.These results support the

  2. Application of Adoptive T-Cell Therapy Using Tumor Antigen-Specific T-Cell Receptor Gene Transfer for the Treatment of Human Leukemia

    Directory of Open Access Journals (Sweden)

    Toshiki Ochi

    2010-01-01

    Full Text Available The last decade has seen great strides in the field of cancer immunotherapy, especially the treatment of melanoma. Beginning with the identification of cancer antigens, followed by the clinical application of anti-cancer peptide vaccination, it has now been proven that adoptive T-cell therapy (ACT using cancer antigen-specific T cells is the most effective option. Despite the apparent clinical efficacy of ACT, the timely preparation of a sufficient number of cancer antigen-specific T cells for each patient has been recognized as its biggest limitation. Currently, therefore, attention is being focused on ACT with engineered T cells produced using cancer antigen-specific T-cell receptor (TCR gene transfer. With regard to human leukemia, ACT using engineered T cells bearing the leukemia antigen-specific TCR gene still remains in its infancy. However, several reports have provided preclinical data on TCR gene transfer using Wilms' tumor gene product 1 (WT1, and also preclinical and clinical data on TCR gene transfer involving minor histocompatibility antigen, both of which have been suggested to provide additional clinical benefit. In this review, we examine the current status of anti-leukemia ACT with engineered T cells carrying the leukemia antigen-specific TCR gene, and discuss the existing barriers to progress in this area.

  3. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  4. Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujiwara

    2014-12-01

    Full Text Available Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as “cellular drugs”. As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs, transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  5. Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Kvistborg, Pia; Frøsig, Thomas Mørch

    2012-01-01

    Fluorescently labeled multimeric complexes of peptide-MHC, the molecular entities recognized by the T cell receptor, have become essential reagents for detection of antigen-specific CD8(+) T cells by flow cytometry. Here we present a method for high-throughput parallel detection of antigen-specif......(+) immune responses during cancer and infectious disease or after immunotherapy. One panel of 28 combinatorially encoded MHC multimers can be prepared in 4 h. Staining and detection takes a further 3 h.......Fluorescently labeled multimeric complexes of peptide-MHC, the molecular entities recognized by the T cell receptor, have become essential reagents for detection of antigen-specific CD8(+) T cells by flow cytometry. Here we present a method for high-throughput parallel detection of antigen......-specific T cells by combinatorial encoding of MHC multimers. Peptide-MHC complexes are produced by UV-mediated MHC peptide exchange and multimerized in the form of streptavidin-fluorochrome conjugates. Eight different fluorochromes are used for the generation of MHC multimers and, by a two...

  6. Infection of CD127+ (Interleukin-7 Receptor+) CD4+ Cells and Overexpression of CTLA-4 Are Linked to Loss of Antigen-Specific CD4 T Cells during Primary Human Immunodeficiency Virus Type 1 Infection

    Science.gov (United States)

    Zaunders, John J.; Ip, Susanna; Munier, Mee Ling; Kaufmann, Daniel E.; Suzuki, Kazuo; Brereton, Choechoe; Sasson, Sarah C.; Seddiki, Nabila; Koelsch, Kersten; Landay, Alan; Grey, Pat; Finlayson, Robert; Kaldor, John; Rosenberg, Eric S.; Walker, Bruce D.; Fazekas de St. Groth, Barbara; Cooper, David A.; Kelleher, Anthony D.

    2006-01-01

    We recently found that human immunodeficiency virus (HIV)-specific CD4+ T cells express coreceptor CCR5 and activation antigen CD38 during early primary HIV-1 infection (PHI) but then rapidly disappear from the circulation. This cell loss may be due to susceptibility to infection with HIV-1 but could also be due to inappropriate apoptosis, an expansion of T regulatory cells, trafficking out of the circulation, or dysfunction. We purified CD38+++CD4+ T cells from peripheral blood mononuclear cells, measured their level of HIV-1 DNA by PCR, and found that about 10% of this population was infected. However, a small subset of HIV-specific CD4+ T cells also expressed CD127, a marker of long-term memory cells. Purified CD127+CD4+ lymphocytes contained fivefold more copies of HIV-1 DNA per cell than did CD127-negative CD4+ cells, suggesting preferential infection of long-term memory cells. We observed no apoptosis of antigen-specific CD4+ T cells in vitro and only a small increase in CD45RO+CD25+CD127dimCD4+ T regulatory cells during PHI. However, 40% of CCR5+CD38+++ CD4+ T cells expressed gut-homing integrins, suggesting trafficking through gut-associated lymphoid tissue (GALT). Furthermore, 80% of HIV-specific CD4+ T cells expressed high levels of the negative regulator CTLA-4 in response to antigen stimulation in vitro, which was probably contributing to their inability to produce interleukin-2 and proliferate. Taken together, the loss of HIV-specific CD4+ T cells is associated with a combination of an infection of CCR5+ CD127+ memory CD4+ T cells, possibly in GALT, and a high expression of the inhibitory receptor CTLA-4. PMID:17005693

  7. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels

    2012-01-01

    -associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes...... predominantly from differentiation and cancer-testis antigens. Notably, the majority of these responses were of low frequency and tumor-specific T-cell frequencies decreased during rapid expansion. A further notable observation was a large variation in the T-cell specificities detected in cultures established...

  8. Langerhans Cells Prevent Autoimmunity via Expansion of Keratinocyte Antigen-Specific Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Daniela Y. Kitashima

    2018-01-01

    Full Text Available Langerhans cells (LCs are antigen-presenting cells in the epidermis whose roles in antigen-specific immune regulation remain incompletely understood. Desmoglein 3 (Dsg3 is a keratinocyte cell-cell adhesion molecule critical for epidermal integrity and an autoantigen in the autoimmune blistering disease pemphigus. Although antibody-mediated disease mechanisms in pemphigus are extensively characterized, the T cell aspect of this autoimmune disease still remains poorly understood. Herein, we utilized a mouse model of CD4+ T cell-mediated autoimmunity against Dsg3 to show that acquisition of Dsg3 and subsequent presentation to T cells by LCs depended on the C-type lectin langerin. The lack of LCs led to enhanced autoimmunity with impaired Dsg3-specific regulatory T cell expansion. LCs expressed the IL-2 receptor complex and the disruption of IL-2 signaling in LCs attenuated LC-mediated regulatory T cell expansion in vitro, demonstrating that direct IL-2 signaling shapes LC function. These data establish that LCs mediate peripheral tolerance against an epidermal autoantigen and point to langerin and IL-2 signaling pathways as attractive targets for achieving tolerogenic responses particularly in autoimmune blistering diseases such as pemphigus.

  9. MHC-based detection of antigen-specific CD8(+) T cell responses

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Schumacher, Nana Maria Pii

    2010-01-01

    epitopes in limited biological material. These technologies are based on the joint binding of differentially labelled MHC multimers on the T cell surface, thereby providing each antigen-specific T cell population with a unique multicolour code. This strategy of 'combinatorial encoding' enables detection...... of many (at least 25) different T cell populations per sample and should be of broad value for both T cell epitope identification and immunomonitoring...

  10. Generation of multi-functional antigen-specific human T-cells by lentiviral TCR gene transfer.

    Science.gov (United States)

    Perro, M; Tsang, J; Xue, S-A; Escors, D; Cesco-Gaspere, M; Pospori, C; Gao, L; Hart, D; Collins, M; Stauss, H; Morris, E C

    2010-06-01

    T-cell receptor (TCR) gene transfer is an attractive strategy to generate antigen-specific T-cells for adoptive immunotherapy of cancer and chronic viral infection. However, current TCR gene transfer protocols trigger T-cell differentiation into terminally differentiated effector cells, which likely have reduced ability to mediate disease protection in vivo. We have developed a lentiviral gene transfer strategy to generate TCR-transduced human T-cells without promoting T-cell differentiation. We found that a combination of interleukin-15 (IL15) and IL21 facilitated lentiviral TCR gene transfer into non-proliferating T-cells. The transduced T-cells showed redirection of antigen specificity and produced IL2, IFNgamma and TNFalpha in a peptide-dependent manner. A significantly higher proportion of the IL15/IL21-stimulated T-cells were multi-functional and able to simultaneously produce all three cytokines (P<0.01), compared with TCR-transduced T-cells generated by conventional anti-CD3 plus IL2 stimulation, which primarily secreted only one cytokine. Similarly, IL15/IL21 maintained high levels of CD62L and CD28 expression in transduced T-cells, whereas anti-CD3 plus IL2 accelerated the loss of CD62L/CD28 expression. The data demonstrate that the combination of lentiviral TCR gene transfer together with IL15/IL21 stimulation can efficiently redirect the antigen specificity of resting primary human T-cells and generate multi-functional T-cells.

  11. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs.

    Science.gov (United States)

    Dutta, Avijit; Huang, Ching-Tai; Lin, Chun-Yen; Chen, Tse-Ching; Lin, Yung-Chang; Chang, Chia-Shiang; He, Yueh-Chia

    2016-09-06

    Sterilizing immunity is a unique immune status, which prevents effective virus infection into the host. It is different from the immunity that allows infection but with subsequent successful eradication of the virus. Pre-infection induces sterilizing immunity to homologous influenza virus challenge in ferret. In our antigen-specific experimental system, mice pre-infected with PR8 influenza virus through nasal route are likewise resistant to reinfection of the same strain of virus. The virus is cleared before establishment of effective infection. Intramuscular influenza virus injection confers protection against re-infection with facilitated virus clearance but not sterilizing immunity. Pre-infection and intramuscular injection generates comparable innate immunity and antibody response, but only pre-infection induces virus receptor reduction and efficient antigen-specific T cell response in the lungs. Pre-infection with nH1N1 influenza virus induces virus receptor reduction but not PR8-specific T cell immune response in the lungs and cannot prevent infection of PR8 influenza virus. Pre-infection with PR8 virus induced PR8-specific T cell response in the lungs but cannot prevent infection of nH1N1 virus either. These results reveal that antigen-specific T cell immunity is required for sterilizing immunity.

  12. Interferon-gamma administration after abdominal surgery rescues antigen-specific helper T cell immune reactivity

    NARCIS (Netherlands)

    Rentenaar, R. J.; de Metz, J.; Bunders, M.; Wertheim-van Dillen, P. M.; Gouma, D. J.; Romijn, J. A.; Sauerwein, H. P.; ten Berge, I. J.; van Lier, R. A.

    2001-01-01

    Antigen-induced activation of T cells is determined by many factors. Among these factors are (i) the number of T-cell receptors (TCRs) triggered by TCR ligands on antigen-presenting cells (APCs), and (ii) the intrinsic cellular threshold for activation. T-cell receptor triggering is optimized by

  13. Antibody-targeted NY-ESO-1 to mannose receptor or DEC-205 in vitro elicits dual human CD8+ and CD4+ T cell responses with broad antigen specificity.

    Science.gov (United States)

    Tsuji, Takemasa; Matsuzaki, Junko; Kelly, Marcus P; Ramakrishna, Venky; Vitale, Laura; He, Li-Zhen; Keler, Tibor; Odunsi, Kunle; Old, Lloyd J; Ritter, Gerd; Gnjatic, Sacha

    2011-01-15

    Immunization of cancer patients with vaccines containing full-length tumor Ags aims to elicit specific Abs and both CD4(+) and CD8(+) T cells. Vaccination with protein Ags, however, often elicits only CD4(+) T cell responses without inducing Ag-specific CD8(+) T cells, as exogenous protein is primarily presented to CD4(+) T cells. Recent data revealed that Ab-mediated targeting of protein Ags to cell surface receptors on dendritic cells could enhance the induction of both CD4(+) and CD8(+) T cells. We investigated in this study if these observations were applicable to NY-ESO-1, a cancer-testis Ag widely used in clinical cancer vaccine trials. We generated two novel targeting proteins consisting of the full-length NY-ESO-1 fused to the C terminus of two human mAbs against the human mannose receptor and DEC-205, both internalizing molecules expressed on APC. These targeting proteins were evaluated for their ability to activate NY-ESO-1-specific human CD4(+) and CD8(+) T cells in vitro. Both targeted NY-ESO-1 proteins rapidly bound to their respective targets on APC. Whereas nontargeted and Ab-targeted NY-ESO-1 proteins similarly activated CD4(+) T cells, cross-presentation to CD8(+) T cells was only efficiently induced by targeted NY-ESO-1. In addition, both mannose receptor and DEC-205 targeting elicited specific CD4(+) and CD8(+) T cells from PBLs of cancer patients. Receptor-specific delivery of NY-ESO-1 to APC appears to be a promising vaccination strategy to efficiently generate integrated and broad Ag-specific immune responses against NY-ESO-1 in cancer patients.

  14. Multiparameter grouping delineates heterogeneous populations of human IL-17 and/or IL-22 T-cell producers that share antigen specificities with other T-cell subsets.

    Science.gov (United States)

    Larsen, Martin; Arnaud, Laurent; Hié, Miguel; Parizot, Christophe; Dorgham, Karim; Shoukry, Mohamed; Kemula, Mathilde; Barete, Stéphane; Derai, David; Sauce, Delphine; Amoura, Zahir; Pène, Jérôme; Yssel, Hans; Gorochov, Guy

    2011-09-01

    The ontogenic relationship between pro-inflammatory populations of interleukin-17 (IL-17A)- and/or IL-22-producing T cells and other T-cell subsets is currently unclear in humans. To appreciate T helper cell-lineage commitment, we combined cytokine production profiles of in vitro expanded T-cell clones with T-cell receptor (TCR) clonotypic signatures. Moreover, ex vivo cytokine production profiles at the single-cell level were analyzed using an original approach based on the hierarchical cluster analysis of multiparametric flow cytometry data. These combined approaches enabled the delineation of distinct functional T-cell subsets, including Th1, Th2, Tr1, Th17 cells and a highly polyfunctional IL-22-producing T-cell population. Cluster analysis highlighted that the IL-22-producing T-cell population should be considered independently from the Th17 and Th1 subsets, although it was more closely related to the former. In parallel, we observed extensive TCRαβ sharing across all five subsets defined. The strategy described here allows the objective definition of cellular subsets and an unbiased insight into their similarities. Together, our results underscore the ontogenic plasticity of CD4(+) T-cell progenitors, which can adopt a differentiation profile irrespective of antigen specificity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Antigen-specific in vitro expansion of functional redirected NY-ESO-1-specific human CD8+ T-cells in a cell-free system.

    Science.gov (United States)

    Jakka, Gopinadh; Schuberth, Petra C; Thiel, Markus; Held, Gerhard; Stenner, Frank; Van Den Broek, Maries; Renner, Christoph; Mischo, Axel; Petrausch, Ulf

    2013-10-01

    Tumors can be targeted by the adoptive transfer of chimeric antigen receptor (CAR) redirected T-cells. Antigen-specific expansion protocols are needed to generate large quantities of redirected T-cells. We aimed to establish a protocol to expand functional active NY-ESO-1-specific redirected human CD8(+) T-cells. The anti-idiotypic Fab antibody A4 with specificity for HLA-A 0201/NY-ESO-1157-165 was tested by competition assays using a HLA-A 0201/NY-ESO-1157-165 tetramer. HLA-A 0201/NY-ESO-1157-165 redirected T-cells were generated, expanded and tested for CAR expression, cytokine release, in vitro cytolysis and protection against xenografted HLA-A 0201/NY-ESO-1157-165-positive multiple myeloma cells. A4 demonstrated antigen-specific binding to HLA-A 0201/NY-ESO-1157-165 redirected T-cells. Expansion with A4 resulted in 98% of HLA-A 0201/NY-ESO-1157-165 redirected T-cells. A4 induced strong proliferation, resulting in a 300-fold increase of redirected T-cells. After expansion protocols, redirected T-cells secreted Interleukin-2, (IL-2), interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) and lysed target cells in vitro and were protective in vivo. A4 expanded HLA-A 0201/NY-ESO-1157-165 redirected T-cells with preservation of antigen-specific function.

  16. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen....... There is a particular interest in developing robust high-throughput assays as chicken vaccine trials usually comprise many individuals. In many respects, the avian immune system differs from the mammalian, and T cell assessment protocols must be adjusted accordingly to account for, e.g., differences in leukocyte...... in the cells even throughout division. This leads to daughter cells containing half the fluorescence of their parents. When lymphocytes are loaded with CFSE prior to ex vivo stimulation with specific antigen, the measurement of serial halving of its fluorescence by flow cytometry identifies the cells...

  17. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    Science.gov (United States)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  18. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    Science.gov (United States)

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  19. Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells.

    Science.gov (United States)

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.

  20. The athymic nude rat. Immunobiological characteristics with special reference to establishment of non-antigen-specific T-cell reactivity and induction of antigen-specific immunity

    DEFF Research Database (Denmark)

    Hougen, H P

    1991-01-01

    The aim of the present review has been to describe some immunobiological characteristics of the athymic nude rat and on the basis of these to describe the possibilities of establishing non-antigen-specific T-cell reactivity and inducing antigen-specific immunity. After a brief introduction, some...... general characteristics of the autosomal recessive rnu/rnu rat are outlined. This athymic mutant normally has a longer lifespan than athymic nude mice and is easier to breed. Inbred nude rats are now available with several rat strain backgrounds. Since the rnu/rnu rat is athymic, the morphology...... are mentioned and their possible function outlined. However, thymic hormones still do not play an important role in immunotherapy. There are some striking differences in the morphology of lymphatic tissues of athymic and euthymic rats. The thymic area in nude rats consists only of fat and clusters of epithelial...

  1. Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell-Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing.

    Science.gov (United States)

    Zeng, G; Huang, Y; Huang, Y; Lyu, Z; Lesniak, D; Randhawa, P

    2016-11-01

    This study interrogates the antigen-specificity of inflammatory infiltrates in renal biopsies with BK polyomavirus (BKPyV) viremia (BKPyVM) with or without allograft nephropathy (BKPyVN). Peripheral blood mononuclear cells (PBMC) from five healthy HLA-A0101 subjects were stimulated by peptides derived from the BKPYV proteome or polymorphic regions of HLA. Next generation sequencing of the T cell-receptor complementary DNA was performed on peptide-stimulated PBMC and 23 biopsies with T cell-mediated rejection (TCMR) or BKPyVN. Biopsies from patients with BKPyVM or BKVPyVN contained 7.7732 times more alloreactive than virus-reactive clones. Biopsies with TCMR also contained BKPyV-specific clones, presumably a manifestation of heterologous immunity. The mean cumulative T cell clonal frequency was 0.1378 for alloreactive clones and 0.0375 for BKPyV-reactive clones. Samples with BKPyVN and TCMR clustered separately in dendrograms of V-family and J-gene utilization patterns. Dendrograms also revealed that V-gene, J-gene, and D-gene usage patterns were a function of HLA type. In conclusion, biopsies with BKPyVN contain abundant allospecific clones that exceed the number of virus-reactive clones. The T cell component of tissue injury in viral nephropathy appears to be mediated primarily by an "innocent bystander" mechanism in which the principal element is secondary T cell influx triggered by both antiviral and anti-HLA immunity. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Monoclonal T-cell receptors: new reagents for cancer therapy.

    Science.gov (United States)

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of naïve T cells may be possible in the future by TCR gene transfer into stem cells.

  3. Prospects and limitations of T cell receptor gene therapy

    NARCIS (Netherlands)

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A.; Schumacher, Ton N. M.

    2011-01-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining

  4. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Science.gov (United States)

    Kitchen, Scott G; Bennett, Michael; Galić, Zoran; Kim, Joanne; Xu, Qing; Young, Alan; Lieberman, Alexis; Joseph, Aviva; Goldstein, Harris; Ng, Hwee; Yang, Otto; Zack, Jerome A

    2009-12-07

    There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR). Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  5. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  6. An Enhanced ELISPOT Assay for Sensitive Detection of Antigen-Specific T Cell Responses to Borrelia burgdorferi

    Directory of Open Access Journals (Sweden)

    Gottfried H. Kellermann

    2013-09-01

    Full Text Available Lyme Borreliosis is an infectious disease caused by the spirochete Borrelia burgdorferi that is transmitted through the bite of infected ticks. Both B cell-mediated humoral immunity and T cell immunity develop during natural Borrelia infection. However, compared with humoral immunity, the T cell response to Borrelia infection has not been well elucidated. In this study, a novel T cell-based assay was developed and validated for the sensitive detection of antigen-specific T cell response to B. burgdorferi. Using interferon-g as a biomarker, we developed a new enzyme-linked immunospot method (iSpot Lyme™ to detect Borrelia antigen-specific effector/memory T cells that were activated in vivo by exposing them to recombinant Borrelia antigens ex vivo. To test this new method as a potential laboratory diagnostic tool, we performed a clinical study with a cohort of Borrelia positive patients and healthy controls. We demonstrated that the iSpot Lyme assay has a significantly higher specificity and sensitivity compared with the Western Blot assay that is currently used as a diagnostic measure. A comprehensive evaluation of the T cell response to Borrelia infection should, therefore, provide new insights into the pathogenesis, diagnosis, treatment and monitoring of Lyme disease.

  7. Suppression of Murine Colitis and its Associated Cancer by Carcinoembryonic Antigen-Specific Regulatory T Cells

    Science.gov (United States)

    Blat, Dan; Zigmond, Ehud; Alteber, Zoya; Waks, Tova; Eshhar, Zelig

    2014-01-01

    The adoptive transfer of regulatory T cells (Tregs) offers a promising strategy to combat pathologies that are characterized by aberrant immune activation, including graft rejection and autoinflammatory diseases. Expression of a chimeric antigen receptor (CAR) gene in Tregs redirects them to the site of autoimmune activity, thereby increasing their suppressive efficiency while avoiding systemic immunosuppression. Since carcinoembryonic antigen (CEA) has been shown to be overexpressed in both human colitis and colorectal cancer, we treated CEA-transgenic mice that were induced to develop colitis with CEA-specific CAR Tregs. Two disease models were employed: T-cell-transfer colitis as well as the azoxymethane–dextran sodium sulfate model for colitis-associated colorectal cancer. Systemically administered CEA-specific (but not control) CAR Tregs accumulated in the colons of diseased mice. In both model systems, CEA-specific CAR Tregs suppressed the severity of colitis compared to control Tregs. Moreover, in the azoxymethane–dextran sodium sulfate model, CEA-specific CAR Tregs significantly decreased the subsequent colorectal tumor burden. Our data demonstrate that CEA-specific CAR Tregs exhibit a promising potential in ameliorating ulcerative colitis and in hindering colorectal cancer development. Collectively, this study provides a proof of concept for the therapeutic potential of CAR Tregs in colitis patients as well as in other autoimmune inflammatory disorders. PMID:24686242

  8. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  9. Single dose CpG immunization protects against a heterosubtypic challenge and generates antigen specific memory T cells

    Directory of Open Access Journals (Sweden)

    Alexander eVogel

    2015-06-01

    Full Text Available Despite extensive research, influenza A virus (IAV remains a major cause of morbidity, mortality, and healthcare expenditure. Emerging pandemics from highly pathogenic IAV strains such as H5N1 and pandemic H1N1 highlight the need for universal, cross-protective vaccines. Current vaccine formulations generate strain-specific neutralizing antibodies primarily against the outer coat proteins hemagglutinin and neuraminidase. In contrast to these highly mutable proteins, internal proteins of IAV are more conserved and are a favorable target for developing vaccines that induce strong T cell responses in addition to humoral immunity. Here, we found that intranasal administration with a single dose of CpG and inactivated x31 (H3N2 reduced viral titers and partially protected mice from a heterosubtypic challenge with a lethal dose of PR8 (H1N1. Early after immunization, vaccinated mice showed increased innate immune activation with high levels of MHCII and CD86 expression on dendritic cells in both the draining lymph nodes and lungs. Three days after immunization, CD4 and CD8 cells in the lung upregulated CD69, suggesting that activated lymphocytes are present at the site of vaccine administration. The ensuing effector Th1 responses were capable of producing multiple cytokines and were present at least 30 days after immunization. Furthermore, functional memory responses were observed, as antigen specific IFN-γ+ and GrB+ cells were detected early after lethal infection. Together, this work provides evidence for using pattern recognition receptor agonists as a mucosal vaccine platform for inducing robust T cell responses capable of protecting against heterologous IAV challenges.

  10. Analysis of tumor antigen-specific T cells and antibodies in cancer patients treated with radiofrequency ablation.

    Science.gov (United States)

    Widenmeyer, Melanie; Shebzukhov, Yuriy; Haen, Sebastian P; Schmidt, Diethard; Clasen, Stephan; Boss, Andreas; Kuprash, Dmitri V; Nedospasov, Sergei A; Stenzl, Arnulf; Aebert, Hermann; Wernet, Dorothee; Stevanović, Stefan; Pereira, Philippe L; Rammensee, Hans-Georg; Gouttefangeas, Cécile

    2011-06-01

    Radiofrequency (RF) ablation is a minimally invasive technique routinely applied for the treatment of primary and secondary liver tumors. It induces cell death by thermal coagulative necrosis of tumor tissues, whereas cellular metabolism can still take place in a transition zone surrounding the necrotic area. An increase in heat shock protein expression occurs shortly after treatment, suggesting that the induction of activating signals may stimulate the host immune system. In addition, various effects on immune effectors have also been observed, including stimulation of tumor-directed T lymphocytes. Here, we prospectively assessed the activation of tumor antigen-specific antibodies, as well as antigen-specific CD4(+) and CD8(+) T cells in patients suffering from primary or secondary malignancies and treated by RF ablation with or without concomitant chemotherapy. An increase of antibodies (in 4 patients of 49), CD4(+) T cells or CD8(+) T cells (in 2 patients of 49) could be detected several weeks to months following intervention. These findings suggest that in addition to the local control of tumor growth, RF ablation can provide the appropriate conditions for activating tumor-antigen specific immune responses. Copyright © 2010 UICC.

  11. Modular Nucleic Acid Assembled p/MHC Microarrays for Multiplexed Sorting of Antigen-Specific T Cells

    Science.gov (United States)

    Kwong, Gabriel A.; Radu, Caius G.; Hwang, Kiwook; Shu, Chengyi J.; Ma, Chao; Koya, Richard C.; Comin-Anduix, Begonya; Hadrup, Sine Reker; Bailey, Ryan C.; Witte, Owen N.; Schumacher, Ton N.; Ribas, Antoni; Heath, James R.

    2009-01-01

    The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called “Nucleic Acid Cell Sorting (NACS)”, single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection. PMID:19552409

  12. In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available The HIV-specific cytotoxic T lymphocyte (CTL response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.

  13. Incomplete differentiation of antigen-specific CD8 T cells in tumor-draining lymph nodes.

    Science.gov (United States)

    Hargadon, Kristian M; Brinkman, C Colin; Sheasley-O'neill, Stacey L; Nichols, Lisa A; Bullock, Timothy N J; Engelhard, Victor H

    2006-11-01

    CD8 T cells lacking effector activity have been recovered from lymphoid organs of mice and patients with progressing tumors. We explored the basis for lack of effector activity in tumor-bearing mice by evaluating Ag presentation and CD8 T cell function in lymphoid organs over the course of tumor outgrowth. Early after tumor injection, cross-presentation by bone marrow-derived APC was necessary for T cell activation, inducing proliferation and differentiation into IFN-gamma-producing, cytolytic effectors. At later stages of outgrowth, tumor metastasized to draining lymph nodes. Both cross- and direct presentation occurred, but T cell differentiation induced by either modality was incomplete (proliferation without cytokine production). T cells within tumor-infiltrated nodes differentiated appropriately if Ag was presented by activated, exogenous dendritic cells. Thus, activated T cells lacking effector function develop through incomplete differentiation in the lymph nodes of late-stage tumor-bearing mice, rather than through suppression of previously differentiated cells.

  14. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  15. Quantifying biomass changes of single CD8+ T cells during antigen specific cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Thomas A Zangle

    Full Text Available Existing approaches that quantify cytotoxic T cell responses rely on bulk or surrogate measurements which impede the direct identification of single activated T cells of interest. Single cell microscopy or flow cytometry methodologies typically rely on fluorescent labeling, which limits applicability to primary cells such as human derived T lymphocytes. Here, we introduce a quantitative method to track single T lymphocyte mediated cytotoxic events within a mixed population of cells using live cell interferometry (LCI, a label-free microscopy technique that maintains cell viability. LCI quantifies the mass distribution within individual cells by measuring the phase shift caused by the interaction of light with intracellular biomass. Using LCI, we imaged cytotoxic T cells killing cognate target cells. In addition to a characteristic target cell mass decrease of 20-60% over 1-4 h following attack by a T cell, there was a significant 4-fold increase in T cell mass accumulation rate at the start of the cytotoxic event and a 2-3 fold increase in T cell mass relative to the mass of unresponsive T cells. Direct, label-free measurement of CD8+ T and target cell mass changes provides a kinetic, quantitative assessment of T cell activation and a relatively rapid approach to identify specific, activated patient-derived T cells for applications in cancer immunotherapy.

  16. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Bakker, Arnold H; Shu, Chengyi J

    2009-01-01

    The use of fluorescently labeled major histocompatibility complex multimers has become an essential technique for analyzing disease- and therapy-induced T-cell immunity. Whereas classical major histocompatibility complex multimer analyses are well-suited for the detection of immune responses...... to a few epitopes, limitations on human-subject sample size preclude a comprehensive analysis of T-cell immunity. To address this issue, we developed a combinatorial encoding strategy that allows the parallel detection of a multitude of different T-cell populations in a single sample. Detection of T cells...

  17. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    Effector T cells are a crucial component of the adaptive immune response to respiratory virus infections. Although it was previously reported that the chemokine receptors CCR5 and CXCR3 affect trafficking of respiratory virus-specific CD8(+) T cells, it is unclear whether these receptors govern e...

  18. Induction and analysis of antigen-specific T cell responses in melanoma patients and animal models

    NARCIS (Netherlands)

    Bins, Adriaan Dirk

    2007-01-01

    This thesis introduces a novel T cell vaccination method that uses a tattoo machine to inject DNA in the skin of the vaccinee. In comparison to other experimental vaccination methods DNA tattooing is very strong: besides small laboratory animals also large animals mount strong T cell responses upon

  19. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures

    DEFF Research Database (Denmark)

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania

    2012-01-01

    T-cell clones and functionality persists through out expansion among an oligoclonal composition of T-cells. Our findings mirror prior results on the oligoclonal composition of TIL cultures, further indicating a potential for a broader repertoire of specific effector cells recognizing...

  20. The development of standard samples with a defined number of antigen-specific T cells to harmonize T cell assays: a proof-of-principle study.

    Science.gov (United States)

    Singh, Satwinder Kaur; Tummers, Bart; Schumacher, Ton N; Gomez, Raquel; Franken, Kees L M C; Verdegaal, Els M; Laske, Karoline; Gouttefangeas, Cécile; Ottensmeier, Christian; Welters, Marij J P; Britten, Cedrik M; van der Burg, Sjoerd H

    2013-03-01

    The validation of assays that quantify antigen-specific T cell responses is critically dependent on cell samples that contain clearly defined measurable numbers of antigen-specific T cells. An important requirement is that such cell samples are handled and analyzed in a comparable fashion to peripheral blood mononuclear cells (PBMC). We performed a proof-of-principle study to show that retrovirally TCR-transduced T cells spiked at defined numbers in autologous PBMC can be used as standard samples for HLA/peptide multimer staining. NY-ESO-1157-165-specific, TCR-transduced CD8+ T cell batches were successfully generated from PBMC of several HLA-A*0201 healthy donors, purified by magnetic cell sorting on the basis of HLA tetramer (TM) staining and expanded with specific antigen in vitro. When subsequently spiked into autologous PBMC, the detection of these CD3+CD8+TM+ T cells was highly accurate with a mean accuracy of 91.6 %. The standard cells can be preserved for a substantial period of time in liquid nitrogen. Furthermore, TM staining of fresh and cryopreserved standard samples diluted at decreasing concentrations into autologous cryopreserved unspiked PBMC revealed that the spiked CD3+CD8+TM+ T cells could be accurately detected at all dilutions in a linear fashion with a goodness-of-fit of over 0.99 at a frequency of at least 0.02 % among the CD3+CD8+ T cell population. Notably, the CD3+CD8+TM+ cells of the standard samples were located exactly within the gates used to analyze patient samples and displayed a similar scatter pattern. The performance of the cryopreserved standard samples in the hands of 5 external investigators was good with an inter-laboratory variation of 32.9 % and the doubtless identification of one outlier.

  1. Efficiency and mechanism of antigen-specific CD8+ T-cell activation using synthetic long peptides.

    Science.gov (United States)

    Zandvliet, Maarten L; Kester, Michel G D; van Liempt, Ellis; de Ru, Arnoud H; van Veelen, Peter A; Griffioen, Marieke; Guchelaar, Henk-Jan; Falkenburg, J H Frederik; Meij, Pauline

    2012-01-01

    Synthetic long peptides that contain immunogenic T-cell epitopes have been used to induce activation of antigen-specific CD8 T cells in vitro for immune monitoring or adoptive transfer, or in vivo after peptide vaccination. However, the efficiency and mechanisms of presentation of exogenous long peptides in human leukocyte antigen (HLA) class I remain to be elucidated. In this study, we demonstrated that the efficiency of antigen-specific CD8 T-cell activation using extended peptide variants of common viral epitopes is variable. We demonstrated that processing and HLA class I presentation of the long peptides were not dependent on the proteasome and transporter associated with antigen processing, illustrating that the classic route of HLA class I presentation was not required for activation of specific CD8 T cells by exogenous synthetic long peptides. Although long peptides were shown to bind to the relevant HLA class I molecules, peptide trimming was likely to be essential for optimal HLA class I presentation and T-cell activation. As the proteasome was not required for processing of exogenous peptides, it is very likely that peptide trimming was mediated by peptidases, which may be located extracellularly at the cell surface, in the cytosol, endoplasmic reticulum, or in endosomal and lysosomal compartments. Furthermore, the results suggested that processing of the correct minimal peptides was facilitated by binding in HLA class I molecules. This mechanism of HLA-guided processing may be important in HLA class I presentation of exogenous long peptides to induce activation of specific CD8 T cells.

  2. Hierarchical Bayesian mixture modelling for antigen-specific T-cell subtyping in combinatorially encoded flow cytometry studies

    DEFF Research Database (Denmark)

    Lin, Lin; Chan, Cliburn; Hadrup, Sine R

    2013-01-01

    in the ability to characterize variation in immune responses involving larger numbers of functionally differentiated cell subtypes. We describe novel classes of Markov chain Monte Carlo methods for model fitting that exploit distributed GPU (graphics processing unit) implementation. We discuss issues of cellular...... subtype identification in this novel, general model framework, and provide a detailed example using simulated data. We then describe application to a data set from an experimental study of antigen-specific T-cell subtyping using combinatorially encoded assays in human blood samples. Summary comments...

  3. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might ...

  4. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might...... peptide/MHC complexes....

  5. Antigen-specific T cells for the treatment of infections after transplantation.

    Science.gov (United States)

    Einsele, Hermann

    2003-01-01

    Considerable progress has been made in our understanding of the immunobiology of infections in immunocompromised hosts. Insights derived from animal model and human studies have provided the rationale for investigating immunotherapy with alphabeta+ T cells to restore responses considered essential for protective immunity to cytomegalovirus and Epstein-Barr virus. Future studies will address the role of adoptive immunotherapy in the prevention and treatment of adenovirus and invasive fungal infection. The use of genetically modified T cells has already been evaluated clinically and offers the potential for improving safety and efficacy and removing obstacles to successful immunotherapy. Although these studies are in the early stages and present considerable technical challenges, the results suggest that cellular immunotherapy will be a fruitful area for investigation in future years.

  6. Automated isolation of primary antigen-specific T cells from donor lymphocyte concentrates: results of a feasibility exercise.

    Science.gov (United States)

    Bunos, M; Hümmer, C; Wingenfeld, E; Sorg, N; Pfirrmann, V; Bader, P; Seifried, E; Bönig, H

    2015-11-01

    The safety and clinical efficacy of adoptive transfer of prospectively isolated antigen-specific T cells are well established. Several competing selection methods are available, one of which is based on immunomagnetic enrichment of T cells secreting IFNγ after incubation with the relevant antigen. The proprietary, GMP-conforming selection technology, called 'cytokine capture system' (CCS) is established in many laboratories for the CliniMACS Plus system. It is robust and efficient, but labour-intensive and incompatible with a single-shift working schedule. An automatic immunomagnetic cell processing system, CliniMACS Prodigy ('Prodigy'), including a protocol for fully automatic CCS execution was recently released. Feasibility of clinical-scale CMV-specific T-cell selection using Prodigy was evaluated using leukoapheresis products from five healthy CMV sero-positive volunteers. Clinical reagents and consumables were used throughout. The process required no operator input beyond set-up and QC-sample collection, that is, feasibility was given. An IFNγ-secreting target T-cell population was detectable after stimulation, and >2 log-scale relative depletion of not CMV-reactive T cells in the target population was achieved. Purity, that is the frequency of CMV-reactive T cells among all CD3(+) cells ranged between 64 and 93%. The CCS protocol on Prodigy is unrestrictedly functional. It runs fully automatically beyond set-up and thus markedly reduces labour. The quality of the products generated is similar to products generated with CliniMACS Plus. The automatic system is thus suitable for routine clinical application. © 2015 International Society of Blood Transfusion.

  7. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response.

    Science.gov (United States)

    Xue, Qiong; Bettini, Emily; Paczkowski, Patrick; Ng, Colin; Kaiser, Alaina; McConnell, Timothy; Kodrasi, Olja; Quigley, Máire F; Heath, James; Fan, Rong; Mackay, Sean; Dudley, Mark E; Kassim, Sadik H; Zhou, Jing

    2017-11-21

    It remains challenging to characterize the functional attributes of chimeric antigen receptor (CAR)-engineered T cell product targeting CD19 related to potency and immunotoxicity ex vivo, despite promising in vivo efficacy in patients with B cell malignancies. We employed a single-cell, 16-plex cytokine microfluidics device and new analysis techniques to evaluate the functional profile of CD19 CAR-T cells upon antigen-specific stimulation. CAR-T cells were manufactured from human PBMCs transfected with the lentivirus encoding the CD19-BB-z transgene and expanded with anti-CD3/anti-CD28 coated beads. The enriched CAR-T cells were stimulated with anti-CAR or control IgG beads, stained with anti-CD4 RPE and anti-CD8 Alexa Fluor 647 antibodies, and incubated for 16 h in a single-cell barcode chip (SCBC). Each SCBC contains ~12,000 microchambers, covered with a glass slide that was pre-patterned with a complete copy of a 16-plex antibody array. Protein secretions from single CAR-T cells were captured and subsequently analyzed using proprietary software and new visualization methods. We demonstrate a new method for single-cell profiling of CD19 CAR-T pre-infusion products prepared from 4 healthy donors. CAR-T single cells exhibited a marked heterogeneity of cytokine secretions and polyfunctional (2+ cytokine) subsets specific to anti-CAR bead stimulation. The breadth of responses includes anti-tumor effector (Granzyme B, IFN-γ, MIP-1α, TNF-α), stimulatory (GM-CSF, IL-2, IL-8), regulatory (IL-4, IL-13, IL-22), and inflammatory (IL-6, IL-17A) functions. Furthermore, we developed two new bioinformatics tools for more effective polyfunctional subset visualization and comparison between donors. Single-cell, multiplexed, proteomic profiling of CD19 CAR-T product reveals a diverse landscape of immune effector response of CD19 CAR-T cells to antigen-specific challenge, providing a new platform for capturing CAR-T product data for correlative analysis. Additionally, such high

  8. A Recombinant Antibody with the Antigen-Specific, Major Histocompatibility Complex-Restricted Specificity of T Cells

    Science.gov (United States)

    Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren

    1996-03-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

  9. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity

    Directory of Open Access Journals (Sweden)

    Marcela V Maus

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are synthetic receptors that usually redirect T cells to surface antigens independent of human leukocyte antigen (HLA. Here, we investigated a T cell receptor-like CAR based on an antibody that recognizes HLA-A*0201 presenting a peptide epitope derived from the cancer-testis antigen NY-ESO-1. We hypothesized that this CAR would efficiently redirect transduced T cells in an HLA-restricted, antigen-specific manner. However, we found that despite the specificity of the soluble Fab, the same antibody in the form of a CAR caused moderate lysis of HLA-A2 expressing targets independent of antigen owing to T cell avidity. We hypothesized that lowering the affinity of the CAR for HLA-A2 would improve its specificity. We undertook a rational approach of mutating residues that, in the crystal structure, were predicted to stabilize binding to HLA-A2. We found that one mutation (DN lowered the affinity of the Fab to T cell receptor-range and restored the epitope specificity of the CAR. DN CAR T cells lysed native tumor targets in vitro, and, in a xenogeneic mouse model implanted with two human melanoma lines (A2+/NYESO+ and A2+/NYESO−, DN CAR T cells specifically migrated to, and delayed progression of, only the HLA-A2+/NY-ESO-1+ melanoma. Thus, although maintaining MHC-restricted antigen specificity required T cell receptor-like affinity that decreased potency, there is exciting potential for CARs to expand their repertoire to include a broad range of intracellular antigens.

  10. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans

    DEFF Research Database (Denmark)

    Fløe, Andreas; Løppke, Caroline; Hilberg, Ole

    2017-01-01

    (97·7%) of 43 patient samples (healthy, latent and active M. tuberculosis infection). The selected panel of six antigenic epitopes sufficed as a positive control in the detection of ASTC in HLA A*0201. Performance was robust in different stages of latent and active M. tuberculosis infection...... a literature search and in silico prediction. Peripheral blood mononuclear cells (PBMC) from healthy donors were analysed with the MHC Dextramers using flow cytometry. The best performing epitopes were tested on PBMC from patients undergoing testing for Mycobacterium tuberculosis infection to assess......We aimed to establish a panel of MHC–peptide multimers suitable as a positive control in the detection of HLA A*0201 restricted antigen specific T cells (ASTC) by flow cytometry. MHC Dextramers were loaded with HLA A*0201 binding peptides from viral antigens and melanoma targets identified from...

  11. Foxp3+ regulatory T cells among tuberculosis patients: impact on prognosis and restoration of antigen specific IFN-γ producing T cells.

    Directory of Open Access Journals (Sweden)

    Amar Singh

    Full Text Available CD4(+CD25(+Foxp3(+ regulatory T cells (Treg and programmed death-1 (PD-1 molecules have emerged as pivotal players in immune suppression of chronic diseases. However, their impact on the disease severity, therapeutic response and restoration of immune response in human tuberculosis remains unclear. Here, we describe the possible role of Treg cells, their M. tuberculosis driven expansion and contribution of PD-1 pathway to the suppressive function of Treg cells among pulmonary tuberculosis (PTB patients. Multicolor flow cytometry, cell culture, cells sorting and ELISA were employed to execute the study. Our results showed significant increase in frequency of antigen-reactive Treg cells, which gradually declined during successful therapy and paralleled with decline of M. tuberculosis-specific IL-10 along with elevation of IFN-γ production, and raising the IFN-γ/IL-4 ratio. Interestingly, persistence of Treg cells tightly correlated with MDR tuberculosis. Also, we show that blocking PD-1/PD-L1 pathway abrogates Treg-mediated suppression, suggesting that the PD-1/PD-L1 pathway is required for Treg-mediated suppression of the antigen-specific T cells. Treg cells possibly play a role in dampening the effector immune response and abrogating PD-1 pathway on Treg cells significantly rescued protective T cell response, suggesting its importance in immune restoration among tuberculosis patients.

  12. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  13. Harmonisation of short-term in vitro culture for the expansion of antigen-specific CD8(+) T cells with detection by ELISPOT and HLA-multimer staining.

    Science.gov (United States)

    Chudley, Lindsey; McCann, Katy J; Coleman, Adam; Cazaly, Angelica M; Bidmon, Nicole; Britten, Cedrik M; van der Burg, Sjoerd H; Gouttefangeas, Cecile; Jandus, Camilla; Laske, Karoline; Maurer, Dominik; Romero, Pedro; Schröder, Helene; Stynenbosch, Linda F M; Walter, Steffen; Welters, Marij J P; Ottensmeier, Christian H

    2014-11-01

    Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.

  14. The athymic nude rat. Immunobiological characteristics with special reference to establishment of non-antigen-specific T-cell reactivity and induction of antigen-specific immunity

    DEFF Research Database (Denmark)

    Hougen, H P

    1991-01-01

    and function of the thymus are briefly described. The thymus has two main functions: production of T lymphocytes and production of thymic hormones. The intrathymic T-cell ontogeny is described along with the two thymocyte selection mechanisms, positive and negative selection. Different thymic hormones...... cells. Little research has been performed on bone marrow of athymic nude rats but morphologically there seems to be no difference from findings in normal animals. The thymus-dependent areas of peripheral lymphoid organs, i.e. the paracortical area of lymph nodes, the periarteriolar sheet of the splenic...

  15. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  16. Tumor antigen-specific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts.

    Science.gov (United States)

    Jandus, Camilla; Bioley, Gilles; Dojcinovic, Danijel; Derré, Laurent; Baitsch, Lukas; Wieckowski, Sébastien; Rufer, Nathalie; Kwok, William W; Tiercy, Jean-Marie; Luescher, Immanuel F; Speiser, Daniel E; Romero, Pedro

    2009-10-15

    We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.

  17. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses.

    Science.gov (United States)

    Wu, Fang; Wuensch, Sherry A; Azadniv, Mitra; Ebrahimkhani, Mohammad R; Crispe, I Nicholas

    2009-01-01

    We aim to define the role of Kupffer cells in intrahepatic antigen presentation, using the selective delivery of antigen to Kupffer cells rather than other populations of liver antigen-presenting cells. To achieve this we developed a novel antigen delivery system that can target antigens to macrophages, based on a galactosylated low-density lipoprotein nanoscale platform. Antigen was delivered via the galactose particle receptor (GPr), internalized, degraded and presented to T cells. The conjugation of fluoresceinated ovalbumin (FLUO-OVA) and lactobionic acid with LDL resulted in a substantially increased uptake of FLUO-OVA by murine macrophage-like ANA1 cells in preference to NIH3T3 cells, and by primary peritoneal macrophages in preference to primary hepatic stellate cells. Such preferential uptake led to enhanced proliferation of OVA specific T cells, showing that the galactosylated LDL nanoscale platform is a successful antigen carrier, targeting antigen to macrophages but not to all categories of antigen presenting cells. This system will allow targeted delivery of antigen to macrophages in the liver and elsewhere, addressing the question of the role of Kupffer cells in liver immunology. It may also be an effective way of delivering drugs or vaccines directly at macrophages.

  18. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku, E-mail: nakagawa@phs.osaka-u.ac.jp; Okada, Naoki, E-mail: okada@phs.osaka-u.ac.jp

    2016-04-22

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  19. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    International Nuclear Information System (INIS)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8 + CAR-T cells had antigen-specific cytotoxic activity. • CD4 + CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  20. Lung Neutrophils Facilitate Activation of Naïve Antigen Specific CD4+ T Cells During Mycobacterium tuberculosis Infection1

    Science.gov (United States)

    Blomgran, Robert; Ernst, Joel D.

    2012-01-01

    Initiation of the adaptive immune response to Mycobacterium tuberculosis occurs in the lung-draining mediastinal lymph node, and requires transport of M. tuberculosis by migratory dendritic cells (DCs) to the local lymph node. The previously-published observations that: 1) neutrophils are a transiently prominent population of M. tuberculosis-infected cells in the lungs early in infection; and 2) that the peak of infected neutrophils immediately precedes the peak of infected DCs in the lungs, prompted us to characterize the role of neutrophils in the initiation of adaptive immune responses to M. tuberculosis. We found that, although depletion of neutrophils in vivo increased the frequency of M. tuberculosis infected DCs in the lungs, it decreased trafficking of DCs to the mediastinal lymph node. This resulted in delayed activation (CD69 expression) and proliferation of naïve M. tuberculosis Ag85B-specific CD4 T cells in the mediastinal lymph node. To further characterize the role for neutrophils in DC-migration we used a Transwell chemotaxis system and found that DCs that were directly infected by M. tuberculosis migrated poorly in response to CCL19, an agonist for the chemokine receptor CCR7. In contrast, DCs that had acquired M. tuberculosis through uptake of infected neutrophils exhibited unimpaired migration. These results reveal a mechanism wherein neutrophils promote adaptive immune responses to M. tuberculosis by delivering M. tuberculosis to DCs in a form that make DCs more effective initiators of naïve CD4 T cell activation. These observations provide insight into a mechanism for neutrophils to facilitate initiation of adaptive immune responses in tuberculosis. PMID:21555529

  1. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice

    Directory of Open Access Journals (Sweden)

    Shen CC

    2011-06-01

    Full Text Available Chien-Chang Shen1, Chia-Chi Wang1, Mei-Hsiu Liao2, Tong-Rong Jan11Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; 2Division of Isotope Application, Institute of Energy Research, Taoyuan, TaiwanBackground: Superparamagnetic iron oxide nanoparticles have been used in clinical applications as a diagnostic contrasting agent. Previous studies showed that iron oxide nanoparticles deposited in the liver and spleen after systemic administration. The present study investigated the effect of iron oxide nanoparticles on antigen-specific immune responses in mice sensitized with the T cell-dependent antigen ovalbumin (OVA.Methods: BALB/c mice were intravenously administered with a single dose of iron oxide nanoparticles (10-60 mg Fe/kg 1 hour prior to OVA sensitization, and the serum antibody production and splenocyte reactivity were examined 7 days later.Results: The serum levels of OVA-specific IgG1 and IgG2a were significantly attenuated by treatment with iron oxide nanoparticles. The production of interferon-γ and interleukin-4 by splenocytes re-stimulated with OVA in culture was robustly suppressed in mice administered with iron oxide nanoparticles. The viability of OVA-stimulated splenocytes was also attenuated. In contrast, treatment with iron oxide nanoparticles did not affect the viability of splenocytes stimulated with concanavalin A, a T-cell mitogen.Conclusion: Collectively, these data indicate that systemic exposure to a single dose of iron oxide nanoparticles compromises subsequent antigen-specific immune reactions, including the serum production of antigen-specific antibodies, and the functionality of T cells.Keywords: iron oxide nanoparticle, antigen-specific, immune, ovalbumin

  2. An oral recombinant Salmonella enterica serovar Typhimurium mutant elicits systemic antigen-specific CD8+ T cell cytokine responses in mice

    Directory of Open Access Journals (Sweden)

    Chin'ombe Nyasha

    2009-04-01

    Full Text Available Abstract Background The induction of antigen-specific CD8+ T cell cytokine responses against an attenuated, oral recombinant Salmonella enterica serovar Typhimurium vaccine expressing a green fluorescent protein (GFP model antigen was investigated. A GFP expression plasmid was constructed in which the gfp gene was fused in-frame with the 5' domain of the Escherichia coli β-galactosidase α-gene fragment with expression under the lac promoter. Groups of mice were orally immunized three times with the bacteria and systemic CD8+ T cell cytokine responses were evaluated. Results High level of the GFP model antigen was expressed by the recombinant Salmonella vaccine vector. Systemic GFP-specific CD8+ T cell cytokine (IFN-γ and IL-4 immune responses were detected after mice were orally vaccinated with the bacteria. It was shown that 226 net IFN-γ and 132 net IL-4 GFP-specific SFUs/10e6 splenocytes were formed in an ELISPOT assay. The level of IFN-γ produced by GFP peptide-stimulated cells was 65.2-fold above background (p Conclusion These results suggested that a high expressing recombinant Salmonella vaccine given orally to mice would elicit antigen-specific CD8+ T cell responses in the spleen. Salmonella bacteria may, therefore, be used as potential mucosal vaccine vectors.

  3. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    Science.gov (United States)

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  4. Antigen-Specific B Cells Reactivate an Effective Cytotoxic T Cell Response against Phagocytosed Salmonella through Cross-Presentation

    NARCIS (Netherlands)

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S. Marieke

    2010-01-01

    Background: The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+) T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8(+) T cell response

  5. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke Birgitte

    2016-01-01

    Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10-100 distinct T-cell specificities in one sample. Here we use peptide-major histoc...

  6. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs

    OpenAIRE

    Avijit Dutta; Ching-Tai Huang; Chun-Yen Lin; Tse-Ching Chen; Yung-Chang Lin; Chia-Shiang Chang; Yueh-Chia He

    2016-01-01

    Sterilizing immunity is a unique immune status, which prevents effective virus infection into the host. It is different from the immunity that allows infection but with subsequent successful eradication of the virus. Pre-infection induces sterilizing immunity to homologous influenza virus challenge in ferret. In our antigen-specific experimental system, mice pre-infected with PR8 influenza virus through nasal route are likewise resistant to reinfection of the same strain of virus. The virus i...

  7. Antigen-specific B cells reactivate an effective cytotoxic T cell response against phagocytosed Salmonella through cross-presentation.

    Science.gov (United States)

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S Marieke

    2010-09-27

    The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+) T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8(+) T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons. Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8(+) T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8(+) T cells is dependent on CD4(+) T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis. B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection.

  8. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    Science.gov (United States)

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Application of the pMHC Array to Characterise Tumour Antigen Specific T Cell Populations in Leukaemia Patients at Disease Diagnosis.

    Directory of Open Access Journals (Sweden)

    Suzanne E Brooks

    Full Text Available Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV and influenza (Flu and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1, MelanA, Wilms' Tumour (WT1 and tyrosinase. We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 10(6. Fourteen of the twenty-six acute myeloid leukaemia (AML patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3, tyrosinase (n = 3 and WT1(126-134 (n = 1. One of the seven acute lymphocytic leukaemia (ALL patients analysed had T cells that recognised the MUC1(950-958 epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.

  10. Activation and exhaustion of antigen-specific CD8+T cells occur in different splenic compartments during infection with Plasmodium berghei.

    Science.gov (United States)

    Bayarsaikhan, Ganchimeg; Miyakoda, Mana; Yamamoto, Kazuo; Kimura, Daisuke; Akbari, Masoud; Yuda, Masao; Yui, Katsuyuki

    2017-06-01

    The spleen is the major organ in which T cells are primed during infection with malaria parasites. However, little is known regarding the dynamics of the immune responses and their localization within the splenic tissue during malaria infection. We examined murine CD8 + T cell responses during infection with Plasmodium berghei using recombinant parasites expressing a model antigen ovalbumin (OVA) protein and compared the responses with those elicited by Listeria monocytogenes expressing the same antigen. OVA-specific CD8 + T cells were mainly activated in the white pulp of the spleen during malaria infection, as similarly observed during Listeria infection. However, the fates of these activated CD8 + T cells were distinct. During infection with malaria parasites, activated CD8 + T cells preferentially accumulated in the red pulp and/or marginal zone, where cytokine production of OVA-specific CD8 + T cells decreased, and the expression of multiple inhibitory receptors increased. These cells preferentially underwent apoptosis, suggesting that T cell exhaustion mainly occurred in the red pulp and/or marginal zone. However, during Listeria infection, OVA-specific CD8 + T cells only transiently expressed inhibitory receptors in the white pulp and maintained their ability to produce cytokines and become memory cells. These results highlighted the distinct fates of CD8 + T cells during infection with Plasmodium parasites and Listeria, and suggested that activation and exhaustion of specific CD8 + T cells occurred in distinct spleen compartments during infection with malaria parasites. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector.

    Directory of Open Access Journals (Sweden)

    Isabelle Magalhaes

    Full Text Available BACKGROUND: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB. We tested BCG (SSI1331 (in 6 animals, delivered intradermally and a recombinant (rBCG AFRO-1 expressing perfringolysin (in 6 animals followed by two boosts (delivered intramuscullary with non-replicating adenovirus 35 (rAd35 expressing a fusion protein composed of Ag85A, Ag85B and TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta. Control animals received diluent (3 animals. METHODS AND FINDINGS: Cellular immune responses were analyzed longitudinally (12 blood draws for each animal using intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma, T cell proliferation was measured in CD4(+, CD8alpha/beta(+, and CD8alpha/alpha(+ T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay, WBA using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i increased Ag85B-specific IFN-gamma production in the WBA assay (median >400 pg/ml for 6 animals one week after the first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (<200 pg/ml, ii stronger T cell proliferation in the CD8alpha/alpha(+ T cell subset (proliferative index 17% as compared to BCG-primed animals (proliferative index 5% in CD8alpha/alpha(+ T cells. Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2 production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity. CONCLUSION: AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell

  12. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature.

    Directory of Open Access Journals (Sweden)

    Phillip A Swanson

    2016-12-01

    Full Text Available Cerebral malaria (CM is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM, we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs, where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4 therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen

  13. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature

    Science.gov (United States)

    Swanson, Phillip A.; Hart, Geoffrey T.; Russo, Matthew V.; Nayak, Debasis; Yazew, Takele; Peña, Mirna; Khan, Shahid M.; Pierce, Susan K.; McGavern, Dorian B.

    2016-01-01

    Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen

  14. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Fredholm, Simon; Willerslev-Olsen, Andreas

    2017-01-01

    Short chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are products of microbial macronutrients fermentation that distribute systemically and are believed to modulate host immune responses. Recent data have indicated that certain SCFAs, such as butyrate and propionate, directly...... modulate human dendritic cell (DC) function. Given the role of DCs in initiating and shaping the adaptive immune response, we now explore how SCFAs affect the activation of antigen-specific CD8+ T cells stimulated with autologous, MART1 peptide-pulsed DC. We show that butyrate reduces the frequency...... of peptide-specific CD8+ T cells and, together with propionate, inhibit the activity of those cells. On the contrary, acetate does not affect them. Importantly, butyrate and propionate inhibit the production of IL-12 and IL-23 in the DCs and exogenous IL-12 fully restores the activation of the MART-1...

  15. A whole blood monokine-based reporter assay provides a sensitive and robust measurement of the antigen-specific T cell response

    Directory of Open Access Journals (Sweden)

    Bennett Sophia C

    2011-08-01

    Full Text Available Abstract Background The ability to measure T-cell responses to antigens is proving critical in the field of vaccine development and for understanding immunity to pathogens, allergens and self-antigens. Although a variety of technologies exist for this purpose IFNγ-ELISpot assays are widely used because of their sensitivity and simplicity. However, ELISpot assays cannot be performed on whole blood, and require relatively large volumes of blood to yield sufficient numbers of peripheral blood mononuclear cells. To address these deficiencies, we describe an assay that measures antigen-specific T cell responses through changes in monokine gene transcription. The biological amplification of the IFNγ signal generated by this assay provides sensitivity comparable to ELISpot, but with the advantage that responses can be quantified using small volumes of whole blood. Methods Whole blood or peripheral blood mononuclear cells (PBMCs from healthy controls and immunosuppressed recipients of solid organ transplants were incubated with peptide pools covering viral and control antigens or mitogen for 20 hours. Total RNA was extracted and reverse transcribed before amplification in a TaqMan qPCR reaction using primers and probes specific for MIG (CXCL9, IP-10 (CXCL10 and HPRT. The induction of MIG and IP-10 in response to stimuli was analysed and the results were compared with those obtained by ELISpot. Results Antigen-specific T cell responses can be measured through the induction of MIG or IP-10 gene expression in PBMCs or whole blood with results comparable to those achieved in ELISpot assays. The biological amplification generated by IFNγ-R signaling allows responses to be detected in as little as 25 μL of whole blood and enables the assay to retain sensitivity despite storage of samples for up to 48 hours prior to processing. Conclusions A monokine-based reporter assay provides a sensitive measure of antigen-specific T cell activation. Assays can be

  16. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.

    Directory of Open Access Journals (Sweden)

    Anet J N Anelone

    Full Text Available Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.

  17. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.

    Science.gov (United States)

    Anelone, Anet J N; Spurgeon, Sarah K

    2016-01-01

    Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.

  18. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory

    Science.gov (United States)

    2016-01-01

    Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design. PMID:27861537

  19. Antigen-Specific CD8+ T Cells Protect against Lethal Toxoplasmosis in Mice Infected with Neospora caninum

    Science.gov (United States)

    Kasper, Lloyd H.; Khan, Imtiaz A.

    1998-01-01

    Neospora caninum is a coccidial protozoan parasite that appears morphologically indistinguishable from Toxoplasma gondii and that infects a large range of mammals. Both inbred and outbred strains of mice exhibit a high degree of resistance to infection with N. caninum. Three inbred strains of mice (A/J, BALB/c, and C57BL/6) that were infected intraperitoneally with N. caninum were protected against a lethal challenge from T. gondii. Vaccine-induced protection was Neospora dose dependent. A rise in the CD8+ T-cell population in mice that had been vaccinated with N. caninum and challenged with T. gondii was observed. Adoptive transfer of CD8+ T-cell splenocytes from N. caninum-infected mice was protective against challenge with Toxoplasma. The CD8+ T cells from Neospora-infected mice proliferate to both Neospora and Toxoplasma antigens in vitro and secrete substantial quantities of gamma interferon when pulsed with the parasite antigen. These observations demonstrate that N. caninum protects against lethal T. gondii infection by the induction of CD8+ T cells that are immunoreactive to both parasites. PMID:9529081

  20. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex).

    Science.gov (United States)

    Vera, Juan F; Brenner, Lara J; Gerdemann, Ulrike; Ngo, Minhtran C; Sili, Uluhan; Liu, Hao; Wilson, John; Dotti, Gianpietro; Heslop, Helen E; Leen, Ann M; Rooney, Cliona M

    2010-04-01

    The clinical manufacture of antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy is limited by the complexity and time required to produce large numbers with the desired function and specificity. The culture conditions required are rigorous, and in some cases only achieved in 2-cm wells in which cell growth is limited by gas exchange, nutrients, and waste accumulation. Bioreactors developed to overcome these issues tend to be complex, expensive, and not always conducive to CTL growth. We observed that antigen-specific CTLs undergo 7 to 10 divisions poststimulation. However, the expected CTL numbers were achieved only in the first week of culture. By recreating the culture conditions present during this first week-low frequency of antigen-specific T cells and high frequency of feeder cells-we were able to increase CTL expansion to expected levels that could be sustained for several weeks without affecting phenotype or function. However, the number of 24-well plates needed was excessive and cultures required frequent media changes, increasing complexity and manufacturing costs. Therefore, we evaluated novel gas-permeable culture devices (G-Rex) with a silicone membrane at the base allowing gas exchange to occur uninhibited by the depth of the medium above. This system effectively supports the expansion of CTL and actually increases output by up to 20-fold while decreasing the required technician time. Importantly, this amplified cell expansion is not because of more cell divisions but because of reduced cell death. This bioprocess optimization increased T-cell output while decreasing the complexity and cost of CTL manufacture, making cell therapy more accessible.

  1. Assessing the Prognostic Value of Preoperative Carcinoembryonic Antigen-Specific T-Cell Responses in Colorectal Cancer

    Science.gov (United States)

    Scurr, Martin J.; Brown, Clare M.; Costa Bento, Diana F.; Betts, Gareth J.; Rees, Brian I.; Hills, Robert K.; Gallimore, Awen; Godkin, Andrew

    2015-01-01

    Current dogma suggests that tumor-reactive IFN-γ–producing (TH1-type) T-cells are beneficial to patient outcome; however, the clinical consequence of these responses with respect to long-term prognosis in colorectal cancer (CRC) is not understood. Here, we compared the utility of preoperative, peripheral blood–derived IFN-γ+ T-cell responses specific to carcinoembryonic antigen (CEA), 5T4, or control antigens (n = 64) with tumor staging and clinical details (n = 87) in predicting five-year outcome of CRC patients who underwent resection with curative intent. Although disease recurrence was more likely in patients with stage III tumors, the presence of preoperative, CEA-specific IFN-γ–producing T-cells identified patients at a statistically significantly greater risk of tumor recurrence following surgical resection, irrespective of tumor stage (odds ratio = 5.00, 95% confidence interval = 1.96 to 12.77, two-sided P antigens, including 5T4, did not reflect outcome. Whilst these results initially appear surprising, they could improve prognostication and help redirect adjuvant treatments. PMID:25669203

  2. Exploiting natural killer group 2D receptors for CAR T-cell therapy.

    Science.gov (United States)

    Demoulin, Benjamin; Cook, W James; Murad, Joana; Graber, David J; Sentman, Marie-Louise; Lonez, Caroline; Gilham, David E; Sentman, Charles L; Agaugue, Sophie

    2017-08-01

    Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.

  3. Enhanced suppression of polyclonal CD8+25+regulatory T cells via exosomal arming of antigen-specific peptide/MHC complexes.

    Science.gov (United States)

    Mu, Chuanyong; Zhang, Xueshu; Wang, Lu; Xu, Aizhang; Ahmed, Khawaja Ashfaque; Pang, Xueqin; Chibbar, Rajni; Freywald, Andrew; Huang, Jianan; Zhu, Yehan; Xiang, Jim

    2017-05-01

    Compared with CD4 + 25 + regulatory T cells (T regs ), the mechanisms for natural, polyclonal CD8 + 25 + T reg immune suppression have been significantly less studied. We previously showed that polyclonal T cells can acquire antigen-specific targeting activity through arming with exosomal peptide-MHC (pMHC). In this study, we assessed the suppressive effect of CD8 + 25 + T regs or CD8 + 25 + T regs armed with ovalbumin (OVA)-specific exosomes on other immune cells and OVA-specific dendritic cell (DC OVA )-stimulated antitumor immunity. We demonstrate that CD8 + 25 + T regs inhibit T cell proliferation in vitro in a cell contact-dependent fashion but independent of the expression of immunosuppressive IL-10, TGF-β, and CTLA-4. CD8 + 25 + T regs anergize naïve T cells upon stimulation by up-regulating T cell anergy-associated Egr2 and down-regulating IL-2 production. T regs also anergize DCs by preventing DC maturation through the down-regulation of Ia b , CD80, CD86, and inflammatory cytokines, leading to defects in T cell stimulation. Moreover, CD8 + 25 + T regs inhibit CTLs through inducing CTL death via perforin-mediated apoptosis and through reducing effector CTL cytotoxic activity via down-regulating CTL perforin-production and degranulation. In addition, we show that CD8 + 25 + T regs suppress DC OVA -stimulated CTL responses in priming and effector phases and inhibit immunity against OVA-expressing CCL OVA lung cancer. Remarkably, polyclonal CD8 + 25 + T regs armed with OVA-specific exosomal pMHC class-II (pMHC-II), or pMHC class-I (pMHC-I) complexes exert their enhanced inhibition of CTL responses in the priming and the effector phases, respectively. Taken together, our investigation reveals that assigning antigen specificity to nonspecific polyclonal CD8 + 25 + T regs for enhanced immune suppression can be achieved through exosomal pMHC arming. This principle may have a great effect on T reg -mediated immunotherapy of autoimmune diseases. © Society for

  4. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G

    1998-01-01

    We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived (r......GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN...

  5. Successful generation of primary virus-specific and anti-tumor T-cell responses from the naive donor T-cell repertoire is determined by the balance between antigen-specific precursor T cells and regulatory T cells.

    NARCIS (Netherlands)

    Jedema, I.; Meent, M. van de; Pots, J.M.; Kester, M.G.; Beek, M.T. van der; Falkenburg, J.H.F.

    2011-01-01

    BACKGROUND: One of the major challenges in allogeneic stem cell transplantation is to find a balance between the harmful induction of graft-versus-host disease and the beneficial graft-versus-leukemia and pathogen-specific immune responses. Adoptive transfer of in-vitro generated donor T cells with

  6. Fractionation of T cell subsets on Ig anti-Ig columns: isolation of helper T cells from nonresponder mice, demonstration of antigen-specific T suppressor cells, and selection of CD-3 negative variants of Jurkat T cells

    DEFF Research Database (Denmark)

    Rubin, B; Geisler, C; Kuhlmann, J

    1989-01-01

    In the present experiments we have explored the possibilities of a modified immunoadsorbent technique to select for (1) mutagenized T cell receptor (Tcr) negative variants of Jurkat T lymphoma cells and (2) purified CD-4+ or CD-8+ T lymphocytes. The basic principle was to make large numbers......, and the "autologous" mixed lymphocyte reaction. In addition, the immunoadsorbent method very efficiently selects Tcr/CD-3- variants from mutagenized Jurkat cell populations incubated with anti-CD3 mAb. The described method is easy and quick and can fractionate large numbers of cells; it is the "poor-man's cell sorter...

  7. Identifying specificity groups in the T cell receptor repertoire.

    Science.gov (United States)

    Glanville, Jacob; Huang, Huang; Nau, Allison; Hatton, Olivia; Wagar, Lisa E; Rubelt, Florian; Ji, Xuhuai; Han, Arnold; Krams, Sheri M; Pettus, Christina; Haas, Nikhil; Arlehamn, Cecilia S Lindestam; Sette, Alessandro; Boyd, Scott D; Scriba, Thomas J; Martinez, Olivia M; Davis, Mark M

    2017-07-06

    T cell receptor (TCR) sequences are very diverse, with many more possible sequence combinations than T cells in any one individual. Here we define the minimal requirements for TCR antigen specificity, through an analysis of TCR sequences using a panel of peptide and major histocompatibility complex (pMHC)-tetramer-sorted cells and structural data. From this analysis we developed an algorithm that we term GLIPH (grouping of lymphocyte interactions by paratope hotspots) to cluster TCRs with a high probability of sharing specificity owing to both conserved motifs and global similarity of complementarity-determining region 3 (CDR3) sequences. We show that GLIPH can reliably group TCRs of common specificity from different donors, and that conserved CDR3 motifs help to define the TCR clusters that are often contact points with the antigenic peptides. As an independent validation, we analysed 5,711 TCRβ chain sequences from reactive CD4 T cells from 22 individuals with latent Mycobacterium tuberculosis infection. We found 141 TCR specificity groups, including 16 distinct groups containing TCRs from multiple individuals. These TCR groups typically shared HLA alleles, allowing prediction of the likely HLA restriction, and a large number of M. tuberculosis T cell epitopes enabled us to identify pMHC ligands for all five of the groups tested. Mutagenesis and de novo TCR design confirmed that the GLIPH-identified motifs were critical and sufficient for shared-antigen recognition. Thus the GLIPH algorithm can analyse large numbers of TCR sequences and define TCR specificity groups shared by TCRs and individuals, which should greatly accelerate the analysis of T cell responses and expedite the identification of specific ligands.

  8. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance.

    Directory of Open Access Journals (Sweden)

    Emily Xie

    Full Text Available The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.

  9. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance

    Science.gov (United States)

    Xie, Emily; Kotha, Abhiroop; Biaco, Tracy; Sedani, Nikita; Zou, Jonathan; Stashenko, Phillip; Duncan, Margaret J.; Campos-Neto, Antonio; Cayabyab, Mark J.

    2015-01-01

    The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases. PMID:26618634

  10. Characterization of the antigen-specific CD4+ T cell response induced by prime-boost strategies with CAF01 and CpG adjuvants administered by the intranasal and subcutaneous routes

    Directory of Open Access Journals (Sweden)

    Annalisa eCiabattini

    2015-08-01

    Full Text Available The design of heterologous prime-boost vaccine combinations that optimally shape the immune response is of critical importance for the development of next generation vaccines. Here we tested different prime-boost combinations using the tuberculosis vaccine antigen H56 with CAF01 or CpG ODN 1821 adjuvants, administered by the parenteral and nasal routes. By using peptide-MHC class II tetramers, antigen-specific CD4+ T cells were tracked following primary and booster immunizations. Both parenteral priming with H56 plus CAF01 and nasal priming with H56 plus CpG elicited significant expansion of CD4+ tetramer-positive T cells in the spleen, however only parenterally primed cells responded to booster immunization. Subcutaneous priming with H56 and CAF01 followed by nasal boosting with H56 and CpG showed the greater expansion of CD4+ tetramer-positive T cells in the spleen and lungs compared to all the other homologous and heterologous prime-boost combinations. Nasal boosting exerted a recruitment of primed CD4+ T cells into lungs that was stronger in subcutaneously than nasally primed mice, in accordance with different chemokine receptor expression induced by primary immunization. These data demonstrate that subcutaneous priming is fundamental for eliciting CD4+ T cells that can be efficiently boosted by the nasal route and results in the recruitment of antigen-experienced cells into the lungs. Combination of different vaccine formulations and routes of delivery for priming and boosting is a strategic approach for improving and directing vaccine-induced immune responses.

  11. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells.

    Science.gov (United States)

    Ohno, Yosuke; Kitamura, Hidemitsu; Takahashi, Norihiko; Ohtake, Junya; Kaneumi, Shun; Sumida, Kentaro; Homma, Shigenori; Kawamura, Hideki; Minagawa, Nozomi; Shibasaki, Susumu; Taketomi, Akinobu

    2016-02-01

    Immunosuppression in tumor microenvironments critically affects the success of cancer immunotherapy. Here, we focused on the role of interleukin (IL)-6/signal transducer and activator of transcription (STAT3) signaling cascade in immune regulation by human dendritic cells (DCs). IL-6-conditioned monocyte-derived DCs (MoDCs) impaired the presenting ability of cancer-related antigens. Interferon (IFN)-γ production attenuated by CD4(+) T cells co-cultured with IL-6-conditioned MoDCs corresponded with decreased DC IL-12p70 production. Human leukocyte antigen (HLA)-DR and CD86 expression was significantly reduced in CD11b(+)CD11c(+) cells obtained from peripheral blood mononuclear cells (PBMCs) of healthy donors by IL-6 treatment and was STAT3 dependent. Arginase-1 (ARG1), lysosomal protease, cathepsin L (CTSL), and cyclooxygenase-2 (COX2) were involved in the reduction of surface HLA-DR expression. Gene expressions of ARG1, CTSL, COX2, and IL6 were higher in tumor-infiltrating CD11b(+)CD11c(+) cells compared with PBMCs isolated from colorectal cancer patients. Expression of surface HLA-DR and CD86 on CD11b(+)CD11c(+) cells was down-regulated, and T cell-stimulating ability was attenuated compared with PBMCs, suggesting that an immunosuppressive phenotype might be induced by IL-6, ARG1, CTSL, and COX2 in tumor sites of colorectal cancer patients. There was a relationship between HLA-DR expression levels in tumor tissues and the size of CD4(+) T and CD8(+) T cell compartments. Our findings indicate that IL-6 causes a dysfunction in human DCs that activates cancer antigen-specific Th cells, suggesting that blocking the IL-6/STAT3 signaling pathway might be a promising strategy to improve cancer immunotherapy.

  12. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells.

    Science.gov (United States)

    Kamiya, Takahiro; Wong, Desmond; Png, Yi Tian; Campana, Dario

    2018-03-13

    Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19 + leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies. © 2018 by The American Society of Hematology.

  13. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors

    Science.gov (United States)

    Harris, Daniel T.; Kranz, David M.

    2016-01-01

    The tumor-killing properties of T cells provide tremendous opportunities to treat cancer. Adoptive T cell therapies have begun to harness this potential by endowing a functionally diverse repertoire of T cells with genetically modified, tumor-specific recognition receptors. Normally, this antigen recognition function is mediated by an αβ T cell receptor (TCR), but the dominant therapeutic forms currently in development are synthetic constructs called chimeric antigen receptors (CARs). While CAR-based adoptive cell therapies are already showing great promise, their basic mechanistic properties have been studied in less detail compared with those of αβ TCRs. In this review, we compare and contrast various features of TCRs versus CARs, with a goal of highlighting issues that need to be addressed to fully exploit the therapeutic potential of both. PMID:26705086

  14. Elementary Steps in T Cell Receptor Triggering

    OpenAIRE

    Dushek, Omer

    2012-01-01

    The mechanism by which antigen binding to the T cell antigen receptor (TCR) generates intracellular signaling, a process termed TCR triggering, is incompletely understood. A large body of experimental evidence has implicated multiple biophysical/biochemical effects and multiple molecules in the process of TCR triggering, which likely reflect the uniquely demanding role of the TCR in recognizing diverse antigenic ligands. In this perspective, I propose that breaking down the process of TCR tri...

  15. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2016-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231

  16. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.

  17. Regional Delivery of Chimeric Antigen Receptor (CAR T-Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Praveen Sridhar

    2017-07-01

    Full Text Available Chimeric Antigen Receptor (CAR T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  18. Regional Delivery of Chimeric Antigen Receptor (CAR) T-Cells for Cancer Therapy.

    Science.gov (United States)

    Sridhar, Praveen; Petrocca, Fabio

    2017-07-18

    Chimeric Antigen Receptor (CAR) T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  19. Filarial lymphedema is characterized by antigen-specific Th1 and th17 proinflammatory responses and a lack of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Subash Babu

    Full Text Available Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients.To elucidate the role of CD4(+ T cell subsets in the development of lymphatic pathology, we examined specific sets of cytokines in individuals with filarial lymphedema in response to parasite antigen (BmA and compared them with responses from asymptomatic infected individuals. We also examined expression patterns of Toll-like receptors (TLR1-10 and Nod-like receptors (Nod1, Nod2, and NALP3 in response to BmA. BmA induced significantly higher production of Th1-type cytokines-IFN-gamma and TNF-alpha-in patients with lymphedema compared with asymptomatic individuals. Notably, expression of the Th17 family of cytokines-IL-17A, IL-17F, IL-21, and IL-23-was also significantly upregulated by BmA stimulation in lymphedema patients. In contrast, expression of Foxp3, GITR, TGFbeta, and CTLA-4, known to be expressed by regulatory T cells, was significantly impaired in patients with lymphedema. BmA also induced significantly higher expression of TLR2, 4, 7, and 9 as well Nod1 and 2 mRNA in patients with lymphedema compared with asymptomatic controls.Our findings implicate increased Th1/Th17 responses and decreased regulatory T cells as well as regulation of Toll- and Nod-like receptors in pathogenesis of filarial lymphedema.

  20. In vivo targeting of porcine reproductive and respiratory syndrome virus antigen through porcine DC-SIGN to dendritic cells elicits antigen-specific CD4T cell immunity in pigs.

    Science.gov (United States)

    Subramaniam, Sakthivel; Piñeyro, Pablo; Tian, Debin; Overend, Christopher; Yugo, Danielle M; Matzinger, Shannon R; Rogers, Adam J; Haac, Mary Etna R; Cao, Qian; Heffron, C Lynn; Catanzaro, Nicholas; Kenney, Scott P; Huang, Yao-Wei; Opriessnig, Tanja; Meng, Xiang-Jin

    2014-11-28

    Immunogenicity of protein subunit vaccines may be dramatically improved by targeting them through antibodies specific to c-type lectin receptors (CLRs) of dendritic cells in mice, cattle, and primates. This novel vaccine development approach has not yet been explored in pigs or other species largely due to the lack of key reagents. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus (PRRSV) antigen was targeted efficiently to dendritic cells through antibodies specific to a porcine CLR molecule DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) in pigs. A recombinant PRRSV antigen (shGP45M) was constructed by fusing secretory-competent subunits of GP4, GP5 and M proteins derived from genetically-shuffled strains of PRRSV. In vaccinated pigs, when the PRRSV shGP45M antigen was delivered through a recombinant mouse-porcine chimeric antibody specific to the porcine DC-SIGN (pDC-SIGN) neck domain, porcine dendritic cells rapidly internalized them in vitro and induced higher numbers of antigen-specific interferon-γ producing CD4T cells compared to the pigs receiving non-targeted PRRSV shGP45M antigen. The pDC-SIGN targeting of recombinant antigen subunits may serve as an alternative or complementary strategy to existing vaccines to improve protective immunity against PRRSV by inducing efficient T cell responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Whole transcriptome analysis for T cell receptor-affinity and IRF4-regulated clonal expansion of T cells

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2014-12-01

    Full Text Available Clonal population expansion of T cells during an immune response is dependent on the affinity of the T cell receptor (TCR for its antigen [1]. However, there is little understanding of how this process is controlled transcriptionally. We found that the transcription factor IRF4 was induced in a manner dependent on TCR-affinity and was critical for the clonal expansion and maintenance of effector function of antigen-specific CD8+ T cells. We performed a genome-wide expression profiling experiment using RNA sequencing technology (RNA-seq to interrogate global expression changes when IRF4 was deleted in CD8+ T cells activated with either a low or high affinity peptide ligand. This allowed us not only to determine IRF4-dependent transcriptional changes but also to identify transcripts dependent on TCR-affinity [2]. Here we describe in detail the analyses of the RNA-seq data, including quality control, read mapping, quantification, normalization and assessment of differential gene expression. The RNA-seq data can be accessed from Gene Expression Omnibus database (accession number GSE49929.

  2. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  3. GTL001, a bivalent therapeutic vaccine against human papillomavirus 16 and 18, induces antigen-specific CD8+ T cell responses leading to tumor regression.

    Directory of Open Access Journals (Sweden)

    Michaël Esquerré

    Full Text Available Prophylactic vaccines are available for women and girls not yet infected with HPV, but women already infected with HPV need a treatment to prevent progression to high-grade cervical lesions and cancer. GTL001 is a bivalent therapeutic vaccine for eradicating HPV-infected cells that contains HPV16 E7 and HPV18 E7 both fused to detoxified adenylate cyclase from Bordetella pertussis, which binds specifically to CD11b+ antigen-presenting cells. This study examined the ability of therapeutic vaccination with GTL001 adjuvanted with topical imiquimod cream to induce functional HPV16 E7- and HPV18 E7-specific CD8+ T cell responses.Binding of GTL001 to human CD11b was assessed by a cell-based competition binding assay. Cellular immunogenicity of intradermal vaccination with GTL001 was assessed in C57BL/6 mice by enzyme-linked immunospot assay and in vivo killing assays. In vivo efficacy of GTL001 vaccination was investigated in the TC-1 murine HPV16 E7-expressing tumor model.GTL001 bound specifically to the human CD11b/CD18 receptor. GTL001 adjuvanted with topical 5% imiquimod cream induced HPV16 E7 and HPV18 E7-specific CD8+ T cell responses. This CD8+ T-cell response mediated in vivo killing of HPV E7-expressing cells. In the HPV16 E7-expressing tumor model, GTL001 adjuvanted with imiquimod but not imiquimod alone or a combination of unconjugated HPV16 E7 and HPV18 E7 caused complete tumor regression.GTL001 adjuvanted with topical 5% imiquimod is immunogenic and induces HPV16 E7 and HPV18 E7-specific CD8+ T cell responses that can kill HPV E7-expressing cells and eliminate HPV E7-expressing tumors.

  4. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Directory of Open Access Journals (Sweden)

    Karasuyama Hajime

    2011-04-01

    Full Text Available Abstract Background There have been few reports on the role of Fc receptors (FcRs and immunoglobulin G (IgG in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa. Methods In FcγRIIB deficient (KO and C57BL/6 (WT mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA. Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL. Results In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously. Conclusion Antigen-specific IgG ameliorates

  5. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  6. Antigen-specific over-expression of human cartilage glycoprotein 39 on CD4+ CD25+ forkhead box protein 3+ regulatory T cells in the generation of glucose-6-phosphate isomerase-induced arthritis.

    Science.gov (United States)

    Tanaka, Y; Matsumoto, I; Inoue, A; Umeda, N; Takai, C; Sumida, T

    2014-08-01

    Human cartilage gp-39 (HC gp-39) is a well-known autoantigen in rheumatoid arthritis (RA). However, the exact localization, fluctuation and function of HC gp-39 in RA are unknown. Therefore, using a glucose-6-phosphate isomerase (GPI)-induced model of arthritis, we investigated these aspects of HC gp-39 in arthritis. The rise in serum HC gp-39 levels was detected on the early phase of GPI-induced arthritis (day 7) and the HC gp-39 mRNA was increased significantly on splenic CD4(+) T cells on day7, but not on CD11b(+) cells. Moreover, to identify the characterization of HC gp-39(+) CD4(+) T cells, we assessed the analysis of T helper (Th) subsets. As a result, HC gp-39 was expressed dominantly in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) refulatory T cells (T(reg)), but not in Th1, Th2 or Th17 cells. Furthermore, to investigate the effect of HC gp-39 to CD4(+) T cells, T cell proliferation assay and cytokine production from CD4(+) T cells using recombinant HC gp-39 was assessed. We found that GPI-specific T cell proliferation and interferon (IFN)-γ or interleukin (IL)-17 production were clearly suppressed by addition of recombinant HC gp-39. Antigen-specific over-expression of HC gp-39 in splenic CD4(+) CD25(+) FoxP3(+) T(reg) cells occurs in the induction phase of GPI-induced arthritis, and addition of recombinant HC gp-39 suppresses antigen-specific T-cell proliferation and cytokine production, suggesting that HC gp-39 in CD4(+) T cells might play a regulatory role in arthritis. © 2014 British Society for Immunology.

  7. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...

  8. Regulation of Mu Opioid Receptor Expression in Developing T Cells

    OpenAIRE

    Zhang, Lily; Belkowski, Judith Sliker; Briscoe, Tammi; Rogers, Thomas J.

    2012-01-01

    We have previously reported that functionally active μ-opioid receptors (MOR) are constitutively expressed at relatively low levels by developing T cells in the thymus. However, very little is known about the regulation of MOR expression by immature T cells. In this report, we first attempted to determine the effect of T cell receptor-induced T cell activation on the expression of MOR. We activated T cells with either the combination of anti-CD3 and CD28, or with superantigen, and observed a ...

  9. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  10. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation.

    Science.gov (United States)

    Liang, Wei; Mao, Shanshan; Sun, Shijie; Li, Ming; Li, Zhi; Yu, Rui; Ma, Tonghui; Gu, Jianguo; Zhang, Jianing; Taniguchi, Naoyuki; Li, Wenzhe

    2018-01-01

    CD4 + T cell activation promotes the pathogenic process of systemic lupus erythematosus (SLE). T cell receptor (TCR) complex are highly core fucosylated glycoproteins, which play important roles in T cell activation. In this study, we found that the core fucosylation of CD4 + T cells was significantly increased in SLE patients. Loss of core fucosyltransferase (Fut8), the sole enzyme for catalyzing the core fucosylation of N-glycan, significantly reduced CD4 + T cell activation and ameliorated the experimental autoimmune encephalomyelitis-induced syndrome in Fut8 -/- mice. T cell activation with OVA 323-339 loaded major histocompatibility complex II (pMHC-II) on B cell was dramatically attenuated in Fut8 -/- OT-II CD4 + T cells compared with Fut8 +/+ OT-II CD4 + T cells. Moreover, the phosphorylation of ZAP-70 was significantly reduced in Fut8 +/+ OT-II CD4 + T cells by the treatment of fucosidase. Our results suggest that core fucosylation is required for efficient TCR-pMHC-II contacts in CD4 + T cell activation, and hyper core fucosylation may serve as a potential novel biomarker in the sera from SLE patients.

  11. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  12. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  13. Gamma delta T cells recognize a microbial encoded B Cell antigen to initiate a rapid antigen-specific Interleukin-17 response

    Science.gov (United States)

    Gamma delta T cells contribute uniquely to host immune defense, but the way in which they do so remains an enigma. Here we show that an algae protein, phycoerythrin (PE) is recognized by gamma delta T cells from mice, bovine and humans and binds directly to specific gamma delta T cell antigen recept...

  14. Mycobacterial r32-kDa antigen-specific T-cell responses correlate with successful treatment and a heightened anti-microbial response in human leprosy patients.

    Science.gov (United States)

    Neela, Venkata Sanjeev Kumar; Devalraju, Kamakshi Prudhula; Pydi, Satya Sudheer; Sunder, Sharada Ramaseri; Adiraju, Kameswara Rao; Singh, Surya Satyanarayana; Anandaraj, M P J S; Valluri, Vijaya Lakshmi

    2016-09-01

    Immunological characterization of mycobacterial peptides may help not only in the preparation of a vaccine for leprosy but also in developing in vitro T-cell assays that could perhaps be used as an in vitro correlate for treatment outcome. The main goal of this study was to evaluate the use of Mycobacterium bovis recombinant 32-kDa protein (r32-kDa) antigen-stimulated T-cell assay as a surrogate marker for treatment outcome and monitor vitamin D receptor (VDR)-mediated anti-microbial responses during multidrug therapy (MDT) in leprosy. Newly diagnosed tuberculoid and lepromatous leprosy patients were enrolled and followed up during their course of MDT at 6 and 12 months. IFN-γ, IL-10, IL-17 and IL-23 levels in culture supernatants and expression of VDR, TLR2, LL37 and DEFB in r32-kDa-stimulated PBMCs were measured. Controls comprised household contacts (HHCs) and healthy endemic subjects (HCs). Significant differences were observed in the levels of IFN-γ, IL-17, IL-23, VDR and anti-microbial peptides LL37 and DEFB after treatment and when compared with that of HHCs and HCs, respectively. These findings suggest that responses to r32-kDa antigen reflect an improved immunological and anti-microbial response in leprosy patients during therapy, thereby indicating its potential use as an immune correlate in the treatment of leprosy patients. © The Japanese Society for Immunology. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Research Techniques Made Simple: High-Throughput Sequencing of the T-Cell Receptor.

    Science.gov (United States)

    Matos, Tiago R; de Rie, Menno A; Teunissen, Marcel B M

    2017-06-01

    High-throughput sequencing (HTS) of the T-cell receptor (TCR) is a rapidly advancing technique that allows sensitive and accurate identification and quantification of every distinct T-cell clone present within any biological sample. The relative frequency of each individual clone within the full T-cell repertoire can also be studied. HTS is essential to expand our knowledge on the diversity of the TCR repertoire in homeostasis or under pathologic conditions, as well as to understand the kinetics of antigen-specific T-cell responses that lead to protective immunity (i.e., vaccination) or immune-related disorders (i.e., autoimmunity and cancer). HTS can be tailored for personalized medicine, having the potential to monitor individual responses to therapeutic interventions and show prognostic and diagnostic biomarkers. In this article, we briefly review the methodology, advances, and limitations of HTS of the TCR and describe emerging applications of this technique in the field of investigative dermatology. We highlight studying the pathogenesis of T cells in allergic dermatitis and the application of HTS of the TCR in diagnosing, detecting recurrence early, and monitoring responses to therapy in cutaneous T-cell lymphoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kostas Patas

    2018-02-01

    Full Text Available While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20, who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20. T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.

  17. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  18. Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Valeria de Turris

    Full Text Available Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.

  19. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  20. Function of adhesion molecules lymphocyte function-associated antigen-3 and intercellular adhesion molecule-1 on human epidermal Langerhans cells in antigen-specific T cell activation

    NARCIS (Netherlands)

    Teunissen, M. B.; Rongen, H. A.; Bos, J. D.

    1994-01-01

    In addition to the interaction between the TCR and the MHC/Ag complex on the APC, optimal T cell activation also requires interaction between adhesion molecules on the APC and their ligands on T cells. We determined the presence of adhesion molecules on human epidermal Langerhans cells (LC) and

  1. HIV-1 alters the cytokine microenvironment and effector function of CD8+T cells upon antigen-specific activation with mycobacteria

    Science.gov (United States)

    Tuberculosis is the most common opportunistic infection in individuals living with human immunodeficiency virus (HIV). In addition to CD4+ T cell depletion, HIV infection compromises the function of CD8+ T cell-mediated immunity to Mycobacterium tuberculosis (M.tb). These effects on susceptibility ...

  2. Loss of receptor on tuberculin-reactive T-cells marks active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Mathias Streitz

    Full Text Available BACKGROUND: Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10 based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface marker expression and functionality of mycobacterial antigen specific T-cells. METHODOLOGY/PRINCIPAL FINDINGS: Flow-cytometry was used to examine over-night antigen-stimulated T-cells from tuberculosis patients and controls. Tuberculin and/or the relatively M. tuberculosis specific ESAT-6 protein were used as stimulants. A set of classic surface markers of T-cell naïve/memory differentiation was selected and IFN-gamma production was used to identify T-cells recognizing these antigens. The percentage of tuberculin-specific T-helper-cells lacking the surface receptor CD27, a state associated with advanced differentiation, varied considerably between individuals (from less than 5% to more than 95%. Healthy BCG vaccinated individuals had significantly fewer CD27-negative tuberculin-reactive CD4 T-cells than patients with smear and/or culture positive pulmonary tuberculosis, discriminating these groups with high sensitivity and specificity, whereas individuals with latent tuberculosis infection exhibited levels in between. CONCLUSIONS/SIGNIFICANCE: Smear and/or culture positive pulmonary tuberculosis can be diagnosed by a rapid and reliable immunological test based on the distribution of CD27 expression on peripheral blood tuberculin specific T-cells. This test works very well even in a BCG vaccinated population. It is simple and will be of great utility in situations where sputum specimens are difficult to obtain or sputum-smear is negative. It will also help

  3. Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells.

    Science.gov (United States)

    Shum, Thomas; Omer, Bilal; Tashiro, Haruko; Kruse, Robert L; Wagner, Dimitrios L; Parikh, Kathan; Yi, Zhongzhen; Sauer, Tim; Liu, Daofeng; Parihar, Robin; Castillo, Paul; Liu, Hao; Brenner, Malcolm K; Metelitsa, Leonid S; Gottschalk, Stephen; Rooney, Cliona M

    2017-11-01

    Successful adoptive T-cell immunotherapy of solid tumors will require improved expansion and cytotoxicity of tumor-directed T cells within tumors. Providing recombinant or transgenic cytokines may produce the desired benefits but is associated with significant toxicities, constraining clinical use. To circumvent this limitation, we constructed a constitutively signaling cytokine receptor, C7R, which potently triggers the IL7 signaling axis but is unresponsive to extracellular cytokine. This strategy augments modified T-cell function following antigen exposure, but avoids stimulating bystander lymphocytes. Coexpressing the C7R with a tumor-directed chimeric antigen receptor (CAR) increased T-cell proliferation, survival, and antitumor activity during repeated exposure to tumor cells, without T-cell dysfunction or autonomous T-cell growth. Furthermore, C7R-coexpressing CAR T cells were active against metastatic neuroblastoma and orthotopic glioblastoma xenograft models even at cell doses that had been ineffective without C7R support. C7R may thus be able to enhance antigen-specific T-cell therapies against cancer. Significance: The constitutively signaling C7R system developed here delivers potent IL7 stimulation to CAR T cells, increasing their persistence and antitumor activity against multiple preclinical tumor models, supporting its clinical development. Cancer Discov; 7(11); 1238-47. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 1201 . ©2017 American Association for Cancer Research.

  4. Human CD4+T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity.

    Science.gov (United States)

    Angelo, Michael A; Grifoni, Alba; O'Rourke, Patrick H; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A; Kirkpatrick, Beth D; Whitehead, Stephen S; Durbin, Anna P; Sette, Alessandro; Weiskopf, Daniela

    2017-03-01

    Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8 + T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4 + T cell responses after live vaccination is important because CD4 + T cells are known contributors to host immunity, including cytokine production, help for CD8 + T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4 + T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4 + T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4 + cell responses closely mirroring those observed in a population associated with natural immunity. IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4 + responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against dengue

  5. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...

  6. Reconstitution of EBV latent but not lytic antigen-specific CD4(+) and CD8(+) T cells after HIV treatment with highly active antiretroviral therapy

    NARCIS (Netherlands)

    Piriou, Erwan; Jansen, Christine A.; van Dort, Karel; de Cuyper, Iris; Nanlohy, Nening M.; Lange, Joep M. A.; van Oers, Marinus H. J.; Miedema, Frank; van Baarle, Debbie

    2005-01-01

    The incidence of (EBV-rlelated) malignancies in HIV-infected subjects has declined since the introduction of highly active antiretroviral therapy (HAART). To investigate the effect of HAART on EBV infection, we performed a longitudinal analysis of the T cell response to both a latent and a lytic Ag

  7. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses

    Science.gov (United States)

    Ten Brinke, Anja; Marek-Trzonkowska, Natalia; Mansilla, Maria J.; Turksma, Annelies W.; Piekarska, Karolina; Iwaszkiewicz-Grześ, Dorota; Passerini, Laura; Locafaro, Grazia; Puñet-Ortiz, Joan; van Ham, S. Marieke; Hernandez-Fuentes, Maria P.; Martínez-Cáceres, Eva M.; Gregori, Silvia

    2017-01-01

    Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag)-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy. PMID:29312346

  8. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses

    Directory of Open Access Journals (Sweden)

    Anja Ten Brinke

    2017-12-01

    Full Text Available Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy.

  9. The administration route is decisive for the ability of the vaccine adjuvant CAF09 to induce antigen-specific CD8(+) T-cell responses

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Khadke, Swapnil; Korsholm, Karen Smith

    2016-01-01

    A prerequisite for vaccine-mediated induction of CD8(+) T-cell responses is the targeting of dendritic cell (DC) subsets specifically capable of cross-presenting antigen epitopes to CD8(+) T cells. Administration of a number of cationic adjuvants via the intraperitoneal (i.p.) route has been shown...... to result in strong CD8(+) T-cell responses, whereas immunization via e.g. the intramuscular (i.m.) or subcutaneous (s.c.) routes often stimulate weak CD8(+) T-cell responses. The hypothesis for this is that self-drainage of the adjuvant/antigen to the lymphoid organs, which takes place upon i...... i.p. immunization, as compared to after i.m. immunization. Studies with fluorescently labelled OVA+CAF09 demonstrated a preferential association of OVA+CAF09 to DCs/monocytes, as compared to macrophages and B cells, following i.p. immunization. Administration of OVA+CAF09 via the i.p. route did also...

  10. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  11. Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition.

    Directory of Open Access Journals (Sweden)

    Maud Condomines

    Full Text Available Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1 costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.

  12. Rapid and selective expansion of nonclonotypic T cells in regulatory T cell-deficient, foreign antigen-specific TCR-transgenic scurfy mice: antigen-dependent expansion and TCR analysis.

    Science.gov (United States)

    Sharma, Rahul; Ju, Angela Chiao-Ying; Kung, John T; Fu, Shu Man; Ju, Shyr-Te

    2008-11-15

    Foreign Ag-specific TCR-transgenic (Tg) mice contain a small fraction of T cells bearing the endogenous Vbeta and Valpha chains as well as a population expressing an intermediate level of Tg TCR. Importantly, these minor nonclonotypic populations contain > or = 99% of the CD4(+)Foxp3(+) regulatory T cells (Treg) and, despite low overall Treg expression, peripheral tolerance is maintained. In the OT-II TCR (OVA-specific, Vbeta5(high)Valpha2(high)) Tg scurfy (Sf) mice (OT-II Sf) that lack Treg, nonclonotypic T cells markedly expanded in the periphery but not in the thymus. Expanded T cells expressed memory/effector phenotype and were enriched in blood and inflamed lungs. In contrast, Vbeta5(high)Valpha2(high) clonotypic T cells were not expanded, displayed the naive phenotype, and found mainly in the lymph nodes. Importantly, Vbeta5(neg) T cells were able to transfer multiorgan inflammation in Rag1(-/-) recipients. T cells bearing dual TCR (dual Vbeta or dual Valpha) were demonstrated frequently in the Vbeta5(int) and Valpha2(int) populations. Our study demonstrated that in the absence of Treg, the lack of peripheral expansion of clonotypic T cells is due to the absence of its high-affinity Ag OVA. Thus, the rapid expansion of nonclonotypic T cells in OT-II Sf mice must require Ag (self and foreign) with sufficient affinity. Our study has implications with respect to the roles of Ag and dual TCR in the selection and regulation of Treg and Treg-controlled Ag-dependent T cell expansion in TCR Tg and TCR Tg Sf mice, respectively.

  13. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ...

  14. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells

    OpenAIRE

    Stroncek, David F.; Lee, Daniel W.; Ren, Jiaqiang; Sabatino, Marianna; Highfill, Steven; Khuu, Hanh; Shah, Nirali N.; Kaplan, Rosandra N.; Fry, Terry J.; Mackall, Crystal L.

    2017-01-01

    Background Clinical trials of Chimeric Antigen Receptor (CAR) T cells manufactured from autologous peripheral blood mononuclear cell (PBMC) concentrates for the treatment of hematologic malignancies have been promising, but CAR T cell yields have been variable. This variability is due in part to the contamination of the PBMC concentrates with monocytes and granulocytes. Methods Counter-flow elutriation allows for the closed system separation of lymphocytes from monocytes and granulocytes. We ...

  15. Comprehensive Analysis of Cytomegalovirus pp65 Antigen-Specific CD8+ T Cell Responses According to Human Leukocyte Antigen Class I Allotypes and Intraindividual Dominance

    Directory of Open Access Journals (Sweden)

    Seung-Joo Hyun

    2017-11-01

    Full Text Available To define whether individual human leukocyte antigen (HLA class I allotypes are used preferentially in human cytomegalovirus (CMV-specific cytotoxic T lymphocyte responses, CD8+ T cell responses restricted by up to six HLA class I allotypes in an individual were measured in parallel using K562-based artificial antigen-presenting cells expressing both CMV pp65 antigen and one of 32 HLA class I allotypes (7 HLA-A, 14 HLA-B, and 11 HLA-C present in 50 healthy Korean donors. The CD8+ T cell responses to pp65 in the HLA-C allotypes were lower than responses to those in HLA-A and -B allotypes and there was no difference between the HLA-A and HLA-B loci. HLA-A*02:01, -B*07:02, and -C*08:01 showed the highest magnitude and frequency of immune responses to pp65 at each HLA class I locus. However, HLA-A*02:07, -B*59:01, -B*58:01, -B*15:11, -C*03:02, and -C*02:02 did not show any immune responses. Although each individual has up to six different HLA allotypes, 46% of the donors showed one allotype, 24% showed two allotypes, and 2% showed three allotypes that responded to pp65. Interestingly, the frequencies of HLA-A alleles were significantly correlated with the positivity of specific allotypes. Our results demonstrate that specific HLA class I allotypes are preferentially used in the CD8+ T cell immune response to pp65 and that a hierarchy among HLA class I allotypes is present in an individual.

  16. IL-2/neuroantigen fusion proteins as antigen-specific tolerogens in experimental autoimmune encephalomyelitis (EAE): correlation of T cell-mediated antigen presentation and tolerance induction.

    Science.gov (United States)

    Mannie, Mark D; Clayson, Barbara A; Buskirk, Elizabeth J; DeVine, Jarret L; Hernandez, Jose J; Abbott, Derek J

    2007-03-01

    The purpose of this study was to assess whether the Ag-targeting activity of cytokine/neuroantigen (NAg) fusion proteins may be associated with mechanisms of tolerance induction. To assess this question, we expressed fusion proteins comprised of a N-terminal cytokine domain and a C-terminal NAg domain. The cytokine domain comprised either rat IL-2 or IL-4, and the NAg domain comprised the dominant encephalitogenic determinant of the guinea pig myelin basic protein. Subcutaneous administration of IL2NAg (IL-2/NAg fusion protein) into Lewis rats either before or after an encephalitogenic challenge resulted in an attenuated course of experimental autoimmune encephalomyelitis. In contrast, parallel treatment of rats with IL4NAg (IL-4/NAg fusion protein) or NAg lacked tolerogenic activity. In the presence of IL-2R(+) MHC class II(+) T cells, IL2NAg fusion proteins were at least 1,000 times more potent as an Ag than NAg alone. The tolerogenic activity of IL2NAg in vivo and the enhanced potency in vitro were both dependent upon covalent linkage of IL-2 and NAg. IL4NAg also exhibited enhanced antigenic potency. IL4NAg was approximately 100-fold more active than NAg alone in the presence of splenic APC. The enhanced potency of IL4NAg also required covalent linkage of cytokine and NAg and was blocked by soluble IL-4 or by a mAb specific for IL-4. Other control cytokine/NAg fusion proteins did not exhibit a similar enhancement of Ag potency compared with NAg alone. Thus, the IL2NAg and IL4NAg fusion proteins targeted NAg for enhanced presentation by particular subsets of APC. The activities of IL2NAg revealed a potential relationship between NAg targeting to activated T cells, T cell-mediated Ag presentation, and tolerance induction.

  17. Dendritic cells engineered to express defined allo-HLA peptide complexes induce antigen-specific cytotoxic T cells efficiently killing tumour cells

    DEFF Research Database (Denmark)

    Stronen, E; Abrahamsen, I W; Gaudernack, G

    2009-01-01

    presented by a non-self human leucocyte antigen (HLA) molecule and transferred to cancer patients expressing that HLA molecule. Obtaining allo-restricted CTL of high-avidity and low cross-reactivity has, however, proven difficult. Here, we show that dendritic cells transfected with mRNA encoding HLA-A*0201......, efficiently present externally loaded peptides from the antigen, Melan-A/MART-1 to T cells from HLA-A*0201-negative donors. CD8(+) T cells binding HLA-A*0201/MART-1 pentamers were detected already after 12 days of co-culture in 11/11 donors. The majority of cells from pentamer(+) cell lines were CTL...... and efficiently killed HLA-A*0201(+) melanoma cells, whilst sparing HLA-A*0201(+) B-cells. Allo-restricted CTL specific for peptides from the leukaemia-associated antigens CD33 and CD19 were obtained with comparable efficiency. Collectively, the results show that dendritic cells engineered to express defined allo-HLA...

  18. Evaluation of humoral and antigen-specific T-cell responses after vaccination of pigs against pseudorabies in the presence of maternal antibodies.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2010-08-26

    In this study the influence of maternal immunity against pseudorabies virus (PRV) on the development of humoral and T-cell mediated immune (CMI) responses was investigated under the experimental condition. Pigs born to immune sows were vaccinated with gE-deleted vaccine according to five different schedules. Peripheral blood mononuclear cells (PBMC), collected after vaccination, were used for PRV-induced lymphocyte proliferation assay (LPA). Antibodies to the gB and gE of PRV in serum were determined using ELISA kits. Maternally derived antibodies (MDA) in the serum of unvaccinated piglets born to immune sows were above the level considered to be positive until about 10-11 weeks of life. The active humoral as well as CMI responses was the highest in group vaccinated at 10 and 14 weeks of age. The results of this study suggest that MDA may disturb or even block development of active humoral response. Early priming of T-cells with attenuated gE-deleted PRV vaccine in the presence of MDA could be successful, but obtaining a long-term cellular immunity at least one booster is required. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    Science.gov (United States)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  20. Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: Protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations.

    Science.gov (United States)

    Sharpe, S; White, A; Sarfas, C; Sibley, L; Gleeson, F; McIntyre, A; Basaraba, R; Clark, S; Hall, G; Rayner, E; Williams, A; Marsh, P D; Dennis, M

    2016-12-01

    Intradermal (ID) BCG injection provides incomplete protection against TB in humans and experimental models. Alternative BCG vaccination strategies may improve protection in model species, including rhesus macaques. This study compares the immunogenicity and efficacy of BCG administered by ID and intravenous (IV) injection, or as an intratracheal mucosal boost (ID + IT), against aerosol challenge with Mycobacterium tuberculosis Erdman strain. Disease pathology was significantly reduced, and survival improved, by each BCG vaccination strategy, relative to unvaccinated animals. However, IV induced protection surpassed that achieved by all other routes, providing an opportunity to explore protective immunological mechanisms using antigen-specific IFN-γ ELISpot and polychromatic flow cytometry assays. IFN-γ spot forming units and multifunctional CD4 T-cell frequencies increased significantly following each vaccination regimen and were greatest following IV immunisation. Vaccine-induced multifunctional CD4 T-cells producing IFN-γ and TNF-α were associated with reduced disease pathology following subsequent M.tb challenge; however, high frequencies of this population following M.tb infection correlated with increased pathology. Cytokine producing T-cells primarily occupied the CD4 transitional effector memory phenotype, implicating this population as central to the mycobacterial response, potentially contributing to the stringent control observed in IV vaccinated animals. This study demonstrates the protective efficacy of IV BCG vaccination in rhesus macaques, offering a valuable tool for the interrogation of immunological mechanisms and potential correlates of protection. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. T cell antigen receptor activation and actin cytoskeleton remodeling

    Science.gov (United States)

    Kumari, Sudha; Curado, Silvia; Mayya, Viveka

    2013-01-01

    T cells constitute a crucial arm of the adaptive immune system and their optimal function is required for a healthy immune response. After the initial step of T cell-receptor (TCR) triggering by antigenic peptide complexes on antigen presenting cell (APC), the T cell exhibits extensive cytoskeletal remodeling. This cytoskeletal remodeling leads to formation of an “immunological synapse” [1] characterized by regulated clustering, segregation and movement of receptors at the interface. Synapse formation regulates T cell activation and response to antigenic peptides and proceeds via feedback between actin cytoskeleton and TCR signaling. Actin polymerization participates in various events during the synapse formation, maturation, and eventually its disassembly. There is increasing knowledge about the actin effectors that couple TCR activation to actin rearrangements [2, 3], and how defects in these effectors translate into impairment of T cell activation. In this review we aim to summarize and integrate parts of what is currently known about this feedback process. In addition, in light of recent advancements in our understanding of TCR triggering and translocation at the synapse, we speculate on the organizational and functional diversity of microfilament architecture in the T cell. PMID:23680625

  2. Depletion of regulatory T lymphocytes reverses the imbalance between pro- and anti-tumor immunities via enhancing antigen-specific T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Yu-Li Chen

    Full Text Available BACKGROUND: The regulatory T cells (Tregs can actively suppress the immune responses. However, literature about detailed changes of host effective and suppressive immunities before and after depletion of Tregs in ovarian carcinomas, is rare. MATERIALS AND METHODS: Ovarian cancer patients and the ascitogenic animal model were employed. Immunologic profiles with flow cytometric analyses, immunohistochemistric staining, RT-PCR, ELISA, and ELISPOT assays were performed. In vivo depletion of Treg cells with the mAb PC61was also performed in the animal model. RESULTS: The cytokines, including IL-4 (p=0.017 and TNF-α (p=0.046, significantly decreased while others such as TGF-β (p=0.013, IL-6 (p=0.016, and IL-10 (p=0.018 were elevated in ascites of ovarian cancer patients, when the disease progressed to advanced stages. The ratio of CD8(+ T cell/Treg cell in ascites was also lower in advanced diseases than in early diseases (advanced 7.37 ± 0.64 vs. early 14.25 ± 3.11, p=0.037. The kinetic low-dose CD25 Ab depletion group had significantly lower intra-peritoneal tumor weight (0.20 ± 0.03 g than the sequential high-dose (0.69 ± 0.06 g and sequential low-dose (0.67 ± 0.07 g CD25 Ab deletion groups (p=0.001 after 49 days of tumor challenge in the animal. The kinetic low-dose CD25 Ab depletion group generated the highest number of IFN-γ-secreting, mesothelin-specific T lymphocytes compared to the other groups (p<0.001. CONCLUSIONS: The imbalance between effective and suppressive immunities becomes more severe as a tumor progresses. The depletion of Treg cells can correct the imbalance of immunologic profiles and generate potent anti-tumor effects. Targeting Treg cells can be a new strategy for the immunotherapy of ovarian carcinoma.

  3. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    International Nuclear Information System (INIS)

    Doi, Keiko; Fujimoto, Takahiro; Okamura, Tadashi; Ogawa, Masahiro; Tanaka, Yoko; Mototani, Yasumasa; Goto, Motohito; Ota, Takeharu; Matsuzaki, Hiroshi; Kuroki, Masahide; Tsunoda, Toshiyuki; Sasazuki, Takehiko; Shirasawa, Senji

    2012-01-01

    Highlights: ► We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. ► Zfat-deficiency leads to reduction in the number of the peripheral T cells. ► Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. ► Decreased expression of IL-7Rα, IL-2Rα and IL-2 in Zfat-deficient peripheral T cells. ► Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7Rα and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2Rα expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  4. Tumor Progression Locus 2 Promotes Induction of IFNλ, Interferon Stimulated Genes and Antigen-Specific CD8+ T Cell Responses and Protects against Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Teneema Kuriakose

    2015-08-01

    Full Text Available Mitogen-activated protein kinase (MAP cascades are important in antiviral immunity through their regulation of interferon (IFN production as well as virus replication. Although the serine-threonine MAP kinase tumor progression locus 2 (Tpl2/MAP3K8 has been implicated as a key regulator of Type I (IFNα/β and Type II (IFNγ IFNs, remarkably little is known about how Tpl2 might contribute to host defense against viruses. Herein, we investigated the role of Tpl2 in antiviral immune responses against influenza virus. We demonstrate that Tpl2 is an integral component of multiple virus sensing pathways, differentially regulating the induction of IFNα/β and IFNλ in a cell-type specific manner. Although Tpl2 is important in the regulation of both IFNα/β and IFNλ, only IFNλ required Tpl2 for its induction during influenza virus infection both in vitro and in vivo. Further studies revealed an unanticipated function for Tpl2 in transducing Type I IFN signals and promoting expression of interferon-stimulated genes (ISGs. Importantly, Tpl2 signaling in nonhematopoietic cells is necessary to limit early virus replication. In addition to early innate alterations, impaired expansion of virus-specific CD8+ T cells accompanied delayed viral clearance in Tpl2-/- mice at late time points. Consistent with its critical role in facilitating both innate and adaptive antiviral responses, Tpl2 is required for restricting morbidity and mortality associated with influenza virus infection. Collectively, these findings establish an essential role for Tpl2 in antiviral host defense mechanisms.

  5. NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Blandine C Mercier

    Full Text Available Pattern recognition receptors (PRR, like Toll-like receptors (TLR and NOD-like receptors (NLR, are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR. This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.

  6. Palindromic nucleotide analysis in human T cell receptor rearrangements.

    Directory of Open Access Journals (Sweden)

    Santosh K Srivastava

    Full Text Available Diversity of T cell receptor (TCR genes is primarily generated by nucleotide insertions upon rearrangement from their germ line-encoded V, D and J segments. Nucleotide insertions at V-D and D-J junctions are random, but some small subsets of these insertions are exceptional, in that one to three base pairs inversely repeat the sequence of the germline DNA. These short complementary palindromic sequences are called P nucleotides. We apply the ImmunoSeq deep-sequencing assay to the third complementarity determining region (CDR3 of the β chain of T cell receptors, and use the resulting data to study P nucleotides in the repertoire of naïve and memory CD8(+ and CD4(+ T cells. We estimate P nucleotide distributions in a cross section of healthy adults and different T cell subtypes. We show that P nucleotide frequency in all T cell subtypes ranges from 1% to 2%, and that the distribution is highly biased with respect to the coding end of the gene segment. Classification of observed palindromic sequences into P nucleotides using a maximum conditional probability model shows that single base P nucleotides are very rare in VDJ recombination; P nucleotides are primarily two bases long. To explore the role of P nucleotides in thymic selection, we compare P nucleotides in productive and non-productive sequences of CD8(+ naïve T cells. The naïve CD8(+ T cell clones with P nucleotides are more highly expanded.

  7. Deletional rearrangement in the human T-cell receptor α-chain locus

    International Nuclear Information System (INIS)

    de Villartay, J.P.; Lewis, D.; Hockett, R.; Waldmann, T.A.; Korsmeyer, S.J.; Cohen, D.I.

    1987-01-01

    The antigen-specific receptor on the surface of mature T lymphocytes is a heterodimer consisting of polypeptides termed α and β. In the course of characterizing human T-cell tumors with an immature (CD4 - , CD8 - ) surface phenotype, the authors detected a 2-kilobase α-related transcript. Analysis of cDNA clones corresponding to this transcript established that a genetic element (which they call TEA, for T early α) located between the α-chain variable- and joining-region genes had been spliced to the α constant region. The TEA transcript is present early in thymocyte ontogeny, and its expression declines during T-cell maturation. More important, the TEA area functions as an active site for rearrangement within the α gene locus. Blot hybridization of restriction enzyme-digested DNA with a TEA probe revealed a narrowly limited pattern of rearrangement in polyclonal thymic DNA, surprisingly different from the pattern expected for the mature α gene with its complex diversity. These DNA blots also showed that TEA is generally present in the germ-line configuration in cells expressing the γδ heterodimeric receptor and is deleted from mature (αβ-expressing) T-lymphocyte tumors and lines. Moreover, the TEA transcript lacked a long open reading frame for protein but instead possessed multiple copies of a repetitive element resembling those utilized in the heavy-chain class switch of the immunoglobulin genes. The temporal nature of the rearrangements and expression detected by TEA suggests that this recombination could mediate a transition between immature (γδ-expressing) T cells and mature (αβ-expressing) T cells

  8. Methods for quantifying T cell receptor binding affinities and thermodynamics

    Science.gov (United States)

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  9. Role of CD3 gamma in T cell receptor assembly

    DEFF Research Database (Denmark)

    Dietrich, J; Neisig, A; Hou, X

    1996-01-01

    The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC......), transmembrane (TM), and cytoplasmic (CY) domain of CD3 gamma in assembly and cell surface expression of the complete TCR in human T cells. A computer model indicated that the EC domain of CD3 gamma folds as an Ig domain. Based on this model and on alignment studies, two potential interaction sites were....... In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta...

  10. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    Directory of Open Access Journals (Sweden)

    Nyambayar Dashtsoodol

    Full Text Available Invariant Vα14 natural killer T (NKT cells, characterized by the expression of a single invariant T cell receptor (TCR α chain encoded by rearranged Trav11 (Vα14-Traj18 (Jα18 gene segments in mice, and TRAV10 (Vα24-TRAJ18 (Jα18 in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  11. A high molecular weight melanoma-associated antigen-specific chimeric antigen receptor redirects lymphocytes to target human melanomas.

    Science.gov (United States)

    Burns, William R; Zhao, Yangbing; Frankel, Timothy L; Hinrichs, Christian S; Zheng, Zhili; Xu, Hui; Feldman, Steven A; Ferrone, Soldano; Rosenberg, Steven A; Morgan, Richard A

    2010-04-15

    Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express human leukocyte antigen (HLA) class I antigen-restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight melanoma-associated antigen (HMW-MAA), which is highly expressed on more than 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3zeta activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA-expressing cell lines. Furthermore, the receptor functioned in both CD4(+) and CD8(+) cells, was non-MHC restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. (c)2010 AACR.

  12. The Fas/CD95 receptor regulates the death of autoreactive B cells and the selection of antigen-specific B cells

    Directory of Open Access Journals (Sweden)

    Anne-Odile eHUEBER

    2012-07-01

    Full Text Available Cell death receptors have crucial roles in the regulation of immune responses. Here we review recent in vivo data confirming that the Fas death receptor (TNFSR6 on B cells is important for the regulation of autoimmunity since the impairment of only Fas function on B cells results in uncontrolled autoantibody production and autoimmunity. Fas plays a role in the elimination of the non-specific and auto-reactive B cells in germinal center, while during the selection of antigen specific B cells different escape signals ensure the resistance to Fas-mediated apoptosis. Antigen specific survival such as BCR or MHCII signal or coreceptors (CD19 cooperating with BCR inhibits the formation of death inducing signaling complex. Antigen-specific survival can be reinforced by antigen-independent signals of IL4 or CD40 overproducing the anti-apoptotic members of the Bcl-2 family proteins.

  13. A logical model provides insights into T cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Julio Saez-Rodriguez

    2007-08-01

    Full Text Available Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.

  14. Efficacy Against Human Prostate Cancer by Prostate-specific Membrane Antigen-specific, Transforming Growth Factor-β Insensitive Genetically Targeted CD8+T-cells Derived from Patients with Metastatic Castrate-resistant Disease.

    Science.gov (United States)

    Zhang, Qiang; Helfand, Brian T; Carneiro, Benedito A; Qin, Weijun; Yang, Ximing J; Lee, Chung; Zhang, Weipeng; Giles, Francis J; Cristofanilli, Massimo; Kuzel, Timothy M

    2017-12-21

    Current immunotherapy has limited efficacy on metastatic castrate-resistant prostate cancer (mCRPC). We therefore sought to improve the antitumor ability of mCRPC patient-derived CD8 + T-cells by the endowment of specificity to prostate-specific membrane antigen (PSMA) and insensitivity to immunosuppressant molecule transforming growth factor-β (TGF-ß) under the control of herpes simplex virus-1 thymidine kinase. CD8 + T-cells were collected by leukapheresis and cultured in a Food and Drug Administration-approved Cell Processing Work Station. We developed a chimeric antigen receptor retroviral construct using an anti-PSMA chimeric immunoglobulin-T-cell receptor(ζ) gene (PZ1) and dominant negative TGF-ß type II receptor (TßRIIDN), that could induce CD8 + T-cells to be PSMA reactive and insensitive to TGF-ß. Cr 51 release assay was performed on PC-3 and PC-3-PSMA. The further antitumor functions of PSMA-specific, TGF-ß insensitive CD8 + T-cells was evaluated using an immunodeficient RAG-1 -/- mouse model. We found PSMA-specific, TGF-ß insensitive CD8 + T-cells from mCRPC were expanded with strong expression of PZ1 and thymidine kinase genes, and their growth was not suppressed by TGF-ß. The survival of these cells decreased sharply after treatment with ganciclovir. Treatment of PSMA-specific TGF-ß, insensitive CD8 + T-cells was associated with 61.58% specific lysis on PC-3-PSMA, and significantly suppressed PC3-PSMA tumor compared with the PC3 tumor. A large amount of tumor apoptosis and CD8 + T-cell infiltration were found only in the PC3-PSMA tumor. This study verified that PSMA-specific, TGF-ß insensitive CD8 + T-cells derived from mCRPC patients could be successfully expanded and used to overcome the immunosuppressive effects of the tumor microenvironment to control PSMA-expressing PC in vitro and in vivo. This may provide a promising approach for men with mCRPC who fail androgen deprivation therapy. We investigated the role of a novel chimeric antigen

  15. Utilization of two different T cell receptors by T cell acute lymphoblastic lymphoma and leukemia.

    Science.gov (United States)

    Gouttefangeas, C; Bensussan, A; Boumsell, L

    1990-01-01

    We show further differences between two clinically related entities, T cell acute lymphoblastic leukemia (T-ALL) and lymphoblastic lymphoma (T-LL), by using several monoclonal antibodies (mAb) reacting either with constant or variable regions of T cell receptors (TcR) alpha beta and gamma delta or with various CD molecules. We analysed a panel of 15 T-ALL and 15 T-LL selected for their cell surface expression of the CD3 molecules. The results indicate that TcR gamma delta is more frequently used than TcR alpha beta in T-ALL (10 out of the 15 patients tested). This is in contrast to the results obtained with T-LL where the vast majority expressed TcR alpha beta (13 out of the 15 patients). These findings suggest that the leukemic cells could have a different origin in these two diseases. In addition analysis of TcR variable regions expressed by the leukemic blasts showed that in most cases they had rearranged functional V delta 1 gene segments (8 out of 11 patients) whereas in a unique case V delta 2 gene segment was used. Taken together these results and those indicating that T-ALL cell coexpress the CD1a,b and c molecules strengthen the possibility that even though these leukemic cells express the CD3-TcR complex at their cell surface their normal counterparts are not found in peripheral blood.

  16. Vitamin D receptor signals regulate effector and memory CD8 T cell responses to infections in mice.

    Science.gov (United States)

    Yuzefpolskiy, Yevgeniy; Baumann, Florian M; Penny, Laura A; Studzinski, George P; Kalia, Vandana; Sarkar, Surojit

    2014-12-01

    Vitamin D insufficiency is associated with broad-ranging human disease sequelae such as bone disease, cancer, cardiovascular disease, allergy, autoimmune disorders, diabetes, and infectious diseases. Disease risk and severity of a large proportion of the nonskeletal disorders heavily involve the cytotoxic cluster of differentiation (CD) 8 T lymphocyte (CTL) arm of cellular adaptive immunity. Considering the importance of vitamin D in CTL-dependent diseases, there is a critical need for systematic in-depth explorations into the role of vitamin D deficiency in generation and maintenance of CTL immunity during infections and vaccinations. With the use of wild-type (WT) vitamin D-sufficient mice and the vitamin D receptor knockout (Vdr(-/-)) mouse model of in vivo deficiency of vitamin D signaling, we systematically analyzed the impact of vitamin D deficiency on antigen-specific effector and memory CD8 T cell responses to acute viral and bacterial infections. WT and Vdr(-/-) mice were infected with lymphocytic choriomeningitis virus, a natural mouse pathogen, and antigen-specific CTL responses were analyzed during priming, expansion, contraction, and memory phases. Magnitude, breadth, cytokine production, and localization of antiviral effector and memory CTLs to lymphoid and nonlymphoid tissues were specifically assessed. The absence of vitamin D signals led to 1) aberrant CD8 T cell effector differentiation (∼2-fold lower granzyme B and reduced B cell lymphoma 2; P ≤ 0.05) and enhanced contraction (∼15% increase; P ≤ 0.05) in antigen-specific CTLs; 2) a significantly restricted (P ≤ 0.05) breadth of the antigen-specific CD8 T cell effector and memory repertoire; and 3) preferential localization of effector (∼2.5-fold increase; P ≤ 0.01) and memory (∼5-fold increase; P ≤ 0.001) CD8 T cells to the lymph nodes compared to nonlymphoid tissues. Our data show a previously unrecognized impact of vitamin D deficiency on the quantity, quality, breadth, and

  17. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keiko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka (Japan); Fujimoto, Takahiro [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Okamura, Tadashi [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ogawa, Masahiro [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tanaka, Yoko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Mototani, Yasumasa; Goto, Motohito [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ota, Takeharu; Matsuzaki, Hiroshi [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Kuroki, Masahide [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tsunoda, Toshiyuki [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Sasazuki, Takehiko [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Shirasawa, Senji, E-mail: sshirasa@fukuoka-u.ac.jp [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  18. Human rotavirus specific T cells: quantification by ELISPOT and expression of homing receptors on CD4+ T cells

    International Nuclear Information System (INIS)

    Rojas, Olga Lucia; Gonzalez, Ana Maria; Gonzalez, Rosabel; Perez-Schael, Irene; Greenberg, Harry B.; Franco, Manuel A.; Angel, Juana

    2003-01-01

    Using an intracellular cytokine assay, we recently showed that the frequencies of rotavirus (RV)-specific CD4 + and CD8 + T cells secreting INFγ, circulating in RV infected and healthy adults, are very low compared to the frequencies of circulating cytomegalovirus (CMV) reactive T cells in comparable individuals. In children with acute RV infection, these T cells were barely or not detectable. In the present study, an ELISPOT assay enabled detection of circulating RV-specific INFγ-secreting cells in children with RV diarrhea but not in children with non-RV diarrhea without evidence of a previous RV infection. Using microbead-enriched CD4 + and CD8 + T cell subsets, IFNγ-secreting RV-specific CD8 + but not CD4 + T cells were detected in recently infected children. Using the same approach, both CD4 + and CD8 + RV-specific T cells were detected in healthy adults. Furthermore, stimulation of purified subsets of PBMC that express lymphocyte homing receptors demonstrated that RV-specific INFγ-secreting CD4 + T cells from adult volunteers preferentially express the intestinal homing receptor α4β7, but not the peripheral lymph node homing receptor L-selectin. In contrast, CMV-specific INFγ-secreting CD4 + T cells preferentially express L-selectin but not α4β7. These results suggest that the expression of homing receptors on virus-specific T cells depends on the organ where these cells were originally stimulated and that their capacity to secrete INFγ is independent of the expression of these homing receptors

  19. Characterization of T cell receptors of Th1 cells infiltrating inflamed skin of a novel murine model of palladium-induced metal allergy.

    Directory of Open Access Journals (Sweden)

    Hiroshi Kobayashi

    Full Text Available Metal allergy is categorized as a delayed-type hypersensitivity reaction, and is characterized by the recruitment of lymphocytes into sites of allergic inflammation. Because of the unavailability of suitable animal models for metal allergy, the role of T cells in the pathogenesis of metal allergy has not been explored. Thus, we developed a novel mouse model for metal allergy associated with infiltration of T cells by multiple injections of palladium (Pd plus lipopolysaccharide into the footpad. Using this model, we characterized footpad-infiltrating T cells in terms of phenotypic markers, T cell receptor (TCR repertoires and cytokine expression. CD3+ CD4+ T cells accumulated in the allergic footpads 7 days after Pd challenge. The expression levels of CD25, interleukin-2, interferon-γ and tumor necrosis factor, but not interleukin-4 and interleukin-5, increased in the footpads after challenge, suggesting CD4+ T helper 1 (Th1 cells locally expanded in response to Pd. Infiltrated T cells in the footpads frequently expressed AV18-1 and BV8-2 T cell receptor (TCR chains compared with T cells in the lymph nodes and exhibited oligoclonality. T-cell clones identified from Pd-allergic mouse footpads shared identical CDR3 sequences containing AV18-1 and BV8-2. These results suggest that TCR AV18-1 and BV8-2 play dominant and critical parts in the antigen specificity of Pd-specific Th1 cells.

  20. Broad T-cell receptor repertoire in T-lymphocytes derived from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Chang

    Full Text Available Human induced pluripotent stem cells (hiPSCs have enormous potential for the treatment of inherited and acquired disorders. Recently, antigen-specific T lymphocytes derived from hiPSCs have been reported. However, T lymphocyte populations with broad T cell receptor (TCR diversity have not been generated. We report that hiPSCs derived from skin biopsy are capable of producing T lymphocyte populations with a broad TCR repertoire. In vitro T cell differentiation follows a similar developmental program as observed in vivo, indicated by sequential expression of CD7, intracellular CD3 and surface CD3. The γδ TCR locus is rearranged first and is followed by rearrangement of the αβ locus. Both γδ and αβ T cells display a diverse TCR repertoire. Upon activation, the cells express CD25, CD69, cytokines (TNF-α, IFN-γ, IL-2 and cytolytic proteins (Perforin and Granzyme-B. These results suggest that most, if not all, mechanisms required to generate functional T cells with a broad TCR repertoire are intact in our in vitro differentiation protocol. These data provide a foundation for production of patient-specific T cells for the treatment of acquired or inherited immune disorders and for cancer immunotherapy.

  1. Somatic Variation of T-Cell Receptor Genes Strongly Associate with HLA Class Restriction

    NARCIS (Netherlands)

    Klarenbeek, Paul L.; Doorenspleet, Marieke E.; Esveldt, Rebecca E. E.; van Schaik, Barbera D. C.; Lardy, Neubury; van Kampen, Antoine H. C.; Tak, Paul P.; Plenge, Robert M.; Baas, Frank; de Bakker, Paul I. W.; de Vries, Niek

    2015-01-01

    Every person carries a vast repertoire of CD4+ T-helper cells and CD8+ cytotoxic T cells for a healthy immune system. Somatic VDJ recombination at genomic loci that encode the T-cell receptor (TCR) is a key step during T-cell development, but how a single T cell commits to become either CD4+ or CD8+

  2. Coaggregation of the T-cell receptor with CD4 and other T-cell surface molecules enhances T-cell activation

    DEFF Research Database (Denmark)

    Owens, T; Fazekas de St Groth, B; Miller, J F

    1987-01-01

    and the TCR to stabilize TCR complexes and so to enhance T-cell activation. A related but less specific accessory role for other T-cell surface molecules is also suggested. We propose that the cellular interaction that leads to physiological T-cell activation not only achieves TCR ligation but also promotes......The CD4 molecule, expressed by T cells restricted by class II major histocompatibility complex (MHC) molecules, is believed to play a role in T-cell activation. We have previously suggested that CD4 interacts with the T-cell receptor for antigen (TCR) and with class II MHC and that this dual...... interaction stabilizes the bond between the TCR and antigen in association with MHC. To investigate the contribution of CD4-TCR interaction, we have used the murine monoclonal anti-TCR V beta 8 antibody F23.1 to activate cloned T cells. Weak activation by soluble biotinylated F23.1 was markedly enhanced...

  3. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies.

    Science.gov (United States)

    Png, Yi Tian; Vinanica, Natasha; Kamiya, Takahiro; Shimasaki, Noriko; Coustan-Smith, Elaine; Campana, Dario

    2017-11-28

    Effective immunotherapies for T-cell malignancies are lacking. We devised a novel approach based on chimeric antigen receptor (CAR)-redirected T lymphocytes. We selected CD7 as a target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL), including the most aggressive subtype, early T-cell precursor (ETP)-ALL. In 49 diagnostic T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was >99%; CD7 expression remained high at relapse (n = 14), and during chemotherapy (n = 54). We targeted CD7 with a second-generation CAR (anti-CD7-41BB-CD3ζ), but CAR expression in T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To downregulate CD7 and control fratricide, we applied a new method (protein expression blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% ± 1.7% were CD7 + vs 98.1% ± 1.5% of mock-transduced T cells (n = 5; P < .0001). PEBL expression did not impair T-cell proliferation, interferon-γ and tumor necrosis factor-α secretion, or cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly cytotoxic against CD7 + leukemic cells in vitro and were consistently more potent than CD7 + T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line- and patient-derived T-ALL xenografts. The strategy described in this study fits well with existing clinical-grade cell manufacturing processes and can be rapidly implemented for the treatment of patients with high-risk T-cell malignancies.

  4. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    Science.gov (United States)

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; von Bergwelt-Baildon, M.; Lardinois, Didier; Müller, Philipp; Karanikas, Vaios; Zippelius, Alfred

    2016-01-01

    ABSTRACT T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction. PMID:27057429

  5. Gut-homing CD4+ T cell receptor alpha beta+ T cells in the pathogenesis of murine inflammatory bowel disease

    DEFF Research Database (Denmark)

    Rudolphi, A; Boll, G; Poulsen, S S

    1994-01-01

    We studied which T cell subsets from the gut-associated lymphoid tissue (GALT) can migrate out of the gut mucosa and repopulate GALT compartments of an immunodeficient (semi)syngeneic host. Many distinct lymphocyte subsets were found in GALT of immunocompetent H-2d (BALB/c, BALB/cdm2, C.B-17......+/+) mice. No antigen receptor-expressing lymphoid cells were found in GALT of congenic C.B-17 scid/scid (scid) mice. The heterotopic transplantation of a full-thickness gut wall graft from the ileum or colon of immunocompetent (C.B-17+/+, BALB/cdm2) donor mice onto immunodeficient scid mice selectively...... reconstituted a CD3+ T cell receptor alpha beta+ CD4+ T cell subset. CD4+ cells of this subset expressed the surface phenotype of mucosa-seeking, memory T cells. In the immunodeficient scid host, this gut-derived CD4+ T cell subset was found in spleen, peritoneal cavity, mesenteric lymph nodes (LN), epithelial...

  6. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters

    Energy Technology Data Exchange (ETDEWEB)

    Manz, Boryana N. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Univ. of California, Berkeley, CA (United States); Jackson, Bryan L. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petit, Rebecca S. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dustin, Michael L. [New York School of Medicine, New York, NY (United States); Groves, Jay [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-05-31

    T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. In this study, we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC content within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. In conclusion, this threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.

  7. Co-introduced functional CCR2 potentiates in vivo anti-lung cancer functionality mediated by T cells double gene-modified to express WT1-specific T-cell receptor.

    Directory of Open Access Journals (Sweden)

    Hiroaki Asai

    Full Text Available BACKGROUND AND PURPOSE: Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR or chimeric antigen receptor (CAR has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. METHODOLOGY/PRINCIPAL FINDINGS: Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1, and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402(+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8(+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1(235-243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3(+ T cells both in vitro and in vivo. Double gene-modified CD3(+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modified CD3(+ T cells. CONCLUSION/SIGNIFICANCE: Introduction of the CCL2/CCR2 axis successfully potentiated in

  8. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-07-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the (/sup 3/H)thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced (/sup 3/H)thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% (SD)) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition.

  9. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    International Nuclear Information System (INIS)

    Kleinhenz, M.E.; Ellner, J.J.

    1985-01-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the [ 3 H]thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced [ 3 H]thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% [SD]) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition

  10. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    Science.gov (United States)

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS

  11. Computational design of the affinity and specificity of a therapeutic T cell receptor.

    Directory of Open Access Journals (Sweden)

    Brian G Pierce

    2014-02-01

    Full Text Available T cell receptors (TCRs are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC ligands, there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating TCRs with customized antigen targeting capabilities.

  12. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors.

    Science.gov (United States)

    Levite, Mia

    2008-08-01

    Neurotransmitters are traditionally viewed as nerve-secreted molecules that trigger or inhibit neuronal functions. Yet, neurotransmitters bind also their neurotransmitter receptors in T-cells and directly activate or suppress T-cell functions. This review focuses only on the activating effects of neurotransmitters on T-cells, primarily naïve/resting cells, and covers dopamine, glutamate, serotonin, and few neuropeptides: GnRH-I, GnRH-II, substance P, somatostatin, CGRP, and neuropeptide Y. T-cells express many neurotransmitter receptors. These are regulated by TCR-activation, cytokines, or the neurotransmitters themselves, and are upregulated/downregulated in some human diseases. The context - whether the T-cells are naïve/resting or antigen/mitogen/cytokine-activated, the T-cell subset (CD4/CD8/Th1/Th2/Teff/Treg), neurotransmitter dose (low/optimal or high/excess), exact neurotransmitter receptors expressed, and the cytokine milieu - is crucial, and can determine either activation or suppression of T-cells by the same neurotransmitter. T-cells also produce many neurotransmitters. In summary, neurotransmitters activate vital T-cell functions in a direct, potent and specific manner, and may serve for communicating between the brain and the immune system to elicit an effective and orchestrated immune function, and for new therapeutic avenues, to improve T-cell eradication of cancer and infectious organisms.

  13. A chemically inert drug can stimulate T cells in vitro by their T cell receptor in non-sensitised individuals

    International Nuclear Information System (INIS)

    Engler, Olivier B.; Strasser, Ingrid; Naisbitt, Dean J.; Cerny, Andreas; Pichler, Werner J.

    2004-01-01

    Drugs can interact with T cell receptors (TCR) after binding to peptide-MHC structures. This binding may involve the formation of a stable, covalent bond between a chemically reactive drug and MHC or the peptide embedded within. Alternatively, if the drug is chemically inert, the binding may be non-covalent and readily reversible. Both types of drug presentation account for a substantial number of adverse side effects to drugs. Presently no tests are available to predict the ability of chemically inert drugs to stimulate an immune response. Here we present data on the successful induction of a primary T cell immune response in vitro against a chemically inert drug using blood from healthy individuals, previously not exposed to the drug. Blood lymphocytes were stimulated by the chemically inert drug sulfamethoxazole and the protein-reactive drug-metabolite sulfamethoxazole-nitroso in the presence of IL-2. 9/10 individuals reacted in response to sulfamethoxazole-nitroso, but only three reacted to the chemically inert compound sulfamethoxazole. Drug reactive T cells could be detected after 14-35 days of cell culture by drug-specific proliferation or cytotoxicity, which was MHC-restricted. These cells were CD4, CD8 positive or CD4/CD8 double positive and T cell clones generated secreted Th0 type cytokines. Drug interaction lead to down-regulation of specific TCR. These data confirm the ability of chemically inert drugs to stimulate certain T cells by their TCR and may provide the opportunity to screen new drugs for their ability to interact with TCRs

  14. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.

    Science.gov (United States)

    Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti

    2017-06-01

    Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. T cell differentiation stages identified by molecular and immunologic analysis of the T cell receptor complex in childhood lymphoblastic leukemia.

    Science.gov (United States)

    Mirro, J; Kitchingman, G; Behm, F G; Murphy, S B; Goorha, R M

    1987-03-01

    T cell differentiation was investigated by determining the relationship of T cell receptor (Ti) gene rearrangement and transcription to the expression of surface and cytoplasmic T3 antigen using blast cells from five children with acute lymphoblastic leukemia of thymic origin. Patterns of monoclonal antibody (MoAb) reactivity indicated that these cases were representative of the three recognized stages (I, II, III) of human thymocyte development. The T3 antigen, which becomes linked to the Ti to form a functional T cell receptor complex on mature thymocytes, was expressed on the cell surface in two cases (stage III). However, in the remaining three cases that were surface T3 negative (stages I and II), large amounts of T3 were identified in the cytoplasm by immunoperoxidase staining and flow cytometry. Leukemic blasts from all five patients showed rearranged genes encoding the beta-chain portion of the Ti heterodimer. RNA transcripts of Ti beta-chain genes were also evident in lymphoblasts from all five cases, but transcripts coding for the alpha-chain portion of Ti were found only in cases that expressed T3 on the cell surface. Thus the absence of surface T3 (and presumably Ti) coincides with the absence of Ti alpha-chain RNA, suggesting that transcription of alpha-chain genes is a critical regulatory event in the surface expression of the Ti-T3 complex. Leukemic T cells that rearrange and express Ti beta-chain genes but lack Ti alpha-chain messenger RNA (mRNA) may represent a stage of differentiation analogous to pre-B cells, where heavy-chain immunoglobulin (Ig) genes are rearranged and expressed but light-chain Ig genes are not expressed.

  16. Chimeric antigen receptor (CAR T cell therapy for malignant cancers: Summary and perspective

    Directory of Open Access Journals (Sweden)

    Aaron J. Smith

    2016-11-01

    Full Text Available This paper will summarize the data obtained primarily from the last decade of chimeric antigen receptor (CAR T cell immunotherapy. It will do so in a manner that provides an overview needed to set the foundation for perspective on the state of research associated with CAR T cell therapy. The topics covered will include the construction of engineered CAR T cells from the standpoint of the different generations, the mode in which autologous T cells are transfected, the various biomarkers that have been used in CAR T cell immunotherapy, and setbacks associated with engineered T cells. Perspective on priorities of CAR T cell immunotherapy will also be addressed as they are related to safety and efficacy.

  17. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy

    Directory of Open Access Journals (Sweden)

    Hua Li

    2017-04-01

    Full Text Available Abstract Chimeric antigen receptor (CAR T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or “on-target/off-tumor” toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal—curing cancer with high safety, high efficacy, and low cost.

  18. Mechanisms behind functional avidity maturation in T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak, Martin; Geisler, Carsten

    2012-01-01

    During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor...

  19. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...... of costimulatory endodomains for CAR construction to improve the effector functions of the engineered T cells. Camelid single-domain antibodies (VHHs), which are the smallest single domain antibodies, can endow great targeting ability to CAR-engineered T cells....

  20. Gut-homing CD4+ T cell receptor alpha beta+ T cells in the pathogenesis of murine inflammatory bowel disease

    DEFF Research Database (Denmark)

    Rudolphi, A; Boll, G; Poulsen, S S

    1994-01-01

    We studied which T cell subsets from the gut-associated lymphoid tissue (GALT) can migrate out of the gut mucosa and repopulate GALT compartments of an immunodeficient (semi)syngeneic host. Many distinct lymphocyte subsets were found in GALT of immunocompetent H-2d (BALB/c, BALB/cdm2, C.B-17......+/+) mice. No antigen receptor-expressing lymphoid cells were found in GALT of congenic C.B-17 scid/scid (scid) mice. The heterotopic transplantation of a full-thickness gut wall graft from the ileum or colon of immunocompetent (C.B-17+/+, BALB/cdm2) donor mice onto immunodeficient scid mice selectively...

  1. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Backstrom, T; Lauritsen, JP

    1998-01-01

    mediated by the serine/threonine protein phosphatase-2A, but independent on microtubules or actin polymerization. Furthermore, in contrast to ligand-mediated TCR sorting, recycling of the TCR was independent of the tyrosine phosphatase CD45 and the Src tyrosine kinases p56(Lck) and p59(Fyn). Studies......The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...

  2. Chemokine Receptor Expression Identifies Pre–T Helper (Th)1, Pre–Th2, and Nonpolarized Cells among Human CD4+ Central Memory T Cells

    Science.gov (United States)

    Rivino, Laura; Messi, Mara; Jarrossay, David; Lanzavecchia, Antonio; Sallusto, Federica; Geginat, Jens

    2004-01-01

    We previously reported that central–memory T cells (TCM cells), which express lymph node homing receptors CCR7 and CD62L, are largely devoid of effector functions but acquire characteristics of effector–memory T cells (TEM cells) (i.e., CCR7− T helper [Th]1 or Th2 cells) after stimulation with T cell receptor agonists or homeostatic cytokines. Here we show that three chemokine receptors identify functional subsets within the human CD4+ TCM cell pool. TCM cells expressing CXCR3 secreted low amounts of interferon γ, whereas CCR4+ TCM cells produced some interleukin (IL)-4, but not IL-5. In response to IL-7 and IL-15, CXCR3+ TCM and CCR4+ TCM cells invariably generated fully differentiated CCR7− Th1 and Th2 cells, respectively, suggesting that they represent pre-Th1 and pre-Th2 cells. Conversely, CXCR5+ TCM cells lacking CXCR3 and CCR4 remained nonpolarized and retained CCR7 and CD62L expression upon cytokine-driven expansion. Unlike naive cells, all memory subsets had a low T cell receptor rearrangement excision circle content, spontaneously incorporated bromodeoxyuridine ex vivo, and contained cells specific for tetanus toxoid. Conversely, recall responses to cytomegalovirus and vaccinia virus were largely restricted to CXCR3+ TCM and TEM cells. We conclude that antigen-specific memory T cells are distributed between TEM cells and different subsets of TCM cells. Our results also explain how the quality of primary T cell responses could be maintained by TCM cells in the absence of antigen. PMID:15381728

  3. Generation and functional characterization of anti-clonotype antibodies to human T-cell receptors

    NARCIS (Netherlands)

    Steenbakkers, PGA; Boots, AMH; Rijnders, AWM

    1997-01-01

    Monoclonal antibodies (mAb) directed against the clonotypic structure of the T-cell receptor (TCR) may be useful reagents in the study and therapy of T-cell-mediated diseases. In contrast to several reports concerning the generation of anti-clonotype mAb to mouse TCR, only very limited numbers of

  4. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  5. Identification of a public CDR3 motif and a biased utilization of T-cell receptor V beta and J beta chains in HLA-A2/Melan-A-specific T-cell clonotypes of melanoma patients

    Directory of Open Access Journals (Sweden)

    Natali Pier

    2009-03-01

    Full Text Available Abstract Background Assessment of T-cell diversity, besides giving insights about the molecular basis of tumor antigen recognition, has clinical implications since it provides criteria for evaluating antigen-specific T cells clinically relevant for spontaneous and vaccine-induced anti-tumor activity. Melan-A is one of the melanoma antigens most frequently recognized by peripheral and tumor-infiltrating lymphocytes in HLA-A2+ melanoma patients. Many clinical trials involving anti-tumor vaccination have been conducted using modified versions of this peptide. Methods We conducted an in-depth characterization of 210 T-cell receptor beta chain (TRB clonotypes derived from T cells of HLA-A2+ melanoma patients displaying cytotoxic activity against natural and A27L-modified Melan-A peptides. One hundred and thirteen Melan-A-specific clonotypes from melanoma-free subjects, 199 clonotypes from T-cell clones from melanoma patients specific for melanoma antigens other than Melan-A, and 305 clonotypes derived from T cells of HLA-A2+ individuals showing unrelated specificities, were used as control. After sequence analysis, performed according to the IMGT definitions, TRBV and TRBJ usage, CDR3 length and amino acid composition were compared in the four groups of clonotypes. Results TRB sequences of Melan-A-specific clonotypes obtained from melanoma patients were highly heterogeneous, but displayed a preferential usage of few TRBV and TRBJ segments. Furthermore, they included a recurrent "public" amino acid motif (Glycine-Leucine-Glycine at positions 110-112-113 of the CDR3 rearranged with dominant TRBV and TRBJ segments and, in one case, associated with a full conservation of the entire TRB sequence. Conclusion Contrary to what observed for public anti-Melan-A T-cell receptor alpha motifs, which had been identified in several clonotypes of both melanoma patients and healthy controls, the unexpectedly high contribution of a public TRB motif in the recognition

  6. DMPD: Toll-like receptors: paving the path to T cell-driven autoimmunity? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17888644 Toll-like receptors: paving the path to T cell-driven autoimmunity? Marsla... Toll-like receptors: paving the path to T cell-driven autoimmunity? PubmedID 17888644 Title Toll-like recep...tors: paving the path to T cell-driven autoimmunity? Authors Marsland BJ, Kopf M.

  7. Integrating signals from the T-cell receptor and the interleukin-2 receptor.

    Directory of Open Access Journals (Sweden)

    Tilo Beyer

    2011-08-01

    Full Text Available T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.

  8. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Williams

    2017-07-01

    Full Text Available The discovery of naturally occurring T cell receptors (TCRs that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds rather than synergy (total CD8 cooperation alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our

  9. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR) and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells.

    Science.gov (United States)

    Williams, Chad M; Schonnesen, Alexandra A; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S Gail; Klebanoff, Christopher A; Jiang, Ning

    2017-01-01

    The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8 + T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously

  10. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  11. Chimeric Antigen Receptor-Engineered T Cells in Tumor Immunotherapy: From Bench to Beside

    Directory of Open Access Journals (Sweden)

    Peng WANG

    2017-06-01

    Full Text Available Chimeric antigen receptor-engineered T cells (CAR-T cells, a classification of cultured T cells after modification of gene engineering technology, can recognize specific tumor antigens in a major histocompatibility complex (MHC-independent manner, consequently leading to the activation of antitumor function. The recent studies have confirmed that a variety of tumor-associated antigens (TAAs can act as target antigens for CAR-T cells. Nowadays, CAR T-cell therapy, one of the most potential tumor immunotherapies, has made great breakthroughs in hematological malignancies and promising outcomes in solid tumors. In this article, the biological characteristics and antitumor mechanism of CAR-T cells, and their application in tumor treatment were mainly reviewed.

  12. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hamid R. Mirzaei

    2017-12-01

    Full Text Available Adoptive cellular immunotherapy (ACT employing engineered T lymphocytes expressing chimeric antigen receptors (CARs has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.

  13. IgE production after antigen-specific and cognate activation of HLA-DPw4-restricted T-cell clones, by 78% of randomly selected B-cell donors

    NARCIS (Netherlands)

    Baselmans, PJ; Pollabauer, EM; van Reijsen, FC; Heystek, HC; Hren, A; Stumptner, P; Tilanus, MGJ; Vooijs, WC; Mudde, GC

    The frequency of expression of the MHC class II antigen, HLA-DPw4, in the caucasoid population is approximately 78%, and is unmatched by phenotypic frequencies of other HLA class II molecules. Here we describe three human Der-P1-specific T-cell clones (TCC), restricted by the HLA-DPw4-variant

  14. A highly restricted T-cell receptor dominates the CD8+ T-cell response to parvovirus B19 infection in HLA-A*2402-positive individuals

    DEFF Research Database (Denmark)

    Kasprowicz, V; Isa, Adiba; Jeffery, K

    2006-01-01

    Six of seven HLA-A*2402-positive individuals with acute parvovirus B19 infections made vigorous CD8-positive cytotoxic T-cell (CTL) responses to the viral epitope FYTPLADQF. All responders showed highly focused T-cell receptor (TCR) usage, using almost exclusively BV5.1. The BV5.1 TCR dominated...

  15. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    DEFF Research Database (Denmark)

    Kløverpris, Henrik N; McGregor, Reuben; McLaren, James E

    2014-01-01

    of differentiation on HIV-1-specific CD8+ T-cell populations(n = 128) spanning 11 different epitope targets. RESULTS: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR...

  16. Antigen-specific CD4 T cells are induced after intravesical BCG-instillation therapy in patients with bladder cancer and show similar cytokine profiles as in active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Julia Elsäßer

    Full Text Available Specific T cell immunity in patients with active tuberculosis is associated with a decrease in multifunctionality. However, it is unknown whether cytokine profiles differ in patients with primary infection and those with prior contact. We therefore used intravesical immunotherapy with attenuated live Bacille Calmette-Guérin (BCG in patients with urothelial carcinoma as a model to characterise the induction of systemic immunity towards purified protein derivate (PPD and to study whether cytokine profiles differ depending on pre-existing immunity. Eighteen patients with non-muscle invasive bladder cancer were recruited during the BCG-induction course. Fifty-four healthy individuals served as controls. Interferon (IFN-γ and interleukin (IL-2 producing PPD-specific CD4 T cells were analysed longitudinally before each instillation using a rapid flow-cytometric whole blood immunoassay. Baseline levels of IFN-γ producing PPD-specific T cells were comparable to controls. T cells showed a 5-fold increase to 0.23% by week 2/3, and further increased 8-fold by week 4/5 (to 0.42%, p=0.0007. Systemic immunity was induced in all patients, although the increase was less pronounced in patients with pre-existing immunity. As in active TB, cytokine profiling during therapy revealed a lower percentage of multifunctional IFN-γ/IL-2 double-positive T cells compared to controls (60.2% vs. 71.9%, p=0.0003. Of note, when comparing patients with and without pre-existing immunity, cytokine profiles in patients with primary immunity were shifted towards IL-2 single producing T cells (p=0.02, whereas those in patients with pre-existing immunity were shifted towards IFN-γ single-positivity (p=0.01. In conclusion, systemic T cell responses were induced after BCG-therapy, and their kinetics and cytokine profile depended on pre-existing immunity. Decreased functionality is a typical feature of specific immunity in both patients with active tuberculosis and BCG

  17. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

    OpenAIRE

    Kebriaei, Partow; Singh, Harjeet; Huls, M. Helen; Figliola, Matthew J.; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J.; Kumaresan, Pappanaicken R.; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir

    2016-01-01

    BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR.

  18. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...

  19. Aberrant plasma IL-7 and soluble IL-7 receptor levels indicate impaired T-cell response to IL-7 in human tuberculosis.

    Directory of Open Access Journals (Sweden)

    Christian Lundtoft

    2017-06-01

    Full Text Available T-cell proliferation and generation of protective memory during chronic infections depend on Interleukin-7 (IL-7 availability and receptivity. Regulation of IL-7 receptor (IL-7R expression and signalling are key for IL-7-modulated T-cell functions. Aberrant expression of soluble (s and membrane-associated (m IL-7R molecules is associated with development of autoimmunity and immune failure in acquired immune deficiency syndrome (AIDS patients. Here we investigated the role of IL-7/IL-7R on T-cell immunity in human tuberculosis. We performed two independent case-control studies comparing tuberculosis patients and healthy contacts. This was combined with follow-up examinations for a subgroup of tuberculosis patients under therapy and recovery. Blood plasma and T cells were characterised for IL-7/sIL-7R and mIL-7R expression, respectively. IL-7-dependent T-cell functions were determined by analysing STAT5 phosphorylation, antigen-specific cytokine release and by analysing markers of T-cell exhaustion and inflammation. Tuberculosis patients had lower soluble IL-7R (p < 0.001 and higher IL-7 (p < 0.001 plasma concentrations as compared to healthy contacts. Both markers were largely independent and aberrant expression normalised during therapy and recovery. Furthermore, tuberculosis patients had lower levels of mIL-7R in T cells caused by post-transcriptional mechanisms. Functional in vitro tests indicated diminished IL-7-induced STAT5 phosphorylation and impaired IL-7-promoted cytokine release of Mycobacterium tuberculosis-specific CD4+ T cells from tuberculosis patients. Finally, we determined T-cell exhaustion markers PD-1 and SOCS3 and detected increased SOCS3 expression during therapy. Only moderate correlation of PD-1 and SOCS3 with IL-7 expression was observed. We conclude that diminished soluble IL-7R and increased IL-7 plasma concentrations, as well as decreased membrane-associated IL-7R expression in T cells, reflect impaired T-cell

  20. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  1. HIV-specific Cytotoxic T Cells from Long-Term Survivors Select a Unique T Cell Receptor

    Science.gov (United States)

    Dong, Tao; Stewart-Jones, Guillaume; Chen, Nan; Easterbrook, Philippa; Xu, Xiaoning; Papagno, Laura; Appay, Victor; Weekes, Michael; Conlon, Chris; Spina, Celsa; Little, Susan; Screaton, Gavin; van der Merwe, Anton; Richman, Douglas D.; McMichael, Andrew J.; Jones, E. Yvonne; Rowland-Jones, Sarah L.

    2004-01-01

    HIV-specific cytotoxic T lymphocytes (CTL) are important in controlling HIV replication, but the magnitude of the CTL response does not predict clinical outcome. In four donors with delayed disease progression we identified Vβ13.2 T cell receptors (TCRs) with very similar and unusually long β-chain complementarity determining region 3 (CDR3) regions in CTL specific for the immunodominant human histocompatibility leukocyte antigens (HLA)-B8–restricted human immunodeficiency virus-1 (HIV-1) nef epitope, FLKEKGGL (FL8). CTL expressing Vβ13.2 TCRs tolerate naturally arising viral variants in the FL8 epitope that escape recognition by other CTL. In addition, they expand efficiently in vitro and are resistant to apoptosis, in contrast to FL8–specific CTL using other TCRs. Selection of Vβ13.2 TCRs by some patients early in the FL8-specific CTL response may be linked with better clinical outcome. PMID:15596521

  2. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.

    Science.gov (United States)

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-10-27

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives.

  3. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Directory of Open Access Journals (Sweden)

    Rohit Mittal

    Full Text Available While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.

  4. CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma.

    Directory of Open Access Journals (Sweden)

    Stefan Jellbauer

    Full Text Available The Salmonella type III secretion system (T3SS efficiently translocates heterologous proteins into the cytosol of eukaryotic cells. This leads to an antigen-specific CD8 T-cell induction in mice orally immunized with recombinant Salmonella. Recently, we have used Salmonella's T3SS as a prophylactic and therapeutic intervention against a murine fibrosarcoma. In this study, we constructed a recombinant Salmonella strain translocating the immunogenic H-2D(b-specific CD8 T-cell epitope VILTNPISM (KDR2 from the murine vascular endothelial growth factor receptor 2 (VEGFR2. VEGFR2 is a member of the tyrosine protein kinase family and is upregulated on proliferating endothelial cells of the tumor vasculature. After single orogastric vaccination, we detected significant numbers of KDR2-tetramer-positive CD8 T cells in the spleens of immunized mice. The efficacy of these cytotoxic T cells was evaluated in a prophylactic setting to protect mice from challenges with B16F10 melanoma cells in a flank tumor model, and to reduce dissemination of spontaneous pulmonary melanoma metastases. Vaccinated mice revealed a reduction of angiogenesis by 62% in the solid tumor and consequently a significant decrease of tumor growth as compared to non-immunized mice. Moreover, in the lung metastasis model, immunization with recombinant Salmonella resulted in a reduction of the metastatic melanoma burden by approximately 60%.

  5. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1996-01-01

    Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required...

  6. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  7. Investigation of T cell receptors in the peripheral blood of patients with active pulmonary tuberculosis.

    Science.gov (United States)

    Akbulut, H H; Deveci, F; Celik, I; Ilhan, F; Turgut, T

    2009-01-01

    T cells have the capability of recognizing target cells through their T cell receptors (TCRs). Thus, the percentages of CD3+/gamma-delta (gammadelta) TCR+ and CD3+/alpha-beta (alphabeta) TCR+ T lymphocytes were investigated in active and inactive pulmonary tuberculosis (PT) patients and in healthy individuals. CD3+ and CD3+/alphabeta TCR+ cell percentages were significantly lower in all PT patients than in healthy subjects. Percentages of CD3+/gammadelta and CD3+/alphabeta TCR+ were not statistically different between active and inactive PT patients. It was concluded that alphabeta TCR+ T cells might have a protective role in tuberculosis infection.

  8. Distinct transcriptional programs in thymocytes responding to T cell receptor, Notch, and positive selection signals

    OpenAIRE

    Huang, Yina H.; Li, Dongling; Winoto, Astar; Robey, Ellen A.

    2004-01-01

    T cell antigen receptor (TCR) signaling is necessary but not sufficient to promote the positive selection of CD4+CD8+ thymocytes into CD4+ or CD8+ mature T cells. Notch signaling has also been implicated as a potential regulator of both CD4/CD8 T cell development and TCR signaling. However, the relationship between positive selection, TCR signaling, and Notch remains unclear. Here we use DNA microarray analysis to compare gene expression changes in CD4+CD8+ double-positive thymocytes undergoi...

  9. In vitro membrane reconstitution of the T cell receptor proximal signaling network

    OpenAIRE

    Hui, Enfu; Vale, Ronald D.

    2014-01-01

    T-cell receptor (TCR) phosphorylation is controlled by a complex network that includes Lck, a Src family kinase (SFK), the tyrosine phosphatase CD45, and the Lck-inhibitory kinase Csk. How these competing phosphorylation and dephosphorylation reactions are modulated to produce T-cell triggering is not fully understood. Here we reconstituted this signaling network using purified enzymes on liposomes, recapitulating the membrane environment in which they normally interact. We demonstrate that L...

  10. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  11. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Erhao Zhang

    2017-01-01

    Full Text Available Abstract Adoptive cell therapy using chimeric antigen receptor (CAR-engineered T cells has emerged as a very promising approach to combating cancer. Despite its ability to eliminate tumors shown in some clinical trials, CAR-T cell therapy involves some significant safety challenges, such as cytokine release syndrome (CRS and “on-target, off-tumor” toxicity, which is related to poor control of the dose, location, and timing of T cell activity. In the past few years, some strategies to avoid the side effects of CAR-T cell therapy have been reported, including suicide gene, inhibitory CAR, dual-antigen receptor, and the use of exogenous molecules as switches to control the CAR-T cell functions. Because of the advances of the CAR paradigm and other forms of cancer immunotherapy, the most effective means of defeating the cancer has become the integration therapy with the combinatorial control system of switchable dual-receptor CAR-T cell and immune checkpoint blockade.

  12. Chimeric antigen receptor T cells: a novel therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-03-01

    Full Text Available Abstract The chimeric antigen receptor T (CAR-T cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2, and mesothelin (MSLN, as well as the challenges for CAR-T cell therapy.

  13. Combining regulatory T cell depletion and inhibitory receptor blockade improves reactivation of exhausted virus-specific CD8+ T cells and efficiently reduces chronic retroviral loads.

    Directory of Open Access Journals (Sweden)

    Kirsten K Dietze

    Full Text Available Chronic infections with human viruses, such as HIV and HCV, or mouse viruses, such as LCMV or Friend Virus (FV, result in functional exhaustion of CD8(+ T cells. Two main mechanisms have been described that mediate this exhaustion: expression of inhibitory receptors on CD8(+ T cells and expansion of regulatory T cells (Tregs that suppress CD8(+ T cell activity. Several studies show that blockage of one of these pathways results in reactivation of CD8(+ T cells and partial reduction in chronic viral loads. Using blocking antibodies against PD-1 ligand and Tim-3 and transgenic mice in which Tregs can be selectively ablated, we compared these two treatment strategies and combined them for the first time in a model of chronic retrovirus infection. Blocking inhibitory receptors was more efficient than transient depletion of Tregs in reactivating exhausted CD8(+ T cells and reducing viral set points. However, a combination therapy was superior to any single treatment and further augmented CD8(+ T cell responses and resulted in a sustained reduction in chronic viral loads. These results demonstrate that Tregs and inhibitory receptors are non-overlapping factors in the maintenance of chronic viral infections and that immunotherapies targeting both pathways may be a promising strategy to treat chronic infectious diseases.

  14. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  15. Identification of CD3 Associated T Cell Receptor as a Diagnostic Tool in T Cell Acute Lymphoblastic Lymphoma or Leukemia.

    Science.gov (United States)

    Boumsell, L; Gouttefangeas, C; Dastot, H; Schmid, M; Gelin, C; Bensussan, A

    1991-01-01

    By using several monoclonal antibodies (mAb) reacting either with the constant or variable regions of the T cell receptors (TcR) αβ and γδ or various CD molecules, differences between two clinically related entities e.g. T cell acute lymphoblastic leukemia (T-ALL) and lymphoblastic lymphoma (T-LL) have been demonstrated. We studied a panel of fifteen T-ALL and fifteen T-LL because of their cell surface expression of the CD3-TcR molecules. The results indicated that TcR γδ is more frequently expressed in T-ALL (10 out of the 15 patients tested) than TcR αβ. This is in contrast to the results obtained with T-LL where the vast majority showed TcR αβ (13 out of the 15 patients). We discuss the significance of these findings which may imply that the leukemic cells are of a different origin in these two diseases. In addition analysis of TcR variable regions expressed by the leukemic blasts showed that in most cases they had rearranged functional Vδ1 gene to Jδ1 or Jδ2 segments (8 out of 11 patients) whereas in a unique case Vδ2 gene segment was evident. Taken together these results and those showing that T-ALL cells coexpress the CD1a, b and c molecules strengthen the possibility that despite the fact that these leukemic cells express the CD3-TcR complex at their surface their normal counterparts are not found in peripheral blood.

  16. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling....... In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling...

  17. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor.

    Science.gov (United States)

    Nakazawa, Yozo; Huye, Leslie E; Salsman, Vita S; Leen, Ann M; Ahmed, Nabil; Rollins, Lisa; Dotti, Gianpietro; Gottschalk, Stephen M; Wilson, Matthew H; Rooney, Cliona M

    2011-12-01

    Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy.

  18. Human Tregs Made Antigen Specific by Gene Modification: The Power to Treat Autoimmunity and Antidrug Antibodies with Precision

    Directory of Open Access Journals (Sweden)

    Patrick R. Adair

    2017-09-01

    Full Text Available Human regulatory CD4+ T cells (Tregs are potent immunosuppressive lymphocytes responsible for immune tolerance and homeostasis. Since the seminal reports identifying Tregs, vast research has been channeled into understanding their genesis, signature molecular markers, mechanisms of suppression, and role in disease. This research has opened the doors for Tregs as a potential therapeutic for diseases and disorders such as multiple sclerosis, type I diabetes, transplantation, and immune responses to protein therapeutics, like factor VIII. Seminal clinical trials have used polyclonal Tregs, but the frequency of antigen-specific Tregs among polyclonal populations is low, and polyclonal Tregs may risk non-specific immunosuppression. Antigen-specific Treg therapy, which uses genetically modified Tregs expressing receptors specific for target antigens, greatly mitigates this risk. Building on the principles of T-cell receptor cloning, chimeric antigen receptors (CARs, and a novel CAR derivative, called B-cell antibody receptors, our lab has developed different types of antigen-specific Tregs. This review discusses the current research and optimization of gene-modified antigen-specific human Tregs in our lab in several disease models. The preparations and considerations for clinical use of such Tregs also are discussed.

  19. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1996-01-01

    Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required f...... are important. 2) Recognition of phosphorylated CD3 gamma by molecules involved in receptor internalization. In this process Ser(P)-126, Asp-127, Leu-131, and Leu-132 are important....

  20. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling....... In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling...

  1. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    Science.gov (United States)

    Wang, Dashan

    2018-02-12

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  2. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  3. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells.

    Science.gov (United States)

    Levine, B L

    2015-03-01

    Performance enhancement of the immune system can now be generated through ex vivo gene modification of T cells in order to redirect native specificity to target tumor antigens. This approach combines the specificity of antibody therapy, the expanded response of cellular therapy and the memory activity of vaccine therapy. Recent clinical trials of chimeric antigen receptor (CAR) T cells directed toward CD19 as a stand-alone therapy have shown sustained complete responses in patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia. As these drug products are individually derived from a patient's own cells, a different manufacturing approach is required for this kind of personalized therapy compared with conventional drugs. Key steps in the CAR T-cell manufacturing process include the selection and activation of isolated T cells, transduction of T cells to express CARs, ex vivo expansion of modified T cells and cryopreservation in infusible media. In this review, the steps involved in isolating, genetically modifying and scaling-out the CAR T cells for use in a clinical setting are described in the context of in-process and release testing and regulatory standards.

  4. Peroxisome proliferator-activated receptor γ deficiency in T cells accelerates chronic rejection by influencing the differentiation of CD4+ T cells and alternatively activated macrophages.

    Directory of Open Access Journals (Sweden)

    Xiaofan Huang

    Full Text Available In a previous study, activation of the peroxisome proliferator-activated receptor γ (PPARγ inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ-induced protective effect was unclear.A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12 mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regulatory T cells (Treg were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM.T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival.PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects.

  5. Cycling Memory CD4+ T Cells in HIV Disease Have a Diverse T Cell Receptor Repertoire and a Phenotype Consistent with Bystander Activation

    Science.gov (United States)

    Jiang, Wei; Younes, Souheil-Antoine; Funderburg, Nicholas T.; Mudd, Joseph C.; Espinosa, Enrique; Davenport, Miles P.; Babineau, Denise C.; Sieg, Scott F.

    2014-01-01

    ABSTRACT The mechanisms of increased memory CD4+ T cell cycling in HIV disease are incompletely understood but have been linked to antigen stimulation, homeostatic signals, or exposure to microbial products and the inflammatory cytokines that they induce. We examined the phenotype and Vβ family distribution in cycling memory CD4+ T cells among 52 healthy and 59 HIV-positive (HIV+) donors. Cycling memory CD4+ T cells were proportionally more frequent in subjects with HIV infection than in controls, more often expressed CD38 and PD-1, and less frequently expressed OX40 and intracellular CD40L. OX40 expression on memory CD4+ T cells was induced in vitro by anti-CD3, interleukin-2 (IL-2), IL-7, or IL-15 but not by Toll-like receptor ligands. In HIV+ donors, memory CD4+ T cell cycling was directly related to plasma lipopolysaccharide (LPS) levels, to plasma HIV RNA levels, and to memory CD8+ T cell cycling and was inversely related to peripheral blood CD4+ T cell counts but not to the levels of IL-2, IL-7, or IL-15, while in HIV-negative donors, memory CD4+ T cell cycling was related to IL-7 levels and negatively related to the plasma levels of LPS. In both controls and HIV+ donors, cycling memory CD4+ T cells had a broad distribution of Vβ families comparable to that of noncycling cells. Increased memory CD4+ T cell cycling in HIV disease is reflective of generalized immune activation and not driven primarily by cognate peptide stimulation or exposure to common gamma-chain cytokines. This cycling may be a consequence of exposure to microbial products, to plasma viremia, or, otherwise, to proinflammatory cytokines. IMPORTANCE This work provides evidence that the increased memory CD4+ T cell cycling in HIV infection is not a result of cognate peptide recognition but, rather, is more likely related to the inflammatory environment of HIV infection. PMID:24522925

  6. Toll-like receptor 2 agonist Pam3CSK4 enhances the induction of antigen-specific tolerance via the sublingual route.

    Science.gov (United States)

    Lombardi, V; Van Overtvelt, L; Horiot, S; Moussu, H; Chabre, H; Louise, A; Balazuc, A-M; Mascarell, L; Moingeon, P

    2008-11-01

    Sublingual immunotherapy (SLIT) has been established in humans as a safe and efficacious treatment for type I respiratory allergies. In this study, we compared three Toll-like receptor (TLR) 2 ligands (Pam3CSK4, Porphyromonas gingivalis lipopolysaccharide and lipoteichoic acid) as potential adjuvants for sublingual allergy vaccines. These molecules were tested in co-cultures of adjuvant-pre-treated dendritic cells (DCs) with murine naïve CD4(+) T lymphocytes. Patterns of cytokine production, phenotype, proliferation and gene expression were analysed by ELISA, cytofluorometry and quantitative PCR, respectively. TLR2 ligands were subsequently tested in a model of SLIT in BALB/c mice sensitized with ovalbumin (OVA). Among the three TLR2 ligands tested, the synthetic lipopeptide Pam3CSK4 is the most potent inducer of IL-12p35 and IL-10 gene expression in murine bone marrow-derived DCs, as well as in purified oral myeloid DCs. Only Pam3CSK4-treated DCs induce IFN-gamma and IL-10 secretion by naïve CD4(+) T cells. Sublingual administration of Pam3CSK4 together with the antigen in BALB/c mice sensitized to OVA decreases airway hyperresponsiveness as well as OVA-specific T-helper type 2 (Th2) responses in cervical lymph nodes dramatically. Pam3CSK4 induces Th1/regulatory T cell responses, and as such, is a valid candidate adjuvant for sublingual allergy vaccines.

  7. FCγ Chimeric Receptor-Engineered T Cells: Methodology, Advantages, Limitations, and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Giuseppe Sconocchia

    2017-04-01

    Full Text Available For many years, disappointing results have been generated by many investigations, which have utilized a variety of immunologic strategies to enhance the ability of a patient’s immune system to recognize and eliminate malignant cells. However, in recent years, immunotherapy has been used successfully for the treatment of hematologic and solid malignancies. The impressive clinical responses observed in many types of cancer have convinced even the most skeptical clinical oncologists that a patient’s immune system can recognize and reject his tumor if appropriate strategies are implemented. The success immunotherapy is due to the development of at least three therapeutic strategies. They include tumor-associated antigen (TAA-specific monoclonal antibodies (mAbs, T cell checkpoint blockade, and TAA-specific chimeric antigen receptors (CARs T cell-based immunotherapy. However, the full realization of the therapeutic potential of these approaches requires the development of strategies to counteract and overcome some limitations. They include off-target toxicity and mechanisms of cancer immune evasion, which obstacle the successful clinical application of mAbs and CAR T cell-based immunotherapies. Thus, we and others have developed the Fc gamma chimeric receptors (Fcγ-CRs-based strategy. Like CARs, Fcγ-CRs are composed of an intracellular tail resulting from the fusion of a co-stimulatory molecule with the T cell receptor ζ chain. In contrast, the extracellular CAR single-chain variable fragment (scFv, which recognizes the targeted TAA, has been replaced with the extracellular portion of the FcγRIIIA (CD16. Fcγ-CR T cells have a few intriguing features. First, given in combination with mAbs, Fcγ-CR T cells mediate anticancer activity in vitro and in vivo by an antibody-mediated cellular cytotoxicity mechanism. Second, CD16-CR T cells can target multiple cancer types provided that TAA-specific mAbs with the appropriate specificity are available

  8. The vitamin d receptor and T cell function

    DEFF Research Database (Denmark)

    Kongsbak, Martin; Levring, Trine B; Geisler, Carsten

    2013-01-01

    The vitamin D receptor (VDR) is a nuclear, ligand-dependent transcription factor that in complex with hormonally active vitamin D, 1,25(OH)2D3, regulates the expression of more than 900 genes involved in a wide array of physiological functions. The impact of 1,25(OH)2D3-VDR signaling on immune...... function has been the focus of many recent studies as a link between 1,25(OH)2D3 and susceptibility to various infections and to development of a variety of inflammatory diseases has been suggested. It is also becoming increasingly clear that microbes slow down immune reactivity by dysregulating the VDR...

  9. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Mingxue Fan

    2017-08-01

    Full Text Available Abstract Currently, conventional therapies for acute myeloid leukemia (AML have high failure and relapse rates. Thus, developing new strategies is crucial for improving the treatment of AML. With the clinical success of anti-CD19 chimeric antigen receptor (CAR T cell therapies against B-lineage malignancies, many studies have attempted to translate the success of CAR T cell therapy to other malignancies, including AML. This review summarizes the current advances in CAR T cell therapy against AML, including preclinical studies and clinical trials, and discusses the potential AML-associated surface markers that could be used for further CAR technology. Finally, we describe strategies that might address the current issues of employing CAR T cell therapy in AML.

  10. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Nansen, Anneline; Moos, Torben

    2004-01-01

    T-cells play an important role in controlling viral infections inside the CNS. To study the role of the chemokine receptor CXCR3 in the migration and positioning of virus-specific effector T-cells within the brain, CXCR3-deficient mice were infected intracerebrally with lymphocytic choriomeningitis......-cell-mediated immunopathology. Quantitative analysis of the cellular infiltrate in CSF of infected mice revealed modest, if any, decrease in the number of mononuclear cells recruited to the meninges in the absence of CXCR3. However, immunohistological analysis disclosed a striking impairment of CD8+ T-cells from CXCR3......-deficient mice to migrate from the meninges into the outer layers of the brain parenchyma despite similar localization of virus-infected target cells. Reconstitution of CXCR3-deficient mice with wild-type CD8+ T-cells completely restored susceptibility to LCMV-induced meningitis. Thus, taken together, our...

  11. Crossreactive T Cells Spotlight the Germline Rules for [alpha beta] T Cell-Receptor Interactions with MHC Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shaodong; Huseby, Eric S.; Rubtsova, Kira; Scott-Browne, James; Crawford, Frances; Macdonald, Whitney A.; Marrack, Philippa; Kappler, John W. (HHMI); (NJMRC)

    2008-10-31

    To test whether highly crossreactive {alpha}{beta} T cell receptors (TCRs) produced during limited negative selection best illustrate evolutionarily conserved interactions between TCR and major histocompatibility complex (MHC) molecules, we solved the structures of three TCRs bound to the same MHC II peptide (IA{sup b}-3K). The TCRs had similar affinities for IA{sup b}-3K but varied from noncrossreactive to extremely crossreactive with other peptides and MHCs. Crossreactivity correlated with a shrinking, increasingly hydrophobic TCR-ligand interface, involving fewer TCR amino acids. A few CDR1 and CDR2 amino acids dominated the most crossreactive TCR interface with MHC, including V{beta}8 48Y and 54E and V{alpha}4 29Y, arranged to impose the familiar diagonal orientation of TCR on MHC. These interactions contribute to MHC binding by other TCRs using related V regions, but not usually so dominantly. These data show that crossreactive TCRs can spotlight the evolutionarily conserved features of TCR-MHC interactions and that these interactions impose the diagonal docking of TCRs on MHC.

  12. The hedgehog receptor patched1 in T cells is dispensable for adaptive immunity in mice.

    Directory of Open Access Journals (Sweden)

    Kai D Michel

    Full Text Available Hedgehog (Hh signaling modulates T cell development and function but its exact role remains a matter of debate. To further address this issue we made use of conditional knock-out mice in which the Hh receptor Patched1 (Ptch is inactivated in the T cell lineage. Thymocyte development was moderately compromised by the deletion of Ptch as characterized by reduced numbers of CD4 and CD8 single-positive cells. In contrast, peripheral T cells were not affected. Proliferation and IFNγ secretion by Ptch-deficient T cells were indistinguishable from controls irrespectively of whether we used strong or suboptimal conditions for stimulation. Analysis of CTL and Treg cell functions did not reveal any differences between both genotypes, and T cell apoptosis induced by glucocorticoids or γ-irradiation was also similar. Surprisingly, absence of Ptch did not lead to an activation of canonic Hh signaling in peripheral T cells as indicated by unaltered expression levels of Gli1 and Gli2. To test whether we could uncover any role of Ptch in T cells in vivo we subjected the mutant mice to three different disease models, namely allogeneic bone marrow transplantation mimicking graft-versus-host disease, allergic airway inflammation as a model of asthma and growth of adoptively transferred melanoma cells as a means to test tumor surveillance by the immune system. Nonetheless, we were neither able to demonstrate any difference in the disease courses nor in any pathogenic parameter in these three models of adaptive immunity. We therefore conclude that the Hh receptor Ptch is dispensable for T cell function in vitro as well as in vivo.

  13. T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire.

    Science.gov (United States)

    Beausang, John F; Wheeler, Amanda J; Chan, Natalie H; Hanft, Violet R; Dirbas, Frederick M; Jeffrey, Stefanie S; Quake, Stephen R

    2017-11-28

    Tumor-infiltrating T cells play an important role in many cancers, and can improve prognosis and yield therapeutic targets. We characterized T cells infiltrating both breast cancer tumors and the surrounding normal breast tissue to identify T cells specific to each, as well as their abundance in peripheral blood. Using immune profiling of the T cell beta-chain repertoire in 16 patients with early-stage breast cancer, we show that the clonal structure of the tumor is significantly different from adjacent breast tissue, with the tumor containing ∼2.5-fold greater density of T cells and higher clonality compared with normal breast. The clonal structure of T cells in blood and normal breast is more similar than between blood and tumor, and could be used to distinguish tumor from normal breast tissue in 14 of 16 patients. Many T cell sequences overlap between tissue and blood from the same patient, including ∼50% of T cells between tumor and normal breast. Both tumor and normal breast contain high-abundance "enriched" sequences that are absent or of low abundance in the other tissue. Many of these T cells are either not detected or detected with very low frequency in the blood, suggesting the existence of separate compartments of T cells in both tumor and normal breast. Enriched T cell sequences are typically unique to each patient, but a subset is shared between many different patients. We show that many of these are commonly generated sequences, and thus unlikely to play an important role in the tumor microenvironment. Copyright © 2017 the Author(s). Published by PNAS.

  14. T Cell Costimulatory Molecules in Anti-Viral Immunity: Potential Role in Immunotherapeutic Vaccines

    OpenAIRE

    Watts, Tania H; Bertram, Edward M; Bukczynski, Jacob; Wen, Tao

    2003-01-01

    T lymphocyte activation is required to eliminate or control intracellular viruses. The activation of T cells requires both an antigen specific signal, involving the recognition of a peptide/major histocompatibility protein complex by the T cell receptor, as well as additional costimulatory signals. In chronic viral diseases, T cell responses, although present, are unable to eliminate the infection. By providing antigens and costimulatory molecules together, investigators may be able to incr...

  15. Optogenetic control of chemokine receptor signal and T-cell migration

    Science.gov (United States)

    Xu, Yuexin; Hyun, Young-Min; Lim, Kihong; Lee, Hyunwook; Cummings, Ryan J.; Gerber, Scott A.; Bae, Seyeon; Cho, Thomas Yoonsang; Lord, Edith M.; Kim, Minsoo

    2014-01-01

    Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4–expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies. PMID:24733886

  16. Complement receptor type 1 (CR1/CD35) expressed on activated human CD4+ T cells contributes to generation of regulatory T cells.

    Science.gov (United States)

    Török, Katalin; Dezső, Balázs; Bencsik, András; Uzonyi, Barbara; Erdei, Anna

    2015-04-01

    The role of complement in the regulation of T cell immunity has been highlighted recently by several groups. We were prompted to reinvestigate the role of complement receptor type 1 (CR1, CD35) [corrected] in human T cells based on our earlier data showing that activated human T cells produce C3 (Torok et al. (2012) [48]) and also by results demonstrating that engagement of Membrane Cofactor Protein (MCP, CD46) induces a switch of anti-CD35-activated [corrected] helper T cells into regulatory T cells (Kemper et al. (2003) [17]). We demonstrate here that co-ligation of CD46 and CD35, [corrected] the two C3b-binding structures present on activated CD4+ human T cells significantly enhances CD25 expression, elevates granzyme B production and synergistically augments cell proliferation. The role of CR1 in the development of the Treg phenotype was further confirmed by demonstrating that its engagement enhances IL-10 production and reduces IFNγ release by the activated CD4+ T cells in the presence of excess IL-2. The functional in vivo relevance of our findings was highlighted by the immunohistochemical staining of tonsils, revealing the presence of CD4/CD35 [corrected] double positive lymphocytes mainly in the inter-follicular regions where direct contact between CD4+ T cells and B lymphocytes occurs. Regarding the in vivo relevance of the complement-dependent generation of regulatory T cells in secondary lymphoid organs we propose a scenario shown in the figure. The depicted process involves the sequential binding of locally produced C3 fragments to CD46 and CD35 [corrected] expressed on activated T cells, which - in the presence of excess IL-2 - leads to the development of Treg cells. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps☆

    OpenAIRE

    Beatty, Gregory L.; O’Hara, Mark

    2016-01-01

    Chimeric antigen receptor (CAR) T cell therapy has shown promise in CD19 expressing hematologic malignancies, but how to translate this success to solid malignancies remains elusive. Effective translation of CAR T cells to solid tumors will require an understanding of potential therapeutic barriers, including factors that regulate CAR T cells expansion, persistence, trafficking, and fate within tumors. Herein, we describe the current state of CAR T cells in solid tumors; define key barriers t...

  18. Novel primary thymic defect with T lymphocytes expressing gamma delta T cell receptor

    DEFF Research Database (Denmark)

    Geisler, C; Pallesen, G; Platz, P

    1989-01-01

    . Immunoprecipitation and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that most of the gamma delta T cell receptors existed as disulphide-linked heterodimers. Proliferative responses to mitogens were severely reduced, but specific antibody responses after vaccination could be detected...

  19. Lenalidomide enhances antitumor functions of chimeric antigen receptor modified T cells

    Czech Academy of Sciences Publication Activity Database

    Otáhal, Pavel; Průková, D.; Král, Vlastimil; Fábry, Milan; Vockova, P.; Lateckova, L.; Trněný, M.; Klener, P.

    2016-01-01

    Roč. 5, č. 4 (2016), č. článku e1115940. ISSN 2162-402X R&D Projects: GA MZd(CZ) NT13201 Institutional support: RVO:68378050 Keywords : Chimeric anti genic receptor * lenalidomide * lymphoma * tumor immunotherapy * T cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.719, year: 2016

  20. T-cell receptor gamma delta bearing cells in normal human skin

    NARCIS (Netherlands)

    Bos, J. D.; Teunissen, M. B.; Cairo, I.; Krieg, S. R.; Kapsenberg, M. L.; Das, P. K.; Borst, J.

    1990-01-01

    T-cell antigen receptors (TCR) are divided into common alpha beta and less common gamma delta types. In the murine skin, TCR gamma delta+ cells have been reported to form the great majority of epidermal T lymphocytes. We have examined the relative contribution of TCR alpha beta+ and TCR gamma delta+

  1. Genomic organization of the human T-cell antigen-receptor alpha/delta locus

    NARCIS (Netherlands)

    Satyanarayana, K.; Hata, S.; Devlin, P.; Roncarolo, M. G.; de Vries, J. E.; Spits, H.; Strominger, J. L.; Krangel, M. S.

    1988-01-01

    Two clusters of overlapping cosmid clones comprising about 100 kilobases (kb) at the human T-cell antigen-receptor alpha/delta locus were isolated from a genomic library. The structure of the germ-line V delta 1 variable gene segment was determined. V delta 1 is located 8.5 kb downstream of the V

  2. The Affinity of Elongated Membrane-Tethered Ligands Determines Potency of T Cell Receptor Triggering

    Directory of Open Access Journals (Sweden)

    Bing-Mae Chen

    2017-07-01

    Full Text Available T lymphocytes are important mediators of adoptive immunity but the mechanism of T cell receptor (TCR triggering remains uncertain. The interspatial distance between engaged T cells and antigen-presenting cells (APCs is believed to be important for topological rearrangement of membrane tyrosine phosphatases and initiation of TCR signaling. We investigated the relationship between ligand topology and affinity by generating a series of artificial APCs that express membrane-tethered anti-CD3 scFv with different affinities (OKT3, BC3, and 2C11 in addition to recombinant class I and II pMHC molecules. The dimensions of membrane-tethered anti-CD3 and pMHC molecules were progressively increased by insertion of different extracellular domains. In agreement with previous studies, elongation of pMHC molecules or low-affinity anti-CD3 scFv caused progressive loss of T cell activation. However, elongation of high-affinity ligands (BC3 and OKT3 scFv did not abolish TCR phosphorylation and T cell activation. Mutation of key amino acids in OKT3 to reduce binding affinity to CD3 resulted in restoration of topological dependence on T cell activation. Our results show that high-affinity TCR ligands can effectively induce TCR triggering even at large interspatial distances between T cells and APCs.

  3. T-cell receptor repertoires of tumor-infiltrating lymphocytes after hyperthermia using functionalized magnetite nanoparticles.

    Science.gov (United States)

    Ito, Akira; Yamaguchi, Masaki; Okamoto, Noriaki; Sanematsu, Yuji; Kawabe, Yoshinori; Wakamatsu, Kazumasa; Ito, Shosuke; Honda, Hiroyuki; Kobayashi, Takeshi; Nakayama, Eiichi; Tamura, Yasuaki; Okura, Masae; Yamashita, Toshiharu; Jimbow, Kowichi; Kamihira, Masamichi

    2013-06-01

    Accumulating evidence has indicated that hyperthermia using magnetite nanoparticles induces antitumor immunity. This study investigated the diversity of T-cell receptors (TCRs) in tumor-infiltrating lymphocytes after hyperthermia using magnetite nanoparticles. Functionalized magnetite nanoparticles, N-propionyl-4-S-cysteaminylphenol (NPrCAP)/magnetite, were synthesized by conjugating the melanogenesis substrate NPrCAP with magnetite nanoparticles. NPrCAP/magnetite nanoparticles were injected into B16 melanomas in C57BL/6 mice, which were subjected to an alternating magnetic field for hyperthermia treatment. Enlargement of the tumor-draining lymph nodes was observed after hyperthermia. The TCR repertoire was restricted in tumor-infiltrating lymphocytes, and expansion of Vβ11(+) T cells was preferentially found. DNA sequences of the third complementaritydetermining regions revealed the presence of clonally expanded T cells. These results indicate that the T-cell response in B16 melanomas after hyperthermia is dominated by T cells directed toward a limited number of epitopes and that epitope-specific T cells frequently use a restricted TCR repertoire.

  4. Expression and function of TNF and IL-1 receptors on human regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Frances Mercer

    2010-01-01

    Full Text Available Regulatory T cells (Tregs suppress immune activation and are critical in preventing autoimmune diseases. While the ability of Tregs to inhibit proliferation of other T cells is well established, it is not yet clear whether Tregs also modulate inflammatory cytokines during an immune response. Here, we show that the expression of inflammatory cytokine receptors IL-1R1 and TNFR2 were higher on resting mature Tregs compared to naïve or memory T cells. While upon activation through the T cell receptor (TCR, expression of IL-1R1 and TNFR2 were upregulated on all T cell subsets, IL-1R1 maintained significantly higher expression on activated Tregs as compared to other T cell subsets. The decoy receptor for IL-1 (IL-1R2 was not expressed by any of the resting T cells but was rapidly upregulated and preferentially expressed upon TCR-stimulation on Tregs. In addition, we found that Tregs also expressed high levels of mRNA for IL-1 antagonist, IL-1RA. TCR-stimulation of naïve T cells in the presence of TGFbeta, which induces FOXP3 expression, however did not result in upregulation of IL-1R1 or IL-1R2. In addition, ectopic expression of FOXP3 in non-Tregs, while causing significant upregulation of IL-1R1 and IL-1R2, did not achieve the levels seen in bona fide Tregs. We also determined that resting human Tregs expressing IL-1R1 did not have higher suppressive capacity compared to IL-1R1- Tregs, suggesting that IL-1R1 does not discriminate suppressive resting Tregs in healthy individuals. Functionally, activated human Tregs displayed a capacity to neutralize IL-1beta, which suggests a physiological significance for the expression of IL-1 decoy receptor on Tregs. In conclusion, our findings that human Tregs preferentially express receptors for TNF and IL-1 suggest a potential function in sensing and dampening local inflammation.

  5. Evaluation of bovine thymic function by measurement of signal joint T-cell receptor excision circles.

    Science.gov (United States)

    Hisazumi, Rinnosuke; Kayumi, Miya; Zhang, Weidong; Kikukawa, Ryuji; Nasu, Tetuo; Yasuda, Masahiro

    2016-01-01

    A signal joint T-cell receptor excision circle (sjTREC) is a circular DNA produced by T-cell receptor α gene rearrangement in the thymus. Measurements of sjTREC values have been used to evaluate thymic function. We recently established a quantitative PCR (QPCR) assay of bovine sjTREC. In the present study, we used this QPCR assay to measure the sjTREC value in bovine peripheral blood mononuclear cells and we then evaluated the relationships between sjTREC values and peripheral blood T-cell number, growth stage, gender, and meteorological season. The sjTREC value was highest at the neonatal stage, and its value subsequently decreased with age. On the other hand, the peripheral T-cell number increased with age. The sjTREC value in calves up to 50-days old was significantly higher for males than for females, suggesting that thymic function might differ by gender. In addition, the sjTREC value and the peripheral T-cell number were significantly higher in calves in the summer season than in calves in the winter season. These data suggest that bovine thymic function is highly variable and varies according to the growth stage, gender, and environmental factors such as air temperature or the UV index. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells.

    Science.gov (United States)

    Frigault, Matthew J; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J N; Platt, Jesse M; Johnson, F Brad; Paulos, Chrystal M; Zhao, Yangbing; Kalos, Michael; Milone, Michael C; June, Carl H

    2015-04-01

    This study compared second-generation chimeric antigen receptors (CAR) encoding signaling domains composed of CD28, ICOS, and 4-1BB (TNFRSF9). Here, we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T cells with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to 3 months following a single stimulation through the T-cell receptor (TCR). Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet (TBX21), EOMES, and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-κB, AKT, ERK, and NFAT. The propagated CAR T cells retained a diverse TCR repertoire, and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore, the design of CARs that have a nonconstitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or nonconstitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials. ©2015 American Association for Cancer Research.

  7. SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors.

    Science.gov (United States)

    De Calisto, Jaime; Wang, Ninghai; Wang, Guoxing; Yigit, Burcu; Engel, Pablo; Terhorst, Cox

    2014-01-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF) of receptors, whose expression is essential for T, NK, and B-cell responses. Additionally, the expression of SAP in double-positive thymocytes is mandatory for natural killer T (NKT) cells and, in mouse, for innate CD8(+) T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1 + 6](-/-) and Slamf[1 + 5 + 6](-/-) B6 mice have ~70% reduction of NKT cells compared to wild-type B6 mice. Unexpectedly, the proportion of innate CD8(+) T cells slightly increased in the Slamf[1 + 5 + 6](-/-) , but not in the Slamf[1 + 6](-/-) strain, suggesting that Slamf5 may function as a negative regulator of innate CD8(+) T cell development. Accordingly, Slamf5(-/-) B6 mice showed an exclusive expansion of innate CD8(+) T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7(-/-) strain showed an expansion of both splenic innate CD8(+) T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3(-/-) BALB/c mice, the proportions of thymic promyelocytic leukemia zinc finger (PLZF(hi)) NKT cells and innate CD8(+) T cells significantly increased in the SAP-independent Slamf8(-/-) BALB/c strain. In summary, these results show that NKT and innate CD8(+) T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8(+) T cells.

  8. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells.

    Science.gov (United States)

    Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I

    2017-11-01

    T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.

  9. TRIg: a robust alignment pipeline for non-regular T-cell receptor and immunoglobulin sequences.

    Science.gov (United States)

    Hung, Sheng-Jou; Chen, Yi-Lin; Chu, Chia-Hung; Lee, Chuan-Chun; Chen, Wan-Li; Lin, Ya-Lan; Lin, Ming-Ching; Ho, Chung-Liang; Liu, Tsunglin

    2016-10-26

    T cells and B cells are essential in the adaptive immunity via expressing T cell receptors and immunoglogulins respectively for recognizing antigens. To recognize a wide variety of antigens, a highly diverse repertoire of receptors is generated via complex recombination of the receptor genes. Reasonably, frequencies of the recombination events have been shown to predict immune diseases and provide insights into the development of immunity. The field is further boosted by high-throughput sequencing and several computational tools have been released to analyze the recombined sequences. However, all current tools assume regular recombination of the receptor genes, which is not always valid in data prepared using a RACE approach. Compared to the traditional multiplex PCR approach, RACE is free of primer bias, therefore can provide accurate estimation of recombination frequencies. To handle the non-regular recombination events, a new computational program is needed. We propose TRIg to handle non-regular T cell receptor and immunoglobulin sequences. Unlike all current programs, TRIg does alignments to the whole receptor gene instead of only to the coding regions. This brings new computational challenges, e.g., ambiguous alignments due to multiple hits to repetitive regions. To reduce ambiguity, TRIg applies a heuristic strategy and incorporates gene annotation to identify authentic alignments. On our own and public RACE datasets, TRIg correctly identified non-regularly recombined sequences, which could not be achieved by current programs. TRIg also works well for regularly recombined sequences. TRIg takes into account non-regular recombination of T cell receptor and immunoglobulin genes, therefore is suitable for analyzing RACE data. Such analysis will provide accurate estimation of recombination events, which will benefit various immune studies directly. In addition, TRIg is suitable for studying aberrant recombination in immune diseases. TRIg is freely available at

  10. T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone.

    Science.gov (United States)

    Flerin, Nina C; Chen, Huabiao; Glover, Tynisha D; Lamothe, Pedro A; Zheng, Jian Hua; Fang, Justin W; Ndhlovu, Zaza M; Newell, Evan W; Davis, Mark M; Walker, Bruce D; Goldstein, Harris

    2017-03-15

    Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8 + T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8 + T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8 + T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8 + T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8 + T-cell function, we cloned the TCR α and β chain genes from one effective and two ineffective CD8 + T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8 + T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8 + T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8 + T cells in elite controllers to inhibit HIV infection. IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8 + T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8 + T cells in controlling HIV-1 replication. The

  11. Unusual features of Self-Peptide/MHC Binding by Autoimmune T Cell Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson,M.; Hahn, M.; Wucherpfennig, K.

    2005-01-01

    Structural studies on T cell receptors (TCRs) specific for foreign antigens demonstrated a remarkably similar topology characterized by a central, diagonal TCR binding mode that maximizes interactions with the MHC bound peptide. However, three recent structures involving autoimmune TCRs demonstrated unusual interactions with self-peptide/MHC complexes. Two TCRs from multiple sclerosis patients bind with unconventional topologies, and both TCRs are shifted toward the peptide N terminus and the MHC class II {beta} chain helix. A TCR from the experimental autoimmune encephalomyelitis (EAE) model binds in a conventional orientation, but the structure is unusual because the self-peptide only partially fills the binding site. For all three TCRs, interaction with the MHC bound self-peptide is suboptimal, and only two or three TCR loops contact the peptide. Optimal TCR binding modes confer a competitive advantage for antimicrobial T cells during an infection, whereas altered binding properties may permit survival of a subset of autoreactive T cells during thymic selection.

  12. Investigation of T cell receptors in the peripheral blood of patients with active pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Akbulut H

    2009-01-01

    Full Text Available T cells have the capability of recognizing target cells through their T cell receptors (TCRs. Thus, the percentages of CD3 +/ gamma-delta (γδ TCR+ and CD3 +/ alpha-beta (αβ TCR+ T lymphocytes were investigated in active and inactive pulmonary tuberculosis (PT patients and in healthy individuals. CD3 + and CD3 +/αβ TCR+ cell percentages were significantly lower in all PT patients than in healthy subjects. Percentages of CD3 +/γδ and CD3+/αβ TCR+ were not statistically different between active and inactive PT patients. It was concluded that αβ TCR+ T cells might have a protective role in tuberculosis infection.

  13. Automated Manufacturing of Potent CD20-Directed Chimeric Antigen Receptor T Cells for Clinical Use.

    Science.gov (United States)

    Lock, Dominik; Mockel-Tenbrinck, Nadine; Drechsel, Katharina; Barth, Carola; Mauer, Daniela; Schaser, Thomas; Kolbe, Carolin; Al Rawashdeh, Wael; Brauner, Janina; Hardt, Olaf; Pflug, Natali; Holtick, Udo; Borchmann, Peter; Assenmacher, Mario; Kaiser, Andrew

    2017-10-01

    The clinical success of gene-engineered T cells expressing a chimeric antigen receptor (CAR), as manifested in several clinical trials for the treatment of B cell malignancies, warrants the development of a simple and robust manufacturing procedure capable of reducing to a minimum the challenges associated with its complexity. Conventional protocols comprise many open handling steps, are labor intensive, and are difficult to upscale for large numbers of patients. Furthermore, extensive training of personnel is required to avoid operator variations. An automated current Good Manufacturing Practice-compliant process has therefore been developed for the generation of gene-engineered T cells. Upon installation of the closed, single-use tubing set on the CliniMACS Prodigy™, sterile welding of the starting cell product, and sterile connection of the required reagents, T cells are magnetically enriched, stimulated, transduced using lentiviral vectors, expanded, and formulated. Starting from healthy donor (HD) or lymphoma or melanoma patient material (PM), the robustness and reproducibility of the manufacturing of anti-CD20 specific CAR T cells were verified. Independent of the starting material, operator, or device, the process consistently yielded a therapeutic dose of highly viable CAR T cells. Interestingly, the formulated product obtained with PM was comparable to that of HD with respect to cell composition, phenotype, and function, even though the starting material differed significantly. Potent antitumor reactivity of the produced anti-CD20 CAR T cells was shown in vitro as well as in vivo. In summary, the automated T cell transduction process meets the requirements for clinical manufacturing that the authors intend to use in two separate clinical trials for the treatment of melanoma and B cell lymphoma.

  14. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy.

    Science.gov (United States)

    Mock, Ulrike; Nickolay, Lauren; Philip, Brian; Cheung, Gordon Weng-Kit; Zhan, Hong; Johnston, Ian C D; Kaiser, Andrew D; Peggs, Karl; Pule, Martin; Thrasher, Adrian J; Qasim, Waseem

    2016-08-01

    Novel cell therapies derived from human T lymphocytes are exhibiting enormous potential in early-phase clinical trials in patients with hematologic malignancies. Ex vivo modification of T cells is currently limited to a small number of centers with the required infrastructure and expertise. The process requires isolation, activation, transduction, expansion and cryopreservation steps. To simplify procedures and widen applicability for clinical therapies, automation of these procedures is being developed. The CliniMACS Prodigy (Miltenyi Biotec) has recently been adapted for lentiviral transduction of T cells and here we analyse the feasibility of a clinically compliant T-cell engineering process for the manufacture of T cells encoding chimeric antigen receptors (CAR) for CD19 (CAR19), a widely targeted antigen in B-cell malignancies. Using a closed, single-use tubing set we processed mononuclear cells from fresh or frozen leukapheresis harvests collected from healthy volunteer donors. Cells were phenotyped and subjected to automated processing and activation using TransAct, a polymeric nanomatrix activation reagent incorporating CD3/CD28-specific antibodies. Cells were then transduced and expanded in the CentriCult-Unit of the tubing set, under stabilized culture conditions with automated feeding and media exchange. The process was continuously monitored to determine kinetics of expansion, transduction efficiency and phenotype of the engineered cells in comparison with small-scale transductions run in parallel. We found that transduction efficiencies, phenotype and function of CAR19 T cells were comparable with existing procedures and overall T-cell yields sufficient for anticipated therapeutic dosing. The automation of closed-system T-cell engineering should improve dissemination of emerging immunotherapies and greatly widen applicability. Copyright © 2016. Published by Elsevier Inc.

  15. Somatic Variation of T-Cell Receptor Genes Strongly Associate with HLA Class Restriction.

    Directory of Open Access Journals (Sweden)

    Paul L Klarenbeek

    Full Text Available Every person carries a vast repertoire of CD4+ T-helper cells and CD8+ cytotoxic T cells for a healthy immune system. Somatic VDJ recombination at genomic loci that encode the T-cell receptor (TCR is a key step during T-cell development, but how a single T cell commits to become either CD4+ or CD8+ is poorly understood. To evaluate the influence of TCR sequence variation on CD4+/CD8+ lineage commitment, we sequenced rearranged TCRs for both α and β chains in naïve T cells isolated from healthy donors and investigated gene segment usage and recombination patterns in CD4+ and CD8+ T-cell subsets. Our data demonstrate that most V and J gene segments are strongly biased in the naïve CD4+ and CD8+ subsets with some segments increasing the odds of being CD4+ (or CD8+ up to five-fold. These V and J gene associations are highly reproducible across individuals and independent of classical HLA genotype, explaining ~11% of the observed variance in the CD4+ vs. CD8+ propensity. In addition, we identified a strong independent association of the electrostatic charge of the complementarity determining region 3 (CDR3 in both α and β chains, where a positively charged CDR3 is associated with CD4+ lineage and a negatively charged CDR3 with CD8+ lineage. Our findings suggest that somatic variation in different parts of the TCR influences T-cell lineage commitment in a predominantly additive fashion. This notion can help delineate how certain structural features of the TCR-peptide-HLA complex influence thymic selection.

  16. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4(+)CD25(+)Foxp3(+) regulatory T cells

    NARCIS (Netherlands)

    Schulz, V.J.; Smit, J.J.; Bol-Schoenmakers, M.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H.

    2012-01-01

    Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic

  17. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells.

    Science.gov (United States)

    Emami-Shahri, Nia; Foster, Julie; Kashani, Roxana; Gazinska, Patrycja; Cook, Celia; Sosabowski, Jane; Maher, John; Papa, Sophie

    2018-03-14

    The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19 + B-cell malignancy has established a new therapeutic pillar of hematology-oncology. Nonetheless, formidable challenges remain for the attainment of comparable success in patients with solid tumors. To accelerate progress and rapidly characterize emerging toxicities, systems that permit the repeated and non-invasive assessment of CAR T-cell bio-distribution would be invaluable. An ideal solution would entail the use of a non-immunogenic reporter that mediates specific uptake of an inexpensive, non-toxic and clinically established imaging tracer by CAR T cells. Here we show the utility of the human sodium iodide symporter (hNIS) for the temporal and spatial monitoring of CAR T-cell behavior in a cancer-bearing host. This system provides a clinically compliant toolkit for high-resolution serial imaging of CAR T cells in vivo, addressing a fundamental unmet need for future clinical development in the field.

  18. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.

    Science.gov (United States)

    Ren, Jiangtao; Zhao, Yangbing

    2017-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR) T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.

  19. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Jiangtao Ren

    2017-04-01

    Full Text Available ABSTRACT The clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated 9 (CRISPR/Cas9 system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.

  20. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-04-03

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  1. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor

    Directory of Open Access Journals (Sweden)

    Vasyl Eisenberg

    2017-09-01

    Full Text Available Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs. In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

  2. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells

    Directory of Open Access Journals (Sweden)

    Mariagrazia Valentini

    2014-01-01

    Full Text Available A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs, pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota.

  4. Class I major histocompatibility complex anchor substitutions alter the conformation of T cell receptor contacts.

    Science.gov (United States)

    Sharma, A K; Kuhns, J J; Yan, S; Friedline, R H; Long, B; Tisch, R; Collins, E J

    2001-06-15

    An immunogenic peptide (GP2) derived from HER-2/neu binds to HLA-A2.1 very poorly. Some altered-peptide ligands (APL) of GP2 have increased binding affinity and generate improved cytotoxic T lymphocyte recognition of GP2-presenting tumor cells, but most do not. Increases in binding affinity of single-substitution APL are not additive in double-substitution APL. A common first assumption about peptide binding to class I major histocompatibility complex is that each residue binds independently. In addition, immunologists interested in immunotherapy frequently assume that anchor substitutions do not affect T cell receptor contact residues. However, the crystal structures of two GP2 APL show that the central residues change position depending on the identity of the anchor residue(s). Thus, it is clear that subtle changes in the identity of anchor residues may have significant effects on the positions of the T cell receptor contact residues.

  5. Structural analysis of the mouse T-cell receptor Tcra V2 subfamily

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K.; Kuo, C.L.; Cheng, K.C.; Lee, M.K.; Paeper, B.; Koop, B.F.; Yoo, T.J.; Hood, L. [California Institute of Technology, Pasadena, CA (United States)

    1994-12-31

    Cosmid clones containing T-cell receptor Tcra V2 subfamily gene segments have been isolated from a BALB/c cosmid library and subjected to DNA sequence analysis. The V gene segments in the Tcra V2 subfamily differ from each other by 3%-7% at the nucleotide level and 5%-16% at the amino acid level. T-cell receptor Tcra V2 gene segment polymorphisms have been identified in the B10.PL and PL/J mouse strains with a Tcra V2 subfamily-specific probe. These V gene segment polymorphisms may cause the differential Tcra V gene usage in induced experimental allergic encephalomyelitis between B10.PL and PL/J mice. 28 refs., 4 figs., 1 tab.

  6. Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells

    Science.gov (United States)

    Valentini, Mariagrazia; Piermattei, Alessia; Di Sante, Gabriele; Delogu, Giovanni; Ria, Francesco

    2014-01-01

    A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs), pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota. PMID:25147831

  7. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells

    Science.gov (United States)

    Frigault, Matthew J; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U.; Guedan, Sonia; McGettigan, Shannon E.; Posey, Avery D.; Ang, Sonny; Cooper, Laurence J. N.; Platt, Jesse M.; Johnson, F. Brad; Paulos, Chrystal M; Zhao, Yangbing; Kalos, Michael; Milone, Michael C.; June, Carl H.

    2015-01-01

    This study compared second generation chimeric antigen receptors encoding signaling domains composed of CD28, ICOS and 4-1BB. Here we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T-cell with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to three months following a single stimulation through the TCR. Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet, EOMES and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-kB, Akt, Erk and NFAT. The propagated CAR T cells retained a diverse TCR repertoire and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore the design of CARs that have a non-constitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or non-constitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials. PMID:25600436

  8. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Ciprian Tomuleasa

    2018-02-01

    Full Text Available Chimeric antigen receptor (CAR T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.

  9. Flow-cytometric measurement of CD4-8- T cells bearing T-cell receptor αβ chains, 1

    International Nuclear Information System (INIS)

    Kusunoki, Yoichiro; Hirai, Yuko; Kyoizumi, Seishi; Akiyama, Mitoshi.

    1992-09-01

    In this study we detected rare, possibly abnormal, T cells bearing CD3 surface antigen and T-cell receptor (TCR) αβ chains but lacking both CD4 and CD8 antigens (viz., TCRαβ + CD4 - 8 - cells, as determined by flow cytometry). The TCRαβ + CD4 - 8 - T cells were detected at a mean frequency of 0.63 ± 0.35 % (mean ± standard deviation) in peripheral blood TCRαβ + cells of 119 normal persons. Two unusual cases besides the 119 normal persons showed extremely elevated frequencies of TCRαβ + CD4 - 8 - T cells, viz., approximately 5 % to 10 % and 14 % to 19 % in whole TCRαβ + cells. Both individuals were males who were otherwise physiologically quite normal with no history of severe illness, and these high frequencies were also observed in blood samples collected 2 or 8 years prior to the current measurements. The TCRαβ + CD4 - 8 - T cells of the two individuals were found to express mature T-cell markers such as CD2,3, and 5 antigens, as well as natural killer (NK) cell markers, viz., CD11b, 16, 56, and 57 antigens, when peripheral blood lymphocytes were subjected to three-color flow cytometry. Lectin-dependent or redirected antibody-dependent cell-mediated cytotoxicities were observed for both freshly sorted TCRαβ + CD4 - 8 - cells and in vitro established clones. Nevertheless, NK-like activity was not detected. Further, Southern blot analysis of TCRβ and γ genes revealed identical rearrangement patterns for all the TCRαβ + CD4 - 8 - clones established in vitro. These results suggest that the TCRαβ + CD4 - 8 - T cells from these two mean exhibit unique characteristics and proliferate clonally in vivo. (author)

  10. Developing antigen-specific therapies in multiple sclerosis: a tale of Tantalus or Ulysses?

    Science.gov (United States)

    van Noort JM

    1999-10-01

    Autoreactive T-cell responses directed to myelin proteins in the central nervous system are widely believed to be crucial in the pathology of multiple sclerosis (MS). However, effective ways of selectively targeting these T-cells in order to alter the clinical course of MS in a predictable manner has yet to be demonstrated. This review discusses two recent developments of crucial importance to the rational development of antigen-specific therapy in MS. The very idea of antigen-specific therapy in MS has long faced the challenge of determinant spreading, i.e., the development of novel autoimmune responses as the consequence of tissue damage. This phenomenon has led many to expect that in ongoing MS, many different pathogenic specificities would accumulate. Obviously, this would render antigen-specific therapy very difficult. Recent data now suggest that determinant spreading is most likely to be a transient phenomenon limited only to the first stages of tissue damage. A second development has changed our perspective on the specificity of individual T-cells and, thus, on the suitability of various ways to implement antigen-specific therapy. Evidence is rapidly accumulating that T-cell receptors are much more cross-reactive than previously assumed. This notion poses unexpected challenges to therapeutic approaches in MS that are based on selective targeting of autoreactive TCR. Vaccination with TCR peptides, administration of anti-TCR antibodies and development of therapeutically altered peptide ligands all depend on a significant level of predictability of pathogenic TCR. With such predictability now turning out to be much lower than was previously hoped, selective TCR-directed strategies for intervention may therefore turn out to be much less effective than anticipated. In the development of antigen-specific therapies, the use of whole protein tolerogens now seems to be the most promising route. Oral, intranasal or iv. administration of antigen remain viable options

  11. Fine T cell receptor repertoire analysis of spinal cord T cells responding to the major and minor epitopes of myelin basic protein during rat autoimmune encephalomyelitis.

    Science.gov (United States)

    Matsumoto, Y; Jee, Y; Sugisaki, M; Kim, G; Tanuma, N

    2000-01-01

    Experimental autoimmune encephalomyelitis is a disease induced by neuroantigen-reactive T cells bearing particular types of T cell receptor (TCR). Although the nature of TCRs of encephalitogenic T cells has been partially delineated using encephalitogenic T cell clones established in vitro, the entire TCR repertoire formed in situ after immunization with neuroantigen remains unclear. In the present study, we immunized Lewis rats with myelin basic protein (MBP) and its fragment peptides and determined the TCR repertoire of spinal cord T cells formed after the immunization by CDR3 spectra-typing. It was revealed that the oligoclonal expansion of Vbeta2, Vbeta8.2, and Vbeta17 spectratypes was detectable after immunization with guinea pig MBP and its immunodominant epitope, the 68-88 sequence, whereas immunization with a peptide containing a minor epitope induced Vbeta10 expansion. Immunization with rat MBP induced much broader TCR Vbeta expansion (all of the above Vbetas plus Vbeta3). These findings suggest that TCRs activated by immunization with guinea pig MBP used as heteroclitic immunogen recognize autoantigen, rat MBP. Furthermore, the strategy used in this study gives insight into the pathogenesis of autoimmune disease and provides useful information for designing TCR-based immunotherapy.

  12. T cell avidity and tumor recognition: implications and therapeutic strategies

    Directory of Open Access Journals (Sweden)

    Roszkowski Jeffrey J

    2005-09-01

    Full Text Available Abstract In the last two decades, great advances have been made studying the immune response to human tumors. The identification of protein antigens from cancer cells and better techniques for eliciting antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor recognition by T cells. Yet, much remains to be learned about the intricate details of T cell – tumor cell interactions. Though the strength of interaction between T cell and target is thought to be a key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or tumor cells reveal complex relationships. Coincident with these investigations, therapeutic strategies have been developed to enhance tumor recognition using antigens with altered peptide structures and T cells modified by the introduction of new antigen binding receptor molecules. The profound effects of these strategies on T cell – tumor interactions and the clinical implications of these effects are of interest to both scientists and clinicians. In recent years, the focus of much of our work has been the avidity and effector characteristics of tumor reactive T cells. Here we review concepts and current results in the field, and the implications of therapeutic strategies using altered antigens and altered effector T cells.

  13. Generation of chimeric T-cell receptor transgenes and their efficient transfer in primary mouse T lymphocytes.

    Science.gov (United States)

    Howland, Linda J; Haynes, Nicole M; Darcy, Phillip K

    2010-01-01

    Gene modification of T cells with chimeric T-cell receptor (TCR) transgenes offers a novel way to generate tumor-specific T cells for cancer immunotherapy. Retroviruses have been utilized as the most common means of efficiently transducing primary T lymphocytes with these transgenes. In this section we describe methods for generation of chimeric TCR's and utilization of retroviral vectors for efficient transduction of these transgenes in primary mouse T lymphocytes.

  14. Gamma delta T cell receptor analysis supports a role for HSP 70 selection of lymphocytes in multiple sclerosis lesions.

    OpenAIRE

    Battistini, L.; Salvetti, M.; Ristori, G.; Falcone, M.; Raine, C. S.; Brosnan, C. F.

    1995-01-01

    BACKGROUND: Interactions between gamma delta T cells and heat shock proteins (HSP) have been proposed as contributing factors in a number of diseases of possible autoimmune etiology but definitive evidence to support this hypothesis has been lacking. In multiple sclerosis (MS), a chronic inflammatory neurologic disease, HSP and gamma delta T cells are known to colocalize in brain lesions. Analysis of T cell receptor (TCR) gene usage in these lesions has detected evidence of clonality within b...

  15. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.

    Science.gov (United States)

    Borroto, Aldo; Reyes-Garau, Diana; Jiménez, M Angeles; Carrasco, Esther; Moreno, Beatriz; Martínez-Pasamar, Sara; Cortés, José R; Perona, Almudena; Abia, David; Blanco, Soledad; Fuentes, Manuel; Arellano, Irene; Lobo, Juan; Heidarieh, Haleh; Rueda, Javier; Esteve, Pilar; Cibrián, Danay; Martinez-Riaño, Ana; Mendoza, Pilar; Prieto, Cristina; Calleja, Enrique; Oeste, Clara L; Orfao, Alberto; Fresno, Manuel; Sánchez-Madrid, Francisco; Alcamí, Antonio; Bovolenta, Paola; Martín, Pilar; Villoslada, Pablo; Morreale, Antonio; Messeguer, Angel; Alarcon, Balbino

    2016-12-21

    Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC 50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases. Copyright © 2016, American Association for the Advancement of Science.

  16. High-Affinity Ligands Can Trigger T Cell Receptor Signaling Without CD45 Segregation

    Directory of Open Access Journals (Sweden)

    Mohammad Ameen Al-Aghbar

    2018-04-01

    Full Text Available How T cell receptors (TCRs are triggered to start signaling is still not fully understood. It has been proposed that segregation of the large membrane tyrosine phosphatase CD45 from engaged TCRs initiates signaling by favoring phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs in the cytoplasmic domains of CD3 molecules. However, whether CD45 segregation is important to initiate triggering is still uncertain. We examined CD45 segregation from TCRs engaged to anti-CD3 scFv with high or low affinity and with defined molecular lengths on glass-supported lipid bilayers using total internal reflection microscopy. Both short and elongated high-affinity anti-CD3 scFv effectively induced similar calcium mobilization, Zap70 phosphorylation, and cytokine secretion in Jurkat T cells but CD45 segregated from activated TCR microclusters significantly less for elongated versus short anti-CD3 ligands. In addition, at early times, triggering cells with both high and low affinity elongated anti-CD3 scFv resulted in similar degrees of CD3 co-localization with CD45, but only the high-affinity scFv induced T cell activation. The lack of correlation between CD45 segregation and early markers of T cell activation suggests that segregation of CD45 from engaged TCRs is not mandatory for initial triggering of TCR signaling by elongated high-affinity ligands.

  17. Design and development of therapies using chimeric antigen receptor-expressing T cells.

    Science.gov (United States)

    Dotti, Gianpietro; Gottschalk, Stephen; Savoldo, Barbara; Brenner, Malcolm K

    2014-01-01

    Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking, and effector functions of a T cell. This article describes how the past two decades have seen a crescendo of research which has now begun to translate these potential benefits into effective treatments for patients with cancer. We describe the basic design of CARs, describe how antigenic targets are selected, and the initial clinical experience with CAR-T cells. Our review then describes our own and other investigators' work aimed at improving the function of CARs and reviews the clinical studies in hematological and solid malignancies that are beginning to exploit these approaches. Finally, we show the value of adding additional engineering features to CAR-T cells, irrespective of their target, to render them better suited to function in the tumor environment, and discuss how the safety of these heavily modified cells may be maintained. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex.

    Science.gov (United States)

    Beringer, Dennis X; Kleijwegt, Fleur S; Wiede, Florian; van der Slik, Arno R; Loh, Khai Lee; Petersen, Jan; Dudek, Nadine L; Duinkerken, Gaby; Laban, Sandra; Joosten, Antoinette; Vivian, Julian P; Chen, Zhenjun; Uldrich, Adam P; Godfrey, Dale I; McCluskey, James; Price, David A; Radford, Kristen J; Purcell, Anthony W; Nikolic, Tatjana; Reid, Hugh H; Tiganis, Tony; Roep, Bart O; Rossjohn, Jamie

    2015-11-01

    Central to adaptive immunity is the interaction between the αβ T cell receptor (TCR) and peptide presented by the major histocompatibility complex (MHC) molecule. Presumably reflecting TCR-MHC bias and T cell signaling constraints, the TCR universally adopts a canonical polarity atop the MHC. We report the structures of two TCRs, derived from human induced T regulatory (iT(reg)) cells, complexed to an MHC class II molecule presenting a proinsulin-derived peptide. The ternary complexes revealed a 180° polarity reversal compared to all other TCR-peptide-MHC complex structures. Namely, the iT(reg) TCR α-chain and β-chain are overlaid with the α-chain and β-chain of MHC class II, respectively. Nevertheless, this TCR interaction elicited a peptide-reactive, MHC-restricted T cell signal. Thus TCRs are not 'hardwired' to interact with MHC molecules in a stereotypic manner to elicit a T cell signal, a finding that fundamentally challenges our understanding of TCR recognition.

  19. Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

    Science.gov (United States)

    Murugan, Anand; Mora, Thierry; Walczak, Aleksandra M; Callan, Curtis G

    2012-10-02

    Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

  20. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    OpenAIRE

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; Lardinois, Didier

    2015-01-01

    T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting fola...

  1. Diversity of the T-cell receptor BV repertoire in HIV-1-infected patients reflects the biphasic CD4+ T-cell repopulation kinetics during highly active antiretroviral therapy

    NARCIS (Netherlands)

    Kostense, S.; Raaphorst, F. M.; Notermans, D. W.; Joling, J.; Hooibrink, B.; Pakker, N. G.; Danner, S. A.; Teale, J. M.; Miedema, F.

    1998-01-01

    Highly active antiretroviral therapy (HAART) induces a decline in viral load and a biphasic increase in peripheral blood CD4+ T-cell counts in HIV-infected patients. To evaluate the effect of HAART on T-cell receptor (TCR) diversity of repopulating naive and memory CD4+ T cells, complementarity

  2. A gut-homing, oligoclonal CD4+ T cell population in severe-combined immunodeficient mice expressing a rearranged, transgenic class I-restricted alpha beta T cell receptor

    DEFF Research Database (Denmark)

    Reimann, J; Rudolphi, A; Spiess, S

    1995-01-01

    We studied the peripheral T cell compartment of H-2b severe combined immunodeficient (scid) mice that express a transgenic (tg) alpha beta T cell receptor (TcR) specific for the H-Y (male) epitope presented by the H-2 class I Db molecule. Large populations of CD3+ NK1.1-TCR beta T+ T cells were p...

  3. CD8+ T cells with characteristic T cell receptor beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients.

    Science.gov (United States)

    Komech, Ekaterina A; Pogorelyy, Mikhail V; Egorov, Evgeniy S; Britanova, Olga V; Rebrikov, Denis V; Bochkova, Anna G; Shmidt, Evgeniya I; Shostak, Nadejda A; Shugay, Mikhail; Lukyanov, Sergey; Mamedov, Ilgar Z; Lebedev, Yuriy B; Chudakov, Dmitriy M; Zvyagin, Ivan V

    2018-02-22

    The risk of AS is associated with genomic variants related to antigen presentation and specific cytokine signalling pathways, suggesting the involvement of cellular immunity in disease initiation/progression. The aim of the present study was to explore the repertoire of TCR sequences in healthy donors and AS patients to uncover AS-linked TCR variants. Using quantitative molecular-barcoded 5'-RACE, we performed deep TCR β repertoire profiling of peripheral blood (PB) and SF samples for 25 AS patients and 108 healthy donors. AS-linked TCR variants were identified using a new computational approach that relies on a probabilistic model of the VDJ rearrangement process. Using the donor-agnostic probabilistic model, we reveal a TCR β motif characteristic for PB of AS patients, represented by eight highly homologous amino acid sequence variants. Some of these variants were previously reported in SF and PB of patients with ReA and in PB of AS patients. We demonstrate that identified AS-linked clones have a CD8+ phenotype, present at relatively low frequencies in PB, and are significantly enriched in matched SF samples of AS patients. Our results suggest the involvement of a particular antigen-specific subset of CD8+ T cells in AS pathogenesis, confirming and expanding earlier findings. The high similarity of the clonotypes with the ones found in ReA implies common mechanisms for the initiation of the diseases.

  4. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling

    NARCIS (Netherlands)

    Chu, D. H.; Spits, H.; Peyron, J. F.; Rowley, R. B.; Bolen, J. B.; Weiss, A.

    1996-01-01

    The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs.

  5. Denaturing and non-denaturing gel electrophoresis as methods for the detection ofjunctional diversity in rearranged T cell receptor sequences

    NARCIS (Netherlands)

    Offermans, M.T.C.; Sonneveld, R.D.; Bakker, E.; Deutz-Terlouw, P.P.; Geus, B. de; Rozing, J.

    1995-01-01

    Two nucleic acid gel electrophoresis techniques were tested as a possible tool for analyzing junctional diversity in rearranged T cell receptor (TcR) sequences in order to define the extent of T cell heterogeneity. For this purpose denaturing gradient gel electrophoresis (DGGE) as well as

  6. T-cell receptor downregulation by ceramide-induced caspase activation and cleavage of the zeta chain

    DEFF Research Database (Denmark)

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J

    2001-01-01

    Regulation of T-cell receptor (TCR) cell surface expression levels is probably an important mechanism by which T-cell responsiveness is controlled. Previously, two distinct pathways for TCR downregulation have been described. One is dependent on protein kinase C (PKC) and the leucine-based recept...

  7. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Aileen G Rowan

    2016-11-01

    Full Text Available There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL, human T lymphotropic virus type-1 (HTLV-1, contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1 to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.

  8. CISH promoter polymorphism effects on T cell cytokine receptor signaling and type 1 diabetes susceptibility.

    Science.gov (United States)

    Seyfarth, Julia; Ahlert, Heinz; Rosenbauer, Joachim; Baechle, Christina; Roden, Michael; Holl, Reinhard W; Mayatepek, Ertan; Meissner, Thomas; Jacobsen, Marc

    2018-02-06

    Impaired regulatory T cell immunity plays a central role in the development of type 1 diabetes (T1D). Interleukin-2 receptor (IL-2R) signaling is essential for regulatory T cells (T REG ), and cytokine-inducible SH2-containing protein (CIS) regulates IL-2R signaling as a feedback inhibitor. Previous studies identified association of CISH promoter region single nucleotide polymorphisms (SNPs) with susceptibility to infectious diseases. Here we analyzed allele frequencies of three CISH SNPs (i.e., rs809451, rs414171, rs2239751) in a study of T1D patients (n = 260, onset age  10 years). Minor allele frequencies were compared to a control cohort of the 1000 Genomes Project. Assigned haplotypes were determined for effects on T1D manifestation and severity. Finally, the CISH haplotype influence on cytokine signaling and function was explored in T cells from healthy donors. We detected similar minor allele frequencies between T1D patients and the control cohort. T1D onset age, residual serum C-peptide level, and insulin requirement were comparable between different haplotypes. Only minor differences between the haplotypes were found for in vitro cytokine (i.e., IL-2, IL-7)-induced CIS mRNA expression. STAT5 phosphorylation was induced by IL-2 or IL-7, but no differences were found between the haplotypes. T REG purified from healthy donors with the two most common haplotypes showed similar capacity to inhibit heterologous effector T cells. This study provides no evidence for an association of CISH promoter SNPs with susceptibility to T1D or severity of disease. In contrast to previous studies, no influence of different haplotypes on CIS mRNA expression or T cell-mediated functions was found.

  9. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases.

    Science.gov (United States)

    Kato, Seiichi; Asano, Naoko; Miyata-Takata, Tomoko; Takata, Katsuyoshi; Elsayed, Ahmed Ali; Satou, Akira; Takahashi, Emiko; Kinoshita, Tomohiro; Nakamura, Shigeo

    2015-04-01

    Among Epstein-Barr virus (EBV)-positive cytotoxic T/NK-cell lymphoma, there are only a few reports on the clinicopathologic features of patients with primary nodal presentation (nodal EBV cytotoxic T-cell lymphoma [CTL]). Here, we compared the clinicopathologic profiles of 39 patients with nodal EBV CTL with those of 27 cases of "extranasal" NK/T-cell lymphoma of nasal type (ENKTL), especially addressing their T-cell receptor (TCR) phenotype. Histologically, 22 of 39 nodal EBV CTL cases (56%) were unique in having centroblastoid appearance, which was contrasted with the lower incidence of this feature in ENKTL (15%, P=0.001). In contrast, pleomorphic appearance was more frequently seen in ENKTL than in nodal EBV CTL (67% vs. 23%, P=0.001). Thirty-three of 39 nodal EBV CTL cases (85%) were of T-cell lineage on the basis of TCR expression and/or TCRγ gene rearrangement; in detail, 18 cases (46%) were TCRβ positive (αβ T), 5 (13%) were TCRγ and/or δ positive (γδ T), and 10 (26%) were TCR-silent type with clonal TCRγ gene rearrangement but no expression of TCRβ, γ, or δ. These results were clearly contrasted by a lower incidence of T-cell lineage in ENKTL (7 cases, 26%, P<0.001). Notably, the survival time of the 5 nodal lymphoma patients with γδ T-cell phenotype was within 3 months, which was inferior to those of αβ T and TCR-silent types (P=0.003), and 3 of those with available clinical information were all found to be associated with autoimmune diseases. These data suggest that nodal EBV CTL is distinct from ENKTL.

  10. In vitro membrane reconstitution of the T-cell receptor proximal signaling network.

    Science.gov (United States)

    Hui, Enfu; Vale, Ronald D

    2014-02-01

    T-cell receptor (TCR) phosphorylation is controlled by a complex network that includes Lck, a Src family kinase (SFK), the tyrosine phosphatase CD45 and the Lck-inhibitory kinase Csk. How these competing phosphorylation and dephosphorylation reactions are modulated to produce T-cell triggering is not fully understood. Here we reconstituted this signaling network using purified enzymes on liposomes, recapitulating the membrane environment in which they normally interact. We demonstrate that Lck's enzymatic activity can be regulated over an ~10-fold range by controlling its phosphorylation state. By varying kinase and phosphatase concentrations, we constructed phase diagrams that reveal ultrasensitivity in the transition from the quiescent to the phosphorylated state and demonstrate that co-clustering TCR and Lck or detaching Csk from the membrane can trigger TCR phosphorylation. Our results provide insight into the mechanism of TCR signaling as well as other signaling pathways involving SFKs.

  11. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist.

    Science.gov (United States)

    Huse, Morgan; Klein, Lawrence O; Girvin, Andrew T; Faraj, Joycelyn M; Li, Qi-Jing; Kuhns, Michael S; Davis, Mark M

    2007-07-01

    The precise timing of signals downstream of the T cell receptor (TCR) is poorly understood. To address this problem, we prepared major histocompatibility complexes containing an antigenic peptide that is biologically inert until exposed to ultraviolet (UV) light. UV irradiation of these complexes in contact with cognate T cells enabled the high-resolution temporal analysis of signaling. Phosphorylation of the LAT adaptor molecule was observed in 4 s, and diacylglycerol production and calcium flux was observed in 6-7 s. TCR activation also induced cytoskeletal polarization within 2 min. Antibody blockade of CD4 reduced the intensity of LAT phosphorylation and the speed of calcium flux. Furthermore, strong desensitization of diacylglycerol production, but not LAT phosphorylation, occurred shortly after TCR activation, suggesting that different molecular events play distinct signal-processing roles. These results establish the speed and localization of early signaling steps, and have important implications regarding the overall structure of the network.

  12. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Kentaro Minagawa

    Full Text Available Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia.We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85-90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a non

  13. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia.

    Science.gov (United States)

    Minagawa, Kentaro; Jamil, Muhammad O; Al-Obaidi, Mustafa; Pereboeva, Larisa; Salzman, Donna; Erba, Harry P; Lamb, Lawrence S; Bhatia, Ravi; Mineishi, Shin; Di Stasi, Antonio

    2016-01-01

    Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia. We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85-90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean) chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a non-therapeutic dimerizer to

  14. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  15. Use of antibodies against the variable regions of the T-cell receptor alpha/beta heterodimer for the study of cutaneous T-cell lymphomas.

    Science.gov (United States)

    Ralfkiaer, E; Wollf-Sneedorff, A; Vejlsgaard, G L

    1991-11-01

    Recent studies have suggested that antibodies against the variable (V) regions of the T-cell antigen receptor (TCR) may be used as markers for clonality and malignancy in T-cell infiltrates. We have investigated this by examining biopsy samples from 45 patients with cutaneous T-cell lymphomas (CTCL) for reactivity with seven antibodies against different V-gene families on the TCR alpha/beta heterodimer, i.e. ICI (V beta 5a), W112 (V beta 5b), OT145 (V beta 6a), 16G8 (V beta 8a), S511 (V beta 12a), F1 (V alpha 2a) and LC4 (alpha beta Va). Serial biopsies were available in 13 patients and a total of 62 samples were studied. The neoplastic cells in five cases were positive for either V beta 5 (one case), V beta 6 (one case), V beta 8 (two cases) or V beta 12 (one case). In the remaining 40 cases, no staining was seen of the neoplastic cells. These findings indicate that while antibodies against the TCR V-regions may be used as clonotypic markers for certain T-cell neoplasms, there is as yet not a sufficient number of anti-TCR V-region antibodies available for the routine diagnosis of these conditions.

  16. Protein kinase D2 is a digital amplifier of T cell receptor-stimulated diacylglycerol signaling in naïve CD8⁺ T cells.

    Science.gov (United States)

    Navarro, María N; Feijoo-Carnero, Carmen; Arandilla, Alba Gonzalez; Trost, Matthias; Cantrell, Doreen A

    2014-10-21

    Protein kinase D2 (PKD2) is a serine and threonine kinase that is activated in T cells by diacylglycerol and protein kinase C in response to stimulation of the T cell receptor (TCR) by antigen. We quantified the activation of PKD2 at the single-cell level and found that this kinase acts as a sensitive digital amplifier of TCR engagement, enabling CD8(+) T cells to match the production of inflammatory cytokines to the quality and quantity of TCR ligands. There was a digital response pattern of PKD2 activation in response to TCR engagement, such that increasing the concentration and potency of TCR ligands increased the number of cells that exhibited activated PKD2. However, for each cell that responded to TCR stimulation, the entire cellular pool of PKD2 (~400,000 molecules) was activated. Moreover, PKD2 acted as an amplification checkpoint for antigen-stimulated digital cytokine responses and translated the differential strength of TCR signaling to determine the number of naïve CD8(+) T cells that became effector cells. Together, these results provide insights into PKD family kinases and how they act digitally to amplify signaling networks controlled by the TCR.

  17. High-throughput identification of antigen-specific TCRs by TCR gene capture

    DEFF Research Database (Denmark)

    Linnemann, Carsten; Heemskerk, Bianca; Kvistborg, Pia

    2013-01-01

    have developed a high-throughput DNA-based strategy to identify TCR sequences by the capture and sequencing of genomic DNA fragments encoding the TCR genes. We establish the value of this approach by assembling a large library of cancer germline tumor antigen-reactive TCRs. Furthermore, by exploiting......The transfer of T cell receptor (TCR) genes into patient T cells is a promising approach for the treatment of both viral infections and cancer. Although efficient methods exist to identify antibodies for the treatment of these diseases, comparable strategies to identify TCRs have been lacking. We...... of antigen specificities, which may be the first step toward the development of autologous TCR gene therapy to target patient-specific neoantigens in human cancer....

  18. Effect of glucocorticoids on melatonin receptor expression under T-cell activated immune response

    International Nuclear Information System (INIS)

    Tauschanova, P.; Georgiev, G.; Manchev, S.; Konakchieva, R.

    2007-01-01

    The present study was aimed to explore the stress response in rats under conditions of T-cell antigen-activated immune function and to investigate the specific melatonin (MEL) receptor binding in primary and secondary immune tissue of rats employing 2-( 125 I)-iodo melatonin autoradiography and in vitro ligand binding assay. The study revealed that melatonin receptor binding was specifically expressed in discrete areas of the lymphoid sheath of the spleen and in a network of interdigitating cells of the experimental rats. Demonstration of the modulation of MEL receptor binding in the course of a primary immune response under hypercorticalemic conditions indicate that the pineal hormone might interfere in the processes of glucocorticoid-dependent immune competency. (authors)

  19. Novel fusion proteins for the antigen-specific staining and elimination of B cell receptor-positive cell populations demonstrated by a tetanus toxoid fragment C (TTC) model antigen.

    Science.gov (United States)

    Klose, Diana; Saunders, Ute; Barth, Stefan; Fischer, Rainer; Jacobi, Annett Marita; Nachreiner, Thomas

    2016-02-17

    In an earlier study we developed a unique strategy allowing us to specifically eliminate antigen-specific murine B cells via their distinct B cell receptors using a new class of fusion proteins. In the present work we elaborated our idea to demonstrate the feasibility of specifically addressing and eliminating human memory B cells. The present study reveals efficient adaptation of the general approach to selectively target and eradicate human memory B cells. In order to demonstrate the feasibility we engineered a fusion protein following the principle of recombinant immunotoxins by combining a model antigen (tetanus toxoid fragment C, TTC) for B cell receptor targeting and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA') to induce apoptosis after cellular uptake. The TTC-ETA' fusion protein not only selectively bound to a TTC-reactive murine B cell hybridoma cell line in vitro but also to freshly isolated human memory B cells from immunized donors ex vivo. Specific toxicity was confirmed on an antigen-specific population of human CD27(+) memory B cells. This protein engineering strategy can be used as a generalized platform approach for the construction of therapeutic fusion proteins with disease-relevant antigens as B cell receptor-binding domains, offering a promising approach for the specific depletion of autoreactive B-lymphocytes in B cell-driven autoimmune diseases.

  20. Chimeric antigen receptor T cells for the treatment of cancer and the future of preclinical models for predicting their toxicities.

    Science.gov (United States)

    Wegner, Anja

    2017-06-01

    Chimeric antigen receptor T-cell therapy has achieved highly promising results in clinical trials, particularly in B-cell malignancies. However, reports of serious adverse events including a number of patient deaths have raised concerns about safety of this treatment. Presently available preclinical models are not designed for predicting toxicities seen in human patients. Besides choosing the right animal model, careful considerations must be taken in chimeric antigen receptor T-cell design and the amount of T cells infused. The development of more sophisticated in vitro models and humanized mouse models for preclinical modeling and toxicity tests will help us to improve the design of clinical trials in cancer immunotherapy.

  1. Chaperone-assisted thermostability engineering of a soluble T cell receptor using phage display

    DEFF Research Database (Denmark)

    Gunnarsen, Kristin S; Kristinsson, Solveig G; Justesen, Sune

    2013-01-01

    We here report a novel phage display selection strategy enabling fast and easy selection of thermostabilized proteins. The approach is illustrated with stabilization of an aggregation-prone soluble single chain T cell receptor (scTCR) characteristic of the murine MOPC315 myeloma model. Random...... mutation scTCR phage libraries were prepared in E. coli over-expressing the periplasmic chaperone FkpA, and such over-expression during library preparation proved crucial for successful downstream selection. The thermostabilized scTCR(mut) variants selected were produced in high yields and isolated...

  2. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma.

    Science.gov (United States)

    Lynch, Adam; Hawk, William; Nylen, Emily; Ober, Sean; Autin, Pierre; Barber, Amorette

    2017-11-01

    Adoptive transfer of T cells is a promising cancer therapy and expression of chimeric antigen receptors can enhance tumour recognition and T-cell effector functions. The programmed death protein 1 (PD1) receptor is a prospective target for a chimeric antigen receptor because PD1 ligands are expressed on many cancer types, including lymphoma. Therefore, we developed a murine chimeric PD1 receptor (chPD1) consisting of the PD1 extracellular domain fused to the cytoplasmic domain of CD3ζ. Additionally, chimeric antigen receptor therapies use various co-stimulatory domains to enhance efficacy. Hence, the inclusion of a Dap10 or CD28 co-stimulatory domain in the chPD1 receptor was compared to determine which domain induced optimal anti-tumour immunity in a mouse model of lymphoma. The chPD1 T cells secreted pro-inflammatory cytokines and lysed RMA lymphoma cells. Adoptive transfer of chPD1 T cells significantly reduced established tumours and led to tumour-free survival in lymphoma-bearing mice. When comparing chPD1 receptors containing a Dap10 or CD28 domain, both receptors induced secretion of pro-inflammatory cytokines; however, chPD1-CD28 T cells also secreted anti-inflammatory cytokines whereas chPD1-Dap10 T cells did not. Additionally, chPD1-Dap10 induced a central memory T-cell phenotype compared with chPD1-CD28, which induced an effector memory phenotype. The chPD1-Dap10 T cells also had enhanced in vivo persistence and anti-tumour efficacy compared with chPD1-CD28 T cells. Therefore, adoptive transfer of chPD1 T cells could be a novel therapy for lymphoma and inclusion of the Dap10 co-stimulatory domain in chimeric antigen receptors may induce a preferential cytokine profile and T-cell differentiation phenotype for anti-tumour therapies. © 2017 John Wiley & Sons Ltd.

  3. Failure of anti-T-cell receptor V beta antibodies to consistently identify a malignant T-cell clone in Sézary syndrome.

    Science.gov (United States)

    Bigler, R D; Boselli, C M; Foley, B; Vonderheid, E C

    1996-11-01

    Monoclonal antibodies (MAbs) reacting with the human T cell receptor (TCR) V beta or V alpha region have been shown to be almost as specific as a private idiotypic MAb in identifying T cell clones. When available, V beta-specific MAbs offer the ease of immunofluorescence analysis to identify and quantitate expanded malignant or nonmalignant T cell populations without requiring polymerase chain reaction (PCR) technology to evaluate expression of V beta gene families. The V beta expression of peripheral blood lymphocytes from twenty-three consecutive patients with Sézary syndrome has been analyzed by reverse transcriptase (RT)-PCR. Ten patients had malignant T cell clones that expressed a TCR V beta corresponding to a commercially available anti-V beta antibody. Immunofluorescence staining with anti-V beta MAbs showed a direct correlation with RT-PCR results in seven of ten patients. No false positive reactivity was noted on immunofluorescence staining with any MAb. Cells from three patients, however, did not react with the corresponding anti-V beta MAb. These three cases expressed a TCR V beta from gene families containing a single member, ie, V beta 14, V beta 18, and V beta 20, yet MAbs reported to be specific for these regions failed to react with the T cell clone from these patients. Sequencing of the PCR product in these cases confirmed the RT-PCR results. Cells from two patients expressed a TCR using V beta 5.1-D beta 1.1 genes with different J-C segments. One patient's cells reacted with an anti-V beta 5.1 MAb (LC4) whereas the other patient's cells bound one-tenth the amount of this same MAb. These results indicate that currently available anti-TCR V region MAbs may not react consistently with T cell clones expressing the corresponding V region or may react with a low affinity making detection difficult. Differences in the J-C junction or in CDR3 may influence the binding of these MAbs. Until the false negative rate is reduced and the fine specificity and

  4. The Significance of Tumor Necrosis Factor Receptor Type II in CD8+Regulatory T Cells and CD8+Effector T Cells.

    Science.gov (United States)

    Ye, Lin-Lin; Wei, Xiao-Shan; Zhang, Min; Niu, Yi-Ran; Zhou, Qiong

    2018-01-01

    Tumor necrosis factor (TNF) is a pleiotropic cytokine that has both pro-inflammatory and anti-inflammatory functions. The biological functions of TNF are mediated by two receptors, TNF receptor type I (TNFR1) and TNF receptor type II (TNFR2). TNFR1 is expressed universally on almost all cell types and has been extensively studied, whereas TNFR2 is mainly restricted to immune cells and some tumor cells and its role is far from clarified. Studies have shown that TNFR2 mediates the stimulatory activity of TNF on CD4 + Foxp3 + regulatory T cells (Tregs) and CD8 + Foxp3 + Tregs, and is involved in the phenotypic stability, proliferation, activation, and suppressive activity of Tregs. TNFR2 can also be expressed on CD8 + effector T cells (Teffs), which delivers an activation signal and cytotoxic ability to CD8 + Teffs during the early immune response, as well as an apoptosis signal to terminate the immune response. TNFR2-induced abolition of TNF receptor-associated factor 2 (TRAF2) degradation may play an important role in these processes. Consequently, due to the distribution of TNFR2 and its pleiotropic effects, TNFR2 appears to be critical to keeping the balance between Tregs and Teffs, and may be an efficient therapeutic target for tumor and autoimmune diseases. In this review, we summarize the biological functions of TNFR2 expressed on CD8 + Foxp3 + Tregs and CD8 + Teffs, and highlight how TNF uses TNFR2 to coordinate the complex events that ultimately lead to efficient CD8 + T cell-mediated immune responses.

  5. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1 into Diverse Memory T-Cell Populations.

    Directory of Open Access Journals (Sweden)

    Drew C Deniger

    Full Text Available T cells modified with chimeric antigen receptors (CARs targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1 is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28 or CD137 (designated ROR1RCD137 and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC, which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.

  6. T helper type 1 polarizing γδ T cells and Scavenger receptors contribute to the pathogenesis of Pemphigus vulgaris.

    Science.gov (United States)

    Das, Dayasagar; Anand, Vivek; Khandpur, Sujay; Sharma, Vinod K; Sharma, Alpana

    2018-01-01

    γδ T cells and Scavenger receptors are key parts of the innate immune machinery, playing significant roles in regulating immune homeostasis at the epithelial surface. The roles of these immune components are not yet characterized for the autoimmune skin disorder Pemphigus vulgaris (PV). Phenotyping and frequency of γδ T cells estimated by flow cytometry have shown increased frequency of γδ T cells (6·7% versus 4·4%) producing interferon- γ (IFN-γ; 35·2% versus 26·68%) in the circulation of patients compared with controls. Dual cytokine-secreting (IFN-γ and interleukin-4) γδ T cells indicate the plasticity of these cells. The γδ T cells of patients with PV have shown higher cytotoxic potential and the higher frequency of γδ T cells producing IFN-γ shows T helper type 1 polarization. The increased expression of Scavenger receptors expression (CD36 and CD163) could be contributing to the elevated inflammatory environment and immune imbalance in this disease. Targeting the inflammatory γδ T cells and Scavenger receptors may pave the way for novel therapeutics. © 2017 John Wiley & Sons Ltd.

  7. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response.

    Science.gov (United States)

    Hus, I; Schmitt, M; Tabarkiewicz, J; Radej, S; Wojas, K; Bojarska-Junak, A; Schmitt, A; Giannopoulos, K; Dmoszyńska, A; Roliński, J

    2008-05-01

    Recently, we described that vaccination with allogeneic dendritic cells (DCs) pulsed with tumor cell lysate generated specific CD8+ T cell response in patients with B-cell chronic lymphocytic leukemia (B-CLL). In the present study, the potential of autologous DCs pulsed ex vivo with tumor cell lysates to stimulate antitumor immunity in patients with B-CLL in early stages was evaluated. Twelve patients at clinical stage 0-2 as per Rai were vaccinated intradermally up to eight times with a mean number of 7.4 x 10(6) DCs pulsed with B-CLL cell lysate. We observed a decrease of peripheral blood leukocytes and CD19+/CD5+ leukemic cells in five patients, three patients showed a stable disease and four patients progressed despite DC vaccination. A significant increase of specific cytotoxic CD8+ T lymphocytes against the leukemia-associated antigens RHAMM or fibromodulin was detected in four patients after DC vaccination. In patients with a clinical response, an increase of interleukin 12 (IL-12) serum levels and a decrease of the frequency of CD4+CD25(+)FOXP3+ T regulatory cells were observed. Taken together, the study demonstrated that vaccination with autologous DC in CLL patients is feasible and safe. Immunological and to some extend hematological responses could be noted, justifying further investigation on this immunotherapeutical approach.

  8. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  9. Characterization of a human antigen specific helper factor

    International Nuclear Information System (INIS)

    Richardson, B.

    1986-01-01

    While antigen (Ag) specific helper factors have been characterized in mice, similar molecules have not been identified in humans. To characterize human antigen specific helper molecules, an IL-2 dependent tetanus toxoid (T.T.) reactive T cell line was fused with a 6-thioguanine resistant CEM line, and hybrids selected in medium containing hypoxanthine and azaserine. Hybrids were screened by culturing the cells with 35 S-Met then reacting the supernatants with T.T. or hepatitis vaccine immobilized on nitrocellulose. One hybrid, TT6BA-O, was identified which secreted a Met-containing molecule which bound T.T. but not hepatitis vaccine. Supernatants from TT6BA-O, but not the parent CEM line, when added to autologous peripheral blood mononuclear cells (PBMC's) stimulated secretion of T.T. specific antibodies (Abs). Specificity controls demonstrated that TT6BA-O supernatant did not induce antibodies to diphtheria toxoid, hepatitis vaccine or pneumococcal polysaccharide, and total immunoglobulin (lg) synthesis was minimally increased. In contrast, pokeweed mitogen stimulated significant lg synthesis as well as Ab's to pneumococcal polysaccharide and T.T. TT6BA-O supernatant induced anti-T.T.Ab's in autologous PBMC's but not PBMC's from 3 unrelated donors, suggesting that the activity of the helper factor is restricted, possibly by the MHC. The molecular weight of the helper factor was estimated at 100,000-150,000 by Sephacryl S-300 chromatography. Finally, the helper factor could be demonstrated to bind and elute from sephorose-immobilized T.T. and anti-DR antisera, but not anti-lg antisera or the T40/25 monoclonal antibody, which binds a nonpolymorphic determinant on the human T cell receptor. These results demonstrate that human Ag specific helper factors exist, bind antigen and bear class II MHC determinants

  10. Breast and other cancer dormancy as a therapeutic endpoint: speculative recombinant T cell receptor ligand (RTL) adjuvant therapy worth considering?

    International Nuclear Information System (INIS)

    Bakács, Tibor; Mehrishi, Jitendra N

    2010-01-01

    Most individuals who died of trauma were found to harbour microscopic primary cancers at autopsies. Surgical excision of the primary tumour, unfortunately, seems to disturb tumour dormancy in over half of all metastatic relapses. A recently developed immune model suggested that the evolutionary pressure driving the creation of a T cell receptor repertoire was primarily the homeostatic surveillance of the genome. The model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected T cell receptors and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. The repertoire is maintained by continuous peripheral stimulation via soluble forms of self-peptide-presenting major histocompatibility complex molecules governed by the law of mass action. The model states that foreign peptides inhibit the complementary interactions between the major histocompatibility complexes and T cell receptors. Since the vast majority of clinically detected cancers present self-peptides the model assumes that tumour cells are, paradoxically, under homeostatic T cell control. The novelty of our hypothesis therefore is that resection of the primary tumour mass is perceived as loss of 'normal' tissue cells. Consequently, T cells striving to reconstitute homeostasis stimulate rather than inhibit the growth of dormant tumour cells and avascular micrometastases. Here we suggest that such kick-start growths could be prevented by a recombinant T cell receptor ligand therapy that modifies T cell behaviour through a partial activation mechanism. The homeostatic T cell regulation of tumours can be tested in a tri-transgenic mice model engineered to express potent oncogenes in a doxycycline-dependent manner. We suggest seeding dissociated, untransformed mammary cells from doxycycline naïve mice into the lungs of two mice groups: one

  11. DNA fragmentation and cell death mediated by T cell antigen receptor/CD3 complex on a leukemia T cell line.

    Science.gov (United States)

    Takahashi, S; Maecker, H T; Levy, R

    1989-10-01

    An anti-T cell receptor (TcR) monoclonal antibody (mAb), LC4, directed against a human leukemic T cell line, SUP-T13, caused DNA fragmentation ("apoptosis") and cell death upon binding to this cell line. Cross-linking of receptor molecules was necessary for this effect since F(ab')2, but not Fab', fragments of LC4 could induce cell death. Five anti-CD3 mAb tested also caused apoptosis, but only when they were presented on a solid phase. Interestingly, soluble anti-CD3 mAb induced calcium flux and had an additive effect on the calcium flux and interleukin 2 receptor expression induced by LC4, but these anti-CD3 mAb reversed the growth inhibition and apoptosis caused by LC4. The calcium ionophore A23187, but not the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), also induced apoptosis, suggesting that protein kinase C activation alone does not cause apoptosis, although PMA is growth inhibitory. These results suggest that two distinct biological phenomena can accompany stimulation of the TcR/CD3 complex. In both cases, calcium flux and interleukin 2 receptor expression is induced, but only in one case is apoptosis and cell death seen. The signal initiating apoptosis can be selectively prevented by binding CD3 portion of the receptor in this cell line. This difference in signals mediated by the TcR/CD3 complex may be important in explaining the process of thymic selection, as well as in choosing anti-TcR mAb for therapeutic use.

  12. Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities

    Science.gov (United States)

    Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839

  13. IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice.

    Science.gov (United States)

    Kao, Daniela; Lux, Anja; Schaffert, Anja; Lang, Roland; Altmann, Friedrich; Nimmerjahn, Falk

    2017-12-01

    Immunoglobulin G (IgG) glycosylation can modulate antibody effector functions. Depending on the precise composition of the sugar moiety attached to individual IgG glycovariants either pro- or anti-inflammatory effector pathways can be initiated via differential binding to type I or type II Fc-receptors. However, an in depth understanding of how individual IgG subclasses are glycosylated during the steady state and how their glycosylation pattern changes during vaccination is missing. To monitor IgG subclass glycosylation during the steady state and upon vaccination of mice with different T-cell dependent and independent antigens, tryptic digests of serum, and antigen-specific IgG preparations were analyzed by reversed phase-liquid chromatography-mass spectrometry. We show that there is a remarkable difference with respect to how individual IgG subclasses are glycosylated during the steady state. More importantly, upon T-cell dependent and independent vaccinations, individual antigen-specific IgG subclasses reacted differently with respect to changes in individual glycoforms, suggesting that the IgG subclass itself is a major determinant of restricting or allowing alterations in specific IgG glycovariants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis.

    Directory of Open Access Journals (Sweden)

    Nicholas Funderburg

    2008-04-01

    Full Text Available Recently, heightened systemic translocation of microbial products was found in persons with chronic HIV infection and this was linked to immune activation and CD4(+ T cell homeostasis.We examined here the effects of microbial Toll-like receptor (TLR ligands on T cell activation in vitro.We show that exposure to TLR ligands results in activation of memory and effector CD4(+ and CD8(+ T cells. After exposure to each of 8 different ligands that activate TLRs 2, 3, 4, 5, 7, 8, and 9, CD8(+ T cells are activated and gain expression of the C type lectin CD69 that may promote their retention in lymphoid tissues. In contrast, CD4(+ T cells rarely increase CD69 expression but instead enter cell cycle. Despite activation and cell cycle entry, CD4(+ T cells divide poorly and instead, disproportionately undergo activation-induced cell death. Systemic exposure to TLR agonists may therefore increase immune activation, effector cell sequestration in lymphoid tissues and T cell turnover. These events may contribute to the pathogenesis of immune dysfunction and CD4+ T cell losses in chronic infection with the human immunodeficiency virus.

  15. The Different T-cell Receptor Repertoires in Breast Cancer Tumors, Draining Lymph Nodes, and Adjacent Tissues.

    Science.gov (United States)

    Wang, Ting; Wang, Changxi; Wu, Jinghua; He, Chenyang; Zhang, Wei; Liu, Jiayun; Zhang, Ruifang; Lv, Yonggang; Li, Yongping; Zeng, Xiaojing; Cao, Hongzhi; Zhang, Xiuqing; Xu, Xun; Huang, Chen; Wang, Ling; Liu, Xiao

    2017-02-01

    T lymphocytes infiltrate the microenvironment of breast cancer tumors and play a pivotal role in tumor immune surveillance. Relationships between the T-cell receptors (TCR) borne by T cells within tumors, in the surrounding tissues, and in draining lymph nodes are largely unexplored in human breast cancer. Consequently, information about the relative extent of possible T-cell exchange between these tissues is also lacking. Here, we have analyzed the TCR repertoire of T cells using multiplex PCR and high-throughput sequencing of the TCRβ chain in the tissues of tumor, adjacent nontumor, and axillary lymph nodes of breast cancer patients. T-cell repertoire diversity in tumors was lower than in lymph nodes, but higher than in nontumor tissue, with a preferential use of variable and joining genes. These data are consistent with the hypothesis that most of the T cells in tumors derive from the lymph node, followed by their expansion in tumor tissue. Positive nodes appeared to enhance T-cell infiltration into tumors and T-cell clonal expansion in lymph nodes. Additionally, the similarity in TCR repertoire between tumor and nontumor tissue was significantly higher in luminal-like, rather than basal-like, breast cancer. Our study elucidated the high heterogeneity of the TCR repertoire and provides potential for future improvements in immune-related diagnosis, therapy, and prognosis for breast cancer patients. Cancer Immunol Res; 5(2); 148-56. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. High diversity of the T-cell receptor repertoire of tumor-infiltrating lymphocytes in basal cell carcinoma

    DEFF Research Database (Denmark)

    Omland, Silje H; Hamrouni, Abdelbasset; Gniadecki, Robert

    2017-01-01

    Whether specific T-cell clones are present in tumor infiltrating lymphocytes (TILs) in BCC is unknown. We employed deep sequencing of mRNA coding for the T-cell receptor (TCR) chains α- and β to characterize the repertoire of TILs in BCC. V and J gene-usage and CDR3 length were computed...... to determine the clonality of TCR and degree of overlap in TCR repertoires between skin resident T-cells and TILs. We found high diversity of the TCR repertoire in BCC and control skin with random V-J gene usage and similar CDR3-length distribution. Lack of TCR repertoire restriction indicates absence of tumor...

  17. Lym-1 Chimeric Antigen Receptor T Cells Exhibit Potent Anti-Tumor Effects against B-Cell Lymphoma

    OpenAIRE

    Long Zheng; Peisheng Hu; Brandon Wolfe; Caryn Gonsalves; Luqing Ren; Leslie A. Khawli; Harvey R. Kaslow; Alan L. Epstein

    2017-01-01

    T cells expressing chimeric antigen receptors (CARs) recognizing CD19 epitopes have produced remarkable anti-tumor effects in patients with B-cell malignancies. However, cancer cells lacking recognized epitopes can emerge, leading to relapse and death. Thus, CAR T cells targeting different epitopes on different antigens could improve immunotherapy. The Lym-1 antibody targets a conformational epitope of Human Leukocyte Antigen-antigen D Related (HLA-DR) on the surface of human B-cell lymphomas...

  18. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging.

    Science.gov (United States)

    Gustafson, Claire E; Qi, Qian; Hutter-Saunders, Jessica; Gupta, Sheena; Jadhav, Rohit; Newell, Evan; Maecker, Holden; Weyand, Cornelia M; Goronzy, Jörg J

    2017-01-01

    Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs) CD8 T cells, which increase with age, in cytomegalovirus (CMV) infection and in males. CD85j + CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j + and CD85j - compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57) but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of "senescent," but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging.

  19. How an alloreactive T-cell receptor achieves peptide and MHC specificity.

    Science.gov (United States)

    Wang, Yuan; Singh, Nishant K; Spear, Timothy T; Hellman, Lance M; Piepenbrink, Kurt H; McMahan, Rachel H; Rosen, Hugo R; Vander Kooi, Craig W; Nishimura, Michael I; Baker, Brian M

    2017-06-13

    T-cell receptor (TCR) allorecognition is often presumed to be relatively nonspecific, attributable to either a TCR focus on exposed major histocompatibility complex (MHC) polymorphisms or the degenerate recognition of allopeptides. However, paradoxically, alloreactivity can proceed with high peptide and MHC specificity. Although the underlying mechanisms remain unclear, the existence of highly specific alloreactive TCRs has led to their use as immunotherapeutics that can circumvent central tolerance and limit graft-versus-host disease. Here, we show how an alloreactive TCR achieves peptide and MHC specificity. The HCV1406 TCR was cloned from T cells that expanded when a hepatitis C virus (HCV)-infected HLA-A2 - individual received an HLA-A2 + liver allograft. HCV1406 was subsequently shown to recognize the HCV nonstructural protein 3 (NS3):1406-1415 epitope with high specificity when presented by HLA-A2. We show that NS3/HLA-A2 recognition by the HCV1406 TCR is critically dependent on features unique to both the allo-MHC and the NS3 epitope. We also find cooperativity between structural mimicry and a crucial peptide "hot spot" and demonstrate its role, along with the MHC, in directing the specificity of allorecognition. Our results help explain the paradox of specificity in alloreactive TCRs and have implications for their use in immunotherapy and related efforts to manipulate TCR recognition, as well as alloreactivity in general.

  20. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release.

    Directory of Open Access Journals (Sweden)

    Julia Siede

    Full Text Available Immunomodulatory Foxp3+ regulatory T cells (Tregs form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 -especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2- Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies.

  1. Nonspecific CD8+T Cells and Dendritic Cells/Macrophages Participate in Formation of CD8+T Cell-Mediated Clusters against Malaria Liver-Stage Infection.

    Science.gov (United States)

    Akbari, Masoud; Kimura, Kazumi; Bayarsaikhan, Ganchimeg; Kimura, Daisuke; Miyakoda, Mana; Juriasingani, Smriti; Yuda, Masao; Amino, Rogerio; Yui, Katsuyuki

    2018-04-01

    CD8 + T cells are the major effector cells that protect against malaria liver-stage infection, forming clusters around Plasmodium -infected hepatocytes and eliminating parasites after a prolonged interaction with these hepatocytes. We aimed to investigate the roles of specific and nonspecific CD8 + T cells in cluster formation and protective immunity. To this end, we used Plasmodium berghei ANKA expressing ovalbumin as well as CD8 + T cells from transgenic mice expressing a T cell receptor specific for ovalbumin (OT-I) and CD8 + T cells specific for an unrelated antigen, respectively. While antigen-specific CD8 + T cells were essential for cluster formation, both antigen-specific and nonspecific CD8 + T cells joined the clusters. However, nonspecific CD8 + T cells did not significantly contribute to protective immunity. In the livers of infected mice, specific CD8 + T cells expressed high levels of CD25, compatible with a local, activated effector phenotype. In vivo imaging of the liver revealed that specific CD8 + T cells interact with CD11c + cells around infected hepatocytes. The depletion of CD11c + cells virtually eliminated the clusters in the liver, leading to a significant decrease in protection. These experiments reveal an essential role of hepatic CD11c + dendritic cells and presumably macrophages in the formation of CD8 + T cell clusters around Plasmodium -infected hepatocytes. Once cluster formation is triggered by parasite-specific CD8 + T cells, specific and unrelated activated CD8 + T cells join the clusters in a chemokine- and dendritic cell-dependent manner. Nonspecific CD8 + T cells seem to play a limited role in protective immunity against Plasmodium parasites. Copyright © 2018 American Society for Microbiology.

  2. Cytotoxic T cells in chronic idiopathic neutropenia express restricted antigen receptors.

    Science.gov (United States)

    Mastrodemou, Semeli; Stalika, Evangelia; Vardi, Anna; Gemenetzi, Katerina; Spanoudakis, Michalis; Karypidou, Maria; Mavroudi, Irene; Hadzidimitriou, Anastasia; Stavropoulos-Giokas, Catherine; Papadaki, Helen A; Stamatopoulos, Kostas

    2017-12-01

    Chronic idiopathic neutropenia (CIN) is an acquired disorder of granulopoiesis characterized by female predominance and mostly uncomplicated course. Crucial to CIN pathophysiology is the presence of activated T lymphocytes with myelosuppressive properties in both peripheral blood (PB) and bone marrow (BM). We systematically profiled the T cell receptor beta chain (TRB) gene repertoire in CD8 + cells of 34 CIN patients through subcloning/Sanger sequencing analysis of TRBV-TRBD-TRBJ gene rearrangements. Remarkable repertoire skewing and oligoclonality were observed, along with shared clonotypes between different patients, alluding to antigen selection. Cross-comparison of our sequence dataset with public TRB sequence databases revealed that CIN may rarely share common immunogenetic features with other entities, however, the CIN TRB repertoire is largely disease-biased. Overall, these findings suggest that CIN may be driven by long-term exposure to a restricted set of specific CIN-associated antigens.

  3. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation

    DEFF Research Database (Denmark)

    Kivisäkk, P; Trebst, C; Liu, Z

    2002-01-01

    It is believed that chemokines and their receptors are involved in trafficking of T-cells to the central nervous system (CNS). The aim of the current study was to define the expression on cerebrospinal fluid (CSF) T-cells of six chemokine receptors associated with trafficking to sites...... is not sufficient for the trafficking of CD3+T-cells to the CSF. We hypothesize that CXCR3 is the principal inflammatory chemokine receptor involved in intrathecal accumulation of T-cells in MS. Through interactions with its ligands, CXCR3 is proposed to mediate retention of T-cells in the inflamed CNS....

  4. Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1b on CD8+ T Cells and TNF Receptor Superfamily Member 1a on Non-CD8+ T Cells Contribute Significantly to Upper Genital Tract Pathology Following Chlamydial Infection.

    Science.gov (United States)

    Manam, Srikanth; Thomas, Joshua D; Li, Weidang; Maladore, Allison; Schripsema, Justin H; Ramsey, Kyle H; Murthy, Ashlesh K

    2015-06-15

    We demonstrated previously that tumor necrosis factor α (TNF-α)-producing Chlamydia-specific CD8(+) T cells cause oviduct pathological sequelae. In the current study, we used wild-type C57BL/6J (WT) mice with a deficiency in genes encoding TNF receptor superfamily member 1a (TNFR1; TNFR1 knockout [KO] mice), TNF receptor superfamily member 1b (TNFR2; TNFR2 KO mice), and both TNFR1 and TNFR2 (TNFR1/2 double KO [DKO] mice) and mix-match adoptive transfers of CD8(+) T cells to study chlamydial pathogenesis. TNFR1 KO, TNFR2 KO, and TNFR1/2 DKO mice displayed comparable clearance of primary or secondary genital Chlamydia muridarum infection but significantly reduced oviduct pathology, compared with WT animals. The Chlamydia-specific total cellular cytokine response in splenic and draining lymph nodes and the antibody response in serum were comparable between the WT and KO animals. However, CD8(+) T cells from TNFR2 KO mice displayed significantly reduced activation (CD11a expression and cytokine production), compared with TNFR1 KO or WT animals. Repletion of TNFR2 KO mice with WT CD8(+) T cells but not with TNFR2 KO CD8(+) T cells and repletion of TNFR1 KO mice with either WT or TNFR1 KO CD8(+) T cells restored oviduct pathology to WT levels in both KO groups. Collectively, these results demonstrate that TNFR2-bearing CD8(+) T cells and TNFR1-bearing non-CD8(+) T cells contribute significantly to oviduct pathology following genital chlamydial infection. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Lym-1 Chimeric Antigen Receptor T Cells Exhibit Potent Anti-Tumor Effects against B-Cell Lymphoma.

    Science.gov (United States)

    Zheng, Long; Hu, Peisheng; Wolfe, Brandon; Gonsalves, Caryn; Ren, Luqing; Khawli, Leslie A; Kaslow, Harvey R; Epstein, Alan L

    2017-12-20

    T cells expressing chimeric antigen receptors (CARs) recognizing CD19 epitopes have produced remarkable anti-tumor effects in patients with B-cell malignancies. However, cancer cells lacking recognized epitopes can emerge, leading to relapse and death. Thus, CAR T cells targeting different epitopes on different antigens could improve immunotherapy. The Lym-1 antibody targets a conformational epitope of Human Leukocyte Antigen-antigen D Related (HLA-DR) on the surface of human B-cell lymphomas. Lym-1 CAR T cells were thus generated for evaluation of cytotoxic activity towards lymphoma cells in vitro and in vivo. Human T cells from healthy donors were transduced to express a Lym-1 CAR, and assessed for epitope-driven function in culture and towards Raji xenografts in NOD-scidIL2Rgamma null (NSG) mice. Lym-1 CAR T cells exhibited epitope-driven activation and lytic function against human B-cell lymphoma cell lines in culture and mediated complete regression of Raji/Luciferase-Green fluorescent protein (Raji/Luc-GFP) in NSG mice with similar or better reactivity than CD19 CAR T cells. Lym-1 CAR transduction of T cells is a promising immunotherapy for patients with Lym-1 epitope positive B-cell malignancies.

  6. Lym-1 Chimeric Antigen Receptor T Cells Exhibit Potent Anti-Tumor Effects against B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Long Zheng

    2017-12-01

    Full Text Available T cells expressing chimeric antigen receptors (CARs recognizing CD19 epitopes have produced remarkable anti-tumor effects in patients with B-cell malignancies. However, cancer cells lacking recognized epitopes can emerge, leading to relapse and death. Thus, CAR T cells targeting different epitopes on different antigens could improve immunotherapy. The Lym-1 antibody targets a conformational epitope of Human Leukocyte Antigen-antigen D Related (HLA-DR on the surface of human B-cell lymphomas. Lym-1 CAR T cells were thus generated for evaluation of cytotoxic activity towards lymphoma cells in vitro and in vivo. Human T cells from healthy donors were transduced to express a Lym-1 CAR, and assessed for epitope-driven function in culture and towards Raji xenografts in NOD-scidIL2Rgammanull (NSG mice. Lym-1 CAR T cells exhibited epitope-driven activation and lytic function against human B-cell lymphoma cell lines in culture and mediated complete regression of Raji/Luciferase-Green fluorescent protein (Raji/Luc-GFP in NSG mice with similar or better reactivity than CD19 CAR T cells. Lym-1 CAR transduction of T cells is a promising immunotherapy for patients with Lym-1 epitope positive B-cell malignancies.

  7. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies.

    Science.gov (United States)

    Hay, Kevin A; Turtle, Cameron J

    2017-03-01

    Adoptive immunotherapy with chimeric antigen receptor-modified (CAR)-T cells is a rapidly growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the clinical success of CD19-targeted CAR-T cell therapy in B-cell acute lymphoblastic leukemia, and the promising data in B-cell non-Hodgkin's lymphoma and chronic lymphocytic leukemia. Despite the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some of these challenges may be overcome will help guide the development of CAR-T cell therapy for malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers.

  8. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A [Maryland

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explains how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.

  9. Characterization of the T cell repertoire by deep T cell receptor sequencing in tissues and blood from patients with advanced colorectal cancer.

    Science.gov (United States)

    Tamura, Kenji; Hazama, Shoichi; Yamaguchi, Rui; Imoto, Seiya; Takenouchi, Hiroko; Inoue, Yuka; Kanekiyo, Shinsuke; Shindo, Yoshitaro; Miyano, Satoru; Nakamura, Yusuke; Kiyotani, Kazuma

    2016-06-01

    The aim of the present study was to characterize infiltrated T cell clones that define the tumor immune environment and are important in the response to treatment in patients with advanced colorectal cancer (CRC). In order to explore predictive biomarkers for the efficacy of immunochemotherapies, T cell receptor (TCR) repertoire analysis was performed using blood samples and tumor tissues obtained from patients with advanced CRC that had been treated with a combination of five-cancer peptide vaccines and oxaliplatin-based chemotherapy. The TCR-α/β complementary DNAs (cDNAs), prepared from the messenger RNAs (mRNAs) obtained from 17 tumor tissues and 39 peripheral blood mononuclear cells of 9 CRC patients at various time points, were sequenced. The oligoclonal enrichment of certain TCR sequences was identified in tumor tissues and blood samples; however, only a few TCR sequences with a frequency of >0.1% were commonly detected in pre- and post-treatment tumor tissues, or in post-treatment blood and tissue samples. The average correlation coefficients of the TCR-α and TCR-β clonotype frequencies between the post-treatment tumor tissues and blood samples were 0.023 and 0.035, respectively, and were much lower compared with the correlation coefficients of the TCR-α and TCR-β clonotype frequencies between pre- and post-treatment blood samples (0.430 and 0.370, respectively), suggesting that T cell populations in tumor tissues vary from those in blood. Although the sample size was small, a tendency for the TCR diversity in tumor tissues to drastically decrease during the treatment was indicated in two patients, who exhibited a longer progression-free survival time. The results of the present study suggest that TCR diversity scores in tissues may be a useful predictive biomarker for the therapeutic effect of immunochemotherapy for patients with advanced CRC.

  10. Shared fine specificity between T-cell receptors and an antibody recognizing a peptide/major histocompatibility class I complex

    DEFF Research Database (Denmark)

    Stryhn, A; Andersen, P S; Pedersen, L O

    1996-01-01

    Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC...... complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine...... each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T...

  11. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha

    Science.gov (United States)

    Hall, J.A.; Cannons, J.L.; Grainger, J.R.; Santos, L.M. Dos; Hand, T.W.; Naik, S.; Wohlfert, E.A.; Chou, D.B.; Oldenhove, G.; Robinson, M.; Grigg, M.E.; Kastenmayer, R.; Schwartzberg, P.L.; Belkaid, Y.

    2012-01-01

    SUMMARY Vitamin A and its metabolite, retinoic acid (RA), have recently been implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we show that RA is also required to elicit proinflammatory CD4+ helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) is the critical mediator of these effects. Strikingly, antagonism of RAR signaling and deficiency in RARα(Rara−/−) results in a cell autonomous CD4+ T cell activation defect. Altogether, these findings reveal a fundamental role for the RA/RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses. PMID:21419664

  12. Improving the efficacy and safety of engineered T cell therapy for cancer.

    Science.gov (United States)

    Shi, Huan; Liu, Lin; Wang, Zhehai

    2013-01-28

    Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires

    DEFF Research Database (Denmark)

    Strønen, Erlend; Toebes, Mireille; Kelderman, Sander

    2016-01-01

    Accumulating evidence suggests that clinically efficacious cancer immunotherapies are driven by T cell reactivity against DNA mutation-derived neoantigens. However, among the large number of predicted neoantigens, only a minority is recognized by autologous patient T cells, and strategies...... to broaden neoantigen-specific T cell responses are therefore attractive. We found that naïve T cell repertoires of healthy blood donors provide a source of neoantigen-specific T cells, responding to 11 of 57 predicted human leukocyte antigen (HLA)-A*02:01-binding epitopes from three patients. Many of the T...... a rationale for the use of such "outsourced" immune responses in cancer immunotherapy....

  14. Study of the CD3-associated T-cell receptors reveals further differences between T-cell acute lymphoblastic lymphoma and leukemia.

    Science.gov (United States)

    Gouttefangeas, C; Bensussan, A; Boumsell, L

    1990-02-15

    We show further differences between two clinically related entities, T-cell acute lymphoblastic leukemia (T-ALL) and lymphoblastic lymphoma (T-LL), by using several monoclonal antibodies (MoAbs) reacting with either constant or variable regions of T-cell receptors (TcR) alpha beta and gamma delta or with various CD molecules. We analyzed a panel of 15 T-ALL and 15 T-LL selected for their cell surface expression of the CD3 molecules. The results indicated that TcR gamma delta is more frequently used than TcR alpha beta in T-ALL (10 of the 15 patients tested). This is in contrast to the results obtained with T-LL where the vast majority expressed TcR alpha beta (13 of the 15 patients). These findings suggest that the leukemic cells could have a different origin in these two diseases. In addition, analysis of TcR variable regions expressed by the leukemic blasts showed that, in most cases, they had rearranged functional V delta 1 gene segments (8 of 11 patients), whereas in a unique case V delta 2 gene segment was used. Together, these results and those indicating that T-ALL cells coexpress the CD1a, b, and c molecules strengthen the possibility that although these leukemic cells express the CD3-TcR complex at their cell surface, their normal counterparts are not found in peripheral blood.

  15. Structure of the T cell receptor in a Ti alpha V beta 2, alpha V beta 8-positive T cell line

    DEFF Research Database (Denmark)

    Hou, X; Dietrich, J; Kuhlmann, J

    1994-01-01

    not known; however, it has been suggested that each TcR contains two Ti dimers. To gain insight into the structure of the TcR we constructed a Ti alpha V beta 2, alpha V beta 8-positive T cell line which expressed the endogenous human TiV beta 8 and the transfected mouse TiV beta 2 both in association......The T cell receptor (TcR) is composed of at least six different polypeptide chains consisting of the clonotypic Ti heterodimer (Ti alpha beta or Ti gamma delta) and the noncovalently associated CD3 chains (CD3 gamma delta epsilon zeta). The exact number of subunits constituting the TcR is still...... with the endogenous Ti alpha and CD3 chains at the cell surface. Preclearing experiments with radioiodinated cell lysate prepared with digitonin lysis buffer demonstrated that depleting the lysate of Ti alpha V beta 8 by immunoprecipitation with anti V beta 8 monoclonal antibody (mAb) did not reduce the amount of Ti...

  16. Conditional ablation of CD205+ conventional dendritic cells impacts the regulation of T-cell immunity and homeostasis in vivo.

    Science.gov (United States)

    Fukaya, Tomohiro; Murakami, Ryuichi; Takagi, Hideaki; Sato, Kaori; Sato, Yumiko; Otsuka, Haruna; Ohno, Michiko; Hijikata, Atsushi; Ohara, Osamu; Hikida, Masaki; Malissen, Bernard; Sato, Katsuaki

    2012-07-10

    Dendritic cells (DCs) are composed of multiple subsets that play a dual role in inducing immunity and tolerance. However, it is unclear how CD205(+) conventional DCs (cDCs) control immune responses in vivo. Here we generated knock-in mice with the selective conditional ablation of CD205(+) cDCs. CD205(+) cDCs contributed to antigen-specific priming of CD4(+) T cells under steady-state conditions, whereas they were dispensable for antigen-specific CD4(+) T-cell responses under inflammatory conditions. In contrast, CD205(+) cDCs were required for antigen-specific priming of CD8(+) T cells to generate cytotoxic T lymphocytes (CTLs) mediated through cross-presentation. Although CD205(+) cDCs were involved in the thymic generation of CD4(+) regulatory T cells (Tregs), they maintained the homeostasis of CD4(+) Tregs and CD4(+) effector T cells in peripheral and mucosal tissues. On the other hand, CD205(+) cDCs were involved in the inflammation triggered by Toll-like receptor ligand as well as bacterial and viral infections. Upon microbial infections, CD205(+) cDCs contributed to the cross-priming of CD8(+) T cells for generating antimicrobial CTLs to efficiently eliminate pathogens, whereas they suppressed antimicrobial CD4(+) T-cell responses. Thus, these findings reveal a critical role for CD205(+) cDCs in the regulation of T-cell immunity and homeostasis in vivo.

  17. Targeting oncogenic interleukin-7 receptor signalling with N-acetylcysteine in T cell acute lymphoblastic leukaemia.

    Science.gov (United States)

    Mansour, Marc R; Reed, Casie; Eisenberg, Amy R; Tseng, Jen-Chieh; Twizere, Jean-Claude; Daakour, Sarah; Yoda, Akinori; Rodig, Scott J; Tal, Noa; Shochat, Chen; Berezovskaya, Alla; DeAngelo, Daniel J; Sallan, Stephen E; Weinstock, David M; Izraeli, Shai; Kung, Andrew L; Kentsis, Alex; Look, A Thomas

    2015-01-01

    Activating mutations of the interleukin-7 receptor (IL7R) occur in approximately 10% of patients with T cell acute lymphoblastic leukaemia (T-ALL). Most mutations generate a cysteine at the transmembrane domain leading to receptor homodimerization through disulfide bond formation and ligand-independent activation of STAT5. We hypothesized that the reducing agent N-acetylcysteine (NAC), a well-tolerated drug used widely in clinical practice to treat acetaminophen overdose, would reduce disulfide bond formation, and inhibit mutant IL7R-mediated oncogenic signalling. We found that treatment with NAC disrupted IL7R homodimerization in IL7R-mutant DND-41 cells as assessed by non-reducing Western blot, as well as in a luciferase complementation assay. NAC led to STAT5 dephosphorylation and cell apoptosis at clinically achievable concentrations in DND-41 cells, and Ba/F3 cells transformed by an IL7R-mutant construct containing a cysteine insertion. The apoptotic effects of NAC could be rescued in part by a constitutively active allele of STAT5. Despite using doses lower than those tolerated in humans, NAC treatment significantly inhibited the progression of human DND-41 cells engrafted in immunodeficient mice. Thus, targeting leukaemogenic IL7R homodimerization with NAC offers a potentially effective and feasible therapeutic strategy that warrants testing in patients with T-ALL. © 2014 John Wiley & Sons Ltd.

  18. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation

    DEFF Research Database (Denmark)

    Kivisäkk, P; Trebst, C; Liu, Z

    2002-01-01

    It is believed that chemokines and their receptors are involved in trafficking of T-cells to the central nervous system (CNS). The aim of the current study was to define the expression on cerebrospinal fluid (CSF) T-cells of six chemokine receptors associated with trafficking to sites of inflamma......It is believed that chemokines and their receptors are involved in trafficking of T-cells to the central nervous system (CNS). The aim of the current study was to define the expression on cerebrospinal fluid (CSF) T-cells of six chemokine receptors associated with trafficking to sites...

  19. A practical approach to T-cell receptor cloning and expression.

    Directory of Open Access Journals (Sweden)

    Sébastien Wälchli

    Full Text Available Although cloning and expression of T-cell Receptors (TcRs has been performed for almost two decades, these procedures are still challenging. For example, the use of T-cell clones that have undergone limited expansion as starting material to limit the loss of interesting TcRs, must be weighed against the introduction of mutations by excess PCR cycles. The recent interest in using specific TcRs for cancer immunotherapy has, however, increased the demand for practical and robust methods to rapidly clone and express TcRs. Two main technologies for TcR cloning have emerged; the use of a set of primers specifically annealing to all known TcR variable domains, and 5'-RACE amplification. We here present an improved 5'-RACE protocol that represents a fast and reliable way to identify a TcR from 10(5 cells only, making TcR cloning feasible without a priori knowledge of the variable domain sequence. We further present a detailed procedure for the subcloning of TcRα and β chains into an expression system. We show that a recombination-based cloning protocol facilitates simple and rapid transfer of the TcR transgene into different expression systems. The presented comprehensive method can be performed in any laboratory with standard equipment and with a limited amount of starting material. We finally exemplify the straightforwardness and reliability of our procedure by cloning and expressing several MART-1-specific TcRs and demonstrating their functionality.

  20. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Torrado, Egidio; Fountain, Jeffrey J; Liao, Mingfeng; Tighe, Michael; Reiley, William W; Lai, Rachel P; Meintjes, Graeme; Pearl, John E; Chen, Xinchun; Zak, Daniel E; Thompson, Ethan G; Aderem, Alan; Ghilardi, Nico; Solache, Alejandra; McKinstry, K Kai; Strutt, Tara M; Wilkinson, Robert J; Swain, Susan L; Cooper, Andrea M

    2015-08-24

    CD4+ T cells mediate protection against Mycobacterium tuberculosis (Mtb); however, the phenotype of protective T cells is undefined, thereby confounding vaccination efforts. IL-27 is highly expressed during human tuberculosis (TB), and absence of IL-27R (Il27ra) specifically on T cells results in increased protection. IL-27R deficiency during chronic Mtb infection does not impact antigen-specific CD4+ T cell number but maintains programmed death-1 (PD-1), CD69, and CD127 expression while reducing T-bet and killer cell lectin-like receptor G1 (KLRG1) expression. Furthermore, T-bet haploinsufficiency results in failure to generate KLRG1+, antigen-specific CD4+ T cells, and in improved protection. T cells in Il27ra(-/-) mice accumulate preferentially in the lung parenchyma within close proximity to Mtb, and antigen-specific CD4+ T cells lacking IL-27R are intrinsically more fit than intact T cells and maintain IL-2 production. Improved fitness of IL-27R-deficient T cells is not associated with increased proliferation but with decreased expression of cell death-associated markers. Therefore, during Mtb infection, IL-27R acts intrinsically on T cells to limit protection and reduce fitness, whereas the IL-27R-deficient environment alters the phenotype and location of T cells. The significant expression of IL-27 in TB and the negative influence of IL-27R on T cell function demonstrate the pathway by which this cytokine/receptor pair is detrimental in TB. © 2015 Torrado et al.

  1. GLYCAN-DIRECTED CAR-T CELLS.

    Science.gov (United States)

    Steentoft, Catharina; Migliorini, Denis; King, Tiffany R; Mandel, Ulla; June, Carl H; Posey, Avery D

    2018-01-23

    Cancer immunotherapy is rapidly advancing in the treatment of a variety of hematopoietic cancers, including pediatric acute lymphoblastic leukemia and diffuse large B cell lymphoma, with chimeric antigen receptor (CAR)-T cells. CARs are genetically encoded artificial T cell receptors that combine the antigen specificity of an antibody with the machinery of T cell activation. However, implementation of CAR technology in the treatment of solid tumors has been progressing much slower. Solid tumors are characterized by a number of challenges that need to be overcome, including cellular heterogeneity, immunosuppressive tumor microenvironment (TME), and, in particular, few known cancer-specific targets. Post-translational modifications that differentially occur in malignant cells generate valid cell surface, cancer-specific targets for CAR-T cells. We previously demonstrated that CAR-T cells targeting an aberrant O-glycosylation of MUC1, a common cancer marker associated with changes in cell adhesion, tumor growth, and poor prognosis, could control malignant growth in mouse models. Here, we discuss the field of glycan-directed CAR-T cells and review the different classes of antibodies specific for glycan-targeting, including the generation of high affinity O-glycopeptide antibodies. Finally, we discuss historic and recently investigated glycan targets for CAR-T cells and provide our perspective on how targeting the tumor glycoproteome and/or glycome will improve CAR-T immunotherapy. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Histamine type I (H1) receptor radioligand binding studies on normal T cell subsets, B cells, and monocytes

    International Nuclear Information System (INIS)

    Cameron, W.; Doyle, K.; Rocklin, R.E.

    1986-01-01

    A single, specific binding site for [ 3 H]pyrilamine on normal human T helper, T suppressor, B cells, and monocytes was documented. The binding of the radioligand to its receptor is reversible with cold H 1 antagonist, saturates at 40 to 60 nM, and binding equilibrium is achieved in 2 to 4 min. Using a computer program (Ligand), the authors calculated the dissociation constants, binding capacities, and numbers of receptors per cell for each of the different cell types. Monocytes were found to have the highest affinity for [ 3 H]pyrilamine, followed by T helper cells, B cells and T suppressor cells (K/sub D/ = 44.6 +/- 49.4 nM). T suppressor cells were found to express the higher number of H 1 receptors per cell followed by B cells, T helper cells, and monocytes. The binding affinity for [ 3 H]pyrilamine increased over a 48-hr period, whereas the number of receptors per T cell was essentially unchanged. In contrast, T cells stimulated with Con A or PHA were shown to have a greater than fourfold increase in the number of receptors per cell, whereas the binding affinity for [ 3 H]pyrilamine decreased over the 48-hr period. Although the function of H 1 receptors on T cells, B cells, and monocytes has not been completely defined, this receptor has the potential of playing an important role in the modulating the immune response

  3. The t(10;14)(q24;q11) of T-cell acute lymphoblastic leukemia juxtaposes the δT-cell receptor with TCL3, a conserved and activated locus at 10q24

    International Nuclear Information System (INIS)

    Zutter, M.; Hockett, R.D.; Roberts, C.W.M.; McGuire, E.A.; Bloomstone, J.; Korsmeyer, S.J.; Morton, C.C.; Deaven, L.L.; Crist, W.M.; Carroll, A.J.

    1990-01-01

    The authors cloned the t(10;14) recurrent translocation from CD3-negative T-cell acute lymphoblastic leukemia cells. The breakpoint at 14q11 involved an intermediate rearrangement of the δ T-cell receptor locus, suggesting that the translocation arose at the time of antigen receptor assemblage. Translocation introduced chromosome segment 10q24 as proven by hybridization of a breakpoint-derived probe to flow-sorted chromosomes and metaphase chromosomes. Two t(10;14) breakpoints were clustered within a 600-base-pair region of 10q24 but no heptamer-spacer-nonamer motifs resembling T-cell receptor/immunoglobulin rearrangement signals were noted at the breakpoint. A locus distinct from terminal deoxynucleotidyltransferase was found at 10q24. Evolutionarily conserved regions surrounding the 10q24 breakpoint were examined for transcriptional activity. A region telomeric to the 10q24 breakpoint, expected to translocate to the der(14) chromosome, recognized an abundant 2.9-kilobase RNA in a t(10;14) T-cell leukemia. This locus was not active in a variety of other normal and neoplastic T cells, arguing that it was deregulated by he introduction of the T-cell receptor. This locus is a candidate for a putative protooncogene, TCL3, involved in T-cell neoplasia

  4. The role of molecular analysis of immunoglobulin and T cell receptor gene rearrangements in the diagnosis of lymphoproliferative disorders

    NARCIS (Netherlands)

    Langerak, AW; van Krieken, JHJM; Wolvers-Tettero, ILM; Kerkhof, E; Mulder, AH; Vrints, LWMA; Coebergh, JW; Schuuring, E; Kluin, PM; van Dongen, JJM

    Aims-To investigate whether the analysis of immunoglobulin (Ig)/T cell receptor (TCR) rearrangements is useful in the diagnosis of lymphoproliferative disorders. Methods-In a series of 107 consecutive cases with initial suspicion of non-Hodgkin's lymphoma (NHL), Southern blot (SB) analysis of Ig/TCR

  5. N-terminal truncated human RAG1 proteins can direct T-cell receptor but not immunoglobulin gene rearrangements

    NARCIS (Netherlands)

    J.G. Noordzij; N.S. Verkaik (Nicole); N.G. Hartwig (Nico); R. de Groot (Ronald); D.C. van Gent (Dik); J.J.M. van Dongen (Jacques)

    2000-01-01

    textabstractThe proteins encoded by RAG1 and RAG2 can initiate gene recombination by site-specific cleavage of DNA in immunoglobulin and T-cell receptor (TCR) loci. We identified a new homozygous RAG1 gene mutation (631delT) that leads to a premature stop codon in the

  6. Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in T-cell receptor repertoire development

    NARCIS (Netherlands)

    X. Yu (Xiaomin); J.R. Almeida (Jorge); S. Darko (Sam); M. van der Burg (Mirjam); S.S. Deravin (Suk See); H. Malech (Harry); A.R. Gennery (Andrew); I. Chinn (Ivan); M.L. Markert (Mary Louise); D.C. Douek (Daniel ); J.D. Milner (Joshua)

    2014-01-01

    textabstractBackground Human immunodeficiencies characterized by hypomorphic mutations in critical developmental and signaling pathway genes allow for the dissection of the role of these genes in the development of the T-cell receptor (TCR) repertoire and the correlation of alterations of the TCR

  7. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains

    DEFF Research Database (Denmark)

    Lefranc, Marie-Paule; Pommié, Christelle; Kaas, Quentin

    2005-01-01

    IMGT, the international ImMunoGeneTics information system (http://imgt.cines.fr) provides a common access to expertly annotated data on the genome, proteome, genetics and structure of immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins...

  8. Chimeric Antigen Receptor (CAR) T cells: Lessons Learned from Targeting of CD19 in B cell malignancies

    Science.gov (United States)

    Hay, Kevin A; Turtle, Cameron J

    2017-01-01

    Adoptive immunotherapy with chimeric antigen receptor-modified T (CAR-T) cells is a rapidly growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the clinical success of CD19-targeted CAR-T therapy in B-cell acute lymphoblastic leukemia, and the promising data in B-cell non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Despite the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some of these challenges may be overcome will help guide the development of CAR-T cell therapy for malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers. PMID:28110394

  9. CD8+ T cells in cutaneous T-cell lymphoma: expression of cytotoxic proteins, Fas Ligand, and killing inhibitory receptors and their relationship with clinical behavior

    NARCIS (Netherlands)

    Vermeer, M. H.; van Doorn, R.; Dukers, D.; Bekkenk, M. W.; Meijer, C. J.; Willemze, R.

    2001-01-01

    We investigated the number, phenotype, and prognostic significance of CD8+ T cells in patients with mycosis fungoides (MF) and CD30- primary cutaneous large T-cell lymphoma (PCLTCL). Immunohistochemical stainings for CD8, granzyme B (GrB), T cell-restricted intracellular antigen (TIA-1), Fas ligand

  10. Crystal structure of a Gammadelta T-cell Receptor Specific for the Human MHC class I Homolog MICA

    Energy Technology Data Exchange (ETDEWEB)

    B Xu; J Pizarro; M Holmes; C McBeth; V Groh; T Spies; R Strong

    2011-12-31

    {gamma}{delta} T cells play important roles in bridging innate and adaptive immunity, but their recognition mechanisms remain poorly understood. Human {gamma}{delta} T cells of the V{sub {delta}}1 subset predominate in intestinal epithelia and respond to MICA and MICB (MHC class I chain-related, A and B; MIC) self-antigens, mediating responses to tumorigenesis or viral infection. The crystal structure of an MIC-reactive V{sub {delta}}1 {gamma}{delta} T-cell receptor (TCR) showed expected overall structural homology to antibodies, {alpha}{beta}, and other {gamma}{delta} TCRs, but complementary determining region conformations and conservation of V{sub {delta}}1 use revealed an uncharacteristically flat potential binding surface. MIC, likewise, serves as a ligand for the activating immunoreceptor natural killer group 2, D (NKG2D), also expressed on {gamma}{delta} T cells. Although MIC recognition drives both the TCR-dependent stimulatory and NKG2D-dependent costimulatory signals necessary for activation, interaction analyses showed that MIC binding by the two receptors was mutually exclusive. Analysis of relative binding kinetics suggested sequential recognition, defining constraints for the temporal organization of {gamma}{delta} T-cell/target cell interfaces.

  11. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  12. Use of Murine CXCR-4 as a Second Receptor by Some T-Cell-Tropic Human Immunodeficiency Viruses

    Science.gov (United States)

    Parolin, Cristina; Borsetti, Alessandra; Choe, Hyeryun; Farzan, Michael; Kolchinsky, Peter; Heesen, Michael; Ma, Qing; Gerard, Craig; Palú, Giorgio; Dorf, Martin E.; Springer, Timothy; Sodroski, Joseph

    1998-01-01

    The human CXCR-4 molecule serves as a second receptor for primary, T-cell-tropic, and laboratory-adapted human immunodeficiency virus type 1 (HIV-1) isolates. Here we show that murine CXCR-4 can support the entry of some of these HIV-1 isolates. Differences between mouse and human CXCR-4 in the ability to function as an HIV-1 receptor are determined by sequences in the second extracellular loop of the CXCR-4 protein. PMID:9445072

  13. Gene transfer of MHC-restricted receptors

    NARCIS (Netherlands)

    Kessels, Helmut W. H. G.; Wolkers, Monika C.; Schumacher, Ton N. M.

    2005-01-01

    Adoptive therapy with allogeneic or tumor-specific T-cells has shown substantial clinical effects for several human tumors, but the widespread application of this strategy remains a daunting task. The antigen specificity of T-lymphocytes is solely determined by the T-cell receptor (TCR) alpha and

  14. Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles

    DEFF Research Database (Denmark)

    Lima, K; Abrahamsen, Gitte Meldgaard; Foelling, I

    2010-01-01

    Thymic hypoplasia is a frequent feature of the 22q11.2 deletion syndrome, but we know little about patients' age-related thymic output and long-term consequences for their immune system. We measured the expression of T cell receptor rearrangement excision circles (TREC) and used flow cytometry...... for direct subtyping of recent thymic emigrant (RTE)-related T cells in 43 patients (aged 1-54 years; median 9 years) from all over Norway and in age-matched healthy controls. Thymic volumes were estimated by ultrasound in patients. TREC levels correlated well with RTE-related T cells defined by co......-expression of CD3, CD45RA and CCR9 (r=0.84) as well as with the CD4+ and CD8+ T cell subtypes. RTE-related T cell counts also paralleled age-related TREC reductions. CD45RA+ T cells correlated well with absolute counts of CD4+ (r=0.87) and CD8+ (r=0.75) RTE-related T cells. Apart from CD45RA- T cells, all T cell...

  15. Tumor Necrosis Factor Receptor 2 Restricts the Pathogenicity of CD8(+) T Cells in Mice With Colitis.

    Science.gov (United States)

    Punit, Shivesh; Dubé, Philip E; Liu, Cambrian Y; Girish, Nandini; Washington, M Kay; Polk, D Brent

    2015-10-01

    Tumor necrosis factor receptor 2 (TNFR2, Tnfrsf1b) regulates multiple aspects of immune function, but little is known about its role in the immunopathogenesis of inflammatory bowel disease (IBD). We investigated whether TNFR2 restricts the activity of specific immune cell subtypes to protect against the development of colitis in mice. Tnfr2(-/-) mice were crossed with interleukin (Il) 10(-/-) mice, which spontaneously develop colitis, to generate Il10(-/-)Tnfr2(-/-) mice. Colonic tissues were collected from Il10(-/-)Tnfr2(-/-) mice along with Il10(-/-) mice (controls) and analyzed by flow cytometry and histology. Bone marrow was transplanted into Il10(-/-) and Il10(-/-)Tnfr2(-/-) mice from Il10(-/-) or Il10(-/-)Tnfr2(-/-) donors by intravenous injection. CD8(+) T cells were neutralized in Il10(-/-)Tnfr2(-/-) mice by intraperitoneal injection of anti-CD8 or isotype control antibodies. Colitis was induced in Rag2(-/-) mice by intravenous injections of naïve CD8(+) T cells isolated from C57BL/6 or Tnfr2(-/-) mice. Il10(-/-)Tnfr2(-/-) mice spontaneously developed more severe colitis compared with Il10(-/-) controls, characterized by selective expansion of colonic CD8(+) T cells. Transplantation of TNFR2-deficient bone marrow resulted in significantly increased incidence and severity of colitis. Transcriptome analyses showed that the expression of genes regulated by TNFR2 were specific to CD8(+) T cells and included genes associated with risk for IBD. Depletion of CD8(+) T cells from Il10(-/-)Tnfr2(-/-) mice prevented colonic inflammation. Adoptive transfer of TNFR2-null naïve CD8(+) T cells compared with CD8(+) T cells from control mice increased the severity of colitis that developed in Rag2(-/-) mice. TNFR2 protects mice from colitis by inhibiting the expansion of colonic CD8(+) T cells. TNFR2 regulates expression of genes that regulate CD8(+) T cells and have been associated with susceptibility to IBD. Disruption in TNFR2 signaling might therefore be associated

  16. Generation and reactivation of T-cell receptor A joining region pseudogenes in primates

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.; Lanchbury, J.S. [Guy`s Hospital, London (United Kingdom); Otting, N. [Biomedical Primate Research Centre, Rijswijk (Netherlands)] [and others

    1996-06-01

    Tandemly duplicated T-cell receptor (Tcr) AJ (J{alpha}) segments contribute significantly to TCRA chain junctional region diversity in mammals. Since only limited data exists on TCRA diversity in nonhuman primates, we examined the TCRAJ regions of 37 chimpanzee and 71 rhesus macaque TCRA cDNA clones derived from inverse polymerase chain reaction on peripheral blood mononuclear cell cDNA of healthy animals. Twenty-five different TCRAJ regions were characterized in the chimpanzee and 36 in the rhesus macaque. Each bears a close structural relationship to an equivalent human TCRAJ region. Conserved amino acid motifs are shared between all three species. There are indications that differences between nonhuman primates and humans exist in the generation of TCRAJ pseudogenes. The nucleotide and amino acid sequences of the various characterized TCRAJ of each species are reported and we compare our results to the available information on human genomic sequences. Although we provide evidence of dynamic processes modifying TCRAJ segments during primate evolution, their repertoire and primary structure appears to be relatively conserved. 21 refs., 2 figs.

  17. Genetic variation in MHC proteins is associated with T cell receptor expression biases

    Science.gov (United States)

    Sharon, Eilon; Sibener, Leah V.; Battle, Alexis; Fraser, Hunter B.; Garcia, K. Christopher; Pritchard, Jonathan K.

    2016-01-01

    Within each individual, a highly diverse T cell receptor (TCR) repertoire interacts with peptides presented by major histocompatibility complex (MHC) molecules. Despite extensive research, it remains controversial whether germline-encoded TCR-MHC contacts promote TCR-MHC specificity and if so, whether there exist differences in TCR V-gene compatibilities with different MHC alleles. We applied eQTL mapping to test for associations between genetic variation and TCR V-gene usage in a large human cohort. We report strong trans associations between variation in the MHC locus and TCR V-gene usage. Fine mapping of the association signals reveals specific amino acids in MHC genes that bias V-gene usage, many of which contact or are spatially proximal to the TCR or peptide. Hence, these MHC variants, several of which are linked to autoimmune diseases, can directly affect TCR-MHC interaction. These results provide the first examples of trans-QTLs mediated by protein-protein interactions, and are consistent with intrinsic TCR-MHC specificity. PMID:27479906

  18. Genetic recombination within the human T-cell receptor α-chain gene complex

    International Nuclear Information System (INIS)

    Robinson, M.A.; Kindt, T.J.

    1987-01-01

    Genetic analyses of the human T-cell receptor (TCR) α-chain genes indicate that recombination events may occur frequently within this gene complex. Examination of the inheritance of restriction fragment length polymorphisms (RFLP) detected by using probes for constant or variable region gene segments made it possible to assign TCRα haplotypes to the 16 parents and 43 offspring of eight families studied. A total of six RFLP, three for the constant region and three for variable region segments, were examined in the present studies. Most enzyme and probe combinations tested revealed no polymorphism and those finally selected for the study showed limited polymorphism in that only two or, in one case, three allelic forms of the gene were seen. In spite of limited variability at this level, extensive heterogeneity was observed for the combinations of markers present in haplotypes, suggesting that frequent recombination events have occurred. Most strikingly, multiple combinations of RFLP occurring in close proximity of the TCRα constant region gene were observed in this study. A high recombination frequency for the TCRα gene complex is further supported by the observation that two children, one in each of two families, inherited recombinant TCRα haplotypes

  19. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation.

    Science.gov (United States)

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2018-01-01

    The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell-target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

  20. How a T Cell Receptor-like Antibody Recognizes Major Histocompatibility Complex-bound Peptide

    Energy Technology Data Exchange (ETDEWEB)

    Mareeva, T.; Martinez-Hackert, E; Sykulev, Y

    2008-01-01

    We determined the crystal structures of the T cell receptor (TCR)-like antibody 25-D1.16 Fab fragment bound to a complex of SIINFEKL peptide from ovalbumin and the H-2Kb molecule. Remarkably, this antibody directly 'reads' the structure of the major histocompatibility complex (MHC)-bound peptide, employing the canonical diagonal binding mode utilized by most TCRs. This is in marked contrast with another TCR-like antibody, Hyb3, bound to melanoma peptide MAGE-A1 in association with HLA-A1 MHC class I. Hyb3 assumes a non-canonical orientation over its cognate peptide-MHC and appears to recognize a conformational epitope in which the MHC contribution is dominant. We conclude that TCR-like antibodies can recognize MHC-bound peptide via two different mechanisms: one is similar to that exploited by the preponderance of TCRs and the other requires a non-canonical antibody orientation over the peptide-MHC complex.

  1. T-cell receptor activator of nuclear factor-κB ligand/osteoprotegerin imbalance is associated with HIV-induced bone loss in patients with higher CD4+ T-cell counts.

    Science.gov (United States)

    Titanji, Kehmia; Vunnava, Aswani; Foster, Antonina; Sheth, Anandi N; Lennox, Jeffrey L; Knezevic, Andrea; Shenvi, Neeta; Easley, Kirk A; Ofotokun, Ighovwerha; Weitzmann, M Neale

    2018-04-24

    Higher incidence of osteopenia and osteoporosis underlie increased rates of fragility fracture in HIV infection. B cells are a major source of osteoprotegerin (OPG), an inhibitor of the key osteoclastogenic cytokine receptor activator of nuclear factor-κB ligand (RANKL). We previously showed that higher B-cell RANKL/OPG ratio contributes to HIV-induced bone loss. T-cell OPG production in humans, however, remains undefined and the contribution of T-cell OPG and RANKL to HIV-induced bone loss has not been explored. We investigated T-cell OPG and RANKL production in ART-naive HIV-infected and uninfected individuals in relation to indices of bone loss in a cross-sectional study. T-cell RANKL and OPG production was determined by intracellular staining and flow cytometry, and plasma levels of bone resorption markers were determined by ELISA. We demonstrate for the first time in-vivo human T-cell OPG production, which was significantly lower in HIV-infected individuals and was coupled with moderately higher T-cell RANKL production, resulting in a significantly higher T-cell RANKL/OPG ratio. T-cell RANKL/OPG ratio correlated significantly with BMD-derived z-scores at the hip, lumbar spine and femur neck in HIV-infected individuals with CD4 T-cell counts at least 200 cells/μl but not in those with lower counts. Our data suggest that T cells may be a physiologically relevant source of OPG and T-cell RANKL/OPG imbalance is associated with HIV-induced bone loss in CD4 T-cell-sufficient patients. Both B and T lymphocytes may thus contribute to HIV-induced bone loss.

  2. Uncoupling of T Cell Receptor Zeta Chain Function during the Induction of Anergy by the Superantigen, Staphylococcal Enterotoxin A

    Directory of Open Access Journals (Sweden)

    William D. Cornwell

    2010-06-01

    Full Text Available Staphylococcus aureus enterotoxins have immunomodulatory properties. In this study, we show that Staphylococcal enterotoxin A (SEA induces a strong proliferative response in a murine T cell clone independent of MHC class II bearing cells. SEA stimulation also induces a state of hypo-responsiveness (anergy. We characterized the components of the T cell receptor (TCR during induction of anergy by SEA. Most interestingly, TCR zeta chain phosphorylation was absent under SEA anergizing conditions, which suggests an uncoupling of zeta chain function. We characterize here a model system for studying anergy in the absence of confounding costimulatory signals.

  3. The same self-peptide selects conventional and regulatory CD4+ T cells with identical antigen receptors

    OpenAIRE

    Wojciech, Lukasz; Ignatowicz, Alicja; Seweryn, Michal; Rempala, Grzegorz; Pabla, Simarjot Singh; McIndoe, Richard A.; Kisielow, Pawel; Ignatowicz, Leszek

    2014-01-01

    The role of the T cell receptor (TCR) in commitment of thymocytes to regulatory CD4+Foxp3+ and conventional CD4?Foxp3? T cell lineages remains controversial. According to the prevailing view, commitment to the former lineage, in contrast to the latter, requires that high affinity TCRs bind rare class II MHC/peptide complexes presented in ?thymic niches?, which could explain differences between their TCR repertoires. Here we challenge this view and show that the binding of identical TCRs to th...

  4. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment.

    Directory of Open Access Journals (Sweden)

    Keith R Miller

    Full Text Available A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2, with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with (64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.

  5. The Florida manatee (Trichechus manatus latirostris) T cell receptor loci exhibit V subgroup synteny and chain-specific evolution

    Science.gov (United States)

    Breaux, Breanna; Hunter, Margaret; Cruz-Schneider, Maria Paula; Sena, Leonardo; Bonde, Robert K.; Criscitiello, Michael F.

    2018-01-01

    The Florida manatee (Trichechus manatus latirostris) has limited diversity in the immunoglobulin heavy chain. We therefore investigated the antigen receptor loci of the other arm of the adaptive immune system: the T cell receptor. Manatees are the first species from Afrotheria, a basal eutherian superorder, to have an in-depth characterization of all T cell receptor loci. By annotating the genome and expressed transcripts, we found that each chain has distinct features that correlates to their individual functions. The genomic organization also plays a role in modulating sequence conservation between species. There were extensive V subgroup synteny blocks in the TRA and TRB loci between T. m. latirostrisand human. Increased genomic locus complexity correlated to increased locus synteny. We also identified evidence for a VHD pseudogene for the first time in a eutherian mammal. These findings emphasize the value of including species within this basal eutherian radiation in comparative studies.

  6. A gut-homing, oligoclonal CD4+ T cell population in severe-combined immunodeficient mice expressing a rearranged, transgenic class I-restricted alpha beta T cell receptor

    DEFF Research Database (Denmark)

    Reimann, J; Rudolphi, A; Spiess, S

    1995-01-01

    We studied the peripheral T cell compartment of H-2b severe combined immunodeficient (scid) mice that express a transgenic (tg) alpha beta T cell receptor (TcR) specific for the H-Y (male) epitope presented by the H-2 class I Db molecule. Large populations of CD3+ NK1.1-TCR beta T+ T cells were......R alpha T-beta T+ cells were found in gut tissues of the immunodeficient host. Transplanted scid mice developed clinical and histological signs of IBD. An oligoclonal, gut-homing, memory/effector CD4+ CD44+ TcR beta T+ TcR alpha T-T cell subset from leaky tg scid mice thus has a pathogenic potential when...

  7. CD19-Chimeric Antigen Receptor T Cells for Treatment of Chronic Lymphocytic Leukaemia and Acute Lymphoblastic Leukaemia

    DEFF Research Database (Denmark)

    Lorentzen, C L; thor Straten, Per

    2015-01-01

    Adoptive cell therapy (ACT) for cancer represents a promising new treatment modality. ACT based on the administration of cytotoxic T cells genetically engineered to express a chimeric antigen receptor (CAR) recognizing CD19 expressed by B cell malignancies has been shown to induce complete lasting...... responses in patients with chronic lymphocytic leukaemia (CLL) and acute lymphoblastic leukaemia (ALL). So far, eleven clinical trials including 99 CLL and ALL patients treated with CAR T cells targeting CD19 have been published, and the results from these trials are promising with impressive clinical...... responses in heavily pretreated patients. Thus, CAR T cell therapy has induced complete responses in both CLL and ALL, and surprisingly, current results indicate that patients with ALL are more prone to respond than are CLL patients. Importantly, the majority of CAR cell studies have observed severe therapy...

  8. Association of the human CD3-zeta chain with the alpha beta-T cell receptor/CD3 complex. Clues from a T cell variant with a mutated T cell receptor-alpha chain

    DEFF Research Database (Denmark)

    Geisler, C; Schøller, J; Wahi, M A

    1990-01-01

    of the various components of this multimeric protein complex are not fully understood. In this report, a variant of the human leukemic T cell line Jurkat that synthesized all of the known components of the TCR/CD3 complex but fails to express the TCR/CD3 complex at the cell surface is further characterized...

  9. Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer.

    Science.gov (United States)

    Tchou, Julia; Zhao, Yangbing; Levine, Bruce L; Zhang, Paul J; Davis, Megan M; Melenhorst, Jan Joseph; Kulikovskaya, Irina; Brennan, Andrea L; Liu, Xiaojun; Lacey, Simon F; Posey, Avery D; Williams, Austin D; So, Alycia; Conejo-Garcia, Jose R; Plesa, Gabriela; Young, Regina M; McGettigan, Shannon; Campbell, Jean; Pierce, Robert H; Matro, Jennifer M; DeMichele, Angela M; Clark, Amy S; Cooper, Laurence J; Schuchter, Lynn M; Vonderheide, Robert H; June, Carl H

    2017-12-01

    Chimeric antigen receptors (CAR) are synthetic molecules that provide new specificities to T cells. Although successful in treatment of hematologic malignancies, CAR T cells are ineffective for solid tumors to date. We found that the cell-surface molecule c-Met was expressed in ∼50% of breast tumors, prompting the construction of a CAR T cell specific for c-Met, which halted tumor growth in immune-incompetent mice with tumor xenografts. We then evaluated the safety and feasibility of treating metastatic breast cancer with intratumoral administration of mRNA-transfected c-Met-CAR T cells in a phase 0 clinical trial (NCT01837602). Introducing the CAR construct via mRNA ensured safety by limiting the nontumor cell effects (on-target/off-tumor) of targeting c-Met. Patients with metastatic breast cancer with accessible cutaneous or lymph node metastases received a single intratumoral injection of 3 × 10 7 or 3 × 10 8 cells. CAR T mRNA was detectable in peripheral blood and in the injected tumor tissues after intratumoral injection in 2 and 4 patients, respectively. mRNA c-Met-CAR T cell injections were well tolerated, as none of the patients had study drug-related adverse effects greater than grade 1. Tumors treated with intratumoral injected mRNA c-Met-CAR T cells were excised and analyzed by immunohistochemistry, revealing extensive tumor necrosis at the injection site, cellular debris, loss of c-Met immunoreactivity, all surrounded by macrophages at the leading edges and within necrotic zones. We conclude that intratumoral injections of mRNA c-Met-CAR T cells are well tolerated and evoke an inflammatory response within tumors. Cancer Immunol Res; 5(12); 1152-61. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Aminobisphosphonates and Toll-like receptor ligands: recruiting Vγ9Vδ2 T cells for the treatment of hematologic malignancy.

    Science.gov (United States)

    Kalyan, S; Wesch, D; Kabelitz, D

    2011-01-01

    Gamma delta (γδ) T cells are intrinsically important for preventing the development and progression of hematologic cancers. These innate T cells are particularly suited for the application of cancer therapy due to the fact they: 1) recognize transformed cells independent of antigen processing or presentation by classical MHC molecules, and 2) embody the anti-tumour effector functions of both NK cells and cytotoxic T cells. It was serendipitously discovered that aminobisphosphonates (ABP), a class of drugs used as adjuvant cancer therapy for the treatment of malignant osteolytic bone disease, have the unexpected side-effect of potently activating the antitumour effector functions of human peripheral γδ T cells. Such beneficial therapeutic synergisms are rare, and no time has been wasted to determine how to best harness the anti-cancer potential of γδ T cells and ABP. Despite promising experimental results, the full clinical potential of this immunotherapeutic strategy has been hampered by the subversive strategies employed by cancer cells to obstruct activation of anti-tumour immune responses. These include the promotion of regulatory T cells (Tregs) that maintain tumour tolerance and the corruption of dendritic cell (DC) function and maturation. Toll-like receptor (TLR) agonists have a long history of breaking free of tumour-induced immune-suppression by resetting DC function and abrogating Treg induced tolerance. This review presents data to support the notion that TLR signalling may perfectly complement the anti-tumour synergy of ABP and activated γδ T cells, and this combined innate artillery could provide the necessary ammunition to topple malignancy's stronghold on the immune system.

  11. Increased replication of T-cell-tropic HIV strains and CXC-chemokine receptor-4 induction in T cells treated with macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES beta-chemokines.

    Science.gov (United States)

    Dolei, A; Biolchini, A; Serra, C; Curreli, S; Gomes, E; Dianzani, F

    1998-01-22

    To study, in T-lymphoid cells, the effects of macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES beta-chemokines on the replication of T-cell-tropic HIV-1 strains, since it has been reported that beta-chemokines interfere with the replication of macrophage-tropic HIV-1 strains, but not T-cell-tropic strains. Freshly phytohaemagglutinin (PHA)-activated peripheral blood lymphocytes (PBL) and cultured PHA-activated T cells from healthy volunteers, as well as the C8166 T-cell line, were treated overnight with beta-chemokines before infection with T-cell-tropic HIV-1 isolates, or human T-lymphotropic virus type IIIB. HIV replication was followed by detecting the production of infectious particles, p24 antigen, and viral sequences. CXC-chemokine receptor (CXCR)-4 expression was followed by detection and quantification of specific transcripts. Pretreatment of T cells with MIP-1alpha, MIP-1beta and RANTES affected T-cell-tropic strains, increased the replication of HIV-1beta and HIV-1RPdT strains dose-dependently, as well as virus absorption and provirus DNA accumulation. These findings were associated with increased accumulation of CXCR-4 transcripts, and mediated by the protein tyrosine kinase signalling. Moreover, beta-chemokines stimulated PBL proliferation. Beta-chemokines increase the adsorption and replication of at least some T-cell-tropic HIV-1 strains, and this is related to stimulated expression of the CXCR-4 coreceptor.

  12. Regulation by anti-CD2 monoclonal antibody of the activation of a human T cell clone induced by anti-CD3 or anti-T cell receptor antibodies

    NARCIS (Netherlands)

    Yssel, H.; Aubry, J. P.; de Waal Malefijt, R.; de Vries, J. E.; Spits, H.

    1987-01-01

    In this study the effect of anti-cluster designation (CD) 2 monoclonal antibodies (mAb) on the activation of a cloned human T cell line, HY837, after triggering the CD3/T cell receptor (TcR) complex by anti-CD3 or anti-TcR mAb is described. HY837, which reacts with a series of mAb directed at

  13. Involvement of CD244 in regulating CD4+ T cell immunity in patients with active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bingfen Yang

    Full Text Available CD244 (2B4 is a member of the signaling lymphocyte activation molecule (SLAM family of immune cell receptors and it plays an important role in modulating NK cell and CD8(+ T cell immunity. In this study, we investigated the expression and function of CD244/2B4 on CD4(+ T cells from active TB patients and latent infection individuals. Active TB patients had significantly elevated CD244/2B4 expression on M. tuberculosis antigen-specific CD4(+ T cells compared with latent infection individuals. The frequencies of CD244/2B4-expressing antigen-specific CD4(+ T cells were significantly higher in retreatment active TB patients than in new active TB patients. Compared with CD244/2B4-dull and -middle CD4(+ T cells, CD244/2B4-bright CD4(+ T cell subset had significantly reduced expression of IFN-γ, suggesting that CD244/2B4 expression may modulate IFN-γ production in M. tuberculosis antigen-responsive CD4(+ T cells. Activation of CD244/2B4 signaling by cross-linking led to significantly decreased production of IFN-γ. Blockage of CD244/2B4 signaling pathway of T cells from patients with active TB resulted in significantly increased production of IFN-γ, compared with isotype antibody control. In conclusion, CD244/2B4 signaling pathway has an inhibitory role on M. tuberculosis antigen-specific CD4(+ T cell function.

  14. Regulated expression and binding of three VLA (β1) integrin receptors on T cells

    Science.gov (United States)

    Shimizu, Yoji; van Seventer, Gijs A.; Horgan, Kevin J.; Shaw, Stephen

    1990-05-01

    REGULATED adhesion of T cells to extracellular matrix (ECM) proteins is likely to be essential in T cell migration. Constitutive binding of various other cell types to ECM components is mediated by members of the VLA (very late antigen) subfamily of integrins1-4. We describe here the regulated binding of resting CD4+ human T cells to ECM through three VLA integrins: VLA-4 (refs 5, 6) and VLA-5 (réf. 7) binding to fibronectin (FN), and a novel pathway of VLA-6 binding to laminin (LN). Binding to ECM is regulated in two ways. First, unlike other VLA-mediated interactions, VLA binding activity of the T cells is rapidly and dramatically augmented with cell activation without change in level of expression of the VLA molecules. Second, binding is regulated with T-cell differentiation ; memory T cells express three- to fourfold more VLA-4, VLA-5, and VLA-6 than do naive cells, and bind more efficiently through them to FN and LN.

  15. Kinetics of T cell receptor β, γ, and δ rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44+CD25+ Pro-T thymocytes

    Science.gov (United States)

    Capone, Myriam; Hockett, Richard D.; Zlotnik, Albert

    1998-01-01

    We performed a comprehensive analysis of T cell receptor (TCR) γ rearrangements in T cell precursors of the mouse adult thymus. Using a sensitive quantitative PCR method, we show that TCRγ rearrangements are present in CD44+CD25+ Pro-T thymocytes much earlier than expected. TCRγ rearrangements increase significantly from the Pro-T to the CD44−CD25+ Pre-T cell transition, and follow different patterns depending on each Vγ gene segment, suggesting that ordered waves of TCRγ rearrangement exist in the adult mouse thymus as has been described in the fetal mouse thymus. Recombinations of TCRγ genes occur concurrently with TCRδ and D-Jβ rearrangements, but before Vβ gene assembly. Productive TCRγ rearrangements do not increase significantly before the Pre-T cell stage and are depleted in CD4+CD8+ double-positive cells from normal mice. In contrast, double-positive thymocytes from TCRδ−/− mice display random proportions of TCRγ rearranged alleles, supporting a role for functional TCRγ/δ rearrangements in the γδ divergence process. PMID:9770518

  16. T3 glycoprotein is functional although structurally distinct on human T-cell receptor gamma T lymphocytes.

    OpenAIRE

    Krangel, M S; Bierer, B E; Devlin, P; Clabby, M; Strominger, J L; McLean, J; Brenner, M B

    1987-01-01

    The T-cell receptor (TCR) gamma gene product occurs in association with T3 (CD3) polypeptides on the surface of human T lymphocytes. TCR gamma lymphocytes express arrays of T3 polypeptides distinct from those typically observed on TCR alpha beta lymphocytes. This report demonstrates that identical T3 gamma, delta, and epsilon polypeptides are synthesized by TCR gamma lymphocytes and TCR alpha beta lymphocytes. However, the processing of T3 delta oligosaccharides is distinct in the two cell ty...

  17. A preliminary study measuring the number of T-cell receptor-rearrangement excision circles (TRECs) in peripheral blood T-cell populations of A-bomb survivors and control populations

    International Nuclear Information System (INIS)

    Kubo, Yoshiko; Yamaoka, Mika; Kusunoki, Yoichiro

    2006-01-01

    More than a half century after damage of the immune systems by the radiation from A-bomb, we can still observe significant decreases in the percentages of naieve CD4 and CD8 T cells among the survivors. To investigate whether the observed decreases in the naieve T-cell populations may have resulted from reduction in thymic T-cell production ability of survivors, we established a real-time polymerase chain reaction (PCR) method to examine the number of T-cell receptor-rearrangement excision circles (TRECs) in peripheral blood CD4 and CD8 T-cell populations. The real-time PCR quantitatively detected TREC sequences with a good reproducibility in human laboratory controls. In the 445 survivors so far been examined, multiple regression analysis indicated that the number of TRECs in the CD4 T-cell fraction was significantly higher in females than in males and decreased significantly with age in both males and females. This analysis also suggested a possible dose-dependent decrease in the number of TRECs in the CD4 T-cell fraction of the survivors who were less than 20 years of age at the time of bombing (p=0.09). A similar statistically significant trend for gender difference or age was observed in the CD8 T-cell fraction of the survivors. However, there was no effect of radiation exposure on the number of TRECs in the CD8-T cell fraction. The results indicate the possibility that A-bomb radiation exposure may have induced a long-term impairment in thymic CD4 T-cell production. Further investigations in a larger study population are necessary to test this hypothesis. (author)

  18. Chimeric antigen receptor (CAR-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    Directory of Open Access Journals (Sweden)

    Bipulendu Jena

    Full Text Available Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63. We describe a novel anti-idiotype monoclonal antibody (mAb to detect CD19-specific CAR(+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1 was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+ tumor targets. This clone can be used to detect CD19-specific CAR(+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1 will be useful to investigators implementing CD19-specific CAR(+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  19. Diversity, molecular characterization and expression of T cell receptor γ in a teleost fish, the sea bass (Dicentrarchus labrax, L.

    Directory of Open Access Journals (Sweden)

    Francesco Buonocore

    Full Text Available Two lineages of T cells, expressing either the αβ T cell receptor (TR or the γδ TR, exist in Gnathostomes. The latter type of T cells account for 1-10 % of T cells in blood and up to 30 % in the small intestine. They may recognize unconventional antigens (phosphorylated microbial metabolites, lipid antigens without the need of major histocompatibility class I (MH1 or class II (MH2 presentation. In this work we have described cloning and structural characterization of TR -chain (TRG from the teleost Dicentrarchus labrax. Further, by means of quantitative PCR analysis, we analyzed TRG expression levels both in poly I:C stimulated leukocytes in vitro, and following infection with betanodavirus in vivo. Two full length cDNAs relative to TRG, with the highest peptide and nucleotide identity with Japanese flounder, were identified. A multiple alignment analysis showed the conservation of peptides fundamental for TRG biological functions, and of the FGXG motif in the FR4 region, typical of most TR and immunoglobulin light chains. A 3D structure consisting of two domains mainly folded as beta strands with a sandwich architecture for each domain was also reported. TRG CDR3 of 8-18 AA in length and diversity in the TRG rearrangements expressed in thymus and intestine for a given V/C combination were evidenced by junction length spectratyping. TRG mRNA expression levels were high in basal conditions both in thymus and intestine, while in kidney and gut leukocytes they were up-regulated after in vitro stimulation by poly I:C. Finally, in juveniles the TRG expression levels were up-regulated in the head kidney and down-regulated in intestine after in vivo infection with betanodavirus. Overall, in this study the involvement of TRG-bearing T cells during viral stimulation was described for the first time, leading to new insights for the identification of T cell subsets in fish.

  20. The Receptor for Advanced Glycation Endproducts (RAGE) drives T cell survival and inflammation in Type 1 diabetes mellitus

    Science.gov (United States)

    Durning, Sean P.; Preston-Hurlburt, Paula; Clark, Paul R.; Xu, Ding; Herold, Kevan C.

    2016-01-01

    The ways in which environmental factors participate in the progression of autoimmune diseases are not known. After initiation, it takes years before patients at risk for type 1 diabetes (T1D) develop hyperglycemia. The receptor for advanced glycated endproducts (RAGE) is a scavenger receptor of the immunoglobulin family that binds damage associated molecular patterns (DAMPs) and advanced glycated endproducts (AGEs) and can trigger cell activation. We previously found constitutive intracellular RAGE expression in lymphocytes from patients with T1D. Herein, we show that there is increased RAGE expression in T cells from at-risk euglycemic relatives who progress to T1D compared to healthy control subjects, and in the CD8+ T cells in the at-risk relatives who do vs those who do not progress to T1D. Detectable levels of the RAGE ligand HMGB1 were present in serum from at-risk subjects and patients with T1D. Transcriptome analysis of RAGE+ vs RAGE- T cells from patients with T1D showed differences in signaling pathways associated with increased cell activation and survival‥ Additional markers for effector memory cells and inflammatory function were elevated in the RAGE+ CD8+ cells of T1D patients and at-risk relatives of patients prior to disease onset. These studies suggest that expression of RAGE in T cells of subjects progressing to disease predates dysglycemia. These findings imply that RAGE expression enhances the inflammatory function of T cells and its increased levels observed in T1D patients may account for the chronic autoimmune response when DAMPs are released following cell injury and killing. PMID:27655844

  1. The Adaptor Protein SAP Directly Associates with CD3ζ Chain and Regulates T Cell Receptor Signaling

    Science.gov (United States)

    Proust, Richard; Bertoglio, Jacques; Gesbert, Franck

    2012-01-01

    Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex. PMID:22912825

  2. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells.

    Science.gov (United States)

    Zhang, Yongping; Zhang, Xingying; Cheng, Chen; Mu, Wei; Liu, Xiaojuan; Li, Na; Wei, Xiaofei; Liu, Xiang; Xia, Changqing; Wang, Haoyi

    2017-12-01

    T cells engineered with chimeric antigen receptor (CAR) have been successfully applied to treat advanced refractory B cell malignancy. However, many challenges remain in extending its application toward the treatment of solid tumors. The immunosuppressive nature of tumor microenvironment is considered one of the key factors limiting CAR-T efficacy. One negative regulator of Tcell activity is lymphocyte activation gene-3 (LAG-3). We successfully generated LAG-3 knockout Tand CAR-T cells with high efficiency using CRISPR-Cas9 mediated gene editing and found that the viability and immune phenotype were not dramatically changed during in vitro culture. LAG-3 knockout CAR-T cells displayed robust antigen-specific antitumor activity in cell culture and in murine xenograft model, which is comparable to standard CAR-T cells. Our study demonstrates an efficient approach to silence immune checkpoint in CAR-T cells via gene editing.

  3. BRAF and MEK Inhibitors Influence the Function of Reprogrammed T Cells: Consequences for Adoptive T-Cell Therapy

    Directory of Open Access Journals (Sweden)

    Jan Dörrie

    2018-01-01

    Full Text Available BRAF and MEK inhibitors (BRAFi/MEKi, the standard treatment for patients with BRAFV600 mutated melanoma, are currently explored in combination with various immunotherapies, notably checkpoint inhibitors and adoptive transfer of receptor-transfected T cells. Since two BRAFi/MEKi combinations with similar efficacy are approved, potential differences in their effects on immune cells would enable a rational choice for triple therapies. Therefore, we characterized the influence of the clinically approved BRAFi/MEKi combinations dabrafenib (Dabra and trametinib (Tram vs. vemurafenib (Vem and cobimetinib (Cobi on the activation and functionality of chimeric antigen receptor (CAR-transfected T cells. We co-cultured CAR-transfected CD8+ T cells and target cells with clinically relevant concentrations of the inhibitors and determined the antigen-induced cytokine secretion. All BRAFi/MEKi reduced this release as single agents, with Dabra having the mildest inhibitory effect, and Dabra + Tram having a clearly milder inhibitory effect than Vem + Cobi. A similar picture was observed for the upregulation of the activation markers CD25 and CD69 on CAR-transfected T cells after antigen-specific stimulation. Most importantly, the cytolytic capacity of the CAR-T cells was significantly inhibited by Cobi and Vem + Cobi, whereas the other kinase inhibitors showed no effect. Therefore, the combination Dabra + Tram would be more suitable for combining with T-cell-based immunotherapy than Vem + Cobi.

  4. Peripheral tissue homing receptor control of naïve, effector, and memory CD8 T cell localization in lymphoid and non-lymphoid tissues.

    Science.gov (United States)

    Brinkman, C Colin; Peske, J David; Engelhard, Victor Henry

    2013-01-01

    T cell activation induces homing receptors that bind ligands on peripheral tissue vasculature, programing movement to sites of infection and injury. There are three major types of CD8 effector T cells based on homing receptor expression, which arise in distinct lymphoid organs. Recent publications indicate that naïve, effector, and memory T cell migration is more complex than once thought; while many effectors enter peripheral tissues, some re-enter lymph nodes (LN), and contain central memory precursors. LN re-entry can depend on CD62L or peripheral tissue homing receptors. Memory T cells in LN tend to express the same homing receptors as their forebears, but often are CD62Lneg. Homing receptors also control CD8 T cell tumor entry. Tumor vasculature has low levels of many peripheral tissue homing receptor ligands, but portions of it resemble high endothelial venules (HEV), enabling naïve T cell entry, activation, and subsequent effector activity. This vasculature is associated with positive prognoses in humans, suggesting it may sustain ongoing anti-tumor responses. These findings reveal new roles for homing receptors expressed by naïve, effector, and memory CD8 T cells in controlling entry into lymphoid and non-lymphoid tissues.

  5. T-cell receptor Vβ skewing frequently occurs in refractory cytopenia of childhood and is associated with an expansion of effector cytotoxic T cells: a prospective study by EWOG-MDS

    International Nuclear Information System (INIS)

    Aalbers, A M; Heuvel-Eibrink, M M van den; Baumann, I; Beverloo, H B; Driessen, G J; Dworzak, M; Fischer, A; Göhring, G; Hasle, H; Locatelli, F; De Moerloose, B; Noellke, P; Schmugge, M; Stary, J; Yoshimi, A; Zecca, M; Zwaan, C M; Dongen, J J M van; Pieters, R; Niemeyer, C M; Velden, V H J van der; Langerak, A W

    2014-01-01

    Immunosuppressive therapy (IST), consisting of antithymocyte globulin and cyclosporine A, is effective in refractory cytopenia of childhood (RCC), suggesting that, similar to low-grade myelodysplastic syndromes in adult patients, T lymphocytes are involved in suppressing hematopoiesis in a subset of RCC patients. However, the potential role of a T-cell-mediated pathophysiology in RCC remains poorly explored. In a cohort of 92 RCC patients, we prospectively assessed the frequency of T-cell receptor (TCR) β-chain variable (Vβ) domain skewing in bone marrow and peripheral blood by heteroduplex PCR, and analyzed T-cell subsets in peripheral blood by flow cytometry. TCRVβ skewing was present in 40% of RCC patients. TCRVβ skewing did not correlate with bone marrow cellularity, karyotype, transfusion history, HLA-DR15 or the presence of a PNH clone. In 28 patients treated with IST, TCRVβ skewing was not clearly related with treatment response. However, TCRVβ skewing did correlate with a disturbed CD4 + /CD8 + T-cell ratio, a reduction in naive CD8 + T cells, an expansion of effector CD8 + T cells and an increase in activated CD8 + T cells (defined as HLA-DR + , CD57 + or CD56 + ). These data suggest that T lymphocytes contribute to RCC pathogenesis in a proportion of patients, and provide a rationale for treatment with IST in selected patients with RCC

  6. CD8+ T Cell Response to Gammaherpesvirus Infection Mediates Inflammation and Fibrosis in Interferon Gamma Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Brigid M O'Flaherty

    Full Text Available Idiopathic pulmonary fibrosis (IPF, one of the most severe interstitial lung diseases, is a progressive fibrotic disorder of unknown etiology. However, there is growing appreciation for the role of viral infection in disease induction and/or progression. A small animal model of multi-organ fibrosis, which involves murine gammaherpesvirus (MHV68 infection of interferon gamma receptor deficient (IFNγR-/- mice, has been utilized to model the association of gammaherpesvirus infections and lung fibrosis. Notably, several MHV68 mutants which fail to induce fibrosis have been identified. Our current study aimed to better define the role of the unique MHV68 gene, M1, in development of pulmonary fibrosis. We have previously shown that the M1 gene encodes a secreted protein which possesses superantigen-like function to drive the expansion and activation of Vβ4+ CD8+ T cells. Here we show that M1-dependent fibrosis is correlated with heightened levels of inflammation in the lung. We observe an M1-dependent cellular infiltrate of innate immune cells with most striking differences at 28 days-post infection. Furthermore, in the absence of M1 protein expression we observed reduced CD8+ T cells and MHV68 epitope specific CD8+ T cells to the lungs-despite equivalent levels of viral replication between M1 null and wild type MHV68. Notably, backcrossing the IFNγR-/- onto the Balb/c background, which has previously been shown to exhibit weak MHV68-driven Vβ4+ CD8+ T cell expansion, eliminated MHV68-induced fibrosis-further implicating the activated Vβ4+ CD8+ T cell population in the induction of fibrosis. We further addressed the role that CD8+ T cells play in the induction of fibrosis by depleting CD8+ T cells, which protected the mice from fibrotic disease. Taken together these findings are consistent with the hypothesized role of Vβ4+ CD8+ T cells as mediators of fibrotic disease in IFNγR-/- mice.

  7. Integration of conventional quantitative and phospho-proteomics reveals new elements in activated Jurkat T-cell receptor pathway maintenance.

    Science.gov (United States)

    Jouy, Florent; Müller, Stephan A; Wagner, Juliane; Otto, Wolfgang; von Bergen, Martin; Tomm, Janina M

    2015-01-01

    Recent years have seen a constant development of tools for the global assessment of phosphoproteins. Here, we outline a concept for integrating approaches for quantitative proteomics and phosphoproteomics. The strategy was applied to the analysis of changes in signalling and protein synthesis occurring after activation of the T-cell receptor (TCR) pathway in a T-cell line (Jurkat cells). For this purpose, peptides were obtained from four biological replicates of activated and control Jurkat T-cells and phosphopeptides enriched via a TiO2-based chromatographic step. Both phosphopeptide-enriched and flow-through fractions were analyzed by LC-MS. We observed 1314 phosphopeptides in the enriched fraction whereas 19 were detected in the flow-through, enabling the quantification of 414 and eight phosphoproteins in the respective fractions. Pathway analysis revealed the differential regulation of many metabolic pathways. Among the quantified proteins, 11 kinases with known TCR-related function were detected. A kinase-substrate database search for the phosphosites identified also confirmed the activity of a further ten kinases. In total, these two approaches provided evidence of 19 unique TCR-related kinases. The combination of phosphoproteomics and conventional quantitative shotgun analysis leads to a more comprehensive assessment of the signalling networks needed for the maintenance of the activated status of Jurkat T-cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. T cell receptor gene recombinations in human tumor specimen exome files: detection of T cell receptor-β VDJ recombinations associates with a favorable oncologic outcome for bladder cancer.

    Science.gov (United States)

    Samy, Mohammad D; Tong, Wei Lue; Yavorski, John M; Sexton, Wade J; Blanck, George

    2017-03-01

    Understanding tumor-resident T cells is important for cancer prognosis and treatment options. Conventional, solid tumor specimen exome files can be searched directly for recombined T cell receptor (TcR)-α segments; RNASeq files can include TcR-β VDJ recombinations. To learn whether there are medically relevant uses of exome-based detection of TcR V(D)J recombinations in the tumor microenvironment, we searched cancer genome atlas and Moffitt Cancer Center, tumor specimen exome files for TcR-β, TcR-γ, and TcR-δ recombinations, for bladder and stomach cancer. We found that bladder cancer exomes with productive TcR-β recombinations had a significant association with No Subsequent Tumors and a positive response to drug treatments, with p recombinations in the tumor microenvironment, via the tumor specimen exome files.

  9. No evidence for dualism in function and receptors: PD-L2/B7-DC is an inhibitory regulator of human T cell activation.

    Science.gov (United States)

    Pfistershammer, Katharina; Klauser, Christoph; Pickl, Winfried F; Stöckl, Johannes; Leitner, Judith; Zlabinger, Gerhard; Majdic, Otto; Steinberger, Peter

    2006-05-01

    The B7 family member programmed-death-1-ligand 2 (PD-L2/B7-DC) is a ligand for programmed-death-receptor 1 (PD-1), a receptor involved in negative regulation of T cell activation. Several independent studies have reported that PD-L2, however, can also potently costimulate murine T cells via an additional yet unidentified receptor. In this study, we evaluated the contribution of PD-L2 to the activation of human T cells using a novel system of engineered T cell stimulators that expresses membrane-bound anti-CD3 antibodies. Analyzing early activation markers, cytokine production and proliferation, we found PD-L2 to consistently inhibit T cell activation. PD-L2 inhibition affected CD4+ and CD8+ T cells and was not abrogated by costimulation via CD28. Blocking PD-1 reverted the inhibitory effect of PD-L2, demonstrating involvement of this pathway. In human T cells, we found no evidence for any of the costimulatory effects described for PD-L2 in murine systems. In line with our functional data that do not point to stimulatory PD-L2-ligands, we show that binding of PD-L2-immunoglobulin to activated human T cells is abrogated by PD-1 antibodies. Our results demonstrate that PD-L2 negatively regulates human T cell activation and thus might be a candidate molecule for immunotherapeutic approaches aimed to attenuate pathological immune responses.

  10. T cell receptor-mediated activation is a potent inducer of macroautophagy in human CD8(+)CD28(+) T cells but not in CD8(+)CD28(-) T cells

    NARCIS (Netherlands)

    Arnold, Christoph R; Pritz, Theresa; Brunner, Stefan; Knabb, Carina; Salvenmoser, Willi; Holzwarth, Birgit; Thedieck, Kathrin; Grubeck-Loebenstein, Beatrix

    A key feature of the aged human immune system is the accumulation of highly differentiated CD8(+)CD28(-) T cells, a phenomenon that negatively influences immune function in the elderly. However, the mechanisms that regulate survival or death of CD8(+)CD28(-) T cells remain incompletely understood.

  11. Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Morita

    2018-03-01

    Full Text Available Adoptive T cell therapy using chimeric antigen receptor (CAR-modified T cells is a promising cancer immunotherapy. We previously developed a non-viral method of gene transfer into T cells using a piggyBac transposon system to improve the cost-effectiveness of CAR-T cell therapy. Here, we have further improved our technology by a novel culture strategy to increase the transfection efficiency and to reduce the time of T cell manufacturing. Using a CH2CH3-free CD19-specific CAR transposon vector and combining irradiated activated T cells (ATCs as feeder cells and virus-specific T cell receptor (TCR stimulation, we achieved 51.4% ± 14% CAR+ T cells and 2.8-fold expansion after 14 culture days. Expanded CD19.CAR-T cells maintained a significant fraction of CD45RA+CCR7+ T cells and demonstrated potent antitumor activity against CD19+ leukemic cells both in vitro and in vivo. Therefore, piggyBac-based gene transfer may provide an alternative to viral gene transfer for CAR-T cell therapy.

  12. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  13. Participation of the cell polarity protein PALS1 to T-cell receptor-mediated NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Gabrielle Carvalho

    Full Text Available BACKGROUND: Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR-mediated activation. METHODOLOGY/PRINCIPAL FINDINGS: By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered TCR-driven activation of the transcription factor NF-κB. CONCLUSIONS: The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-κB following TCR stimulation.

  14. Comparative investigations of T cell receptor gamma gene rearrangements in frozen and formalin-fixed paraffin wax-embedded tissues by capillary electrophoresis

    DEFF Research Database (Denmark)

    Christensen, M; Funder, A D; Bendix, K

    2006-01-01

    AIM: To compare clonal T cell receptor gamma (TCRgamma) gene rearrangements in frozen and formalin-fixed paraffin wax-embedded (FFPE) tissue, using capillary electrophoresis for use in diagnostics, as T cell lymphomas may be difficult to diagnose by conventional methods. METHODS: The DNA for PCR...

  15. Regulatory T cells and toll-like receptors: regulating the regulators.

    NARCIS (Netherlands)

    Sutmuller, R.P.M.; Garritsen, A.; Adema, G.J.

    2007-01-01

    Regulatory T cells (Treg) play a crucial role in maintaining control of leucocytes. Several studies have shown that in vivo Treg depletion results in autoimmune syndromes like thyroiditis, gastritis, diabetes mellitus and colitis, but at the same time, may also result in improved anti-tumour

  16. Stimulation through the T cell receptor leads to interactions between SHB and several signaling proteins

    NARCIS (Netherlands)

    Welsh, M.; Songyang, Z.; Frantz, J. D.; Trüb, T.; Reedquist, K. A.; Karlsson, T.; Miyazaki, M.; Cantley, L. C.; Band, H.; Shoelson, S. E.

    1998-01-01

    Shb is a recently described Src homology 2 (SH2) domain-containing adaptor protein. Here we show that Shb is expressed in lymphoid tissues, and is recruited into signaling complexes upon activation of Jurkat T cells. Grb2 binds proline-rich motifs in Shb via its SH3 domains. As a result, a number of

  17. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy

    Directory of Open Access Journals (Sweden)

    Yongxian Hu

    2016-08-01

    Full Text Available Abstract Chimeric antigen receptor-modified (CAR T cells targeting CD19 (CART19 have shown therapeutical activities in CD19+ malignancies. However, the etiological nature of neurologic complications remains a conundrum. In our study, the evidence of blood-brain barrier (BBB-penetrating CAR T cells as a culprit was revealed. A patient with acute lymphocytic leukemia developed sustained pyrexia with tremors about 6 h after CART19 infusion, followed by a grade 2 cytokine release syndrome (CRS and neurological symptoms in the next 3 days. Contrast-enhanced magnetic resonance showed signs of intracranial edema. Lumbar puncture on day 5 showed an over 400-mmH2O cerebrospinal pressure. The cerebrospinal fluid (CSF contained 20 WBCs/μL with predominant CD3+ T cells. qPCR analysis for CAR constructs showed 3,032,265 copies/μg DNA in CSF and 988,747 copies/μg DNA in blood. Cytokine levels including IFN-γ and IL-6 in CSF were extremely higher than those in the serum. Methyprednisone was administrated and the symptoms relieved gradually. The predominance of CART19 in CSF and the huge discrepancies in cytokine distributions indicated the development of a cerebral CRS, presumably featured as CSF cytokines largely in situ produced by BBB-penetrating CAR T cells. For the first time, we reported the development of cerebral CRS triggered by BBB-penetrating CAR T cells. Trial registration: ChiCTR-OCC-15007008 .

  18. Epidermal Growth Factor Receptor Expression Licenses Type-2 Helper T Cells to Function in a T Cell Receptor-Independent Fashion.

    Science.gov (United States)

    Minutti, Carlos M; Drube, Sebastian; Blair, Natalie; Schwartz, Christian; McCrae, Jame C; McKenzie, Andrew N; Kamradt, Thomas; Mokry, Michal; Coffer, Paul J; Sibilia, Maria; Sijts, Alice J; Fallon, Padraic G; Maizels, Rick M; Zaiss, Dietmar M

    2017-10-17

    Gastro-intestinal helminth infections trigger the release of interleukin-33 (IL-33), which induces type-2 helper T cells (Th2 cells) at the site of infection to produce IL-13, thereby contributing to host resistance in a T cell receptor (TCR)-independent manner. Here, we show that, as a prerequisite for IL-33-induced IL-13 secretion, Th2 cells required the expression of the epidermal growth factor receptor (EGFR) and of its ligand, amphiregulin, for the formation of a signaling complex between T1/ST2 (the IL-33R) and EGFR. This shared signaling complex allowed IL-33 to induce the EGFR-mediated activation of the MAP-kinase signaling pathway and consequently the expression of IL-13. Lack of EGFR expression on T cells abrogated IL-13 expression in infected tissues and impaired host resistance. EGFR expression on Th2 cells was TCR-signaling dependent, and therefore, our data reveal a mechanism by which antigen presentation controls the innate effector function of Th2 cells at the site of inflammation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...... expressing tumor cells, the combination of CD3ζ, OX40, CD28 as well as the CH3-CH2-hinge-hinge domains most efficiently triggered T cell activation. Importantly, CAR mediated functions were not blocked by the soluble TAG-72 antigen at a supraphysiological concentration. Our approach may have the potential...... capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding...

  20. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Ambros J. [Technical University of Munich (TUM), Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J. [Technical University of Munich, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga [TUM, Munich, Department of Hematology/Oncology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido; Schlegel, Juergen [TUM, Munich, Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Munich (Germany)

    2008-06-15

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8{sup +} T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  1. Membrane Microdomains and Cytoskeleton Organization Shape and Regulate the IL-7 Receptor Signalosome in Human CD4 T-cells*

    Science.gov (United States)

    Tamarit, Blanche; Bugault, Florence; Pillet, Anne-Hélène; Lavergne, Vincent; Bochet, Pascal; Garin, Nathalie; Schwarz, Ulf; Thèze, Jacques; Rose, Thierry

    2013-01-01

    Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center. PMID:23329834

  2. Decreased number of CD4+ and CD8+ T cells that express the interleukin-7 receptor in blood and tissues of SIV-infected macaques

    International Nuclear Information System (INIS)

    Moniuszko, Marcin; Edghill-Smith, Yvette; Venzon, David; Stevceva, Liljana; Nacsa, Janos; Tryniszewska, Elzbieta; Tsai, Wen-Po; Franchini, Genoveffa

    2006-01-01

    Acute HIV/SIV (human/simian immunodeficiency virus) infection results in severe CD4 + T cell depletion in lymphoid compartments. During the chronic phase of infection, CD4 + T cell numbers rebound in blood but remain low in the gut-associated lymphoid tissue (GALT), even when viral replication is suppressed by antiretroviral therapy (ART). Thus, strategies to repopulate lymphoid compartments may ameliorate the clinical outcome of HIV/SIV infection. Interleukin (IL)-7 is a key cytokine for the maintenance of homeostatic proliferation of T cells. In HIV/SIV infection, IL-7 expression is increased, likely to compensate for T cell loss, suggesting that supraphysiological administration of IL-7 could provide additional benefit. However, the ability of T cells to respond to IL-7 is dependent on the level of expression of the IL-7 receptor (IL-7R) in T cells in various body compartments. In here, we investigated the proportion of IL-7R + T cells in blood, spleen, gut, and genitourinary tract of healthy and SIV-infected macaques with various degrees of CD4 + T cell depletion. We found that the percentage of T cells expressing IL-7R was significantly lower in both CD4 + and CD8 + T cell subsets in SIV-infected macaques than in healthy animals and this decrease directly correlated with the CD4 + T cell number. Importantly, the proportion of CD4 + and CD8 + T cells expressing IL-7R in blood paralleled that found in tissues. IL-7R + T cells within the SIV-specific CD8 + T cells varied and were lowest in most tissues of viremic macaques, likely reflecting continuous antigen stimulation of effector cells

  3. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses.

    Science.gov (United States)

    Kursar, Mischo; Bonhagen, Kerstin; Fensterle, Joachim; Köhler, Anne; Hurwitz, Robert; Kamradt, Thomas; Kaufmann, Stefan H E; Mittrücker, Hans-Willi

    2002-12-16

    CD4+ T cell help is important for the generation of CD8+ T cell responses. We used depleting anti-CD4 mAb to analyze the role of CD4+ T cells for memory CD8+ T cell responses after secondary infection of mice with the intracellular bacterium Listeria monocytogenes, or after boost immunization by specific peptide or DNA vaccination. Surprisingly, anti-CD4 mAb treatment during secondary CD8+ T cell responses markedly enlarged the population size of antigen-specific CD8+ T cells. After boost immunization with peptide or DNA, this effect was particularly profound, and antigen-specific CD8+ T cell populations were enlarged at least 10-fold. In terms of cytokine production and cytotoxicity, the enlarged CD8+ T cell population consisted of functional effector T cells. In depletion and transfer experiments, the suppressive function could be ascribed to CD4+CD25+ T cells. Our results demonstrate that CD4+ T cells control the CD8+ T cell response in two directions. Initially, they promote the generation of a CD8+ T cell responses and later they restrain the strength of the CD8+ T cell memory response. Down-modulation of CD8+ T cell responses during infection could prevent harmful consequences after eradication of the pathogen.

  4. Human CD3+ T-Cells with the Anti-ERBB2 Chimeric Antigen Receptor Exhibit Efficient Targeting and Induce Apoptosis in ERBB2 Overexpressing Breast Cancer Cells.

    Science.gov (United States)

    Munisvaradass, Rusheni; Kumar, Suresh; Govindasamy, Chandramohan; Alnumair, Khalid S; Mok, Pooi Ling

    2017-09-08

    Breast cancer is a common malignancy among women. The innate and adaptive immune responses failed to be activated owing to immune modulation in the tumour microenvironment. Decades of scientific study links the overexpression of human epidermal growth factor receptor 2 (ERBB2) antigen with aggressive tumours. The Chimeric Antigen Receptor (CAR) coding for specific tumour-associated antigens could initiate intrinsic T-cell signalling, inducing T-cell activation, and cytotoxic activity without the need for major histocompatibility complex recognition. This renders CAR as a potentially universal immunotherapeutic option. Herein, we aimed to establish CAR in CD3+ T-cells, isolated from human peripheral blood mononucleated cells that could subsequently target and induce apoptosis in the ERBB2 overexpressing human breast cancer cell line, SKBR3. Constructed CAR was inserted into a lentiviral plasmid containing a green fluorescent protein tag and produced as lentiviral particles that were used to transduce activated T-cells. Transduced CAR-T cells were then primed with SKBR3 cells to evaluate their functionality. Results showed increased apoptosis in SKBR3 cells co-cultured with CAR-T cells compared to the control (non-transduced T-cells). This study demonstrates that CAR introduction helps overcome the innate limitations of native T-cells leading to cancer cell apoptosis. We recommend future studies should focus on in vivo cytotoxicity of CAR-T cells against ERBB2 expressing tumours.

  5. Human CD3+ T-Cells with the Anti-ERBB2 Chimeric Antigen Receptor Exhibit Efficient Targeting and Induce Apoptosis in ERBB2 Overexpressing Breast Cancer Cells

    Science.gov (United States)

    Munisvaradass, Rusheni; Kumar, Suresh; Govindasamy, Chandramohan; Alnumair, Khalid S.; Mok, Pooi Ling

    2017-01-01

    Breast cancer is a common malignancy among women. The innate and adaptive immune responses failed to be activated owing to immune modulation in the tumour microenvironment. Decades of scientific study links the overexpression of human epidermal growth factor receptor 2 (ERBB2) antigen with aggressive tumours. The Chimeric Antigen Receptor (CAR) coding for specific tumour-associated antigens could initiate intrinsic T-cell signalling, inducing T-cell activation, and cytotoxic activity without the need for major histocompatibility complex recognition. This renders CAR as a potentially universal immunotherapeutic option. Herein, we aimed to establish CAR in CD3+ T-cells, isolated from human peripheral blood mononucleated cells that could subsequently target and induce apoptosis in the ERBB2 overexpressing human breast cancer cell line, SKBR3. Constructed CAR was inserted into a lentiviral plasmid containing a green fluorescent protein tag and produced as lentiviral particles that were used to transduce activated T-cells. Transduced CAR-T cells were then primed with SKBR3 cells to evaluate their functionality. Results showed increased apoptosis in SKBR3 cells co-cultured with CAR-T cells compared to the control (non–transduced T-cells). This study demonstrates that CAR introduction helps overcome the innate limitations of native T-cells leading to cancer cell apoptosis. We recommend future studies should focus on in vivo cytotoxicity of CAR-T cells against ERBB2 expressing tumours. PMID:28885562

  6. Increasing the ex vivo antigen-specific IFN-γ production in subpopulations of T cells and NKp46+ cells by anti-CD28, anti-CD49d and recombinant IL-12 costimulation in cattle vaccinated with recombinant proteins from Mycobacterium avium subspecies paratuberculosis

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Riber, Ulla; Davis, William C.

    2013-01-01

    -γ secretion by CD4, CD8, γδ T cells and NK cells. Age matched male jersey calves, experimentally infected with Mycobacterium avium subsp. paratuberculosis (MAP), were vaccinated with a cocktail of recombinant MAP proteins or left unvaccinated. Vaccine induced ex vivo recall responses were measured through Ag......T cells, which encounter specific antigen (Ag), require additional signals to mount a functional immune response. Here, we demonstrate activation of signal 2, by anti-CD28 mAb (aCD28) and other costimulatory molecules (aCD49d, aCD5), and signal 3, by recombinant IL-12, enhance Ag-specific IFN...

  7. BIOMED-2 multiplex immunoglobulin/T-cell receptor polymerase chain reaction protocols can reliably replace Southern blot analysis in routine clonality diagnostics

    NARCIS (Netherlands)

    Y. Sandberg (Yorick); E.J. van Gastel-Mol (Ellen); B. Verhaaf (Brenda); K.H. Lam (King); J.J.M. van Dongen (Jacques); A.W. Langerak (Anton)

    2005-01-01

    textabstractTo establish the most sensitive and efficient strategy of clonality diagnostics via immunoglobulin and T-cell receptor gene rearrangement studies in suspected lymphoproliferative disorders, we evaluated 300 samples (from 218 patients) submitted consecutively for

  8. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells

    NARCIS (Netherlands)

    A.W. Langerak (Anton); I.L. Wolvers-Tettero; E.J. van Gastel-Mol (Ellen); M.E. Oud; J.J.M. van Dongen (Jacques)

    2001-01-01

    textabstractT-cell receptor (TCR) gene rearrangements are mediated via V(D)J recombination, which is strictly regulated during lymphoid differentiation, most probably through the action of specific transcription factors. Investigated was whether cotransfection of RAG1 and

  9. The bovine T cell receptor alpha/delta locus contains over 400 V genes and encodes V genes without CDR2.

    Science.gov (United States)

    Reinink, Peter; Van Rhijn, Ildiko

    2009-07-01

    Alphabeta T cells and gammadelta T cells perform nonoverlapping immune functions. In mammalian species with a high percentage of very diverse gammadelta T cells, like ruminants and pigs, it is often assumed that alphabeta T cells are less diverse than gammadelta T cells. Based on the bovine genome, we have created a map of the bovine TRA/TRD locus and show that, in cattle, in addition to the anticipated >100 TRDV genes, there are also >300 TRAV or TRAV/DV genes. Among the V genes in the TRA/TRD locus, there are several genes that lack a CDR2 and are functionally rearranged and transcribed and, in some cases, have an extended CDR1. The number of bovine V genes is a multiple of the number in mice and humans and may encode T cell receptors that use a novel way of interacting with antigen.

  10. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor.

    Directory of Open Access Journals (Sweden)

    Rachel S Leibman

    2017-10-01

    Full Text Available HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy.

  11. Disturbed CD4+ T Cell Homeostasis and In Vitro HIV-1 Susceptibility in Transgenic Mice Expressing T Cell Line–tropic HIV-1 Receptors

    OpenAIRE

    Sawada, Shinichiro; Gowrishankar, Kavitha; Kitamura, Rui; Suzuki, Misao; Suzuki, Gen; Tahara, Satoko; Koito, Atsushi

    1998-01-01

    T cell line–tropic (T-tropic) HIV type 1 strains enter cells by interacting with the cell-surface molecules CD4 and CXCR4. We have generated transgenic mice predominantly expressing human CD4 and CXCR4 on their CD4-positive T lymphocytes (CD4+ T cells). Their primary thymocytes are susceptible to T-tropic but not to macrophage-tropic HIV-1 infection in vitro, albeit with a viral antigen production less efficient than human peripheral blood mononuclear cells. Interestingly, even without HIV in...

  12. T cell receptor zeta allows stable expression of receptors containing the CD3gamma leucine-based receptor-sorting motif

    DEFF Research Database (Denmark)

    Dietrich, J; Geisler, C

    1998-01-01

    The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently of phosph......The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently...... to mask the CD3gamma leucine-based motif. By studying CD4/CD3gamma and CD16/CD3gamma chimeras, we found that CD16/CD3gamma chimeras associated with TCRzeta. The CD16/CD3gamma-TCRzeta complexes were stably expressed at the cell surface and had a low spontaneous internalization rate, indicating...... that the leucine-based motif in these complexes was inactive. In contrast, the CD4/CD3gamma chimeras did not associate with TCRzeta, and the leucine-based motif in these chimeras was constitutively active resulting in a high spontaneous internalization rate and low expression of the chimeras at the cell surface...

  13. CD4+CD25+FOXP3+ Regulatory T Cells In Allogeneic Hematopoietic Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Young-Ho Lee

    2011-06-01

    Full Text Available CD4+CD25+FOXP3+ regulatory T cells (Treg require activation through the T cell receptor for function. CD4+CD25+FOXP3+ regulatory T cells are believed to be key players of the immune tolerance network and control the induction and effector phase of the immune system. Although these cells require antigen-specific activation, they are generally able to suppress bystander T cell responses once activated. This raises the possibility that antigen-specific Treg may be useful therapeutically by localizing generalized suppressive activity to tissues expressing select target antigens. Treg can exert a potent suppressive effect on immune effector cells reactive to host antigens and prevent graft versus host disease (GVHD in allogeneic bone marrow transplantation (BMT. Here, we observed that co-transfer of CD4+CD25+FOXP3+ T cells derived from donor type along with the donor bone marrow cells could control GVHD-like reactions by suppressing effectors cells of host responding to the donor hematopoietic compartment, and resulted in prevention of autoimmunity and rejection. We further demonstrate that CD4+CD25+FOXP3+ regulatory T cells can control immune-based morbidity after allogeneic BMT by suppressing the development of granulocytes cells and increasing the level of B cell expression.

  14. Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells.

    Science.gov (United States)

    Youngblood, Ben; Wherry, E John; Ahmed, Rafi

    2012-01-01

    Failure to control viral infections such as HIV results in T-cell receptor (TCR) and inhibitory receptor driven exhaustion of antigen-specific T cells. Persistent signaling by these receptors during chronic viral infection sculpts the transcriptional regulatory programs of virus-specific T cells. The resulting gene expression profile is tailored to temper the potentially damaging effector functions of cytotoxic T cells and adapt them to an antigen-rich and inflammation-rich environment. Here we review recent studies investigating mechanisms of transcriptional regulation of effector, functional memory, and exhausted T-cell functions during acute versus chronic infections. Patterns of gene expression in virus-specific CD8 T cells are a result of a combination of pro and inhibitory signals from antigen presentation (TCR-mediated) and co-inhibitory receptor ligation (PD-1, 2B4). Further, memory-specific transcriptional regulation of 2B4 expression and signaling impose a self-limiting secondary effector response to a prolonged viral infection. Additionally, differentiation of functional memory CD8 T cells is coupled with acquisition of a repressive epigenetic program for PD-1 expression. However, chronic infection provides a signal that blocks the acquisition of these epigenetic modifications reinforcing the suppression of cytotoxic lymphocyte (CTL) functions in exhausted cells. Current findings suggest that the mechanism(s) that delineate functional memory versus exhaustion are coupled with acquisition of transcriptional programs at the effector stage of differentiation, reinforced by cessation or persistence of TCR signaling.

  15. Critical roles for LIGHT and its receptors in generating T cell-mediated immunity during Leishmania donovani infection.

    Directory of Open Access Journals (Sweden)

    Amanda C Stanley

    2011-10-01

    Full Text Available LIGHT (TNFSF14 is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM and lymphotoxin-beta receptor (LTβR. We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4(+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage.

  16. Isolation and functional characterization of hepatitis B virus-specific T-cell receptors as new tools for experimental and clinical use.

    Directory of Open Access Journals (Sweden)

    Karin Wisskirchen

    Full Text Available T-cell therapy of chronic hepatitis B is a novel approach to restore antiviral T-cell immunity and cure the infection. We aimed at identifying T-cell receptors (TCR with high functional avidity that have the potential to be used for adoptive T-cell therapy. To this end, we cloned HLA-A*02-restricted, hepatitis B virus (HBV-specific T cells from patients with acute or resolved HBV infection. We isolated 11 envelope- or core-specific TCRs and evaluated them in comprehensive functional analyses. T cells were genetically modified by retroviral transduction to express HBV-specific TCRs. CD8+ as well as CD4+ T cells became effector T cells recognizing even picomolar concentrations of cognate peptide. TCR-transduced T cells were polyfunctional, secreting the cytokines interferon gamma, tumor necrosis factor alpha and interleukin-2, and effectively killed hepatoma cells replicating HBV. Notably, our collection of HBV-specific TCRs recognized peptides derived from HBV genotypes A, B, C and D presented on different HLA-A*02 subtypes common in areas with high HBV prevalence. When co-cultured with HBV-infected cells, TCR-transduced T cells rapidly reduced viral markers within two days. Our unique set of HBV-specific TCRs with different affinities represents an interesting tool for elucidating mechanisms of TCR-MHC interaction and dissecting specific anti-HBV mechanisms exerted by T cells. TCRs with high functional avidity might be suited to redirect T cells for adoptive T-cell therapy of chronic hepatitis B and HBV-induced hepatocellular carcinoma.

  17. Crystal Structure of Staphylococcal Enterotoxin G (SEG) in Complex with a Mouse T-cell Receptor Beta Chain

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M.M.; Robinson, H.; Cho, S.; De Marzi, M. C.; Kerzic, M. C.; Mariuzza, R. A.; Malchiodi, E. L.

    2011-01-14

    Superantigens (SAgs) are bacterial or viral toxins that bind MHC class II (MHC-II) molecules and T-cell receptor (TCR) in a nonconventional manner, inducing T-cell activation that leads to inflammatory cytokine production, which may result in acute toxic shock. In addition, the emerging threat of purpura fulminans and community-associated meticillin-resistant Staphylococcus aureus emphasizes the importance of a better characterization of SAg binding to their natural ligands that may allow the development of reagents to neutralize their action. The three-dimensional structure of the complex between a mouse TCR {beta} chain (mV{beta}8.2) and staphylococcal enterotoxin G (SEG) at 2.0 {angstrom} resolution revealed a binding site that does not conserve the 'hot spots' present in mV{beta}8.2-SEC2, mV{beta}8.2-SEC3, mV{beta}8.2-SEB, and mV{beta}8.2-SPEA complexes. Analysis of the mV{beta}8.2-SEG interface allowed us to explain the higher affinity of this complex compared with the others, which may account for the early activation of T-cells bearing mV{beta}8.2 by SEG. This mode of interaction between SEG and mV{beta}8.2 could be an adaptive advantage to bestow on the pathogen a faster rate of colonization of the host.

  18. 4-1BB Costimulation Ameliorates T Cell Exhaustion Induced by Tonic Signaling of Chimeric Antigen Receptors

    Science.gov (United States)

    Long, Adrienne H.; Haso, Waleed M.; Shern, Jack F.; Wanhainen, Kelsey M.; Murgai, Meera; Ingaramo, Maria; Smith, Jillian P.; Walker, Alec J.; Kohler, M. Eric; Venkateshwara, Vikas R.; Kaplan, Rosandra N.; Patterson, George H.; Fry, Terry J.; Orentas, Rimas J.; Mackall, Crystal L.

    2015-01-01

    Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic anti-tumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We discovered that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR scFvs, can induce early exhaustion of CAR T cells that limits anti-tumor efficacy. Such activation is present to varying degrees in all CARs studied, with the exception of the highly effective CD19 CAR. We further identify that CD28 costimulation augments, while 4-1BB costimulation ameliorates, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the dramatic anti-tumor effects of CD19 CARs and for the observations that CD19.BBz CAR T cells are more persistent than CD19.28z CAR T cells in clinical trials. PMID:25939063

  19. T-cell receptor (TCR) interaction with peptides that mimic nickel offers insight into nickel contact allergy.

    Science.gov (United States)

    Yin, Lei; Crawford, Frances; Marrack, Philippa; Kappler, John W; Dai, Shaodong

    2012-11-06

    T cell-mediated allergy to Ni(++) is one of the most common forms of allergic contact dermatitis, but how the T-cell receptor (TCR) recognizes Ni(++) is unknown. We studied a TCR from an allergic patient that recognizes Ni(++) bound to the MHCII molecule DR52c containing an unknown self-peptide. We identified mimotope peptides that can replace both the self-peptide and Ni(++) in this ligand. They share a p7 lysine whose εNH(2) group is surface-exposed when bound to DR52c. Whereas the TCR uses germ-line complementary-determining region (CDR)1/2 amino acids to dock in the conventional diagonal mode on the mimotope-DR52c complex, the interface is dominated by the TCR Vβ CDR3 interaction with the p7 lysine. Mutations in the TCR CDR loops have similar effects on the T-cell response to either the mimotope or Ni(++) ligand. We suggest that the mimotope p7 lysine mimics Ni(++) in the natural TCR ligand and that MHCII β-chain flexibility in the area around the peptide p7 position forms a common site for cation binding in metal allergies.

  20. Toll-Like Receptor Mediated Modulation of T Cell Response by Commensal Intestinal Microbiota as a Trigger for Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Rebecca Rogier

    2015-01-01

    Full Text Available In autoimmune diseases, a disturbance of the balance between T helper 17 (Th17 and regulatory T cells (Tregs is often observed. This disturbed balance is also the case in rheumatoid arthritis (RA. Genetic predisposition to RA confers the presence of several polymorphisms mainly regulating activation of T lymphocytes. However, the presence of susceptibility factors is neither necessary nor sufficient to explain the disease development, emphasizing the importance of environmental factors. Multiple studies have shown that commensal gut microbiota is of great influence on immune homeostasis and can trigger the development of autoimmune diseases by favoring induction of Th17 cells over Tregs. However the mechanism by which intestinal microbiota influences the Th cell balance is not completely understood. Here we review the current evidence supporting the involvement of commensal intestinal microbiota in rheumatoid arthritis, along with a potential role of Toll-like receptors (TLRs in modulating the relevant Th cell responses to trigger autoimmunity. A better understanding of TLR triggering by intestinal microbiota and subsequent T cell activation might offer new perspectives for manipulating the T cell response in RA patients and may lead to the discovery of new therapeutic targets or even preventive measures.

  1. Identifying T Cell Receptors from High-Throughput Sequencing: Dealing with Promiscuity in TCRα and TCRβ Pairing.

    Directory of Open Access Journals (Sweden)

    Edward S Lee

    2017-01-01

    Full Text Available Characterisation of the T cell receptors (TCR involved in immune responses is important for the design of vaccines and immunotherapies for cancer and autoimmune disease. The specificity of the interaction between the TCR heterodimer and its peptide-MHC ligand derives largely from the juxtaposed hypervariable CDR3 regions on the TCRα and TCRβ chains, and obtaining the paired sequences of these regions is a standard for functionally defining the TCR. A brute force approach to identifying the TCRs in a population of T cells is to use high-throughput single-cell sequencing, but currently this process remains costly and risks missing small clones. Alternatively, CDR3α and CDR3β sequences can be associated using their frequency of co-occurrence in independent samples, but this approach can be confounded by the sharing of CDR3α and CDR3β across clones, commonly observed within epitope-specific T cell populations. The accurate, exhaustive, and economical recovery of TCR sequences from such populations therefore remains a challenging problem. Here we describe an algorithm for performing frequency-based pairing (alphabetr that accommodates CDR3α- and CDR3β-sharing, cells expressing two TCRα chains, and multiple forms of sequencing error. The algorithm also yields accurate estimates of clonal frequencies.

  2. Inhibition of Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full T cell receptor signaling

    OpenAIRE

    Xim Tan, Ying; Manz, Boryana N.; Freedman, Tanya; Zhang, Chao; Shokat, Kevan M.; Weiss, Arthur

    2013-01-01

    T cell receptor (TCR) signaling is initiated by Src-family kinases (SFKs). To understand how C-terminal Src kinase (Csk), the negative regulator of SFKs, controls the basal state and the initiation of TCR signaling, we generated mice expressing a PP1-analog inhibitor-sensitive Csk variant (CskAS). Inhibition of CskAS in thymocytes, without TCR engagement, induced potent SFK activation and proximal TCR signaling up to phospholipase C-γ1 (PLC-γ1). Surprisingly, increases in inositol phosphates ...

  3. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma

    DEFF Research Database (Denmark)

    Drent, Esther; Groen, Richard W. J.; Noort, Willy A. Noort

    2016-01-01

    appeared to lyse the CD38+ fractions of CD34+ hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based...... suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38+ malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. © 2016 Ferrata Storti Foundation....

  4. Solitary expression of CD7 among T-cell antigens in acute myeloid leukemia: identification of a group of patients with similar T-cell receptor beta and delta rearrangements and course of disease suggestive of poor prognosis

    DEFF Research Database (Denmark)

    Jensen, A W; Hokland, M; Jørgensen, H

    1991-01-01

    to the French-American-British type M4, and four were under the age of 40. Despite intensive chemotherapy, four never obtained a complete remission and the fifth died of relapse after an allogenic bone marrow transplantation. While 12 randomly selected T-cell antigen negative AML patients showed only few...... rearrangements in Ig- or T-cell receptor (TCR) genes, such genetic alterations were demonstrated in four of five patients for the TCR delta gene and in all patients for the TCR beta gene. Interestingly, DNA fragments of similar size were demonstrated in three of five patients for both the beta and delta genes...

  5. T-cell memory differentiation: insights from transcriptional signatures and epigenetics.

    Science.gov (United States)

    Youngblood, Ben; Hale, J Scott; Ahmed, Rafi

    2013-07-01

    A critical component of vaccine design is to generate and maintain antigen-specific memory lymphocytes of sufficient quantity and quality to give the host life-long protection against re-infection. Therefore, it is important to understand how memory T cells acquire the ability for self-renewal while retaining a potential for heightened recall of effector functions. During acute viral infection or following vaccination, antigen-specific T cells undergo extensive phenotypic and functional changes during differentiation to the effector and memory phases of the immune response. The changes in cell phenotype that accompany memory T-cell differentiation are predominantly mediated through acquired transcriptional regulatory mechanisms, in part achieved through epigenetic modifications of DNA and histones. Here we review our current understanding of epigenetic mechanisms regulating the off-on-off expression of CD8 and CD4 T-cell effector molecules at naive, effector and memory stages of differentiation, respectively, and how covalent modifications to the genome may serve as a mechanism to preserve 'poised' transcriptional states in homeostatically dividing memory cells. We discuss the potential of such mechanisms to control genes that undergo on-off-on patterns of expression including homing and pro-survival genes, and the implications on the development of effector-memory and central-memory T-cell differentiation. Lastly, we review recent studies demonstrating epigenetic modifications as a mechanism for the progressive loss of transcriptional adaptation in antigen-specific T cells that undergo sustained high levels of T-cell receptor signalling. © 2013 John Wiley & Sons Ltd.

  6. Failure to synthesize the human T-cell CD3-zeta chain and its consequence for the T-cell receptor-CD3 complex expression

    DEFF Research Database (Denmark)

    Geisler, C; Kuhlmann, J; Plesner, T

    1989-01-01

    components, the human T-cell tumour line Jurkat was chemically mutagenized followed by negative selection with F101.01 (a monoclonal antibody against the TcR-CD3 complex), and cloning. Growing clones were analysed for TcR-CD3 expression by immunofluorescence. One clone, J79, was found to express greatly...

  7. Oligoclonal T-cell Receptor Repertoire in Colonic Biopsies of Patients with Microscopic Colitis and Ulcerative Colitis.

    Science.gov (United States)

    Günaltay, Sezin; Repsilber, Dirk; Helenius, Gisela; Nyhlin, Nils; Bohr, Johan; Hultgren, Olof; Hultgren Hörnquist, Elisabeth

    2017-06-01

    Microscopic colitis (MC), comprising collagenous colitis (CC) and lymphocytic colitis (LC), is a type of variation of inflammatory bowel diseases. Local T-cell infiltration in the mucosa plays a major role in MC immunopathology. To understand diversity and clonality of infiltrating T cells, we analyzed the T-cell receptor beta (TCRβ) chains in colonic biopsies of MC, ulcerative colitis (UC), and their remission counterparts (CC/LC-HR [histological remission] or UC-R [remission]) compared with patients with noninflamed colons using next-generation sequencing. Compared with controls and patients with CC, patients with LC had significantly lower diversity with significantly lower evenness and richness in TCRVβ-Jβ gene segments. Similarly, patients with LC-HR had lower diversity because of significantly lower TCRVβ-Jβ clone richness. Patients with UC and UC-R showed significantly higher diversity and richness. Univariate and multivariate analyses were performed to identify TCRVβ-Jβ gene segments differentiating disease types from controls or their remission counterparts. Patients with LC were discriminated from controls by 12 clones and from patients with CC by 8 clones. Neither univariate nor multivariate analyses showed significance for patients with CC or CC-HR compared with controls. Patients with UC and UC-R had 16 and 14 discriminating clones, respectively, compared with controls. Altogether, patients with MC and UC showed an oligoclonal TCRβ distribution. TCRVβ-Jβ clone types and their diversity were distinctive between patients with CC and LC, as well as for patients with UC, suggesting different pathophysiological mechanisms according to disease type and stage. This study suggests that CC and LC are different entities because of differences in immunoregulatory responses, as mirrored by their T-cell repertoire.

  8. Nanoparticles for the Induction of Antigen-Specific Immunological Tolerance.

    Science.gov (United States)

    Kishimoto, Takashi Kei; Maldonado, Roberto A

    2018-01-01

    Antigen-specific immune tolerance has been a long-standing goal for immunotherapy for the treatment of autoimmune diseases and allergies and for the prevention of allograft rejection and anti-drug antibodies directed against biologic therapies. Nanoparticles have emerged as powerful tools to initiate and modulate immune responses due to their inherent capacity to target antigen-presenting cells (APCs) and deliver coordinated signals that can elicit an antigen-specific immune response. A wide range of strategies have been described to create tolerogenic nanoparticles (tNPs) that fall into three broad categories. One strategy includes tNPs that provide antigen alone to harness natural tolerogenic processes and environments, such as presentation of antigen in the absence of costimulatory signals, oral tolerance, the tolerogenic environment of the liver, and apoptotic cell death. A second strategy includes tNPs that carry antigen and simultaneously target tolerogenic receptors, such as pro-tolerogenic cytokine receptors, aryl hydrocarbon receptor, FAS receptor, and the CD22 inhibitory receptor. A third strategy includes tNPs that carry a payload of tolerogenic pharmacological agents that can "lock" APCs into a developmental or metabolic state that favors tolerogenic presentation of antigens. These diverse strategies have led to the development of tNPs that are capable of inducing antigen-specific immunological tolerance, not just immunosuppression, in animal models. These novel tNP technologies herald a promising approach to specifically prevent and treat unwanted immune reactions in humans. The first tNP, SEL-212, a biodegradable synthetic vaccine particle encapsulating rapamycin, has reached the clinic and is currently in Phase 2 clinical trials.

  9. A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling.

    Science.gov (United States)

    Gu, Ai-Di; Zhang, Song; Wang, Yunqi; Xiong, Hui; Curtis, Thomas A; Wan, Yisong Y

    2015-01-20

    Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Interleukin-27-Producing CD4(+) T Cells Regulate Protective Immunity during Malaria Parasite Infection.

    Science.gov (United States)

    Kimura, Daisuke; Miyakoda, Mana; Kimura, Kazumi; Honma, Kiri; Hara, Hiromitsu; Yoshida, Hiroki; Yui, Katsuyuki

    2016-03-15

    Interleukin-27 (IL-27) is a heterodimeric regulatory cytokine of the IL-12 family, which is produced by macrophages, dendritic cells, and B cells upon stimulation through innate immune receptors. Here, we described regulatory CD4(+) T cells that produce IL-27 in response to T cell receptor stimulation during malaria infection, inhibiting IL-2 production and clonal expansion of other T cells in an IL-27-dependent manner. IL-27-producing CD4(+) T cells were Foxp3(-)CD11a(+)CD49d(+) malaria antigen-specific CD4(+) T cells and were distinct from interferon-γ (IFN-γ) producing Th1 or IL-10 producing Tr1 cells. In mice lacking IL-27 in T cells, IL-2 production was restored and clonal expansion and IFN-γ production by specific CD4(+) T cells were improved, culminating in reduced parasite burden. This study highlights a unique population of IL-27 producing regulatory CD4(+) T cells and their critical role in the regulation of the protective immune response against malaria parasites. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Assembly of the T-cell antigen receptor. Participation of the CD3 omega chain

    DEFF Research Database (Denmark)

    Neisig, A; Vangsted, A; Zeuthen, J

    1993-01-01

    The human TCR is composed of the Ti alpha beta heterodimer in association with the CD3 chains CD3 gamma delta epsilon zeta 2. Another chain, referred to as CD3 omega, has recently been described in T cells. CD3 omega is an intracellular protein transiently associated with the CD3 complex during...... the assembly of the TCR in the endoplasmic reticulum (ER) and it is not expressed on the cell surface. The function of CD3 omega is unknown but it has been suggested that it plays an important role in the assembly of the TCR. We have studied the possible function of CD3 omega in the human leukemic T-cell line...... Jurkat and different variants of this cell line. Cells were metabolically labeled, subjected to lysis, immunoprecipitated, and analyzed by SDS-PAGE. The results indicate that: 1) CD3 omega associates primarily with the CD3 delta epsilon complex; 2) CD3 omega is not associated with single Ti alpha or Ti...

  12. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  13. Analysis of T cell receptor alpha beta variability in lymphocytes infiltrating melanoma primary tumours and metastatic lesions

    DEFF Research Database (Denmark)

    Schøller, J; thor Straten, P; Jakobsen, Annette Birck

    1994-01-01

    The T cell receptor (TCR) alpha beta variable (V) gene family usage of tumour-infiltrating lymphocytes (TIL) in four different primary human malignant melanomas and their corresponding metastatic lesions was characterized using a recently developed method based on the reverse-transcription-couple......The T cell receptor (TCR) alpha beta variable (V) gene family usage of tumour-infiltrating lymphocytes (TIL) in four different primary human malignant melanomas and their corresponding metastatic lesions was characterized using a recently developed method based on the reverse...... usage of the TCR V gene families V alpha 4, V alpha 5, V alpha 22 and V beta 8, whereas the V beta 3 gene family appeared to be expressed together with HLA-A1. Other highly expressed V gene families, apparently not restricted to either HLA-A1 or -A2, were V alpha 1 (expressed in three of four primary...... tumours) and V alpha 21 (expressed in two of four tumours). We found no evidence suggesting any correlations between the haplotypes HLA-A1 and -A2 and preferential V gene family expression in the metastatic lesions, and the only common feature was V alpha 8, which was found to be highly expressed in two...

  14. A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale.

    Science.gov (United States)

    Shaikh, Saame Raza; Boyle, Sarah; Edidin, Michael

    2015-09-01

    Cell culture studies show that the nanoscale lateral organization of surface receptors, their clustering or dispersion, can be altered by changing the lipid composition of the membrane bilayer. However, little is known about similar changes in vivo, which can be effected by changing dietary lipids. We describe the use of a newly developed method, k-space image correlation spectroscopy, kICS, for analysis of quantum dot fluorescence to show that a high fat diet can alter the nanometer-scale clustering of the murine T cell receptor, TCR, on the surface of naive CD4(+) T cells. We found that diets enriched primarily in saturated fatty acids increased TCR nanoscale clustering to a level usually seen only on activated cells. Diets enriched in monounsaturated or n-3 polyunsaturated fatty acids had no effect on TCR clustering. Also none of the high fat diets affected TCR clustering on the micrometer scale. Furthermore, the effect of the diets was similar in young and middle aged mice. Our data establish proof-of-principle that TCR nanoscale clustering is sensitive to the composition of dietary fat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The effect of weaning on the clonality of alphabeta T- cell receptor T cells in intestine of GF and SPF mice

    Czech Academy of Sciences Publication Activity Database

    Probert, Ch. S. J.; Williams, A. M.; Štěpánková, Renata; Tlaskalová, Helena; Phillips, A.; Bland, P. W.

    2007-01-01

    Roč. 31, č. 6 (2007), s. 606-617 ISSN 0145-305X R&D Projects: GA ČR GA303/04/0849 Grant - others:XE(XE) QLGI-199-00050 Institutional research plan: CEZ:AV0Z50200510 Keywords : t cells * development * intestinal flora Subject RIV: EE - Microbiology, Virology Impact factor: 3.155, year: 2007

  16. Antigen-specific immune reactions to ischemic stroke

    Directory of Open Access Journals (Sweden)

    Xabier eUrra

    2014-09-01

    Full Text Available Brain proteins are detected in the CSF and blood of stroke patients and their concentration is related to the extent of brain damage. Antibodies against brain antigens develop after stroke, suggesting a humoral immune response to the brain injury. Furthermore, induced immune tolerance is beneficial in animal models of cerebral ischemia. The presence of circulating T cells sensitized against brain antigens, and antigen presenting cells (APCs carrying brain antigens in draining lymphoid tissue of stroke patients support the notion that stroke might induce antigen-specific immune responses. After stroke, brain proteins that are normally hidden from the periphery, inflammatory mediators, and danger signals can exit the brain through several efflux routes. They can reach the blood after leaking out of the damaged blood-brain barrier or following the drainage of interstitial fluid to the dural venous sinus, or reach the cervical lymph nodes through the nasal lymphatics following CSF drainage along the arachnoid sheaths of nerves across the nasal submucosa. The route and mode of access of brain antigens to lymphoid tissue could influence the type of response. Central and peripheral tolerance prevents autoimmunity, but the actual mechanisms of tolerance to brain antigens released into the periphery in the presence of inflammation, danger signals, and APCs, are not fully characterized. Stroke does not systematically trigger autoimmunity, but under certain circumstances, such as pronounced systemic inflammation or infection, autoreactive T cells could escape the tolerance controls. Further investigation is needed to elucidate whether antigen-specific immune events could underlie neurological complications impairing stroke outcome.

  17. Young T cells age during a redirected anti-tumour attack: chimeric antigen receptor (CAR-provided dual costimulation is half the battle.

    Directory of Open Access Journals (Sweden)

    Andreas A Hombach

    2013-06-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells showed spectacular efficacy in the treatment of leukaemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG-1+ CD57+ CD7- CCR7- phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134 stimulation. We discuss the strategy with respect to prolong the anti-tumour response and to improve the over-all efficacy of adoptive cell therapy.

  18. Histamine via the histamine H₂-receptor reduces α-CD3-induced interferon-γ synthesis in murine CD4+ T cells in an indirect manner.

    Science.gov (United States)

    Vauth, Marcus; Möhner, Desirée; Beermann, Silke; Seifert, Roland; Neumann, Detlef

    2012-04-01

    Histamine is involved in the execution of an immune reaction. Receptors for histamine, of which four different subtypes are known so far, are found on dendritic cells and on T cells. Via these receptors, histamine either indirectly or directly affects the activation of T cells. Data in the literature regarding the involved receptor subtypes and the mode of action of histamine on T cells are somewhat contradictory and depend on the type of cells analyzed, polarized T cells, or freshly prepared T cells within the context of the whole splenocyte population. Therefore, we analyzed the effect of histamine on murine T cells within splenocytes in a detailed manner. We stimulated freshly prepared splenocytes in the presence or absence of histamine with α-CD3 in vitro and analyzed the induced cytokine production. We show that histamine reduced the α-CD3-induced interferon-γ (IFN-γ) production of CD4⁺ cells via the histamine H₂-receptor. Moreover, the effect of histamine on the α-CD3-induced IFN-γ production could be transferred within conditioned splenocyte supernatants induced by histamine (in the absence of α-CD3). Thus, the histamine effect is mediated by a soluble factor, which, however, is neither of the classical anti-inflammatory mediators, interleukin-10, or transforming growth factor-β.

  19. Sequence of the rhesus monkey T-cell receptor {beta} chain diversity and joining loci

    Energy Technology Data Exchange (ETDEWEB)

    Cheynier, R.; Henrichwark, S.; Wain-Hobson, S. [Institut Pasteur, Paris (France)

    1996-06-01

    Rhesus monkeys are frequently used as animal models for human diseases, most noticeably for simian immunodeficiency virus (SIV) infection and simian AIDS. An analysis of HIV proviruses and HIV-specific cytotoxic T cells in splenic white pulps relied heavily on the analysis of rearranged TCRBV sequences. The spleens were derived from patients with drug-insensitive idiopathic thrombocytopenia purpura and frequently taken at an advanced stage of disease. In order to obtain some insight into the balance of forces between the virus and the immune system during earlier stages of infection, one must inevitably turn to the SIV/macaque AIDS model. As a prerequisite to undertaking similar virological and immunological studies the nucleotide sequence of the macaque TCRBJ loci had to be established. 9 refs., 4 figs., 1 tab.

  20. Identification of alpha beta and gamma delta T cell receptor-positive cells

    DEFF Research Database (Denmark)

    Geisler, C; Larsen, J K; Plesner, T

    1988-01-01

    distribution and function of these different T cells. In immunofluorescence studies gamma delta TCR+ cells have been identified as CD3+WT-31- or CD3+CD4-CD8- cells. However, this may not be the optimal procedure because gamma delta TCR+ cells are weakly WT-31+, and some are CD8+. The aim of this study...... was to evaluate a panel of monoclonal antibodies (MoAb) directed against different chains of the TCR-T3 complex for a more precise identification of alpha beta+ and gamma delta TCR+ cells in flow cytometric studies. We found that the MoAb anti-Ti-gamma A and delta-TCS-1, recognizing the TCR-gamma and the TCR...

  1. The neonatal CD8+ T cell repertoire rapidly diversifies during persistent viral infection1

    Science.gov (United States)

    Venturi, Vanessa; Nzingha, Kito; Amos, Timothy G.; Charles, Wisler C.; Dekhtiarenko, Iryna; Cicin-Sain, Luka; Davenport, Miles P.; Rudd, Brian D.

    2015-01-01

    Cytomegalovirus (CMV) is the most common congenital infection in the United States. The major target of congenital CMV is the brain, with clinical manifestations including mental retardation, vision impairment and sensorineural hearing loss. Previous reports have shown that CD8+ T cells are required to control viral replication and significant numbers of CMV-specific CD8+ T cells persist in the brain even after the initial infection has been cleared. However, the dynamics of CD8+ T cells in the brain during latency remains largely undefined. In this report, we used T cell receptor (TCR) sequencing to track the development and maintenance of neonatal clonotypes in the brain and spleen of mice during chronic infection. Given the discontinuous nature of tissue resident memory CD8+ T cells, we hypothesized that neonatal TCR clonotypes would be ‘locked-in’ the brain and persist into adulthood. Surprisingly, we found that the antigen-specific T cell repertoire in neonatal-infected mice diversified during persistent infection in both the brain and spleen, while maintaining substantial similarity between the CD8+ T cell populations in the brain and spleen in both early and late infection. However, despite the diversification of, and potential interchange between, the spleen and brain antigen-specific T cell repertoires, we observed that germline-encoded TCR clonotypes, characteristic of neonatal infection, persisted in the brain, albeit sometimes in low abundance. These results provide valuable insights into the evolution of CD8+ T cell repertoires following neonatal CMV infection and thus have important implications for the development of therapeutic strategies to control CMV in early life. PMID:26764033

  2. Impaired virus control and severe CD8+ T-cell-mediated immunopathology in chimeric mice deficient in gamma interferon receptor expression on both parenchymal and hematopoietic cells

    DEFF Research Database (Denmark)

    Henrichsen, Pernille; Bartholdy, Christina; Christensen, Jan Pravsgaard

    2005-01-01

    virus completely lack the ability to control the infection and develop severe wasting disease. Further, the study shows that IFN-gamma receptor expression on parenchymal cells in the viscera is more important for virus control than IFN-gamma receptor expression on bone marrow-derived cells.......Bone marrow chimeras were used to determine the cellular target(s) for the antiviral activity of gamma interferon (IFN-gamma). By transfusing such mice with high numbers of naive virus-specific CD8(+) T cells, a system was created in which the majority of virus-specific CD8(+) T cells would...... be capable of responding to IFN-gamma, but expression of the relevant receptor on non-T cells could be experimentally controlled. Only when the IFN-gamma receptor is absent on both radioresistant parenchymal and bone marrow-derived cells will chimeric mice challenged with a highly invasive, noncytolytic...

  3. Stable, Nonviral Expression of Mutated Tumor Neoantigen-specific T-cell Receptors Using the Sleeping Beauty Transposon/Transposase System

    Science.gov (United States)

    Deniger, Drew C; Pasetto, Anna; Tran, Eric; Parkhurst, Maria R; Cohen, Cyrille J; Robbins, Paul F; Cooper, Laurence JN; Rosenberg, Steven A

    2016-01-01

    Neoantigens unique to each patient's tumor can be recognized by autologous T cells through their T-cell receptor (TCR) but the low frequency and/or terminal differentiation of mutation-specific T cells in tumors can limit their utility as adoptive T-cell therapies. Transfer of TCR genes into younger T cells from peripheral blood with a high proliferative potential could obviate this problem. We generated a rapid, cost-effective strategy to genetically engineer cancer patient T cells with TCRs using the clinical Sleeping Beauty transposon/transposase system. Patient-specific TCRs reactive against HLA-A*0201-restriced neoantigens AHNAKS2580F or ERBB2H473Y or the HLA-DQB*0601-restricted neoantigen ERBB2IPE805G were assembled with murine constant chains and cloned into Sleeping Beauty transposons. Patient peripheral blood lymphocytes were coelectroporated with SB11 transposase and Sleeping Beauty transposon, and transposed T cells were enriched by sorting on murine TCRβ (mTCRβ) expression. Rapid expansion of mTCRβ+ T cells with irradiated allogeneic peripheral blood lymphocytes feeders, OKT3, interleukin-2 (IL-2), IL-15, and IL-21 resulted in a preponderance of effector (CD27−CD45RA−) and less-differentiated (CD27+CD45RA+) T cells. Transposed T cells specifically mounted a polyfunctional response against cognate mutated neoantigens and tumor cell lines. Thus, Sleeping Beauty transposition of mutation-specific TCRs can facilitate the use of personalized T-cell therapy targeting unique neoantigens. PMID:26945006

  4. Gene Therapy With Regulatory T Cells: A Beneficial Alliance

    Directory of Open Access Journals (Sweden)

    Moanaro Biswas

    2018-03-01

    Full Text Available Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based antigen receptors (CARs in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.

  5. Secondary B cell receptor diversification is necessary for T cell mediated neuro-inflammation during experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Georgina Galicia

    Full Text Available Clinical studies of B cell depletion in Multiple Sclerosis (MS have revealed that B Lymphocytes are involved in the neuro-inflammatory process, yet it remains unclear how B cells can exert pro- and anti-inflammatory functions during MS. Experimental Autoimmune Encephalomyelitis (EAE is an animal model of MS whereby myelin-specific T cells become activated and subsequently migrate to the Central Nervous System (CNS where they perform pro-inflammatory functions such as cytokine secretion. Typically EAE is induced by immunization of mice of a susceptible genetic background with peptide antigen emulsified in Complete Freund's Adjuvant. However, novel roles for B-lymphocytes in EAE may also be explored by immunization with full-length myelin oligodendrocyte glycoprotein (MOG that contains the B cell conformational epitope. Here we show that full length MOG immunization promotes a chronic disease in mice that depends on antigen-driven secondary diversification of the B cell receptor.Activation-Induced Deaminase (AID is an enzyme that is essential for antigen-driven secondary diversification of the B cell receptor. We immunized AID(-/- mice with the extracellular domain (amino acids 1-120 of recombinant human MOG protein (rhMOG and examined the incidence and severity of disease in AID(-/- versus wild type mice. Corresponding with these clinical measurements, we also evaluated parameters of T cell activation in the periphery and the CNS as well as the generation of anti-MOG antibodies (Ab.AID(-/- mice exhibit reduced severity and incidence of EAE. This suggests that the secondary diversification of the B cell receptor is required for B cells to exert their full encephalogenic potential during rhMOG-induced EAE, and possibly also during MS.

  6. Characterization of a novel single-chain bispecific antibody for retargeting of T cells to tumor cells via the TCR co-receptor CD8.

    Directory of Open Access Journals (Sweden)

    Irene Michalk

    Full Text Available There is currently growing interest in retargeting of effector T cells to tumor cells via bispecific antibodies (bsAbs. Usually, bsAbs are directed on the one hand to the CD3 complex of T cells and on the other hand to a molecule expressed on the surface of the target cell. A bsAb-mediated cross-linkage via CD3 leads to an activation of CD8+ T cells and consequently to killing of the target cells. In parallel, CD4+ T cells including TH1, TH2, TH17 cells and even regulatory T cells (Tregs will be activated as well. Cytokines produced by CD4+ T cells can contribute to severe side effects e. g. life-threatening cytokine storms and, thinking of the immunosupressive function of Tregs, can even be counterproductive. Therefore, we asked whether or not it is feasible to limit retargeting to CD8+ T cells e. g. via targeting of the co-receptor CD8 instead of CD3. In order to test for proof of concept, a novel bsAb with specificity for CD8 and a tumor-associated surface antigen was constructed. Interestingly, we found that pre-activated (but not freshly isolated CD8+ T cells can be retargeted via CD8-engaging bsAbs leading to an efficient lysis of target cells.

  7. Translation is actively regulated during the differentiation of CD8+ effector T cells.

    Science.gov (United States)

    Araki, Koichi; Morita, Masahiro; Bederman, Annelise G; Konieczny, Bogumila T; Kissick, Haydn T; Sonenberg, Nahum; Ahmed, Rafi

    2017-09-01

    Translation is a critical process in protein synthesis, but translational regulation in antigen-specific T cells in vivo has not been well defined. Here we have characterized the translatome of virus-specific CD8 + effector T cells (T eff cells) during acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Antigen-specific T cells exerted dynamic translational control of gene expression that correla