WorldWideScience

Sample records for antigen vaccination affords

  1. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Maurizio Chiriva-Internati

    Full Text Available Sperm protein (Sp17 is an attractive target for ovarian cancer (OC vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17 was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC.

  2. Vaccination and antigenic drift in influenza.

    Science.gov (United States)

    Boni, Maciej F

    2008-07-18

    The relationship between influenza antigenic drift and vaccination lies at the intersection of evolutionary biology and public health, and it must be viewed and analyzed in both contexts simultaneously. In this paper, 1 review what is known about the effects of antigenic drift on vaccination and the effects of vaccination on antigenic drift, and I suggest some simple ways to detect the presence of antigenic drift in seasonal influenza data. If antigenic drift occurs on the time scale of a single influenza season, it may be associated with the presence of herd immunity at the beginning of the season and may indicate a need to monitor for vaccine updates at the end of the season. The relationship between antigenic drift and vaccination must also be viewed in the context of the global circulation of influenza strains and the seeding of local and regional epidemics. In the data sets I consider--from New Zealand, New York, and France--antigenic drift can be statistically detected during some seasons, and seeding of epidemics appears to be endogenous sometimes and exogenous at other times. Improved detection of short-term antigenic drift and epidemic seeding would significantly benefit influenza monitoring efforts and vaccine selection.

  3. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  4. Increasing vaccine potency through exosome antigen targeting.

    Science.gov (United States)

    Hartman, Zachary C; Wei, Junping; Glass, Oliver K; Guo, Hongtao; Lei, Gangjun; Yang, Xiao-Yi; Osada, Takuya; Hobeika, Amy; Delcayre, Alain; Le Pecq, Jean-Bernard; Morse, Michael A; Clay, Timothy M; Lyerly, Herbert K

    2011-11-21

    While many tumor associated antigens (TAAs) have been identified in human cancers, efforts to develop efficient TAA "cancer vaccines" using classical vaccine approaches have been largely ineffective. Recently, a process to specifically target proteins to exosomes has been established which takes advantage of the ability of the factor V like C1C2 domain of lactadherin to specifically address proteins to exosomes. Using this approach, we hypothesized that TAAs could be targeted to exosomes to potentially increase their immunogenicity, as exosomes have been demonstrated to traffic to antigen presenting cells (APC). To investigate this possibility, we created adenoviral vectors expressing the extracellular domain (ECD) of two non-mutated TAAs often found in tumors of cancer patients, carcinoembryonic antigen (CEA) and HER2, and coupled them to the C1C2 domain of lactadherin. We found that these C1C2 fusion proteins had enhanced expression in exosomes in vitro. We saw significant improvement in antigen specific immune responses to each of these antigens in naïve and tolerant transgenic animal models and could further demonstrate significantly enhanced therapeutic anti-tumor effects in a human HER2+ transgenic animal model. These findings demonstrate that the mode of secretion and trafficking can influence the immunogenicity of different human TAAs, and may explain the lack of immunogenicity of non-mutated TAAs found in cancer patients. They suggest that exosomal targeting could enhance future anti-tumor vaccination protocols. This targeting exosome process could also be adapted for the development of more potent vaccines in some viral and parasitic diseases where the classical vaccine approach has demonstrated limitations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Designing malaria vaccines to circumvent antigen variability✩

    Science.gov (United States)

    Ouattara, Amed; Barry, Alyssa E.; Dutta, Sheetij; Remarque, Edmond J.; Beeson, James G.; Plowe, Christopher V.

    2016-01-01

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. PMID:26475447

  6. Designing malaria vaccines to circumvent antigen variability.

    Science.gov (United States)

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines. Copyright © 2015. Published by Elsevier Ltd.

  7. Strategies for Designing and Monitoring Malaria Vaccines Targeting Diverse Antigens

    Science.gov (United States)

    Barry, Alyssa E.; Arnott, Alicia

    2014-01-01

    After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates. PMID

  8. Strategies for designing and monitoring malaria vaccines targeting diverse antigens

    Directory of Open Access Journals (Sweden)

    Alyssa E Barry

    2014-07-01

    Full Text Available After more than 50 years of intensive research and development, only one malaria vaccine candidate, RTS,S, has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now catalogued the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarise the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximise the potential of future malaria vaccine

  9. Universal influenza vaccines, science fiction or soon reality?

    NARCIS (Netherlands)

    R.D. de Vries (Rory); A.F. Altenburg (Arwen); G.F. Rimmelzwaan (Guus)

    2015-01-01

    textabstractCurrently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically

  10. Developing Countries Vaccine Manufacturers Network: doing good by making high-quality vaccines affordable for all.

    Science.gov (United States)

    Pagliusi, Sonia; Leite, Luciana C C; Datla, Mahima; Makhoana, Morena; Gao, Yongzhong; Suhardono, Mahendra; Jadhav, Suresh; Harshavardhan, Gutla V J A; Homma, Akira

    2013-04-18

    The Developing Countries Vaccine Manufacturers Network (DCVMN) is a unique model of a public and private international alliance. It assembles governmental and private organizations to work toward a common goal of manufacturing and supplying high-quality vaccines at affordable prices to protect people around the world from known and emerging infectious diseases. Together, this group of manufacturers has decades of experience in manufacturing vaccines, with technologies, know-how, and capacity to produce more than 40 vaccines types. These manufacturers have already contributed more than 30 vaccines in various presentations that have been prequalified by the World Health Organization for use by global immunization programmes. Furthermore, more than 45 vaccines are in the pipeline. Recent areas of focus include vaccines to protect against rotavirus, human papillomavirus (HPV), Japanese encephalitis, meningitis, hepatitis E, poliovirus, influenza, and pertussis, as well as combined pentavalent vaccines for children. The network has a growing number of manufacturers that produce a growing number of products to supply the growing demand for vaccines in developing countries. Copyright © 2013. Published by Elsevier Ltd.

  11. Dissecting antigen processing and presentation routes in dermal vaccination strategies

    NARCIS (Netherlands)

    Platteel, Anouk C M; Henri, Sandrine; Zaiss, Dietmar M; Sijts, Alice J A M

    2017-01-01

    The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8(+) T cell

  12. Identification of protective antigens for vaccination against systemic salmonellosis

    Directory of Open Access Journals (Sweden)

    Dirk eBumann

    2014-08-01

    Full Text Available There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50-200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.

  13. Filamentous bacteriophage fd as an antigen delivery system in vaccination.

    Science.gov (United States)

    Prisco, Antonella; De Berardinis, Piergiuseppe

    2012-01-01

    Peptides displayed on the surface of filamentous bacteriophage fd are able to induce humoral as well as cell-mediated immune responses, which makes phage particles an attractive antigen delivery system to design new vaccines. The immune response induced by phage-displayed peptides can be enhanced by targeting phage particles to the professional antigen presenting cells, utilizing a single-chain antibody fragment that binds dendritic cell receptor DEC-205. Here, we review recent advances in the use of filamentous phage fd as a platform for peptide vaccines, with a special focus on the use of phage fd as an antigen delivery platform for peptide vaccines in Alzheimer's Disease and cancer.

  14. Delivery of antigens used for vaccination: recent advances and challenges.

    Science.gov (United States)

    Scherliess, Regina

    2011-10-01

    Pasteur's principle 'isolate, inactivate, inject' was the starting point for the successful development of many vaccines, but now, new ways for antigen discovery and vaccine administration present a challenge. Whereas vaccines against polio, measles and influenza are common for many parts of the world, the development of thermostable vaccines not being injected would ease vaccine distribution in developing countries. This review summarizes the general principles of vaccination and looks at common and novel vaccination targets. It also gives a rationale for using other routes than parenteral administration, such as mucosal or transdermal vaccination, and focuses on novel vaccination vehicles, as well as their formulation and stability aspects. Additionally, the review looks at novel application devices for the administration of vaccines.

  15. Oral vaccination of animals with antigens encapsulated in alginate microspheres.

    Science.gov (United States)

    Bowersock, T L; HogenEsch, H; Suckow, M; Guimond, P; Martin, S; Borie, D; Torregrosa, S; Park, H; Park, K

    1999-03-26

    Most infectious diseases begin at a mucosal surface. Prevention of infection must therefore consider ways to enhance local immunity to prevent the attachment and invasion of microbes. Despite this understanding, most vaccines depend on parenterally administered vaccines that induce a circulating immune response that often does not cross to mucosal sites. Administration of vaccines to mucosal sites induces local immunity. To be effective requires that antigen be administered often. This is not always practical depending on the site where protection is needed, nor comfortable to the patient. Not all mucosal sites have inductive lymphoid tissue present as well. Oral administration is easy to do, is well accepted by humans and animals and targets the largest inductive lymphoid tissue in the body in the intestine. Oral administration of antigen requires protection of antigen from the enzymes and pH of the stomach. Polymeric delivery systems are under investigation to deliver vaccines to the intestine while protecting them from adverse conditions that could adversely affect the antigens. They also can enhance delivery of antigen specifically to the inductive lymphoid tissue. Sodium alginate is a readily available, inexpensive polymer that can be used to encapsulate a wide variety of antigens under mild conditions. Orally administered alginate microspheres containing antigen have successfully induced immunity in mice to enteric (rotavirus) pathogens and in the respiratory tract in cattle with a model antigen (ovalbumin). This delivery system offers a safe, effective means of orally vaccinating large numbers of animals (and perhaps humans) to a variety of infectious agents.

  16. Use of antigenic cartography in vaccine seed strain selection.

    Science.gov (United States)

    Fouchier, Ron A M; Smith, Derek J

    2010-03-01

    Human influenza A viruses are classic examples of antigenically variable pathogens that have a seemingly endless capacity to evade the host's immune response. The viral hemagglutinin (HA) and neuraminidase (NA) proteins are the main targets of our antibody response to combat infections. HA and NA continuously change to escape from humoral immunity, a process known as antigenic drift. As a result of antigenic drift, the human influenza vaccine is updated frequently. The World Health Organization (WHO) coordinates a global influenza surveillance network that, by the hemagglutination inhibition (HI) assay, routinely characterizes the antigenic properties of circulating strains in order to select new seed viruses for such vaccine updates. To facilitate a quantitative interpretation and easy visualization of HI data, a new computational technique called "antigenic cartography" was developed. Since its development, antigenic cartography has been applied routinely to assist the WHO with influenza surveillance activities. Until recently, antigenic variation was not considered a serious issue with influenza vaccines for poultry. However, because of the diversification of the Asian H5N1 lineage since 1996 into multiple genetic clades and subclades, and because of the long-term use of poultry vaccines against H5 in some parts of the world, this issue needs to be re-addressed. The antigenic properties of panels of avian H5N1 viruses were characterized by HI assay, using mammalian or avian antisera, and analyzed using antigenic cartography methods. These analyses revealed antigenic differences between circulating H5N1 viruses and the H5 viruses used in poultry vaccines. Considerable antigenic variation was also observed within and between H5N1 clades. These observations have important implications for the efficacy and long-term use of poultry vaccines.

  17. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing

    NARCIS (Netherlands)

    Platteel, Anouk C M; Marit de Groot, A; Andersen, Peter; Ovaa, Huib; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M

    2016-01-01

    Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA

  18. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates

    Directory of Open Access Journals (Sweden)

    Valérie Bouchez

    2015-09-01

    Full Text Available Evolution of Bordetella pertussis is driven by natural and vaccine pressures. Isolates circulating in regions with high vaccination coverage present multiple allelic and antigenic variations as compared to isolates collected before introduction of vaccination. Furthermore, during the last epidemics reported in regions using pertussis acellular vaccines, isolates deficient for vaccine antigens, such as pertactin (PRN, were reported to reach high proportions of circulating isolates. More sporadic filamentous hemagglutinin (FHA or pertussis toxin (PT deficient isolates were also collected. The whole genome of some recent French isolates, deficient or non-deficient in vaccine antigens, were analyzed. Transcription profiles of the expression of the main virulence factors were also compared. The invasive phenotype in an in vitro human tracheal epithelial (HTE cell model of infection was evaluated. Our genomic analysis focused on SNPs related to virulence genes known to be more likely to present allelic polymorphism. Transcriptomic data indicated that isolates circulating since the introduction of pertussis vaccines present lower transcription levels of the main virulence genes than the isolates of the pre-vaccine era. Furthermore, isolates not producing FHA present significantly higher expression levels of the entire set of genes tested. Finally, we observed that recent isolates are more invasive in HTE cells when compared to the reference strain, but no multiplication occurs within cells.

  19. Affordance

    DEFF Research Database (Denmark)

    Olesen, Mogens

    2016-01-01

    This entry presents the concept of affordances as part of an ecological approach to understanding how agents interact with objects in their environment. It examines some of the central developments of the concept, from J. J. Gibson’s original definition within psychology and Donald Norman’s design......-oriented elaborations, to newer applications in other fields like communications and media research and education. Key concepts and main topics of debate are presented....

  20. Affordance

    DEFF Research Database (Denmark)

    Olesen, Mogens

    2016-01-01

    This entry presents the concept of affordances as part of an ecological approach to understanding how agents interact with objects in their environment. It examines some of the central developments of the concept, from J. J. Gibson’s original definition within psychology and Donald Norman’s desig......-oriented elaborations, to newer applications in other fields like communications and media research and education. Key concepts and main topics of debate are presented....

  1. Cancer-germline antigen vaccines and epigenetic enhancers

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Burns, Jorge; Ditzel, Henrik Jorn

    2010-01-01

    can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW: We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential...... synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN: The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE: Chemoimmunotherapy using epigenetic drugs and CG...

  2. Towards patient-specific tumor antigen selection for vaccination.

    Science.gov (United States)

    Rammensee, Hans-Georg; Weinschenk, Toni; Gouttefangeas, Cécile; Stevanović, Stefan

    2002-10-01

    In this review, we discuss the possibilities for combining the power of molecular analysis of the antigens expressed in a given individual tumor with the design of a tailored vaccine containing defined antigens. Step 1 is a differential gene expression analysis of tumor and corresponding normal tissue. Step 2 is the analysis of human leukocyte antigen (HLA) ligands on tumor cells. Step 3 is data mining with the aim to select those antigens that might be suitable for tumor attack by the adaptive immune system. Step 4 is the on-the-spot clinical grade production of the constituents of the patient tailored vaccine, e.g. peptides. Step 5 is then vaccination and monitoring. Although it will not be possible to cover all relevant antigens expressed in a tumor, the antigens that can be identified with our present technical possibilities might be enough for improved immunotherapy. The scope of the present review is to explore the possibilities and the formidable technical and logistical challenge for such individual patient-oriented antigen definition to be used for therapeutic immunization.

  3. Vaccination and the TAP-independent antigen processing pathways.

    Science.gov (United States)

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  4. Cancer vaccines: an update with special focus on ganglioside antigens.

    Science.gov (United States)

    Bitton, Roberto J; Guthmann, Marcel D; Gabri, Mariano R; Carnero, Ariel J L; Alonso, Daniel F; Fainboim, Leonardo; Gomez, Daniel E

    2002-01-01

    Vaccine development is one of the most promising and exciting fields in cancer research; numerous approaches are being studied to developed effective cancer vaccines. The aim of this form of therapy is to teach the patient's immune system to recognize the antigens expressed in tumor cells, but not in normal tissue, to be able to destroy these abnormal cells leaving the normal cells intact. In other words, is an attempt to teach the immune system to recognize antigens that escaped the immunologic surveillance and are by it, therefore able to survive and, in time, disseminate. However each research group developing a cancer vaccine, uses a different technology, targeting different antigens, combining different carriers and adjuvants, and using different immunization schedules. Most of the vaccines are still experimental and not approved by the US or European Regulatory Agencies. In this work, we will offer an update in the knowledge in cancer immunology and all the anticancer vaccine approaches, with special emphasis in ganglioside based vaccines. It has been demonstrated that quantitative and qualitative changes occur in ganglioside expression during the oncogenic transformation. Malignant transformation appears to activate enzymes associated with ganglioside glycosylation, resulting in altered patterns of ganglioside expression in tumors. Direct evidence of the importance of gangliosides as potential targets for active immunotherapy has been suggested by the observation that human monoclonal antibodies against these glycolipids induce shrinkage of human cutaneous melanoma metastasis. Thus, the cellular over-expression and shedding of gangliosides into the interstitial space may play a central role in cell growth regulation, immune tolerance and tumor-angiogenesis, therefore representing a new target for anticancer therapy. Since 1993 researchers at the University of Buenos Aires and the University of Quilmes (Argentina), have taken part in a project carried out by

  5. Cellular Cancer Vaccines: an Update on the Development of Vaccines Generated from Cell Surface Antigens

    Directory of Open Access Journals (Sweden)

    Petr G. Lokhov, Elena E. Balashova

    2010-01-01

    Full Text Available A recent advance in anti-cancer therapies has been the use of cancer cells to develop vaccines. However, immunization with cancer cell-based vaccines has not resulted in significant long-term therapeutic benefits. A possible reason for this is that while cancer cells provide surface antigens that are targets for a desired immune response, they also contain a high abundance of housekeeping proteins, carbohydrates, nucleic acids, lipids, and other intracellular contents that are ubiquitous in all mammalian cells. These ubiquitous molecules are not the intended targets of this therapy approach, and thus, the immune response generated is not sufficient to eliminate the cancer cells present. In this review, a discussion of the cell surface of cancer cells is presented in relation to the goals of improving antigen composition of cancer cell-based vaccines. Strategies to enrich vaccines for cancer-specific antigens are also discussed.

  6. Plant-made vaccine antigens and biopharmaceuticals.

    Science.gov (United States)

    Daniell, Henry; Singh, Nameirakpam D; Mason, Hugh; Streatfield, Stephen J

    2009-12-01

    Plant cells are ideal bioreactors for the production and oral delivery of vaccines and biopharmaceuticals, eliminating the need for expensive fermentation, purification, cold storage, transportation and sterile delivery. Plant-made vaccines have been developed for two decades but none has advanced beyond Phase I. However, two plant-made biopharmaceuticals are now advancing through Phase II and Phase III human clinical trials. In this review, we evaluate the advantages and disadvantages of different plant expression systems (stable nuclear and chloroplast or transient viral) and their current limitations or challenges. We provide suggestions for advancing this valuable concept for clinical applications and conclude that greater research emphasis is needed on large-scale production, purification, functional characterization, oral delivery and preclinical evaluation.

  7. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Directory of Open Access Journals (Sweden)

    Mark S Pearson

    Full Text Available The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1 and IgG(3 from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1, suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.

  8. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines

    Directory of Open Access Journals (Sweden)

    Flower Darren R

    2007-01-01

    Full Text Available Abstract Background Vaccine development in the post-genomic era often begins with the in silico screening of genome information, with the most probable protective antigens being predicted rather than requiring causative microorganisms to be grown. Despite the obvious advantages of this approach – such as speed and cost efficiency – its success remains dependent on the accuracy of antigen prediction. Most approaches use sequence alignment to identify antigens. This is problematic for several reasons. Some proteins lack obvious sequence similarity, although they may share similar structures and biological properties. The antigenicity of a sequence may be encoded in a subtle and recondite manner not amendable to direct identification by sequence alignment. The discovery of truly novel antigens will be frustrated by their lack of similarity to antigens of known provenance. To overcome the limitations of alignment-dependent methods, we propose a new alignment-free approach for antigen prediction, which is based on auto cross covariance (ACC transformation of protein sequences into uniform vectors of principal amino acid properties. Results Bacterial, viral and tumour protein datasets were used to derive models for prediction of whole protein antigenicity. Every set consisted of 100 known antigens and 100 non-antigens. The derived models were tested by internal leave-one-out cross-validation and external validation using test sets. An additional five training sets for each class of antigens were used to test the stability of the discrimination between antigens and non-antigens. The models performed well in both validations showing prediction accuracy of 70% to 89%. The models were implemented in a server, which we call VaxiJen. Conclusion VaxiJen is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen classification solely based on the physicochemical properties of proteins without

  9. Immune overload: Parental attitudes toward combination and single antigen vaccines.

    Science.gov (United States)

    Hulsey, Ella; Bland, Tami

    2015-05-21

    Parental concerns have led to a recent decline in immunization coverage, resulting in outbreaks of diseases that were once under control in the US. As the CDC vaccination schedule continues to increase in complexity, the number of required injections per office visit increases as well. Some parents perceive that there is trauma associated with the administration of multiple injections, and research shows that having multiple vaccines due in a single visit is associated with delays and lower immunization rates. Combination vaccines make vaccination more efficient by incorporating the antigens of several different diseases into a single injection, but many parents worry that they may overload the child's developing immune system and leave him or her susceptible to secondary infections. This literature review synthesizes current evidence regarding the parental fear of vaccine-induced immune system overload and the fear of vaccine-associated trauma, in an attempt to understand the scope and nature of these fears. Despite the wealth of knowledge about each of these fears individually, it is still unknown which is of greater concern and how this affects parental decision-making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH.

    Science.gov (United States)

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Alvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189-201 and LLO91-99 and the GAPDH peptide, GAPDH1-22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1-22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91-99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1-22-specific CD4(+) and CD8(+) immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4(+) and CD8(+) epitopes.

  11. CELLULAR VACCINES IN LISTERIOSIS: ROLE OF THE LISTERIA ANTIGEN GAPDH.

    Directory of Open Access Journals (Sweden)

    Ricardo eCalderon-Gonzalez

    2014-02-01

    Full Text Available The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, and several epitopes such as the LLO peptides, LLO189–201 and LLO91–99 and the GAPDH peptide, GAPDH1–22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1–22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91–99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1–22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes.

  12. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH

    Science.gov (United States)

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592

  13. Impact of the RTS,S malaria vaccine candidate on naturally acquired antibody responses to multiple asexual blood stage antigens.

    Directory of Open Access Journals (Sweden)

    Joseph J Campo

    Full Text Available Partial protective efficacy lasting up to 43 months after vaccination with the RTS,S malaria vaccine has been reported in one cohort (C1 of a Phase IIb trial in Mozambique, but waning efficacy was observed in a smaller contemporaneous cohort (C2. We hypothesized that low dose exposure to asexual stage parasites resulting from partial pre-erythrocytic protection afforded by RTS,S may contribute to long-term vaccine efficacy to clinical disease, which was not observed in C2 due to intense active detection of infection and treatment.Serum collected 6 months post-vaccination was screened for antibodies to asexual blood stage antigens AMA-1, MSP-1(42, EBA-175, DBL-α and variant surface antigens of the R29 laboratory strain (VSA(R29. Effect of IgG on the prospective hazard of clinical malaria was estimated. No difference was observed in antibody levels between RTS,S and control vaccine when all children aged 1-4 years at enrollment in both C1 and C2 were analyzed together, and no effects were observed between cohort and vaccine group. RTS,S-vaccinated children <2 years of age at enrollment had lower levels of IgG for AMA-1 and MSP-1(42 (p<0.01, all antigens, while no differences were observed in children ≥2 years. Lower risk of clinical malaria was associated with high IgG to EBA-175 and VSA(R29 in C2 only (Hazard Ratio [HR]: 0.76, 95% CI 0.66-0.88; HR: 0.75, 95% CI 0.62-0.92, respectively.Vaccination with RTS,S modestly reduces anti-AMA-1 and anti-MSP-1 antibodies in very young children. However, for antigens associated with lower risk of clinical malaria, there were no vaccine group or cohort-specific effects, and age did not influence antibody levels between treatment groups for these antigens. The antigens tested do not explain the difference in protective efficacy in C1 and C2. Other less-characterized antigens or VSA may be important to protection.ClinicalTrials.gov NCT00197041.

  14. Unusual antigen presentation offers new insight into HIV vaccine design.

    Science.gov (United States)

    McMichael, Andrew J; Picker, Louis J

    2017-06-01

    Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influenza virosomes supplemented with GPI-0100 adjuvant : a potent vaccine formulation for antigen dose sparing

    NARCIS (Netherlands)

    Liu, Heng; de Vries-Idema, Jacqueline; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke

    Adjuvants can stimulate vaccine-induced immune responses and can contribute decisively to antigen dose sparing when vaccine antigen production is limited, as for example during a pandemic influenza outbreak. We earlier showed that GPI-0100, a semi-synthetic saponin derivative with amphiphilic

  16. Characterization of influenza vaccine immunogenicity using influenza antigen microarrays.

    Directory of Open Access Journals (Sweden)

    Jordan V Price

    Full Text Available Existing methods to measure influenza vaccine immunogenicity prohibit detailed analysis of epitope determinants recognized by immunoglobulins. The development of highly multiplex proteomics platforms capable of capturing a high level of antibody binding information will enable researchers and clinicians to generate rapid and meaningful readouts of influenza-specific antibody reactivity.We developed influenza hemagglutinin (HA whole-protein and peptide microarrays and validated that the arrays allow detection of specific antibody reactivity across a broad dynamic range using commercially available antibodies targeted to linear and conformational HA epitopes. We derived serum from blood draws taken from 76 young and elderly subjects immediately before and 28±7 days post-vaccination with the 2008/2009 trivalent influenza vaccine and determined the antibody reactivity of these sera to influenza array antigens.Using linear regression and correcting for multiple hypothesis testing by the Benjamini and Hochberg method of permutations over 1000 resamplings, we identified antibody reactivity to influenza whole-protein and peptide array features that correlated significantly with age, H1N1, and B-strain post-vaccine titer as assessed through a standard microneutralization assay (p<0.05, q <0.2. Notably, we identified several peptide epitopes that were inversely correlated with regard to age and seasonal H1N1 and B-strain neutralization titer (p<0.05, q <0.2, implicating reactivity to these epitopes in age-related defects in response to H1N1 influenza. We also employed multivariate linear regression with cross-validation to build models based on age and pre-vaccine peptide reactivity that predicted vaccine-induced neutralization of seasonal H1N1 and H3N2 influenza strains with a high level of accuracy (84.7% and 74.0%, respectively.Our methods provide powerful tools for rapid and accurate measurement of broad antibody-based immune responses to influenza

  17. A polyvalent vaccine for high-risk prostate patients: "are more antigens better?"

    DEFF Research Database (Denmark)

    Slovin, Susan F; Ragupathi, Govind; Fernandez, Celina

    2007-01-01

    vaccine of synthetic "self" antigens broke immunologic tolerance against two or more antigens in all 30 vaccinated patients, was safe, but antibody titers against several of the antigens were lower than those seen in individual monovalent trials. No impact on PSA slope was detected. We address...... with stimulation by multiple antigens, a hexavalent vaccine was prepared using previously determined doses and administered in a Phase II setting to 30 high-risk patients. The hexavalent vaccine included GM2, Globo H, Lewis(y), glycosylated MUC-1-32mer and Tn and TF in a clustered formation, conjugated to KLH...... and mixed with QS-21. Eight vaccinations were administered over 13 months. All 30 patients had significant elevations in antibody titers to at least two of the six antigens; 22 patients had increased reactivity with FACS. These serologic responses were lower than that seen previously in patients treated...

  18. Booster Vaccination: The Role of Reduced Antigen Content Vaccines as a Preschool Booster

    Directory of Open Access Journals (Sweden)

    Giovanni Gabutti

    2014-01-01

    Full Text Available The need for boosters for tetanus, diphtheria, pertussis, and polio, starting from preschool age, is related to the waning immune protection conferred by vaccination, the elimination/reduction of natural boosters due to large-scale immunization programs, and the possibility of reintroduction of wild agents from endemic areas. Taking into account the relevance of safety/tolerability in the compliance with vaccination among the population, it have been assessed whether today enough scientific evidences are available to support the use of dTap-IPV booster in preschool age. The review of the literature was conducted using the PubMed search engine. A total of 41 works has been selected; besides, the documentation produced by the World Health Organization, the European Centre for Disease Control, and the Italian Ministry of Health has been consulted. Many recent papers confirm the opportunity to use a low antigenic dose vaccine starting from 4 to 6 years of age. There is also evidence that 10 years after immunization the rate of seroprotected subjects against diphtheria does not differ significantly between those vaccinated with paediatric dose (DTaP or reduced dose (dTaP or dTap product. The dTpa vaccine is highly immunogenic for diphtheria toxoids regardless of prior vaccination history (2 + 1 and 3 + 1 schedules.

  19. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  20. Efficacy demonstration of tetanus vaccines by double antigen ELISA.

    Science.gov (United States)

    Rosskopf, U; Noeske, K; Werner, E

    2005-09-01

    This paper describes a double antigen ELISA (DAE) for rapid, specific and reliable assessment of the antitetanus immune status of horses and sheep. Compared with the indirect ELISA, the double antigen ELISA has the advantage of species-independent testing of sera. Thanks to its test design, it is more specific since the detected antibodies are forced to bind tetanus toxoid twice. In addition, it is very sensitive to tetanus antibodies, enabling the detection of low antibody titres, in range which is relevant for the assessment of the protective status (tetanus toxin neutralising antibodies). The detection limit of the DAE for tetanus antibodies is in the order of 10(-4) EU/ml. A comparison of in vitro results of individual sera with in vivo titres showed that horse sera with titres of 0.04 and 0.05 EU/ml in the DAE showed titres of > 0.05 IU and 0.034 IU/ml respectively during in vivo testing thus indicating good agreement. For tested sheep sera which were rated > 0.05 IU/ml in vivo, the corresponding titre in the DAE was 0.24 EU/ml. Clear tetanus antitoxin establishment of protective ELISA limits requires further comparative examination of sera with low titres (tetanus vaccines ad us. vet. As a consequence, the toxin neutralisation test (still being the standard method of choice for quantifying tetanus toxin neutralising antitoxin titres) could be replaced, since it requires too great a number of animals per test and involves considerable suffering for the animals. The test described here reduces the use of mice and guinea pigs within vaccine efficacy testing. In addition, it involves less exposure of the laboratory personnel to toxin.

  1. Primary vaccination of adults with reduced antigen-content diphtheria-tetanus-acellular pertussis or dTpa-inactivated poliovirus vaccines compared to diphtheria-tetanus-toxoid vaccines.

    NARCIS (Netherlands)

    Theeten, H.; Rumke, H.C.; Hoppener, F.J.; Vilatimo, R.; Narejos, S.; Damme, P. van; Hoet, B.

    2007-01-01

    OBJECTIVE: To evaluate immunogenicity and reactogenicity of primary vaccination with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) or dTpa-inactivated poliovirus (dTpa-IPV) vaccine compared to diphtheria-tetanus-toxoid vaccines (Td) in adults > or = 40 years of age without

  2. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  3. Computational prediction of immunodominant antigenic regions & potential protective epitopes for dengue vaccination.

    Science.gov (United States)

    Muthusamy, Karthikeyan; Gopinath, Krishnasamy; Nandhini, Dharmalingam

    2016-10-01

    Epitope-based vaccines (EVs) are specific, safe and easy to produce. However, vaccine failure has been frequently reported due to variation within epitopic regions. Therefore, development of vaccines based on conserved epitopes may prevent such vaccine failure. This study was undertaken to identify highly conserved antigenic regions in the four dengue serotypes to produce an epitope-based dengue vaccine. Polyprotein sequences of all four dengue serotypes were collected and aligned using MAFFT multiple sequence alignment plugin with Geneious Pro v6.1. Consensus sequences of the polyproteins for all four dengue serotypes were designed and screened against experimentally proven epitopes to predict potential antigenic regions that are conserved among all four dengue serotypes. The antigenic region VDRGWGNGCGLFGKG was 100 per cent conserved in the consensus polyprotein sequences of all four dengue serotypes. Fifteen experimentally proven epitopes were identical to the immunodominant antigenic region. Computationally predicted antigenic regions may be considered for use in the development of EVs for protection against dengue virus. Such vaccines would be expected to provide protection against dengue infections caused by all dengue serotypes because these would contain antigenic regions highly conserved across those serotypes. Therefore, the immunodominant antigenic region (VDRGWGNGCGLFGKG) and 15 potential epitopes may be considered for use in dengue vaccines.

  4. Safety and immunogenicity of influenza A H5 subunit vaccines: effect of vaccine schedule and antigenic variant.

    Science.gov (United States)

    Belshe, Robert B; Frey, Sharon E; Graham, Irene; Mulligan, Mark J; Edupuganti, Srilatha; Jackson, Lisa A; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L; Spearman, Paul; Hill, Heather; Wolff, Mark

    2011-03-01

    The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18-49 years of age. Two doses of vaccine were required to induce antibody titers ≥ 1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053.

  5. Dynamics of polymorphism in a malaria vaccine antigen at a vaccine-testing site in Mali.

    Directory of Open Access Journals (Sweden)

    Shannon L Takala

    2007-03-01

    Full Text Available Malaria vaccines based on the 19-kDa region of merozoite surface protein 1 (MSP-1(19 derived from the 3D7 strain of Plasmodium falciparum are being tested in clinical trials in Africa. Knowledge of the distribution and natural dynamics of vaccine antigen polymorphisms in populations in which malaria vaccines will be tested will guide vaccine design and permit distinction between natural fluctuations in genetic diversity and vaccine-induced selection.Using pyrosequencing, six single-nucleotide polymorphisms in the nucleotide sequence encoding MSP-1(19 were genotyped from 1,363 malaria infections experienced by 100 children who participated in a prospective cohort study in Mali from 1999 to 2001. The frequencies of 14 MSP-1(19 haplotypes were compared over the course of the malaria transmission season for all three years, in three age groups, and in consecutive infections within individuals. While the frequency of individual MSP-1(19 haplotypes fluctuated, haplotypes corresponding to FVO and FUP strains of P. falciparum (MSP-1(19 haplotypes QKSNGL and EKSNGL, respectively were most prevalent during three consecutive years and in all age groups with overall prevalences of 46% (95% confidence interval [CI] 44%-49% and 36% (95% CI 34%-39%, respectively. The 3D7 haplotype had a lower overall prevalence of 16% (95% CI 14%-18%. Multiplicity of infection based on MSP-1(19 was higher at the beginning of the transmission season and in the oldest individuals (aged > or =11 y. Three MSP-1(19 haplotypes had a reduced frequency in symptomatic infections compared to asymptomatic infections. Analyses of the dynamics of MSP-1(19 polymorphisms in consecutive infections implicate three polymorphisms (at positions 1691, 1700, and 1701 as being particularly important in determining allele specificity of anti-MSP-1(19 immunity.Parasites with MSP-1(19 haplotypes different from that of the leading vaccine strain were consistently the most prevalent at a vaccine trial

  6. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    2018-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis (TB, causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI, and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660 TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  7. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    Science.gov (United States)

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P immersion, which was significantly higher than the levels of uptake measured in the other tissues (P immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P immersion, notably 50‰ salinity significantly enhanced antigen uptake and the expression of selected genes associated with antigen presentation, providing evidence for an enhanced immune activation of the fish's immune response by the hyperosmotic immersion treatment prior to vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce......The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly...

  9. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    Science.gov (United States)

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  10. Innovative DNA vaccine to break immune tolerance against tumor self-antigen.

    Science.gov (United States)

    Kang, Tae Heung; Mao, Chih-Ping; La, Victor; Chen, Alexander; Hung, Chien-Fu; Wu, T-C

    2013-02-01

    Vaccination is, in theory, a safe and effective approach for controlling disseminated or metastatic cancer due to the specificity of the mammalian immune system, yet its success in the clinic has been hampered thus far by the problem of immune tolerance to tumor self-antigen. Here we describe a DNA vaccination strategy that is able to control cancer by overcoming immune tolerance to tumor self-antigen. We engineered a DNA construct encoding a dimeric form of a secreted single-chain trimer of major histocompatibility complex class I heavy chain, β2-microglobulin, and peptide antigen linked to immunoglobulin G (SCT-Ag/IgG). The chimeric protein was able to bind to antigen-specific CD8(+) T cells with nearly 100% efficiency and strongly induce their activation and proliferation. In addition, the chimeric protein was able to coat professional antigen-presenting cells through the F(c) receptor to activate antigen-specific CD8(+) T cells. Furthermore, intradermal vaccination with DNA-encoding SCT-Ag/IgG could generate significant numbers of cytotoxic effector T cells against tumor self-antigen and leads to successful therapeutic outcomes in a preclinical model of metastatic melanoma. Our data suggest that the DNA vaccine strategy described in the current study is able to break immune tolerance against endogenous antigen from melanoma and result in potent therapeutic antitumor effects. Such strategy may be used in other antigenic systems for the control of infections and/or cancers.

  11. Antigenic Cartography of H9 Avian Influenza Virus and Its Application to Vaccine Selection.

    Science.gov (United States)

    Wang, Yue; Davidson, Irit; Fouchier, Ron; Spackman, Erica

    2016-05-01

    Vaccination is frequently used as a control method for the H9 subtype of low pathogenicity avian influenza virus (AIV), which is widespread in Asia and the Middle East. One of the most important factors for selecting an effective vaccine strain is the antigenic match between the hemagglutinin protein of the vaccine and the strain circulating in the field. To demonstrate the antigenic relationships among H9 AIVs, with a focus on Israeli H9 isolates, antigenic cartography was used to develop a map of H9 AIVs. Based on their antigenic diversity, three isolates from Israel were selected for vaccination-challenge studies: 1) the current vaccine virus, A/chicken/Israel/215/2007 H9N2 (Ck/215); 2) A/chicken/Israel/1163/2011 H9N2 (Ck/1163); and 3) A/ostrich/Israel/1436/2003 (Os/1436). A 50% infective dose (ID50) model was used to determine the effect of the vaccines on susceptibility to infection by using a standardized dose of vaccine. Sera collected immediately prior to challenge showed that Ck/215 was the most immunogenic, followed by Ck/1163 and Os/1436. A significant difference in ID50 was only observed with Ck/215 homologous challenge, where the ID50 was increased by 2 log 10 per bird. The ID50 for Ck/1163 was the same, regardless of vaccine, including sham vaccination. The ID50 for Os/1436 was above the maximum possible dose and therefore could not be established.

  12. High-affinity memory B cells induced by conjugate vaccines against weak tumor antigens are vulnerable to nonconjugated antigen.

    Science.gov (United States)

    Savelyeva, Natalia; Shipton, Michael; Suchacki, Amy; Babbage, Gavin; Stevenson, Freda K

    2011-07-21

    Induction of antibody-mediated immunity against hematologic malignancies requires CD4(+) T-cell help, but weak tumor antigens generally fail to induce adequate T-cell responses, or to overcome tolerance. Conjugate vaccines can harness alternative help to activate responses, but memory B cells may then be exposed to leaking tumor-derived antigen without CD4(+) T-cell support. We showed previously using lymphoma-derived idiotypic antigen that exposure to "helpless" antigen silences the majority of memory IgG(+) B cells. Transfer experiments now indicate that silencing is permanent. In marked contrast to IgG, most coexisting IgM(+) memory B cells exposed to "helpless" antigen survive. Confirmation in a hapten (NP) model allowed measurement of affinity, revealing this, rather than isotype, as the determinant of survival. IgM(+) B cells had Ig variable region gene usage similar to IgG but with fewer somatic mutations. Survival of memory B cells appears variably controlled by affinity for antigen, allowing a minority of low affinity IgG(+), but most IgM(+), memory B cells to escape deletion in the absence of T-cell help. The latter remain, but the majority fail to undergo isotype switch. These findings could apply to other tumor antigens and are relevant for vaccination strategies aimed to induce long-term antibody.

  13. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  14. Thresholds for decision-making: informing the cost-effectiveness and affordability of rotavirus vaccines in Malaysia.

    Science.gov (United States)

    Loganathan, Tharani; Ng, Chiu-Wan; Lee, Way-Seah; Hutubessy, Raymond C W; Verguet, Stéphane; Jit, Mark

    2018-03-01

    Cost-effectiveness thresholds (CETs) based on the Commission on Macroeconomics and Health (CMH) are extensively used in low- and middle-income countries (LMICs) lacking locally defined CETs. These thresholds were originally intended for global and regional prioritization, and do not reflect local context or affordability at the national level, so their value for informing resource allocation decisions has been questioned. Using these thresholds, rotavirus vaccines are widely regarded as cost-effective interventions in LMICs. However, high vaccine prices remain a barrier towards vaccine introduction. This study aims to evaluate the cost-effectiveness, affordability and threshold price of universal rotavirus vaccination at various CETs in Malaysia. Cost-effectiveness of Rotarix and RotaTeq were evaluated using a multi-cohort model. Pan American Health Organization Revolving Fund's vaccine prices were used as tender price, while the recommended retail price for Malaysia was used as market price. We estimate threshold prices defined as prices at which vaccination becomes cost-effective, at various CETs reflecting economic theories of human capital, societal willingness-to-pay and marginal productivity. A budget impact analysis compared programmatic costs with the healthcare budget. At tender prices, both vaccines were cost-saving. At market prices, cost-effectiveness differed with thresholds used. At market price, using 'CMH thresholds', Rotarix programmes were cost-effective and RotaTeq were not cost-effective from the healthcare provider's perspective, while both vaccines were cost-effective from the societal perspective. Using other CETs, both vaccines were not cost-effective at market price, from the healthcare provider's and societal perspectives. At tender and cost-effective prices, rotavirus vaccination cost ∼1 and 3% of the public health budget, respectively. Using locally defined thresholds, rotavirus vaccination is cost-effective at vaccine prices in line

  15. Antigenic cartography of H9N2 virus and its impact on the vaccine efficacy in chickens

    Science.gov (United States)

    The H9 subtype of avian influenza virus (AIV) is wide-spread in Asia and the Middle East. The efficacy of vaccines is enhanced by the antigenic match of the hemagglutinin protein (HA) between the vaccine and the field strain. To determine how antigenic variations affect the vaccine efficacy, speci...

  16. Intellectual property rights and challenges for development of affordable human papillomavirus, rotavirus and pneumococcal vaccines: Patent landscaping and perspectives of developing country vaccine manufacturers.

    Science.gov (United States)

    Chandrasekharan, Subhashini; Amin, Tahir; Kim, Joyce; Furrer, Eliane; Matterson, Anna-Carin; Schwalbe, Nina; Nguyen, Aurélia

    2015-11-17

    The success of Gavi, the Vaccine Alliance depends on the vaccine markets providing appropriate, affordable vaccines at sufficient and reliable quantities. Gavi's current supplier base for new and underutilized vaccines, such as the human papillomavirus (HPV), rotavirus, and the pneumococcal conjugate vaccine is very small. There is growing concern that following globalization of laws on intellectual property rights (IPRs) through trade agreements, IPRs are impeding new manufacturers from entering the market with competing vaccines. This article examines the extent to which IPRs, specifically patents, can create such obstacles, in particular for developing country vaccine manufacturers (DCVMs). Through building patent landscapes in Brazil, China, and India and interviews with manufacturers and experts in the field, we found intense patenting activity for the HPV and pneumococcal vaccines that could potentially delay the entry of new manufacturers. Increased transparency around patenting of vaccine technologies, stricter patentability criteria suited for local development needs and strengthening of IPRs management capabilities where relevant, may help reduce impediments to market entry for new manufacturers and ensure a competitive supplier base for quality vaccines at sustainably low prices. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Analysis of H7 avian influenza viruses by antigenic cartography and correlation to protection by vaccination

    Science.gov (United States)

    The H7 hemagglutinin subtype one of the most common subtypes of avian influenza virus (AIV) in poultry world wide and since it has the potential to become highly pathogenic it is among the priority subtypes for vaccination. Selection of the optimal vaccine seed strains may now be aided by antigenic...

  18. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression

    NARCIS (Netherlands)

    Bins, Adriaan D.; Jorritsma, Annelies; Wolkers, Monika C.; Hung, Chien-Fu; Wu, T.-C.; Schumacher, Ton N. M.; Haanen, John B. A. G.

    2005-01-01

    Induction of immunity after DNA vaccination is generally considered a slow process. Here we show that DNA delivery to the skin results in a highly transient pulse of antigen expression. Based on this information, we developed a new rapid and potent intradermal DNA vaccination method. By

  19. A Longitudinal Hepatitis B Vaccine Cohort Demonstrates Long-lasting Hepatitis B Virus (HBV) Cellular Immunity Despite Loss of Antibody Against HBV Surface Antigen.

    Science.gov (United States)

    Simons, Brenna C; Spradling, Philip R; Bruden, Dana J T; Zanis, Carolyn; Case, Samantha; Choromanski, Tammy L; Apodaca, Minjun; Brogdon, Hazel D; Dwyer, Gaelen; Snowball, Mary; Negus, Susan; Bruce, Michael G; Morishima, Chihiro; Knall, Cindy; McMahon, Brian J

    2016-07-15

    Long-lasting protection resulting from hepatitis B vaccine, despite loss of antibody against hepatitis B virus (HBV) surface antigen (anti-HBs), is undetermined. We recruited persons from a cohort vaccinated with plasma-derived hepatitis B vaccine in 1981 who have been followed periodically since. We performed serological testing for anti-HBs and microRNA-155 and assessed HBV-specific T-cell responses by enzyme-linked immunospot and cytometric bead array. Study subgroups were defined 32 years after vaccination as having an anti-HBs level of either ≥10 mIU/mL (group 1; n = 13) or anti-HBs level, tested positive for tumor necrosis factor α, interleukin 10, or interleukin 6 production by HBV surface antigen-specific T cells. The frequency of natural killer T cells correlated with the level of anti-HBs (P = .008). The proportion of participants who demonstrated T-cell responses to HBV core antigen varied among the cytokines measured, suggesting some natural exposure to HBV in the study group. No participant had evidence of breakthrough HBV infection. Evidence of long-lasting cellular immunity, regardless of anti-HBs level, suggests that protection afforded by primary immunization with plasma-derived hepatitis B vaccine during childhood and adulthood lasts at least 32 years. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. Experimental Study of Interference Between Pertussis Antigens and Salk Poliomyelitis Vaccine

    Directory of Open Access Journals (Sweden)

    H. Mirehamsy

    1962-01-01

    Full Text Available An interference is observed between whooping-cough antigens and Salk polioc vaccine even if the two components are mixed immediately before use. The phenomenon is more evident when flUlid antigens are injected. Pertussis soluble antigen, which gives a good serological response in rabbits, when used alone or combined with DT, is inactivated in the presence of Salk polio vacc:ne

  1. Investigation of the response to the enterobacterial common antigen after typhoid vaccination

    Directory of Open Access Journals (Sweden)

    Arlete M. Milhomem

    1987-03-01

    Full Text Available Antibodies against the Salmonella typhi enterobacterial common antigen (ECA and the O and H antigens were investigated in sera from healthy male subjects who had been previously vaccinated with the typhoid vaccine. No serological response to ECA was observed. Sera from subjects not previously vaccinated presented titers of ECA hemagglutinins which quantitatively were related to the presence ofH titers, but not to O agglutinins but with no statistical significance. The results are discussed in relation to the possible protective immunological mechanisms in typhoid fever.

  2. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens

    Directory of Open Access Journals (Sweden)

    Lassi Liljeroos

    2015-01-01

    Full Text Available Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.

  3. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Pedro Cecílio

    2017-11-01

    Full Text Available The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL, consisting of Virus-Like Particles (VLP loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD component, and KMP11 and LeishF3+, as parasite-derived (PD antigens and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA. Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".

  4. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis.

    Science.gov (United States)

    Cecílio, Pedro; Pérez-Cabezas, Begoña; Fernández, Laura; Moreno, Javier; Carrillo, Eugenia; Requena, José M; Fichera, Epifanio; Reed, Steven G; Coler, Rhea N; Kamhawi, Shaden; Oliveira, Fabiano; Valenzuela, Jesus G; Gradoni, Luigi; Glueck, Reinhard; Gupta, Gaurav; Cordeiro-da-Silva, Anabela

    2017-11-01

    The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".

  5. Radioimmunoassay determination of antigenic concordance among hemagglutinins of vaccine and epidemic influenza virus strains

    Energy Technology Data Exchange (ETDEWEB)

    Blokha, V.V.; Yamnikova, S.S.; Karpovich, L.G.; Yakhno, M.A.; Zakstel' skaya, L.Ya.

    Radioimmunoassay studies were conducted on the antigenic concordance of hemagglutinin of influenza A H3N2 viruses, to determine the suitability of vaccine strains in engendering immunity against viruses circulating in nature. Specifically, the inhibition studies involved the hemagglutinins of the A/Victoria/35/72 vaccine strain, the proposed vaccine strain A/Khabarovsk/15/76, and the RK-5 recombinant strains, containing antigenic determinants of viruses isolated in the 1972-1976 epidemic period (A/Victoria/3/75, A/Leningrad/173/75, A/Victoria/112/76). The results showed that A/Victoria/35/72 is becoming less important as a vaccine, but that RK-5 and A/Khabarovsk/15/76 can provide significant immunity with respect to influenza viruses circulating in 1975-1976. These observations point to the usefulness of radioimmunoassay in assessing the suitability of influenza A viruses for vaccine production. 12 references, 2 figures.

  6. Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG.

    Science.gov (United States)

    Reglinski, Mark; Lynskey, Nicola N; Choi, Yoon Jung; Edwards, Robert J; Sriskandan, Shiranee

    2016-04-01

    Despite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin. Seven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease. Vaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release. Spy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    Science.gov (United States)

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  9. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1999-01-01

    Full Text Available The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  10. A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms

    Science.gov (United States)

    Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.

    2014-01-01

    Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.

  11. Proteome-wide antigen discovery of novel protective vaccine candidates against Staphylococcus aureus infection

    DEFF Research Database (Denmark)

    Rasmussen, Karina Juhl; Mattsson, Andreas Holm; Pilely, Katrine

    2016-01-01

    , there is an urgent need to institute non-antimicrobial measures, such as vaccination, against the spread of MRSA. With the aim of finding new protective antigens for vaccine development, this study used a proteome-wide in silico antigen prediction platform to screen the proteome of S. aureus strain MRSA252. Thirty......-five different S. aureus proteins were identified, recombinantly expressed, and tested for protection in a lethal sepsis mouse model using S. aureus strain MRSA252 as the challenge organism. We found that 13 of the 35 recombinant peptides yielded significant protection and that 12 of these antigens were highly...... conserved across 70 completely sequenced S. aureus strains. Thus, this in silico platform was capable of identifying novel candidates for inclusion in future vaccines against MRSA....

  12. A launch vector for the production of vaccine antigens in plants.

    Science.gov (United States)

    Musiychuk, Konstantin; Stephenson, Natalie; Bi, Hong; Farrance, Christine E; Orozovic, Goran; Brodelius, Maria; Brodelius, Peter; Horsey, April; Ugulava, Natalia; Shamloul, Abdel-Moneim; Mett, Vadim; Rabindran, Shailaja; Streatfield, Stephen J; Yusibov, Vidadi

    2007-01-01

    Historically, most vaccines have been based on killed or live-attenuated infectious agents. Although very successful at immunizing populations against disease, both approaches raise safety concerns and often have limited production capacity. This has resulted in increased emphasis on the development of subunit vaccines. Several recombinant systems have been considered for subunit vaccine manufacture, including plants, which offer advantages both in cost and in scale of production. We have developed a plant expression system utilizing a 'launch vector', which combines the advantageous features of standard agrobacterial binary plasmids and plant viral vectors, to achieve high-level target antigen expression in plants. As an additional feature, to aid in target expression, stability and purification, we have engineered a thermostable carrier molecule to which antigens are fused. We have applied this launch vector/carrier system to engineer and express target antigens from various pathogens, including, influenza A/Vietnam/04 (H5N1) virus.

  13. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen....... There is a particular interest in developing robust high-throughput assays as chicken vaccine trials usually comprise many individuals. In many respects, the avian immune system differs from the mammalian, and T cell assessment protocols must be adjusted accordingly to account for, e.g., differences in leukocyte...... in the cells even throughout division. This leads to daughter cells containing half the fluorescence of their parents. When lymphocytes are loaded with CFSE prior to ex vivo stimulation with specific antigen, the measurement of serial halving of its fluorescence by flow cytometry identifies the cells...

  14. Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru

    Directory of Open Access Journals (Sweden)

    Lucas Carmen M

    2008-05-01

    Full Text Available Abstract Background Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic and could render a vaccine ineffective if their antigenic sites were not represented in the vaccine. In this study, characterization of genetic variability was performed in major B and T-cell epitopes within vaccine candidate antigens in isolates of P. falciparum from Peru. Methods DNA sequencing analysis was completed on 139 isolates of P. falciparum collected from endemic areas of the Amazon basin in Loreto, Peru from years 1998 to 2006. Genetic diversity was determined in immunological important regions in circumsporozoite protein (CSP, merozoite surface protein-1 (MSP-1, apical membrane antigen-1 (AMA-1, liver stage antigen-1 (LSA-1 and thrombospondin-related anonymous protein (TRAP. Alleles identified by DNA sequencing were aligned with the vaccine strain 3D7 and DNA polymorphism analysis and FST study-year pairwise comparisons were done using the DnaSP software. Multilocus analysis (MLA was performed and average of expected heterozygosity was calculated for each loci and haplotype over time. Results Three different alleles for CSP, seven for MSP-1 Block 2, one for MSP-1 Block 17, three for AMA-1 and for LSA-1 each and one for TRAP were identified. There were 24 different haplotypes in 125 infections with complete locus typing for each gene. Conclusion Characterization of the genetic diversity in Plasmodium isolates from the Amazon Region of Peru showed that P. falciparum T and B cell epitopes in these antigens have polymorphisms more similar to India than to Africa. These findings are helpful in the formulation of a vaccine considering restricted repertoire populations.

  15. THE ANTIGEN-SPECIFIC CELL IN VITRO TESTS FOR POST-VACCINATION ANTIPLAGUE IMMUNITY FORMATION

    Directory of Open Access Journals (Sweden)

    A. N. Kulichenko

    2017-01-01

    Full Text Available The possibility of post-vaccination anti-plague immunity evaluation was researched using antigen-stimulated cells tests in vitro and cytometry analysis. The object of study — the blood samples of 17 people immunised by the live plague vaccine (Yersinia pestis EV epicutaneously. Blood taking was carried out before vaccination and after immunisation on 7 and on 21 days, in 3 and in 6 months. Intensity antigen reactivity of lymphocytes was detected by cell tests in vitro, analysing markers of early (CD45+CD3+CD25+ and late (CD45+CD3+HLA-DR+ lymphocyte activation using flow cytometry. The complex of water-soluble Y. pestis antigens and allergen — pestin PP was tested as antigen. The high stimulating potential was defined of the water-soluble antigens Y. pestis complex. It is shown that coefficient of stimulation of relative level T- lymphocytes which express receptors for IL-2 was positive for all observation times after immunisation. The coefficient of stimulation had maximum values at 21 days (56.37% and at 3 (47.41% months. In identifying HLADR-positive lymphocytes before vaccination, the negative coefficient of stimulation was indicated on 7 and 21 days and the positive coefficient of stimulation was indicated at 3 and at 6 months. Analysis of intensity expression of early and late lymphocyte activation markers dynamics showed the possibility and prospect of application of cellular in vitro tests for the laboratory evaluation of specific reactivity of cellular immunity in both the early (7 days and late (6 months periods after vaccination. The results can be the basis for developing a new algorithm for assessment of immunological effectiveness of vaccination people against plague. It is the algorithm based on the identification of lymphocyte activation markers by antigen stimulation in conditions in vitro.

  16. Immunogenicity of meningococcal PorA antigens in OMV vaccines

    NARCIS (Netherlands)

    Luijkx, T.A.

    2006-01-01

    For the prevention of meningococcal infection caused by group B meningococci, the Netherlands Vaccine Institute (NVI) has developed a hexavalent Porin A (PorA) based Outer Membrane Vesicle (OMV) vaccine (Hexamen). In various clinical studies with HexaMen, differences in the immune responses to the

  17. Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    Directory of Open Access Journals (Sweden)

    Markus Haug

    2018-04-01

    Full Text Available Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses.

  18. Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines.

    Science.gov (United States)

    Swayne, D E; Beck, J R; Garcia, M; Stone, H D

    1999-06-01

    The influence of vaccine strain and antigen mass on the ability of inactivated avian influenza (AI) viruses to protect chicks from a lethal, highly pathogenic (HP) AI virus challenge was studied. Groups of 4-week-old chickens were immunized with inactivated vaccines containing one of 10 haemagglutinin subtype H5 AI viruses, one heterologous H7 AI virus or normal allantoic fluid (sham), and challenged 3 weeks later by intra-nasal inoculation with a HP H5 chicken-origin AI virus. All 10 H5 vaccines provided good protection from clinical signs and death, and produced positive serological reactions on agar gel immunodiffusion and haemagglutination inhibition tests. In experiment 1, challenge virus was recovered from the oropharynx of 80% of chickens in the H5 vaccine group. In five H5 vaccine groups, challenge virus was not recovered from the cloaca of chickens. In the other five H5 vaccine groups, the number of chickens with detection of challenge virus from the cloaca was lower than in the sham group (P turkey/Wisconsin/68 (H5N9) was the best vaccine candidate of the H5 strains tested (PD50= 0.006 μg AI antigen). These data demonstrate that chickens vaccinated with inactivated H5 whole virus AI vaccines were protected from clinical signs and death, but usage of vaccine generally did not prevent infection by the challenge virus, as indicated by recovery of virus from the oropharynx. Vaccine use reduced cloacal detection rates, and quantity of virus shed from the cloaca and oropharynx in some vaccine groups, which would potentially reduce environmental contamination and disease transmission in the field.

  19. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    Directory of Open Access Journals (Sweden)

    Cleo Goyvaerts

    2015-01-01

    Full Text Available In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  20. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines.

    Science.gov (United States)

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  1. Safety of currently licensed hepatitis B surface antigen vaccines in the United States, Vaccine Adverse Event Reporting System (VAERS), 2005-2015.

    Science.gov (United States)

    Haber, Penina; Moro, Pedro L; Ng, Carmen; Lewis, Paige W; Hibbs, Beth; Schillie, Sarah F; Nelson, Noele P; Li, Rongxia; Stewart, Brock; Cano, Maria V

    2018-01-25

    Currently four recombinant hepatitis B (HepB) vaccines are in use in the United States. HepB vaccines are recommended for infants, children and adults. We assessed adverse events (AEs) following HepB vaccines reported to the Vaccine Adverse Event Reporting System (VAERS), a national spontaneous reporting system. We searched VAERS for reports of AEs following single antigen HepB vaccine and HepB-containing vaccines (either given alone or with other vaccines), from January 2005 - December 2015. We conducted descriptive analyses and performed empirical Bayesian data mining to assess disproportionate reporting. We reviewed serious reports including reports of special interest. VAERS received 20,231 reports following HepB or HepB-containing vaccines: 10,291 (51%) in persons 18 years; for 1485 (7.3%) age was missing. Dizziness and nausea (8.4% each) were the most frequently reported AEs following a single antigen HepB vaccine: fever (23%) and injection site erythema (11%) were most frequent following Hep-containing vaccines. Of the 4444 (22%) reports after single antigen HepB vaccine, 303 (6.8%) were serious, including 45 deaths. Most commonly reported cause of death was Sudden Infant Death Syndrome (197). Most common non-death serious reports following single antigen HepB vaccines among infants aged 18 years. Most common vaccination error following single antigen HepB was incorrect product storage. Review current U.S.-licensed HepB vaccines administered alone or in combination with other vaccines did not reveal new or unexpected safety concerns. Vaccination errors were identified which indicate the need for training and education of providers on HepB vaccine indications and recommendations. Published by Elsevier Ltd.

  2. Real-time PCR analysis of genes encoding tumor antigens in esophageal tumors and a cancer vaccine

    DEFF Research Database (Denmark)

    Weinert, Brian T; Krishnadath, Kausilia K; Milano, Francesca

    2009-01-01

    Tumor antigens are the primary target of therapeutic cancer vaccines. We set out to define and compare the expression pattern of tumor antigen genes in esophagus carcinoma biopsies and in an allogeneic tumor lysate-based cancer vaccine, MelCancerVac. Cells used for vaccine production were treated...... with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) to determine whether this treatment could improve the profile of tumor antigen genes expressed in these cells. In addition, the presence of MAGE-A tumor antigen protein was evaluated in the purified tumor cell lysate used...

  3. Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech; Steffensen, Maria Abildgaard; Nørgaard Nielsen, Karen

    2014-01-01

    We have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8+ T-cell response. Here we describe a new adenoviral vaccine vector...... prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following...... approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8+ T-cell response. Furthermore, in a melanoma model we observed significantly...

  4. Genes encoding homologous antigens in taeniid cestode parasites: Implications for development of recombinant vaccines produced in Escherichia coli.

    Science.gov (United States)

    Gauci, Charles; Lightowlers, Marshall W

    2013-01-01

    Recombinant vaccine antigens are being evaluated for their ability to protect livestock animals against cysticercosis and related parasitic infections. Practical use of some of these vaccines is expected to reduce parasite transmission, leading to a reduction in the incidence of neurocysticercosis and hydatid disease in humans. We recently showed that an antigen (TSOL16), expressed in Escherichia coli, confers high levels of protection against Taenia solium cysticercosis in pigs, which provides a strategy for control of T. solium parasite transmission. Here, we discuss the characteristics of this antigen that may affect the utility of TSOL16 and related antigens for development as recombinant vaccines. We also report that genes encoding antigens closely related to TSOL16 from T. solium also occur in other related species of parasites. These highly homologous antigens have the potential to be used as vaccines and may provide protection against related species of Taenia that cause infection in other hosts.

  5. Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis.

    Science.gov (United States)

    Duthie, Malcolm S; Reed, Steven G

    2017-07-01

    From experimental models and the analyses of patients, it is well documented that antigen-specific T cells are critical for protection against Leishmania infection. Effective vaccines require both targeting to the pathogen and an immune stimulant to induce maturation of appropriate immune responses. While a great number of antigens have been examined as vaccine candidates against various Leishmania species, few have advanced to human or canine clinical trials. With emphasis on antigen expression, in this minireview we discuss some of the vaccine platforms that are currently being explored for the development of Leishmania vaccines. It is clear that the vaccine platform of choice can have a significant impact upon the level of protection induced by particular antigens, and we provide and highlight some examples for which the vaccine system used has impacted the protective efficacy imparted. Copyright © 2017 American Society for Microbiology.

  6. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens.

    Directory of Open Access Journals (Sweden)

    Clarissa Pozzi

    Full Text Available Staphylococcus aureus is a major cause of nosocomial and community-acquired infections for which a vaccine is greatly desired. Antigens found on the S. aureus outer surface include the capsular polysaccharides (CP of serotype 5 (CP5 or 8 (CP8 and/or a second antigen, a β-(1→6-polymer of N-acetyl-D-glucosamine (PNAG. Antibodies specific for either CP or PNAG antigens have excellent in vitro opsonic killing activity (OPKA, but when mixed together have potent interference in OPKA and murine protection. To ascertain if this interference could be abrogated by using a synthetic non-acetylated oligosaccharide fragment of PNAG, 9GlcNH(2, in place of chemically partially deacetylated PNAG, three conjugate vaccines consisting of 9GlcNH(2 conjugated to a non-toxic mutant of alpha-hemolysin (Hla H35L, CP5 conjugated to clumping factor B (ClfB, or CP8 conjugated to iron-surface determinant B (IsdB were used separately to immunize rabbits. Opsonic antibodies mediating killing of multiple S. aureus strains were elicited for all three vaccines and showed carbohydrate antigen-specific reductions in the tissue bacterial burdens in animal models of S. aureus skin abscesses, pneumonia, and nasal colonization. Carrier-protein specific immunity was also shown to be effective in reducing bacterial levels in infected lungs and in nasal colonization. However, use of synthetic 9GlcNH(2 to induce antibody to PNAG did not overcome the interference in OPKA engendered when these were combined with antibody to either CP5 or CP8. Whereas each individual vaccine showed efficacy, combining antisera to CP antigens and PNAG still abrogated individual OPKA activities, indicating difficulty in achieving a multi-valent vaccine targeting both the CP and PNAG antigens.

  7. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  8. Transcription factor Fos-related antigen 1 is an effective target for a breast cancer vaccine

    Science.gov (United States)

    Luo, Yunping; Zhou, He; Mizutani, Masato; Mizutani, Noriko; Reisfeld, Ralph A.; Xiang, Rong

    2003-07-01

    Protection against breast cancer was achieved with a DNA vaccine against murine transcription factor Fos-related antigen 1, which is overexpressed in aggressively proliferating D2F2 murine breast carcinoma. Growth of primary s.c. tumor and dissemination of pulmonary metastases was markedly suppressed by this oral DNA vaccine, carried by attenuated Salmonella typhimurium, encoding murine Fos-related antigen 1, fused with mutant polyubiquitin, and cotransformed with secretory murine IL-18. The life span of 60% of vaccinated mice was tripled in the absence of detectable tumor growth after lethal tumor cell challenge. Immunological mechanisms involved activation of T, natural killer, and dendritic cells, as indicated by up-regulation of their activation markers and costimulatory molecules. Markedly increased specific target cell lysis was mediated by both MHC class I-restricted CD8+ T cells and natural killer cells isolated from splenocytes of vaccinated mice, including a significant release of proinflammatory cytokines IFN- and IL-2. Importantly, fluorescence analysis of fibroblast growth factor 2 and tumor cell-induced vessel growth in Matrigel plugs demonstrated marked suppression of angiogenesis only in vaccinated animals. Taken together, this multifunctional DNA vaccine proved effective in protecting against growth and metastases of breast cancer by combining the action of immune effector cells with suppression of tumor angiogenesis. vaccine | tumor | metastases | antiangiogenesis

  9. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Science.gov (United States)

    Schmitt, Deanna M; O'Dee, Dawn M; Horzempa, Joseph; Carlson, Paul E; Russo, Brian C; Bales, Jacqueline M; Brown, Matthew J; Nau, Gerard J

    2012-01-01

    Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  10. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Directory of Open Access Journals (Sweden)

    Deanna M Schmitt

    Full Text Available Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS, does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  11. Australian contingency plans for emergency animal disease control: the role of antigen/vaccine banks.

    Science.gov (United States)

    Tweddle, N E

    2004-01-01

    Vaccination is an important element of contingency plans for many animal diseases. The decision whether or not to use vaccine is complex, and must consider epidemiological, economic and social issues. Vaccines are rarely available in a country for emergency animal diseases unless a low pathogenicity strain of the agent is present or it is localised in carrier hosts. High quality commercial vaccine from overseas is often the preferred source of vaccine in an emergency, although less reliable sources may be used with additional safeguards. Alternatively, master seeds may be imported or developed for production within the country For contingency planning, diseases may be ranked according to the expected role of vaccine in the disease eradication strategy, with diseases for which vaccine is part of the initial response strategy receiving highest priority for action. A range of preparedness options is available, ranging from identifying producers of vaccine, obtaining permits for import and use from regulatory authorities, to establishing vaccine or antigen banks. Countries need to consider their individual situations and develop strategies to address the diseases of significance to them.

  12. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea.

    Science.gov (United States)

    Zielke, Ryszard A; Wierzbicki, Igor H; Baarda, Benjamin I; Gafken, Philip R; Soge, Olusegun O; Holmes, King K; Jerse, Ann E; Unemo, Magnus; Sikora, Aleksandra E

    2016-07-01

    Expanding efforts to develop preventive gonorrhea vaccines is critical because of the dire possibility of untreatable gonococcal infections. Reverse vaccinology, which includes genome and proteome mining, has proven very successful in the discovery of vaccine candidates against many pathogenic bacteria. However, progress with this approach for a gonorrhea vaccine remains in its infancy. Accordingly, we applied a comprehensive proteomic platform-isobaric tagging for absolute quantification coupled with two-dimensional liquid chromatography and mass spectrometry-to identify potential gonococcal vaccine antigens. Our previous analyses focused on cell envelopes and naturally released membrane vesicles derived from four different Neisseria gonorrhoeae strains. Here, we extended these studies to identify cell envelope proteins of N. gonorrhoeae that are ubiquitously expressed and specifically induced by physiologically relevant environmental stimuli: oxygen availability, iron deprivation, and the presence of human serum. Together, these studies enabled the identification of numerous potential gonorrhea vaccine targets. Initial characterization of five novel vaccine candidate antigens that were ubiquitously expressed under these different growth conditions demonstrated that homologs of BamA (NGO1801), LptD (NGO1715), and TamA (NGO1956), and two uncharacterized proteins, NGO2054 and NGO2139, were surface exposed, secreted via naturally released membrane vesicles, and elicited bactericidal antibodies that cross-reacted with a panel of temporally and geographically diverse isolates. In addition, analysis of polymorphisms at the nucleotide and amino acid levels showed that these vaccine candidates are highly conserved among N. gonorrhoeae strains. Finally, depletion of BamA caused a loss of N. gonorrhoeae viability, suggesting it may be an essential target. Together, our data strongly support the use of proteomics-driven discovery of potential vaccine targets as a sound

  13. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  14. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  15. A viral vaccine encoding PSA induces antigen spreading to a common set of self proteins in prostate cancer patients

    Science.gov (United States)

    Nesslinger, Nancy J.; Ng, Alvin; Tsang, Kwong-Yok; Ferrara, Theresa; Schlom, Jeff; Gulley, James L.; Nelson, Brad H.

    2010-01-01

    Purpose We previously reported a randomized phase II clinical trial combining a poxvirus-based vaccine encoding PSA with radiotherapy in patients with localized prostate cancer. Here we investigate whether vaccination against PSA induced immune responses to additional tumor-associated antigens and how this influenced clinical outcome. Experimental Design Pre- and post-treatment serum samples from patients treated with vaccine + external beam radiation therapy (EBRT) versus EBRT alone were evaluated by Western blot and serological screening of a prostate cancer cDNA expression library (SEREX) to assess the development of treatment-associated autoantibody responses. Results Western blotting revealed treatment-associated autoantibody responses in 15/33 (45.5%) patients treated with vaccine + EBRT versus 1/8 (12.5%) treated with EBRT alone. SEREX screening identified 18 antigens, which were assembled on an antigen array with 16 previously identified antigens. Antigen array screening revealed that seven of 33 patients (21.2%) treated with vaccine + EBRT demonstrated a vaccine-associated autoantibody response to four ubiquitously expressed self antigens: DIRC2, NDUFS1, MRFAP1 and MATN2. These responses were not seen in patients treated with EBRT alone, or other control groups. Patients with autoantibody responses to this panel of antigens had a trend towards decreased biochemical-free survival. Conclusions Vaccine + EBRT induced antigen spreading in a large proportion of patients. A subset of patients developed autoantibodies to a panel of four self antigens and showed a trend toward inferior outcomes. Thus, cancer vaccines directed against tumor-specific antigens can trigger autoantibody responses to self proteins, which may influence the efficacy of vaccination. PMID:20562209

  16. Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Thoryk

    2016-12-01

    Full Text Available A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg and Ovalbumin (OVA, respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered—both at the same time and in the same location—in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties.

  17. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    that development of PfEMP1-based vaccines to protect specifically against severe malaria syndromes-in particular PAM-is feasible. This review summarizes the evidence that VSAs are important targets of NAI, discusses why VSA-based vaccines might be feasible despite the extensive intra- and interclonal variation...... of VSAs, and how vaccines based on this type of antigens fit into the current global strategy to reduce, eliminate and eventually eradicate the burden of malaria.......There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs), such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive determinants of clinical outcome of P. falciparum malaria...

  18. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    Many novel vaccine strategies rely on recombinant viral vectors for antigen delivery, and adenovirus vectors have emerged among the most potent of these. In this report, we have compared the immune response induced through priming with adenovirus vector-encoded full-length viral protein...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T...

  19. Successful vaccination against Boophilus microplus and Babesia bovis using recombinat antigens

    Directory of Open Access Journals (Sweden)

    P. Willadsen

    1992-01-01

    Full Text Available Current methods for the control of the cattle tick Boophils microplus and the agent of bovine babesiosis, Babesia bovis are unsatisfactory. Effective immunological control of both parasites would have great advantages. However, naturally acquired immunity to the tick is generally unable to prevent serious production losses. A vaccine against the tick, based on a novel form of immunization, is being developed. A protective antigen has been isolated from the tick, characterized and produced as an effective, recombinant protein. A vaccine incorporating this antigen is currently undergoing field trials. In the Australian situation, improved tick control will probably increase endemic instability with respect to B. bovis. Fortunately, a trivalent, recombinant B. bovis vaccine has also been developed. This too is now undergoing pre-registration field trials.

  20. Synthetic melanin bound to subunit vaccine antigens significantly enhances CD8+ T-cell responses.

    Directory of Open Access Journals (Sweden)

    Antoine F Carpentier

    Full Text Available Cytotoxic T-lymphocytes (CTLs play a key role in immunity against cancer; however, the induction of CTL responses with currently available vaccines remains difficult. Because several reports have suggested that pigmentation and immunity might be functionally linked, we investigated whether melanin can act as an adjuvant in vaccines. Short synthetic peptides (8-35 amino acids long containing T-cell epitopes were mixed with a solution of L-Dopa, a precursor of melanin. The mixture was then oxidized to generate nanoparticles of melanin-bound peptides. Immunization with melanin-bound peptides efficiently triggered CTL responses in mice, even against self-antigens and at a very low dose of peptides (microgram range. Immunization against a tumor antigen inhibited the growth of established tumors in mice, an effect that was abrogated by the depletion of CD8+ lymphocytes. These results demonstrate the efficacy of melanin as a vaccine adjuvant.

  1. Positive correlation between Aeromonas salmonicida vaccine antigen concentration and protection in vaccinated rainbow trout Oncorhynchus mykiss evaluated by a tail fin infection model

    DEFF Research Database (Denmark)

    Marana, M. H.; Skov, J.; Chettri, Jiwan Kumar

    2017-01-01

    Rainbow trout, Oncorhynchus mykiss (Walbaum), are able to raise a protective immune response against Aeromonas salmonicida subsp. salmonicida (AS) following injection vaccination with commercial vaccines containing formalin-killed bacteria, but the protection is often suboptimal under Danish...... mariculture conditions. We elucidated whether protection can be improved by increasing the concentration of antigen (formalin-killed bacteria) in the vaccine. Rainbow trout juveniles were vaccinated by intraperitoneal (i.p.) injection with a bacterin of Aeromonas salmonicida subsp. salmonicida strain 090710...

  2. Genetic distribution of noncapsular meningococcal group B vaccine antigens in Neisseria lactamica.

    Science.gov (United States)

    Lucidarme, Jay; Gilchrist, Stefanie; Newbold, Lynne S; Gray, Stephen J; Kaczmarski, Edward B; Richardson, Lynne; Bennett, Julia S; Maiden, Martin C J; Findlow, Jamie; Borrow, Ray

    2013-09-01

    The poor immunogenicity of the meningococcal serogroup B (MenB) capsule has led to the development of vaccines targeting subcapsular antigens, in particular the immunodominant and diverse outer membrane porin, PorA. These vaccines are largely strain specific; however, they offer limited protection against the diverse MenB-associated diseases observed in many industrialized nations. To broaden the scope of its protection, the multicomponent vaccine (4CMenB) incorporates a PorA-containing outer membrane vesicle (OMV) alongside relatively conserved recombinant protein components, including factor H-binding protein (fHbp), Neisseria adhesin A (NadA), and neisserial heparin-binding antigen (NHBA). The expression of PorA is unique to meningococci (Neisseria meningitidis); however, many subcapsular antigens are shared with nonpathogenic members of the genus Neisseria that also inhabit the nasopharynx. These organisms may elicit cross-protective immunity against meningococci and/or occupy a niche that might otherwise accommodate pathogens. The potential for 4CMenB responses to impact such species (and vice versa) was investigated by determining the genetic distribution of the primary 4CMenB antigens among diverse members of the common childhood commensal, Neisseria lactamica. All the isolates possessed nhba but were devoid of fhbp and nadA. The nhba alleles were mainly distinct from but closely related to those observed among a representative panel of invasive MenB isolates from the same broad geographic region. We made similar findings for the immunogenic typing antigen, FetA, which constitutes a major part of the 4CMenB OMV. Thus, 4CMenB vaccine responses may impact or be impacted by nasopharyngeal carriage of commensal neisseriae. This highlights an area for further research and surveillance should the vaccine be routinely implemented.

  3. Multivalent nanomaterials: learning from vaccines and progressing to antigen-specific immunotherapies.

    Science.gov (United States)

    Hartwell, Brittany L; Antunez, Lorena; Sullivan, Bradley P; Thati, Sharadvi; Sestak, Joshua O; Berkland, Cory

    2015-02-01

    Continued development of multivalent nanomaterials has provided opportunities for the advancement of antigen-specific immunotherapies. New insights emerge when considering the backdrop of vaccine design, which has long employed multivalent presentation of antigen to more strongly engage and enhance an immunogenic response. Additionally, vaccines traditionally codeliver antigen with adjuvant to amplify a robust antigen-specific response. Multivalent nanomaterials have since evolved for applications where immune tolerance is desired, such as autoimmune diseases or allergies. In particular, soluble, linear polymers may be tailored to direct antigen-specific immunogenicity or tolerance by modulating polymer length, ligand valency (number), and ligand density, in addition to incorporating secondary signals. Codelivery of a secondary signal may direct, amplify, or suppress the response to a given antigen. Although the ability of multivalent nanomaterials to enact an immune response through molecular mechanisms has been established, a transport mechanism for biodistribution must also be considered. Both mechanisms are influenced by ligand display and other physical properties of the nanomaterial. This review highlights multivalent ligand display on linear polymers, the complex interplay of physical parameters in multivalent design, and the ability to direct the immune response by molecular and transport mechanisms. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Science.gov (United States)

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  5. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoting...... immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion...... generated antigen-specific T helper 1-type cellular immune responses. These results demonstrate that the incorporation of protein III into a DNA vaccine formulation can modulate the gene-mediated immune response and may thus provide a strategy for improving its therapeutic effect....

  6. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM...

  7. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems

    DEFF Research Database (Denmark)

    Hamborg, Mette; Rose, Fabrice; Jorgensen, Lene

    2014-01-01

    is generally known about how antigens and adjuvants interact at the molecular level. The aim of this study was to elucidate the mechanisms of interactions between the equally sized, but oppositely charged model protein antigens α-lactalbumin and lysozyme, and i) the clinically tested cationic liposomal......The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little...... interaction with the zwitterionic liposomes. In contrast, the net cationic lysozyme showed very little interaction with either types of liposome. Adsorption of α-lactalbumin altered its tertiary structure, affected lipid membrane packing below and above the phase transition temperature, and neutralized...

  8. A vaccine prepared from the 22 nm particles of surface hepatitis B antigen (HBsAg)

    International Nuclear Information System (INIS)

    Karelin, V.P.; Babaeva, E.E.; Gubenko, E.F.; Kaulen, D.K.; Zhdanov, V.M.

    1980-01-01

    A method for obtaining a subunit inactivated vaccine preparation from the 22-nm particles of HBsAg is proposed. For inactivation of the residual infectious hepatitis B virus (HBV) the preparations were successively treated with 1% sodium dodecyl sulfate (SDS) and nucleases. In addition, thermal denaturation and ultraviolet irradiation of HBV DNA were used. As a control the biologic activity of a reference virus (SV40) was tested after the same treatment. The effectiveness of DNA inactivation was monitored by adding 3H-thymidine labeled reference virus to the vaccine preparations. The purified and inactivated HBsAg was adsorbed on Al2O3. Antigenicity was calculated on the basis of the determination of antibody in guinea pigs immunized with various doses of the vaccine, and the release of 125 I- HBsAg from blood and kidneys in immunized and control mice was analyzed. Possible methods of inactivation and control of HBV vaccine is discussed

  9. Overcoming viral escape with vaccines that generate and display antigen diversity in vivo

    Directory of Open Access Journals (Sweden)

    García-Quintanilla Albert

    2007-11-01

    Full Text Available Abstract Background Viral diversity is a key problem for the design of effective and universal vaccines. Virtually, a vaccine candidate including most of the diversity for a given epitope would force the virus to create escape mutants above the viability threshold or with a high fitness cost. Presentation of the hypothesis Therefore, I hypothesize that priming the immune system with polyvalent vaccines where each single vehicle generates and displays multiple antigen variants in vivo, will elicit a broad and long-lasting immune response able to avoid viral escape. Testing the hypothesis To this purpose, I propose the use of yeasts that carry virus-like particles designed to pack the antigen-coding RNA inside and replicate it via RNA-dependent RNA polymerase. This would produce diversity in vivo limited to the target of interest and without killing the vaccine vehicle. Implications of the hypothesis This approach is in contrast with peptide cocktails synthesized in vitro and polyvalent strategies where every cell or vector displays a single or definite number of mutants; but similarly to all them, it should be able to overcome original antigenic sin, avoid major histocompatibility complex restriction, and elicit broad cross-reactive immune responses. Here I discuss additional advantages such as minimal global antagonism or those derived from using a yeast vehicle, and potential drawbacks like autoimmunity. Diversity generated by this method could be monitored both genotypically and phenotypically, and therefore selected or discarded before use if needed.

  10. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation

    Directory of Open Access Journals (Sweden)

    Schendel Dolores J

    2010-09-01

    Full Text Available Abstract Background Antigen-loaded dendritic cells (DC are capable of priming naïve T cells and therefore represent an attractive adjuvant for vaccine development in anti-tumor immunotherapy. Numerous protocols have been described to date using different maturation cocktails and time periods for the induction of mature DC (mDC in vitro. For clinical application, the use of mDC that can be generated in only three days saves on the costs of cytokines needed for large scale vaccine cell production and provides a method to produce cells within a standard work-week schedule in a GMP facility. Methods In this study, we addressed the properties of antigen uptake, processing and presentation by monocyte-derived DC prepared in three days (3d mDC compared with conventional DC prepared in seven days (7d mDC, which represent the most common form of DC used for vaccines to date. Results Although they showed a reduced capacity for spontaneous antigen uptake, 3d mDC displayed higher capacity for stimulation of T cells after loading with an extended synthetic peptide that requires processing for MHC binding, indicating they were more efficient at antigen processing than 7d DC. We found, however, that 3d DC were less efficient at expressing protein after introduction of in vitro transcribed (ivtRNA by electroporation, based on published procedures. This deficit was overcome by altering electroporation parameters, which led to improved protein expression and capacity for T cell stimulation using low amounts of ivtRNA. Conclusions This new procedure allows 3d mDC to replace 7d mDC for use in DC-based vaccines that utilize long peptides, proteins or ivtRNA as sources of specific antigen.

  11. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I...

  12. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    Science.gov (United States)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  13. Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems.

    Science.gov (United States)

    Brun, Alejandro; Albina, Emmanuel; Barret, Tom; Chapman, David A G; Czub, Markus; Dixon, Linda K; Keil, Günther M; Klonjkowski, Bernard; Le Potier, Marie-Frédérique; Libeau, Geneviève; Ortego, Javier; Richardson, Jennifer; Takamatsu, Haru-H

    2008-12-02

    The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.

  14. Production of a DNA Vaccine Specific for the 64 kDa Protective Antigen of Erysipelothrix rhusiopathiae

    National Research Council Canada - National Science Library

    Middlebrooks, Bobby L

    2007-01-01

    The gene for the protective antigen of E. rhusiopathiae will be inserted into a eukaryotic vector both for the production of a DNA vaccine and for large scale production of the recombinant protein (in vitro...

  15. Antigen sparing and enhanced protection using a novel rOv-ASP-1 adjuvant in aqueous formulation with influenza vaccines.

    Science.gov (United States)

    Jiang, Jiu; Fisher, Erin M; Hensley, Scott E; Lustigman, Sara; Murasko, Donna M; Shen, Hao

    2014-05-13

    Influenza is one of the most common infectious diseases endangering the health of humans, especially young children and the elderly. Although vaccination is the most effective means of protection against influenza, frequent mutations in viral surface antigens, low protective efficacy of the influenza vaccine in the elderly, slow production process and the potential of vaccine supply shortage during a pandemic are significant limitations of current vaccines. Adjuvants have been used to enhance the efficacy of a variety of vaccines; however, no adjuvant is included in current influenza vaccines approved in the United States. In this study, we found that a novel adjuvant, rOv-ASP-1, co-administrated with inactivated influenza vaccine using an aqueous formulation, substantially improved the influenza-specific antibody response and protection against lethal infection in a mouse model. rOv-ASP-1 enhanced the magnitude of the specific antibody response after immunization with low doses of influenza vaccine, allowing antigen-sparring by 10-fold. The rOv-ASP-1 formulated vaccine induced a more rapid response and a stronger Th1-associated antibody response compared to vaccine alone and to the vaccine formulated with the adjuvant alum. Importantly, rOv-ASP-1 significantly enhanced cross-reactive antibody responses and protection against challenge with an antigenically distinct strain. These results demonstrate that rOv-ASP-1 is an effective adjuvant that: (1) accelerates and enhances the specific antibody response induced by influenza vaccine; (2) allows for antigen sparing; and (3) augments a Th1-biased and cross-reactive antibody response that confers protection against an antigenically distinct strain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    2010-12-01

    Full Text Available Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii.We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species.This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that

  17. [Antigen differences of genetic variants Abent+ and Abent- poliovirus vaccine strain of III type].

    Science.gov (United States)

    Shyrobokov, V P; Kostenko, I H; Nikolaienko, I V

    2003-01-01

    Hybridomes--producers of monoclonal antibodies (MAB) were obtained able to differentiate the variants Abent+ and Abent- poliovirus vaccine strain in the virus neutralizing reaction. Using the obtained panel the changes of the epitope structure of capsid proteins of poliovirus variants (dissociants) were found which appeared during reproduction in cell culture. It proves the fact that there exist essential antigenic differences of superficial virion's proteins, which appear during the process of dissociation.

  18. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype.

    Science.gov (United States)

    Demento, Stacey L; Cui, Weiguo; Criscione, Jason M; Stern, Eric; Tulipan, Jacob; Kaech, Susan M; Fahmy, Tarek M

    2012-06-01

    Particulate vaccines are emerging promising technologies for the creation of tunable prophylactics against a wide variety of conditions. Vesicular and solid biodegradable polymer platforms, exemplified by liposomes and polyesters, respectively, are two of the most ubiquitous platforms in vaccine delivery studies. Here we directly compared the efficacy of each in a long-term immunization study and in protection against a model bacterial antigen. Immunization with poly(lactide-co-glycolide) (PLGA) nanoparticles elicited prolonged antibody titers compared to liposomes and alum. The magnitude of the cellular immune response was also highest in mice vaccinated with PLGA, which also showed a higher frequency of effector-like memory T cell phenotype, leading to an effective clearance of intracellular bacteria. The difference in performance of these two common particulate platforms is shown not to be due to material differences but appears to be connected to the kinetics of antigen delivery. Thus, this study highlights the importance of sustained antigen release mediated by particulate platforms and its role in the long-term appearance of effector memory cellular response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Structure-based design of chimeric antigens for multivalent protein vaccines.

    Science.gov (United States)

    Hollingshead, S; Jongerius, I; Exley, R M; Johnson, S; Lea, S M; Tang, C M

    2018-03-13

    There is an urgent need to develop vaccines against pathogenic bacteria. However, this is often hindered by antigenic diversity and difficulties encountered manufacturing membrane proteins. Here we show how to use structure-based design to develop chimeric antigens (ChAs) for subunit vaccines. ChAs are generated against serogroup B Neisseria meningitidis (MenB), the predominant cause of meningococcal disease in wealthy countries. MenB ChAs exploit factor H binding protein (fHbp) as a molecular scaffold to display the immunogenic VR2 epitope from the integral membrane protein PorA. Structural analyses demonstrate fHbp is correctly folded and the PorA VR2 epitope adopts an immunogenic conformation. In mice, immunisation with ChAs generates fHbp and PorA antibodies that recognise the antigens expressed by clinical MenB isolates; these antibody responses correlate with protection against meningococcal disease. Application of ChAs is therefore a potentially powerful approach to develop multivalent subunit vaccines, which can be tailored to circumvent pathogen diversity.

  20. Construction of two Listeria ivanovii attenuated strains expressing Mycobacterium tuberculosis antigens for TB vaccine purposes.

    Science.gov (United States)

    Lin, Qingqing; Zhou, Mengying; Xu, Zongkai; Khanniche, Asma; Shen, Hao; Wang, Chuan

    2015-02-20

    Bacillus Calmette-Guerin (BCG) has failed in complete control of tuberculosis (TB), thus, novel tuberculosis vaccines are urgently needed. We have constructed several TB vaccine candidates, which are characterized by the use of Listeria ivanovii (LI) strain as an antigen delivery vector. Two L. ivanovii attenuated recombinant strains L. ivanovii△actAplcB-Rv0129c and L. ivanovii△actAplcB-Rv3875 were successfully screened. Results from genome PCR and sequencing showed that the Mycobacterium tuberculosis antigen gene cassette coding for Ag85C or ESAT-6 protein respectively had been integrated into LI genome downstream of mpl gene. Western blot confirmed the secretion of Ag85C or ESAT-6 protein from the recombinant LI strains. These two recombinant strains showed similar growth curves as wide type strain in vitro. In vivo, they transiently propagated in mice spleen and liver, and induced specific CD8(+) IFN-γ secretion. Therefore, in this paper, two novel LI attenuated strains expressing specific TB antigens were successfully constructed. The promising growth characteristics in mice immune system and the capability of induction of IFN-γ secretion make them of potential interest for development of TB vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice.

    Science.gov (United States)

    Kao, Daniela; Lux, Anja; Schaffert, Anja; Lang, Roland; Altmann, Friedrich; Nimmerjahn, Falk

    2017-12-01

    Immunoglobulin G (IgG) glycosylation can modulate antibody effector functions. Depending on the precise composition of the sugar moiety attached to individual IgG glycovariants either pro- or anti-inflammatory effector pathways can be initiated via differential binding to type I or type II Fc-receptors. However, an in depth understanding of how individual IgG subclasses are glycosylated during the steady state and how their glycosylation pattern changes during vaccination is missing. To monitor IgG subclass glycosylation during the steady state and upon vaccination of mice with different T-cell dependent and independent antigens, tryptic digests of serum, and antigen-specific IgG preparations were analyzed by reversed phase-liquid chromatography-mass spectrometry. We show that there is a remarkable difference with respect to how individual IgG subclasses are glycosylated during the steady state. More importantly, upon T-cell dependent and independent vaccinations, individual antigen-specific IgG subclasses reacted differently with respect to changes in individual glycoforms, suggesting that the IgG subclass itself is a major determinant of restricting or allowing alterations in specific IgG glycovariants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    Science.gov (United States)

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  3. T-cell responses against Malaria: Effect of parasite antigen diversity and relevance for vaccine development.

    Science.gov (United States)

    Nlinwe, Omarine Nfor; Kusi, Kwadwo Asamoah; Adu, Bright; Sedegah, Martha

    2018-03-21

    The on-going agenda for global malaria elimination will require the development of additional disease control and prevention measures since currently available tools are showing signs of inadequacy. Malaria vaccines are seen as one such important addition to the control arsenal since vaccines have proven to be highly effective public health tools against important human diseases. Both cell-mediated and antibody responses are generally believed to be important for malaria parasite control, although the exact targets of T and B cell responses against malaria have not been clearly defined. However, our current understanding of the immune response to malaria suggests that T cell responses against multiple antigenic targets may potentially be key for the development of a highly efficacious malaria vaccine. This review takes a comprehensive look at the available literature on T cell-mediated immunity against all human stages of the malaria parasite and the effect of antigen diversity on these responses. The implications of these interrelationships for the development of an effective vaccine for malaria are also highlighted. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Preventive Approach to Impetigo of Treaty Indians Using Staphylococcus Polyvalent Somatic Antigen Vaccine

    Science.gov (United States)

    Dillenberg, H.; Waldron, M. P. D.

    1963-01-01

    In a controlled study, Greenberg's staphylococcal polyvalent somatic antigen vaccine was administered to 190 Indian volunteers of a reserve in Saskatchewan in an attempt to reduce the incidence of impetigo. An intradermal skin test dose of 0.1 ml. was given initially. Reactors were forthwith placed in a separate category, otherwise this test injection was followed by intramuscular injection of 0.25 ml. of the vaccine, repeated a second time after six weeks. One hundred and sixty-nine controls received “placebo vaccine”. Four months later the number of cases of impetigo in the vaccinated group had been reduced from 55 to 16. There was no reduction in the control group. The preventive effect waned after five months. The results of this field trial are considered encouraging. PMID:14052980

  5. [VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties].

    Science.gov (United States)

    Vzorov, A N; Compans, R W

    2016-01-01

    An ideal protective HIV-1 vaccine can elicit broadly neutralizing antibodies, capable of preventing HIV transmission. The strategies of designing vaccines include generation of soluble recombinant proteins which mimic the native Env complex and are able to enhance the immunogenicity of gp120. Recent data indicate that the cytoplasmic tail (CT) of the Env protein has multiple functions, which can affect the early steps of infection, as well as viral assembly and antigenic properties. Modifications in the CT can be used to induce conformational changes in functional regions of gp120 and to stabilize the trimeric structure, avoiding immune misdirection and induction of non-neutralizing antibody responses. Env-trimers with modified CTs in virus-like particles (VLPs) are able to induce antibodies with broad spectrum neutralizing activity and high avidity and have the potential for developing an effective vaccine against HIV.

  6. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases.

    Science.gov (United States)

    Daniell, Henry; Chan, Hui-Ting; Pasoreck, Elise K

    2016-11-23

    Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.

  7. Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens

    DEFF Research Database (Denmark)

    Rosenberg, Carina Agerbo; De Craeye, S.; Jongert, E.

    2009-01-01

    complications. Although several strategies have been suggested for making a vaccine, none is currently available. Here, we investigate the protection conferred by DNA vaccination with two constructs, pcEC2 (MIC2-MIC3-SAG1) and pcEC3 (GRA3-GRA7-M2AP), encoding chimeric proteins containing multiple antigenic...

  8. Global inhibition of DC priming capacity in the spleen of self-antigen vaccinated mice requires IL-10

    Directory of Open Access Journals (Sweden)

    Douglas Matthew Marvel

    2014-02-01

    Full Text Available DC in the spleen are highly activated following intravenous vaccination with a foreign antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24-72 hours post-vaccination can be used as a biomarker of stimulatory versus toleragenic DC, respectively. Here we show, using MUC1 transgenic mice (MUC1.Tg and a vaccine based on the MUC1 peptide which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance, is seen as early as 4-8 hours following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor (IL-10R prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens.

  9. Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children

    DEFF Research Database (Denmark)

    Mortensen, Rasmus; Nissen, Thomas Nørrelykke; Fredslund, Sine

    2016-01-01

    No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well...

  10. Evaluation of antigens stability of tobacco seeds as edible vaccine against VTEC strains

    Directory of Open Access Journals (Sweden)

    Luciana Rossi

    2015-11-01

    Full Text Available Plants have represent a promising alternative for biopharmaceutical proteins (Ma et al., 2003; Rossi et al., 2014. Many plant based edible vaccines have been shown to be effective in inducing local immune responses (Rossi et al., 2013. Edible vaccines can activate both mucosal and systemic immunity, as they come in contact with the digestive tract lining. This dual effect would provide first-line defense against pathogens invading through the mucosa. The antigens are released in the intestines are taken up by M cells that are present over the Payer’s patches (in the ileum and the gut associated lymphoid tissue (GALT. Edible vaccines represent an important worldwide goal for the prevention of the enteric diseases, also in livestock. In particular, the enteric infections are a significant clinical problem in pigs. Verocytotoxic Escherichia (E. coli strains are responsible for serious enterotoxaemia that causes important economic losses in the pig industry. The production of a vaccine for oral administration of transgenic seeds could be a practical and efficient system to prevent the infection and to reduce the antibiotic use. This study was focused on tobacco plants, previously transformed by agroinfection for the seed-specific expression of antigenic proteins (F18 adhesive fimbriae and the B subunit of the Vt2e toxin as model of edible vaccines against verocytotoxic E. coli strains. The dietary administration of transgenic tobacco seeds promotes a significant increase in the number of mucosal IgA-producing cells of the tunica propria in both small and large intestine in mice (Rossi et al., 2013. A protective effect of oral administration of transgenic tobacco seeds was also observed against verocytotoxic Escherichia coli infection in piglets (Rossi et al., 2014. The aim of this study was to assess the seed-expression stability, that is a important requirement in the vaccine production, of F 18 and Vt2e-B heterologous genes into the progeny of

  11. Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines

    Science.gov (United States)

    Finco, Oretta; Frigimelica, Elisabetta; Buricchi, Francesca; Petracca, Roberto; Galli, Giuliano; Faenzi, Elisa; Meoni, Eva; Bonci, Alessandra; Agnusdei, Mauro; Nardelli, Filomena; Bartolini, Erika; Scarselli, Maria; Caproni, Elena; Laera, Donatello; Zedda, Luisanna; Skibinski, David; Giovinazzi, Serena; Bastone, Riccardo; Ianni, Elvira; Cevenini, Roberto; Grandi, Guido; Grifantini, Renata

    2011-01-01

    Natural immunity against obligate and/or facultative intracellular pathogens is usually mediated by both humoral and cellular immunity. The identification of those antigens stimulating both arms of the immune system is instrumental for vaccine discovery. Although high-throughput technologies have been applied for the discovery of antibody-inducing antigens, few examples of their application for T-cell antigens have been reported. We describe how the compilation of the immunome, here defined as the pool of immunogenic antigens inducing T- and B-cell responses in vivo, can lead to vaccine candidates against Chlamydia trachomatis. We selected 120 C. trachomatis proteins and assessed their immunogenicity using two parallel high-throughput approaches. Protein arrays were generated and screened with sera from C. trachomatis-infected patients to identify antibody-inducing antigens. Splenocytes from C. trachomatis-infected mice were stimulated with 79 proteins, and the frequency of antigen-specific CD4+/IFN-γ+ T cells was analyzed by flow cytometry. We identified 21 antibody-inducing antigens, 16 CD4+/IFN-γ+–inducing antigens, and five antigens eliciting both types of responses. Assessment of their protective activity in a mouse model of Chlamydia muridarum lung infection led to the identification of seven antigens conferring partial protection when administered with LTK63/CpG adjuvant. Protection was largely the result of cellular immunity as assessed by CD4+ T-cell depletion. The seven antigens provided robust additive protection when combined in four-antigen combinations. This study paves the way for the development of an effective anti-Chlamydia vaccine and provides a general approach for the discovery of vaccines against other intracellular pathogens. PMID:21628568

  12. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines

    Directory of Open Access Journals (Sweden)

    Veridiana Gomes Virginio

    2017-01-01

    Full Text Available The adjuvant potential of two mesoporous silica nanoparticles (MSNs, SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP. The recombinant antigen (HSP70212-600, previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.

  13. [Immune response of melanoma antigen gene-3 modified dendritic cell vaccines in gastric carcinoma].

    Science.gov (United States)

    He, Song-bing; Wang, Liang; Zhang, Yan-yun

    2009-05-01

    To investigate the anti-gastric carcinoma immunological efficacy of dendritic cells (DC) precursors, that were mobilized into the peripheral blood by injection of macrophage inflammation protein-1 alpha (MIP-1 alpha), and induced by DC vaccine expressing melanoma antigen gene-3 (MAGE-3) ex vivo and in vivo. 615 mice were injected with MIP-1 alpha via the tail vein. Freshly isolated B220(-) CD11c+ cells were cultured with cytokines and assayed by phenotype analysis and mixed lymphocyte reaction (MLR). For adenoviral (Ad)-mediated gene transduction, cultured B220(-) CD11c+ cells were incubated with Ad-melanoma antigen gene-3. MIP-1 alpha-mobilized B220(-) CD11c+ cells pulsed MFC cells tumor lysate were used as positive control. The stimulated DC vaccination-induced T lymphocytes, and the killing effect of the T cells on gastric carcinoma cells were assayed by MTT. INF-gamma production was determined with the INF-gamma ELISA kit. To establish the solid tumor model, groups of 615 mice were injected with MFC cells subcutaneously into the abdominal wall. MIP-1 alpha-mobilized DC vaccines expressing MAGE-3 gene were used to immunize the mice after the challenge of MFC cells, then the tumor size and the survival of mice were examined to detect the therapeutic effect of DC vaccines. B220(-) CD11c+ cells increased obviously after MIP-1 alpha injection, and freshly isolated B220(-) CD11c+ cells cultured with mGM-CSF, IL-4, and mTNF-alpha were phenotypically identical to typical DC, gained the capacity to stimulate allogeneic T cells. These MIP-1 alpha-mobilized DCs were transduced with Ad-MAGE-3, which were prepared for DC vaccines expressing tumor antigen. T lymphocytes stimulated with DC-transduced with Ad-MAGE-3 showed specific killing effect on gastric carcinoma cells and produced high levels of INF-gamma [(1460.00 +/- 16.82) pg/ml]. Five days after the MFC cells challenge, the mice were subsequently injected with DC vaccines. The tumor size of the experimental group was

  14. TSOL18 Vaccine Antigen of Taenia solium: Development of Monoclonal Antibodies and Field Testing of the Vaccine in Cameroon

    Directory of Open Access Journals (Sweden)

    Assana, E.

    2010-01-01

    Full Text Available Chapter 1 reviews the literature about the immunological aspects of taeniid cestode infections and the existing vaccines against Taenia solium cysticercosis in pigs. One of the most promising vaccines is TSOL18, a protein that has been identified in the oncosphere of Taenia solium and expressed as a recombinant molecule in E. coli. Repeated experimental trials have shown that this vaccine is able to protect up to 100% of the immunised pigs against a challenge infection with T. solium. Antibodies raised by the vaccine are capable of killing the parasite in in vitro cultures and it is believed that antibody and complement mediated killing of invading parasites is the major protective immune mechanism induced by vaccination with TSOL18. The identification of the villages with a high risk of T. solium infection, which could subsequently be used in the vaccine trial, is reported in chapter 2. A survey was conducted in 150 households owning 1756 pigs in the rural areas of Mayo-Danay division in the far north region of Cameroon. A questionnaire survey was carried out to collect information on the pig farming system and to identify potential risk factors for T. solium cysticercosis infection in pigs. Blood samples were collected from 398 pigs with the aim of estimating the sero-prevalence of Taenia solium cysticercosis. The results showed that 90.7% of the pigs were free roaming during the dry season and that 42.7% of households keeping pigs in the rural areas had no latrine facility. Seventy six percent of the interviewed pig owners affirmed that the members of the household used open field defecation. ELISA for antigen and antibody detection showed an apparent prevalence of porcine cysticercosis of 24.6% and 32.2%, respectively. A Bayesian approach using the conditional dependence between the two diagnostic tests indicated that the true sero-prevalence of cysticercosis in Mayo-Danay was 26.6%. Binary logistic regression analysis indicated that the

  15. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: Consequences for vaccine strain selection.

    Science.gov (United States)

    Peeters, Ben; Reemers, Sylvia; Dortmans, Jos; de Vries, Erik; de Jong, Mart; van de Zande, Saskia; Rottier, Peter J M; de Haan, Cornelis A M

    2017-03-01

    Highly pathogenic H5N1 avian influenza A viruses display a remarkable genetic and antigenic diversity. We examined to what extent genetic distances between several H5N1 viruses from different clades correlate with antigenic differences and vaccine performance. H5-specific antisera were generated, and cross-reactivity and antigenic distances between 12 different viruses were determined. In general, antigenic distances increased proportional to genetic distances although notable exceptions were observed. Antigenic distances correlated better with genetic variation in 27 selected, antigenically-relevant H5 residues, than in the complete HA1 domain. Variation in these selected residues could accurately predict the antigenic distances for a novel H5N8 virus. Protection provided by vaccines against heterologous H5N1 challenge viruses indicated that cross-protection also correlates better with genetic variation in the selected antigenically-relevant residues than in complete HA1. When time is limited, variation at these selected residues may be used to accurately predict antigenic distance and vaccine performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A potential role for epigenetic modulatory drugs in the enhancement of cancer/germ-line antigen vaccine efficacy.

    Science.gov (United States)

    Karpf, Adam R

    2006-01-01

    The discovery of epigenetic silencing as a key mechanism of tumor suppressor gene inactivation in human cancer has led to great interest in utilizing epigenetic modulatory drugs as cancer therapeutics. It is less appreciated that medically important tumor-associated antigens, particularly the Cancer Testis or Cancer/Germ-line family of antigens (CG antigens), which are being actively tested as cancer vaccine targets, are epigenetically activated in many human cancers. However, a major limitation to the therapeutic value of CG antigen-directed vaccines is the limited and heterogeneous expression of CG antigens in tumors. Recent work has begun to dissect the specific epigenetic mechanisms controlling differential expression of CG antigen genes in human cancers. From a clinical perspective, convincing data indicate that epigenetic modulatory agents, including DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, robustly promote the expression of CG antigens, as well as class I major histocompatibility complex (MHC I) and other immune costimulatory molecules, in tumors. Importantly, the effects of these agents on CG antigen gene expression often show marked specificity for tumor cells as compared to normal cells. Taken together, these data encourage clinical evaluation of combination therapies involving epigenetic modulatory drugs and CG antigen-directed tumor vaccines for the treatment of human malignancies.

  17. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Angelica Van Goor

    Full Text Available Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC, a subgroup of extraintestinal pathogenic E. coli (ExPEC, causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum and cytokines (lymphoid organs responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10 were vaccinated twice (two-week interval subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control. IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver, as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P < 0.05 elicited IgY against specific antigens, induced immune related mRNA expression in the spleen and bursa, reduced in vitro growth of multiple APEC serotypes, and decreased bacterial loads in the heart and spleen, and gross lesion scores of the air sac, heart and liver in chickens. The vaccine reported may be used to provide broad protection against APEC strains

  18. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli.

    Science.gov (United States)

    Van Goor, Angelica; Stromberg, Zachary R; Mellata, Melha

    2017-01-01

    Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC), a subgroup of extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg) vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum) and cytokines (lymphoid organs) responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10) were vaccinated twice (two-week interval) subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control). IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver), as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P < 0.05) elicited IgY against specific antigens, induced immune related mRNA expression in the spleen and bursa, reduced in vitro growth of multiple APEC serotypes, and decreased bacterial loads in the heart and spleen, and gross lesion scores of the air sac, heart and liver in chickens. The vaccine reported may be used to provide broad protection against APEC strains, increasing animal

  19. Comparative testing of six antigen-based malaria vaccine candidates directed toward merozoite-stage Plasmodium falciparum

    DEFF Research Database (Denmark)

    Arnot, David E; Cavanagh, David R; Remarque, Edmond J

    2008-01-01

    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1......G concentrations. The two P. pastoris-produced MSP-1(19)-induced IgGs conferred the lowest growth inhibition. Comparative analysis of immunogenicity of vaccine antigens can be used to prioritize candidates before moving to expensive GMP production and clinical testing. The assays used have given discriminating...

  20. Immune responses to oral vaccination with Salmonella-delivered avian pathogenic Escherichia coli antigens and protective efficacy against colibacillosis.

    Science.gov (United States)

    Lee, John Hwa; Chaudhari, Atul A; Oh, In Gyoung; Eo, Seong Kug; Park, Sang-Youel; Jawale, Chetan V

    2015-07-01

    In this study, the immune responses to and protective efficacy of a live attenuated Salmonella-delivered vaccine candidate secreting the papA, papG, iutA, and clpG antigens of Escherichia coli were evaluated against infection with avian pathogenic E. coli (APEC) in layer chickens. Primary vaccination was done at age 7 d and booster vaccination at age 5 wk. The levels of intestinal secretory immunoglobulin A specific to the 4 antigens were significantly higher in the vaccinated group than in the control group. A potent lymphocyte-proliferation response and increased levels of interferon-γ, interleukin-2, and interleukin-6 in the plasma and in culture supernatants of antigen-stimulated lymphocytes from the vaccinated group suggested significant induction of the cell-mediated immune response in this group compared with the control group. Upon challenge with a virulent APEC strain at 8 wk of age, the vaccinated group had no deaths, whereas the control group had a 15% mortality rate. In addition, the morbidity rate was significantly higher in the control group (55%) than in the vaccinated group (15%). Thus, giving primary and booster vaccination with the Salmonella-delivered APEC vaccine candidate significantly elevated both mucosal and cellular immune responses, which protected the chickens against colibacillosis.

  1. Intranasal Vaccination against Cutaneous Leishmaniasis with a Particulated Leishmanial Antigen or DNA Encoding LACK

    Science.gov (United States)

    Pinto, Eduardo Fonseca; Pinheiro, Roberta Olmo; Rayol, Alice; Larraga, Vicente; Rossi-Bergmann, Bartira

    2004-01-01

    We have previously demonstrated that oral delivery of a disease-promoting particulated antigen of Leishmania amazonensis (LaAg) partially protects mice against cutaneous leishmaniasis. In the present work, we sought to optimize a mucosal vaccine by using the intranasal route for delivery of different antigen preparations, including (i) LaAg, (ii) soluble recombinant p36/LACK leishmanial antigen (LACK), and (iii) plasmid DNA encoding LACK (LACK DNA). BALB/c mice that received two intranasal doses of 10 μg of LaAg and were challenged 1 week postvaccination with L. amazonensis developed delayed but effective control of lesion growth. A diminished parasite burden was accompanied by enhancement of both gamma interferon (IFN-γ) and interleukin-10 levels in the lesion-draining lymph nodes. The vaccine efficacy improved with time. At 4 months postvaccination, when a strong parasite-specific TH1-type response was present in vivo, the infection was controlled for at least 5 months after challenge. In contrast to the particulated LaAg, soluble LACK (10 μg/dose) had no effect. Interestingly, LACK DNA (30 μg/dose), but not empty DNA, promoted rapid and durable protective immunity. Parasite growth was effectively controlled, and at 5 months after challenge LACK-reactive cells in both the mucosal and lesion-draining lymph nodes produced high levels of IFN-γ. These results demonstrate for the first time the feasibility of using the intranasal route for long-lived memory vaccination against cutaneous leishmaniasis with adjuvant-free crude antigens or DNA. PMID:15271911

  2. Adequate antigen availability: a key issue for novel approaches to tumor vaccination and tumor immunotherapy.

    Science.gov (United States)

    Accolla, Roberto S; Tosi, Giovanna

    2013-03-01

    A crucial parameter for activation of the anti-tumor immune response is an adequate antigen availability (AAA) defined here as the optimal tumor antigen dose and related antigen processing and MHC-II-restricted presentation necessary to efficiently trigger tumor-specific TH cells. We will discuss two distinct experimental systems: a) a preventive anti-tumor vaccination system; b) a therapy-induced anti-tumor vaccination approach. In the first case tumor cells are rendered constitutively MHC-II+ by transfecting them with the MHC-II transcriptional activator CIITA. Here AAA is generated by the function of tumor's newly expressed MHC-II molecules to present tumor-associated antigens to tumor-specific TH cells. In the second case, AAA is generated by treating established tumors with neovasculature-targeted TNFα. In conjuction with Melphalan, targeted TNFα delivery produces extensive areas of tumor necrosis that generate AAA capable of optimally activate tumor-specific TH cells which in turn activate CTL immune effectors. In both experimental systems tumor rejection and persistent and long-lived TH cell anti-tumor memory, responsible of defending the animals from subsequent challenges with tumor cells, are achieved. Based on these and other investigators' results we propose that AAA is a key element for triggering adaptive immune functions resulting in subversion from a pro-tumor to an anti-tumor microenvironment, tumor rejection and acquisition of anti-tumor immune memory. Hypotheses of neuro-immune networks involved in these approaches are discussed. These considerations are important also for the comprehension of how chemotherapy and/or radiation therapies may help to block and/or to eradicate the tumor and for the construction of suitable anti-tumor vaccine strategies.

  3. Antigen-specific acquired immunity in human brucellosis: implications for diagnosis, prognosis, and vaccine development

    Directory of Open Access Journals (Sweden)

    Anthony P Cannella

    2012-02-01

    Full Text Available Brucella spp. are facultative intracellular Gram negative bacteria with specific tropism for monocytes/macrophages. Clinical manifestations of brucellosis are primarily immune-mediated and not thought to be due to bacterial virulence factors. Acquired immunity to brucellosis has been studied through observations of naturally infected hosts (cattle, goats, laboratory mouse models, and human infection. Cell-mediated immunity drives the clinical manifestations of human disease after exposure to Brucella species but high antibody responses are not associated with protective immunity. The precise mechanisms by which cell-mediated immune responses confer protection or lead to disease manifestations remain poorly understood. Descriptive studies of immune responses in human brucellosis show that TH1 (interferon-gamma are associated with dominant immune responses, findings consistent with animal studies. Whether these T cell responses are protective, or determine the different clinical responses associated with brucellosis is unknown, especially with regard to undulant fever manifestations, relapsing disease, or are associated with responses to distinct sets of Brucella spp. antigens are unknown. Few data regarding T cell responses in terms of specific recognition of Brucella spp. protein antigens and peptidic epitopes, either by CD4+ or CD8+ T cells, have been identified in human brucellosis patients. Additionally because current attenuated Brucella vaccines used in animals cause human disease, there is a true need for a recombinant protein subunit vaccine for human brucellosis, as well as for improved diagnostics in terms of prognosis and identification of unusual forms of brucellosis. This review will focus on current understandings of antigen-specific immune responses induced by Brucella protein antigens that has promise for yielding new insights into vaccine and diagnostics development, and for understanding pathogenetic mechanisms of human

  4. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts.

    Science.gov (United States)

    Arlen, Philip A; Singleton, Michael; Adamovicz, Jeffrey J; Ding, Yi; Davoodi-Semiromi, Abdolreza; Daniell, Henry

    2008-08-01

    The chloroplast bioreactor is an alternative to fermentation-based systems for production of vaccine antigens and biopharmaceuticals. We report here expression of the plague F1-V fusion antigen in chloroplasts. Site-specific transgene integration and homoplasmy were confirmed by PCR and Southern blotting. Mature leaves showed the highest level of transgene expression on the third day of continuous illumination, with a maximum level of 14.8% of the total soluble protein. Swiss Webster mice were primed with adjuvant-containing subcutaneous (s.c.) doses of F1-V and then boosted with either adjuvanted s.c. doses (s.c. F1-V mice) or unadjuvanted oral doses (oral F1-V mice). Oral F1-V mice had higher prechallenge serum immunoglobulin G1 (IgG1) titers than s.c. F1-V mice. The corresponding serum levels of antigen-specific IgG2a and IgA were 2 and 3 orders of magnitude lower, respectively. After vaccination, mice were exposed to an inhaled dose of 1.02 x 10(6) CFU of aerosolized Yersinia pestis CO92 (50% lethal dose, 6.8 x 10(4) CFU). All control animals died within 3 days. F1-V given s.c. (with adjuvant) protected 33% of the immunized mice, while 88% of the oral F1-V mice survived aerosolized Y. pestis challenge. A comparison of splenic Y. pestis CFU counts showed that there was a 7- to 10-log reduction in the mean bacterial burden in survivors. Taken together, these data indicate that oral booster doses effectively elicit protective immune responses in vivo. In addition, this is the first report of a plant-derived oral vaccine that protected animals from live Y. pestis challenge, bringing the likelihood of lower-cost vaccines closer to reality.

  5. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    OpenAIRE

    Bellier, Bertrand; Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccine...

  6. EBV-transformed lymphoblastoid cell lines as vaccines against cancer testis antigen-positive tumors.

    Science.gov (United States)

    Neumann, Frank; Kaddu-Mulindwa, Dominic; Widmann, Thomas; Preuss, Klaus-Dieter; Held, Gerhard; Zwick, Carsten; Roemer, Klaus; Pfreundschuh, Michael; Kubuschok, Boris

    2013-07-01

    EBV-transformed lymphoblastoid cell lines (LCL) are potent antigen-presenting cells. To investigate their potential use as cancer testis antigen (CTA) vaccines, we studied the expression of 12 cancer testis (CT) genes in 20 LCL by RT-PCR. The most frequently expressed CT genes were SSX4 (50 %), followed by GAGE (45 %), SSX1 (40 %), MAGE-A3 and SSX2 (25 %), SCP1, HOM-TES-85, MAGE-C1, and MAGE-C2 (15 %). NY-ESO-1 and MAGE-A4 were found in 1/20 LCL and BORIS was not detected at all. Fifteen of 20 LCL expressed at least one antigen, 9 LCL expressed ≥2 CT genes, and 7 of the 20 LCL expressed ≥4 CT genes. The expression of CT genes did not correlate with the length of in vitro culture, telomerase activity, aneuploidy, or proliferation state. While spontaneous expression of CT genes determined by real-time PCR and Western blot was rather weak in most LCL, treatment with DNA methyltransferase 1 inhibitor alone or in combination with histone deacetylase inhibitors increased CTA expression considerably thus enabling LCL to induce CTA-specific T cell responses. The stability of the CT gene expression over prolonged culture periods makes LCL attractive candidates for CT vaccines both in hematological neoplasias and solid tumors.

  7. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

    Science.gov (United States)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-Ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.

  8. HA03 as an Iranian Candidate Concealed Antigen for Vaccination against Hyalomma anatolicum anatolicum: Comparative Structural and In silico Studies

    Directory of Open Access Journals (Sweden)

    Mohammadi, A.

    2013-12-01

    Full Text Available In the last decades researchers had focused on developing a vaccine against tick based on protective antigen. Recombinant vaccines based on concealed antigen from Boophilus microplus have been developed in Australia and Cuba by the name of TICKGARD and GAVAC (De La Fuente and Kocan, 2006. Further studies on this antigen have shown some extent of protection against other species (De Vos et al., 2001. In Iran most important species is Hyalomma anatolicum and limited information about its control are available. This paper reports structural and polymorphic analysis of HA03 as an Iranian candidate concealed antigen of H. a. anatolicum deposited in Gen-Bank .(Aghaeipour et al. GQ228820. The comparison between this antigen and other mid gut concealed antigen that their characteristics are available in GenBank showed there are high rate of similarity between them. The HA03 amino acid sequence had a homology of around 89%, 64%, 56% with HA98, BM86, BM95 respectively. Potential of MHC class I and II binding region indicated a considerable variation between BM86 antigen and its efficiency against Iranian H. a. anatolicum. In addition, predicted major of hydrophobisity and similarity in N-glycosylation besides large amount of cystein and seven EGF like regions presented in protein structure revealed that value of HA03 as a new protective antigen and the necessity of the development, BM86 homolog of H. a. anatolicum HA03 based recombinant vaccine.

  9. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens.

    Science.gov (United States)

    Fan, Yuchen; Sahdev, Preety; Ochyl, Lukasz J; Akerberg, Jonathan; Moon, James J

    2015-06-28

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50~0.2mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50>4mg/ml), as measured with bone marrow derived dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8(+) T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, whereas mice immunized with the equivalent doses of soluble F1-V vaccine failed to achieve sero-conversion. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  10. Antigenic differentiation of classical swine fever vaccinal strain PAV-250 from other strains, including field strains from Mexico.

    Science.gov (United States)

    Mendoza, Susana; Correa-Giron, Pablo; Aguilera, Edgar; Colmenares, Germán; Torres, Oscar; Cruz, Tonatiuh; Romero, Andres; Hernandez-Baumgarten, Eliseo; Ciprián, Abel

    2007-10-10

    Twenty-nine classical swine fever virus (CSFv) strains were grown in the PK15 or SK6 cell lines. Antigenic differentiation studies were performed using monoclonal antibodies (McAbs), produced at Lelystad (CDI-DLO), The Netherlands. The monoclonals which were classified numerically as monoclonals 2-13. Epitope map patterns that resulted from the reactivity with McAbs were found to be unrelated to the pathogenicity of the viruses studied. Antigenic determinants were recognized by McAbs 5 and 8, were not detected in some Mexican strains; however, sites for McAb 6 were absent in all strains. The PAV-250 vaccine strain was recognized by all MAbs, except by MAb 6. Furthermore, the Chinese C-S vaccine strain was found to be very similar to the GPE(-) vaccine. None of the studied Mexican vaccines or field strains was found to be similar to the PAV-250 vaccine strain.

  11. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association...... by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...

  12. Monitoring antigenic variations of enterovirus 71: implications for virus surveillance and vaccine development.

    Directory of Open Access Journals (Sweden)

    Min-Yuan Chia

    2014-07-01

    Full Text Available Enterovirus 71 (EV71 causes life-threatening epidemics in Asia and can be phylogenetically classified into three major genogroups (A ∼ C including 11 genotypes (A, B1 ∼ B5, and C1 ∼ C5. Recently, EV71 epidemics occurred cyclically in Taiwan with different genotypes. In recent years, human studies using post-infection sera obtained from children have detected antigenic variations among different EV71 strains. Therefore, surveillance of enterovirus 71 should include phylogenetic and antigenic analysis. Due to limitation of sera available from children with EV71 primary infection, suitable animal models should be developed to generate a panel of antisera for monitoring EV71 antigenic variations. Twelve reference strains representing the 11 EV71 genotypes were grown in rhabdomyosarcoma cells. Infectious EV71 particles were purified and collected to immunize rabbits. The rabbit antisera were then employed to measure neutralizing antibody titers against the 12 reference strains and 5 recent strains. Rabbits immunized with genogroup B and C viruses consistently have a lower neutralizing antibody titers against genogroup A (≧ 8-fold difference and antigenic variations between genogroup B and C viruses can be detected but did not have a clear pattern, which are consistent with previous human studies. Comparison between human and rabbit neutralizing antibody profiles, the results showed that ≧ 8-fold difference in rabbit cross-reactive antibody ratios could be used to screen EV71 isolates for identifying potential antigenic variants. In conclusion, a rabbit model was developed to monitor antigenic variations of EV71, which are critical to select vaccine strains and predict epidemics.

  13. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Science.gov (United States)

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  14. Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses.

    Directory of Open Access Journals (Sweden)

    Danuta M Skowronski

    Full Text Available Influenza vaccine effectiveness (VE is generally interpreted in the context of vaccine match/mismatch to circulating strains with evolutionary drift in the latter invoked to explain reduced protection. During the 2012-13 season, however, detailed genotypic and phenotypic characterization shows that low VE was instead related to mutations in the egg-adapted H3N2 vaccine strain rather than antigenic drift in circulating viruses.Component-specific VE against medically-attended, PCR-confirmed influenza was estimated in Canada by test-negative case-control design. Influenza A viruses were characterized genotypically by amino acid (AA sequencing of established haemagglutinin (HA antigenic sites and phenotypically through haemagglutination inhibition (HI assay. H3N2 viruses were characterized in relation to the WHO-recommended, cell-passaged vaccine prototype (A/Victoria/361/2011 as well as the egg-adapted strain as per actually used in vaccine production. Among the total of 1501 participants, influenza virus was detected in 652 (43%. Nearly two-thirds of viruses typed/subtyped were A(H3N2 (394/626; 63%; the remainder were A(H1N1pdm09 (79/626; 13%, B/Yamagata (98/626; 16% or B/Victoria (54/626; 9%. Suboptimal VE of 50% (95%CI: 33-63% overall was driven by predominant H3N2 activity for which VE was 41% (95%CI: 17-59%. All H3N2 field isolates were HI-characterized as well-matched to the WHO-recommended A/Victoria/361/2011 prototype whereas all but one were antigenically distinct from the egg-adapted strain as per actually used in vaccine production. The egg-adapted strain was itself antigenically distinct from the WHO-recommended prototype, and bore three AA mutations at antigenic sites B [H156Q, G186V] and D [S219Y]. Conversely, circulating viruses were identical to the WHO-recommended prototype at these positions with other genetic variation that did not affect antigenicity. VE was 59% (95%CI:16-80% against A(H1N1pdm09, 67% (95%CI: 30-85% against B

  15. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    Energy Technology Data Exchange (ETDEWEB)

    Witek, Matthew [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A. [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Snook, Adam E., E-mail: adam.snook@jefferson.edu [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  16. Universal influenza vaccines, science fiction or soon reality?

    Science.gov (United States)

    de Vries, Rory D; Altenburg, Arwen F; Rimmelzwaan, Guus F

    2015-01-01

    Currently used influenza vaccines are only effective when the vaccine strains match the epidemic strains antigenically. To this end, seasonal influenza vaccines must be updated almost annually. Furthermore, seasonal influenza vaccines fail to afford protection against antigenically distinct pandemic influenza viruses. Because of an ever-present threat of the next influenza pandemic and the continuous emergence of drift variants of seasonal influenza A viruses, there is a need for an universal influenza vaccine that induces protective immunity against all influenza A viruses. Here, we summarize some of the efforts that are ongoing to develop universal influenza vaccines.

  17. A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.

    Directory of Open Access Journals (Sweden)

    Susan Thrane

    Full Text Available Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP based vaccines (e.g., the licensed human papillomavirus vaccines have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of

  18. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Singh, Nameirakpam D; Herzog, Roland; Daniell, Henry

    2013-06-15

    Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Overexpression of Protective Antigen as a Novel Approach To Enhance Vaccine Efficacy of Brucella abortus Strain RB51

    OpenAIRE

    Vemulapalli, Ramesh; He, Yongqun; Cravero, Silvio; Sriranganathan, Nammalwar; Boyle, Stephen M.; Schurig, Gerhardt G.

    2000-01-01

    Brucella abortus strain RB51 is an attenuated rough strain that is currently being used as the official live vaccine for bovine brucellosis in the United States and several other countries. We reasoned that overexpression of a protective antigen(s) of B. abortus in strain RB51 should enhance its vaccine efficacy. To test this hypothesis, we overexpressed Cu/Zn superoxide dismutase (SOD) protein of B. abortus in strain RB51. This was accomplished by transforming strain RB51 with a broad-host-r...

  20. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  1. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    Directory of Open Access Journals (Sweden)

    James J Moon

    Full Text Available The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide acid (PLGA "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA, was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs. Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  2. Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials.

    Science.gov (United States)

    Turriziani, Mario; Fantini, Massimo; Benvenuto, Monica; Izzi, Valerio; Masuelli, Laura; Sacchetti, Pamela; Modesti, Andrea; Bei, Roberto

    2012-09-01

    Carcinoembryonic antigen (CEA), a glycosylated protein of MW 180 kDa, is overexpressed in a wide range of human carcinomas, including colorectal, gastric, pancreatic, non-small cell lung and breast carcinomas. Accordingly, CEA is one of several oncofetal antigens that may serve as a target for active anti-cancer specific immunotherapy. Experimental results obtained by employing animal models have supported the design of clinical trials using a CEA-based vaccine for the treatment of different types of human cancers. This review reports findings from experimental models and clinical evidence on the use of a CEA-based vaccine for the treatment of cancer patients. Among the diverse CEA-based cancer vaccines, DCs- and recombinant viruses-based vaccines seem the most valid. However, although vaccination was shown to induce a strong immune response to CEA, resulting in a delay in tumor progression and prolonged survival in some cancer patients, it failed to eradicate the tumor in most cases, owing partly to the negative effect exerted by the tumor microenvironment on immune response. Thus, in order to develop more efficient and effective cancer vaccines, it is necessary to design new clinical trials combining cancer vaccines with chemotherapy, radiotherapy and drugs which target those factors responsible for immunosuppression of immune cells. This review also discusses relevant patents relating to the use of CEA as a cancer vaccine.

  3. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.

    2015-01-01

    Background: Computational methods for T cell-based vaccine target discovery focus on selection of highly conserved peptides identified across pathogen variants, followed by prediction of their binding of human leukocyte antigen molecules. However, experimental studies have shown that T cells ofte...... or proteome using human leukocyte antigen binding predictions and made a web-accessible software implementation freely available at http://met-hilab.cbs.dtu.dk/blockcons/....

  4. Assessment of in vivo anti-tumor activity of human umbilical vein endothelial cell vaccines prepared by various antigen forms.

    Science.gov (United States)

    Zhou, Ling; Si, Chunfeng; Li, Defang; Lu, Meiyu; Zhong, Weilan; Xie, Zeping; Guo, Lin; Zhang, Shumin; Xu, Maolei

    2018-03-01

    Human umbilical vein endothelial cell (HUVEC) vaccine has been proved as an effective whole-cell vaccine, but the modest therapeutic anti-tumor efficiency limits its clinical use. Various antigen forms, including paraformaldehyde-fixed HUVEC, glutaraldehyde-fixed HUVEC, HUVEC lysate and live HUVEC, have been intensively used in HUVEC vaccine preparation, however, the most effective antigen form has not yet been identified. In the present study, these four commonly used antigen forms were used to prepare vaccines named Para-Fixed-EC, Glu-Fixed-EC, Lysate-EC, and Live-EC respectively, and the anti-tumor efficacy of these four vaccines was investigated. Results showed that Live-EC exhibited the most favorable anti-tumor growth and metastasis effects among the four vaccines in both H22 hepatocellular carcinoma and Lewis lung cancer models. High titer anti-HUVEC antibodies were detected in Live-EC immunized mice sera, and the immune sera of Live-EC group could significantly inhibit HUVEC proliferation and tube formation. Moreover, T cells isolated from Live-EC immunized mice exhibited strong cytotoxicity against HUVEC cells, with an increasing IFN-γ and decreasing Treg production in Live-EC immunized mice. Finally, CD31 immunohistochemical analysis of the excised tumors verified a significant reduction in vessel density after Live-EC vaccination, which was in accordance with the anti-tumor efficiency. Taken together, all the results proved that live HUVEC was the most effective antigen form to induce robust HUVEC specific antibody and CTL responses, which could lead to the significant inhibition of tumor growth and metastasis. We hope the present findings would provide a rationale for the further optimization of HUVEC vaccine. Copyright © 2017. Published by Elsevier B.V.

  5. Utilizing the Antigen Capsid-Incorporation Strategy for the Development of Adenovirus Serotype 5-Vectored Vaccine Approaches

    OpenAIRE

    Gu, Linlin; Farrow, Anitra L.; Krendelchtchikov, Alexandre; Matthews, Qiana L.

    2015-01-01

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-ve...

  6. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded-Antigens for Rapid Diagnosis and Vaccine Development

    Science.gov (United States)

    1990-12-12

    problem associated with monovalent dengue vaccines is that individuals infected with one serotype are fully susceptible to infection with other...replication and virion assembly. Use of synthetic peptides encoding the epitopes of viral antigens recognized by host immune system has augmented our...Della-Porta and Westaway, 1977; Kitano et al., 1974; Heinz et al., 1981). In order to develop a subunit vaccine against dengue virus, it is important to

  7. Brucella abortus RB51 and hot saline extract from Brucella ovis as antigens in a complement fixation test used To detect sheep vaccinated with Brucella abortus RB51.

    Science.gov (United States)

    Adone, R; Ciuchini, F

    2001-01-01

    The efficacy of Brucella abortus RB51 and hot saline extract (HSE) from Brucella ovis as antigens in complement fixation (CF) tests was comparatively evaluated in detecting immune responses of sheep vaccinated with B. abortus strain RB51. For this study, four 5-month-old sheep were vaccinated subcutaneously with 5 x 10(9) CFU of RB51, and two sheep received saline. Serum samples collected at different times after vaccination were tested for the presence of antibodies to RB51 by a CF test with RB51 as antigen, previously deprived of anticomplementary activity, and with HSE antigen, which already used as the official antigen to detect B. ovis-infected sheep. The results showed that vaccinated sheep developed antibodies which reacted weakly against HSE antigen and these antibodies were detectable for 30 days after vaccination. However, antibodies to RB51 could be detected for a longer period after vaccination by using homologous RB51 antigen in CF tests. In fact, high titers were still present at 110 days postvaccination with RB51 antigen. Sera from sheep naturally infected with B. ovis also reacted to RB51 but gave lower titers than those detected by HSE antigen. As expected, all sera from RB51-vaccinated sheep remained negative when tested with standard S-type Brucella standard antigens.

  8. Enhanced expression of HIV and SIV vaccine antigens in the structural gene region of live attenuated rubella viral vectors and their incorporation into virions.

    Science.gov (United States)

    Virnik, Konstantin; Ni, Yisheng; Berkower, Ira

    2013-04-19

    Despite the urgent need for an HIV vaccine, its development has been hindered by virus variability, weak immunogenicity of conserved epitopes, and limited durability of the immune response. For other viruses, difficulties with immunogenicity were overcome by developing live attenuated vaccine strains. However, there is no reliable method of attenuation for HIV, and an attenuated strain would risk reversion to wild type. We have developed rubella viral vectors, based on the live attenuated vaccine strain RA27/3, which are capable of expressing important HIV and SIV vaccine antigens. The rubella vaccine strain has demonstrated safety, immunogenicity, and long lasting protection in millions of children. Rubella vectors combine the growth and immunogenicity of live rubella vaccine with the antigenicity of HIV or SIV inserts. This is the first report showing that live attenuated rubella vectors can stably express HIV and SIV vaccine antigens at an insertion site located within the structural gene region. Unlike the Not I site described previously, the new site accommodates a broader range of vaccine antigens without interfering with essential viral functions. In addition, antigens expressed at the structural site were controlled by the strong subgenomic promoter, resulting in higher levels and longer duration of antigen expression. The inserts were expressed as part of the structural polyprotein, processed to free antigen, and incorporated into rubella virions. The rubella vaccine strain readily infects rhesus macaques, and these animals will be the model of choice for testing vector growth in vivo and immunogenicity. Published by Elsevier Ltd.

  9. Antigen-specific IgA B memory cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates

    OpenAIRE

    Simon, J. K.; Maciel, M.; Weld, E.D.; Wahid, R.; Pasetti, M.F.; Picking, W.L.; Kotloff, K. L.; Levine, M. M.; Sztein, M. B.

    2011-01-01

    We studied the induction of antigen-specific IgA memory B cells (BM) in volunteers who received live attenuated Shigella flexneri 2a vaccines. Subjects ingested a single oral dose of 107, 108 or 109 CFU of S. flexneri 2a with deletions in guaBA (CVD 1204) or in guaBA, set and sen (CVD 1208). Antigen-specific serum and stool antibody responses to LPS and Ipa B were measured on days 0, 7, 14, 28 and 42. IgA BM cells specific to LPS, Ipa B and total IgA were assessed on days 0 and 28. We show th...

  10. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.

    Science.gov (United States)

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne; Grødeland, Gunnveig

    2017-12-01

    Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  11. Antigenic characterization of Moraxella bovis, Moraxella bovoculi and Moraxella ovis strains with potential use in vaccines.

    Science.gov (United States)

    Kowalski, Ananda Paula; Maboni, Grazieli; Gressler, Letícia Trevisan; Espíndola, Julia Pires; Balzan, Cláudia; Tasca, Caiane; Guizzo, João Antônio; Conceição, Fabricio Rochedo; Frandoloso, Rafael; de Vargas, Agueda Castagna

    2017-10-01

    Moraxella bovis is historically known as the primary agent of infectious bovine keratoconjunctivitis (IBK). However, Moraxella bovoculi and Moraxella ovis are also reported to be involved in the pathogenesis of IBK, therefore, these three species should be included in the development of a new vaccine with a broad-spectrum protection against the disease natural challenge. In this study we investigated the antigenic properties of clinical isolates and reference strains of M. bovis, M. bovoculi and M. ovis using a novel in vitro approach for vaccine evaluation based on two techniques, flow cytometry and western blotting (WB). Here, we demonstrated that rabbit antisera produced against reference M. bovis strain and commercial bacterin showed low number of IgG with capacity to recognize a panel of heterologous strains composed by M. bovoculi and M. ovis. On the other hand, the antisera generated against two clinical isolates of M. ovis (Mov2 and Mov3) presented high cross-reactivity levels against all M. ovis and M. bovis strains evaluated. Similarly, the antisera against Mbv3 (clinical isolate of M. bovoculi) had high levels of IgG associated on the surface of all M. bovoculi strains and most of the M. ovis strains analyzed. The WB analysis demonstrated that Moraxella spp. has multiple immunogenic antigens and most of them are shared between the three species. Based on the cross-reactivity analysis and considering the relative number of IgGs associated on the bacterial surface, we suggest that a multivalent vaccine including Mbv3, Mov2 and Mov3 strains may provide a strong and broad protection against all strains involved in IBK outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development.

    Science.gov (United States)

    Zhang, Xiaowei; Hu, Shumin; Du, Xue; Li, Tiejun; Han, Lanlan; Kong, Jian

    2016-12-01

    Carcinoembryonic antigen (CEA) is an attractive target for immunotherapy because it is expressed minimally in normal tissue, but is overexpressed in a wide variety of malignant epithelial tissues. Lactic acid bacteria (LABs), widely used in food processes, are attractive candidates for oral vaccination. Thus, we examined whether LABs could be used as a live vaccine vector to deliver CEA antigen. CEA was cloned into an Escherichia coli/Lactococcus lactis shuttle vector pSEC:LEISS under the control of a nisin promoter. For displaying the CEA on the cell surface of the L. lactis strain, the anchor motif LcsB from the S-layer protein of Lactobacillus crispatus was fused with CEA. Intracellular and cell surface expression of the CEA-LcsB fusion was confirmed by western blot analysis. Significantly higher levels of CEA-specific secretory immunoglobulin A in the sera of mice were observed upon oral administration of strain cultures containing the CEA-LcsB fused protein. In addition, the CEA-LcsB antigen group showed a higher spleen index compared to the CEA antigen alone or negative control, demonstrating that surface-displayed CEA antigen could induce a higher immune response. These results provided the first evidence for displaying CEA antigen on the cell surfaces of LABs as oral vaccines against cancer or infectious diseases. Copyright © 2014. Published by Elsevier B.V.

  13. Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens

    Directory of Open Access Journals (Sweden)

    Alessandra Gallinaro

    2018-02-01

    Full Text Available Viral vectors represent an attractive technology for vaccine delivery. We exploited the integrase defective lentiviral vector (IDLV as a platform for delivering relevant antigens within the context of the ADITEC collaborative research program. In particular, Influenza virus hemagglutinin (HA and nucleoprotein (NP were delivered by IDLVs while H1N1 A/California/7/2009 subunit vaccine (HAp with or without adjuvant was used to compare the immune response in a murine model of immunization. In order to maximize the antibody response against HA, both IDLVs were also pseudotyped with HA (IDLV-HA/HA and IDLV-NP/HA, respectively. Groups of CB6F1 mice were immunized intramuscularly with a single dose of IDLV-NP/HA, IDLV-HA/HA, HAp alone, or with HAp together with the systemic adjuvant MF59. Six months after the vaccine prime all groups were boosted with HAp alone. Cellular and antibody responses to influenza antigens were measured at different time points after the immunizations. Mice immunized with HA-pseudotyped IDLVs showed similar levels of anti-H1N1 IgG over time, evaluated by ELISA, which were comparable to those induced by HAp + MF59 vaccination, but significantly higher than those induced by HAp alone. The boost with HAp alone induced an increase of antibodies in all groups, and the responses were maintained at higher levels up to 18 weeks post-boost. The antibody response was functional and persistent overtime, capable of neutralizing virus infectivity, as evaluated by hemagglutination inhibition and microneutralization assays. Moreover, since neuraminidase (NA-expressing plasmid was included during IDLV preparation, immunization with IDLV-NP/HA and IDLV-HA/HA also induced functional anti-NA antibodies, evaluated by enzyme-linked lectin assay. IFNγ-ELISPOT showed evidence of HA-specific response in IDLV-HA/HA immunized animals and persistent NP-specific CD8+ T cell response in IDLV-NP/HA immunized mice. Taken together our results indicate

  14. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Science.gov (United States)

    Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz

    2014-01-01

    The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as

  15. Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Lourena Emanuele Costa

    Full Text Available BACKGROUND: The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL. Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. METHODOLOGY/MAIN FINDINGS: Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin, showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. CONCLUSIONS/SIGNIFICANCE: This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the

  16. Human Papillomavirus Vaccination Uptake before and after the Affordable Care Act: Variation According to Insurance Status, Race, and Education (NHANES 2006-2014).

    Science.gov (United States)

    Corriero, Rosemary; Gay, Jennifer L; Robb, Sara Wagner; Stowe, Ellen W

    2018-02-01

    The purpose of the study was to compare human papillomavirus (HPV) vaccination rates before and after Affordable Care Act (ACA) implementation among women, and examine differences according to insurance status and other sociodemographic variables. This was a cross-sectional analysis of the National Health and Nutrition Examination Survey questionnaire data. Participants (n = 4599) were from a random sample of the United States population. HPV vaccination status and number of doses received according to age, income, education, race, and insurance coverage. Over time, the proportion of women reporting HPV vaccination increased from 16.4% to 27.6%, and reporting vaccination completion (3 doses) increased from 56.8% to 67.2%. After ACA implementation, respondents were 3.3 times more likely to be vaccinated compared with before ACA implementation (95% confidence interval [CI], 2.0-5.5) adjusting for age, race, and insurance coverage. Similarly, respondents were more likely to have received 2 (odds ratio, 2.8; 95% CI, 1.5-5.3) or 3 doses (odds ratio, 5.8; 95% CI, 2.5-13.6). Vaccination uptake increased in a comparison of waves of data from before and after ACA implementation. This increase in vaccination coverage could be related to the increased preventative service coverage, which includes vaccines, required by the ACA. Future studies might focus on the role insurance has on vaccination uptake, and meeting Healthy People 2020 objectives for vaccination coverage. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  17. CD4+ T-cell Responses Among Adults and Young Children In Response to Streptococcus pneumoniae and Haemophilus influenzae Vaccine Candidate Protein Antigens

    OpenAIRE

    Sharma, Sharad K.; Roumanes, David; Almudevar, Anthony; Mosmann, Tim R.; Pichichero, Michael E.

    2013-01-01

    We characterized cytokine profiles of CD4+ T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and Protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 - and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4+ T cells producing...

  18. Preclinical evaluation of multi antigenic HCV DNA vaccine for the prevention of Hepatitis C virus infection.

    Science.gov (United States)

    Lee, Hyojin; Jeong, Moonsup; Oh, Jooyeon; Cho, Youngran; Shen, Xuefei; Stone, John; Yan, Jian; Rothkopf, Zachary; Khan, Amir S; Cho, Byung Mun; Park, Young K; Weiner, David B; Son, Woo-Chan; Maslow, Joel N

    2017-03-07

    Direct-acting antiviral treatment for hepatitis C virus (HCV) infection is costly and does not protect from re-infection. For human and chimpanzees, recovery from acute HCV infection correlates with host CD4+ and CD8+ T cell responses. DNA plasmids targeting the HCV non-structural antigens NS3, NS4, and NS5, were previously reported to induce robust and sustained T cell responses in mice and primates. These plasmids were combined with a plasmid encoding cytokine IL-28B, together named as VGX-6150. The dose-dependent T cell response and safety of VGX-6150 administered intramuscularly and followed by electroporation was assessed in mice. Immune responses plateaued at 20 μg/dose with IL-28B demonstrating significant immunoadjuvant activity. Mice administered VGX-6150 at 40, 400, and 800 μg given either as a single injection or as 14 injections given bi-weekly over 26 weeks showed no vaccine related changes in any clinical parameter compared to placebo recipients. There was no evidence of VGX-6150 accumulation at the injection site or in any organ 1 month following the 14 th vaccination. Based on these studies, the approximate lethal dose (ALD) exceeds 800 μg/dose and the NOAEL was 800 μg/dose in mouse. In conclusion, VGX-6150 appears safe and a promising preventive vaccine candidate for HCV infection.

  19. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens.

    Science.gov (United States)

    Xu, Jinjun; Zhang, Yan; Tao, Jianping

    2013-04-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×10(4) sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (Pcoccidiosis control.

  20. Towards a sustainable, quality and affordable Haemophilus influenzae type b vaccine for every child in the world

    NARCIS (Netherlands)

    Hamidi, A.

    2016-01-01

    Haemophilus influenzae type b (Hib) conjugate vaccine is a safe and effective vaccine that can prevent meningitis and pneumonia caused by Hib disease. Hib vaccine is recommended for all children under 5 years. Despite the availability of safe and effective Hib vaccines since early 1987, Gambia was

  1. Hepatitis B vaccination coverage and risk factors associated with incomplete vaccination of children born to hepatitis B surface antigen-positive mothers, Denmark, 2006 to 2010.

    Science.gov (United States)

    Kunoee, Asja; Nielsen, Jens; Cowan, Susan

    2016-01-01

    In Denmark, universal screening of pregnant women for hepatitis B has been in place since November 2005, with the first two years as a trial period with enhanced surveillance. It is unknown what the change to universal screening without enhanced surveillance has meant for vaccination coverage among children born to hepatitis B surface antigen (HBsAg)-positive mothers and what risk factors exist for incomplete vaccination. This retrospective cohort study included 699 children of mothers positive for HBsAg. Information on vaccination and risk factors was collected from central registers. In total, 93% (651/699) of the children were vaccinated within 48 hours of birth, with considerable variation between birthplaces. Only 64% (306/475) of the children had received all four vaccinations through their general practitioner (GP) at the age of two years, and 10% (47/475) of the children had received no hepatitis B vaccinations at all. Enhanced surveillance was correlated positively with coverage of birth vaccination but not with coverage at the GP. No or few prenatal examinations were a risk factor for incomplete vaccination at the GP. Maternity wards and GPs are encouraged to revise their vaccination procedures and routines for pregnant women, mothers with chronic HBV infection and their children.

  2. Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines.

    Science.gov (United States)

    Clay, Timothy M; Osada, Takuya; Hartman, Zachary C; Hobeika, Amy; Devi, Gayathri; Morse, Michael A; Lyerly, H Kim

    2011-04-01

    Aberrant signaling pathways are a hallmark of cancer. A variety of strategies for inhibiting signaling pathways have been developed, but monoclonal antibodies against receptor tyrosine kinases have been among the most successful. A challenge for these therapies is therapeutic unresponsiveness and acquired resistance due to mutations in the receptors, upregulation of alternate growth and survival pathways, or inadequate function of the monoclonal antibodies. Vaccines are able to induce polyclonal responses that can have a multitude of affects against the target molecule. We began to explore therapeutic vaccine development to antigens associated with these signaling pathways. We provide an illustrative example in developing therapeutic cancer vaccines inducing polyclonal adaptive immune responses targeting the ErbB family member HER2. Further, we will discuss new strategies to augment the clinical efficacy of cancer vaccines by enhancing vaccine immunogenicity and reversing the immunosuppressive tumor microenvironment.

  3. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion

    International Nuclear Information System (INIS)

    Kwak, Heesun; Mustafa, Waleed; Speirs, Kendra; Abdool, Asha J.; Paterson, Yvonne; Isaacs, Stuart N.

    2004-01-01

    Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus

  4. Brucella abortus strain RB51 leucine auxotroph as an environmentally safe vaccine for plasmid maintenance and antigen overexpression.

    Science.gov (United States)

    Rajasekaran, Parthiban; Seleem, Mohamed N; Contreras, Andrea; Purwantini, Endang; Schurig, Gerhardt G; Sriranganathan, Nammalwar; Boyle, Stephen M

    2008-11-01

    To avoid potentiating the spread of an antibiotic resistance marker, a plasmid expressing a leuB gene and a heterologous antigen, green fluorescent protein (GFP), was shown to complement a leucine auxotroph of cattle vaccine strain Brucella abortus RB51, which protected CD1 mice from virulent B. abortus 2308 and elicited GFP antibodies.

  5. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria

    NARCIS (Netherlands)

    van Roosmalen, ML; Kanninga, R; El Khattabi, M; Neef, J; Audouy, S; Bosma, T; Kuipers, A; Post, E; Steen, A; Kok, J; Buist, G; Kuipers, OP; Robillard, G; Leenhouts, K

    Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading

  6. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    Science.gov (United States)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  7. Evaluation of three Brucella soluble antigens used in an indirect Elisa to discriminate S19 vaccinated from naturally infected cattle.

    Science.gov (United States)

    Abalos, P; Daffner, J; Pinochet, L

    2000-01-01

    An O-polysaccharide (O-chain) and a hot-water extracted polysaccharide (PS), both obtained from Brucella abortus 1119-3, and a B. melitensis 16M native hapten (NH) were evaluated by indirect enzyme linked immunosorbent assay (ELISA) on three groups of cattle sera. The sera tested were: (a) 75 sera from cows naturally infected with B. abortus; (b) 130 sera from non-infected and non-vaccinated cattle; and (c) 61 sera from non-infected heifers recently vaccinated with B. abortus Strain 19 (S19). Sensitivity (Se), specificity (Sp) and the capability to discriminate vaccinated cattle (ADV) were determined. Using PS antigen, Se was 100% and the Sp was 97.7%, while the highest Sp was obtained by using the O-chain (99.2% ). For the NH antigen, Se was 94.7% and the Sp was 90.0%. The ADV of the three antigens was approximately 85%. Statistical analysis showed significant differences between O-chain/PS and O-chain/NH antigens. The agreement among antigens determined by kappa coefficient was 0.899 for O-chain/PS, 0.845 for O-chain/NH and 0.795 for PS/NH.

  8. Cancer Antigen Prioritization: A Road Map to Work in Defining Vaccines Against Specific Targets. A Point of View

    International Nuclear Information System (INIS)

    Gomez, Daniel E.; Vázquez, Ana María; Alonso, Daniel F.

    2012-01-01

    The use of anti-idiotype antibodies as vaccines to stimulate antitumor immunity is a very promising pathway in the therapy of cancer. A good body of work in animal tumor models have demonstrated the efficacy of anti-Id vaccines in preventing tumor growth and curing mice with established tumors. A number of monoclonal anti-Id antibodies that mimic different human tumor-associated antigens (TAAs) have been developed and tested in the clinic, demonstrating interesting. In general terms, the antigen mimicry by anti-Id antibodies has reflected structural homology in the most of the cases, and amino acid sequence homology in a minority of them. The major challenge of immunotherapy using anti-idiotype vaccines is to identify the optimal anti-idiotype antibody that will function as a true surrogate antigen for a TAA system, and ideally will generate both humoral and cellular immune responses. Several clinical studies have shown enhanced patient's survival when receiving anti-Id vaccines, the true demonstration of efficacy of these vaccines will depend upon the results of several randomized Phase III clinical trials that are currently planned or ongoing (Bhattacharya-Chatterjee et al.,).

  9. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity.

    Science.gov (United States)

    John, Shinu; Yuzhakov, Olga; Woods, Angela; Deterling, Jessica; Hassett, Kimberly; Shaw, Christine A; Ciaramella, Giuseppe

    2018-03-14

    A cytomegalovirus (CMV) vaccine that is effective at preventing congenital infection and reducing CMV disease in transplant patients remains a high priority as no approved vaccines exist. While the precise correlates of protection are unknown, neutralizing antibodies and antigen-specific T cells have been implicated in controlling infection. We demonstrate that the immunization of mice and nonhuman primates (NHPs) with lipid nanoparticles (LNP) encapsulating modified mRNA encoding CMV glycoproteins gB and pentameric complex (PC) elicit potent and durable neutralizing antibody titers. Since the protective correlates in pregnant women and transplant recipients may differ, we developed an additional mRNA vaccine expressing the immunodominant CMV T cell antigen pp65. Administration of pp65 vaccine with PC and gB elicited robust multi-antigenic T cell responses in mice. Our data demonstrate that mRNA/LNP is a versatile platform that enables the development of vaccination strategies that could prevent CMV infection and consequent disease in different target populations. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery.

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Schreiber, Melissa; Nalapalli, Samson; Verma, Dheeraj; Singh, Nameirakpam D; Banks, Robert K; Chakrabarti, Debopam; Daniell, Henry

    2010-02-01

    Cholera and malaria are major diseases causing high mortality. The only licensed cholera vaccine is expensive; immunity is lost in children within 3 years and adults are not fully protected. No vaccine is yet available for malaria. Therefore, in this study, the cholera toxin-B subunit (CTB) of Vibrio cholerae fused to malarial vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1) was expressed in lettuce and tobacco chloroplasts. Southern blot analysis confirmed homoplasmy and stable integration of transgenes. CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein, TSP) in tobacco and up to 7.3% and 6.1% (TSP) in lettuce, respectively. Nine groups of mice (n = 10/group) were immunized subcutaneously (SQV) or orally (ORV) with purified antigens or transplastomic tobacco leaves. Significant levels of antigen-specific antibody titres of immunized mice completely inhibited proliferation of the malarial parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge in both ORV (100%) and SQV (89%) mice correlated with CTB-specific titres of intestinal, serum IgA and IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. Increasing numbers of interleukin-10(+) T cell but not Foxp3(+) regulatory T cells, suppression of interferon-gamma and absence of interleukin-17 were observed in protected mice, suggesting that immunity is conferred via the Tr1/Th2 immune response. Dual immunity against two major infectious diseases provided by chloroplast-derived vaccine antigens for long-term (>300 days, 50% of mouse life span) offers a realistic platform for low cost vaccines and insight into mucosal and systemic immunity.

  11. Development of hepatitis C virus vaccine using hepatitis B core antigen as immuno-carrier

    Science.gov (United States)

    Chen, Jia-Yu; Li, Fan

    2006-01-01

    AIM: To develop hepatitis C virus (HCV) vaccine using HBcAg as the immuno-carrier to express HCV T epitope and to investigate its immunogenicity in mice. METHODS: We constructed the plasmid pTrc-coreNheI using gene engineering technique, constructed the pcDNA3.1-coreNheI-GFP plasmid with GFP as the reporter gene, and transfected them into Hela cells. The expression of GFP was observed under confocal microscopy and the feasibility of using HBcAg as an immuno-carrier vaccine was studied. pTrc-core gene with a synthetic T epitope antigen gene of HCV (35-44aa) was fused and expressed in the plasmid pTrc-core-HCV (T). For the fusion of the HBcAg-T protein, sucrose, density gradient centrifugation was used, and its molecular weight and purity were analyzed by SDS-PAGE. Then balb/c mice were immunized by the plasmid with the HBcAg (expressed by pTrc-core) protein as control. The tumor regression potential was investigated in mice and evaluated at appropriate time. After three times of immunization, the peripheral blood and spleen of vaccinated mice were collected. HBcAb was detected by ELISA, and nonspecific T lymphocyte proliferation and response of splenocytes were respectively examined by MTT assay. T cell subset of blood and spleen were detected by FACS. RESULTS: GFP was successfully expressed. Tumor regression trial showed that no tumor formation was found in the group receiving immunization, while tumor xenograft progression was not changed in the control group. Strong nonspecific lymphocyte proliferation response was induced. FACS also showed that the ratio of CD8+ T cells in the experimental group was higher than the controls, but the serum HBcAb in experimental group was similar to the control. CONCLUSION: HBcAg can be used as an immuno-carrier of vaccine, the fusion of HBcAg-T protein could induce stronger cellular immune responses and it might be a candidate for therapeutic vaccines specific for HCV. PMID:17203519

  12. Protective vaccination with hepatitis C virus NS3 but not core antigen in a novel mouse challenge model.

    Science.gov (United States)

    El-Gogo, Susanne; Staib, Caroline; Lasarte, Juan José; Sutter, Gerd; Adler, Heiko

    2008-02-01

    Efficient vaccines against hepatitis C virus (HCV) infection are urgently needed. Vaccine development has been hampered by the lack of suitable small animal models to reliably test the protective capacity of immmunization. We used recombinant murine gammaherpesvirus 68 (MHV-68) as a novel challenge virus in mice and tested the efficacy of heterologous candidate human vaccines based on modified vaccinia virus Ankara or adenovirus, both delivering HCV non-structural NS3 or core proteins. Recombinant MHV-68 expressing NS3 (MHV-68-NS3) or core (MHV-68-core) were constructed and characterized in vitro and in vivo. Mice immunized with NS3-specific vector vaccines and challenged with MHV-68-NS3 were infected but showed significantly reduced viral loads in the acute and latent phase of infection. NS3-specific CD8+ T cells were amplified in immunized mice after challenge with MHV-68-NS3. By contrast, we did neither detect a reduction of viral load nor an induction of core-specific CD8+ T cells after core-specific immunization. Our data suggest that the challenge system using recombinant MHV-68 is a highly suitable model to test the immunogenicity and protective capacity of HCV candidate vaccine antigens. Using this system, we demonstrated the usefulness of NS3-specific immunization. By contrast, our analysis rather discarded core as a vaccine antigen.

  13. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae).

    Science.gov (United States)

    Bartley, Kathryn; Wright, Harry W; Huntley, John F; Manson, Erin D T; Inglis, Neil F; McLean, Kevin; Nath, Mintu; Bartley, Yvonne; Nisbet, Alasdair J

    2015-11-01

    An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (Pmites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7-2.8times higher than in mites fed blood from control hens immunised with adjuvant only, P<0.001). The potential for using these antigens in a recombinant vaccine is discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Heat shock protein HSP60 and the perspective for future using as vaccine antigens

    Directory of Open Access Journals (Sweden)

    Joanna Bajzert

    2015-10-01

    Full Text Available Heat Shock Proteins (HSPs are widely spread in nature, highly conserved proteins, found in all prokaryotic and eukaryotic cells. HSPs have been classified in 10 families, one of them is the HSP60 family. HSP60 function in the cytoplasm as ATP-dependent molecular chaperones by assisting the folding of newly synthesised polypeptides and the assembly of multiprotein complexes. There is a large amount of evidence which demonstrate that HSP60 is expressed on the cell surface. Especially in bacteria the expression on the surface occurs constitutively and increases remarkably during host infection. HSP60 also play an important role in biofilm formation. In the extracellular environment, HSP60 alone or with self or microbial proteins can acts not only as a link between immune cells, but also as a coordinator of the immune system activity. This protein could influence the immune system in a different way because they act as an antigen, a carrier of other functional molecules or as a ligand for receptor. They are able to stimulate both cells of the acquired (naïve, effector, regulatory T lymphocyte, B lymphocyte and the innate (macrophages, monocytes, dendritic cells immune system. HSPs have been reported to be potent activators of the immune system and they are one of the immunodominant bacterial antigens they could be a good candidate for a subunit vaccine or as an adjuvant.

  15. Plant expressed coccidial antigens as potential vaccine candidates in protecting chicken against coccidiosis.

    Science.gov (United States)

    Sathish, Kota; Sriraman, Rajan; Subramanian, B Mohana; Rao, N Hanumantha; Kasa, Balaji; Donikeni, Jagan; Narasu, M Lakshmi; Srinivasan, V A

    2012-06-22

    Coccidiosis is a disease caused by intracellular parasites belonging to the genus Eimeria. In the present study, we transiently expressed two coccidial antigens EtMIC1 and EtMIC2 as poly histidine-tagged fusion proteins in tobacco. We have evaluated the protective efficacy of plant expressed EtMIC1 as monovalent and as well as bi-valent formulation where EtMIC1 and EtMIC2 were used in combination. The protective efficacy of these formulations was evaluated using homologous challenge in chickens. We observed better serum antibody response, weight gain and reduced oocyst shedding in birds immunized with EtMIC1 and EtMIC2 as bivalent formulation compared to monovalent formulation. However, IFN-γ response was not significant in birds immunized with EtMIC1 compared to the birds immunized with EtMIC2. Our results indicate the potential use of these antigens as vaccine candidates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model.

    Science.gov (United States)

    Awasthi, Sita; Hook, Lauren M; Shaw, Carolyn E; Friedman, Harvey M

    2017-12-02

    An estimated 417 million people worldwide ages 15 to 49 are infected with herpes simplex virus type 2 (HSV-2), the most common cause of genital ulcer disease. Some individuals experience frequent recurrences of genital lesions, while others only have subclinical infection, yet all risk transmitting infection to their intimate partners. A vaccine was developed that prevents shingles, which is a recurrent infection caused by varicella-zoster virus (VZV), a closely related member of the Herpesviridae family. The success of the VZV vaccine has stimulated renewed interest in a therapeutic vaccine for genital herpes. We have been evaluating a trivalent subunit antigen vaccine for prevention of genital herpes. Here, we assess the trivalent vaccine as immunotherapy in guinea pigs that were previously infected intravaginally with HSV-2. The trivalent vaccine contains HSV-2 glycoproteins C, D, and E (gC2, gD2, gE2) subunit antigens administered with CpG and alum as adjuvants. We previously demonstrated that antibodies to gD2 neutralize the virus while antibodies to gC2 and gE2 block their immune evasion activities, including evading complement attack and inhibiting activities mediated by the IgG Fc domain, respectively. Here, we demonstrate that the trivalent vaccine significantly boosts ELISA titers and neutralizing antibody titers. The trivalent vaccine reduces the frequency of recurrent genital lesions and vaginal shedding of HSV-2 DNA by approximately 50% and almost totally eliminates vaginal shedding of replication-competent virus, suggesting that the trivalent vaccine is a worthy candidate for immunotherapy of genital herpes.

  17. Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine.

    Science.gov (United States)

    Longley, Rhea J; Halbroth, Benedict R; Salman, Ahmed M; Ewer, Katie J; Hodgson, Susanne H; Janse, Chris J; Khan, Shahid M; Hill, Adrian V S; Spencer, Alexandra J

    2017-03-01

    Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei - P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei ; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced. Copyright © 2017 Longley et al.

  18. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation.

    Science.gov (United States)

    Sabadin, Gabriela Alves; Parizi, Luís Fernando; Kiio, Irene; Xavier, Marina Amaral; da Silva Matos, Renata; Camargo-Mathias, Maria Izabel; Githaka, Naftaly Wang'ombe; Nene, Vish; da Silva Vaz, Itabajara

    2017-12-04

    The ticks Rhipicephalus appendiculatus and Rhipicephalus sanguineus are the main vectors of Theileria parva and Babesia spp. in cattle and dogs, respectively. Due to their impact in veterinary care and industry, improved methods against R. appendiculatus and R. sanguineus parasitism are under development, including vaccines. We have previously demonstrated the induction of a cross-protective humoral response against Rhipicephalus microplus following vaccination with recombinant glutathione S-transferase from Haemaphysalis longicornis tick (rGST-Hl), suggesting that this protein could control tick infestations. In the present work, we investigated the effect of rGST-Hl vaccine against R. appendiculatus and R. sanguineus infestation in rabbits. In silico analysis revealed that GST from H. longicornis, R. appendiculatus and R. sanguineus have >80% protein sequence similarity, and multiple conserved antigenic sites. After the second vaccine dose, rGST-Hl-immunized rabbits showed elevated antibody levels which persisted until the end of experiment (75 and 60 days for R. appendiculatus and R. sanguineus, respectively). Western blot assays demonstrated cross-reactivity between anti-rGST-Hl antibodies and native R. appendiculatus and R. sanguineus GST extracts from ticks at different life stages. Vaccination with rGST-Hl decreased the number, weight, and fertility of engorged R. appendiculatus adults, leading to an overall vaccine efficacy of 67%. Interestingly, histological analysis of organ morphology showed damage to salivary glands and ovaries of R. appendiculatus adult females fed on vaccinated animals. In contrast, rGST-Hl vaccination did not affect R. appendiculatus nymphs, and it was ineffective against R. sanguineus across the stages of nymph and adult. Taken together, our results show the potential application of rGST-Hl as an antigen in anti-tick vaccine development, however indicating a broad difference in efficacy among tick species. Copyright © 2017 Elsevier

  19. Superior Immunologic and Therapeutic Efficacy of a Xenogeneic Genetic Cancer Vaccine Targeting Carcinoembryonic Human Antigen

    Science.gov (United States)

    Roscilli, Giuseppe; Marra, Emanuele; Luberto, Laura; Mancini, Rita; La Monica, Nicola; Ciliberto, Gennaro

    2015-01-01

    Abstract We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting. PMID:25869226

  20. Regaining tolerance to a self-antigen by the modified vaccination technique.

    Science.gov (United States)

    Barabas, Arpad Zsigmond; Cole, Chad Douglas; Lafreniere, Rene; Weir, Donald Mackay

    2013-10-01

    Autoimmune diseases are initiated and maintained by complex immunopathological processes in environmental and genetic factor predisposed patients. In certain autoimmune diseases, the etiologies and pathogenesis of the conditions are quite well understood; yet in others, controversy surrounds as to why and how auto-injurious processes start. Clinical and laboratory examinations reasonably well define the state of progression/remission of an autoimmune disease and allow treatment according to observed findings. However, none of the presently employed treatment options are specific. In fact, they are all nonspecific in their actions and have undesirable side effects. Over the years, experiments carried out in animals have shed light on the complex immunopathological processes which contribute to disease development and progression. At least one experimental autoimmune kidney disease-which we shall describe-helps to understand how pathogenic autoimmune responses can be terminated specifically, without side effects. Since the new vaccination method-that we call modified vaccination technique-was successfully implemented in an experimental autoimmune disease model called slowly progressive Heymann nephritis for the termination of pathogenic immune responses by a target antigen-specific treatment modality, we shall highlight its use in providing insight to physicians and autoimmunologists for its future implementation in human autoimmune diseases.

  1. Paradoxical effects of IL-12 in leishmaniasis in the presence and absence of vaccinating antigen.

    Science.gov (United States)

    Noormohammadi, A H; Hochrein, H; Curtis, J M; Baldwin, T M; Handman, E

    2001-07-16

    Protective immunity against Leishmania major requires parasite-specific CD4+T helper cells, the development of which is promoted by interleukin 12 (IL-12). In this study we investigated the use of IL-12 DNA to enhance the protective immunity induced by prophylactic vaccination with the L. major Parasite Surface Antigen 2 (PSA-2) DNA. A plasmid was constructed in which the two murine IL-12 subunits p35 and p40 were secreted as a biologically active single chain cytokine. The immunomodulatory effects of this IL-12 DNA were examined by codelivery with PSA-2 DNA in susceptible BALB/c and resistant C3H/He mice and subsequent infection with L. major promastigotes. Surprisingly, administration of IL-12 DNA alone had a protective effect, while coadministration of IL-12 with PSA-2 DNA abrogated protection. This effect of IL-12 DNA was dose dependent and affected by the timing of administration in relation to PSA-2 DNA. The effect of IL-12 on protection was associated with a reduced number of INF-gamma-producing T cells early in infection. A further understanding of this paradoxical effect of IL-12 and possibly other cytokines on protective immunity may be important for their use as adjuvants for Leishmania DNA vaccines.

  2. The characteristics exosporium antigens from different vaccine strains of bacillus antracis

    International Nuclear Information System (INIS)

    Baranova, E.; Biketov, S.; Dunaytsev, I.; Mironova, R.; Dyatlov, I.

    2009-01-01

    To develop of both test-systems for rapid detection and identification of B. anthracis spores and a new subunit vaccine the antigens on the spore surface should be characterized. Exosporium consists of two layers-basal and peripheral and has been form by protein, amino- and neutral polysaccharides, lipids and ash. Number of anthrax exosporium proteins was described and identified: glycoprotein BclA, BclB, alanine racemase, inosine hydrolase, glycosyl hydrolase, superoxid dismutase, ExsF, ExsY, ExsK,CotB,CotY and SoaA. So far no glycosylated proteins other then highly immunogenic glycoproteins BclA, BclB were detected in the B. anthracis spore extract although several exosporium-specific glycoprotein have been described in other members of the B.cereus family- B. thuringiensis and B. cereus. Although EA1 protein originally described as main component of S-layer from vegetative cells he can regular observed in different exosporium preparations and additionally some anti- EA1 monoclonal antibodies able to recognize spore surface. We have revealed that EA1 isolated from spore of Russians strain STI-1contain carbohydrate which determine immunogenicity of this antigen. Because some time ago we have found that exosporium protein's pattern variable among B. anthracis strains we investigated exosporium from spore of different strains of B. anthracis including STI-1, Ames, Stern and others. We have comparative characterized antigens by using Western Blotting, Two-Dimensional electrophoresis and Mass Spec analysis. The results of analysis will be presented and discussed.(author)

  3. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    Science.gov (United States)

    Sedlik, Christine; Vigneron, James; Torrieri-Dramard, Lea; Pitoiset, Fabien; Denizeau, Jordan; Chesneau, Caroline; de la Rochere, Philippe; Lantz, Olivier; Thery, Clotilde; Bellier, Bertrand

    2014-01-01

    The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs) to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA) antigen to EVs: (a) by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin), which is exposed on the surface of secreted membrane vesicles; and (b) by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs). We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8+ T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4+ T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases. PMID:25206960

  4. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms

    Directory of Open Access Journals (Sweden)

    Christine Sedlik

    2014-08-01

    Full Text Available The induction of an active immune response to control or eliminate tumours is still an unfulfilled challenge. We focused on plasmid DNA vaccines using an innovative approach whereby the antigen is expressed in association with extracellular vesicles (EVs to facilitate antigen cross-presentation and improve induced immunity. Our two groups had independently shown previously that DNA vaccines encoding EV-associated antigens are more efficient at inducing cytotoxic T-cell responses than vaccines encoding the non-EV-associated antigen. Here, we compared our two approaches to associate the ovalbumin (OVA antigen to EVs: (a by fusion to the lipid-binding domain C1C2 of MFGE8(=lactadherin, which is exposed on the surface of secreted membrane vesicles; and (b by fusion to retroviral Gag capsid protein, which is incorporated inside membrane-enclosed virus-like particles. Plasmids encoding either form of modified OVA were used as DNA-based vaccines (i.e. injected into mice to allow in vivo expression of the antigen associated to EVs. We show that both DNA vaccines induced, with similar efficiency, OVA-specific CD8+ T cells and total IgG antibodies. By contrast, each vaccine preferentially stimulated different isotypes of immunoglobulins, and the OVA-C1C2-encoding vaccine favoured antigen-specific CD4+ T lymphocyte induction as compared to the Gag-OVA vaccine. Nevertheless, both OVA-C1C2 and Gag-OVA vaccines efficiently prevented in vivo outgrowth of OVA-expressing tumours and reduced tumour progression when administered to tumour-bearing mice, although with variable efficacies depending on the tumour models. DNA vaccines encoding EV-associated antigens are thus promising immunotherapy tools in cancer but also potentially other diseases.

  5. Bacillus subtilis as a tool for vaccine development: from antigen factories to delivery vectors

    Directory of Open Access Journals (Sweden)

    Luís C.S. Ferreira

    2005-03-01

    Full Text Available Bacillus subtilis and some of its close relatives have a long history of industrial and biotechnological applications. Search for antigen expression systems based on recombinant B. subtilis strains sounds attractive both by the extensive genetic knowledge and the lack of an outer membrane, which simplify the secretion and purification of heterologous proteins. More recently, genetically modified B. subtilis spores have been described as indestructible delivery vehicles for vaccine antigens. Nonetheless both production and delivery of antigens by B. subtilis strains face some inherent obstacles, as unstable gene expression and reduced immunogenicity that, otherwise, can be overcome by already available gene technology approaches. In the present review we present the status of B. subtilis-based vaccine research, either as protein factories or delivery vectors, and discuss some alternatives for a better use of genetically modified strains.Bacillus subtilis e alguns de seus parentes mais próximos possuem uma longa história de aplicações industriais e biotecnológicas. A busca de sistemas de expressão de antígenos baseados em linhagens recombinants de B. subtilis mostra-se atrativa em função do conhecimento genético disponível e ausência de uma membrana externa, o que simplifica a secreção e a purificação de proteínas heterólogas. Mais recentemente, esporos geneticamente modificados de B. subtilis foram descritos com veículos indestrutíveis para o transporte de antígenos vacinais. Todavia a produção e o transporte de antígenos por linhagens de B. subtilis encontra obstáculos, como a expressão gênica instável e imunogenicidade reduzida, que podem ser superados com o auxílio de tecnologias genéticas atualmente disponíveis. Apresentamos nesta revisão o estado atual da pesquisa em vacinas baseadas em B. subtilis, empregado tanto como fábrica de proteínas ou veículos, e discute algumas alternativas para o uso mais

  6. The influence of antigen targeting to sub-cellular compartments on the anti-allergic potential of a DNA vaccine.

    Science.gov (United States)

    Weinberger, Esther E; Isakovic, Almedina; Scheiblhofer, Sandra; Ramsauer, Christina; Reiter, Katrin; Hauser-Kronberger, Cornelia; Thalhamer, Josef; Weiss, Richard

    2013-12-09

    Gene vaccines offer attractive rationales for prophylactic as well as therapeutic treatments of type I allergies. DNA and mRNA vaccines have been shown to prevent from allergic sensitization and to counterbalance established allergic immune reactions. Recent advances in gene vaccine manipulation offer additional opportunities for modulation of T helper cell profiles by specific targeting of cellular compartments. DNA vaccines encoding the major birch pollen allergen Bet v 1.0101 were equipped with different leader sequences to shuttle the antigen to lysosomes (LIMP-II), to trigger cellular secretion (hTPA), or to induce proteasomal degradation via forced ubiquitination (ubi). Mice were pre-vaccinated with these constructs and the protective efficacy was tested by subcutaneous Th2-promoting challenges, followed by allergen inhalation. IgG antibody subclass distribution and allergen-specific IgE as well as cytokine profiles from re-stimulated splenocytes and from BALFs were assessed. The cellular composition of BALFs, and lung resistance and compliance were determined. Immunization with all targeting variants protected from allergic sensitization, i.e. IgE induction, airway hyperresponsiveness, lung inflammation, and systemic and local Th2 cytokine expression. Surprisingly, protection did not clearly correlate with the induction of a systemic Th1 cytokine profile, but rather with proliferating CD4+ CD25+ FoxP3+ T regulatory cells in splenocyte cultures. Targeting the allergen to proteasomal or lysosomal degradation severely down-regulated antibody induction after vaccination, while T cell responses remained unaffected. Although secretion of antigen promoted the highest numbers of Th1 cells, this vaccine type was the least efficient in suppressing the establishment of an allergic immune response. This comparative analysis highlights the modulatory effect of antigen targeting on the resulting immune response, with a special emphasis on prophylactic anti-allergy DNA

  7. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    Science.gov (United States)

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Recombinant Secreted Antigens from Mycoplasma hyopneumoniae Delivered as a Cocktail Vaccine Enhance the Immune Response of Mice

    Science.gov (United States)

    Galli, Vanessa; Simionatto, Simone; Marchioro, Silvana Beutinger; Klabunde, Gustavo Henrique Ferrero; Conceição, Fabricio Rochedo

    2013-01-01

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), which is a respiratory disease responsible for huge economic losses in the pig industry worldwide. The commercially available vaccines provide only partial protection and are expensive. Thus, the development of alternatives for the prophylaxis of EP is critical for improving pig health. The use of multiple antigens in the same immunization may represent a promising alternative. In the present study, seven secreted proteins of M. hyopneumoniae were cloned, expressed in Escherichia coli, and evaluated for antigenicity using serum from naturally and experimentally infected pigs. In addition, the immunogenicity of the seven recombinant proteins delivered individually or in protein cocktail vaccines was evaluated in mice. In Western blot assays and enzyme-linked immunosorbent assays, most of the recombinant proteins evaluated were recognized by convalescent-phase serum from the animals, indicating that they are expressed during the infectious process. The recombinant proteins were also immunogenic, and most induced a mixed IgG1/IgG2a humoral immune response. The use of these proteins in a cocktail vaccine formulation enhanced the immune response compared to their use as antigens delivered individually, providing evidence of the efficacy of the multiple-antigen administration strategy for the induction of an immune response against M. hyopneumoniae. PMID:23803903

  9. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  10. Longitudinal multiparameter single-cell analysis of macaques immunized with pneumococcal protein-conjugated or unconjugated polysaccharide vaccines reveals distinct antigen specific memory B cell repertoires.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    Full Text Available The efficacy of protein-conjugated pneumococcal polysaccharide vaccines has been well characterized for children. The level of protection conferred by unconjugated polysaccharide vaccines remains less clear, particularly for elderly individuals who have had prior antigenic experience through immunization with unconjugated polysaccharide vaccines or natural exposure to Streptococcus pneumoniae.We compared the magnitude, diversity and genetic biases of antigen-specific memory B cells in two groups of adult cynomolgus macaques that were immunized with a 7-valent conjugated vaccine and boosted after five years with either a 13-valent pneumococcal polysaccharide conjugate vaccine (13vPnC or a 23-valent unconjugated pneumococcal polysaccharide vaccine (23vPS using microengraving (a single-cell analysis method and single-cell RT-PCR.Seven days after boosting, the mean frequency of antigen-specific memory B cells was significantly increased in macaques vaccinated with 13vPnC compared to those receiving 23vPS. The 13vPnC-vaccinated macaques also exhibited a more even distribution of antibody specificities to four polysaccharides in the vaccine (PS4, 6B, 14, 23F that were examined. However, single-cell analysis of the antibody variable region sequences from antigen-specific B cells elicited by unconjugated and conjugated vaccines indicated that both the germline gene segments forming the heavy chains and the average lengths of the Complementary Determining Region 3 (CDR3 were similar.Our results confirm that distinctive differences can manifest between antigen-specific memory B cell repertoires in nonhuman primates immunized with conjugated and unconjugated pneumococcal polysaccharide vaccines. The study also supports the notion that the conjugated vaccines have a favorable profile in terms of both the frequency and breadth of the anamnestic response among antigen-specific memory B cells.

  11. Longitudinal multiparameter single-cell analysis of macaques immunized with pneumococcal protein-conjugated or unconjugated polysaccharide vaccines reveals distinct antigen specific memory B cell repertoires.

    Science.gov (United States)

    Jia, Bin; McNeil, Lisa K; Dupont, Christopher D; Tsioris, Konstantinos; Barry, Rachel M; Scully, Ingrid L; Ogunniyi, Adebola O; Gonzalez, Christopher; Pride, Michael W; Gierahn, Todd M; Liberator, Paul A; Jansen, Kathrin U; Love, J Christopher

    2017-01-01

    The efficacy of protein-conjugated pneumococcal polysaccharide vaccines has been well characterized for children. The level of protection conferred by unconjugated polysaccharide vaccines remains less clear, particularly for elderly individuals who have had prior antigenic experience through immunization with unconjugated polysaccharide vaccines or natural exposure to Streptococcus pneumoniae. We compared the magnitude, diversity and genetic biases of antigen-specific memory B cells in two groups of adult cynomolgus macaques that were immunized with a 7-valent conjugated vaccine and boosted after five years with either a 13-valent pneumococcal polysaccharide conjugate vaccine (13vPnC) or a 23-valent unconjugated pneumococcal polysaccharide vaccine (23vPS) using microengraving (a single-cell analysis method) and single-cell RT-PCR. Seven days after boosting, the mean frequency of antigen-specific memory B cells was significantly increased in macaques vaccinated with 13vPnC compared to those receiving 23vPS. The 13vPnC-vaccinated macaques also exhibited a more even distribution of antibody specificities to four polysaccharides in the vaccine (PS4, 6B, 14, 23F) that were examined. However, single-cell analysis of the antibody variable region sequences from antigen-specific B cells elicited by unconjugated and conjugated vaccines indicated that both the germline gene segments forming the heavy chains and the average lengths of the Complementary Determining Region 3 (CDR3) were similar. Our results confirm that distinctive differences can manifest between antigen-specific memory B cell repertoires in nonhuman primates immunized with conjugated and unconjugated pneumococcal polysaccharide vaccines. The study also supports the notion that the conjugated vaccines have a favorable profile in terms of both the frequency and breadth of the anamnestic response among antigen-specific memory B cells.

  12. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques

    Science.gov (United States)

    2013-01-01

    Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge. PMID:24041113

  13. Protective efficacy afforded by live Pasteurella multocida vaccines in chickens is independent of lipopolysaccharide outer core structure.

    Science.gov (United States)

    Harper, Marina; John, Marietta; Edmunds, Mark; Wright, Amy; Ford, Mark; Turni, Conny; Blackall, P J; Cox, Andrew; Adler, Ben; Boyce, John D

    2016-03-29

    Pasteurella multocida is a major animal pathogen that causes a range of diseases including fowl cholera. P. multocida infections result in considerable losses to layer and breeder flocks in poultry industries worldwide. Both killed whole-cell and live-attenuated vaccines are available; these vaccines vary in their protective efficacy, particularly against heterologous strains. Moreover, until recently there was no knowledge of P. multocida LPS genetics and structure to determine precisely how LPS structure affects the protective capacity of these vaccines. In this study we show that defined lipopolysaccharide (LPS) mutants presented as killed whole-cell vaccines elicited solid protective immunity only against P. multocida challenge strains expressing highly similar or identical LPS structures. This finding indicates that vaccination of commercial flocks with P. multocida killed cell formulations will not protect against strains producing an LPS structure different to that produced by strains included in the vaccine formulation. Conversely, protective immunity conferred by vaccination with live P. multocida strains was found to be largely independent of LPS structure. Birds vaccinated with a range of live mutants belonging to the L1 and L3 LPS genotypes, each expressing a specific truncated LPS structure, were protected against challenge with the parent strain. Moreover, birds vaccinated with any of the five LPS mutants belonging to the L1 LPS genotype were also protected against challenge with an unrelated strain and two of the five groups vaccinated with live LPS mutants belonging to the L3 genotype were protected against challenge with an unrelated strain. In summary, vaccination with live P. multocida aroA mutants producing full-length L1 or L3 LPS or vaccination with live strains producing shortened L1 LPS elicited strong protective immunity against both homologous and heterologous challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    Energy Technology Data Exchange (ETDEWEB)

    Hebishima, Takehisa [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Takeshima, Shin-nosuke [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501 (Japan); Ito, Yoshihiro [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.

  15. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    International Nuclear Information System (INIS)

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-01-01

    Highlights: ► To develop effective vaccine, we examined the effects of CO 3 Ap as an antigen carrier. ► OVA contained in CO 3 Ap was taken up by BMDCs more effectively than free OVA. ► OVA-immunized splenocytes was activated by OVA contained in CO 3 Ap effectively. ► OVA contained in CO 3 Ap induced strong OVA-specific immune responses to C57BL/6 mice. ► CO 3 Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO 3 Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO 3 Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO 3 Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO 3 Ap induced the proliferation and antigen-specific production of IFN-γ by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO 3 Ap and OVA-containing alumina salt (Alum), suggesting that CO 3 Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO 3 Ap.

  16. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  17. Anti-idiotypic antibody with potential use as an Eimeria tenella sporozoite antigen surrogate for vaccination of chickens against coccidiosis.

    Science.gov (United States)

    Bhogal, B S; Nollstadt, K H; Karkhanis, Y D; Schmatz, D M; Jacobson, E B

    1988-01-01

    Anti-idiotypic antibodies were raised in rabbits against four monoclonal antibodies with specificity for the surface antigenic determinants of Eimeria tenella sporozoites, the infective stage of the coccidial parasite. Two of the monoclonal antibodies (1073 and 15-1) transferred passive protection in chickens against E. tenella infection. The polyclonal anti-idiotype antibody preparations against protective monoclonal antibodies contained specificities for the paratope-associated idiotypes of these monoclonal antibodies, as assessed by the competitive inhibition of binding of the homologous idiotype-anti-idiotype by the sporozoite antigen. Competitive inhibition of binding of homologous idiotype-anti-idiotype by the parasite antigen was not observed when the anti-idiotype antibody preparations against monoclonal antibodies 1546 and 1096 were tested. The anti-idiotype 1073 and 15-1 antibodies functioned as surrogate antigens in vivo when used for vaccination of young chickens, as evidenced by the induction of partial protective immunity against subsequent challenge infection with virulent parasites and induction of antisporozoite antibodies. These data clearly support the view that anti-idiotypic antibodies raised against the paratope-associated idiotypes can mimic pathogen antigens and therefore can provide a possible alternative approach for the vaccination of chickens against coccidiosis. PMID:3258583

  18. Subunit Vaccines Consisting of Antigens from Dormant and Replicating Bacteria Show Promising Therapeutic Effect against Mycobacterium Bovis BCG Latent Infection.

    Science.gov (United States)

    Li, F; Kang, H; Li, J; Zhang, D; Zhang, Y; Dannenberg, A M; Liu, X; Niu, H; Ma, L; Tang, R; Han, X; Gan, C; Ma, X; Tan, J; Zhu, B

    2017-06-01

    To screen effective antigens as therapeutic subunit vaccines against Mycobacterium latent infection, we did bioinformatics analysis and literature review to identify effective antigens and evaluated the immunogenicity of five antigens highly expressed in dormant bacteria, which included Rv2031c (HspX), Rv2626c (Hrp1), Rv2007c (FdxA), Rv1738 and Rv3130c. Then, several fusion proteins such as Rv2007c-Rv2626c (F6), Rv2031c-Rv1738-Rv1733c (H83), ESAT6-Rv1738-Rv2626c (LT40), ESAT6-Ag85B-MPT64 -Mtb8.4 (EAMM), and EAMM-Rv2626c (LT70) were constructed and their therapeutic effects were evaluated in pulmonary Mycobacterium bovis Bacilli Calmette-Guérin (BCG) - latently infected rabbit or mouse models. The results showed that EAMM and F6 plus H83 had therapeutic effect against BCG latent infection in the rabbit model, respectively, and that the combination of EAMM with F6 plus H83 significantly reduced the bacterial load. In addition, the fusion proteins LT40 and LT70 consisting of multistage antigens showed promising therapeutic effects in the mouse model. We conclude that subunit vaccines consisting of both latency and replicating-associated antigens show promising therapeutic effects in BCG latent infection animal models. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  19. Acanthocheilonema viteae: Vaccination of jirds with irradiation-attenuated stage-3 larvae and with exported larval antigens

    International Nuclear Information System (INIS)

    Lucius, R.; Textor, G.; Kern, A.; Kirsten, C.

    1991-01-01

    Jirds (Meriones unguiculatus) were immunized with irradiated (35 krad) stage-3 larvae (L3) of Acanthocheilonema viteae. The induced resistance against homologous challenge infection and the antibody response of the animals were studied. Immunization with 3, 2, or 1 dose of 50 irradiated L3 induced approximately 90% resistance. Immunization with a single dose of only 5 irradiated L3 resulted in 60.8% protection while immunization with a single dose of 25 L3 induced 94.1% protection. The protection induced with 3 doses of 50 irradiated L3 did not decrease significantly during a period of 6 months. Sera of a proportion, but not all resistant jirds, contained antibodies against the surface of vector derived L3 as defined by IFAT. No surface antigens of microfilariae or adult worms were recognized by the sera. Vaccinated animals had antibody responses against antigens in the inner organs of L3 and in the cuticle and reproductive organs of adult worms as shown by IFAT. Immunoblotting with SDS-PAGE-separated L3 antigens and L3-CSN revealed that all sera contained antibodies against two exported antigens of 205 and 68 kDa, and against a nonexported antigen of 18 kDa. The 205-kDa antigen easily degraded into fragments of 165, 140, 125, and 105 kDa which were recognized by resistant jird sera. Various antigens of adult worms, but relatively few antigens of microfilariae, were also recognized. To test the relevance of exported antigens of L3 to resistance, jirds were immunized with L3-CSN together with a mild adjuvant. This immunization induced 67.7% resistance against challenge infection and sera of the immunized animals recognized the 205- and 68-kDa antigens of L3

  20. Overexpression of Protective Antigen as a Novel Approach To Enhance Vaccine Efficacy of Brucella abortus Strain RB51

    Science.gov (United States)

    Vemulapalli, Ramesh; He, Yongqun; Cravero, Silvio; Sriranganathan, Nammalwar; Boyle, Stephen M.; Schurig, Gerhardt G.

    2000-01-01

    Brucella abortus strain RB51 is an attenuated rough strain that is currently being used as the official live vaccine for bovine brucellosis in the United States and several other countries. We reasoned that overexpression of a protective antigen(s) of B. abortus in strain RB51 should enhance its vaccine efficacy. To test this hypothesis, we overexpressed Cu/Zn superoxide dismutase (SOD) protein of B. abortus in strain RB51. This was accomplished by transforming strain RB51 with a broad-host-range plasmid, pBBR1MCS, containing the sodC gene along with its promoter. Strain RB51 overexpressing SOD (RB51SOD) was tested in BALB/c mice for its ability to protect against challenge infection with virulent strain 2308. Mice vaccinated with RB51SOD, but not RB51, developed antibodies and cell-mediated immune responses to Cu/Zn SOD. Strain RB51SOD vaccinated mice developed significantly (P RB51 alone. The presence of the plasmid alone in strain RB51 did not alter its vaccine efficacy. Also, overexpression of SOD did not alter the attenuation characteristic of strain RB51. PMID:10816475

  1. Poloxamer 407-chitosan grafted thermoresponsive hydrogels achieve synchronous and sustained release of antigen and adjuvant from single-shot vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Gibson, Blake; Gamble, Allan B; McDowell, Arlene; Hook, Sarah

    2018-03-02

    Sustained release vaccine delivery systems may enhance the immunogenicity of subunit vaccines and reduce the need for multiple vaccinations. The aim of this study was to develop a thermoresponsive hydrogel using poloxamer 407-chitosan (CP) grafted copolymer as a delivery system for single-shot sustained release vaccines. The CP copolymer was synthesized using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. The CP copolymer was a free flowing solution at ambient temperature and transformed rapidly into a gel at body temperature. The hydrogels were loaded with vaccine antigen and adjuvants or the vaccine components were encapsulated in poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP) in order to ensure synchronous release. The CP hydrogels were stable for up to 18 days in vitro. Release of both nanoparticles and the individual components was complete, with release of the individual components being modulated by incorporation into nanoparticles. In vivo, a single dose of CP hydrogel vaccine induced strong, long lasting, cellular and humoral responses that could protect against the development of tumors in a murine melanoma model. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Hepatitis B Vaccination Coverage and Prevalence of Hepatitis B Surface Antigen Among Children in French Polynesia, 2014.

    Science.gov (United States)

    Patel, Minal K; Le Calvez, Evelyne; Wannemuehler, Kathleen; Ségalin, Jean-Marc

    2016-06-01

    French Polynesia is considered to be moderately endemic for chronic hepatitis B virus infection, with an estimated 3% of the population having hepatitis B surface antigen (HBsAg). From 1990 to 1992, a 3-dose hepatitis B vaccination series was introduced into the routine infant immunization schedule in French Polynesia, including a birth dose (BD). In 2014, a nationally representative 2-stage cluster survey was undertaken to evaluate the impact of the vaccination program on HBsAg prevalence among school children (∼6 years of age) in Cours Préparatoire (CP). Documented vaccination data were reviewed for all eligible children; children with consent were tested for HBsAg with a rapid point-of-care test. In total, 1,660 students were identified; 1,567 (94%) had vaccination data for review and 1,196 (72%) participated in the serosurvey. Three-dose vaccination coverage was 98%, while timely BD coverage, defined as a dose administered within 24 hours of life, was 89%. Receipt of the second and third doses was often delayed, with 75% and 55% receiving a second and third dose within 1 month of the recommended age, respectively. No children tested positive for HBsAg. French Polynesia's vaccination program has achieved high coverage and an HBsAg seroprevalence of 0% (0-0.5%) among CP school children, but timeliness of vaccination could be improved. © The American Society of Tropical Medicine and Hygiene.

  3. Dengue encephalitis-associated immunopathology in the mouse model: Implications for vaccine developers and antigens inducer of cellular immune response.

    Science.gov (United States)

    Marcos, Ernesto; Lazo, Laura; Gil, Lázaro; Izquierdo, Alienys; Suzarte, Edith; Valdés, Iris; Blanco, Aracelys; Ancizar, Julio; Alba, José Suárez; Pérez, Yusleydis de la C; Cobas, Karen; Romero, Yaremis; Guillén, Gerardo; Guzmán, María G; Hermida, Lisset

    2016-08-01

    Despite the many efforts made by the scientific community in the development of vaccine candidates against dengue virus (DENV), no vaccine has been licensed up to date. Although the immunopathogenesis associated to the disease is a key factor to take into account by vaccine developers, the lack of animal models that reproduce the clinical signs of the disease has hampered the vaccine progress. Non-human primates support viral replication, but they are very expensive and do not show signs of disease. Immunocompromised mice develop viremia and some signs of the disease; however, they are not valuable for vaccine testing. Nowadays, immunocompetent mice are the most used model to evaluate the immunogenicity of vaccine candidates. These animals are resistant to DENV infection; therefore, the intracranial inoculation with neuroadapted virus, which provokes viral encephalitis, represents an alternative to evaluate the protective capacity of vaccine candidates. Previous results have demonstrated the crucial role of cellular immune response in the protection induced by the virus and vaccine candidates in this mouse encephalitis model. However, in the present work we are proposing that the magnitude of the cell-mediated immunity and the inflammatory response generated by the vaccine can modulate the survival rate after viral challenge. We observed that the intracranial challenge of naïve mice with DENV-2 induces the recruitment of immune cells that contribute to the reduction of viral load, but does not increase the survival rate. On the contrary, animals treated with cyclophosphamide, an immunosuppressive drug that affects proliferating lymphocytes, had a higher viral load but a better survival rate than untreated animals. These results suggest that the immune system is playing an immunopathogenic role in this model and the survival rate may not be a suitable endpoint in the evaluation of vaccine candidates based on antigens that induce a strong cellular immune response

  4. Comparison of protection from homologous cell-free vs cell-associated SIV challenge afforded by inactivated whole SIV vaccines.

    NARCIS (Netherlands)

    J.L. Heeney (Jonathan); P. de Vries (Petra); R. Dubbes (Rob); W. Koornstra (Willem); H. Niphuis; P. ten Haaft (Peter); J. Boes (Jolande); M.E.M. Dings (Marlinda); B. Morein (Bror); A.D.M.E. Osterhaus (Albert)

    1992-01-01

    textabstractThis study attempted to determine if SIV vaccines could protect against challenge with peripheral blood mononuclear cells (PBMCs) from an SIV infected rhesus monkey. Mature Macaca mulatta were vaccinated four times with formalin inactivated SIVmac32H administered in MDP adjuvant (n = 8)

  5. Immunogenicity of three recombinant hepatitis B vaccines administered to students in three doses containing half the antigen amount routinely used for adult vaccination

    Directory of Open Access Journals (Sweden)

    Baldy José Luís da Silveira

    2004-01-01

    Full Text Available We evaluated the immunogenicity of three recombinant hepatitis B vaccines, one Brazilian (Butang, Instituto Butantan and two Korean vaccines (Euvax-B, LG Chemical Ltd. and Hepavax-Gene, Greencross Vaccine Corp., administered intramuscularly to students aged 17 to 19 years in three 10-µg doses (corresponding to half the amount of antigen routinely used for adult vaccination at intervals of one month between the first and second dose, and of four months between the second and third dose. A total of 316 students non-reactive for any serological marker of hepatitis B virus infection were vaccinated: 77 (24.4% with the Butang vaccine, 71 (22.5% with Euvax-B, 85 (26.9% with Hepavax-Gene and, for comparison, 83 (26.2% with Engerix-B (GlaxoSmithKline, whose efficacy in young adults at the dose used here has been confirmed in previous studies. Similar seroconversion rates (anti-HBs > 10 mIU/mL about one month after application of the third dose were obtained for the Butang, Euvax-B, Hepavax-Gene and Engerix-B vaccines (96.2%, 98.6%, 96.5% and 97.6%, respectively. The frequency of good responders (anti-HBs > 100 mIU/mL was also similar among students receiving the four vaccines (85.8%, 91.6%, 89.4% and 89.2%, respectively. The geometric mean titers (GMT of anti-HBs about one month after the third dose obtained with these vaccines were 727.78 ± 6.46 mIU/mL, 2009.09 ± 7.16 mIU/mL, 1729.82 ± 8.85 mIU/mL and 2070.14 ± 11.69 mIU/mL, respectively. The GMT of anti-HBs induced by the Euvax-B and Engerix-B vaccines were higher than those obtained with the Butang vaccine (p < 0.05; this difference was not significant when comparing the other vaccines two-by-two. No spontaneous adverse effects attributable to the application of any dose of the four vaccines were reported.

  6. A Francisella tularensis Live Vaccine Strain That Improves Stimulation of Antigen-Presenting Cells Does Not Enhance Vaccine Efficacy

    OpenAIRE

    Schmitt, Deanna M.; O'Dee, Dawn M.; Horzempa, Joseph; Carlson, Paul E.; Russo, Brian C.; Bales, Jacqueline M.; Brown, Matthew J.; Nau, Gerard J.

    2012-01-01

    Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited s...

  7. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response.

    Science.gov (United States)

    Handman, E; Symons, F M; Baldwin, T M; Curtis, J M; Scheerlinck, J P

    1995-11-01

    Leishmania major promastigote surface antigen-2 complex (PSA-2) comprises a family of three similar but distinct polypeptides. The three PSA-2 polypeptides were purified from cultured promastigotes by a combination of detergent phase separation and monoclonal antibody affinity chromatography. Intraperitoneal vaccination of C3H/He mice with PSA-2 with Corynebacterium parvum as an adjuvant resulted in complete protection from lesion development after challenge infection with virulent L. major. Significant protection was also obtained in the genetically susceptible BALB/cH-2k and BALB/c mice. One of the PSA-2 genes was cloned and expressed in both Escherichia coli and Leishmania mexicana promastigotes. Vaccination with the recombinant PSA-2 purified from E. coli did not confer protection, in contrast to the L. mexicana-derived recombinant PSA-2, which provided excellent protection. CD4+ T cells isolated from the spleens of vaccinated mice produced large amounts of gamma interferon but no detectable interleukin 4 upon stimulation with PSA-2 in vitro. Limiting dilution analysis showed a marked increase in the precursor frequency of PSA-2-specific gamma interferon-secreting CD4+ T cells. No substantial change in precursor frequency was observed for interleukin 4-secreting T cells in the vaccinated mice. A CD4+ PSA-2 specific T-cell line generated from splenocytes of a vaccinated mouse produces a cytokine pattern consistent with a TH1 phenotype. Intravenous injection of this line into naive mice reduced significantly the parasite burden upon challenge infection. Taken together, the data suggest that vaccination with PSA-2 induces a TH1 type of immune response which protects mice from L. major infection. Moreover, a single recombinant PSA-2 polypeptide derived from a genomic clone can also vaccinate, provided that the structural form of the antigen is near native.

  8. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response.

    OpenAIRE

    Handman, E; Symons, F M; Baldwin, T M; Curtis, J M; Scheerlinck, J P

    1995-01-01

    Leishmania major promastigote surface antigen-2 complex (PSA-2) comprises a family of three similar but distinct polypeptides. The three PSA-2 polypeptides were purified from cultured promastigotes by a combination of detergent phase separation and monoclonal antibody affinity chromatography. Intraperitoneal vaccination of C3H/He mice with PSA-2 with Corynebacterium parvum as an adjuvant resulted in complete protection from lesion development after challenge infection with virulent L. major. ...

  9. In Vitro Evaluation of a Soluble Leishmania Promastigote Surface Antigen as a Potential Vaccine Candidate against Human Leishmaniasis

    OpenAIRE

    Chamakh-Ayari, Rym; Bras-Gonçalves, Rachel; Bahi-Jaber, Narges; Petitdidier, Elodie; Markikou-Ouni, Wafa; Aoun, Karim; Moreno, Javier; Carrillo, Eugenia; Salotra, Poonam; Kaushal, Himanshu; Negi, Narender Singh; Arevalo, Jorge; Falconi-Agapito, Francesca; Privat, Angela; Cruz, Maria

    2014-01-01

    PSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L. braziliensis (CCLb)...

  10. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    Science.gov (United States)

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Antigen capsid-display on human adenovirus 35 via pIX fusion is a potent vaccine platform.

    Directory of Open Access Journals (Sweden)

    Nadine C Salisch

    Full Text Available Durable protection against complex pathogens is likely to require immunity that comprises both humoral and cellular responses. While heterologous prime-boost regimens based on recombinant, replication-incompetent Adenoviral vectors (AdV and adjuvanted protein have been able to induce high levels of concomitant humoral and cellular responses, complex manufacturing and handling in the field may limit their success. To combine the benefits of genetic and protein-based vaccination within one vaccine construct and to facilitate their use, we generated Human Adenovirus 35 (HAdV35 vectors genetically encoding a model antigen based on the Plasmodium falciparum (P. falciparum circumsporozoite (CS protein and displaying a truncated version of the same antigen (CSshort via protein IX on the capsid, with or without a flexible glycine-linker and/or a 45Å-spacer. The four tested pIX-antigen display variants were efficiently incorporated and presented on the HAdV35 capsid irrespective of whether a transgene was encoded or not. Transgene-expression and producibility of the display-/expression vectors were not impeded by the pIX-display. In mice, the pIX-modified vectors induced strong humoral antigen-specific immunity that increased with the inclusion of the linker-/spacer molecules, exceeded the responses induced by the genetic, transgene-expressing HAdV35 vector, and surpassed recombinant protein in potency. In addition, the pIX- display/expression vectors elicited high antigen-specific cellular immune responses that matched those of the genetic HAdV35 vector expressing CS. pIX-modified display-/expression HAdV vectors may therefore be a valuable technology for the development of vaccines against complex pathogens, especially in resource-limited settings.

  12. Safety and immunogenicity of multi-antigen AMA1-based vaccines formulated with CoVaccine HT™ and Montanide ISA 51 in rhesus macaques

    Directory of Open Access Journals (Sweden)

    Walraven Vanessa

    2011-07-01

    Full Text Available Abstract Background Increasing the breadth of the functional antibody response through immunization with Plasmodium falciparum apical membrane antigen 1 (PfAMA1 multi-allele vaccine formulations has been demonstrated in several rodent and rabbit studies. This study assesses the safety and immunogenicity of three PfAMA1 Diversity-Covering (DiCo vaccine candidates formulated as an equimolar mixture (DiCo mix in CoVaccine HT™ or Montanide ISA 51, as well as that of a PfAMA1-MSP119 fusion protein formulated in Montanide ISA 51. Methods Vaccine safety in rhesus macaques was monitored by animal behaviour observation and assessment of organ and systemic functions through clinical chemistry and haematology measurements. The immunogenicity of vaccine formulations was assessed by enzyme-linked immunosorbent assays and in vitro parasite growth inhibition assays with three culture-adapted P. falciparum strains. Results These data show that both adjuvants were well tolerated with only transient changes in a few of the chemical and haematological parameters measured. DiCo mix formulated in CoVaccine HT™ proved immunologically and functionally superior to the same candidate formulated in Montanide ISA 51. Immunological data from the fusion protein candidate was however difficult to interpret as four out of six immunized animals were non-responsive for unknown reasons. Conclusions The study highlights the safety and immunological benefits of DiCo mix as a potential human vaccine against blood stage malaria, especially when formulated in CoVaccine HT™, and adds to the accumulating data on the specificity broadening effects of DiCo mix.

  13. An H5N1 M2e-based multiple antigenic peptide vaccine confers heterosubtypic protection from lethal infection with pandemic 2009 H1N1 virus

    Directory of Open Access Journals (Sweden)

    Yu Hong

    2010-07-01

    Full Text Available Abstract Background A 2009 global influenza pandemic caused by a novel swine-origin H1N1 influenza A virus has posted an increasing threat of a potential pandemic by the highly pathogenic avian influenza (HPAI H5N1 virus, driving us to develop an influenza vaccine which confers cross-protection against both H5N1 and H1N1 viruses. Previously, we have shown that a tetra-branched multiple antigenic peptide (MAP vaccine based on the extracellular domain of M2 protein (M2e from H5N1 virus (H5N1-M2e-MAP induced strong immune responses and cross-protection against different clades of HPAI H5N1 viruses. In this report, we investigated whether such M2e-MAP presenting the H5N1-M2e consensus sequence can afford heterosubtypic protection from lethal challenge with the pandemic 2009 H1N1 virus. Results Our results demonstrated that H5N1-M2e-MAP plus Freund's or aluminum adjuvant induced strong cross-reactive IgG antibody responses against M2e of the pandemic H1N1 virus which contains one amino acid variation with M2e of H5N1 at position 13. These cross-reactive antibodies may maintain for 6 months and bounced back quickly to the previous high level after the 2nd boost administered 2 weeks before virus challenge. H5N1-M2e-MAP could afford heterosubtypic protection against lethal challenge with pandemic H1N1 virus, showing significant decrease of viral replications and obvious alleviation of histopathological damages in the challenged mouse lungs. 100% and 80% of the H5N1-M2e-MAP-vaccinated mice with Freund's and aluminum adjuvant, respectively, survived the lethal challenge with pandemic H1N1 virus. Conclusions Our results suggest that H5N1-M2e-MAP has a great potential to prevent the threat from re-emergence of pandemic H1N1 influenza and possible novel influenza pandemic due to the reassortment of HPAI H5N1 virus with the 2009 swine-origin H1N1 influenza virus.

  14. H3N2 Mismatch of 2014-15 Northern Hemisphere Influenza Vaccines and Head-to-head Comparison between Human and Ferret Antisera derived Antigenic Maps

    Science.gov (United States)

    Xie, Hang; Wan, Xiu-Feng; Ye, Zhiping; Plant, Ewan P.; Zhao, Yangqing; Xu, Yifei; Li, Xing; Finch, Courtney; Zhao, Nan; Kawano, Toshiaki; Zoueva, Olga; Chiang, Meng-Jung; Jing, Xianghong; Lin, Zhengshi; Zhang, Anding; Zhu, Yanhong

    2015-10-01

    The poor performance of 2014-15 Northern Hemisphere (NH) influenza vaccines was attributed to mismatched H3N2 component with circulating epidemic strains. Using human serum samples collected from 2009-10, 2010-11 and 2014-15 NH influenza vaccine trials, we assessed their cross-reactive hemagglutination inhibition (HAI) antibody responses against recent H3 epidemic isolates. All three populations (children, adults, and older adults) vaccinated with the 2014-15 NH egg- or cell-based vaccine, showed >50% reduction in HAI post-vaccination geometric mean titers against epidemic H3 isolates from those against egg-grown H3 vaccine strain A/Texas/50/2012 (TX/12e). The 2014-15 NH vaccines, regardless of production type, failed to further extend HAI cross-reactivity against H3 epidemic strains from previous seasonal vaccines. Head-to-head comparison between ferret and human antisera derived antigenic maps revealed different antigenic patterns among representative egg- and cell-grown H3 viruses characterized. Molecular modeling indicated that the mutations of epidemic H3 strains were mainly located in antibody-binding sites A and B as compared with TX/12e. To improve vaccine strain selection, human serologic testing on vaccination-induced cross-reactivity need be emphasized along with virus antigenic characterization by ferret model.

  15. Vaccine adjuvant MF59 promotes the intranodal differentiation of antigen-loaded and activated monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Rossella Cioncada

    Full Text Available MF59 is an oil-in-water emulsion adjuvant approved for human influenza vaccination in European Union. The mode of action of MF59 is not fully elucidated yet, but results from several years of investigation indicate that MF59 establishes an immunocompetent environment at injection site which promotes recruitment of immune cells, including antigen presenting cells (APCs, that are facilitated to engulf antigen and transport it to draining lymph node (dLN where the antigen is accumulated. In vitro studies showed that MF59 promotes the differentiation of monocytes to dendritic cells (Mo-DCs. Since after immunization with MF59, monocytes are rapidly recruited both at the injection site and in dLN and appear to have a morphological change toward a DC-like phenotype, we asked whether MF59 could play a role in inducing differentiation of Mo-DC in vivo. To address this question we immunized mice with the auto-fluorescent protein Phycoerythrin (PE as model antigen, in presence or absence of MF59. We measured the APC phenotype and their antigen uptake within dLNs, the antigen distribution within the dLN compartments and the humoral response to PE. In addition, using Ovalbumin as model antigen, we measured the capacity of dLN APCs to induce antigen-specific CD4 T cell proliferation. Here, we show, for the first time, that MF59 promotes differentiation of Mo-DCs within dLNs from intranodal recruited monocytes and we suggest that this differentiation could take place in the medullary compartment of the LN. In addition we show that the Mo-DC subset represents the major source of antigen-loaded and activated APCs within the dLN when immunizing with MF59. Interestingly, this finding correlates with the enhanced triggering of antigen-specific CD4 T cell response induced by LN APCs. This study therefore demonstrates that MF59 is able to promote an immunocompetent environment also directly within the dLN, offering a novel insight on the mechanism of action of

  16. The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine

    Directory of Open Access Journals (Sweden)

    Burger Marieta

    2011-02-01

    Full Text Available Abstract Background One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1 and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1, an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used.

  17. Vaccination with Toxoplasma lysate antigen and CpG oligodeoxynucleotides: comparison of immune responses in intranasal versus intramuscular administrations.

    Science.gov (United States)

    EL-Malky, Mohamed A; Al-Harthi, Saeed A; Mohamed, Raafat T; EL Bali, Mohamed A; Saudy, Niveen S

    2014-06-01

    Toxoplasma gondii (T. gondii) is one of the most successful intracellular protozoan parasites on earth and highly prevalent in most warm-blooded vertebrates. There are no drugs that target the chronic cyst stage of this infection; therefore, development of an effective vaccine would be an important advance in disease control. Oligodeoxynucleotides (ODN) which contain immunostimulatory CG motifs (CpG ODN) can promote T-helper 1 (Th1) responses, an adjuvant activity that is desirable for vaccination against intracellular pathogen. In this study, we compare the immune responses of Toxoplasma susceptible C57BL/6 mice following intranasal and intramuscular vaccination with Toxoplasma lysate antigen (TLA) with or without CpG ODN as adjuvant. Immunized and control non-immunized mice were challenged with 85 cyst of the moderately virulent Beverley strain of T. gondii. Intranasal vaccination gave significantly a higher protection compared to other groups as indicated by prolonged survival and significantly reduced brain cyst burden (P intramuscular vaccination enhanced humoral immunity towards a type Th1 pattern characterized by a significant increase of specific IgG and Ig2a. Our results suggest that intranasal administration of CpG/TLA would provide a stable, pronounced, and effective vaccine against toxoplasmosis through stimulation of Th1 cellular immunity and mucosal IgA.

  18. Brucella abortus vaccine strain RB51 produces low levels of M-like O-antigen.

    Science.gov (United States)

    Cloeckaert, Axel; Zygmunt, Michel S; Guilloteau, Laurence A

    2002-03-15

    Brucella abortus RB51 is a rough (R) stable vaccine strain used in cattle and is believed to be devoid of O-side chain. We analyzed by use of a panel of monoclonal antibodies (MAbs) directed against seven previously defined O-polysaccharide (O-PS) epitopes the O-chain expression in strain RB51. Two MAbs specific for the C/Y (A=M) and C (M>A) epitopes showed low bindings in ELISA to strain RB51. O-chain expression was further confirmed by Western blot after SDS-PAGE of strain RB51. In particular, the MAb of C (M>A) specificity, showing preferential binding to M-dominant smooth (S) Brucella strains, revealed in strain RB51 a typical smooth-lipopolysaccharide (S-LPS) pattern which resembled that of M-dominant S-LPS. Thus, the results clearly show that strain RB51 produces low levels of M-like O-antigen.

  19. Multivalent immunity targeting tumor-associated antigens by intra-lymph node DNA-prime, peptide-boost vaccination.

    Science.gov (United States)

    Smith, K A; Qiu, Z; Wong, R; Tam, V L; Tam, B L; Joea, D K; Quach, A; Liu, X; Pold, M; Malyankar, U M; Bot, A

    2011-01-01

    Active immunotherapy of cancer has yet to yield effective therapies in the clinic. To evaluate the translatability of DNA-based vaccines we analyzed the profile of T-cell immunity by plasmid vaccination in a murine model, using transcriptome microarray analysis and flow cytometry. DNA vaccination resulted in specific T cells expressing low levels of co-inhibitory molecules (most notably PD-1), strikingly different from the expression profile elicited by peptide immunization. In addition, the T-cell response primed through this dual-antigen-expressing plasmid (MART-1/Melan-A and tyrosinase) translated into a substantial proliferation capacity and functional conversion to antitumor effector cells after tyrosinase and MART-1/Melan-A peptide analog boost. Furthermore, peptide boost rescued the immune response against the subdominant tyrosinase epitope. This immunization approach could be adapted to elicit potent immunity against multiple tumor antigens, resulting in a broader immune response that was more effective in targeting human tumor cells. Finally, this study sheds light on a novel mechanism of immune homeostasis through synchronous regulation of co-inhibitory molecules on T cells, highly relevant to heterologous prime boost approaches involving DNA vaccines as priming agents.

  20. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  1. Vaccination Against Hydatidosis: Molecular Cloning and Optimal Expression of the EG95NC-Recombinant Antigen in Escherichia coli.

    Science.gov (United States)

    Jazouli, M; Lightowlers, M; Gauci, C G; Tadlaoui, K; Belmlih, A; Ennaji, M M; Elharrak, M

    2017-12-01

    Cystic echinococcosis (CE) is a widely distributed zoonosis that is highly endemic in the Mediterranean basin. The disease represents a serious public health threat and causes economic losses. The parasite life-cycle involves dogs and ruminants as definitive and intermediate hosts; humans are accidently infected, causing serious clinical issues. Vaccination of ruminants and dog treatments represent the most efficient measures to prevent parasite transmission. The recombinant protein vaccine, EG95, has been used successfully in sheep vaccine trials against CE in several countries. In this study, we expressed the modified antigen, EG95NC-GST, in Escherichia coli for use as a vaccine against Echinococcus granulosus in ruminants. We tested three different media formulations for E. coli culture and established for each culture conditions for optimal levels of soluble EG95 expression. The results demonstrate that SOC and TB media provided high yields in cell density and EG95 protein expression. Purification of the recombinant protein with affinity chromatography (using FPLC) was also performed to increase the purity of the EG95NC - -GST antigen.

  2. Towards an RTS,S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research

    NARCIS (Netherlands)

    Heppner, D. Gray; Kester, Kent E.; Ockenhouse, Christian F.; Tornieporth, Nadia; Ofori, Opokua; Lyon, Jeffrey A.; Stewart, V. Ann; Dubois, Patrice; Lanar, David E.; Krzych, Urszula; Moris, Philippe; Angov, Evelina; Cummings, James F.; Leach, Amanda; Hall, B. Ted; Dutta, Sheetij; Schwenk, Robert; Hillier, Collette; Barbosa, Arnoldo; Ware, Lisa A.; Nair, Lalitha; Darko, Christian A.; Withers, Mark R.; Ogutu, Bernhards; Polhemus, Mark E.; Fukuda, Mark; Pichyangkul, Sathit; Gettyacamin, Montip; Diggs, Carter; Soisson, Lorraine; Milman, Jessica; Dubois, Marie-Claude; Garçon, Nathalie; Tucker, Kathryn; Wittes, Janet; Plowe, Christopher V.; Thera, Mahamadou A.; Duombo, Ogobara K.; Pau, Maria G.; Goudsmit, Jaap; Ballou, W. Ripley; Cohen, Joe

    2005-01-01

    The goal of the Malaria Vaccine Program at the Walter Reed Army Institute of Research (WRAIR) is to develop a licensed multi-antigen, multi-stage vaccine against Plasmodium falciparum able to prevent all symptomatic manifestations of malaria by preventing parasitemia. A secondary goal is to limit

  3. Immunoprotective efficacy of six in vivo-induced antigens against Actinobacillus pleuropneumoniae as potential vaccine candidates in murine model

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-10-01

    Full Text Available Six in vivo-induced (IVI antigens-RnhB, GalU, GalT, Apl_1061, Apl_1166, and HflX were selected for a vaccine trial in a mouse model. The results showed that the IgG levels in each immune group was significantly higher than that of the negative control (P<0.001. Except rRnhB group, proliferation of splenocytes was observed in all immunized groups and a relatively higher proliferation activity was observed in rGalU and rGalT groups (P<0.05. In the rGalT vaccinated group, the proportion of CD4+ T cells in spleen was significant higher than that of negative control (P<0.05. Moreover, proportions of CD4+ T cells in other vaccinated groups were all up-regulated to varying degrees. Up-regulation of both Th1 (IFN-γ, IL-2 and Th2 (IL-4 cytokines were detected. A survival rate of 87.5%, 62.5% and 62.5% were obtained among rGalT, rAPL_1166 and rHflX group, respectively while the remaining three groups was only 25%. Histopathological analyses of lungs indicated that surviving animals from the vaccinated groups showed relatively normal pulmonary structure alveoli. These findings confirm that IVI antigens used as vaccine candidates provide partial protection against APP infection in a mouse model, which could be used as potential vaccine candidates in piglets.

  4. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro.

    Directory of Open Access Journals (Sweden)

    Priya Saikumar Lakshmi

    Full Text Available Tuberculosis (TB caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6 kDa early secretory antigenic target and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39 fused with cholera toxin B-subunit (CTB and LipY (a cell wall protein were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential

  5. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro.

    Science.gov (United States)

    Lakshmi, Priya Saikumar; Verma, Dheeraj; Yang, Xiangdong; Lloyd, Bethany; Daniell, Henry

    2013-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6 kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long

  6. Genomic and antigenic characterization of bovine parainfluenza-3 viruses in the United States including modified live virus vaccine (MLV) strains and field strains from cattle.

    Science.gov (United States)

    Fulton, R W; Neill, J D; Saliki, J T; Landis, C; Burge, L J; Payton, M E

    2017-05-02

    This study investigated the genetic and antigenic characterization of parainfluenza-3 virus (PI3V) of cattle. Using molecular tests including real time PCR and viral genome sequencing, PI3V strains could be separated into PI3V types, including PI3V A, PI3V B, and PI3V C. Isolates from cattle with bovine respiratory disease clinical signs and commercial vaccines in the U.S. with MLV PI3V were typed using these molecular tests. All the MLV vaccine strains tested were PI3V A. In most cases PI3V field strains from calves receiving MLV vaccines were types heterologous to the vaccine type A. Also antigenic differences were noted as PI3V C strains had lower antibody levels than PI3V A in serums from cattle receiving MLV PI3V A vaccines. This study further demonstrates there is genetic variability of U.S. PI3V strains and also antigenic variability. In addition, isolates from cattle with BRD signs and receiving MLV vaccines may have heterologous types to the vaccines, and molecular tests should be performed to differentiate field from vaccine strains. Potentially the efficacy of current PI3V A vaccines should be evaluated with other types such a PI3V B and PI3V C. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of a Major Surface Antigen of Babesia microti Merozoites as a Vaccine Candidate against Babesia Infection

    Directory of Open Access Journals (Sweden)

    Suqin Man

    2017-12-01

    Full Text Available Babesia species are tick-borne intraerythrocytic protozoa that cause babesiosis in humans worldwide. No vaccine has yet proven effective against Babesia infection. Surface antigens of merozoites are involved in the invasion of erythrocytes by Babesia. Surface antigens may be presented by both babesial sporozoites and merozoites and provide a general target for antibody-mediated inhibition of erythrocyte invasion. Here we evaluated a major surface antigen of B. microti merozoites, BMSA, as a potential vaccine to prevent babesiosis. Our data indicated that bmsa is transcribed during different phases, including ring form, amoeboid form, and merozoites, and that its expression is significantly increased in mature merozoites. The protein was found to be located in the membrane of B. microti and in the cytoplasm of infected erythrocytes. The immune response induced by BMSA had a significant inhibitory effect on parasite invasion of the host erythrocytes (83.3% inhibition of invasion and parasite growth in vivo. The levels of parasitemia significantly decreased after BMSA vaccination when mice were infected with babesia parasite. Importantly, protective immunity was significantly related to the upregulation of the Th17 cytokine interleukin-17, the Th1 cytokine interleukin-12p70 and the Th2 cytokines, such as interleukin-4, -6, and -10. Ingenuity Pathway Analysis indicated that interleukin-17 facilitated the secretion of Th2 cytokines, such as interleukin-10, -4, and -6, thereby inducing a predominately Th2 protective immune response and promoting the expression a high level of special IgG1 against Babesia infection. Further, an anti-BMSA monoclonal antibody successfully protected NOD/SCID mice from a challenge with B. microti. Taken together, our results indicated that BMSA induces a protective immune response against Babesia infection and may serve as a potential vaccine.

  8. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  9. Cationic Lipid-Formulated DNA Vaccine against Hepatitis B Virus : Immunogenicity of MIDGE-Th1 Vectors Encoding Small and Large Surface Antigen in Comparison to a Licensed Protein Vaccine

    NARCIS (Netherlands)

    Endmann, Anne; Klunder, Katharina; Kapp, Kerstin; Riede, Oliver; Oswald, Detlef; Talman, Eduard G.; Schroff, Matthias; Kleuss, Christiane; Ruiters, Marcel H. J.; Juhls, Christiane

    2014-01-01

    Currently marketed vaccines against hepatitis B virus (HBV) based on the small (S) hepatitis B surface antigen (HBsAg) fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible

  10. Identification of pre-erythrocytic malaria antigens that target hepatocytes for killing in vivo and contribute to protection elicited by whole-parasite vaccination.

    Directory of Open Access Journals (Sweden)

    Lin Chen

    Full Text Available Pre-erythrocytic malaria vaccines, including those based on whole-parasite approaches, have shown protective efficacy in animal and human studies. However few pre-erythocytic antigens other than the immunodominant circumsporozoite protein (CSP have been studied in depth with the goal of developing potent subunit malaria vaccines that are suited for use in endemic areas. Here we describe a novel technique to identify pre-erythrocytic malaria antigens that contribute to protection elicited by whole-parasite vaccination in the mouse model. Our approach combines immunization with genetically attenuated parasites and challenge with DNA plasmids encoding for potential protective pre-erythrocytic malaria antigens as luciferase fusions by hydrodynamic tail vein injection. After optimizing the technique, we first showed that immunization with Pyfabb/f-, a P. yoelii genetically attenuated parasite, induces killing of CSP-presenting hepatocytes. Depletion of CD8+ but not CD4+ T cells diminished the killing of CSP-expressing hepatocytes, indicating that killing is CD8+ T cell-dependent. Finally we showed that the use of heterologous prime/boost immunization strategies that use genetically attenuated parasites and DNA vaccines enabled the characterization of a novel pre-erythrocytic antigen, Tmp21, as a contributor to Pyfabb/f- induced protection. This technique will be valuable for identification of potentially protective liver stage antigens and has the potential to contribute to the understanding of immunity elicited by whole parasite vaccination, as well as the development of effective subunit malaria vaccines.

  11. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication

    DEFF Research Database (Denmark)

    Xu, Huanbin; Andersson, Anne-Marie Carola; Ragonnaud, Emeline

    2017-01-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat...

  12. Universal Breast Cancer Antigens as Targets Linking Early Detection and Therapeutic Vaccination

    National Research Council Canada - National Science Library

    Domchek, Susan M

    2005-01-01

    This grant supports studies to understand the potential of universal tumor antigens for cancer immunotherapy, with a particular focus on the characterization of the human telomerase reverse transcriptase (hTERT) as tumor antigen...

  13. Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Richard Reeve

    2010-12-01

    Full Text Available Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence--by controlling for phylogenetic structure--for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization

  14. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Bernhards R Ogutu

    Full Text Available The antigen, falciparum malaria protein 1 (FMP1, represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1 of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System, it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg or Rabipur(R rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE was measured over a six-month period following third vaccinations.374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42 antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7.FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42 vaccine development should focus on other formulations and antigen constructs

  15. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Science.gov (United States)

    Grimaldi, Gabriel; Teva, Antonio; Porrozzi, Renato; Pinto, Marcelo A; Marchevsky, Renato S; Rocha, Maria Gabrielle L; Dutra, Miriam S; Bruña-Romero, Oscar; Fernandes, Ana-Paula; Gazzinelli, Ricardo T

    2014-06-01

    Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. The remarkable clinical protection induced by A2 in an animal model that is

  16. Challenges and opportunities in nasal subunt vaccine delivery : mechanistic studies using ovalbumin as a model antigen

    NARCIS (Netherlands)

    Slütter, Bernard Adam

    2011-01-01

    Nasal vaccination has the potential to provide protection combined with more patient comfort and a higher safety profile than classical injectable vaccines. However, the nasal physiology and immunological aspects of the nasal epithelium hamper the efficacy of nasally administered vaccines. The aim

  17. Protection against California 2002 NDV strain afforded by adenovirus vectored vaccine expressing Fusion or Hemagglutination-neuraminidase genes

    Science.gov (United States)

    Vectored vaccines expressing the combination of the hemagglutinin-neuraminidase (HN) and fusion (F) genes generally have better clinical protection against Newcastle disease virus (NDV) than when either the F and HN genes are expressed alone. Interestingly, the protection induced by F is usually bet...

  18. Immunogenicity and therapeutic efficacy of a dual-component genetic cancer vaccine cotargeting carcinoembryonic antigen and HER2/neu in preclinical models.

    Science.gov (United States)

    Aurisicchio, Luigi; Peruzzi, Daniela; Koo, Gloria; Wei, Wei-Zen; La Monica, Nicola; Ciliberto, Gennaro

    2014-02-01

    Several cancer vaccine efforts have been directed to simultaneously cotarget multiple tumor antigens, with the intent to achieve broader immune responses and more effective control of cancer growth. Genetic cancer vaccines based on in vivo muscle electro-gene-transfer of plasmid DNA (DNA-EGT) and adenoviral vectors represent promising modalities to elicit powerful immune responses against tumor-associated antigens (TAAs) such as carcinoembryonic antigen (CEA) and human epidermal growth factor receptor-2 (HER2)/neu. Combinations of these modalities of immunization (heterologous prime-boost) can induce superior immune reactions as compared with single-modality vaccines. We have generated a dual component-dual target genetic cancer vaccine consisting of a DNA moiety containing equal amounts of two plasmids, one encoding the extracellular and transmembrane domains of HER2 (ECD.TM) and the other encoding CEA fused to the B subunit of Escherichia coli heat-labile toxin (LTB), and of an adenoviral subtype 6 dicistronic vector carrying the same two tumor antigens gene constructs. The CEA/HER2 vaccine was tested in two different CEA/HER2 double-transgenic mouse models and in NOD/scid-DR1 mice engrafted with the human immune system. The immune response was measured by enzyme-linked immunospot assay, flow cytometry, and ELISA. The CEA/HER2 vaccine was able to break immune tolerance against both antigens. Induction of a T cell and antibody immune response was detected in immune-tolerant mice. Most importantly, the vaccine was able to slow the growth of HER2/neu⁺ and CEA⁺ tumors. A significant T cell response was measured in NOD/scid-DR1 mice engrafted with human cord blood cells. In conclusion, the CEA/HER2 genetic vaccine was immunogenic and able to confer significant therapeutic effects. These data warrant the evaluation of this vaccination strategy in human clinical trials.

  19. Comparison of serum and salivary antibodies in children vaccinated with oral live or parenteral inactivated poliovirus vaccines of different antigen concentrations.

    Science.gov (United States)

    Zaman, S; Carlsson, B; Jalil, F; Mellander, L; Van Wezel, A L; Böttiger, M; Hanson, L A

    1991-12-01

    A new antigen-rich inactivated poliovirus vaccine (IPV) in ordinary (IPV1), double (IPV2) and quadruple (IPV4) antigen concentrations was given in 2 doses to 6 and 18 week old Pakistani infants. The immune responses to poliovirus types 1 and 3 were compared to those in infants given three doses of oral poliovirus vaccine (OPV) at 6, 12 and 18 weeks of age. Enzyme-linked immunosorbent assay, ELISA, was used to estimate IgG and IgA in serum and secretory IgA (SIgA) in saliva. Two to three years later, a follow-up of the serum antibody response was carried out in the same infants using a microneutralization test. Serum IgG antibody responses to poliovirus type 1 antigen after two doses of IPV1, IPV2 and IPV4 were not significantly higher than the response after three doses of OPV at 21 weeks of age (p greater than 0.05). The serum IgG responses to poliovirus type 3 were similar to those against type 1 in all the groups. Mean neutralizing antibody titres to poliovirus type 1 was significantly higher in the IPV2 group than the rest of the groups (p less than 0.01). For type 3, these titres were highest but not significantly, in the IPV4 group (p greater than 0.05). This study shows that two doses of a new antigen-rich IPV can give similar immediate serum antibody responses as OPV but higher late responses. SIgA antibodies in saliva were more efficiently induced by OPV after three doses than after 2 doses of IPV (p less than 0.05).

  20. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination

    Science.gov (United States)

    Martin, Judith M.; Gross, F. Liaini; Jefferson, Stacie; Cole, Kelly Stefano; Archibald, Crystal Ann; Nowalk, Mary Patricia; Susick, Michael; Moehling, Krissy; Spencer, Sarah; Chung, Jessie R.; Flannery, Brendan; Zimmerman, Richard K.

    2016-01-01

    Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure. PMID:27558294

  1. Lipid nanoparticles with accessible nickel as a vaccine delivery system for single and multiple his-tagged HIV antigens

    Directory of Open Access Journals (Sweden)

    Weili Yan

    2009-07-01

    Full Text Available Weili Yan1, Anekant Jain1, Ronan O’Carra2,  Jerold G Woodward3,  Wenxue Li4, Guanhan Li4, Avindra Nath4,  Russell J Mumper11Division of Molecular Pharmaceutics and the Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky; 3Department of Microbiology, Immunology and Molecular Genetics,  University of Kentucky, Lexington, KY, USA; 4Department of Neurology, Johns Hopkins University, Baltimore, MD, USAAbstract: Lipid-based nanoparticles (NPs with a small amount of surface-chelated nickel (Ni-NPs were developed to easily formulate the human immunodeficiency virus (HIV his-tagged Tat (his-Tat protein, as well as to formulate and co-deliver two HIV antigens (his-p24 and his-Nef on one particle. Female BALB/c mice were immunized by subcutaneous injection with his-Tat/Ni-NP formulation (1.5 µg his-Tat/mouse and control formulations on day 0 and 14. The day 28 anti-Tat specific immunoglobulin G titer with his-Tat/Ni-NPs was significantly greater than that with Alum/his-Tat. Furthermore, splenocytes from his-Tat/Ni-NP-immunized mice secreted significantly higher IFN-γ than those from mice immunized with Alum/his-Tat. Although Ni-NPs did not show better adjuvant activity than Tat-coated anionic NPs made with sodium dodecyl sulfate (SDS/NPs, they were less toxic than SDS/NPs. The initial results indicated that co-immunization of mice using his-p24/his-Nef/Ni-NP induced greater antibody response compared to using Alum/his-p24/his-Nef. Co-delivery of two antigens using Ni-NPs also increased the immunogenicity of individual antigens compared to delivery of a single antigen by Ni-NPs. In conclusion, Ni-NPs are an efficient delivery system for HIV vaccines including both single antigen delivery and multiple antigen co-delivery.Keywords: nanoparticle, nickel, HIV, antigen co

  2. The Length of N-Glycans of Recombinant H5N1 Hemagglutinin Influences the Oligomerization and Immunogenicity of Vaccine Antigen

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    2017-04-01

    Full Text Available Hemagglutinin glycoprotein (HA is a principle influenza vaccine antigen. Recombinant HA-based vaccines become a potential alternative for traditional approach. Complexity and variation of HA N-glycosylation are considered as the important factors for the vaccine design. The number and location of glycan moieties in the HA molecule are also crucial. Therefore, we decided to study the effect of N-glycosylation pattern on the H5 antigen structure and its ability to induce immunological response. We also decided to change neither the number nor the position of the HA glycosylation sites but only the glycan length. Two variants of the H5 antigen with high mannose glycosylation (H5hm and with low-mannose glycosylation (H5Man5 were prepared utilizing different Pichia strains. Our structural studies demonstrated that only the highly glycosylated H5 antigen formed high molecular weight oligomers similar to viral particles. Further, the H5hm was much more immunogenic for mice than H5Man5. In summary, our results suggest that high mannose glycosylation of vaccine antigen is superior to the low glycosylation pattern. Our findings have strong implications for the recombinant HA-based influenza vaccine design.

  3. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate.

    Science.gov (United States)

    Lacombe, Séverine; Bangratz, Martine; Brizard, Jean-Paul; Petitdidier, Elodie; Pagniez, Julie; Sérémé, Drissa; Lemesre, Jean-Loup; Brugidou, Christophe

    2018-01-01

    In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed. Here, a series of experiments were performed to determine the most effective conditions to enhance vaccine antigen transient accumulation in Nicotiana benthamiana leaves using the promastigote surface antigen (PSA) from the parasitic protozoan Leishmania infantum. This protein has been previously identified as the major antigen of a licensed canine anti-leishmaniasis vaccine. The classical prokaryote Escherichia coli biosystem failed in accumulating PSA. Consequently, the standard plant system based on N. benthamiana has been optimized for the production of putatively active PSA. First, the RNA silencing defense mechanism set up by the plant against PSA ectopic expression was abolished by using three viral suppressors acting at different steps of the RNA silencing pathway. Then, we demonstrated that the signal peptide at the N-terminal side of the PSA is required for its accumulation. The PSA ER signaling and retention with the PSA signal peptide and the KDEL motif, respectively were optimized to significantly increase its accumulation. Finally, we demonstrate that the production of recombinant PSA in N. benthamiana leaves allows the conservation of its immunogenic property. These approaches demonstrate that based on these optimizations, plant based systems can be used to effectively produce the biological active PSA protein. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    Science.gov (United States)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  5. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM(197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2009-05-21

    Pneumococcal (Pn) polysaccharides (PS) are T-independent (TI) antigens and do not induce immunological memory or antibodies in infants. Conjugation of PnPS to the carrier protein CRM(197) induces PS-specific antibody in infants, and memory similar to T-dependent (Td) antigens. Conjugates have improved immunogenicity via antigen processing and presentation of carrier protein with MHC II and recruitment of T cell help, but the fate of the PS attached to the carrier is unknown. To determine the location of the PS component of PnPS-CRM(197) in the APC, we separately labeled PS and protein and tracked their location. The PS of types 14-CRM(197) and 19F-CRM(197) was specifically labeled by Alexa Fluor 594 hydrazide (red). The CRM(197) was separately labeled red in a reaction that did not label PS. Labeled antigens were incubated with APC which were fixed, permeabilized and incubated with anti-MHC II antibody labeled green by Alexa Fluor 488, followed by confocal microscopy. Labeled CRM(197) was presented on APC surface and co-localized with MHC II (yellow). Labeled unconjugated 14 or 19F PS did not go to the APC surface, but PS labeled 14-CRM(197) and 19F-CRM(197) was internalized and co-localized with MHC II. Monoclonal antibody to type 14 PS bound to intracellular type 14 PS and PS-CRM(197). Brefeldin A and chloroquine blocked both CRM(197) and PS labeled 14-CRM(197) and 19F-CRM(197) from co-localizing with MHC II. These data suggest that the PS component of the CRM(197) glycoconjugate enters the endosome, travels with CRM(197) peptides to the APC surface and co-localizes with MHC II.

  6. Identification of Protective B-Cell Epitopes within the Novel Malaria Vaccine Candidate Plasmodium falciparum Schizont Egress Antigen 1.

    Science.gov (United States)

    Nixon, Christina E; Park, Sangshin; Pond-Tor, Sunthorn; Raj, Dipak; Lambert, Lynn E; Orr-Gonzalez, Sachy; Barnafo, Emma K; Rausch, Kelly M; Friedman, Jennifer F; Fried, Michal; Duffy, Patrick E; Kurtis, Jonathan D

    2017-07-01

    Naturally acquired antibodies to Plasmodium falciparum schizont egress antigen 1 (PfSEA-1A) are associated with protection against severe malaria in children. Vaccination of mice with SEA-1A from Plasmodium berghei (PbSEA-1A) decreases parasitemia and prolongs survival following P. berghei ANKA challenge. To enhance the immunogenicity of PfSEA-1A, we identified five linear B-cell epitopes using peptide microarrays probed with antisera from nonhuman primates vaccinated with recombinant PfSEA-1A (rPfSEA-1A). We evaluated the relationship between epitope-specific antibody levels and protection from parasitemia in a longitudinal treatment-reinfection cohort in western Kenya. Antibodies to three epitopes were associated with 16 to 17% decreased parasitemia over an 18-week high transmission season. We are currently designing immunogens to enhance antibody responses to these three epitopes. Copyright © 2017 American Society for Microbiology.

  7. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  8. Assessment of cathepsin D and L-like proteinases of poultry red mite, Dermanyssus gallinae (De Geer), as potential vaccine antigens.

    Science.gov (United States)

    Bartley, Kathryn; Huntley, John F; Wright, Harry W; Nath, Mintu; Nisbet, Alasdair J

    2012-05-01

    Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PFCatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PFCatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems.

  9. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge

    Science.gov (United States)

    Magini, Diletta; Giovani, Cinzia; Mangiavacchi, Simona; Maccari, Silvia; Cecchi, Raffaella; Ulmer, Jeffrey B.; De Gregorio, Ennio; Geall, Andrew J.; Brazzoli, Michela; Bertholet, Sylvie

    2016-01-01

    Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines. PMID:27525409

  10. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge.

    Directory of Open Access Journals (Sweden)

    Diletta Magini

    Full Text Available Current hemagglutinin (HA-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP and the matrix protein 1 (M1 was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM® vectors expressing influenza NP (SAM(NP, M1 (SAM(M1, and NP and M1 (SAM(M1-NP delivered with lipid nanoparticles (LNP induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM and effector memory (TEM CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP and protein (monovalent inactivated influenza vaccine (MIIV was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines.

  11. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded Antigens for Rapid Diagnosis and Vaccine Development

    Science.gov (United States)

    1986-11-26

    SIE cop AD nCloning and Expression of Genes for Dengue Virus ,4. CJ Type 2 Encoded Antigens for Rapid Diagnosis and Vaccine Development 0ANNUAL...pVVI and pVVI7 cDNA clones, synthetic peptides homologous to NS5 and NSI regions were synthesized. These peptides are being used at Walter Reed Army...NO. Frederick, MD 21701-5012 63750A 63750 D808 A i 031 11. TITLE (Include Serurity Classification) Cloning and Expression of Genes for Dengue Virus

  12. The affordances of broken affordances

    DEFF Research Database (Denmark)

    Grünbaum, Martin Gielsgaard; Simonsen, Jakob Grue

    2015-01-01

    We consider the use of physical and virtual objects having one or more affordances associated to simple interactions with them. Based on Kaptelinin and Nardi’s notion of instrumental affordance, we investigate what it means to break an affordance, and the two ensuing questions we deem most import...

  13. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    Directory of Open Access Journals (Sweden)

    Mabel Izquierdo-López

    2014-12-01

    Full Text Available In this paper the development of potency assay in animals (mice was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, as well as different areas for the maintenance of the animals were evaluated. The results on the applicability of the potency test, to two presentations of the vaccines; monovalent Heberbiovac HB and pentavalent liquid in one vial Heberpenta-L are shown, for which specificity studies, evaluating different vaccine lots, the behavior of linearity, and parallelism, as well as establishing quality specification of the test were performed. This assay led to the obtainment of reliable results for the vaccines evaluated, the consistent evaluation of the immunogenic power and the monitoring of different production processes.

  14. The EG95 antigen of Echinococcus spp. contains positively selected amino acids, which may influence host specificity and vaccine efficacy.

    Science.gov (United States)

    Haag, Karen Luisa; Gottstein, Bruno; Ayala, Francisco Jose

    2009-01-01

    Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy.

  15. A rapid ELISA-based method for screening Bordetella pertussis strain production of antigens included in current acellular pertussis vaccines.

    Science.gov (United States)

    Barkoff, Alex-Mikael; Guiso, Nicole; Guillot, Sophie; Xing, Dorothy; Markey, Kevin; Berbers, Guy; Mertsola, Jussi; He, Qiushui

    2014-06-01

    Despite extensive vaccinations, there have been pertussis epidemics in many countries including the Netherlands, the UK, Australia and the USA. During these epidemics Bordetella pertussis strains not producing the vaccine antigen pertactin (Prn) are emerging and increasing in numbers. However, methods for confirming PRN production of B. pertussis isolates are combined PCR or PCR-based sequencing tests and western blotting. Furthermore, data about production of pertussis toxin (PT) and filamentous hemagglutinin (FHA) of these isolates are scarce. Fimbriae (Fim) production is usually determined by agglutination and reported as serotype. In this study we developed an easy, accurate and rapid method for screening PT and FHA production. Methods for Prn and Fim production have been published earlier. We analyzed altogether 109 B. pertussis strains, including 103 Finnish B. pertussis strains collected during 2006-2013, international strain Tohama I, French strains FR3496 (PT-negative), FR3693 (Prn-negative) and FR4624 (FHA-negative) and Fim-serotype reference strains S1 (producing only Fim2) and S3 (producing only Fim3). An indirect ELISA with whole bacterial cells as coating antigen was developed and used for rapid screening of the B. pertussis strains. Production of different antigens (PT, FHA, Prn, Fim2 and Fim3) was detected with specific monoclonal antibodies (mAbs). From the 103 Finnish B. pertussis strains tested, all were positive for PT, FHA and Fim. Four were found negative for Prn, and they were isolated during 2011-2013. The newly developed method proved to be useful and simple for rapid screening of different antigen production of B. pertussis isolates. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Antigen-specific IgA B memory cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates.

    Science.gov (United States)

    Simon, J K; Maciel, M; Weld, E D; Wahid, R; Pasetti, M F; Picking, W L; Kotloff, K L; Levine, M M; Sztein, M B

    2011-05-01

    We studied the induction of antigen-specific IgA memory B cells (B(M)) in volunteers who received live attenuated Shigella flexneri 2a vaccines. Subjects ingested a single oral dose of 10(7), 10(8) or 10(9) CFU of S. flexneri 2a with deletions in guaBA (CVD 1204) or in guaBA, set and sen (CVD 1208). Antigen-specific serum and stool antibody responses to LPS and Ipa B were measured on days 0, 7, 14, 28 and 42. IgA B(M) cells specific to LPS, Ipa B and total IgA were assessed on days 0 and 28. We show the induction of significant LPS-specific IgA B(M) cells in anti-LPS IgA seroresponders. Positive correlations were found between anti-LPS IgA B(M) cells and anti-LPS IgA in serum and stool; IgA B(M) cell responses to IpaB were also observed. These B(M) cell responses are likely play an important role in modulating the magnitude and longevity of the humoral response. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice.

    Directory of Open Access Journals (Sweden)

    Qi Xin

    Full Text Available To search for more effective tuberculosis (TB subunit vaccines, antigens expressed in different growth stages of Mycobacterium tuberculosis (M. tuberculosis, such as RpfE (Rv2450c produced in the stage of resuscitation, Mtb10.4 (Rv0288, Mtb8.4 (Rv1174c, ESAT6 (Rv3875, Ag85B (Rv1886c mainly secreted by replicating bacilli, and HspX (Rv2031c highly expressed in dormant bacilli, were selected to construct six fusion proteins: ESAT6-Ag85B-MPT64190-198-Mtb8.4 (EAMM, Mtb10.4-HspX (MH, ESAT6-Mtb8.4, Mtb10.4-Ag85B, ESAT6-Ag85B, and ESAT6-RpfE. The six fusion proteins were separately emulsified in an adjuvant composed of N,N'-dimethyl-N, N'-dioctadecylammonium bromide (DDA, polyribocytidylic acid (poly I:C and gelatin to construct subunit vaccines, and their protective effects against M. tuberculosis infection were evaluated in C57BL/6 mice. Furthermore, the boosting effects of EAMM and MH in the adjuvant of DDA plus trehalose 6,6'-dimycolate (TDM on BCG-induced immunity were also evaluated. It was found that the six proteins were stably produced in E. coli and successfully purified by chromatography. Among them, EAMM presented the most effective protection against M. tuberculosis. Interestingly, the mice that received EAMM+MH had significantly lower bacterial counts in the lungs and spleens than the single protein vaccinated groups, and had the same effect as those that received BCG. In addition, EAMM and MH could improve BCG-primed protective efficacy against M. tuberculosis infection in mice. In conclusion, the combination of EAMM and MH containing antigens from both replicating and dormant stages of the bacilli could induce robust immunity against M. tuberculosis infection in mice and may serve as promising subunit vaccine candidate.

  18. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression

    International Nuclear Information System (INIS)

    Meissonnier, Guylaine M.; Pinton, Philippe; Laffitte, Joelle; Cossalter, Anne-Marie; Gong, Yun Yun; Wild, Christopher P.; Bertin, Gerard; Galtier, Pierre; Oswald, Isabelle P.

    2008-01-01

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 μg pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-α, IL-1β, IL-6, IFN-γ) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-γ and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1

  19. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  20. An Approach to Identify and Characterize a Subunit Candidate Shigella Vaccine Antigen.

    Science.gov (United States)

    Pore, Debasis; Chakrabarti, Manoj K

    2016-01-01

    Shigellosis remains a serious issue throughout the developing countries, particularly in children under the age of 5. Numerous strategies have been tested to develop vaccines targeting shigellosis; unfortunately despite several years of extensive research, no safe, effective, and inexpensive vaccine against shigellosis is available so far. Here, we illustrate in detail an approach to identify and establish immunogenic outer membrane proteins from Shigella flexneri 2a as subunit vaccine candidates.

  1. A launch vector for the production of vaccine antigens in plants. Review

    OpenAIRE

    Musiychuk, K.; Stephenson, N.; Bi, H.; Farrance, C.E.; Orozovic, G.; Brodelius, M.; Brodelius, P.; Horsey, A.; Ugulava, N.; Shamloul, A.M.; Mett, V.; Rabindran, S.; Streatfield, S.J.; Yusibov, V.

    2007-01-01

    Historically, most vaccines have been based on killed or live-attenuated infectious agents. Although very successful at immunizing populations against disease, both approaches raise safety concerns and often have limited production capacity. This has resulted in increased emphasis on the development of subunit vaccines. Several recombinant systems have been considered for subunit vaccine manufacture, including plants, which offer advantages both in cost and in scale of production. We have dev...

  2. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    Science.gov (United States)

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  3. Prevention of vertical transmission of Neospora caninum in C57BL/6 mice vaccinated with Brucella abortus strain RB51 expressing N. caninum protective antigens.

    Science.gov (United States)

    Ramamoorthy, Sheela; Sanakkayala, Neelima; Vemulapalli, Ramesh; Jain, Neeta; Lindsay, David S; Schurig, Gerhardt S; Boyle, Stephen M; Sriranganathan, Nammalwar

    2007-11-01

    Bovine abortions caused by the apicomplexan parasite Neospora caninum have been responsible for severe economic losses to the cattle industry. Infected cows either experience abortion or transmit the parasite transplacentally at a rate of up to 95%. Neospora caninum vaccines that can prevent vertical transmission and ensure disruption in the life cycle of the parasite greatly aid in the management of neosporosis in the cattle industry. Brucella abortus strain RB51, a commercially available vaccine for bovine brucellosis, can also be used as a vector to express plasmid-encoded proteins from other pathogens. Neospora caninum protective antigens MIC1, MIC3, GRA2, GRA6 and SRS2 were expressed in strain RB51. Female C57BL/6 mice were vaccinated with a recombinant strain RB51 expressing N. caninum antigen or irradiated tachyzoites, boosted 4 weeks later and then bred. Antigen-specific IgG, IFN-gamma and IL-10 were detected in vaccinated pregnant mice. Vaccinated mice were challenged with 5 x 10(6)N. caninum tachyzoites between days 11-13 of pregnancy. Brain tissue was collected from pups 3 weeks after birth and examined for the presence of N. caninum by real-time PCR. The RB51-MIC3, RB51-GRA6, irradiated tachyzoite vaccine, pooled strain RB51-Neospora vaccine, RB51-MIC1 and RB51-SRS2 vaccines elicited approximately 6-38% protection against vertical transmission. However, the differences in parasite burden in brain tissue of pups from the control and vaccinated groups were highly significant for all groups. Thus, B. abortus strain RB51 expressing the specific N. caninum antigens induced substantial protection against vertical transmission of N. caninum in mice.

  4. Human CD4+T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity.

    Science.gov (United States)

    Angelo, Michael A; Grifoni, Alba; O'Rourke, Patrick H; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A; Kirkpatrick, Beth D; Whitehead, Stephen S; Durbin, Anna P; Sette, Alessandro; Weiskopf, Daniela

    2017-03-01

    Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8 + T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4 + T cell responses after live vaccination is important because CD4 + T cells are known contributors to host immunity, including cytokine production, help for CD8 + T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4 + T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4 + T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4 + cell responses closely mirroring those observed in a population associated with natural immunity. IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4 + responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against dengue

  5. Neonatal BCG vaccination influences cytokine responses to Toll-like receptor ligands and heterologous antigens.

    Science.gov (United States)

    Freyne, B; Donath, S; Germano, S; Gardiner, K; Casalaz, D; Robins-Browne, R M; Amenyogbe, N; Messina, N L; Netea, M G; Flanagan, K L; Kollmann, T; Curtis, N

    2018-02-03

    Bacille Calmette-Guérin (BCG) vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain but long-term modulation of the innate immune response (trained immunity) may be involved. Whole blood, collected 7 days post randomisation from 212 neonates enrolled in a randomised trial of neonatal BCG vaccination, was stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. BCG-vaccinated infants had increased production of IL-6 in unstimulated samples and decreased production of IL-1ra, IL-6, and IL-10 and the chemokines MIP-1α, MIP-1β, MCP-1 following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterised by decreased anti-inflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine if there is an association between these findings and the beneficial non-specific (heterologous) effects of BCG vaccine on all-cause mortality.

  6. Reduced antibody responses against Plasmodium falciparum vaccine candidate antigens in the presence of Trichuris trichiura

    DEFF Research Database (Denmark)

    Esen, Meral; Mordmüller, Benjamin; de Salazar, Pablo Martinez

    2012-01-01

    BACKGROUND: Helminth infections are highly prevalent in the tropics and may have an effect on immune responses to vaccines due to their immunomodulatory effect. The prevalence of helminth infections in young children, the target group for malaria and most other vaccines, is high. Therefore we ass...

  7. Trafficking of antigen-specific CD8+ T lymphocytes to mucosal surfaces following intramuscular vaccination

    NARCIS (Netherlands)

    Kaufman, David R.; Liu, Jinyan; Carville, Angela; Mansfield, Keith G.; Havenga, Menzo J. E.; Goudsmit, Jaap; Barouch, Dan H.

    2008-01-01

    A critical goal of vaccine development for a wide variety of pathogens is the induction of potent and durable mucosal immunity. However, it has been assumed that this goal would be difficult to achieve by systemic vaccination due to the anatomic and functional distinctness of the systemic and

  8. Antigen design enhances the immunogenicity of Semliki Forest virus-based therapeutic human papillomavirus vaccines

    NARCIS (Netherlands)

    Ip, P. P.; Boerma, A.; Walczak, M.; Oosterhuis, K.; Haanen, J. B.; Schumacher, T. N.; Nijman, H. W.; Daemen, T.

    Cellular immunity against cancer can be achieved with viral vector-and DNA-based immunizations. In preclinical studies, cancer vaccines are very potent, but in clinical trials these potencies are not achieved yet. Thus, a rational approach to improve cancer vaccines is warranted. We previously

  9. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    Science.gov (United States)

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Activated charcoal enhanced the antigen-expression and dendritic cell maturation of the vaccine using Listeria-platform.

    Science.gov (United States)

    Wanram, Surasak; Guiney, Donald; Panomket, Pawana; Jearanaikoon, Patcharee

    2012-09-13

    Listeria monocytogenes (LM) has been used as a vaccine vector based upon its ability to induce a strong cell-mediated immune response. LM inactivated with γ-irradiation retains immunogenic properties and is an attractive platform for clinical use since it would have improved safety concerns compared to live vectors. Activated charcoal has been shown to enhance expression of LM proteins such as PrfA. To investigate the effect of various growth conditions supplemented with activated charcoal on recombinant antigen expression. We prepared γ-irradiated ovalbumin-expressing LM (LM-OVA) after growth under various culture conditions. We cultured LM-OVA at various temperatures including 25°C, 37°C and 37°C with activated charcoal and compared OVA expression by western blot analysis, dendritic cells maturation and OVA-specific T cells. The OVA expression was highest in γ-irradiated LM-OVA grown with activated charcoal at 37°C. Compared to other growth conditions, γ-irradiated LM-OVA grown with activated charcoal at 37°C induce better DC maturation as well as production of the highest number of antigen-specific IFN γ-secreting T cells. The further study should be demonstrated the potential to alter growth conditions to enhance OVA expression resulting for vaccine vectors, thereby improving their safety and efficacy.

  11. Thymic Self-Antigen Expression for the Design of a Negative/Tolerogenic Self-Vaccine against Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Aziz Alami Chentoufi

    2011-01-01

    Full Text Available Before being able to react against infectious non-self-antigens, the immune system has to be educated in the recognition and tolerance of neuroendocrine proteins, and this critical process essentially takes place in the thymus. The development of the autoimmune diabetogenic response results from a thymus dysfunction in programming central self-tolerance to pancreatic insulin-secreting islet β cells, leading to the breakdown of immune homeostasis with an enrichment of islet β cell reactive effector T cells and a deficiency of β cell-specific natural regulatory T cells (nTreg in the peripheral T-lymphocyte repertoire. Insulin-like growth factor 2 (IGF-2 is the dominant member of the insulin family expressed during fetal life by the thymic epithelium under the control of the autoimmune regulator (AIRE gene/protein. Based on the close homology and cross-tolerance between insulin, the primary T1D autoantigen, and IGF-2, the dominant self-antigen of the insulin family, a novel type of vaccination, so-called “negative/tolerogenic self-vaccination”, is currently developed for prevention and cure of T1D. If this approach were found to be effective for reprogramming immunological tolerance in T1D, it could pave the way for the design of negative self-vaccines against autoimmune endocrine diseases, as well as other organ-specific autoimmune diseases.

  12. Fc Receptor-Targeting of Immunogen as a Strategy for Enhanced Antigen Loading, Vaccination, and Protection Using Intranasally-Administered Antigen-Pulsed Dendritic Cells

    Science.gov (United States)

    Pham, Giang H.; Iglesias, Bibiana V.; Gosselin, Edmund J.

    2014-01-01

    Dendritic cells (DCs) play a critical role in the generation of adaptive immunity via the efficient capture, processing, and presentation of antigen (Ag) to naïve T cells. Administration of Ag-pulsed DCs is also an effective strategy for enhancing immunity to tumors and infectious disease organisms. Studies have also demonstrated that targeting Ags to Fcγ receptors (FcγR) on Ag presenting cells can enhance humoral and cellular immunity in vitro and in vivo. Specifically, our studies using an F. tularensis (Ft) infectious disease vaccine model have demonstrated that targeting immunogens to FcγR via intranasal (i.n.) administration of monoclonal antibody (mAb)-inactivated Ft (iFt) immune complexes (ICs) enhances protection against Ft challenge. Ft is the causative agent of tularemia, a debilitating disease of humans and other mammals and a category A biothreat agent for which there is no approved vaccine. Therefore, using iFt Ag as a model immunogen, we sought to determine if ex vivo targeting of iFt to FcγR on DCs would enhance the potency of i.n. administered iFt-pulsed DCs. In this study, bone marrow-derived DCs (BMDCs) were pulsed ex vivo with iFt or mAb-iFt ICs. Intranasal administration of mAb-iFt-pulsed BMDCs enhanced humoral and cellular immune responses, as well as protection against Ft live vaccine strain (LVS) challenge. Increased protection correlated with increased iFt loading on the BMDC surface as a consequence of FcγR targeting. However, the inhibitory FcγRIIB had no impact on this enhancement. In conclusion, targeting Ag ex vivo to FcγR on DCs provides a method for enhanced Ag loading of DCs ex vivo, thereby reducing the amount of Ag required, while also avoiding the inhibitory impact of FcγRIIB. Thus, this represents a simple and less invasive strategy for increasing the potency of ex vivo-pulsed DC vaccines against chronic infectious diseases and cancer. PMID:25068496

  13. Utilizing the antigen capsid-incorporation strategy for the development of adenovirus serotype 5-vectored vaccine approaches.

    Science.gov (United States)

    Gu, Linlin; Farrow, Anitra L; Krendelchtchikov, Alexandre; Matthews, Qiana L

    2015-05-06

    Adenovirus serotype 5 (Ad5) has been extensively modified with traditional transgene methods for the vaccine development. The reduced efficacies of these traditionally modified Ad5 vectors in clinical trials could be primarily correlated with Ad5 pre-existing immunity (PEI) among the majority of the population. To promote Ad5-vectored vaccine development by solving the concern of Ad5 PEI, the innovative Antigen Capsid-Incorporation strategy has been employed. By merit of this strategy, Ad5-vectored we first constructed the hexon shuttle plasmid HVR1-KWAS-HVR5-His6/pH5S by subcloning the hypervariable region (HVR) 1 of hexon into a previously constructed shuttle plasmid HVR5-His6/pH5S, which had His6 tag incorporated into the HVR5. This HVR1 DNA fragment containing a HIV epitope ELDKWAS was synthesized. HVR1-KWAS-HVR5-His6/pH5S was then linearized and co-transformed with linearized backbone plasmid pAd5/∆H5 (GL) , for homologous recombination. This recombined plasmid pAd5/H5-HVR1-KWAS-HVR5-His6 was transfected into cells to generate the viral vector Ad5/H5-HVR1-KWAS-HVR5-His6. This vector was validated to have qualitative fitness indicated by viral physical titer (VP/ml), infectious titer (IP/ml) and corresponding VP/IP ratio. Both the HIV epitope and His6 tag were surface-exposed on the Ad5 capsid, and retained epitope-specific antigenicity of their own. A neutralization assay indicated the ability of this divalent vector to circumvent neutralization by Ad5-positive sera in vitro. Mice immunization demonstrated the generation of robust humoral immunity specific to the HIV epitope and His6. This proof-of-principle study suggested that the protocol associated with the Antigen Capsid-Incorporation strategy could be feasibly utilized for the generation of Ad5-vectored vaccines by modifying different capsid proteins. This protocol could even be further modified for the generation of rare-serotype adenovirus-vectored vaccines.

  14. New candidate vaccines against blood-stage Plasmodium falciparum malaria: prime-boost immunization regimens incorporating human and simian adenoviral vectors and poxviral vectors expressing an optimized antigen based on merozoite surface protein 1

    NARCIS (Netherlands)

    Goodman, Anna L.; Epp, C.; Moss, D.; Holder, A. A.; Wilson, J. M.; Gao, G. P.; Long, C. A.; Remarque, E. J.; Thomas, A. W.; Ammendola, V.; Colloca, S.; Dicks, M. D. J.; Biswas, S.; Seibel, D.; van Duivenvoorde, L. M.; Gilbert, S. C.; Hill, A. V. S.; Draper, S. J.

    2010-01-01

    Although merozoite surface protein 1 (MSP-1) is a leading candidate vaccine antigen for blood-stage malaria, its efficacy in clinical trials has been limited in part by antigenic polymorphism and potentially by the inability of protein-in-adjuvant vaccines to induce strong cellular immunity. Here we

  15. A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles.

    Science.gov (United States)

    Ramirez, Alejandro; Morris, Stephen; Maucourant, Sophie; D'Ascanio, Isabella; Crescente, Vincenzo; Lu, I-Na; Farinelle, Sophie; Muller, Claude P; Whelan, Michael; Rosenberg, William

    2018-02-01

    Existing Influenza A virus (IAV) vaccines target variable parts of the virus that may change between seasons. Vaccine design relies on predicting the predominant circulating influenza strains but when there is a mismatch between vaccine and circulating strains, efficacy is sub-optimal. Furthermore, current approaches provide limited protection against emerging influenza strains that may cause pandemics. One solution is to design vaccines that target conserved protein domains of influenza, which remain largely unchanged over time and are likely to be found in emergent variants. We present a virus-like particle (VLP), built using the hepatitis B virus tandem core platform, as an IAV vaccine candidate containing multiple conserved antigens. Hepatitis B core protein spontaneously assembles into a VLP that is immunogenic and confers immunogenicity to proteins incorporated into the major insertion region (MIR) of core monomers. However, insertion of antigen sequences may disrupt particle assembly preventing VLP formation or result in unstable particles. We have overcome these problems by genetically manipulating the hepatitis B core to express core monomers in tandem, ligated with a flexible linker, incorporating different antigens at each of the MIRs. Immunisation with this VLP, named Tandiflu1, containing 4 conserved antigens from matrix protein 2 ectodomain and hemagglutinin stalk, leads to production of cross-reactive and protective antibodies. The polyclonal antibodies induced by Tandiflu1 can bind IAV Group 1 hemagglutinin types H1, H5, H11, H9, H16 and a conserved epitope on matrix protein 2 expressed by most strains of IAV. Vaccination with Tandiflu1 results in 100% protection from a lethal influenza challenge with H1N1 IAV. Serum transfer from vaccinated animals is sufficient to confer protection from influenza-associated illness in naïve mice. These data suggest that a Tandem Core based IAV vaccine might provide broad protection against common and emergent H1

  16. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants.

    Science.gov (United States)

    Chen, Qiang; He, Junyun; Phoolcharoen, Waranyoo; Mason, Hugh S

    2011-03-01

    Expression of recombinant vaccine antigens and monoclonal antibodies using plant viral vectors has developed extensively during the past several years. The approach benefits from high yields of recombinant protein obtained within days after transient delivery of viral vectors to leaves of Nicotiana benthamiana, a tobacco relative. Modified viral genomes of both RNA and DNA viruses have been created. Geminiviruses such as bean yellow dwarf virus (BeYDV) have a small, single stranded DNA genome that replicates in the nucleus of an infected plant cell, using the cellular DNA synthesis apparatus and a virus-encoded replication initiator protein (Rep). BeYDV-derived expression vectors contain deletions of the viral genes encoding coat and movement proteins and insertion of an expression cassette for a protein of interest. Delivery of the geminiviral vector to leaf cells via Agrobacterium-mediated delivery produces very high levels of recombinant DNA that can act as a transcription template, yielding high levels of mRNA for the protein of interest. Several vaccine antigens, including Norwalk virus capsid protein and hepatitis B core antigen, were expressed using the BeYDV vector at levels up to 1 mg per g of leaf mass. BeYDV replicons can be stacked in the same vector molecule by linking them in tandem, which enables production of multi-subunit proteins like monoclonal antibody (mAb) heavy and light chains. The protective mAb 6D8 against Ebola virus was produced at 0.5 mg per g of leaf mass. Multi-replicon vectors could be conveniently used to produce protein complexes, e.g. virus-like particles that require two or more subunits.

  17. Juzentaihoto Failed to Augment Antigen-Specific Immunity but Prevented Deterioration of Patients’ Conditions in Advanced Pancreatic Cancer under Personalized Peptide Vaccine

    Directory of Open Access Journals (Sweden)

    Shigeru Yutani

    2013-01-01

    Full Text Available Juzentaihoto (JTT is a well-known Japanese herbal medicine, which has been reported to modulate immune responses and enhance antitumor immunity in animal models. However, it is not clear whether JTT has similar effects on humans. In particular, there is little information on the effects of JTT in antigen-specific immunity in cancer patients. Here we conducted a randomized clinical study to investigate whether combined usage of JTT could affect antigen-specific immunity and clinical findings in advanced pancreatic cancer patients undergoing personalized peptide vaccination (PPV, in which HLA-matched vaccine antigens were selected based on the preexisting host immunity. Fifty-seven patients were randomly assigned to receive PPV with (n=28 or without (n=29 JTT. Unexpectedly, JTT did not significantly affect cellular or humoral immune responses specific to the vaccine antigens, which were determined by antigen-specific interferon-γ secretion in T cells and antigen-specific IgG titers in plasma, respectively. Nevertheless, JTT prevented deterioration of patients’ conditions, such as anemia, lymphopenia, hypoalbuminemia, plasma IL-6 elevation, and reduction of performance status, which are frequently observed in advanced cancers. To our knowledge, this is the first clinical study that examined the immunological and clinical effects of JTT in cancer patients undergoing immunotherapy in humans.

  18. Affordances revisited

    DEFF Research Database (Denmark)

    Dohn, Nina Bonderup

    2009-01-01

    This article takes a renewed look at the concept of "affordance." It points out that the concept is being used within the CSCL community in ways which signify an underlying disagreement concerning the exact ontological nature and epistemological status of an "affordance." Such disagreement, it is...

  19. Universal Influenza Vaccines, a Dream to Be Realized Soon

    Directory of Open Access Journals (Sweden)

    Han Zhang

    2014-04-01

    Full Text Available Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine.

  20. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. The effects of booster vaccination of hepatitis B vaccine on anti-HBV surface antigen negative children 11-15 years after primary vaccination.

    Science.gov (United States)

    Yao, Jun; Ren, Jingjing; Shen, Lingzhi; Chen, Yongdi; Liang, Xiaofeng; Cui, Fuqiang; Li, Qian; Jiang, Zhenggang; Wang, Fuzhen

    2011-10-01

    The twin aims of this study were to investigate the changes in anti-HBs IgG levels after booster vaccinations and to compare the effects of different vaccine doses in children aged 11-15 years who were both negative for HBsAg and had an Anti-HBs vaccination. Children who were born between 1993 and 1998 and who had completed their Hepatitis B vaccination program in infancy were randomly recruited to the study. The participants were divided into three groups according to their anti-HBs IgG levels: group I had a level vaccination program comprised three (20μg) doses of HepB (CHO) vaccine administered at zero, one and six months after they are join this program: anti-HBs levels were measured one month after the first and third vaccinations. Among 448 HBsAg-negative infants, anti-HBs seroconversion rates (defined as an anti-HBs >= 10 mIU/mL) after the first and third vaccinations were 85.5% and 98.6% respectively - these observed differences were statistically significant (χ2 [1dof] = 50.11, pnegative (anti-HBsanti-HBs titer levels decay to 10mIU/ml in 11-15 years of age children completed HepB Basic immunization, which need for booster immunization. The effect is better for those children with a relatively higher antibody titer before booster, and the effect of three doses booster is best.

  2. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells

    Directory of Open Access Journals (Sweden)

    Alba Marina Gimenez

    2016-11-01

    Full Text Available Abstract Background Babesia bovis is a tick-transmitted protozoan hemoparasite and the causative agent of bovine babesiosis, a potential risk to more than 500 million cattle worldwide. The vaccines currently available are based on attenuated parasites, which are difficult to produce, and are only recommended for use in bovines under one year of age. When used in older animals, these vaccines may cause life-threatening clinical symptoms and eventually death. The development of a multi-subunit recombinant vaccine against B. bovis would be attractive from an economic standpoint and, most importantly, could be recommended for animals of any age. In the present study, recombinant ectodomains of MSA-2a1, MSA-2b and MSA-2c antigens were expressed in Pichia pastoris yeast as secreted soluble peptides. Results The antigens were purified to homogeneity, and biochemically and immunologically characterized. A vaccine formulation was obtained by emulsifying a mixture of the three peptides with the adjuvant Montanide ISA 720, which elicited high IgG antibody titers against each of the above antigens. IgG antibodies generated against each MSA-antigen recognized merozoites and significantly inhibited the invasion of bovine erythrocytes. Cellular immune responses were also detected, which were characterized by splenic and lymph node CD4+ T cells producing IFN-γ and TNF-α upon stimulation with the antigens MSA-2a1 or MSA-2c. Conclusions These data strongly suggest the high protective potential of the presented formulation, and we propose that it could be tested in vaccination trials of bovines challenged with B. bovis.

  3. Efficacy of an AS03A-adjuvanted split H5N1 influenza vaccine against an antigenically distinct low pathogenic H5N1 virus in pigs.

    Science.gov (United States)

    De Vleeschauwer, Annebel R; Baras, Benoît; Kyriakis, Constantinos S; Jacob, Valérie; Planty, Camille; Giannini, Sandra L; Mossman, Sally; Van Reeth, Kristien

    2012-08-10

    We used the pig model of influenza to examine the efficacy of an AS03(A)-adjuvanted split H5N1 (A/Indonesia/05/2005) vaccine against challenge with a low pathogenic (LP) H5N1 avian influenza (AI) virus (duck/Minnesota/1525/1981) with only 85% amino acid homology in its HA1. Influenza seronegative pigs were vaccinated twice intramuscularly with adjuvanted vaccine at 3 antigen doses, unadjuvanted vaccine or placebo. All pigs were challenged 4 weeks after the second vaccination and euthanized 2 days later. After 2 vaccinations, all pigs in the adjuvanted vaccine groups had high hemagglutination inhibiting (HI) antibody titers to the vaccine strain (160-640), and lower antibody titers to the A/Vietnam/1194/04 H5N1 strain and to 2 LP H5 viruses with 90-91% amino acid homology to the vaccine strain (20-160). Eight out of 12 pigs had HI titers (10-20) to the challenge virus immediately before challenge. Neuraminidase inhibiting antibodies to the challenge virus were detected in most pigs (7/12) and virus neutralizing antibodies in all pigs. There was no antigen-dose dependent effect on the antibody response among the pigs immunized with adjuvanted H5N1 vaccines. After challenge, these pigs showed a complete clinical protection, reduced lung lesions and a significant protection against virus replication in the respiratory tract. Though the challenge virus showed only moderate replication efficiency in pigs, our study suggests that AS03(A)-adjuvanted H5N1 vaccine may confer a broader protection than generally assumed. The pros and cons of the pig as an H5N1 challenge model are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Computer analysis of antigenic domains and RGD-like sequences (RGWG) in the E glycoprotein of flaviviruses: an approach to vaccine development.

    Science.gov (United States)

    Becker, Y

    1990-09-01

    Antigenic domains and RGD-like sequences in the E glycoprotein of the flaviviruses Japanese encephalitis virus, yellow fever virus, West Nile virus, dengue type 4 virus, and tick-borne encephalitis virus were analyzed by computer programs that provide information on the physical properties of the polypeptides. The use of computer programs for the development of vaccines based on the synthesis of antigenic peptides is discussed. Synthetic viral peptides are proposed to be used for topical application so as to interfere with the virus-cell interaction. Viral peptides with antigenic epitopes to protect against dengue virus infection without enhancing pathogenesis may also be developed on the basis of the computer analysis.

  5. Brucella abortus RB51 and Hot Saline Extract from Brucella ovis as Antigens in a Complement Fixation Test Used To Detect Sheep Vaccinated with Brucella abortus RB51

    OpenAIRE

    Adone, Rosanna; Ciuchini, Franco

    2001-01-01

    The efficacy of Brucella abortus RB51 and hot saline extract (HSE) from Brucella ovis as antigens in complement fixation (CF) tests was comparatively evaluated in detecting immune responses of sheep vaccinated with B. abortus strain RB51. For this study, four 5-month-old sheep were vaccinated subcutaneously with 5 × 109 CFU of RB51, and two sheep received saline. Serum samples collected at different times after vaccination were tested for the presence of antibodies to RB51 by a CF test with R...

  6. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Annual Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-04-16

    The goal of this proposal is to demonstrate that co-localization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of recombinant subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. NLPs are are biocompatible, high-density lipoprotein mimetics that are amenable to the incorporation of multiple, chemically-disparate adjuvant and antigen molecules. We hypothesize that the ability to co-localize optimized adjuvant formulations with subunit antigens within a single particle will enhance the stimulation and activation of key immune effector cells, increasing the protective efficacy of subunit antigen-based vaccines. While Burkholderia spp. and F. tularensis subunit antigens are the focus of this proposal, we anticipate that this approach is applicable to a wide range of DOD-relevant biothreat agents. The F344 rat aerosol challenge model for F. tularensis has been successfully established at Battelle under this contract, and Year 3 efficacy studies performed at Battelle demonstrated that an NLP vaccine formulation was able to enhance survival of female F344 rats relative to naïve animals. In addition, Year 3 focused on the incorporation of multiple Burkholderia antigens (both polysaccharides and proteins) onto adjuvanted NLPs, with immunological analysis poised to begin in the next quarter.

  7. Specificity for the tumor-associated self-antigen WT1 drives the development of fully functional memory T cells in the absence of vaccination.

    Science.gov (United States)

    Pospori, Constandina; Xue, Shao-An; Holler, Angelika; Voisine, Cecile; Perro, Mario; King, Judith; Fallah-Arani, Farnaz; Flutter, Barry; Chakraverty, Ronjon; Stauss, Hans J; Morris, Emma C

    2011-06-23

    Recently, vaccines against the Wilms Tumor antigen 1 (WT1) have been tested in cancer patients. However, it is currently not known whether physiologic levels of WT1 expression in stem and progenitor cells of normal tissue result in the deletion or tolerance induction of WT1-specific T cells. Here, we used an human leukocyte antigen-transgenic murine model to study the fate of human leukocyte antigen class-I restricted, WT1-specific T cells in the thymus and in the periphery. Thymocytes expressing a WT1-specific T-cell receptor derived from high avidity human CD8 T cells were positively selected into the single-positive CD8 population. In the periphery, T cells specific for the WT1 antigen differentiated into CD44-high memory phenotype cells, whereas T cells specific for a non-self-viral antigen retained a CD44(low) naive phenotype. Only the WT1-specific T cells, but not the virus-specific T cells, displayed rapid antigen-specific effector function without prior vaccination. Despite long-term persistence of WT1-specific memory T cells, the animals did not develop autoimmunity, and the function of hematopoietic stem and progenitor cells was unimpaired. This is the first demonstration that specificity for a tumor-associated self-antigen may drive differentiation of functionally competent memory T cells.

  8. MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Directory of Open Access Journals (Sweden)

    Joost H C M Kreijtz

    Full Text Available Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate.

  9. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    Science.gov (United States)

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  10. Immunogenicity and efficacy of single antigen Gp63, polytope and polytopeHSP70 DNA vaccines against visceral Leishmaniasis in experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Rakhee Sachdeva

    2009-12-01

    Full Text Available Polytope approach of genetic immunization is a promising strategy for the prevention of infectious disease as it is capable of generating effective cell mediated immunity by delivering the T cell epitopes assembled in series. Leishmaniasis is a significant world wide health problem for which no vaccine exists. In this study we have compared immunogenicity and efficacy of three types of DNA vaccines: single antigen Gp63 (Gp63/pcDNA, polytope (Poly/pcDNA and Polytope fused with hsp70 (Poly/hsp/pcDNA against visceral leishmaniasis in susceptible BALB/c mice. Mice vaccinated with these plasmids generated strong Th1 immune response as seen by dominating IFN-gamma over IL-10 cytokine. Interestingly, cytotoxic responses generated by polytope DNA plasmid fused with hsp70 of Leishmania donovani were significantly higher when compared to polytope and single antigen Gp63 vaccine. Challenge studies revealed that the parasite load in liver and spleen was significantly lower with Poly/hsp/pcDNA vaccination compared to other vaccines. Therefore, our study indicates that polytope DNA vaccine is a feasible, practical and effective approach for visceral leishmaniasis.

  11. Green revolution vaccines, edible vaccines

    African Journals Online (AJOL)

    Admin

    Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. INTRODUCTION. Vaccination involves the stimulation of the immune system to prepare it for the event of an invasion from a particular pathogen for which the immune system has been primed (Arntzen, 1997). The release of vaccine is.

  12. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens

    Science.gov (United States)

    Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; Araujo, Leticia Mendes; Della Terra, Paula Portella; dos Santos, Priscila Oliveira; Pereira, Sandro Antonio; Schubach, Tânia Maria Pacheco; Burger, Eva; Lopes-Bezerra, Leila Maria; de Camargo, Zoilo Pires

    2015-01-01

    Background Sporothrix schenckii and associated species are agents of human and animal sporotrichosis that cause large sapronoses and zoonoses worldwide. Epidemiological surveillance has highlighted an overwhelming occurrence of the highly pathogenic fungus Sporothrix brasiliensis during feline outbreaks, leading to massive transmissions to humans. Early diagnosis of feline sporotrichosis by demonstrating the presence of a surrogate marker of infection can have a key role for selecting appropriate disease control measures and minimizing zoonotic transmission to humans. Methodology We explored the presence and diversity of serum antibodies (IgG) specific against Sporothrix antigens in cats with sporotrichosis and evaluated the utility of these antibodies for serodiagnosis. Antigen profiling included protein extracts from the closest known relatives S. brasiliensis and S. schenckii. Enzyme-linked immunosorbent assays and immunoblotting enabled us to characterize the major antigens of feline sporotrichosis from sera from cats with sporotrichosis (n = 49), healthy cats (n = 19), and cats with other diseases (n = 20). Principal Findings Enzyme-linked immunosorbent assay-based quantitation of anti-Sporothrix IgG exhibited high sensitivity and specificity in cats with sporotrichosis (area under the curve, 1.0; 95% confidence interval, 0.94–1; PSporothrix antigens were remarkably cross-reactive, supporting the hypothesis that antigenic epitopes may be conserved among closely related agents. One-dimensional immunoblotting indicated that 3-carboxymuconate cyclase (a 60-kDa protein in S. brasiliensis and a 70-kDa protein in S. schenckii) is the immunodominant antigen in feline sporotrichosis. Two-dimensional immunoblotting revealed six IgG-reactive isoforms of gp60 in the S. brasiliensis proteome, similar to the humoral response found in human sporotrichosis. Conclusions A convergent IgG-response in various hosts (mice, cats, and humans) has important implications for our

  13. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human leucoc...... leucocyte antigen (HLA) class I binders (K-D...

  14. Prevalence and sequence variations of the genes encoding the five antigens included in the novel 5CVMB vaccine covering group B meningococcal disease.

    Science.gov (United States)

    Jacobsson, Susanne; Hedberg, Sara Thulin; Mölling, Paula; Unemo, Magnus; Comanducci, Maurizio; Rappuoli, Rino; Olcén, Per

    2009-03-04

    During the recent years, projects are in progress for designing broad-range non-capsular-based meningococcal vaccines, covering also serogroup B isolates. We have examined three genes encoding antigens (NadA, GNA1030 and GNA2091) included in a novel vaccine, i.e. the 5 Component Vaccine against Meningococcus B (5CVMB), in terms of gene prevalence and sequence variations. These data were combined with the results from a similar study, examining the two additional antigens included in the 5CVMB (fHbp and GNA2132). nadA and fHbp v. 1 were present in 38% (n=36), respectively 71% (n=67) of the isolates, whereas gna2132, gna1030 and gna2091 were present in all the Neisseria meningitidis isolates tested (n=95). The level of amino acid conservation was relatively high in GNA1030 (93%), GNA2091 (92%), and within the main variants of NadA and fHbp. GNA2132 (54% of the amino acids conserved) appeared to be the most diversified antigen. Consequently, the theoretical coverage of the 5CVMB antigens and the feasibility to use these in a broad-range meningococcal vaccine is appealing.

  15. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display

    DEFF Research Database (Denmark)

    Singh, Susheel K; Thrane, Susan; Janitzek, Christoph M

    2017-01-01

    Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However...

  16. Augmentation of antigen-specific immune responses using DNA-fusogenic liposome vaccine

    International Nuclear Information System (INIS)

    Yoshikawa, Tomoaki; Imazu, Susumu; Gao Jianqing; Hayashi, Kazuyuki; Tsuda, Yasuhiro; Shimokawa, Mariko; Sugita, Toshiki; Niwa, Takako; Oda, Atushi; Akashi, Mitsuru; Tsutsumi, Yasuo; Mayumi, Tadanori; Nakagawa, Shinsaku

    2004-01-01

    In an attempt to enhance the immunological efficacy of genetic immunization, we investigated a new biological means for delivering antigen gene directly to the cytoplasm via membrane fusion. In this context, we investigated fusogenic liposome (FL) encapsulating DNA as a possible genetic immunization vehicle. RT-PCR analysis indicated that a FL could introduce and express encapsulating OVA gene efficiently and rapidly in vitro. Consistent with this observation, an in vitro assay showed that FL-mediated antigen-gene delivery can induce potent presentation of antigen via the MHC class I-dependent pathway. Accordingly, immunization with FL containing the OVA-gene induced potent OVA-specific Th1 and Th2 cytokine production. Additionally, OVA-specific CTL responses and antibody production were also observed in systemic compartments including the spleen, upon immunization with the OVA-gene encapsulating FL. These findings suggest that FL is an effective genetic immunization carrier system for the stimulation of antigen-specific immune responses against its encoding antigen

  17. DNA vaccines encoding antigen targeted to MHC class II induce influenza specific CD8+ T cell responses, enabling faster resolution of influenza disease.

    Directory of Open Access Journals (Sweden)

    Laura Lambert

    2016-08-01

    Full Text Available Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine induced protection. Whilst it is clear that antibodies play a protective role, vaccine induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells we used a DNA vaccine that encodes antigen dimerised to an immune cell targeting module. Immunising CB6F1 mice with the DNA vaccine in a heterologous prime boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared to protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting we compared the response between BALB/c, C57BL/6 mice and an F1 cross of the two strains (CB6F1. BALB/c mice were protected, C57BL/6 were not and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

  18. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    Science.gov (United States)

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U.; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M.; Fredriksen, Agnete Brunsvik; Tregoning, John S.

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines. PMID:27602032

  19. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease.

    Science.gov (United States)

    Lambert, Laura; Kinnear, Ekaterina; McDonald, Jacqueline U; Grodeland, Gunnveig; Bogen, Bjarne; Stubsrud, Elisabeth; Lindeberg, Mona M; Fredriksen, Agnete Brunsvik; Tregoning, John S

    2016-01-01

    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8(+) T cells can improve protection. To further explore the role of CD8(+) T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8(+) T cells. However, DNA vaccine regimes that induced CD8(+) T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-E(d) single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.

  20. Network Affordances

    DEFF Research Database (Denmark)

    Samson, Audrey; Soon, Winnie

    2015-01-01

    This paper examines the notion of network affordance within the context of network art. Building on Gibson's theory (Gibson, 1979) we understand affordance as the perceived and actual parameters of a thing. We expand on Gaver's affordance of predictability (Gaver, 1996) to include ecological...... and computational parameters of unpredictability. We illustrate the notion of unpredictability by considering four specific works that were included in a network art exhibiton, SPEED SHOW [2.0] Hong Kong. The paper discusses how the artworks are contingent upon the parameteric relations (Parisi, 2013......), of the network. We introduce network affordance as a dynamic framework that could articulate the experienced tension arising from the (visible) symbolic representation of computational processes and its hidden occurrences. We base our proposal on the experience of both organising the SPEED SHOW and participating...

  1. Prevention of lethal experimental infection of C57BL/6 mice by vaccination with Brucella abortus strain RB51 expressing Neospora caninum antigens.

    Science.gov (United States)

    Ramamoorthy, Sheela; Sanakkayala, Neelima; Vemulapalli, Ramesh; Duncan, Robert B; Lindsay, David S; Schurig, Gerhart S; Boyle, Stephen M; Kasimanickam, Ramanathan; Sriranganathan, Nammalwar

    2007-11-01

    Bovine abortions caused by the intracellular protozoal parasite Neospora caninum are a major concern to cattle industries worldwide. A strong Th1 immune response is required for protection against N. caninum. Brucella abortus strain RB51 is currently used as a live, attenuated vaccine against bovine brucellosis. Strain RB51 can also be used as an expression vector for heterologous protein expression. In this study, putative protective antigens of N. caninum MIC1, MIC3, GRA2, GRA6 and SRS2, were expressed individually in B. abortus strain RB51. The ability of each of the recombinant RB51 strains to induce N. caninum-specific immunity was assessed in C57BL/6 mice. Mice were immunised by two i.p. inoculations, 4 weeks apart. Five weeks after the second immunisation, spleen cells from the vaccinated mice secreted high levels of IFN-gamma and IL-10 upon in vitro stimulation with N. caninum whole cell lysate antigens. N. caninum-specific antibodies of both IgG1 and IgG2a subtypes were detected in the serum of the vaccinated mice. Mice in the vaccinated and control groups were challenged with 2 x 10(7)N. caninum tachyzoites i.p. and observed for 28 days after vaccination. All unvaccinated control mice died within 7 days. Mice in the MIC1 and GRA6 vaccine groups were completely protected while the mice in the SRS2, GRA2 and MIC3 vaccinated groups were partially protected and experienced 10-50% mortality. The non-recombinant RB51 vector control group experienced an average protection of 69%. These results suggest that expression of protective antigens of N. caninum in B. abortus strain RB51 is a novel approach towards the development of a multivalent vaccine against brucellosis and neosporosis.

  2. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    Science.gov (United States)

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  3. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Luisina Martorelli

    Full Text Available Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS(BLS-Stx2B, in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB, 3 antigens (IntiminC280, EspB, BLS-Stx2B, BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo.

  4. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7.

    Science.gov (United States)

    Martorelli, Luisina; Garbaccio, Sergio; Vilte, Daniel A; Albanese, Adriana A; Mejías, María P; Palermo, Marina S; Mercado, Elsa C; Ibarra, Cristina E; Cataldi, Angel A

    2017-01-01

    Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo.

  5. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-13

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the third quarter of the third year, F344 rats vaccinated with adjuvanted NLP formulations were challenged with F. tularensis SCHU S4 at Battelle. Preliminary data indicate that up to 65% of females vaccinated intranasally with an NLP-based formulation survived this challenge, compared to only 20% survival of naïve animals. In addition, NLPs were successfully formulated with Burkholderia protein antigens. IACUC approval for immunological assessments in BALB/c mice was received and we anticipate that these assessments will begin by March 2015, pending ACURO approval.

  6. Selection of a novel anti-nicotine vaccine: influence of antigen design on antibody function in mice.

    Directory of Open Access Journals (Sweden)

    David C Pryde

    Full Text Available Anti-nicotine vaccines may aid smoking cessation via the induction of anti-nicotine antibodies (Ab which reduce nicotine entering the brain, and hence the associated reward. Ab function depends on both the quantity (titer and the quality (affinity of the Ab. Anti-nicotine vaccines tested previously in clinical studies had poor efficacy despite high Ab titer, and this may be due to inadequate function if Ab of low affinity were induced. In this study, we designed and synthesized a series of novel nicotine-like haptens which were all linked to diphtheria toxoid (DT as carrier, but which differed in the site of attachment of linker to nicotine, the nature of linker used, and the handle used to attach the hapten to DT. The resulting hapten conjugates were evaluated in a mouse model, using CpG (a TLR9 agonist and aluminum hydroxide (Al(OH3 as adjuvants, whereby Ab titers, affinity and function were evaluated using a radiolabeled nicotine challenge model. A series of additional linkers varying in length, rigidity and polarity were used with a single hapten to generate additional DT-conjugates, which were also tested in mice. Conjugates made with different haptens resulted in various titers of anti-nicotine Ab. Several haptens gave similarly high Ab titers, but among these, Ab affinity and hence function varied considerably. Linker also influenced Ab titer, affinity and function. These results demonstrate that immune responses induced in mice by nicotine-conjugate antigens are greatly influenced by hapten design including site of attachment of linker to nicotine, the nature of linker used, and the handle used to attach the hapten to DT. While both Ab titer and affinity contributed to function, affinity was more sensitive to antigen differences.

  7. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients.

    Science.gov (United States)

    Morse, Michael A; Chapman, Robert; Powderly, John; Blackwell, Kimberly; Keler, Tibor; Green, Jennifer; Riggs, Renee; He, Li-Zhen; Ramakrishna, Venky; Vitale, Laura; Zhao, Biwei; Butler, Stephen A; Hobeika, Amy; Osada, Takuya; Davis, Thomas; Clay, Timothy; Lyerly, H Kim

    2011-07-15

    The use of tumor-derived proteins as cancer vaccines is complicated by tolerance to these self-antigens. Tolerance may be broken by immunization with activated, autologous, ex vivo generated and antigen-loaded, antigen-presenting cells (APC); however, targeting tumor antigen directly to APC in vivo would be a less complicated strategy. We wished to test whether targeted delivery of an otherwise poorly immunogenic, soluble antigen to APC through their mannose receptors (MR) would induce clinically relevant immunity. Two phase I studies were conducted with CDX-1307, a vaccine composed of human chorionic gonadotropin beta-chain (hCG-β) fused to an MR-specific monoclonal antibody, administered either locally (intradermally) or systemically (intravenously) in patients with advanced epithelial malignancies. An initial dose escalation of single-agent CDX-1307 was followed by additional cohorts of CDX-1307 combined with granulocyte-macrophage colony-stimulating factor (GM-CSF) and the Toll-like receptor (TLR) 3 agonist polyinosinic-polycytidylic acid (poly-ICLC) and TLR7/8 agonist resiquimod to activate the APC. CDX-1307 induced consistent humoral and T-cell responses to hCG-β when coadministered with TLR agonists. Greater immune responses and clinical benefit, including the longest duration of stable disease, were observed with immunization combined with local TLR agonists. Immune responses were induced equally efficiently in patients with elevated and nonelevated levels of serum hCG-β. Antibodies within the serum of vaccinated participants had tumor suppressive function in vitro. Toxicity consisted chiefly of mild injection site reactions. APC targeting and activation induce adaptive immunity against poorly immunogenic self-antigens which has implications for enhancing the efficacy of cancer immunotherapy.

  8. Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naive prostate cancer patients.

    Science.gov (United States)

    Karbach, Julia; Neumann, Antje; Atmaca, Akin; Wahle, Claudia; Brand, Kathrin; von Boehmer, Lotta; Knuth, Alexander; Bender, Armin; Ritter, Gerd; Old, Lloyd J; Jäger, Elke

    2011-02-15

    NY-ESO-1, one of the most immunogenic tumor antigens, is expressed in 15% to 25% of metastatic prostate cancers. The immunological and clinical effects of vaccination with recombinant NY-ESO-1 protein combined with CpG as adjuvant were evaluated. In a phase I clinical study, patients with advanced prostate cancer were vaccinated with recombinant NY-ESO-1 protein (100 μg) mixed with CpG 7909 (2.5 mg) every 3 weeks intradermally for 4 doses. Objectives of the study were the safety of the vaccine and changes of specific humoral and cellular immunological responses to NY-ESO-1 in relation to detectable NY-ESO-1 expression in the individual tumor. All 12 baseline sero-negative patients developed high-titer NY-ESO-1 antibody responses. B-cell epitope mapping identified NY-ESO-1 p91-110 to be recognized most frequently by vaccine-induced antibodies. Two patients developed significant antibody titers against the adjuvant CpG. NY-ESO-1-specific CD4+ and/or CD8+ T-cell responses were induced in 9 patients (69%). Five of these 9 patients did not express NY-ESO-1 in the autologous tumor. Postvaccine CD8+ T-cell clones recognized and lyzed HLA-matched tumor cell lines in an antigen-specific manner. Our data provide clear evidence for the capacity of NY-ESO-1 protein/CpG vaccine to induce integrated antigen-specific immune responses in vivo and to efficiently prime CD8+ T-cell responses in NY-ESO-1 antigen-negative patients. Our results may also support further clinical vaccination protocols with NY-ESO-1 protein not only focused on the treatment of existing cancer, but also to prevent further development of NY-ESO-1 positive cancers in vivo. ©2010 AACR.

  9. Safety and immunogenicity of a combined hepatitis B virus-Haemophilus influenzae type B vaccine comprising a synthetic antigen in healthy adults.

    Science.gov (United States)

    Aguilar-Betancourt, Arístides; González-Delgado, Carlos Alberto; Cinza-Estévez, Z; Martínez-Cabrera, Jesus; Véliz-Ríos, Gloria; Alemán-Zaldívar, Regis; Alonso-Martínez, M I; Lago-Baños, M; Puble-Alvarez, N; Delahanty-Fernandez, A; Juvier-Madrazo, A I; Ortega-León, D; Olivera-Ruano, L; Correa-Fernández, A; Abreu-Reyes, D; Soto-Mestre, E; Pérez-Pérez, M V; Figueroa-Baile, N; Pérez, L Hernandez; Rodríguez-Silva, A; Martínez-Díaz, E; Guillén-Nieto, G E; Muzio-González, Verena L

    2008-01-01

    The combined HB-Hib vaccine candidate Hebervac HB-Hib (CIGB, La Habana), comprising recombinant HBsAg and tetanus toxoid conjugate synthetic PRP antigens has shown to be highly immunogenic in animal models. A phase I open, controlled, randomized clinical trial was carried out to assess the safety and immunogenicity profile of this bivalent vaccine in 25 healthy adults who were positive for antibody to HBsAg (anti-HBs). The trial was performed according to Good Clinical Practices and Guidelines. Volunteers were randomly allocated to receive the combined vaccine or simultaneous administration of HB vaccine Heberbiovac-HB and Hib vaccine QuimiHib (CIGB, La Habana). All individuals were intramuscularly immunized with a unique dose of 10 microg HBsAg plus 10 microg conjugated synthetic PRP. Adverse events were actively recorded after vaccine administration. Total anti-HBs and IgG anti-PRP antibody titers were evaluated using commercial ELISA kits at baseline and 30 days post-vaccination. The combined vaccine candidate was safe and well tolerated. The most common adverse reactions were local pain, febricula, fever and local erythema. These reactions were all mild in intensity and resolved without medical treatment. Adverse events were mostly reported during the first 6-72 hours post-vaccination. There were no serious adverse events during the study. No severe or unexpected events were either recorded during the trial. The combined vaccine elicited an anti-HBs and anti-PRP booster response in 100% of subjects at day 30 of the immunization schedule. Anti-HBs and anti-PRP antibody levels had at least a two-fold increase compared to baseline sera. Even more, anti-HBs antibody titer showed a four-fold increase in 100% of volunteers in the study group. The results indicate that the combined HB-Hib vaccine produces increased antibody levels in healthy adults who have previously been exposed to these two antigens. To our knowledge, this is the first demonstration of safety and

  10. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development

    DEFF Research Database (Denmark)

    Hviid, Lars

    2010-01-01

    There is substantial immuno-epidemiological evidence that the parasite-encoded, so-called variant surface antigens (VSAs) such as PfEMP1 on the surface of infected erythrocytes (IEs) are important-in some cases probably decisive-determinants of clinical outcome of P. falciparum malaria. The evide...

  11. Antigenic drift in swine influenza H3 haemagglutinins with implications for vaccination policy

    NARCIS (Netherlands)

    Jong, de J.C.; Nieuwstadt, van A.P.; Kimman, T.G.; Loeffen, W.L.A.; Bestebroer, T.M.; Bijlsma, K.; Verweij, C.; Osterhaus, A.D.M.E.; Claas, E.C.J.

    1999-01-01

    In order to explore the occurrence of antigenic drift in swine influenza A(H3N2) virus, we examined virus strains from outbreaks of respiratory disease among finishing pigs in the Netherlands in 1996 and 1997 and from earlier outbreaks. In contrast to swine H3N2 strains from the 1980s, the recent

  12. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    International Nuclear Information System (INIS)

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-01-01

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NΔ52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  13. Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors.

    Science.gov (United States)

    Kottke, Timothy; Errington, Fiona; Pulido, Jose; Galivo, Feorillo; Thompson, Jill; Wongthida, Phonphimon; Diaz, Rosa Maria; Chong, Heung; Ilett, Elizabeth; Chester, John; Pandha, Hardev; Harrington, Kevin; Selby, Peter; Melcher, Alan; Vile, Richard

    2011-06-19

    Effective cancer immunotherapy requires the release of a broad spectrum of tumor antigens in the context of potent immune activation. We show here that a cDNA library of normal tissue, expressed from a highly immunogenic viral platform, cures established tumors of the same histological type from which the cDNA library was derived. Immune escape occurred with suboptimal vaccination, but tumor cells that escaped the immune pressure were readily treated by second-line virus-based immunotherapy. This approach has several major advantages. Use of the cDNA library leads to presentation of a broad repertoire of (undefined) tumor-associated antigens, which reduces emergence of treatment-resistant variants and also permits rational, combined-modality approaches in the clinic. Finally, the viral vectors can be delivered systemically, without the need for tumor targeting, and are amenable to clinical-grade production. Therefore, virus-expressed cDNA libraries represent a novel paradigm for cancer treatment addressing many of the key issues that have undermined the efficacy of immuno- and virotherapy to date.

  14. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses.

    Science.gov (United States)

    Duong, Huu Thuy Trang; Kim, Nak Won; Thambi, Thavasyappan; Giang Phan, V H; Lee, Min Sang; Yin, Yue; Jeong, Ji Hoon; Lee, Doo Sung

    2018-01-10

    Successful delivery of a DNA vaccine to antigen-presenting cells and their subsequent stimulation of CD4 + and CD8 + T cell immunity remains an inefficient process. In general, the delivery of prophylactic vaccines is mainly mired by low transfection efficacy, poor immunogenicity, and safety issues from the materials employed. Currently, several strategies have been exploited to improve immunogenicity, but an effective strategy for safe and pain-free delivery of DNA vaccines is complicated. Herein, we report the rapid delivery of polyplex-based DNA vaccines using microneedle arrays coated with a polyelectrolyte multilayer assembly of charge reversal pH-responsive copolymer and heparin. The charge reversal pH-responsive copolymer, composed of oligo(sulfamethazine)-b-poly(ethylene glycol)-b-poly(amino urethane) (OSM-b-PEG-b-PAEU), was used as a triggering layer in the polyelectrolyte multilayer assembly on microneedles. Charge reversal characteristics of this copolymer, that is, the OSM-b-PEG-b-PAEU copolymer exhibit, positive charge at low pH (pH4.03) and becoming negative charge when exposed to physiological pH conditions (pH7.4), allowing the facile assembly and disassembly of polyelectrolyte multilayers. The electrostatic repulsion between heparin and OSM-b-PEG-b-PAEU charge reversal copolymer triggered the release of DNA vaccines. DNA vaccines laden on microneedles are effectively transfected into RAW 264.7 macrophage cells in vitro. Vaccination of BALB/c mice by DNA vaccine-loaded microneedle arrays coated with a polyelectrolyte multilayer generated antigen-specific robust immune responses. These findings provide potential strategy of charge reversal pH-responsive copolymers coated microneedles for DNA vaccine delivery. Copyright © 2017. Published by Elsevier B.V.

  15. Identification of protective postexposure mycobacterial vaccine antigens using an immunosuppression-based reactivation model in the zebrafish

    Directory of Open Access Journals (Sweden)

    Henna Myllymäki

    2018-03-01

    Full Text Available Roughly one third of the human population carries a latent Mycobacterium tuberculosis infection, with a 5-10% lifetime risk of reactivation to active tuberculosis and further spreading the disease. The mechanisms leading to the reactivation of a latent Mycobacterium tuberculosis infection are insufficiently understood. Here, we used a natural fish pathogen, Mycobacterium marinum, to model the reactivation of a mycobacterial infection in the adult zebrafish (Danio rerio. A low-dose intraperitoneal injection (∼40 colony-forming units led to a latent infection, with mycobacteria found in well-organized granulomas surrounded by a thick layer of fibrous tissue. A latent infection could be reactivated by oral dexamethasone treatment, which led to disruption of the granuloma structures and dissemination of bacteria. This was associated with the depletion of lymphocytes, especially CD4+ T cells. Using this model, we verified that ethambutol is effective against an active disease but not a latent infection. In addition, we screened 15 mycobacterial antigens as postexposure DNA vaccines, of which RpfB and MMAR_4207 reduced bacterial burdens upon reactivation, as did the Ag85-ESAT-6 combination. In conclusion, the adult zebrafish-M. marinum infection model provides a feasible tool for examining the mechanisms of reactivation in mycobacterial infections, and for screening vaccine and drug candidates. This article has an associated First Person interview with the first author of the paper.

  16. Limitations of the Echinococcus granulosus genome sequence assemblies for analysis of the gene family encoding the EG95 vaccine antigen.

    Science.gov (United States)

    Gauci, Charles G; Alvarez Rojas, Cristian A; Chow, Conan; Lightowlers, Marshall W

    2017-11-27

    Echinococcus granulosus is an important zoonotic parasite that is distributed worldwide. The EG95 vaccine was developed to assist with control of E. granulosus transmission through the parasite's livestock intermediate hosts. The vaccine is based on a recombinant antigen encoded by a gene which is a member of a multi-gene family. With the recent availability of two E. granulosus draft genomes, we sought to map the eg95 gene family to the genomes. We were unable to map unequivocally any of the eg95 gene family members which had previously been characterized by cloning and sequencing both strands of genomic DNA fragments. Our inability to map EG95-related genes to the genomes has revealed limitations in the assembled sequence data when utilized for gene family analyses. This study contrasts with the expectations expressed in often high-profile publications describing draft genomes of parasitic organisms, highlighting deficiencies in currently available genomic resources for E. granulosus and provides a cautionary note for research which seeks to utilize these genome datasets.

  17. Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25.

    Science.gov (United States)

    Scally, Stephen W; McLeod, Brandon; Bosch, Alexandre; Miura, Kazutoyo; Liang, Qi; Carroll, Sean; Reponen, Sini; Nguyen, Ngan; Giladi, Eldar; Rämisch, Sebastian; Yusibov, Vidadi; Bradley, Allan; Lemiale, Franck; Schief, William R; Emerling, Daniel; Kellam, Paul; King, C Richter; Julien, Jean-Philippe

    2017-11-16

    The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens.

  18. Identification of protective pneumococcal T(H17 antigens from the soluble fraction of a killed whole cell vaccine.

    Directory of Open Access Journals (Sweden)

    Kristin L Moffitt

    Full Text Available Mucosal or parenteral immunization with a killed unencapsulated pneumococcal whole cell antigen (WCA with an adjuvant protects mice from colonization by a T(H17 CD4+ cell-mediated mechanism. Using preparative SDS gels, we separated the soluble proteins that compose the WCA in order to identify fractions that were immunogenic and protective. We screened these fractions for their ability to stimulate IL-17A secretion from splenocytes obtained from mice immunized with WCA and adjuvant. We identified 12 proteins within the stimulatory fractions by mass spectrometry; these proteins were then cloned, recombinantly expressed and purified using an Escherichia coli expression system. The ability of these proteins to induce IL-17A secretion was then evaluated by stimulation of mouse splenocytes. Of the four most stimulatory proteins, three were protective in a mouse pneumococcal serotype 6B colonization model. This work thus describes a method for identifying immunogenic proteins from the soluble fraction of pneumococcus and shows that several of the proteins identified protect mice from colonization when used as mucosal vaccines. We propose that, by providing protection against pneumococcal colonization, one or more of these proteins may serve as components of a multivalent pneumococcal vaccine.

  19. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia.

    Science.gov (United States)

    Virginio, Veridiana Gomes; Gonchoroski, Taylor; Paes, Jéssica Andrade; Schuck, Desirée Cigaran; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2014-10-07

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP) and causes major economic losses to the pig industry worldwide. Commercially available vaccines provide only partial protection and are relatively expensive. In this study, we assessed the humoral and cellular immune responses to three recombinant antigens of M. hyopneumoniae. Immune responses to selected domains of the P46, HSP70 and MnuA antigens (P46102-253, HSP70212-601 and MnuA182-378), delivered as recombinant subunit or DNA vaccines, were evaluated in BALB/c mice. All purified recombinant antigens and two DNA vaccines, pcDNA3.1(+)/HSP70212-601 and pcDNA3.1(+)/MnuA182-378, elicited a strong humoral immune response, indicated by high IgG levels in the serum. The cellular immune response was assessed by detection of IFN-γ, IL-10 and IL-4 in splenocyte culture supernatants. The recombinant subunit and DNA vaccines induced Th1-polarized immune responses, as evidenced by increased levels of IFN-γ. All recombinant subunit vaccines and the pcDNA3.1(+)/MnuA182-378 vaccine also induced the secretion of IL-10, a Th2-type cytokine, in large quantities. The mixed Th1/Th2-type response may elicit an effective immune response against M. hyopneumoniae, suggesting that P46102-253, HSP70212-601 and MnuA182-378 are potential novel and promising targets for the development of vaccines against PEP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. GM-CSF Production Allows the Identification of Immunoprevalent Antigens Recognized by Human CD4+ T Cells Following Smallpox Vaccination

    Science.gov (United States)

    Judkowski, Valeria; Bunying, Alcinette; Ge, Feng; Appel, Jon R.; Law, Kingyee; Sharma, Atima; Raja- Gabaglia, Claudia; Norori, Patricia; Santos, Radleigh G.; Giulianotti, Marc A.; Slifka, Mark K.; Douek, Daniel C.; Graham, Barney S.; Pinilla, Clemencia

    2011-01-01

    The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a “T cell–driven” methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens. PMID:21931646

  1. GM-CSF production allows the identification of immunoprevalent antigens recognized by human CD4+ T cells following smallpox vaccination.

    Directory of Open Access Journals (Sweden)

    Valeria Judkowski

    Full Text Available The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a "T cell-driven" methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens.

  2. Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines

    Directory of Open Access Journals (Sweden)

    Mina eJohn

    2014-10-01

    Full Text Available Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-existent among certain populations by virtue of common blood-borne, sexual or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4+ and CD8+ T cell responses. However frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however studies of elite controllers, or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy has provided the strongest evidence for CD8+ T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human leucocyte antigen (HLA-restricted T cell immunity in natural infection, and the challenges these pose for designing effective

  3. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  4. Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease.

    Directory of Open Access Journals (Sweden)

    Shivali Gupta

    Full Text Available Chagas disease, caused by Trypanosoma cruzi, is endemic in Latin America and an emerging infectious disease in the US and Europe. We have shown TcG1, TcG2, and TcG4 antigens elicit protective immunity to T. cruzi in mice and dogs. Herein, we investigated antigenicity of the recombinant proteins in humans to determine their potential utility for the development of next generation diagnostics for screening of T. cruzi infection and Chagas disease.Sera samples from inhabitants of the endemic areas of Argentina-Bolivia and Mexico-Guatemala were analyzed in 1(st-phase for anti-T. cruzi antibody response by traditional serology tests; and in 2(nd-phase for antibody response to the recombinant antigens (individually or mixed by an ELISA. We noted similar antibody response to candidate antigens in sera samples from inhabitants of Argentina and Mexico (n=175. The IgG antibodies to TcG1, TcG2, and TcG4 (individually and TcG(mix were present in 62-71%, 65-78% and 72-82%, and 89-93% of the subjects, respectively, identified to be seropositive by traditional serology. Recombinant TcG1- (93.6%, TcG2- (96%, TcG4- (94.6% and TcG(mix- (98% based ELISA exhibited significantly higher specificity compared to that noted for T. cruzi trypomastigote-based ELISA (77.8% in diagnosing T. cruzi-infection and avoiding cross-reactivity to Leishmania spp. No significant correlation was noted in the sera levels of antibody response and clinical severity of Chagas disease in seropositive subjects.Three candidate antigens were recognized by antibody response in chagasic patients from two distinct study sites and expressed in diverse strains of the circulating parasites. A multiplex ELISA detecting antibody response to three antigens was highly sensitive and specific in diagnosing T. cruzi infection in humans, suggesting that a diagnostic kit based on TcG1, TcG2 and TcG4 recombinant proteins will be useful in diverse situations.

  5. Development of myiasis vaccine: In vitro detection of immunoprotective responses of peritrophic membrane protein, first instar larva Ll supernatant and pellet antigen of fly Chrysomyia bezziana in sheep

    Directory of Open Access Journals (Sweden)

    Sukarsih

    1999-10-01

    Full Text Available Myiasis control by means of individual treatment of animals which are mainly rised extensively is time consumed and expensive. The alternative way to control this disease by vaccination is considered effective and economically accepted. However the expected vaccine is now still being developed under a collaborative project between CSIRO, Inter-University Centre on Biotechnology-ITB and Research Institute for Veterinary Science and funded by ACIAR. There are several antigens have been identified as vaccine candidates and an in vitro bioassay technique has been developed for assessing the immunoresponses of vaccine in sheep. Three antigens were used for vaccines in this study, these included protein peritrophic membrane (PM, soluble extract (SE and pellet extract (PE of 1st instar larvae of Chrysomya bezziana. Twenty four experimental sheep were divided into 4 groups of 6 animals, 3 groups of animals were injected with PM, SE and PE vaccines with the dose rate of 0.5 g PM/head, 0.8 g PE/head and 4.2 ml LE/head respectively, and the other one group was injected with 4 ml PBS/head as a control group. Vaccination with the same dose was repeated 4 weeks after the 1st vaccination as a booster, and 2 weeks after the booster the sheep were challenged with live larvae, 3 days after challenge animals were killed. Sera were collected at the day of vaccination, 4 weeks after vaccination, 2 weeks after booster, and 3 days after challenge. An in vitro bioassay technique was conducted by culturing 1st instar larvae on five media containing sera collected from each experimental animal. The effects of sera on cultivated larvae were assessed by means of larval weight and larval mortality rate. The results indicated that the growth rate and survival of cultivated larvae in media containing anti-PM sera were significantly lower (P<0.01 compared to the larvae cultivated on media with sera on the day of vaccination. The larval weight depression by anti- PM sera

  6. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    Directory of Open Access Journals (Sweden)

    Alessandra Vitelli

    Full Text Available Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP and matrix 1 (M1. We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  7. Mycobacterium tuberculosis Latent Antigen Rv2029c from the Multistage DNA Vaccine A39 Drives TH1 Responses via TLR-mediated Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Haibo Su

    2017-11-01

    Full Text Available Targeting of Mycobacterium tuberculosis (MTB latent antigens comprises a crucial strategy for the development of alternative tuberculosis (TB vaccine(s that protects against TB reactivation. Here, we generated a multistage DNA vaccine, A39, containing the early antigens Ag85A and Rv3425 as well as the latency-associated protein Rv2029c, which conferred protective immunity in a pre-exposure mouse model. Moreover, administration of the A39 vaccination after MTB exposure inhibited reactivation and resulted in significantly lower bacterial loads in the lungs and spleen of mice, compared to those in the control population. Subsequently, we investigated the effect of Rv2029c on innate immunity and characterized the molecular details of the interaction of this protein with the host via iTRAQ proteomic and biochemical assay analyses. Rv2029c activated macrophages, triggered the production of pro-inflammatory cytokines, and promoted toll-like receptor/mitogen-activated protein kinase (TLR/MAPK-dependent macrophage apoptosis. Furthermore, Rv2029c treatment enhanced the ability of Mycobacterium bovis Bacillus Calmette-Guérin (BCG-infected macrophages to present antigens to CD4+ T cells in vitro, which correlated with an increase in MHC-II expression. Lastly, Rv2029c-treated macrophages activated T cells, effectively polarized CD4+ and CD8+ T cells to secrete IFN-γ and IL-2, and specifically expanded a population of CD44highCD62LlowCD4+/CD8+ effector/memory cells, indicating that Rv2029c, as a specific recall antigen, contributes to Th1 polarization in T cell immunity. These results suggest that Rv2029c and A39 comprise promising targets for the development of next-generation clinical TB therapeutic vaccines.

  8. Coadministration of the Three Antigenic Leishmania infantum Poly (A Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Manuel Soto

    2015-05-01

    Full Text Available Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A binding proteins (LiPABPs.Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid.The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.

  9. Field validation of the use of RB51 as antigen in a complement fixation test to identify calves vaccinated with Brucella abortus RB51.

    Science.gov (United States)

    Adone, R; Ciuchini, F; Olsen, S

    2001-03-01

    In order to confirm the efficiency of an experimental RB51-based complement fixation (CF) test in identifying cattle vaccinated with Brucella abortus strain RB51, 831 sera from 110 vaccinated and 48 unvaccinated Hereford heifers of Iowa, collected for studies conducted in different years, were sent to Italy without coding to be tested in a CF test using RB51 as antigen. Most of the calves, aged from 3 to 10 months, were vaccinated subcutaneously with the recommended dosage of 10(10) CFU of RB51 commercial vaccine, while only six calves received 10(9) CFU of the same vaccine. Serum samples for serologic testing, collected until 16 postinoculation weeks (PIW), were also tested by routine surveillance tests for brucellosis such as rose bengal plate and CF tests performed with B. abortus smooth strain 99 as control antigen. RB51 CF test results obtained by testing sera from cattle vaccinated in 1999 indicate that the sensitivity of the reaction is 97% at 2 to 3 PIW and 90% until 8 PIW and decreases to 65% at 12 PIW, the specificity remaining at 100%. Collectively, the results of this study confirm that serologic standard tests fail to detect antibodies to RB51 while the RB51-based CF test is able to monitor antibody responses to RB51 until 15 to 16 PIW with a specificity of 100%. In addition, unlike the RB51-based dot blot assay, which is the only test currently used to monitor antibody responses to RB51, the CF test also detected specific responses following vaccination with 10(9) CFU of RB51, although seroconversion was only 50% at 8 PIW. In conclusion, because of high specificity and sensitivity, the CF test described here can be used to efficaciously monitor serologic responses following RB51 vaccination in cattle and could also be employed to detect RB51 infection in humans exposed to this strain.

  10. Immunogenicity and safety of primary and booster vaccination with 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens in a hexavalent DTPa-HBV-IPV/Hib combination vaccine in comparison with the licensed Infanrix hexa

    Science.gov (United States)

    Vesikari, Timo; Rivera, Luis; Korhonen, Tiina; Ahonen, Anitta; Cheuvart, Brigitte; Hezareh, Marjan; Janssens, Winnie; Mesaros, Narcisa

    2017-01-01

    ABSTRACT Safety and immunogenicity of 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens of the combined diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliomyelitis-Hib vaccine (DTPa-HBV-IPV/Hib) were evaluated in a Primary (NCT01248884) and a Booster vaccination (NCT01453998) study. In the Primary study, 721 healthy infants (randomized 1:1:1) received 3 doses of DTPa-HBV-IPV/Hib formulation A (DATAPa-HBV-IPV/Hib), or B (DBTBPa-HBV-IPV/Hib) or the licensed DTPa-HBV-IPV/Hib vaccine (Infanrix hexa, GSK; control group) at 2, 3, 4 months of age. Infants were planned to receive a booster dose at 12–15 months of age with the same formulation received in the Primary study; however, following high incidence of fever associated with the investigational formulations in the Primary study, the Booster study protocol was amended and all infants yet to receive a booster dose (N = 385) received the licensed vaccine. In the Primary study, non-inferiority of 3-dose vaccination with investigational formulations compared with the licensed vaccine was not demonstrated due to anti-pertactin failing to meet the non-inferiority criterion. Post-primary vaccination, most infants had seroprotective levels of anti-diphtheria (100% of infants), anti-tetanus antigens (100%), against hepatitis B (≥ 97.5% across groups), polyribosyl-ribitol-phosphate (≥ 88.0%) and poliovirus types 1–3 (≥ 90.5%). Seropositivity rates for each pertussis antigen were 100% in all groups. Higher incidence of fever (> 38°C) was reported in infants receiving the investigational formulations (Primary study: 75.0% [A] and 72.1% [B] vs 58.8% [control]; Booster study, before amendment: 49.4% and 46.6% vs 37.4%, respectively). The development of the investigational formulations was not further pursued. PMID:28340322

  11. Naive helper T cells from BCG-vaccinated volunteers produce IFN-gamma and IL-5 to mycobacterial antigen-pulsed dendritic cells.

    Directory of Open Access Journals (Sweden)

    JoĂŤl Pestel

    2008-06-01

    Full Text Available Mycobacterium bovis bacillus Calmette-GuĂŠrin (BCG is a live vaccine that has been used in routine vaccination against tuberculosis for nearly 80 years. However, its efficacy is controversial. The failure of BCG vaccination may be at least partially explained by the induction of poor or inappropriate host responses. Dendritic cells (DCs are likely to play a key role in the induction of immune response to mycobacteria by polarizing the reactivity of T lymphocytes toward a Th1 profile, contributing to the generation of protective cellular immunity against mycobacteria. In this study we aimed to investigate the production of Th1 and Th2 cytokines by naive CD4+ T cells to mycobacterial antigen-pulsed DCs in the group of young, healthy BCG vaccinated volunteers. The response of naive helper T cells was compared with the response of total blood lymphocytes. Our present results clearly showed that circulating naive CD45RA+CD4+ lymphocytes from BCG-vaccinated subjects can become effector helper cells producing IFN-gamma and IL-5 under the stimulation by autologous dendritic cells presenting mycobacterial protein antigen-PPD or infected with live M. bovis BCG bacilli.

  12. Novel 6xHis tagged foot-and-mouth disease virus vaccine bound to nanolipoprotein adjuvant via metal ions provides antigenic distinction and effective protective immunity

    International Nuclear Information System (INIS)

    Rai, Devendra K.; Segundo, Fayna Diaz-San; Schafer, Elizabeth; Burrage, Thomas G.; Rodriguez, Luis L.; Santos, Teresa de los; Hoeprich, Paul D.; Rieder, Elizabeth

    2016-01-01

    Here, we engineered two FMD viruses with histidine residues inserted into or fused to the FMDV capsid. Both 6xHis viruses exhibited growth kinetics, plaque morphologies and antigenic characteristics similar to wild-type virus. The 6xHis tag allowed one-step purification of the mutant virions by Co 2+ affinity columns. Electron microscopy and biochemical assays showed that the 6xHis FMDVs readily assembled into antigen: adjuvant complexes in solution, by conjugating with Ni 2+ -chelated nanolipoprotein and monophosphoryl lipid A adjuvant (MPLA:NiNLP). Animals Immunized with the inactivated 6xHis-FMDV:MPLA:NiNLP vaccine acquired enhanced protective immunity against FMDV challenge compared to virions alone. Induction of anti-6xHis and anti-FMDV neutralizing antibodies in the immunized animals could be exploited in the differentiation of vaccinated from infected animals needed for the improvement of FMD control measures. The novel marker vaccine/nanolipid technology described here has broad applications for the development of distinctive and effective immune responses to other pathogens of importance. - Highlights: • 6xHis-tags in A 24 FMDV enable purification and biding to adjuvants via metal ions. • 6xHis A 24 FMDV:MPLA:NiNLP vaccine enhanced protective immunity against FMDV. • Surface exposed capsid tags allow distinction of infected from vaccinated animals.

  13. Novel 6xHis tagged foot-and-mouth disease virus vaccine bound to nanolipoprotein adjuvant via metal ions provides antigenic distinction and effective protective immunity

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Devendra K.; Segundo, Fayna Diaz-San [Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944 (United States); Department of Pathobiology and Veterinary Science, CANR, University of Connecticut, Storrs, CT 06269 (United States); Schafer, Elizabeth [Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944 (United States); Burrage, Thomas G. [Department of Homeland Security, S & T, Targeted Advance Development, Virus, Cellular and Molecular Imaging Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944 (United States); Rodriguez, Luis L.; Santos, Teresa de los [Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944 (United States); Hoeprich, Paul D. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States); Rieder, Elizabeth, E-mail: Elizabeth.Rieder@ars.usda.gov [Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944 (United States)

    2016-08-15

    Here, we engineered two FMD viruses with histidine residues inserted into or fused to the FMDV capsid. Both 6xHis viruses exhibited growth kinetics, plaque morphologies and antigenic characteristics similar to wild-type virus. The 6xHis tag allowed one-step purification of the mutant virions by Co{sup 2+} affinity columns. Electron microscopy and biochemical assays showed that the 6xHis FMDVs readily assembled into antigen: adjuvant complexes in solution, by conjugating with Ni{sup 2+}-chelated nanolipoprotein and monophosphoryl lipid A adjuvant (MPLA:NiNLP). Animals Immunized with the inactivated 6xHis-FMDV:MPLA:NiNLP vaccine acquired enhanced protective immunity against FMDV challenge compared to virions alone. Induction of anti-6xHis and anti-FMDV neutralizing antibodies in the immunized animals could be exploited in the differentiation of vaccinated from infected animals needed for the improvement of FMD control measures. The novel marker vaccine/nanolipid technology described here has broad applications for the development of distinctive and effective immune responses to other pathogens of importance. - Highlights: • 6xHis-tags in A{sub 24} FMDV enable purification and biding to adjuvants via metal ions. • 6xHis A{sub 24} FMDV:MPLA:NiNLP vaccine enhanced protective immunity against FMDV. • Surface exposed capsid tags allow distinction of infected from vaccinated animals.

  14. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-06

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the second quarter of the third year, LLNL finalized all immunological assessments of NLP vaccine formulations in the F344 model. Battelle has immunized rats with three unique NLP formulations by either intramuscular or intranasal administration. All inoculations have been completed, and protective efficacy against an aerosolized challenge will begin at the end of October, 2014.

  15. Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Berntsen, Annika; Hadrup, Sine Reker

    2010-01-01

    Dendritic cells are regarded as the most effective antigen presenting cells and coordinators of the immune response and therefore suitable as vaccine basis. Here we present results from a clinical study in which patients with malignant melanoma (MM) with verified progressive disease received...... vaccination with autologous monocyte-derived mature dendritic cells (DC) pulsed with p53, survivin and telomerase-derived peptides (HLA-A2+ patients) or with autologous/allogeneic tumor lysate (HLA-A2(-) patients) in combination with low-dose interleukin (IL)-2 and interferon (IFN)-alpha2b....

  16. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    Science.gov (United States)

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  17. In Vitro Evaluation of a Soluble Leishmania Promastigote Surface Antigen as a Potential Vaccine Candidate against Human Leishmaniasis

    Science.gov (United States)

    Bahi-Jaber, Narges; Petitdidier, Elodie; Markikou-Ouni, Wafa; Aoun, Karim; Moreno, Javier; Carrillo, Eugenia; Salotra, Poonam; Kaushal, Himanshu; Negi, Narender Singh; Arevalo, Jorge; Falconi-Agapito, Francesca; Privat, Angela; Cruz, Maria; Pagniez, Julie; Papierok, Gérard-Marie; Rhouma, Faten Bel Haj; Torres, Pilar; Lemesre, Jean-Loup; Chenik, Mehdi; Meddeb-Garnaoui, Amel

    2014-01-01

    PSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L. braziliensis (CCLb) or visceral leishmaniasis due to L. donovani (CVLd) and in healthy individuals. Healthy individuals were subdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantum infection) or non immune/naive individuals (HLR: Healthy Low Responders), depending on whether they produce high or low levels of IFN-γ in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detected in sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-γ, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-α in more. No significant cytokine response was observed in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increase in CD4+ T cells producing IFN-γ after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between the percentage of IFN-γ-producing CD4+ T cells and the released IFN-γ. We showed that the LaPSA-38S protein was able to induce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infection indicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacity of Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infection. PMID:24786587

  18. In vitro evaluation of a soluble Leishmania promastigote surface antigen as a potential vaccine candidate against human leishmaniasis.

    Science.gov (United States)

    Chamakh-Ayari, Rym; Bras-Gonçalves, Rachel; Bahi-Jaber, Narges; Petitdidier, Elodie; Markikou-Ouni, Wafa; Aoun, Karim; Moreno, Javier; Carrillo, Eugenia; Salotra, Poonam; Kaushal, Himanshu; Negi, Narender Singh; Arevalo, Jorge; Falconi-Agapito, Francesca; Privat, Angela; Cruz, Maria; Pagniez, Julie; Papierok, Gérard-Marie; Rhouma, Faten Bel Haj; Torres, Pilar; Lemesre, Jean-Loup; Chenik, Mehdi; Meddeb-Garnaoui, Amel

    2014-01-01

    PSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L. braziliensis (CCLb) or visceral leishmaniasis due to L. donovani (CVLd) and in healthy individuals. Healthy individuals were subdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantum infection) or non immune/naive individuals (HLR: Healthy Low Responders), depending on whether they produce high or low levels of IFN-γ in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detected in sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-γ, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-α in more. No significant cytokine response was observed in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increase in CD4+ T cells producing IFN-γ after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between the percentage of IFN-γ-producing CD4+ T cells and the released IFN-γ. We showed that the LaPSA-38S protein was able to induce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infection indicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacity of Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infection.

  19. In vitro evaluation of a soluble Leishmania promastigote surface antigen as a potential vaccine candidate against human leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Rym Chamakh-Ayari

    Full Text Available PSA (Promastigote Surface Antigen belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L. species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm or L. braziliensis (CCLb or visceral leishmaniasis due to L. donovani (CVLd and in healthy individuals. Healthy individuals were subdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantum infection or non immune/naive individuals (HLR: Healthy Low Responders, depending on whether they produce high or low levels of IFN-γ in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detected in sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-γ, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-α in more. No significant cytokine response was observed in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increase in CD4+ T cells producing IFN-γ after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between the percentage of IFN-γ-producing CD4+ T cells and the released IFN-γ. We showed that the LaPSA-38S protein was able to induce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infection indicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacity of Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infection.

  20. Schistosoma mansoni major egg antigen Smp40: molecular modeling and potential immunoreactivity for anti-pathology vaccine development

    Directory of Open Access Journals (Sweden)

    Mohamed F Abouel-Nour

    2006-06-01

    Full Text Available The pathogenesis of Schistosoma mansoni infection is largely determined by host T-cell mediated immune responses such as the granulomatous response to tissue deposited eggs and subsequent fibrosis. The major egg antigens have a valuable role in desensitizing the CD4+ Th cells that mediate granuloma formation, which may prevent or ameliorate clinical signs of schistosomiasis.S. mansoni major egg antigen Smp40 was expressed and completely purified. It was found that the expressed Smp40 reacts specifically with anti-Smp40 monoclonal antibody in Western blotting. Three-dimensional structure was elucidated based on the similarity of Smp40 with the small heat shock protein coded in the protein database as 1SHS as a template in the molecular modeling. It was figured out that the C-terminal of the Smp40 protein (residues 130 onward contains two alpha crystallin domains. The fold consists of eight beta strands sandwiched in two sheets forming Greek key. The purified Smp40 was used for in vitro stimulation of peripheral blood mononuclear cells from patients infected with S. mansoni using phytohemagglutinin mitogen as a positive control. The obtained results showed that there is no statistical difference in interferon-g, interleukin (IL-4 and IL-13 levels obtained with Smp40 stimulation compared with the control group (P > 0.05 for each. On the other hand, there were significant differences after Smp40 stimulation in IL-5 (P = 0.006 and IL-10 levels (P < 0.001 compared with the control group. Gaining the knowledge by reviewing the literature, it was found that the overall pattern of cytokine profile obtained with Smp40 stimulation is reported to be associated with reduced collagen deposition, decreased fibrosis, and granuloma formation inhibition. This may reflect its future prospect as a leading anti-pathology schistosomal vaccine candidate.

  1. Effectiveness of intranasal vaccination against Angiostrongylus costaricensis using a serine/threonine phosphatase 2 A synthetic peptide and recombinant antigens.

    Science.gov (United States)

    Solano-Parada, J; Gonzalez-Gonzalez, G; Torró, L M de Pablos; dos Santos, M F Brazil; Espino, A M; Burgos, M; Osuna, A

    2010-07-19

    Intranasal immunization was assayed in C57BL/6 mice against Angiostrongylus costaricensis using a synthetic and a recombinant peptide belonging to the catalytic region of the serine/threonine phosphatase 2 A (PP2A) of the parasite. Immunization was carried out with the synthetic peptide (SP) polymerized either with itself or with the beta fraction of the cholera toxin (CTB) and then enclosed in nanocapsules of phosphatidyl choline, cholesterol and Quil A (ISCOM). Another group of mice was immunized with recombinant peptide. Immunization consisted of two intranasal inoculations at two-week intervals, and the challenge with L3 larvae was made one month after the last vaccination. The effectiveness of immunization was evaluated 30 days after infection by analysis of the number of parasites in the arteries of the immunized mice, as well as by measuring spleen sizes in the experimental groups. The response induced was determined by identifying the isotypes of IgG as well as the IgE and IgA specific antigen response. The interleukins produced by the splenocyte culture of the different groups were assessed after exposing them to the peptide used in the immunization. From our results, 60%, 80%, and 100% protection against the A. costaricensis challenge was achieved in mice immunized with polymerized synthetic peptide in ISCOM, synthetic peptide polymerized with the CTB in ISCOM and inclusion bodies respectively. Splenomegaly was found to be less evident in the immunized mice than in the controls. A significant increase in IFN gamma and IL-17 levels was observed in the group with 100% protection. The results showed that vaccination through the nasal mucosa may constitute a useful method of immunization and result in a protective immune response against A. costaricensis. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Improved cytotoxic T-lymphocyte immune responses to a tumor antigen by vaccines co-expressing the SLAM-associated adaptor EAT-2.

    Science.gov (United States)

    Aldhamen, Y A; Seregin, S S; Kousa, Y A; Rastall, D P W; Appledorn, D M; Godbehere, S; Schutte, B C; Amalfitano, A

    2013-10-01

    The signaling lymphocytic activation molecule-associated adaptor Ewing's sarcoma's-activated transcript 2 (EAT-2) is primarily expressed in dendritic cells, macrophages and natural killer cells. Including EAT-2 in a vaccination regimen enhanced innate and adaptive immune responses toward pathogen-derived antigens, even in the face of pre-existing vaccine immunity. Herein, we investigate whether co-vaccinations with two recombinant Ad5 (rAd5) vectors, one expressing the carcinoembryonic antigen (CEA) and one expressing EAT-2, can induce more potent CEA-specific cytotoxic T lymphocyte (CTL) and antitumor activity in the therapeutic CEA-expressing MC-38 tumor model. Our results suggest that inclusion of EAT-2 significantly alters the kinetics of Th1-biasing proinflammatory cytokine and chemokine responses, and enhances anti-CEA-specific CTL responses. As a result, rAd5-EAT2-augmented rAd5-CEA vaccinations are more efficient in eliminating CEA-expressing target cells as measured by an in vivo CTL assay. Administration of rAd5-EAT2 vaccines also reduced the rate of growth of MC-38 tumor growth in vivo. Also, an increase in MC-38 tumor cell apoptosis (as measured by hematoxylin and eosin staining, active caspase-3 and granzyme B levels within the tumors) was observed. These data provide evidence that more efficient, CEA-specific effector T cells are generated by rAd5 vaccines expressing CEA, when augmented by rAd5 vaccines expressing EAT-2, and this regimen may be a promising approach for cancer immunotherapy in general.

  3. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer.

    Science.gov (United States)

    Carreón, Diana; de la Lastra, José M Pérez; Almazán, Consuelo; Canales, Mario; Ruiz-Fons, Francisco; Boadella, Mariana; Moreno-Cid, Juan A; Villar, Margarita; Gortázar, Christian; Reglero, Manuel; Villarreal, Ricardo; de la Fuente, José

    2012-01-05

    Red deer (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) are hosts for different tick species and tick-borne pathogens and play a role in tick dispersal and maintenance in some regions. These factors stress the importance of controlling tick infestations in deer and several methods such as culling and acaricide treatment have been used. Tick vaccines are a cost-effective alternative for tick control that reduced cattle tick infestations and tick-borne pathogens prevalence while reducing the use of acaricides. Our hypothesis is that vaccination with vector protective antigens can be used for the control of tick infestations in deer. Herein, three experiments were conducted to characterize (1) the antibody response in red deer immunized with recombinant BM86, the antigen included in commercial tick vaccines, (2) the antibody response and control of cattle tick infestations in white-tailed deer immunized with recombinant BM86 or tick subolesin (SUB) and experimentally infested with Rhipicephalus (Boophilus) microplus, and (3) the antibody response and control of Hyalomma spp. and Rhipicephalus spp. field tick infestations in red deer immunized with mosquito akirin (AKR), the SUB ortholog and candidate protective antigen against different tick species and other ectoparasites. The results showed that deer produced an antibody response that correlated with the reduction in tick infestations and was similar to other hosts vaccinated previously with these antigens. The overall vaccine efficacy was similar between BM86 (E=76%) and SUB (E=83%) for the control of R. microplus infestations in white-tailed deer. The field trial in red deer showed a 25-33% (18-40% when only infested deer were considered) reduction in tick infestations, 14-20 weeks after the first immunization. These results demonstrated that vaccination with vector protective antigens could be used as an alternative method for the control of tick infestations in deer to reduce tick populations

  4. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route.

    Science.gov (United States)

    Ravindran, Rajesh; Maji, Mithun; Ali, Nahid

    2012-01-01

    The development of a long-term protective subunit vaccine against visceral leishmaniasis depends on antigens and adjuvants that can induce an appropriate immune response. The immunization of leishmanial antigens alone shows limited efficacy in the absence of an appropriate adjuvant. Earlier we demonstrated sustained protection against Leishmania donovani with leishmanial antigens entrapped in cationic liposomes through an intraperitoneal route. However, this route is not applicable for human administration. Herein, we therefore evaluated the immune response and protection induced by liposomal soluble leishmanial antigen (SLA) formulated with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) through a subcutaneous route. Subcutaneous immunization of BALB/c mice with SLA entrapped in liposomes or with MPL-TDM elicited partial protection against experimental visceral leishmaniasis. In contrast, liposomal SLA adjuvanted with MPL-TDM induced significantly higher levels of protection in liver and spleen in BALB/c mice challenged 10 days post-vaccination. Protection conferred by this formulation was sustained up to 12 weeks of immunization, and infection was controlled for at least 4 months of the challenge, similar to liposomal SLA immunization administered intraperitoneally. An analysis of cellular immune responses of liposomal SLA + MPL-TDM immunized mice demonstrated the induction of IFN-γ and IgG2a antibody production not only 10 days or 12 weeks post-vaccination but also 4 months after the challenge infection and a down regulation of IL-4 production after infection. Moreover, long-term immunity elicited by this formulation was associated with IFN-γ production also by CD8⁺ T cells. Taken together, our results suggest that liposomal SLA + MPL-TDM represent a good vaccine formulation for the induction of durable protection against L. donovani through a human administrable route.

  5. Purification and Protective Efficacy of Monomeric and Modified Yersina pestis Capsular F1-V Antigen Fusion Proteins for Vaccination Against Plague

    Science.gov (United States)

    2006-12-31

    Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA b Biopharmaceutical Development...Pinyerd, J.D. Crisantes, M.M. Rigano, J. Pinkhasov, A.M. Walmsley, H.S. Mason, G.A. Cardineau, Plant - made subunit vaccine against pneumonic and...Webb, C.J. Arntzen, H.S. Mason, Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression

  6. Genotyping of Indian antigenic, vaccine, and field Brucella spp. using multilocus sequence typing.

    Science.gov (United States)

    Shome, Rajeswari; Krithiga, Natesan; Shankaranarayana, Padmashree B; Jegadesan, Sankarasubramanian; Udayakumar S, Vishnu; Shome, Bibek Ranjan; Saikia, Girin Kumar; Sharma, Narendra Kumar; Chauhan, Harshad; Chandel, Bharat Singh; Jeyaprakash, Rajendhran; Rahman, Habibur

    2016-03-31

    Brucellosis is one of the most important zoonotic diseases that affects multiple livestock species and causes great economic losses. The highly conserved genomes of Brucella, with > 90% homology among species, makes it important to study the genetic diversity circulating in the country. A total of 26 Brucella spp. (4 reference strains and 22 field isolates) and 1 B. melitensis draft genome sequence from India (B. melitensis Bm IND1) were included for sequence typing. The field isolates were identified by biochemical tests and confirmed by both conventional and quantitative polymerase chain reaction (qPCR) targeting bcsp 31Brucella genus-specific marker. Brucella speciation and biotyping was done by Bruce ladder, probe qPCR, and AMOS PCRs, respectively, and genotyping was done by multilocus sequence typing (MLST). The MLST typing of 27 Brucella spp. revealed five distinct sequence types (STs); the B. abortus S99 reference strain and 21 B. abortus field isolates belonged to ST1. On the other hand, the vaccine strain B. abortus S19 was genotyped as ST5. Similarly, B. melitensis 16M reference strain and one B. melitensis field isolate were grouped into ST7. Another B. melitensis field isolate belonged to ST8 (draft genome sequence from India), and only B. suis 1330 reference strain was found to be ST14. The sequences revealed genetic similarity of the Indian strains to the global reference and field strains. The study highlights the usefulness of MLST for typing of field isolates and validation of reference strains used for diagnosis and vaccination against brucellosis.

  7. Long-lived immunity to canine core vaccine antigens in UK dogs as assessed by an in-practice test kit.

    Science.gov (United States)

    Killey, R; Mynors, C; Pearce, R; Nell, A; Prentis, A; Day, M J

    2018-01-01

    To determine the utility of an in-practice test kit to detect protective serum antibody against canine distemper virus, canine adenovirus and canine parvovirus type 2 in a sample of the UK dog population. Serum samples from 486 dogs, last vaccinated between less than 1 month and 124 months previously, were tested with the VacciCheck™ test kit for protective antibodies against distemper, adenovirus and parvovirus type 2. A high proportion of the dogs tested (93·6%) had protective antibody against all three of the core vaccine antigens: 95·7% of the dogs were seropositive against canine distemper virus, 97·3% against canine adenovirus and 98·5% against canine parvovirus type 2. The small number of dogs that were seronegative for one or more of the antigens (n = 31) may have had waning of previous serum antibody or may have been rare genetic non-responders to that specific antigen. UK veterinarians can be reassured that triennial revaccination of adult dogs with core vaccines provides long-lived protective immunity. In-practice serological test kits are a valuable tool for informing decision-making about canine core revaccination. © 2017 British Small Animal Veterinary Association.

  8. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Identification of DLD, by immunoproteomic analysis and evaluation as a potential vaccine antigen against three Vibrio species in Epinephelus coioides.

    Science.gov (United States)

    Pang, Huanying; Chen, Liming; Hoare, Rowena; Huang, Yucong; ZaoheWu; Jian, Jichang

    2016-02-24

    Vibrio spp. represent a serious threat to the culture of Epinephelus coioides (Orange-spotted Grouper) in Southeast Asia. In this study we used two-dimensional electrophoresis (2-DE) and Western blotting to identify common immunogenic proteins of Vibrio alginolyticus, Vibrio harveyi and Vibrio parahaemolyticus. Membranes were probed with orange-spotted grouper anti-V. alginolyticus sera and accordingly 60, 58 and 48 immunogenic protein spots were detected. By matching analysis for the three Western blotting membranes, 6 cross immunogenic spots for the three Vibrio species were identified. They were Outer membrane protein W (OmpW), dihydrolipoamide dehydrogenase (DLD), succinate dehydrogenase flavoprotein subunit(SDHA), elongation factor Ts(Ts), peptide ABC transporter periplasmic peptide-binding protein and phosphoenolpyruvate carboxykinase(PEPCK). One of the proteins, DLD, was used to evaluate the cross protective function for E. coioides with a bacterial immunization and challenge method. The relative percent survival rate of E. coioides against V. alginolyticus, V. harveyi and V. parahaemolyticus was 90%, 86% and 80%, respectively. This work may provide potential cross protective vaccine candidate antigens for three Vibrio species, and DLD may be considered as an effective cross-protective immunogen against three Vibrio species. Copyright © 2016. Published by Elsevier Ltd.

  10. Immune responses of a chimaeric protein vaccine containing Mycoplasma hyopneumoniae antigens and LTB against experimental M. hyopneumoniae infection in pigs.

    Science.gov (United States)

    Marchioro, Silvana B; Sácristan, Rubén Del Pozo; Michiels, Annelies; Haesebrouck, Freddy; Conceição, Fabricio R; Dellagostin, Odir A; Maes, Dominiek

    2014-08-06

    A recombinant chimaeric protein containing three Mycoplasma hyopneumoniae antigens (C-terminal portion of P97, heat shock protein P42, and NrdF) fused to an adjuvant, the B subunit of heat-labile enterotoxin of Escherichia coli (LTB), was used to immunize pigs against enzootic pneumonia. The systemic and local immune responses, as well as the efficacy of the chimaeric protein in inducing protection against experimental M. hyopneumoniae infection were evaluated. In total, 60 male piglets, purchased from a M. hyopneumoniae-free herd, at 4 weeks of age were randomly allocated to six different experimental groups of 10 animals each: recombinant chimaeric protein by intramuscular (IM) (1) or intranasal (IN) (2) administration, commercial bacterin by IM administration (3), and the adjuvant LTB by IM (4, control group A) or IN (5, control group B) administration. All groups were immunized at 24 and 38 days of age and challenged at 52 days of age. The sixth group that was not challenged was used as the negative control (IN [n=5] or IM [n=5] administration of the LTB adjuvant). Compared with the non-challenged group, administration of the chimaeric protein induced significant (Phyopneumoniae infection in pigs. This lack of effectiveness points towards the need for further studies to improve the efficacy of this subunit-based vaccine approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Chloroplast-derived vaccine antigens and biopharmaceuticals: protocols for expression, purification, or oral delivery and functional evaluation.

    Science.gov (United States)

    Singh, N Dolendro; Ding, Yi; Daniell, Henry

    2009-01-01

    Many vaccine antigens and biopharmaceutical proteins have been expressed at high levels via the chloroplast genome and their functionality has been evaluated using in vitro assays in cell cultures (i.e., macrophage lysis assay, inhibition of vesicular stomatitis virus-induced cytopathicity in baby hamster kidney cells, or inhibition of human HIV infection in TZM-BL cells) as well as protection after challenge with bacterial or viral pathogens or antitumor assays or delay the onset of insulitis in suitable animal models. Production of therapeutic proteins in chloroplasts eliminates the expensive fermentation technology. Moreover, oral delivery of chloroplast-derived therapeutic proteins eliminates expensive purification steps, cold storage, cold transportation, and delivery via sterile needles, thereby further decreasing their cost. In this chapter, we describe detailed protocols for chloroplast transformation including the construction of chloroplast transformation vectors, delivery of DNA into plant cells using particle bombardment, selection and regeneration of transformants by tissue culture, confirmation of transgene integration into the chloroplast genome and homoplasmy, evaluation of foreign gene expression, purification of foreign protein, or oral delivery via bioencapsulation, functional evaluation using in vitro and in vivo assays, and evaluation of immunity after challenge with pathogens in suitable animal models.

  12. Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Hoang, Truc; Agger, Else Marie; Cassidy, Joseph P

    2015-01-01

    blocked the protection afforded by the H56-CAF01 subunit vaccine, and this was associated with a very substantial loss of the interleukin-2-positive memory CD4 T cells promoted by this vaccine. Similarly, PEM during the vaccination phase markedly reduced the H56-CAF01 vaccine response, influencing all...... of Mycobacterium tuberculosis, as well as increased pathology, in both Mycobacterium bovis BCG-vaccinated and unvaccinated animals. PEM did not change the overall numbers of CD4 T cells in BCG-vaccinated animals but resulted in an almost complete loss of antigen-specific cytokine production. Furthermore......, there was a change in cytokine expression characterized by a gradual loss of multifunctional antigen-specific CD4 T cells and an increased proportion of effector cells expressing gamma interferon and tumor necrosis factor alpha (IFN-γ(+) TNF-α(+) and IFN-γ(+) cells). PEM during M. tuberculosis infection completely...

  13. Characterization of sporozoite surface antigens of Plasmodium falciparum, using monoclonal antibodies. Part of a coordinated programme on the preparation of irradiated vaccines against some human diseases

    International Nuclear Information System (INIS)

    Groot, M.

    1982-10-01

    Sporozoites are considered as a source of potential vaccine. Characterization of their antigens is therefore important and can be achieved by monoclonal antibodies. The purpose of this project is to study the production of monoclonal antibodies against sporozoites of P. falciparum. Various infections of mosquitoes were carried out during the period 1981-1982 to obtain antigens for the production of hybridomas. Hybridomas were produced from mice immunized through the bites of infected mosquitoes and by intravenous inoculation. The anti-sporozoite activity of the hybridomas was tested by an immunofluorescent antibody test using P. falciparum sporozoites as antigens. Positive immunofluorescence was seen in hybridoma cell lines tested with P. falciparum, whereas negative results were obtained when the cell lines were cross-reacted with other human species (P. vivax) and with a rodent malaria parasite (P. berghei)

  14. Antigenic and genomic relation between human influenza A (H3N2 viruses circulating in Argentina during 1998 and the H3N2 vaccine component

    Directory of Open Access Journals (Sweden)

    Pontoriero Andrea V.

    2001-01-01

    Full Text Available Objective. Due to the lack of correlation from 1994 to 1997 between the A H3N2 component of the influenza vaccine recommended for this period and the circulating viruses in Argentina, we decided to study the antigenic and genomic relationships of the 1998 A H3N2 Argentine circulating strains with the corresponding vaccine component for that year as recommended by the World Health Organization (WHO. Methods. We selected 18 influenza A H3N2 strains isolated in Argentina during 1998 to carry out an antigenic and genomic study of their hemagglutinin (HA and neuraminidase (NA proteins. For the genomic study we added 3 isolates from Uruguay. We compared the Argentine and Uruguayan strains with available reference strains. Results. We found that all 18 strains from Argentina were similar to the A/Sydney/5/97 (H3N2 strain, as opposed to the A/Wuhan/359/95 (H3N2 strain, which was the vaccine component. This result was confirmed by the genomic study. Conclusions. The approach that we applied in Argentina has improved the quality and quantity of information about influenza in the country. This type of work should be encouraged in other countries in order to help choose the most appropriate vaccine components each year and provide individuals with the best possible protection against influenza.

  15. Antigenic and genomic relation between human influenza A (H3N2 viruses circulating in Argentina during 1998 and the H3N2 vaccine component

    Directory of Open Access Journals (Sweden)

    Andrea V. Pontoriero

    2001-04-01

    Full Text Available Objective. Due to the lack of correlation from 1994 to 1997 between the A H3N2 component of the influenza vaccine recommended for this period and the circulating viruses in Argentina, we decided to study the antigenic and genomic relationships of the 1998 A H3N2 Argentine circulating strains with the corresponding vaccine component for that year as recommended by the World Health Organization (WHO. Methods. We selected 18 influenza A H3N2 strains isolated in Argentina during 1998 to carry out an antigenic and genomic study of their hemagglutinin (HA and neuraminidase (NA proteins. For the genomic study we added 3 isolates from Uruguay. We compared the Argentine and Uruguayan strains with available reference strains. Results. We found that all 18 strains from Argentina were similar to the A/Sydney/5/97 (H3N2 strain, as opposed to the A/Wuhan/359/95 (H3N2 strain, which was the vaccine component. This result was confirmed by the genomic study. Conclusions. The approach that we applied in Argentina has improved the quality and quantity of information about influenza in the country. This type of work should be encouraged in other countries in order to help choose the most appropriate vaccine components each year and provide individuals with the best possible protection against influenza.

  16. HLA-A2-restricted glypican-3 peptide-specific CTL clones induced by peptide vaccine show high avidity and antigen-specific killing activity against tumor cells.

    Science.gov (United States)

    Yoshikawa, Toshiaki; Nakatsugawa, Munehide; Suzuki, Shiro; Shirakawa, Hirofumi; Nobuoka, Daisuke; Sakemura, Noriko; Motomura, Yutaka; Tanaka, Yukie; Hayashi, Shin-Ichi; Nakatsura, Tetsuya

    2011-05-01

    Glypican-3 (GPC3) is an onco-fetal antigen that is overexpressed in human hepatocellular carcinoma (HCC), and is only expressed in the placenta and embryonic liver among normal tissues. Previously, we identified an HLA-A2-restricted GPC3(144-152) (FVGEFFTDV) peptide that can induce GPC3-reactive CTLs without inducing autoimmunity in HLA-A2 transgenic mice. In this study, we carried out a phase I clinical trial of HLA-A2-restricted GPC3(144-152) peptide vaccine in 14 patients with advanced HCC. Immunological responses were analyzed by ex vivo γ-interferon enzyme-linked immunospot assay. The frequency of GPC3(144-152) peptide-specific CTLs after vaccination (mean, 96; range, 5-441) was significantly larger than that before vaccination (mean, 6.5; range, 0-43) (P Network number 000001395. © 2011 Japanese Cancer Association.

  17. Assessment of a DNA vaccine encoding an anchored-glycosylphosphatidylinositol tegumental antigen complexed to protamine sulphate on immunoprotection against murine schistosomiasis

    Directory of Open Access Journals (Sweden)

    Eduardo JM Nascimento

    2007-02-01

    Full Text Available Protamine sulphate/DNA complexes have been shown to protect DNA from DNase digestion in a lipid system for gene transfer. A DNA-based vaccine complexed to protamine sulphate was used to induce an immune response against Schistosoma mansoni anchored-glycosylphosphatidylinositol tegumental antigen in BALB/c mice. The protection elicited ranged from 33 to 44%. The spectrum of the elicited immune response induced by the vaccine formulation without protamine was characterized by a high level of IgG (IgG1> IgG2a. Protamine sulphate added to the DNA vaccine formulation retained the green fluorescent protein encoding-plasmid longer in muscle and spleen. The experiments in vivo showed that under protamine sulphate effect, the scope of protection remained unchanged, but a modulation in antibody production (IgG1= IgG2a was observed.

  18. An adenoviral cancer vaccine co-encoding a tumor associated antigen together with secreted 4-1BBL leads to delayed tumor progression

    DEFF Research Database (Denmark)

    Ragonnaud, Emeline; Andersson, Anne-Marie C; Pedersen, Anders Elm

    2016-01-01

    with the previous reports of increased anti-cancer efficacy using systemically delivered 4-1BB agonists, we incorporated a secreted version of 4-1BBL (Fc-4-1BBL) in our vaccine and co-expressed it with the Ii linked to TAA. In tumor bearing mice, this vaccine initially delayed tumor growth and slightly increased......Previous studies have shown promising results when using an agonistic anti-4-1BB antibody treatment against established tumors. While this is promising, this type of treatment can induce severe side effects. Therefore, we decided to incorporate the membrane form of 4-1BB ligand (4-1BBL......) in a replicative deficient adenovirus vaccine expressing the invariant chain (Ii) adjuvant fused to a tumor associated antigen (TAA). The Ii adjuvant increases and prolongs TAA specific CD8+ T cells as previously shown and local expression of 4-1BBL was chosen to avoid the toxicity associated with systemic...

  19. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination.

    Directory of Open Access Journals (Sweden)

    Yoshie Kametani

    Full Text Available Immunodeficient mice transplanted with human peripheral blood mononuclear cells (PBMCs are promising tools to evaluate human immune responses to vaccines. However, these mice usually develop severe graft-versus-host disease (GVHD, which makes estimation of antigen-specific IgG production after antigen immunization difficult. To evaluate antigen-specific IgG responses in PBMC-transplanted immunodeficient mice, we developed a novel NOD/Shi-scid-IL2rγnull (NOG mouse strain that systemically expresses the human IL-4 gene (NOG-hIL-4-Tg. After human PBMC transplantation, GVHD symptoms were significantly suppressed in NOG-hIL-4-Tg compared to conventional NOG mice. In kinetic analyses of human leukocytes, long-term engraftment of human T cells has been observed in peripheral blood of NOG-hIL-4-Tg, followed by dominant CD4+ T rather than CD8+ T cell proliferation. Furthermore, these CD4+ T cells shifted to type 2 helper (Th2 cells, resulting in long-term suppression of GVHD. Most of the human B cells detected in the transplanted mice had a plasmablast phenotype. Vaccination with HER2 multiple antigen peptide (CH401MAP or keyhole limpet hemocyanin (KLH successfully induced antigen-specific IgG production in PBMC-transplanted NOG-hIL-4-Tg. The HLA haplotype of donor PBMCs might not be relevant to the antibody secretion ability after immunization. These results suggest that the human PBMC-transplanted NOG-hIL-4-Tg mouse is an effective tool to evaluate the production of antigen-specific IgG antibodies.

  20. Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa.

    Science.gov (United States)

    Perez-Martinez, Angy P; Ong, Edison; Zhang, Lixin; Marrs, Carl F; He, Yongqun; Yang, Zhenhua

    2017-11-01

    H56/AERAS-456+IC31 (H56), composed of two early secretion proteins, Ag85B and ESAT-6, and a latency associated protein, Rv2660, and the IC31 Intercell adjuvant, is a new fusion subunit vaccine candidate designed to induce immunity against both new infection and reactivation of latent tuberculosis infection. Efficacy of subunit vaccines may be affected by the diversity of vaccine antigens among clinical strains and the extent of recognition by the diverse HLA molecules in the recipient population. Although a previous study showed the conservative nature of Ag85B- and ESAT-6-encoding genes, genetic diversity of Rv2660c that encodes RV2660 is largely unknown. The population coverage of H56 as a whole yet remains to be assessed. The present study was conducted to address these important knowledge gaps. DNA sequence analysis of Rv2660c found no variation among 83 of the 84 investigated clinical strains belonging to four genetic lineages. H56 was predicted to have as high as 99.6% population coverage in the South Africa population using the Immune Epitope Database (IEDB) Population Coverage Tool. Further comparison of H56 population coverage between South African Blacks and Caucasians based on the phenotypic frequencies of binding MHC Class I and Class II supertype alleles found that all of the nine MHC-I and six of eight MHC-II human leukocyte antigen (HLA) supertype alleles analyzed were significantly differentially expressed between the two subpopulations. This finding suggests the presence of race-specific functional binding motifs of MHC-I and MHC-II HLA alleles, which, in turn, highlights the importance of including diverse populations in vaccine clinical evaluation. In conclusion, H56 vaccine is predicted to have a promising population coverage in South Africa; this study demonstrates the utility of integrating comparative genomics and bioinformatics in bridging animal and clinical studies of novel TB vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models

    Directory of Open Access Journals (Sweden)

    Eguchi Junichi

    2007-02-01

    Full Text Available Abstract Background Toll-like receptor (TLR3 ligands serve as natural inducers of pro-inflammatory cytokines capable of promoting Type-1 adaptive immunity, and TLR3 is abundantly expressed by cells within the central nervous system (CNS. To improve the efficacy of vaccine strategies directed against CNS tumors, we evaluated whether administration of a TLR3 ligand, polyinosinic-polycytidylic (poly-IC stabilized with poly-lysine and carboxymethylcellulose (poly-ICLC would enhance the anti-CNS tumor effectiveness of tumor peptide-based vaccinations. Methods C57BL/6 mice bearing syngeneic CNS GL261 glioma or M05 melanoma received subcutaneous (s.c. vaccinations with synthetic peptides encoding CTL epitopes- mEphA2 (671–679, hgp100 (25–33 and mTRP-2 (180–188 for GL261, or ovalbumin (OVA: 257–264 for M05. The mice also received intramuscular (i.m. injections with poly-ICLC. Results The combination of subcutaneous (s.c. peptide-based vaccination and i.m. poly-ICLC administration promoted systemic induction of antigen (Ag-specific Type-1 CTLs expressing very late activation antigen (VLA-4, which confers efficient CNS-tumor homing of vaccine-induced CTLs based on experiments with monoclonal antibody (mAb-mediated blockade of VLA-4. In addition, the combination treatment allowed expression of IFN-γ by CNS tumor-infiltrating CTLs, and improved the survival of tumor bearing mice in the absence of detectable autoimmunity. Conclusion These data suggest that poly-ICLC, which has been previously evaluated in clinical trials, can be effectively combined with tumor Ag-specific vaccine strategies, thereby providing a greater index of therapeutic efficacy.

  2. GTL001 and bivalent CyaA-based therapeutic vaccine strategies against human papillomavirus and other tumor-associated antigens induce effector and memory T-cell responses that inhibit tumor growth.

    Science.gov (United States)

    Esquerré, Michaël; Momot, Marie; Goubier, Anne; Gonindard, Christophe; Leung-Theung-Long, Stéphane; Misseri, Yolande; Bissery, Marie-Christine

    2017-03-13

    GTL001 is a bivalent therapeutic vaccine containing human papillomavirus (HPV) 16 and HPV18 E7 proteins inserted in the Bordetella pertussis adenylate cyclase (CyaA) vector intended to prevent cervical cancer in HPV-infected women with normal cervical cytology or mild abnormalities. To be effective, therapeutic cervical cancer vaccines should induce both a T cell-mediated effector response against HPV-infected cells and a robust CD8 + T-cell memory response to prevent potential later infection. We examined the ability of GTL001 and related bivalent CyaA-based vaccines to induce, in parallel, effector and memory CD8 + T-cell responses to both vaccine antigens. Intradermal vaccination of C57BL/6 mice with GTL001 adjuvanted with a TLR3 agonist (polyinosinic-polycytidylic acid) or a TLR7 agonist (topical 5% imiquimod cream) induced strong HPV16 E7-specific T-cell responses capable of eradicating HPV16 E7-expressing tumors. Tumor-free mice also had antigen-specific memory T-cell responses that protected them against a subsequent challenge with HPV18 E7-expressing tumor cells. In addition, vaccination with bivalent vaccines containing CyaA-HPV16 E7 and CyaA fused to a tumor-associated antigen (melanoma-specific antigen A3, MAGEA3) or to a non-viral, non-tumor antigen (ovalbumin) eradicated HPV16 E7-expressing tumors and protected against a later challenge with MAGEA3- and ovalbumin-expressing tumor cells, respectively. These results show that CyaA-based bivalent vaccines such as GTL001 can induce both therapeutic and prophylactic anti-tumor T-cell responses. The CyaA platform can be adapted to different antigens and adjuvants, and therefore may be useful for developing other therapeutic vaccines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. TUMOUR VACCINE

    NARCIS (Netherlands)

    Wagner, Ernst; Kircheis, Ralf; Crommelin, D.; Van Slooten, Maaike; Storm, Gert

    1999-01-01

    The invention relates to a tumour vaccine with a tumour antigen base. In addition to a source of tumour antigens, the vaccine contains a release system for the delayed release of the active agent IFN- gamma , the active dose of IFN- gamma being 50 ng to 5 mu g. The IFN- gamma is released over a

  4. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  5. Effects of varying antigens and adjuvant systems on the immunogenicity and safety of investigational tetravalent human oncogenic papillomavirus vaccines: results from two randomized trials.

    Science.gov (United States)

    Van Damme, Pierre; Leroux-Roels, Geert; Simon, Philippe; Foidart, Jean-Michel; Donders, Gilbert; Hoppenbrouwers, Karel; Levin, Myron; Tibaldi, Fabian; Poncelet, Sylviane; Moris, Philippe; Dessy, Francis; Giannini, Sandra L; Descamps, Dominique; Dubin, Gary

    2014-06-17

    vaccine. Immune interference is a complex phenomenon that cannot always be overcome by changing the antigen dose or adjuvant system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cross-protective immune responses elicited by live attenuated influenza vaccines.

    Science.gov (United States)

    Jang, Yo Han; Seong, Baik Lin

    2013-03-01

    The desired effect of vaccination is to elicit protective immune responses against infection with pathogenic agents. An inactivated influenza vaccine is able to induce the neutralizing antibodies directed primarily against two surface antigens, hemagglutinin and neuraminidase. These two antigens undergo frequent antigenic drift and hence necessitate the annual update of a new vaccine strain. Besides the antigenic drift, the unpredictable emergence of the pandemic influenza strain, as seen in the 2009 pandemic H1N1, underscores the development of a new influenza vaccine that elicits broadly protective immunity against the diverse influenza strains. Cold-adapted live attenuated influenza vaccines (CAIVs) are advocated as a more appropriate strategy for cross-protection than inactivated vaccines and extensive studies have been conducted to address the issues in animal models. Here, we briefly describe experimental and clinical evidence for cross-protection by the CAIVs against antigenically distant strains and discuss possible explanations for cross-protective immune responses afforded by CAIVs. Potential barriers to the achievement of a universal influenza vaccine are also discussed, which will provide useful guidelines for future research on designing an ideal influenza vaccine with broad protection without causing pathogenic effects such as autoimmunity or attrition of protective immunity against homologous infection.

  7. Trypanosoma cruzi vaccine candidate antigens Tc24 and TSA-1 recall memory immune response associated with HLA-A and -B supertypes in Chagasic chronic patients from Mexico.

    Science.gov (United States)

    Villanueva-Lizama, Liliana E; Cruz-Chan, Julio V; Aguilar-Cetina, Amarú Del C; Herrera-Sanchez, Luis F; Rodriguez-Perez, Jose M; Rosado-Vallado, Miguel E; Ramirez-Sierra, Maria J; Ortega-Lopez, Jaime; Jones, Kathryn; Hotez, Peter; Bottazzi, Maria Elena; Dumonteil, Eric

    2018-01-01

    Trypanosoma cruzi antigens TSA-1 and Tc24 have shown promise as vaccine candidates in animal studies. We evaluated here the recall immune response these antigens induce in Chagasic patients, as a first step to test their immunogenicity in humans. We evaluated the in vitro cellular immune response after stimulation with recombinant TSA-1 (rTSA-1) or recombinant Tc24 (rTc24) in mononuclear cells of asymptomatic Chagasic chronic patients (n = 20) compared to healthy volunteers (n = 19) from Yucatan, Mexico. Proliferation assays, intracellular cytokine staining, cytometric bead arrays, and memory T cell immunophenotyping were performed by flow cytometry. Peripheral blood mononuclear cells (PBMC) from Chagasic patients showed significant proliferation after stimulation with rTc24 and presented a phenotype of T effector memory cells (CD45RA-CCR7-). These cells also produced IFN-γ and, to a lesser extent IL10, after stimulation with rTSA-1 and rTc24 proteins. Overall, both antigens recalled a broad immune response in some Chagasic patients, confirming that their immune system had been primed against these antigens during natural infection. Analysis of HLA-A and HLA-B allele diversity by PCR-sequencing indicated that HLA-A03 and HLA-B07 were the most frequent supertypes in this Mexican population. Also, there was a significant difference in the frequency of HLA-A01 and HLA-A02 supertypes between Chagasic patients and controls, while the other alleles were evenly distributed. Some aspects of the immune response, such as antigen-induced IFN-γ production by CD4+ and CD8+ T cells and CD8+ proliferation, showed significant association with specific HLA-A supertypes, depending on the antigen considered. In conclusion, our results confirm the ability of both TSA-1 and Tc24 recombinant proteins to recall an immune response induced by the native antigens during natural infection in at least some patients. Our data support the further development of these antigens as therapeutic

  8. Trypanosoma cruzi vaccine candidate antigens Tc24 and TSA-1 recall memory immune response associated with HLA-A and -B supertypes in Chagasic chronic patients from Mexico.

    Directory of Open Access Journals (Sweden)

    Liliana E Villanueva-Lizama

    2018-01-01

    Full Text Available Trypanosoma cruzi antigens TSA-1 and Tc24 have shown promise as vaccine candidates in animal studies. We evaluated here the recall immune response these antigens induce in Chagasic patients, as a first step to test their immunogenicity in humans. We evaluated the in vitro cellular immune response after stimulation with recombinant TSA-1 (rTSA-1 or recombinant Tc24 (rTc24 in mononuclear cells of asymptomatic Chagasic chronic patients (n = 20 compared to healthy volunteers (n = 19 from Yucatan, Mexico. Proliferation assays, intracellular cytokine staining, cytometric bead arrays, and memory T cell immunophenotyping were performed by flow cytometry. Peripheral blood mononuclear cells (PBMC from Chagasic patients showed significant proliferation after stimulation with rTc24 and presented a phenotype of T effector memory cells (CD45RA-CCR7-. These cells also produced IFN-γ and, to a lesser extent IL10, after stimulation with rTSA-1 and rTc24 proteins. Overall, both antigens recalled a broad immune response in some Chagasic patients, confirming that their immune system had been primed against these antigens during natural infection. Analysis of HLA-A and HLA-B allele diversity by PCR-sequencing indicated that HLA-A03 and HLA-B07 were the most frequent supertypes in this Mexican population. Also, there was a significant difference in the frequency of HLA-A01 and HLA-A02 supertypes between Chagasic patients and controls, while the other alleles were evenly distributed. Some aspects of the immune response, such as antigen-induced IFN-γ production by CD4+ and CD8+ T cells and CD8+ proliferation, showed significant association with specific HLA-A supertypes, depending on the antigen considered. In conclusion, our results confirm the ability of both TSA-1 and Tc24 recombinant proteins to recall an immune response induced by the native antigens during natural infection in at least some patients. Our data support the further development of these antigens as

  9. Ii-Key/HER-2/neu MHC class-II antigenic epitope vaccine peptide for breast cancer.

    Science.gov (United States)

    Gillogly, Michael E; Kallinteris, Nikoletta L; Xu, Minzhen; Gulfo, Joseph V; Humphreys, Robert E; Murray, James L

    2004-06-01

    Cytotoxic T lymphocytes (CTL)- and T-helper cell-specific, and major histocompatibility complex (MHC) class-I and class-II peptides, respectively, of the HER-2/ neu protein, induce immune responses in patients. A major challenge in developing cancer peptide vaccines is breaking tolerance to tumor-associated antigens which are functionally self-proteins. An adequate CD4+ T-helper response is required for effective and lasting responses. Stimulating anti-cancer CD4+ T cell responses by MHC class-II epitope peptides has been limited by their weak potency, at least compared with tight-binding MHC class-I epitope peptides. Previously, a potent T-cell response to a MHC class-II epitope was engineered by coupling the N-terminus of the pigeon cytochrome C [PGCC(95-104)] MHC class-II epitope to the C-terminus of an immunoregulatory segment of the Ii protein (hIi77-81, the Ii-Key peptide) through a polymethylene spacer. In vitro presentation of the MHC class-II epitope to a T hybridoma was enhanced greatly (>250 times). Now, an Ii-Key/HER-2/neu (777-789) MHC class-II epitope hybrid peptide stimulated lymphocytes from both a healthy donor and a patient with metastatic breast carcinoma. The in vitro primary stimulation with the hybrid peptide strongly activated IFN-gamma release, whereas the epitope-only peptide was weakly active. In fact, the hybrid stimulated IFN-gamma release as well as the wild-type peptide when augmented with IL-12; however, the hybrid was comparable to free peptide in stimulating IL-4 release. This pattern is consistent with preferential activation along a non-tolerogenic Th1 pathway. Such Ii-Key/MHC class-II epitope hybrid peptides have both diagnostic and therapeutic applications.

  10. Vaccination of rabbits with immunodominant antigens from Sarcoptes scabiei induced high levels of humoral responses and pro-inflammatory cytokines but confers limited protection.

    Science.gov (United States)

    Casais, Rosa; Granda, Victor; Balseiro, Ana; Del Cerro, Ana; Dalton, Kevin P; González, Roxana; Bravo, Pablo; Prieto, J M; Montoya, Maria

    2016-08-08

    Vaccination is an attractive ecological alternative to the use of acaricides for parasite control. However, effective anti-parasite vaccines against sarcoptic mange have not yet been developed. The purpose of this study was first to identify Sarcoptes scabiei immunodominant antigens and second to evaluate them as vaccine candidates in a rabbit/S. scabiei var. cuniculi model. The S. scabiei Ssλ15 immunodominant antigen was selected by immunoscreening of a S. scabiei var. hominis cDNA. The full-length cDNA was sequenced and cloned into the pGEX vector and the recombinant protein expressed in BL21 (DE3) cells and purified. A vaccination trial was performed consisting of a test group (n = 8) immunised with recAgs (a mix of two recombinant antigens, Ssλ15 and the previously described Ssλ20∆B3) and a control group (n = 8) immunised with PBS. All analyses were performed with R Statistical Environment with α set at 0.050. The full-length open reading frame of the 1,821 nt cloned cDNA encodes a 64 kDa polypeptide, the sequence of which had 96 % identity with a hypothetical protein of S. scabiei. Ssλ15 was localised by immunostaining of skin sections in the tegument surrounding the mouthparts and the coxa in the legs of mites. Rabbit immunisation with recAgs induced high levels of specific IgG (P scabiei challenge was detected. Unexpectedly, the group immunised with the recAgs mix had significantly higher lesion scores (P = 0.050) although lower mean mite densities than those observed in the control group. These results might indicate that the lesions in the recAgs group were due not only to the mites density but also to an exacerbated immunological response after challenge, which is in agreement with the specific high levels of pro-inflammatory cytokines (IL-1 and TNFα) detected after challenge in this group. The selected antigens delivered as recombinant proteins had no clinical protective efficacy against S. scabiei infestation although

  11. Efficacy of antigen dosage on the hepatitis B vaccine response in infants born to hepatitis B-uninfected and hepatitis B-infected mothers.

    Science.gov (United States)

    Kang, Guodong; Ma, Fubao; Chen, Haiping; Yang, Yunkai; Guo, Shaohong; Wang, Zhiguo; Liang, Xiaofeng; Li, Li; Cui, Fuqiang; Zhang, Longhua

    2015-08-07

    To compare the safety and immunogenicity of two dosages of recombinant hepatitis B (HB) vaccine administered to infants born to HB-uninfected and HB-infected mothers. A phase III, controlled, single-blinded clinical trial was conducted with 506 healthy newborns. The newborns were assigned to three groups based on maternal levels of HB surface antigen (HBsAg) and HB e antigen (HBeAg): Group A, HBsAg negative; Group B, HBsAg positive and HBeAg negative; and Group C, HBsAg positive and HBeAg positive. Three doses of 10 or 5 μg recombinant HB vaccine were randomly administered by 1:1 within 24 h after birth, at 1 month and at 6 months. Safety data and pre- and postvaccination blood samples were collected. A total of 326, 93, and 87 subjects were included in Groups A, B, and C, respectively. Both dosages of HB vaccine were well tolerated by all subjects. The most common injection-site adverse reactions (ARs) and systemic ARs were pain and fever. After 1 month of the third dose, the Group A infants who received the 10 μg HB vaccine achieved a higher geometric mean concentration (GMC) of HB surface antibody (anti-HBs) than those who received the 5 μg dosage. Maternal anti-HBs serostatus did not influence HB vaccine immunogenicity at either dosage. In contrast, there was no significant difference in the anti-HBs seroconversion rate, GMCs, or estimated vaccine efficacy (EVE) against perinatal transmission between Groups B and C, regardless of dosage. However, the seroconversion rate and EVE of the 5 μg HB vaccine was lower in Group C than in Group B. Both dosages of the HB vaccine were well tolerated and elicited a good immune response in infants of Group A, regardless of the maternal anti-HBs serostatus. EVE did not significantly differ between Groups B and C. Clinicaltrials.gov identifier: NCT02152709. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Decennial administration in young adults of a reduced-antigen content diphtheria, tetanus, acellular pertussis vaccine containing two different concentrations of aluminium.

    Science.gov (United States)

    Vandermeulen, Corinne; Theeten, Heidi; Rathi, Niraj; Kuriyakose, Sherine; Han, Htay Htay; Sokal, Etienne; Hoppenbrouwers, Karel; Van Damme, Pierre

    2015-06-12

    Regular booster vaccination might be necessary throughout life to protect against pertussis infection. Nevertheless the duration of protection after booster vaccination remains unclear. In this study, antibody persistence up to 10 years after previous vaccination of adolescents (N=478) with combined reduced-antigen-content diphtheria-tetanus-acellular pertussis vaccine (dTpa, Boostrix™, GlaxoSmithKline Belgium) containing 0.5mg, 0.3mg or 0.133mg of aluminium was assessed. The immunogenicity, reactogenicity and safety of a decennial booster dTpa dose were also investigated. Young adults vaccinated as adolescents in the initial booster study were invited to participate in an assessment of antibody persistence at years 8.5 and 10, and to receive a dTpa booster dose at year 10 with immunogenicity assessment one month later. Those who originally received the 0.5mg or 0.3mg formulations received the same vaccine at year 10. Those in the 0.133mg group received the 0.5mg formulation. Reactogenicity and safety endpoints were captured until 30 days after booster vaccination. Prior to the decennial booster at year 8.5 and year 10, all participants had seroprotective antibodies for diphtheria (ELISA or neutralisation assay) and tetanus. At least 77.8% were seropositive for anti-pertussis toxin (PT) antibodies at year 8.5 and 82.8% at year 10. All participants were seropositive for antibodies for filamentous haemagglutinin and pertactin at both time points. The decennial booster dose induced robust increases in antibody GMCs to all antigens. The post-booster anti-PT geometric mean concentration was 82.5EL.U/ml (95%CI 67.0-101.6) and 124.0 (103.5-148.5) in the 0.3mg and 0.5mg groups, respectively. The reactogenicity and safety profile of the decennial booster dose was consistent with the known safety profile of dTpa. No serious adverse events were reported. Decennial booster vaccination with either of the two licensed formulations of dTpa was highly immunogenic and well

  13. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    OpenAIRE

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  14. Extended antigen sparing potential of AS03-adjuvanted pandemic H1N1 vaccines in children, and immunological equivalence of two formulations of AS03-adjuvanted H1N1 vaccines: results from two randomised trials.

    Science.gov (United States)

    Launay, Odile; Duval, Xavier; Fitoussi, Serge; Jilg, Wolfgang; Kerdpanich, Angkool; Montellano, May; Schwarz, Tino F; Watanveerade, Veerachai; Wenzel, Jürgen J; Zalcman, Gerard; Bambure, Vinod; Li, Ping; Caplanusi, Adrian; Madan, Anuradha; Gillard, Paul; Vaughn, David W

    2013-09-16

    Pandemic influenza vaccine manufacturing capacity and distribution agility is enhanced through the availability of equivalent antigen-sparing vaccines. We evaluated equivalence in terms of immunogenicity between GlaxoSmithKline Vaccines' A/California/7/2009 (H1N1)v-like-AS03 vaccines manufactured in Dresden (D-Pan), and Quebec (Q-Pan). In two studies, 334 adults 18-60 years of age received 2 doses of D-Pan or Q-Pan containing 3.75 μg haemagglutinin antigen (HA) adjuvanted with AS03A administered 21 days apart, and 209 children 3-9 years of age received 1 reduced dose of D-Panor Q-Pan (0.9 μg HA) or Q-Pan (1.9 μg HA) with AS03B. Haemagglutination inhibition (HI) titres were assessed before and 21 days post-vaccination. HI persistence was assessed after 12 months in adults and 6 months in children. Pre-defined criteria for immunological equivalence of Q-Pan versus D-Pan were achieved in both populations. After one vaccine dose, ≥97.6% of adults and children had HI titres ≥1:40, with increases in titre ≥25.7-fold. CHMP and CBER regulatory acceptance criteria for influenza vaccines were exceeded by all groups in both studies at Day 21. In adults,the percentage with HI titres ≥1:40 at Month 12 was 82.9% (Q-Pan) and 84.0% (D-Pan). In children, the percentages at Month 6 were 75.3.3% (Q-Pan0.9), 85.1% (D-Pan0.9) and 79.3% (Q-Pan1.9). Safety profile of the study vaccines was consistent with previously published data. Two studies indicate that A/California/7/2009 (H1N1)v-like HA manufactured at two sites and combined with AS03 are equivalent in terms of immunogenicity in adults and children and highly immunogenic. Different HA doses elicited an adequate immune response through 180 days post-vaccination in children 3-9 years of age. ClinicalTrials.gov: NCT00979407 and NCT01161160.

  15. Antigen fusion with C3d3 augments or inhibits humoral immunity to AAV genetic vaccines in a transgene-dependent manner.

    Science.gov (United States)

    Logan, Grant J; Wang, Lina; Zheng, Maolin; Coppel, Ross L; Alexander, Ian E

    2010-02-01

    Genetic fusion of tandem repeats of the complement molecule C3d has been shown to considerably enhance immune responses to genetic vaccines. We have investigated the applicability of this approach to augment humoral immune responses toward vaccines delivered by recombinant adeno-associated virus (AAV) vectors. C3d(3)-fusion was found to markedly decrease antibody responses to merozoite surface protein 4/5 from Plasmodium yoelii and contrasted with greater than 50-fold enhancement in responses when this strategy was similarly applied to another AAV-encoded model antigen, hen egg lysozyme. These data indicate that the efficacy of the C3d(3) strategy operates in an antigen-dependent manner. Additional studies also showed that homologous recombination events between the C3d tandem repeats occurred during vector packaging and transduction resulting in expression of C3d(1)-, C3d(2)-, C3d(3)- and C3d(4)-fused antigen. This is the first report to apply the C3d approach to augment responses against a recombinant viral vector system and the consequences of these findings are discussed.

  16. Antigen presentation by B cells guides programing of memory CD4+T-cell responses to a TLR4-agonist containing vaccine in mice.

    Science.gov (United States)

    Dubois Cauwelaert, Natasha; Baldwin, Susan L; Orr, Mark T; Desbien, Anthony L; Gage, Emily; Hofmeyer, Kimberly A; Coler, Rhea N

    2016-12-01

    The contribution of B cells to immunity against many infectious diseases is unquestionably important and well characterized. Here, we sought to determine the role of B cells in the induction of T-helper 1 (T H 1) CD4 + T cells upon vaccination with a tuberculosis (TB) antigen combined with a TLR4 agonist. We used B-cell deficient mice (μMT -/- ), tetramer-positive CD4 + T cells, markers of memory "precursor" effector cells (MPECs), and T-cell adoptive transfers and demonstrated that the early antigen-specific cytokine-producing T H 1 responses are unaffected in the absence of B cells, however MPEC induction is strongly impaired resulting in a deficiency of the memory T H 1 response in μMT -/- mice. We further show that antigen-presentation by B cells is necessary for their role in MPEC generation using B-cell adoptive transfers from wt or MHC class II knock-out mice into μMT -/- mice. Our study challenges the view that B-cell deficiency exclusively alters the T H 1 response at memory time-points. Collectively, our results provide new insights on the multifaceted roles of B cells that will have a high impact on vaccine development against several pathogens including those requiring T H 1 cell-mediated immunity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. NY-ESO-1 Vaccination in Combination with Decitabine Induces Antigen-Specific T-lymphocyte Responses in Patients with Myelodysplastic Syndrome.

    Science.gov (United States)

    Griffiths, Elizabeth A; Srivastava, Pragya; Matsuzaki, Junko; Brumberger, Zachary; Wang, Eunice S; Kocent, Justin; Miller, Austin; Roloff, Gregory W; Wong, Hong Yuen; Paluch, Benjamin E; Lutgen-Dunckley, Linda G; Martens, Brandon L; Odunsi, Kunle; Karpf, Adam R; Hourigan, Christopher S; Nemeth, Michael J

    2017-09-25

    Purpose: Treatment options are limited for patients with high-risk myelodysplastic syndrome (MDS). The azanucleosides, azacitidine and decitabine, are first-line therapy for MDS that induce promoter demethylation and gene expression of the highly immunogenic tumor antigen NY-ESO-1. We demonstrated that patients with acute myeloid leukemia (AML) receiving decitabine exhibit induction of NY-ESO-1 expression in circulating blasts. We hypothesized that vaccinating against NY-ESO-1 in patients with MDS receiving decitabine would capitalize upon induced NY-ESO-1 expression in malignant myeloid cells to provoke an NY-ESO-1-specific MDS-directed cytotoxic T-cell immune response. Experimental Design: In a phase I study, 9 patients with MDS received an HLA-unrestricted NY-ESO-1 vaccine (CDX-1401 + poly-ICLC) in a nonoverlapping schedule every four weeks with standard-dose decitabine. Results: Analysis of samples serially obtained from the 7 patients who reached the end of the study demonstrated induction of NY-ESO-1 expression in 7 of 7 patients and NY-ESO-1-specific CD4 + and CD8 + T-lymphocyte responses in 6 of 7 and 4 of 7 of the vaccinated patients, respectively. Myeloid cells expressing NY-ESO-1, isolated from a patient at different time points during decitabine therapy, were capable of activating a cytotoxic response from autologous NY-ESO-1-specific T lymphocytes. Vaccine responses were associated with a detectable population of CD141 Hi conventional dendritic cells, which are critical for the uptake of NY-ESO-1 vaccine and have a recognized role in antitumor immune responses. Conclusions: These data indicate that vaccination against induced NY-ESO-1 expression can produce an antigen-specific immune response in a relatively nonimmunogenic myeloid cancer and highlight the potential for induced antigen-directed immunotherapy in a group of patients with limited options. Clin Cancer Res; 24(5); 1-11. ©2017 AACR. See related commentary by Fuchs, p. 991 . ©2017 American

  18. AntigenMap 3D: an online antigenic cartography resource.

    Science.gov (United States)

    Barnett, J Lamar; Yang, Jialiang; Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2012-05-01

    Antigenic cartography is a useful technique to visualize and minimize errors in immunological data by projecting antigens to 2D or 3D cartography. However, a 2D cartography may not be sufficient to capture the antigenic relationship from high-dimensional immunological data. AntigenMap 3D presents an online, interactive, and robust 3D antigenic cartography construction and visualization resource. AntigenMap 3D can be applied to identify antigenic variants and vaccine strain candidates for pathogens with rapid antigenic variations, such as influenza A virus. http://sysbio.cvm.msstate.edu/AntigenMap3D

  19. Increasing versatility of the DNA vaccines through modification of the subcellular location of plasmid-encoded antigen expression in the in vivo transfected cells.

    Directory of Open Access Journals (Sweden)

    Alicia Martinez-Lopez

    Full Text Available The route of administration of DNA vaccines can play a key role in the magnitude and quality of the immune response triggered after their administration. DNA vaccines containing the gene of the membrane-anchored glycoprotein (gpG of the fish rhabdoviruses infectious haematopoietic necrosis virus (IHNV or viral haematopoietic septicaemia virus (VHSV, perhaps the most effective DNA vaccines generated so far, confer maximum protection when injected intramuscularly in contrast to their low efficacy when injected intraperitoneally. In this work, taking as a model the DNA vaccine against VHSV, we focused on developing a more versatile DNA vaccine capable of inducing protective immunity regardless of the administration route used. For that, we designed two alternative constructs to gpG₁₋₅₀₇ (the wild type membrane-anchored gpG of VHSV encoding either a soluble (gpG₁₋₄₆₂ or a secreted soluble (gpG(LmPle20-462 form of the VHSV-gpG. In vivo immunisation/challenge assays showed that only gpG(LmPle20-462 (the secreted soluble form conferred protective immunity against VHSV lethal challenge via both intramuscular and intraperitoneal injection, being this the first description of a fish viral DNA vaccine that confers protection when administered intraperitoneally. Moreover, this new DNA vaccine construct also conferred protection when administered in the presence of an oil adjuvant suggesting that DNA vaccines against rhabdoviruses could be included in the formulation of current multicomponent-intaperitoneally injectable fish vaccines formulated with an oil adjuvant. On the other hand, a strong recruitment of membrane immunoglobulin expressing B cells, mainly membrane IgT, as well as t-bet expressing T cells, at early times post-immunisation, was specifically observed in the fish immunised with the secreted soluble form of the VHSV-gpG protein; this may indicate that the subcellular location of plasmid-encoded antigen expression in the in

  20. Transplacentally acquired maternal antibody against hepatitis B surface antigen in infants and its influence on the response to hepatitis B vaccine.

    Directory of Open Access Journals (Sweden)

    Zhiqun Wang

    Full Text Available BACKGROUND: Passively acquired maternal antibodies in infants may inhibit active immune responses to vaccines. Whether maternal antibody against hepatitis B surface antigen (anti-HBs in infants may influence the long-term immunogenicity of hepatitis B vaccine remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Totally 338 pairs of mothers and children were enrolled. All infants were routinely vaccinated against hepatitis B based on 0-, 1- and 6-month schedule. We characterized the transplacental transfer of maternal anti-HBs, and compared anti-HBs response in children of mothers with or without anti-HBs. In a prospective observation, all 63 anti-HBs positive mothers transferred anti-HBs to their infants; 84.1% of the infants had higher anti-HBs concentrations than their mothers. One and half years after vaccination with three doses of hepatitis B vaccine, the positive rate and geometric mean concentration (GMC of anti-HBs in 32 infants with maternal anti-HBs were comparable with those in 32 infants without maternal antibody (90.6% vs 87.5%, P = 0.688, and 74.5 vs 73.5 mIU/ml, P = 0.742, respectively. In a retrospective analysis, five and half years after vaccination with three doses vaccine, the positive rates of anti-HBs in 88 children of mothers with anti-HBs ≥1000 mIU/ml, 94 children of mothers with anti-HBs 10-999 mIU/ml, and 61 children of mothers with anti-HBs <10 mIU/ml were 72.7%, 69.2%, and 63.9% (P = 0.521, respectively; anti-HBs GMC in these three groups were 38.9, 43.9, and 31.7 mIU/ml (P = 0.726, respectively. CONCLUSIONS/SIGNIFICANCE: The data demonstrate that maternal anti-HBs in infants, even at high concentrations, does not inhibit the long-term immunogenicity of hepatitis B vaccine. Thus, current hepatitis B vaccination schedule for infants will be still effective in the future when most infants are positive for maternal anti-HBs due to the massive vaccination against hepatitis B.

  1. Archaeosome Adjuvant Overcomes Tolerance to Tumor-Associated Melanoma Antigens Inducing Protective CD8+ T Cell Responses

    Directory of Open Access Journals (Sweden)

    Lakshmi Krishnan

    2010-01-01

    Full Text Available Vesicles comprised of the ether glycerolipids of the archaeon Methanobrevibacter smithii (archaeosomes are potent adjuvants for evoking CD8+ T cell responses. We therefore explored the ability of archaeosomes to overcome immunologic tolerance to self-antigens. Priming and boosting of mice with archaeosome-antigen evoked comparable CD8+ T cell response and tumor protection to an alternate boosting strategy utilizing live bacterial vectors for antigen delivery. Vaccination with melanoma antigenic peptides TRP181-189 and Gp10025-33 delivered in archaeosomes resulted in IFN-γ producing antigen-specific CD8+ T cells with strong cytolytic capability and protection against subcutaneous B16 melanoma. Targeting responses against multiple antigens afforded prolonged median survival against melanoma challenge. Entrapment of multiple peptides within the same vesicle or admixed formulations were both effective at evoking CD8+ T cells against each antigen. Melanoma-antigen archaeosome formulations also afforded therapeutic protection against established B16 tumors when combined with depletion of T-regulatory cells. Overall, we demonstrate that archaeosome adjuvants constitute an effective choice for formulating cancer vaccines.

  2. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen.

    Science.gov (United States)

    Tekewe, Alemu; Fan, Yuanyuan; Tan, Emilyn; Middelberg, Anton P J; Lua, Linda H L

    2017-02-01

    A high global burden of rotavirus disease and the unresolved challenges with the marketed rotavirus vaccines, particularly in the developing world, have ignited efforts to develop virus-like particle (VLP) vaccines for rotavirus. While rotavirus-like particles comprising multiple viral proteins can be difficult to process, modular VLPs presenting rotavirus antigenic modules are promising alternatives in reducing process complexity and cost. In this study, integrated molecular and bioprocess engineering approaches were used to simplify the production of modular murine polyomavirus capsomeres and VLPs presenting a rotavirus 18 kDa VP8* antigen. A single construct was generated for dual expression of non-tagged murine polyomavirus capsid protein VP1 and modular VP1 inserted with VP8*, for co-expression in Escherichia coli. Co-expressed proteins assembled into pentameric capsomeres in E. coli. A selective salting-out precipitation and a polishing size exclusion chromatography step allowed the recovery of stable modular capsomeres from cell lysates at high purity, and modular capsomeres were successfully translated into modular VLPs when assembled in vitro. Immunogenicity study in mice showed that modular capsomeres and VLPs induced high levels of VP8*-specific antibodies. Our results demonstrate that a multipronged synthetic biology approach combining molecular and bioprocess engineering enabled simple and low-cost production of highly immunogenic modular capsomeres and VLPs presenting conformational VP8* antigenic modules. This strategy potentially provides a cost-effective production route for modular capsomere and VLP vaccines against rotavirus, highly suitable to manufacturing economics for the developing world. Biotechnol. Bioeng. 2017;114: 397-406. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Immunological investigations of antigens released by normal and irradiated schistosomasa mansoni cercariae in vitro. Part of a coordinated programme on preparation of irradiated vaccines against some human diseases

    International Nuclear Information System (INIS)

    Catty, D.

    1982-07-01

    S.mansoni cercariae were γ-irradiated at 1-15 K rads, syringe transformed, and injected into groups of 20 mice (200 dose), with unirradiated controls. Aliquots of 1,500 cercariae irradiated at 1-40 K rads (plus unirradiated controls) were cultured in serum-free medium. It was found that irradiation does not inhibit release of a broad spectrum of antigens in culture over 6 hours until 20 K rads is delivered. Mice used as hosts for the graded cercarial irradiation vaccine were subdivided into groups of 10 and either left unchallenged or challenged at 6 weeks with a normal infection of 200 cercariae. Serum samples were taken from every mouse at regular intervals and antibodies titrated by solid phase radioimmunoassay. Injected parasites, whether irradiated or normal, always gave higher antibody titres to cercarial and egg antigens than the equivalent dose of normal (challenge) parasites infecting by the natural route. Challenge infection depressed anti-cercarial responses in mice exposed to irradiated larvae but boosted the response to normal injected parasites. Antibodies to SEA were in lower titre in all groups but rose from week 7 (1 week post-challenge) in the groups injected with normal and 1 K rad-treated parasites, where adults were previously established in the hosts. At 12 weeks all mice were sacrificed and perfused for adults. Egg yields in liver and intestine were determined. There was no evidence of protective immunity to challenge infection induced by injected unirradiated or 1 K rad-irradiated, transformed, cercariae, even though both sources of parasite gave rise to egg-laying adults. By contrast, the 5, 10 and 15 K rad vaccines gave protection of 36-49%, even though they gave rise to no persistent adults or any deposited eggs. The protective (immunising) properties of irradiation-attenuated vaccines of S.mansoni cercariae can thus be clearly correlated with their capacity to release antigens in the immediate post irradiation period

  4. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Directory of Open Access Journals (Sweden)

    Manjunatha M Venkataswamy

    Full Text Available Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag. We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  5. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Science.gov (United States)

    Venkataswamy, Manjunatha M; Ng, Tony W; Kharkwal, Shalu S; Carreño, Leandro J; Johnson, Alison J; Kunnath-Velayudhan, Shajo; Liu, Zheng; Bittman, Robert; Jervis, Peter J; Cox, Liam R; Besra, Gurdyal S; Wen, Xiangshu; Yuan, Weiming; Tsuji, Moriya; Li, Xiangming; Ho, David D; Chan, John; Lee, Sunhee; Frothingham, Richard; Haynes, Barton F; Panas, Michael W; Gillard, Geoffrey O; Sixsmith, Jaimie D; Korioth-Schmitz, Birgit; Schmitz, Joern E; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2014-01-01

    Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  6. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Bryan C. Au

    2016-02-01

    Full Text Available Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag-specific responses through direct injections of recombinant lentivectors (LVs that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months—the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an “off-the-shelf” anti-cancer vaccine that could be made at large scale and injected into patients—even on an out-patient basis.

  7. Tissue reduction of map numbers after post-exposure vaccination with single latency antigen is improved by combination with acute-stage antigens in goats

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, C.; Melvang, Heidi Mikkelsen

    compared to unvaccinated control goats. FET11 and FET13 vaccination, however, provided significantly protection with absent or very low Map numbers in tissues. No goats seroconverted in ID Screen® ELISA, except for a single goat in the unvaccinated control group at last sampling prior to euthanasia. PPDj...

  8. Tumor Antigen-Dependent and Tumor Antigen-Independent Activation of Antitumor Activity in T Cells by a Bispecific Antibody-Modified Tumor Vaccine

    Directory of Open Access Journals (Sweden)

    Philippe Fournier

    2010-01-01

    Full Text Available New approaches of therapeutic cancer vaccination are needed to improve the antitumor activity of T cells from cancer patients. We studied over the last years the activation of human T cells for tumor attack. To this end, we combined the personalized therapeutic tumor vaccine ATV-NDV—which is obtained by isolation, short in vitro culture, irradiation, and infection of patient's tumor cells by Newcastle Disease Virus (NDV—with bispecific antibodies (bsAbs binding to this vaccine and introducing anti-CD3 (signal 1 and anti-CD28 (signal 2 antibody activities. This vaccine called ATV-NDV/bsAb showed the unique ability to reactivate a preexisting potentially anergized antitumor memory T cell repertoire. But it also activated naive T cells to have antitumor properties in vitro and in vivo. This innovative concept of direct activation of cancer patients' T cells via cognate and noncognate interactions provides potential for inducing strong antitumor activities aiming at overriding T cell anergy and tumor immune escape mechanisms.

  9. Breaking tolerance in hepatitis B surface antigen (HBsAg) transgenic mice by vaccination with cross-reactive, natural HBsAg variants

    DEFF Research Database (Denmark)

    Schirmbeck, Reinhold; Dikopoulos, Nektarios; Kwissa, Marcin

    2003-01-01

    Processing exogenous hepatitis B surface antigen (HBsAg) of the hepatitis B virus (HBV) generates the K(b)-binding S(208-215) epitope 1; processing endogenous HBsAg generates the K(b)-binding S(190-197) epitope 2. Cross-reactive CD8(+) T cell responses were primed to epitope 1 but not epitope 2...... HBs-tg mice showed reduced antigenemia. Hence, vaccination with natural HBsAg variants from different HBV sero/genotypes can prime cross-reactive, specific CD8(+) T cell immunity that breaks tolerance to HBsAg....

  10. Identification of Lck-derived peptides applicable to anti-cancer vaccine for patients with human leukocyte antigen-A3 supertype alleles

    OpenAIRE

    Naito, M; Komohara, Y; Ishihara, Y; Noguchi, M; Yamashita, Y; Shirakusa, T; Yamada, A; Itoh, K; Harada, M

    2007-01-01

    The identification of peptide vaccine candidates to date has been focused on human leukocyte antigen (HLA)-A2 and -A24 alleles. In this study, we attempted to identify cytotoxic T lymphocyte (CTL)-directed Lck-derived peptides applicable to HLA-A11+, -A31+, or -A33+ cancer patients, because these HLA-A alleles share binding motifs, designated HLA-A3 supertype alleles, and because the Lck is preferentially expressed in metastatic cancer. Twenty-one Lck-derived peptides were prepared based on t...

  11. Contraceptive Vaccines

    Directory of Open Access Journals (Sweden)

    M.V. Supotnitsky

    2014-02-01

    Full Text Available Researches to develop vaccines with contraceptive effect are being carried out since the 1920s. Since 1972, the contraceptive vaccines are one of the priority programs of the World Health Organization (WHO Special Programme of Research, Development and Research Training in Human Reproduction. Rockefeller Foundation participates in implementing the program. Openly declared objective of creating such vaccines — the regulation of the population in the Third World countries. There are currently three main directions of contraceptive vaccine design: 1 vaccines targeted at blocking the production of gametes; 2 impairing their function; 3 violating the fertilization process. Contraceptive vaccines for more than 10 years are widely used to reduce fertility and castration of wild and domestic animals. In the commercial realization there are veterinary vaccines Equity®, Improvac®, GonaCon®, Repro-BLOC (based on gonadotropin-releasing hormone; SpayVac™ and IVT-PZP® (based on zona pellucida antigens. Clinical studies have shown effective contraceptive action (in women of vaccines, in which human chorionic gonadotropin is used as an antigen. At the same time, there are found the side effects of such vaccines: for vaccines containing gonadotropin-releasing hormone and luteinizing hormone as antigenic components — castration, impotence; for vaccines containing follicle stimulating hormone — oligospermia; zona pellucida antigens — irreversible oophoritis. This paper discusses approaches to detection of sterilizing components in vaccines intended for mass prevention of infectious diseases, not reported by manufacturers, and the consequences of their use. Hidden use of contraceptive vaccines, which already took place, can be detected: 1 by the presence of antibodies to their antigenic components (in unvaccinated by contraceptive vaccines people such antibodies do not exist, except infertility cases; 2 by change in the hormonal levels of the

  12. Tumor antigen-specific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts.

    Science.gov (United States)

    Jandus, Camilla; Bioley, Gilles; Dojcinovic, Danijel; Derré, Laurent; Baitsch, Lukas; Wieckowski, Sébastien; Rufer, Nathalie; Kwok, William W; Tiercy, Jean-Marie; Luescher, Immanuel F; Speiser, Daniel E; Romero, Pedro

    2009-10-15

    We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.

  13. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance.

    Directory of Open Access Journals (Sweden)

    Emily Xie

    Full Text Available The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.

  14. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance

    Science.gov (United States)

    Xie, Emily; Kotha, Abhiroop; Biaco, Tracy; Sedani, Nikita; Zou, Jonathan; Stashenko, Phillip; Duncan, Margaret J.; Campos-Neto, Antonio; Cayabyab, Mark J.

    2015-01-01

    The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases. PMID:26618634

  15. Canine Distemper Virus Antigen Detection in External Epithelia of Recently Vaccinated, Sick Dogs by Fluorescence Microscopy Is a Valuable Prognostic Indicator

    Science.gov (United States)

    Neel, Tina

    2014-01-01

    Currently, there are no reliable predictors of the clinical outcomes of domesticated dogs that have been recently vaccinated against canine distemper virus (CDV) and develop respiratory disease. In this study, vaccinated dogs from Oklahoma City that were showing clinical signs of respiratory disease were evaluated for CDV antigen using a direct fluorescent antibody test (FAT). Clinical outcomes after standard symptomatic therapy for respiratory disease were recorded, and a statistical analysis of the results was performed. We present our study showing that CDV FAT results were predictive of clinical recovery (prognostic indicator, prospects of clinical recovery) among vaccinated dogs showing clinical signs of respiratory disease. Negative CDV FAT results equated to 80% chances of recovery after symptomatic therapy, compared to 55% chances of recovery when the CDV FAT results were positive. Based on the results of this study, we show that veterinarians can make better informed decisions about the clinical outcomes of suspected CDV cases, with 2-h turnaround times, by using the CDV FAT. Thus, antemortem examination with the CDV FAT on external epithelia of recently vaccinated, sick dogs is a clinically useful diagnostic test and valuable prognostic indicator for veterinarians. Application of the CDV FAT to these samples avoids unnecessary euthanasia of dogs with suspected CDV. PMID:25428156

  16. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7.

    Science.gov (United States)

    Sewell, Duane A; Shahabi, Vafa; Gunn, George R; Pan, Zhen-Kun; Dominiecki, Mary E; Paterson, Yvonne

    2004-12-15

    Previous work in our laboratory has established that the fusion of tumor-associated antigens to a truncated form of the Listeria monocytogenes virulence factor listeriolysin O (LLO) enhances the immunogenicity and antitumor efficacy of the tumor antigen when delivered by Listeria or by vaccinia. LLO contains a PEST sequence at the NH(2) terminus. These sequences, which are found in eukaryotic proteins with a short cellular half-life, target proteins for degradation in the ubiquitin-proteosome pathway. To investigate whether the enhanced immunogenicity conferred by LLO is due to the PEST sequence, we constructed new Listeria recombinants that expressed the HPV-16 E7 antigen fused to LLO, which either contained or had been deleted of this sequence. We then compared the antitumor efficacy of this set of vectors and found that Listeria expressing the fusion protein LLO-E7 or PEST-E7 were effective at regressing established macroscopic HPV-16 immortalized tumors in syngeneic mice. In contrast, Listeria recombinants expressing E7 alone or E7 fused to LLO from which the PEST sequence had been genetically removed could only slow tumor growth. Because CD8(+) T cell epitopes are generated in the ubiquitin-proteosome pathway, we also investigated the ability of the vaccines to induce E7-specific CD8(+) T cells in the spleen and to generate E7-specific tumor-infiltrating lymphocytes. A strong correlation was observed between CD8(+) T-cell induction and tumor homing and the antitumor efficacy of the Listeria-E7 vaccines. These findings suggest a strategy for the augmentation of tumor antigen-based immunotherapeutic strategies that may be broadly applicable.

  17. The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice.

    Directory of Open Access Journals (Sweden)

    Jessica A Hess

    2016-07-01

    Full Text Available In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses.Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2.The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans.

  18. Interruption of persistent exposure to leprosy combined or not with recent BCG vaccination enhances the response to Mycobacterium leprae specific antigens.

    Science.gov (United States)

    de Carvalho, Fernanda Marques; Rodrigues, Luciana Silva; Duppre, Nádia Cristina; Alvim, Iris Maria Peixoto; Ribeiro-Alves, Marcelo; Pinheiro, Roberta Olmo; Sarno, Euzenir Nunes; Pessolani, Maria Cristina Vidal; Pereira, Geraldo Moura Batista

    2017-05-01

    Household contacts of multibacillary leprosy patients (HCMB) constitute the group of individuals at the highest risk of developing leprosy. Early diagnosis and treatment of their index cases combined with Bacille Calmette-Guerin (BCG) immunization remain important strategies adopted in Brazil to prevent HCMB from evolving into active disease. In the present study, we assessed the impact of these measures on the immune response to Mycobacterium leprae in HCMB. Peripheral blood mononuclear cells (PBMC) from HCMB (n = 16) were obtained at the beginning of leprosy index case treatment (T0). At this time point, contacts were vaccinated (n = 13) or not (n = 3) in accordance with their infancy history of BCG vaccination and PBMCs were recollected at least 6 months later (T1). As expected, a significant increase in memory CD4 and CD8 T cell frequencies responsive to M. leprae whole-cell sonicate was observed in most contacts. Of note, higher frequencies of CD4+ T cells that recognize M. leprae specific epitopes were also detected. Moreover, increased production of the inflammatory mediators IL1-β, IL-6, IL-17, TNF, IFN-γ, MIP1-β, and MCP-1 was found at T1. Interestingly, the increment in these parameters was observed even in those contacts that were not BCG vaccinated at T0. This result reinforces the hypothesis that the continuous exposure of HCMB to live M. leprae down regulates the specific cellular immune response against the pathogen. Moreover, our data suggest that BCG vaccination of HCMB induces activation of T cell clones, likely through "trained immunity", that recognize M. leprae specific antigens not shared with BCG as an additional protective mechanism besides the expected boost in cell-mediated immunity by BCG homologues of M. leprae antigens.

  19. Rabies virus vaccines: is there a need for a pan-lyssavirus vaccine?

    Science.gov (United States)

    Evans, Jennifer S; Horton, Daniel L; Easton, Andrew J; Fooks, Anthony R; Banyard, Ashley C

    2012-12-14

    All members of the lyssavirus genus are capable of causing disease that invariably results in death following the development of clinical symptoms. The recent detection of several novel lyssavirus species across the globe, in different animal species, has demonstrated that the lyssavirus genus contains a greater degree of genetic and antigenic variation than previously suspected. The divergence of species within the genus has led to a differentiation of lyssavirus isolates based on both antigenic and genetic data into two, and potentially a third phylogroup. Critically, from both a human and animal health perspective, current rabies vaccines appear able to protect against lyssaviruses classified within phylogroup I. However no protection is afforded against phylogroup II viruses or other more divergent viruses. Here we review current knowledge regarding the diversity and antigenicity of the lyssavirus glycoprotein. We review the degree of cross protection afforded by rabies vaccines, the genetic and antigenic divergence of the lyssaviruses and potential mechanisms for the development of novel lyssavirus vaccines for use in areas where divergent lyssaviruses are known to circulate, as well as for use by those at occupational risk from these pathogens. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Transient Loss of Protection Afforded by a Live Attenuated Non-typhoidal Salmonella Vaccine in Mice Co-infected with Malaria.

    Directory of Open Access Journals (Sweden)

    Jason P Mooney

    Full Text Available In immunocompetent individuals, non-typhoidal Salmonella serovars (NTS are associated with gastroenteritis, however, there is currently an epidemic of NTS bloodstream infections in sub-Saharan Africa. Plasmodium falciparum malaria is an important risk factor for invasive NTS bloodstream in African children. Here we investigated whether a live, attenuated Salmonella vaccine could be protective in mice, in the setting of concurrent malaria. Surprisingly, mice acutely infected with the nonlethal malaria parasite Plasmodium yoelii 17XNL exhibited a profound loss of protective immunity to NTS, but vaccine-mediated protection was restored after resolution of malaria. Absence of protective immunity during acute malaria correlated with maintenance of antibodies to NTS, but a marked reduction in effector capability of Salmonella-specific CD4 and CD8 T cells. Further, increased expression of the inhibitory molecule PD1 was identified on memory CD4 T cells induced by vaccination. Blockade of IL-10 restored protection against S. Typhimurium, without restoring CD4 T cell effector function. Simultaneous blockade of CTLA-4, LAG3, and PDL1 restored IFN-γ production by vaccine-induced memory CD4 T cells but was not sufficient to restore protection. Together, these data demonstrate that malaria parasite infection induces a temporary loss of an established adaptive immune response via multiple mechanisms, and suggest that in the setting of acute malaria, protection against NTS mediated by live vaccines may be interrupted.

  1. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    Science.gov (United States)

    Yeaman, Michael R.; Filler, Scott G.; Schmidt, Clint S.; Ibrahim, Ashraf S.; Edwards, John E.; Hennessey, John P.

    2014-01-01

    Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S

  2. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michael R Yeaman

    2014-09-01

    Full Text Available Recent perspectives forecast a new paradigm for future 3rd generation vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologues found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that 1 afford protective efficacy; 2 target an epitope from one organism that contributes to protective immunity against another; 3 cross-protect against multiple pathogens occupying a common anatomic or immunologic niche; and/or 4 overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre–clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in preclinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3 where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target

  3. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus.

    Science.gov (United States)

    Yeaman, Michael R; Filler, Scott G; Schmidt, Clint S; Ibrahim, Ashraf S; Edwards, John E; Hennessey, John P

    2014-01-01

    Recent perspectives forecast a new paradigm for future "third generation" vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S

  4. Blood Interferon Signatures Putatively Link Lack of Protection Conferred by the RTS,S Recombinant Malaria Vaccine to an Antigen-specific IgE Response [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Darawan Rinchai

    2017-07-01

    Full Text Available Malaria remains a major cause of mortality and morbidity worldwide. Progress has been made in recent years with the development of vaccines that could pave the way towards protection of hundreds of millions of exposed individuals. Here we used a modular repertoire approach to re-analyze a publically available microarray blood transcriptome dataset monitoring the response to malaria vaccination. We report the seminal identification of interferon signatures in the blood of subjects on days 1, 3 and 14 following administration of the third dose of the RTS,S recombinant malaria vaccine. These signatures at day 1 correlate with protection, and at days 3 and 14 to susceptibility to subsequent challenge of study subjects with live parasites. In addition we putatively link the decreased abundance of interferon-inducible transcripts observed at days 3 and 14 post-vaccination with the elicitation of an antigen-specific IgE response in a subset of vaccine recipients that failed to be protected by the RTS,S vaccine. Furthermore, profiling of antigen-specific levels of IgE in a Mozambican cohort of malaria-exposed children vaccinated with RTS,S identified an association between elevated baseline IgE levels and subsequent development of naturally acquired malaria infection during follow up. Taken together these findings warrant further investigation of the role of antigen-specific IgE in conferring susceptibility to malaria infection.

  5. Quantitative Detection of the Foot-And-Mouth Disease Virus Serotype O 146S Antigen for Vaccine Production Using a Double-Antibody Sandwich ELISA and Nonlinear Standard Curves.

    Directory of Open Access Journals (Sweden)

    Xia Feng

    Full Text Available The efficacy of an inactivated foot-and-mouth disease (FMD vaccine is mainly dependent on the integrity of the foot-and-mouth disease virus (FMDV particles. At present, the standard method to quantify the active component, the 146S antigen, of FMD vaccines is sucrose density gradient (SDG analysis. However, this method is highly operator dependent and difficult to automate. In contrast, the enzyme-linked immunosorbent assay (ELISA is a time-saving technique that provides greater simplicity and sensitivity. To establish a valid method to detect and quantify the 146S antigen of a serotype O FMD vaccine, a double-antibody sandwich (DAS ELISA was compared with an SDG analysis. The DAS ELISA was highly correlated with the SDG method (R2 = 0.9215, P<0.01. In contrast to the SDG method, the DAS ELISA was rapid, robust, repeatable and highly sensitive, with a minimum quantification limit of 0.06 μg/mL. This method can be used to determine the effective antigen yields in inactivated vaccines and thus represents an alternative for assessing the potency of FMD vaccines in vitro. But it still needs to be prospectively validated by analyzing a new vaccine preparation and determining the proper protective dose followed by an in vivo vaccination-challenge study to confirm the ELISA findings.

  6. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  7. Towards the development of a one-dose classical swine fever subunit vaccine: antigen titration, onset and duration of immunity.

    Science.gov (United States)

    Madera, Rachel Flores; Wang, Lihua; Gong, Wenjie; Burakova, Yulia; Buist, Sterling; Nietfeld, Jerome; Henningson, Jamie; Ozuna, Ada G Cino; Tu, Changchun; Shi, Jishu

    2018-03-06

    The highly contagious classical swine fever (CSF) remains a major trade and health problem in the pig industry, causing large economic losses worldwide. Modified live vaccines (MLV), commonly derived from the attenuated CSF virus (CSFV) C-strain, have been routinely used to control the disease in CSF-endemic countries. However, to completely eradicate the disease, a potent, safe and non-infectious CSF vaccine should be easily accessible and available. This study aims to develop a cost-effective, non infectious CSF subunit vaccine that can elicit rapid and long lasting immunity. We report on a series of animal studies to study the efficacy of a CSF E2 subunit vaccine in oil-in-water emulsion adjuvant, KNB-E2. Swine vaccination and CSFV challenge experiments showed that a single KNB-E2 dose with 25 µg of recombinant CSFV glycoprotein E2 can reduce disease and protect from clinical symptoms. In addition, KNB-E2-mediated reduction of CSF symptoms was observed at two weeks post vaccination and the vaccinated pigs continued to exhibit reduced CSF clinical signs when challenged at two months and four months post vaccination. These results suggest that KNB-E2 effectively reduces CSF clinical signs and the potential of this vaccine to safely minimize CSF-related losses.

  8. Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice.

    Science.gov (United States)

    Meng, Min; He, Shenyi; Zhao, Guanghui; Bai, Yang; Zhou, Huaiyu; Cong, Hua; Lu, Gang; Zhao, Qunli; Zhu, Xing-Quan

    2012-11-26

    Toxoplasmosis, caused by an obligate intracellular protozoan parasite Toxoplasma gondii, has been a serious clinical and veterinary problem. Effective DNA vaccines against T. gondii can prevent and control the spread of toxoplasmosis, which is important for both human health and the farming industry. The T. gondii 14-3-3 protein has been proved to be antigenic and immunogenic and was a potential vaccine candidate against toxoplasmosis. In this study, we evaluated the immune responses induced by recombinant plasmids encoding T. gondii surface antigen 1 (SAG1) and 14-3-3 protein by immunizing BALB/c mice intramuscularly. In the present study, BALB/c mice were randomly divided into five groups, including three experimental groups (pSAG1, p14-3-3 and pSAG1/14-3-3) and two control groups (PBS and pBudCE4.1), and were immunized intramuscularly three times. The levels of IgG antibodies and cytokine production in mouse sera were determined by enzyme-linked immunosorbent assays (ELISA). Two weeks after the last immunization, all mice were challenged intraperitoneally (i.p.) with 1×10(4) tachyzoites of T. gondii and the survival time of mice was observed and recorded every day. Mice vaccinated with pSAG1, p14-3-3 or pSAG1/14-3-3 developed high levels of IgG2a and gamma interferon (IFN-γ) and low levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) compared to control groups (PBS or pBudCE4.1), which suggested a modulated Th1 type immune response (Pmice in experimental groups was longer than control groups (Pmice and was a novel DNA vaccine candidate against toxoplasmosis, and the immune protective efficacy elicited by SAG1 gene was also demonstrated. Our results also showed multi-gene vaccine significantly enhanced immune responses and protective efficacy and was superior to the single-gene vaccine.

  9. The immunogenicity of tetravalent dengue DNA vaccine in mice pre-exposed to Japanese encephalitis or Dengue virus antigens.

    Science.gov (United States)

    Prompetchara, Eakachai; Ketloy, Chutitorn; Keelapang, Poonsook; Sittisombut, Nopporn; Ruxrungtham, Kiat

    2015-09-01

    Asian countries are an endemic area for both dengue (DENV) and Japanese encephalitis viruses (JEV). While JEV vaccines have been used extensively in this region, DENV vaccines remains under development. Whether preexisting naturally acquired or vaccination-induced immunity against JEV may affect the immune response to dengue vaccine candidate is unclear. In this study we used mice previously immunized with JEV vaccines to evaluate the impact on dengue-specific neutralizing antibody responses to a tetravalent dengue DNA vaccine candidate (TDNA). A tetravalent cocktail of plasmids encoding pre-membrane and envelope proteins from each dengue serotype was administered into mice which had been previously primed with inactivated or live-attenuated JEV vaccines, or dengue serotype2 virus (DENV-2). Neutralizing antibody response was measured employing a plaque reduction neutralization test at two weeks after the priming and at four weeks after the second dose of the dengue tetravalent plasmids. Inactivated or live-attenuated JEV vaccines, or DENV-2 induced low levels of neutralizing antibodies against the homologous viruses (JE and dengue virus, respectively). DENV-2 injection induced also low levels of cross-reactive antibodies against DENV-1, -3 and -4. JEV vaccines have no effect on the dengue-specific neutralizing antibody responses to the subsequent TDNA immunization. Pre-exposure to DENV-2 infection increased DENV-2 specific response neutralizing antibody to two doses of TDNA plasmids by six folds, but did not affect antibody response to other serotypes. Priming with JEV vaccines did not impact on dengue virus-specific neutralizing antibody response to a dengue TDNA vaccine candidate in mice.

  10. Recombinant protective antigen anthrax vaccine improves survival when administered as a postexposure prophylaxis countermeasure with antibiotic in the New Zealand white rabbit model of inhalation anthrax.

    Science.gov (United States)

    Leffel, Elizabeth K; Bourdage, James S; Williamson, E Diane; Duchars, Matthew; Fuerst, Thomas R; Fusco, Peter C

    2012-08-01

    Inhalation anthrax is a potentially lethal form of disease resulting from exposure to aerosolized Bacillus anthracis spores. Over the last decade, incidents spanning from the deliberate mailing of B. anthracis spores to incidental exposures in users of illegal drugs have highlighted the importance of developing new medical countermeasures to protect people who have been exposed to "anthrax spores" and are at risk of developing disease. The New Zealand White rabbit (NZWR) is a well-characterized model that has a pathogenesis and clinical presentation similar to those seen in humans. This article reports how the NZWR model was adapted to evaluate postexposure prophylaxis using a recombinant protective antigen (rPA) vaccine in combination with an oral antibiotic, levofloxacin. NZWRs were exposed to multiples of the 50% lethal dose (LD(50)) of B. anthracis spores and then vaccinated immediately (day 0) and again on day 7 postexposure. Levofloxacin was administered daily beginning at 6 to 12 h postexposure for 7 treatments. Rabbits were evaluated for clinical signs of disease, fever, bacteremia, immune response, and survival. A robust immune response (IgG anti-rPA and toxin-neutralizing antibodies) was observed in all vaccinated groups on days 10 to 12. Levofloxacin plus either 30 or 100 μg rPA vaccine resulted in a 100% survival rate (18 of 18 per group), and a vaccine dose as low as 10 μg rPA resulted in an 89% survival rate (16 of 18) when used in combination with levofloxacin. In NZWRs that received antibiotic alone, the survival rate was 56% (10 of 18). There was no adverse effect on the development of a specific IgG response to rPA in unchallenged NZWRs that received the combination treatment of vaccine plus antibiotic. This study demonstrated that an accelerated two-dose regimen of rPA vaccine coadministered on days 0 and 7 with 7 days of levofloxacin therapy results in a significantly greater survival rate than with antibiotic treatment alone. Combination of

  11. Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: a randomized, double-blinded, controlled, multicenter trial.

    Science.gov (United States)

    Gorse, Geoffrey J; Keitel, Wendy; Keyserling, Harry; Taylor, David N; Lock, Michael; Alves, Katia; Kenner, Julie; Deans, Lynne; Gurwith, Marc

    2006-08-14

    We report the results of a phase I dose escalation, safety and immunogenicity trial of a new recombinant protective antigen (rPA102) anthrax vaccine. Hundred healthy volunteers were randomized in a 4:1 ratio to receive intramuscular doses of rPA102 in the following formulations: 5, 25, 50, or 75 microg of rPA102 in 82.5 microg aluminum hydroxide adjuvant at 0, 4, and 8 weeks; or the US licensed Anthrax Vaccine Adsorbed (AVA) at weeks 0 and 4. Local reactogenicity (mostly pain) was more common with AVA than with rPA102 following the first (94.7% versus 44.4%; p < 0.001) and the second (84.2% versus 35.4%; p < 0.001) vaccinations. Systemic reactogenicity (mostly headache) was more common among rPA102 vaccinees, but only following the first vaccination (49.4% versus 15.8%; p = 0.025). A dose-response relationship for anti-PA antibodies was present after the 2nd and 3rd vaccinations. Two weeks following the 2nd vaccination, the geometric mean titers (GMT) for lethal toxin neutralization activity (TNA), for the 5, 25, 50 and 75 microg rPA102 and AVA groups were 38.6, 75.4, 373.9, 515.3, and 855.2, respectively. The geometric mean concentrations (GMC) measured by anti-PA IgG ELISA were 3.7, 11.5, 25.9, 44.1, and 171.6, respectively. Two weeks following the 3rd vaccination, TNA GMTs for the four rPA102 groups, were: 134.7, 719.7, 2116.6, 2422.4; and ELISA GMCs were: 22.9, 104.7, 196.4, and 262.6, respectively. No clinically serious or dose-related toxicity or reactogenicity was observed. The TNA response after two injections of the 75 microg dose of rPA102 was similar to the response after two injections of AVA. The third rPA102 vaccination substantially increased the antibody response.

  12. A DNA vaccine encoding mutated HPV58 mE6E7-Fc-GPI fusion antigen and GM-CSF and B7.1.

    Science.gov (United States)

    Wang, He; Yu, Jiyun; Li, Li

    2015-01-01

    Persistent infection with high-risk human papillomavirus (HPV) is a predominant cause of cervical cancer, and HPV58 is the third most common virus detected in the patients with cervical cancer in Asia. E6 and E7 are the viral oncogenes which are constitutively expressed in HPV-associated tumor cells and can be used as target antigens for related immunotherapy. In this study, we modified the HPV58 E6 and E7 oncogenes to eliminate their oncogenic potential and constructed a recombinant DNA vaccine that coexpresses the sig-HPV58 mE6E7-Fc-GPI fusion antigen in addition to granulocyte-macrophage colony-stimulating factor (GM-CSF) and B7.1 as molecular adjuvants (PVAX1-HPV58 mE6E7FcGB) for the treatment of HPV58 (+) cancer. PVAX1-HPV58 mE6E7FcGB recombinant DNA vaccine was constructed to express a fusion protein containing a signal peptide, a modified HPV58 mE6E7 gene, and human IgG Fc and glycosylphosphatidylinositol (GPI)-anchoring sequences using the modified DNA vaccine vector PVAX1-IRES-GM/B7.1 that coexpresses GM-CSF, and B7.1. C57BL/6 mice were challenged by HPV58 E6E7-expressing B16-HPV58 E6E7 cells, followed by immunization by PVAX1-HPV58 mE6E7FcGB vaccine on days 7, 14, 21 after tumor challenge. The cellular immune responses in immunized mice were assessed by measuring IFN-γ production in splenocytes upon stimulation by HPV58 E6E7-GST protein and the lysis of B16-HPV58 E6E7 target cells by splenocytes after restimulation with HPV58 E6E7-GST protein. The antitumor efficacy was evaluated by monitoring the growth of the tumor. PVAX1-HPV58 mE6E7FcGB elicited varying levels of IFN-lsgdB58onn T-cell immune responses and lysis of target cell in mice in response to the recombinant antigen HPV58 E6E7-GST. Furthermore, the vaccine also induced antitumor responses in the HPV58 (+) B16-HPV58 E6E7 tumor challenge model as evidenced by delayed tumor development. The recombinant DNA vaccine PVAX1-HPV58 mE6E7FcGB efficiently generates cellular immunity and antitumor efficacy

  13. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation

    NARCIS (Netherlands)

    Rahimian, Sima; Fransen, Marieke F.; Kleinovink, Jan Willem; Christensen, Jonatan Riis; Amidi, Maryam|info:eu-repo/dai/nl/304834912; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Ossendorp, Ferry

    2015-01-01

    The aim of the current study was to develop a cancer vaccine formulation for treatment of human papillomavirus (HPV)-induced malignancies. Synthetic long peptides (SLPs) derived from HPV16 E6 and E7 oncoproteins have been used for therapeutic vaccination in clinical trials with promising results. In

  14. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity

    NARCIS (Netherlands)

    Berg, J.H. van den; Oosterhuis, K.; Hennink, W.E.; Storm, G.; Aa, L.J.; Engbersen, J.F.J.; Haanen, J.B.A.G.; Beijnen, J.H.; Schumacher, T.N.; Nuijen, B.

    2010-01-01

    Nanoparticle-formulated DNA vaccines hold promise for the design of in vivo vaccination platforms that target defined cell types in human skin. A variety of DNA formulations, mainly based on cationic liposomes or polymers, has been investigated to improve transfection efficiency in in vitro

  15. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity

    NARCIS (Netherlands)

    van den Berg, Joost H.; Oosterhuis, Koen; Hennink, Wim E.; Storm, Gert; Storm, Gerrit; van der Aa, L.J.; Engbersen, Johannes F.J.; Haanen, John B.A.G.; Beijnen, Jos H.; Schumacher, Ton N.; Nuijen, Bastiaan

    2010-01-01

    Nanoparticle-formulated DNA vaccines hold promise for the design of in vivo vaccination platforms that target defined cell types in human skin. A variety of DNA formulations, mainly based on cationic liposomes or polymers, has been investigated to improve transfection efficiency in in vitro assays.

  16. Studies on the surface antigenicity and susceptibility to antibody-dependent killing of developing schistosomula using sera from chronically infected mice and mice vaccinated with irradiated cercariae

    International Nuclear Information System (INIS)

    Bickle, Q.D.; Ford, M.J.

    1982-01-01