WorldWideScience

Sample records for antigen presenting cells

  1. Harnessing Dendritic Cells for Tumor Antigen Presentation

    International Nuclear Information System (INIS)

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8+ and CD4+ T cells; the in vitro loading of DCs with tumor antigens

  2. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  3. Dendritic cell function and antigen presentation in malaria.

    Science.gov (United States)

    Cockburn, Ian A; Zavala, Fidel

    2016-06-01

    Due to the diverse roles T cells play in protection against malaria as well as pathogenesis it is critical to know which cells present antigen and the nature of the antigens they present. During pre-erythrocytic stages of infection, cutting-edge imaging studies have shown how Plasmodium antigens are presented during both the priming and effector phases of the protective CD8+ T cell response. During blood stages, pathology is in part due to the loss of DC function and the action of pathogenic T cells in the brain. Recently endothelial cells presenting malaria antigen to cognate T cells have emerged as critical players in malaria pathogenesis. Manipulating these processes may inform both vaccine design and the development of therapies for cerebral malaria. PMID:26845735

  4. Defective antigen-presenting cell function in human neonates

    OpenAIRE

    Velilla, Paula A.; Rugeles, Maria T.; Chougnet, Claire A.

    2006-01-01

    Immaturity of the immune system has been suggested as an underlying factor for the high rate of morbidity and mortality from infections in newborns. Functional impairment of neonatal T cells is frequently quoted as the main underlying mechanism for such immaturity. However, recent studies suggest that neonatal antigen-presenting cells (APCs) also exhibit functional alterations, which could lead to secondary defects of adaptive T cell responses. In this review, we summarize what is known on th...

  5. Photoaffinity labeling demonstrates binding between Ia and antigen on antigen-presenting cells

    International Nuclear Information System (INIS)

    Antigen-presenting cells (APCs) bind and present antigens to immunocompetent T lymphocytes in the context of Ia molecules: however, the molecular nature of the immunogenic complexes on the surface of these cells is unknown. They have used radioiodinated photoreactive Beef insulin (BI) derivatized in the B29 position with (n-[4-(4'-azido-3'-[125]iodophenylazo)benzoyl]-3-aminopropyl-n-oxy-succinimide) (B29-AZAP) as antigen to examine the nature of these molecular complexes. The probe was reacted with either of two B hybridoma APCs, TA3 (Ia/sup k/d/) and LB(Ia/sup d/b/) which present insulin on I-A/sup d/ and I-A/sub b/ respectively, to appropriately restricted, BI specific T helper lymphocytes (T/sub H/). Samples were photolyzed, solubilized and then analyzed by SDS-PAGE. Two protein bands of 36-kDa and 27-kDa were specifically labeled on TA3 and LB cells. Treatment of these bands with dithiothreitol or endo-N-β-glycosidase F demonstrates that each is composed of a single glycoprotein. These bands are immunoprecipitable with haplotype specific but not control anti-Ia antibodies. This identifies the labeled bands as the α- and β- subunits of class II MHC antigens. They conclude that a molecular complex may form between Ia and antigen on APCs and that formation of this complex does not require the presence of an antigen specific T/sub H/ cell receptor

  6. Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells.

    Science.gov (United States)

    Chawla, Akhil; Alatrash, Gheath; Philips, Anne V; Qiao, Na; Sukhumalchandra, Pariya; Kerros, Celine; Diaconu, Iulia; Gall, Victor; Neal, Samantha; Peters, Haley L; Clise-Dwyer, Karen; Molldrem, Jeffrey J; Mittendorf, Elizabeth A

    2016-06-01

    Neutrophil elastase (NE) is an innate immune cell-derived inflammatory mediator that we have shown increases the presentation of tumor-associated peptide antigens in breast cancer. In this study, we extend these observations to show that NE uptake has a broad effect on enhancing antigen presentation by breast cancer cells. We show that NE increases human leukocyte antigen (HLA) class I expression on the surface of breast cancer cells in a concentration and time-dependent manner. HLA class I upregulation requires internalization of enzymatically active NE. Western blots of NE-treated breast cancer cells confirm that the expression of total HLA class I as well as the antigen-processing machinery proteins TAP1, LMP2, and calnexin does not change following NE treatment. This suggests that NE does not increase the efficiency of antigen processing; rather, it mediates the upregulation of HLA class I by stabilizing and reducing membrane recycling of HLA class I molecules. Furthermore, the effects of NE extend beyond breast cancer since the uptake of NE by EBV-LCL increases the presentation of HLA class I-restricted viral peptides, as shown by their increased sensitivity to lysis by EBV-specific CD8+ T cells. Together, our results show that NE uptake increases the responsiveness of breast cancer cells to adaptive immunity by broad upregulation of membrane HLA class I and support the conclusion that the innate inflammatory mediator NE enhances tumor cell recognition and increases tumor sensitivity to the host adaptive immune response. PMID:27129972

  7. Photoaffinity labeling demonstrates binding between Ia molecules and nominal antigen on antigen-presenting cells.

    OpenAIRE

    Phillips, M L; Yip, C C; Shevach, E M; Delovitch, T L

    1986-01-01

    We have used radioiodinated photoreactive bovine insulin as antigen to examine the molecular nature of immunogenic complexes that form on antigen-presenting cells. The probe was allowed to bind to either insulin-presenting B-hybridoma cells, lipopolysaccharide-stimulated blasts, or bovine insulin-specific helper-T-hybridoma cells in the dark. Samples were then exposed to light to induce crosslinkage, solubilized, and analyzed by gel electrophoresis. Two protein bands at about 36 kDa and 27 kD...

  8. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells.

    Science.gov (United States)

    Vela Ramirez, J E; Roychoudhury, R; Habte, H H; Cho, M W; Pohl, N L B; Narasimhan, B

    2014-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells (APCs), and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells (DCs) and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by DCs. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and APCs and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  9. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets

    Directory of Open Access Journals (Sweden)

    Enric eGutiérrez-Martínez

    2015-07-01

    Full Text Available Dendritic cells have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ dendritic cells subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen presenting cells. Here we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by dendritic cells subsets

  10. Stratification of Antigen-presenting Cells within the Normal Cornea

    Directory of Open Access Journals (Sweden)

    Jared E. Knickelbein

    2009-11-01

    Full Text Available The composition and location of professional antigen presenting cells (APC varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP from the CD11c promoter (pCD11c in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 µm in length and traverse up 20 µm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c-CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class IIpCD11c-CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.

  11. Distribution of primed T cells and antigen-loaded antigen presenting cells following intranasal immunization in mice.

    Directory of Open Access Journals (Sweden)

    Annalisa Ciabattini

    Full Text Available Priming of T cells is a key event in vaccination, since it bears a decisive influence on the type and magnitude of the immune response. T-cell priming after mucosal immunization via the nasal route was studied by investigating the distribution of antigen-loaded antigen presenting cells (APCs and primed antigen-specific T cells. Nasal immunization studies were conducted using the model protein antigen ovalbumin (OVA plus CpG oligodeoxynucleotide adjuvant. Trafficking of antigen-specific primed T cells was analyzed in vivo after adoptive transfer of OVA-specific transgenic T cells in the presence or absence of fingolimod, a drug that causes lymphocytes sequestration within lymph nodes. Antigen-loaded APCs were observed in mediastinal lymph nodes, draining the respiratory tract, but not in distal lymph nodes. Antigen-specific proliferating T cells were first observed within draining lymph nodes, and later in distal iliac and mesenteric lymph nodes and in the spleen. The presence at distal sites was due to migration of locally primed T cells as shown by fingolimod treatment that caused a drastic reduction of proliferated T cells in non-draining lymph nodes and an accumulation of extensively divided T cells within draining lymph nodes. Homing of nasally primed T cells in distal iliac lymph nodes was CD62L-dependent, while entry into mesenteric lymph nodes depended on both CD62L and α4β7, as shown by in vivo antibody-mediated inhibition of T-cell trafficking. These data, elucidating the trafficking of antigen-specific primed T cells to non-draining peripheral and mucosa-associated lymph nodes following nasal immunization, provide relevant insights for the design of vaccination strategies based on mucosal priming.

  12. A Population Dynamics Analysis of the Interaction between Adaptive Regulatory T Cells and Antigen Presenting Cells

    OpenAIRE

    Fouchet, David; Regoes, Roland

    2008-01-01

    Background Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks t...

  13. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Alice W Yewdall

    Full Text Available Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression.We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells.This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.

  14. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells

    NARCIS (Netherlands)

    Rodriguez, A; Regnault, A; Kleijmeer, M; Ricciardi-Castagnoli, P; Amigorena, S

    1999-01-01

    In order for cytotoxic T cells to initiate immune responses, peptides derived from internalized antigens must be presented to the cytotoxic T cells on major histocompatibility complex (MHC) class I molecules. Here we show that dendritic cells, the only antigen-presenting cells that initiate immune r

  15. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.

  16. Chloroquine inhibits accessory cell presentation of soluble natural and synthetic protein antigens

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1984-01-01

    We have studied the in vitro effect of the lysosomotrophic agent, chloroquine, on the presentation of soluble protein antigens by guinea pig accessory cells. Chloroquine inhibited the capacity of antigen-pulsed accessory cells to stimulate proliferation in appropriately primed T cells. The effect...

  17. Circulating human basophils lack the features of professional antigen presenting cells

    OpenAIRE

    Sharma, Meenu; Hegde, Pushpa; Aimanianda, Vishukumar; Beau, Remi; Sénéchal, Helene; Poncet, Pascal; Latgé, Jean-Paul; Kaveri, Srini V; Bayry, Jagadeesh

    2013-01-01

    Recent reports in mice demonstrate that basophils function as antigen presenting cells (APC). They express MHC class II and co-stimulatory molecules CD80 and CD86, capture and present soluble antigens or IgE-antigen complexes and polarize Th2 responses. Therefore, we explored whether human circulating basophils possess the features of professional APC. We found that unlike dendritic cells (DC) and monocytes, steady-state circulating human basophils did not express HLA-DR and co-stimulatory mo...

  18. Internalization and presentation of myelin antigens by the brain endothelium guides antigen-specific T cell migration

    Science.gov (United States)

    Lopes Pinheiro, Melissa A; Kamermans, Alwin; Garcia-Vallejo, Juan J; van het Hof, Bert; Wierts, Laura; O'Toole, Tom; Boeve, Daniël; Verstege, Marleen; van der Pol, Susanne MA; van Kooyk, Yvette; de Vries, Helga E; Unger, Wendy WJ

    2016-01-01

    Trafficking of myelin-reactive CD4+ T-cells across the brain endothelium, an essential step in the pathogenesis of multiple sclerosis (MS), is suggested to be an antigen-specific process, yet which cells provide this signal is unknown. Here we provide direct evidence that under inflammatory conditions, brain endothelial cells (BECs) stimulate the migration of myelin-reactive CD4+ T-cells by acting as non-professional antigen presenting cells through the processing and presentation of myelin-derived antigens in MHC-II. Inflamed BECs internalized myelin, which was routed to endo-lysosomal compartment for processing in a time-dependent manner. Moreover, myelin/MHC-II complexes on inflamed BECs stimulated the trans-endothelial migration of myelin-reactive Th1 and Th17 2D2 cells, while control antigen loaded BECs did not stimulate T-cell migration. Furthermore, blocking the interaction between myelin/MHC-II complexes and myelin-reactive T-cells prevented T-cell transmigration. These results demonstrate that endothelial cells derived from the brain are capable of enhancing antigen-specific T cell recruitment. DOI: http://dx.doi.org/10.7554/eLife.13149.001 PMID:27336724

  19. Human leukocyte antigen-DO regulates surface presentation of human leukocyte antigen class II-restricted antigens on B cell malignancies

    NARCIS (Netherlands)

    Kremer, A.N.; Meijden, E.D. van der; Honders, M.W.; Pont, M.J.; Goeman, J.J.; Falkenburg, J.H.F.; Griffioen, M.

    2014-01-01

    Hematological malignancies often express surface HLA class II, making them attractive targets for CD4+ T cell therapy. We previously demonstrated that HLA class II ligands can be divided into DM-resistant and DM-sensitive antigens. In contrast to presentation of DM-resistant antigens, presentation o

  20. Molecular signals in antigen presentation. II. Activation of cytolytic cells in vitro after ultraviolet radiation or combined gamma and ultraviolet radiation treatment of antigen-presenting cells

    International Nuclear Information System (INIS)

    Murine low-density spleen cells have potent antigen-presenting ability in a hapten-specific cytolytic T lymphocyte (CTL) system using the hapten azobenzenearsonate (ABA). Exposure of these cells to 0.33 KJ/m2 of ultraviolet radiation (UVR) after coupling to hapten results in markedly inhibited antigen-presenting function that can be substantially corrected or bypassed by interleukin 1 (IL 1). These results have been interpreted to reflect an inhibition of Lyt-1+ T cell activation by UVR-treated APC. Treatment of these cells sequentially with 1500 rad of γ-radiation (GR) prior to hapten coupling, followed by 0.33 KJ/m2 of UVR radiation after coupling, results in an antigen-resenting defect only minimally improved by IL 1. However, partially purified interleukin 2 (IL 2) can completely bypass or correct this defect. Thus, combined Cr and UVR induces a different or more profound defect in APC function when compared to UVR alone. However, these cells do provide a signal(s) other than hapten necessary for CTL activation because ABA-coupled high density spleen cells do not activate CTL cells, even with the addition of IL 2. Fluorescence-activated cell sorter analysis demonstrates that exposure of these low density spleen cells to GP or UVR results in decreased I-A antigen expression at 24 hr; exposure to both GR and UVR results in a greater decrease in I-A antigen expression at 24 hr than either alone. The addition of nonhapten-coupled low-density APC partially reconstitutes the ability of combined GR/UVR-treated LD-APC to present antigen, and this effect is enhanced by the administration of exogenous IL 1

  1. Viral sequestration of antigen subverts cross presentation to CD8(+ T cells.

    Directory of Open Access Journals (Sweden)

    Eric F Tewalt

    2009-05-01

    Full Text Available Virus-specific CD8(+ T cells (T(CD8+ are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC. Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+. Direct presentation of vaccinia virus (VACV antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation

  2. Original encounter with antigen determines antigen-presenting cell imprinting of the quality of the immune response in mice.

    Directory of Open Access Journals (Sweden)

    Valérie Abadie

    Full Text Available BACKGROUND: Obtaining a certain multi-functionality of cellular immunity for the control of infectious diseases is a burning question in immunology and in vaccine design. Early events, including antigen shuttling to secondary lymphoid organs and recruitment of innate immune cells for adaptive immune response, determine host responsiveness to antigens. However, the sequence of these events and their impact on the quality of the immune response remain to be elucidated. Here, we chose to study Modified Vaccinia virus Ankara (MVA which is now replacing live Smallpox vaccines and is proposed as an attenuated vector for vaccination strategies against infectious diseases. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed in vivo mechanisms triggered following intradermal (i.d. and intramuscular (i.m. Modified Vaccinia virus Ankara (MVA administration. We demonstrated significant differences in the antigen shuttling to lymphoid organs by macrophages (MPhis, myeloid dendritic cells (DCs, and neutrophils (PMNs. MVA i.d. administration resulted in better antigen distribution and more sustained antigen-presenting cells (APCs recruitment into draining lymph nodes than with i.m. administration. These APCs, which comprise both DCs and MPhis, were differentially involved in T cell priming and shaped remarkably the quality of cytokine-producing virus-specific T cells according to the entry route of MVA. CONCLUSIONS/SIGNIFICANCE: This study improves our understanding of the mechanisms of antigen delivery and their consequences on the quality of immune responses and provides new insights for vaccine development.

  3. Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells

    OpenAIRE

    Dougan, Stephanie K.; Salas, Azucena; Rava, Paul; Agyemang, Amma; Kaser, Arthur; Morrison, Jamin; Khurana, Archana; Kronenberg, Mitchell; Johnson, Caroline; Exley, Mark; Hussain, M. Mahmood; Blumberg, Richard S.

    2005-01-01

    Microsomal triglyceride transfer protein (MTP), an endoplasmic reticulum (ER) chaperone that loads lipids onto apolipoprotein B, also regulates CD1d presentation of glycolipid antigens in the liver and intestine. We show MTP RNA and protein in antigen-presenting cells (APCs) by reverse transcription–polymerase chain reaction and by immunoblotting of mouse liver mononuclear cells and mouse and human B cell lines. Functional MTP, demonstrated by specific triglyceride transfer activity, is prese...

  4. Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells.

    Science.gov (United States)

    Pouniotis, Dodie; Tang, Choon-Kit; Apostolopoulos, Vasso; Pietersz, Geoffrey

    2016-08-01

    Cell-penetrating peptides (CPP) or membrane-translocating peptides such as penetratin from Antennapedia homeodomain or TAT from human immunodeficiency virus are useful vectors for the delivery of protein antigens or their cytotoxic (Tc) or helper (Th) T cell epitopes to antigen-presenting cells. Mice immunized with CPP containing immunogens elicit antigen-specific Tc and/or Th responses and could be protected from tumor challenges. In the present paper, we investigate the mechanism of class I and class II antigen presentation of ovalbumin covalently linked to penetratin (AntpOVA) by bone marrow-derived dendritic cells with the use of biochemical inhibitors of various pathways of antigen processing and presentation. Results from our study suggested that uptake of AntpOVA is via a combination of energy-independent (membrane fusion) and energy-dependent pathways (endocytosis). Once internalized by either mechanism, multiple tap-dependent or independent antigen presentation pathways are accessed while not completely dependent on proteasomal processing but involving proteolytic trimming in the ER and Golgi compartments. Our study provides an understanding on the mechanism of antigen presentation mediated by CPP and leads to greater insights into future development of vaccine formulations. PMID:27138940

  5. Distinctive localization of antigen-presenting cells in human lymph nodes

    OpenAIRE

    Angel, Catherine E.; Chen, Chun-Jen J.; Horlacher, Oliver C.; Winkler, Sintia; John, Thomas; Browning, Judy; MacGregor, Duncan; Cebon, Jonathan; Dunbar, P. Rod

    2009-01-01

    Professional antigen-presenting cells (APCs) are sentinel cells of the immune system that present antigen to T lymphocytes and mediate an appropriate immune response. It is therefore surprising that knowledge of the professional APCs in human lymph nodes is limited. Using 3-color immunohistochemistry, we have identified APCs in human lymph nodes, excluding plasmacytoid APCs, that fall into 2 nonoverlapping classes: (1) CD209+ APCs, coexpressing combinations of CD206, CD14, and CD68, that occu...

  6. CD13 Regulates Dendritic Cell Cross-presentation and T Cell Responses by Inhibiting Receptor-Mediated Antigen Uptake

    OpenAIRE

    Ghosh, Mallika; McAuliffe, Beata; Subramani, Jaganathan; Basu, Sreyashi; Shapiro, Linda H.

    2012-01-01

    Dendritic cell (DC) antigen cross-presentation is generally associated with immune responses to tumors and viral antigens and enhancing this process is a focus of tumor vaccine design. In this study, we found that the myeloid cell surface peptidase CD13 is highly and specifically expressed on the subset of DCs responsible for cross-presentation, the CD8+ murine splenic DCs. In vivo studies indicated that lack of CD13 significantly enhanced T cell responses to soluble OVA antigen, although dev...

  7. Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses.

    Science.gov (United States)

    Zervoudi, Efthalia; Saridakis, Emmanuel; Birtley, James R; Seregin, Sergey S; Reeves, Emma; Kokkala, Paraskevi; Aldhamen, Yasser A; Amalfitano, Andrea; Mavridis, Irene M; James, Edward; Georgiadis, Dimitris; Stratikos, Efstratios

    2013-12-01

    Intracellular aminopeptidases endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2), and as well as insulin-regulated aminopeptidase (IRAP) process antigenic epitope precursors for loading onto MHC class I molecules and regulate the adaptive immune response. Their activity greatly affects the antigenic peptide repertoire presented to cytotoxic T lymphocytes and as a result can regulate cytotoxic cellular responses contributing to autoimmunity or immune evasion by viruses and cancer cells. Therefore, pharmacological regulation of their activity is a promising avenue for modulating the adaptive immune response with possible applications in controlling autoimmunity, in boosting immune responses to pathogens, and in cancer immunotherapy. In this study we exploited recent structural and biochemical analysis of ERAP1 and ERAP2 to design and develop phosphinic pseudopeptide transition state analogs that can inhibit this family of enzymes with nM affinity. X-ray crystallographic analysis of one such inhibitor in complex with ERAP2 validated our design, revealing a canonical mode of binding in the active site of the enzyme, and highlighted the importance of the S2' pocket for achieving inhibitor potency. Antigen processing and presentation assays in HeLa and murine colon carcinoma (CT26) cells showed that these inhibitors induce increased cell-surface antigen presentation of transfected and endogenous antigens and enhance cytotoxic T-cell responses, indicating that these enzymes primarily destroy epitopes in those systems. This class of inhibitors constitutes a promising tool for controlling the cellular adaptive immune response in humans by modulating the antigen processing and presentation pathway. PMID:24248368

  8. Evasion of peptide, but not lipid antigen presentation, through pathogen-induced dendritic cell maturation

    OpenAIRE

    Hava, David L.; van der Wel, Nicole ,; Cohen, Nadia; Dascher, Christopher C.; Houben, Diane; León, Luis; Agarwal, Sandeep; Sugita, Masahiko; van Zon, Maaike; Kent, Sally C.; Shams, Homayoun; Peters, Peter J.; Brenner, Michael B.

    2008-01-01

    Dendritic cells (DC) present lipid and peptide antigens to T cells on CD1 and MHC Class II (MHCII), respectively. The relative contribution of these systems during the initiation of adaptive immunity after microbial infection is not characterized. MHCII molecules normally acquire antigen and rapidly traffic from phagolysosomes to the plasma membrane as part of DC maturation, whereas CD1 molecules instead continually recycle between these sites before, during, and after DC maturation. We find ...

  9. Pollen-induced antigen presentation by mesenchymal stem cells and T cells from allergic rhinitis.

    Science.gov (United States)

    Desai, Mauli B; Gavrilova, Tatyana; Liu, Jianjun; Patel, Shyam A; Kartan, Saritha; Greco, Steven J; Capitle, Eugenio; Rameshwar, Pranela

    2013-10-01

    Mesenchymal stem cells (MSCs) are promising cellular suppressor of inflammation. This function of MSCs is partly due to their licensing by inflammatory mediators. In cases with reduced inflammation, MSCs could become immune-enhancer cells. MSCs can suppress the inflammatory response of antigen-challenged lymphocytes from allergic asthma. Although allergic rhinitis (AR) is also an inflammatory response, it is unclear if MSCs can exert similar suppression. This study investigated the immune effects (suppressor vs enhancer) of MSCs on allergen-stimulated lymphocytes from AR subjects (grass or weed allergy). In contrast to subjects with allergic asthma, MSCs caused a significant (Pcells (antigen-presenting cells (APCs)). This correlated with increased production of inflammatory cytokines from T cells, and increased expressions of major histocompatibility complex (MHC)-II and CD86 on MSCs. The specificity of APC function was demonstrated in APC assay using MSCs that were knocked down for the master regulator of MHC-II transcription, CIITA. The difference in the effects of MSCs on allergic asthma and AR could not be explained by the sensitivity to the allergen, based on skin tests. Thus, we deduced that the contrasting immune effects of MSCs for antigen-challenged lymphocytes on AR and allergic asthma could be disease specific. It is possible that the enhanced inflammation from asthma might be required to license the MSCs to become suppressor cells. This study underscores the need for robust preclinical studies to effectively translate MSCs for any inflammatory disorder. PMID:25505949

  10. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major

    DEFF Research Database (Denmark)

    ElHassan, A M; Gaafar, A; Theander, T G

    1995-01-01

    In this study biopsies from skin lesions and draining lymph nodes of patients suffering from cutaneous leishmaniasis caused by Leishmania major were examined by immunohistochemistry, and by light and electron microscopy to identify the types of antigen-presenting cells (APC) and their location. APC......, identified morphologically and by their expression of specific cell markers, included Langerhans cells, macrophages, follicular dendritic cells, and interdigitating reticulum cells of the paracortex of lymph nodes. These cells expressed MHC class II antigens and contained Leishmania antigen. Since some...... keratinocytes and endothelial cells also showed these characteristics, they may also act as APC. By examining tissue samples from skin lesions and draining lymph nodes it was possible to follow the probable route of trafficking of various inflammatory cells between the skin lesion and lymph nodes. Leishmania...

  11. Facts on the fragmentation of antigens in presenting cells, on the association of antigen fragments with MHC molecules in cell-free systems, and speculation on the cell biology of antigen processing

    DEFF Research Database (Denmark)

    Werdelin, O; Mouritsen, S; Petersen, B L;

    1988-01-01

    The processing of a protein antigen is a multi-step event taking place in antigen-presenting cells. Processing is a prerequisite for the recognition of most antigens by T lymphocytes. The antigen is ingested by endocytosis, transported to an acid cellular compartment and subjected to proteolytic...... fragmentation. Some of the antigen fragments bind to MHC class II molecules and are transported to the surface of the antigen-presenting cell where the actual presentation to T lymphocytes occurs. The nature of the processed antigen, how and where it is derived and subsequently becomes associated with MHC...... molecules are the questions discussed in this review. To us, the entire concept of processing has appeal not only because it explains some hitherto well-established, but poorly understood, phenomena such as the fact that T lymphocytes focus their attention entirely upon antigens on other cells. It has...

  12. Hepatitis C virus and ethanol alter antigen presentation in liver cells

    Institute of Scientific and Technical Information of China (English)

    Natalia A Osna

    2009-01-01

    Alcoholic patients have a high incidence of hepatitis Cvirus (HCV) infection. Alcohol consumption enhances the severity of the HCV disease course and worsens the outcome of chronic hepatitis C. The accumulation of virally infected cells in the liver is related to the HCVinduced inability of the immune system to recognizeinfected cells and to develop the immune responses. This review covers the effects of HCV proteins and ethanol on major histocompatibility complex (MHC) classⅠ- and class Ⅱ-restricted antigen presentation. Here, we discuss the liver which functions as an immune privilege organ; factors, which affect cleavage and loading of antigenic peptides onto MHC classⅠand class Ⅱ in hepatocytes and dendritic cells, and the modulating effects of ethanol and HCV on antigen presentation by liver cells. Altered antigen presentation in the liver limits the ability of the immune system to clear HCV and infected cells and contributes to disease progression. HCV by itself affects dendritic cell function, switching their cytokine profile to the suppressive phenotype of interleukin-10 (IL-10) and transforming growth factor beta (TGFβ) predominance,preventing cell maturation and allostimulation capacity.The synergistic action of ethanol with HCV results in the suppression of MHC class Ⅱ-restricted antigen presentation. In addition, ethanol metabolism and HCV proteins reduce proteasome function and interferon signaling, thereby suppressing the generation of peptides for MHC classⅠ-restricted antigen presentation.Collectively, ethanol exposure further impairs antigen presentation in HCV-infected liver cells, which may provide a partial explanation for exacerbations and the poor outcome of HCV infection in alcoholics.

  13. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    Directory of Open Access Journals (Sweden)

    Cleo Goyvaerts

    2015-01-01

    Full Text Available In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  14. Interaction between antigen presenting cells and autoreactive T cells derived from BXSB mice with murine lupus

    Institute of Scientific and Technical Information of China (English)

    Peng Yang; Bo Li; Ping Lv; Yan Zhang; XiaoMing Gao

    2007-01-01

    Systemic lupus erythematosus (SLE) is a typical autoimmune disease involving multiple systems and organs. Ample evidence suggests that autoreactive T cells play a pivotal role in the development of this autoimmune disorder. This study was undertaken to investigate the mechanisms of interaction between antigen presenting cells (APCs) and an autoreactive T cell (ATL1) clone obtained from lupus-prone BXSB mice. ATL1 cells, either before or after γ-ray irradiation, were able to activate naive B cells, as determined by B cell proliferation assays. Macrophages from BXSB mice were able to stimulate the proliferation of resting ATL1 cells at a responder/stimulator (R/S) ratio of 1/2.5. Dendritic cells (DCs) were much more powerful stimulators for ATL1 cells on a per cell basis. The T cell stimulating ability of macrophages and B cells, but not DCs, was sensitive toγ-ray irradiation. Monoclonal antibodies against mouse MHC-Ⅱand CD4 were able to block DC-mediated stimulation of ATL1 proliferation, indicating cognate recognition between ATL1 and APCs. Our data suggest that positive feedback loops involving macrophages, B cells and autoreactive T cells may play a pivotal role in keeping the momentum of autoimmune responses leading to autoimmune diseases.

  15. Self-antigen presentation by dendritic cells and lymphoid stroma and its implications for autoimmunity

    OpenAIRE

    Lukacs-Kornek, Veronika; Turley, Shannon J.

    2010-01-01

    The induction and maintenance of T cell tolerance is essential to prevent autoimmunity. A combination of central and peripheral mechanisms acts to control autoreactive T cells. In secondary lymphoid organs, dendritic cells (DCs) presenting self-antigen were thought to play a major role in the induction of peripheral T cell tolerance. Multiple recent studies have demonstrated that DCs are not absolutely essential to induce and maintain tolerance. Furthermore, it has also been recently shown th...

  16. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells.

    Science.gov (United States)

    Ma, Yuting; Adjemian, Sandy; Mattarollo, Stephen R; Yamazaki, Takahiro; Aymeric, Laetitia; Yang, Heng; Portela Catani, João Paulo; Hannani, Dalil; Duret, Helene; Steegh, Kim; Martins, Isabelle; Schlemmer, Frederic; Michaud, Mickaël; Kepp, Oliver; Sukkurwala, Abdul Qader; Menger, Laurie; Vacchelli, Erika; Droin, Nathalie; Galluzzi, Lorenzo; Krzysiek, Roman; Gordon, Siamon; Taylor, Philip R; Van Endert, Peter; Solary, Eric; Smyth, Mark J; Zitvogel, Laurence; Kroemer, Guido

    2013-04-18

    The therapeutic efficacy of anthracyclines relies on antitumor immune responses elicited by dying cancer cells. How chemotherapy-induced cell death leads to efficient antigen presentation to T cells, however, remains a conundrum. We found that intratumoral CD11c(+)CD11b(+)Ly6C(hi) cells, which displayed some characteristics of inflammatory dendritic cells and included granulomonocytic precursors, were crucial for anthracycline-induced anticancer immune responses. ATP released by dying cancer cells recruited myeloid cells into tumors and stimulated the local differentiation of CD11c(+)CD11b(+)Ly6C(hi) cells. Such cells efficiently engulfed tumor antigens in situ and presented them to T lymphocytes, thus vaccinating mice, upon adoptive transfer, against a challenge with cancer cells. Manipulations preventing tumor infiltration by CD11c(+)CD11b(+)Ly6C(hi) cells, such as the local overexpression of ectonucleotidases, the blockade of purinergic receptors, or the neutralization of CD11b, abolished the immune system-dependent antitumor activity of anthracyclines. Our results identify a subset of tumor-infiltrating leukocytes as therapy-relevant antigen-presenting cells. PMID:23562161

  17. The perivascular phagocyte of the mouse pineal gland: An antigen-presenting cell

    DEFF Research Database (Denmark)

    Møller, Morten; Rath, Martin F; Klein, David C

    2006-01-01

    The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal...... gland of mice. Actively phagocytosing cells with a prominent lysosomal system were found in the pericapillary spaces of the mouse pineal gland following intravenous injection of horseradish peroxidase. The cells also exhibited strong acid phosphatase activity. Perivascular cells were immunopositive for...... MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen-presenting properties are present in the mouse pineal gland....

  18. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    International Nuclear Information System (INIS)

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAVWSU5 infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with 51Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection

  19. Modulation of innate antigen-presenting cell function by pre-patent schistosome infection.

    Directory of Open Access Journals (Sweden)

    Christine E Ferragine

    Full Text Available Schistosomes are intravascular helminths that infect over 200 million people worldwide. Deposition of eggs by adult schistosomes stimulates Th2 responses to egg antigens and induces granulomatous pathology that is a hallmark of schistosome infection. Paradoxically, schistosomes require host immune function for their development and reproduction and for egress of parasite eggs from the host. To identify potential mechanisms by which immune cells might influence parasite development prior to the onset of egg production, we assessed immune function in mice infected with developing schistosomes. We found that pre-patent schistosome infection is associated with a loss of T cell responsiveness to other antigens and is due to a diminution in the ability of innate antigen-presenting cells to stimulate T cells. Diminution of stimulatory capacity by schistosome worms specifically affected CD11b(+ cells and did not require concomitant adaptive responses. We could not find evidence for production of a diffusible inhibitor of T cells by innate cells from infected mice. Rather, inhibition of T cell responsiveness by accessory cells required cell contact and only occurred when cells from infected mice outnumbered competent APCs by more than 3∶1. Finally, we show that loss of T cell stimulatory capacity may in part be due to suppression of IL-12 expression during pre-patent schistosome infection. Modulation of CD4(+ T cell and APC function may be an aspect of host immune exploitation by schistosomes, as both cell types influence parasite development during pre-patent schistosome infection.

  20. Antigen presentation by murine epidermal langerhans cells and its alteration by ultraviolet B light

    International Nuclear Information System (INIS)

    Mice that are chronically exposed in vivo to ultraviolet B light (UV-B) display altered immunologic reactivity to various antigenic stimuli. A possible mode of UV-B action is that it exerts adverse effects on antigen-presenting cell function. Because the epidermis is the only tissue that is naturally subject to UV exposure we investigated if murine epidermal cells (EC) could perform an antigen presentation function and, if so, could this function be altered by UV-B irradiation. For this purpose, T cells immune to purified protein derivative of tuberculin (PPD) and dinitrophenylated ovalbumin (DNP6-OVA) from either BALB/c or C3H/He mice were incubated with syngeneic, semisyngeneic, or allogeneic EC or, for control purposes, with peritoneal exudate cells (PEC) that had been pulse-exposed to either the immunizing antigens or, as controls, left unpulsed, or pulsed to human serum albumin (HSA). After 4 days of culture, T cell proliferation was assessed by 3H-thymidine incorporation. PPD- and DNP/6-OVA pulsed, but not HSA-pulsed EC and PEC, induced vigorous proliferation of syngeneic and semisyngeneic, but not allogeneic, immune T cells. Pretreatment of stimulator cells with specific anti-Ia serum and complement virtually abolished this response, which indicated that among EC, Ia-bearing Langerhans cells are the critical stimulators. Exposure of EC either before or after pulsing to UV-B resulted in a dose-dependent impairment of antigen-specific T cell proliferation; the T proliferative response was abolished after administration of 20 mJ/cm2 UV-B. UV-B in the dose range employed did not produce immediate lethal cell damage, premature death of cultured EC, or toxic factors inhibitory for T cell proliferation

  1. ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy

    DEFF Research Database (Denmark)

    Faraco, Juliette; Lin, Ling; Kornum, Birgitte Rahbek;

    2013-01-01

    with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T...... cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells...

  2. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    International Nuclear Information System (INIS)

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis

  3. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  4. Human parvovirus B19 induced apoptotic bodies contain altered self-antigens that are phagocytosed by antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Kanoktip Thammasri

    Full Text Available Human parvovirus B19 (B19V from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1 of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens.

  5. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis

    Science.gov (United States)

    Salao, Kanin; Jiang, Lele; Li, Hui; Tsai, Vicky W.-W.; Husaini, Yasmin; Curmi, Paul M. G.; Brown, Louise J.; Brown, David A.

    2016-01-01

    ABSTRACT Intracellular chloride channel protein 1 (CLIC1) participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs), the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs) from germline CLIC1 gene-deleted (CLIC1−/−) and wild-type (CLIC1+/+) mice, then studied them in vitro and in vivo. We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1−/− BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1+/+, but not CLIC1−/− cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1−/− BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG) and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases. PMID:27113959

  6. Antigen presentation by non-immune B-cell hybridoma clones: presentation of synthetic antigenic sites reveals clones that exhibit no specificity and clones that present only one epitope

    Science.gov (United States)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1989-01-01

    Recently, we reported the preparation and antigen-presenting properties of hybridoma B-cell clones obtained after fusing non-secreting, non-antigen presenting Balb/c 653-myeloma cells with non-immune SJL spleen cells. It was found that antigen presentation at the clonal level can be specific or non-specific, depending on the particular B-cell clone. In the present work, one specific and one general presenter B-cell clones were tested for their epitope presentation ability to SJL T-cells that were specific to lysozyme or myoglobin. B-cell clone A1G12, a general presenter which presented both lysozyme and myoglobin to their respective T-cell lines, was found to present all five myoglobin epitopes while clone A1L16, a lysozyme specific presenter presented only one of the three epitopes of lysozyme. The latter reveals a hitherto unknown submolecular specificity (to a given epitope within a protein) for antigen presenting cells at the clonal level. Therefore, the specificity of T-cell recognition does not only derive from the T-cell but may also be dependent on the epitope specificity of the antigen-presenting B-cell.

  7. Antigen presenting cells in the skin of a patient with hair loss and systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2009-09-01

    Full Text Available Context: Hair loss is one of the most striking clinical features of active systemic lupus erythematosus (SLE, however, very few studies have investigated the immunological features of this process. Case report: We describe a 33 years old female who presented with scalp hair loss and arthralgias. Physical examination revealed erythematous plaques on the nose and scalp, with bitemporal hair loss. Scalp biopsies revealed epidermal hyperkeratosis, with a mild interface infiltrate of lymphocytes and histiocytes and a superficial and deep, perivascular and periadnexal infiltrate of mostly CD4 positive cells. Antibodies to HAM 56, CD68, CD1a, S-100, mast cell tryptase and c-kit/CD117 were strongly positive around the hair follicles, and in the adjacent sebaceous glands. Conclusion: We present the first report showing a significant presence of several antigen presenting cells around the hair follicular units in a patient with alopecia in active SLE. Today, antigen presenting cells and dendritic cells (DC are modeled as the master regulators of human immunity. One aspect that has become clearly appreciated is the great diversity of DC subtypes, each with considerable functional differences. Thus, we suggest that APC and DCs are equipped with Pattern Recognition Receptors (PRRs to some hair follicular unit antigens; that these innate sensors recognize conserved molecular patterns on self- tissue, and play a significant role in the pathophysiology of alopecia in SLE patients.

  8. Antigen presenting cells in the skin of a patient with hair loss and systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2009-01-01

    Full Text Available Context: Hair loss is one of the most striking clinical features of active systemic lupus erythematosus (SLE, however, very few studies have investigated the immunological features of this process. Case report: We describe a 33 years old female who presented with scalp hair loss and arthralgias. Physical examination revealed erythematous plaques on the nose and scalp, with bitemporal hair loss. Scalp biopsies revealed epidermal hyperkeratosis, with a mild interface infiltrate of lymphocytes and histiocytes and a superficial and deep, perivascular and periadnexal infiltrate of mostly CD4 positive cells. Antibodies to HAM 56, CD68, CD1a, S-100, mast cell tryptase and c-kit/CD117 were strongly positive around the hair follicles, and in the adjacent sebaceous glands. Conclusion : We present the first report showing a significant presence of several antigen presenting cells around the hair follicular units in a patient with alopecia in active SLE. Today, antigen presenting cells and dendritic cells (DC are modeled as the master regulators of human immunity. One aspect that has become clearly appreciated is the great diversity of DC subtypes, each with considerable functional differences. Thus, we suggest that APC and DCs are equipped with Pattern Recognition Receptors (PRRs to some hair follicular unit antigens; that these innate sensors recognize conserved molecular patterns on self- tissue, and play a significant role in the pathophysiology of alopecia in SLE patients

  9. Antigen Presentation and T-Cell Activation Are Critical for RBP4-Induced Insulin Resistance.

    Science.gov (United States)

    Moraes-Vieira, Pedro M; Castoldi, Angela; Aryal, Pratik; Wellenstein, Kerry; Peroni, Odile D; Kahn, Barbara B

    2016-05-01

    Adipose tissue (AT) inflammation contributes to impaired insulin action, which is a major cause of type 2 diabetes. RBP4 is an adipocyte- and liver-derived protein with an important role in insulin resistance, metabolic syndrome, and AT inflammation. RBP4 elevation causes AT inflammation by activating innate immunity, which elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophages and T-helper 1 cells. We show that high-fat diet-fed RBP4(-/-) mice have reduced AT inflammation and improved insulin sensitivity versus wild type. We also elucidate the mechanism for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. In RBP4-Ox, AT macrophages display enhanced c-Jun N-terminal kinase, extracellular signal-related kinase, and p38 phosphorylation. Inhibition of these pathways and of NF-κB reduces activation of macrophages and CD4 T cells. MyD88 is an adaptor protein involved in proinflammatory signaling. In macrophages from MyD88(-/-) mice, RBP4 fails to stimulate secretion of tumor necrosis factor, IL-12, and IL-6 and CD4 T-cell activation. In vivo blockade of antigen presentation by treating RBP4-Ox mice with CTLA4-Ig, which blocks costimulation of T cells, is sufficient to reduce AT inflammation and improve insulin resistance. Thus, MyD88 and downstream mitogen-activated protein kinase and NF-κB pathways are necessary for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. Also, blocking antigen presentation with CTLA4-Ig improves RBP4-induced insulin resistance and macrophage-induced T-cell activation. PMID:26936962

  10. Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Løbner, Morten; Cédile, Oriane;

    2014-01-01

    BACKGROUND: Tissue-resident antigen-presenting cells (APC) exert a major influence on the local immune environment. Microglia are resident myeloid cells in the central nervous system (CNS), deriving from early post-embryonic precursors, distinct from adult hematopoietic lineages. Dendritic cells...... (DC) and macrophages infiltrate the CNS during experimental autoimmune encephalomyelitis (EAE). Microglia are not considered to be as effective APC as DC or macrophages. METHODS: In this work we compared the antigen presenting capacity of CD11c+ and CD11c- microglia subsets with infiltrating CD11c......+ APC, which include DC. The microglial subpopulations (CD11c- CD45dim CD11b+ and CD11c+ CD45dim CD11b+) as well as infiltrating CD11c+ CD45high cells were sorted from CNS of C57BL/6 mice with EAE. Sorted cells were characterised by flow cytometry for surface phenotype and by quantitative real-time PCR...

  11. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation

    Directory of Open Access Journals (Sweden)

    Schendel Dolores J

    2010-09-01

    Full Text Available Abstract Background Antigen-loaded dendritic cells (DC are capable of priming naïve T cells and therefore represent an attractive adjuvant for vaccine development in anti-tumor immunotherapy. Numerous protocols have been described to date using different maturation cocktails and time periods for the induction of mature DC (mDC in vitro. For clinical application, the use of mDC that can be generated in only three days saves on the costs of cytokines needed for large scale vaccine cell production and provides a method to produce cells within a standard work-week schedule in a GMP facility. Methods In this study, we addressed the properties of antigen uptake, processing and presentation by monocyte-derived DC prepared in three days (3d mDC compared with conventional DC prepared in seven days (7d mDC, which represent the most common form of DC used for vaccines to date. Results Although they showed a reduced capacity for spontaneous antigen uptake, 3d mDC displayed higher capacity for stimulation of T cells after loading with an extended synthetic peptide that requires processing for MHC binding, indicating they were more efficient at antigen processing than 7d DC. We found, however, that 3d DC were less efficient at expressing protein after introduction of in vitro transcribed (ivtRNA by electroporation, based on published procedures. This deficit was overcome by altering electroporation parameters, which led to improved protein expression and capacity for T cell stimulation using low amounts of ivtRNA. Conclusions This new procedure allows 3d mDC to replace 7d mDC for use in DC-based vaccines that utilize long peptides, proteins or ivtRNA as sources of specific antigen.

  12. Presentation of antigen by B cells subsets. Pt. 1. Lyb-5+ and Lyb-5- B cells differ in ability to stimulate specific T cells

    International Nuclear Information System (INIS)

    We have examined the antigen presenting cell (APC) function of different B cells. Resident, peritoneal B cells from normal mice were more efficient than splenic B cells in presenting antigen to CD4+ T cell lines. Peritoneal B cells from X-linked immunodeficient (Xid) mice, by contrast, stimulated no detectable responses. Xid splenic B cells were much less efficient APC than normal splenic B cells. B cells from neonatal mice also were very poor APC until the mice were 3 to 4 weeks old. Xid B cells presented antigen to T cell hybridomas as well as normal B cells showing that they process antigen normally. Thus, the defect is most likely in providing secondary signals. The ability of B cells to present antigen efficiency correlates with the percentage of B cells reported to express the Lyb-5 antigen. Anti-Lyb-5 serum and complement abrogated the APC activity of B cells suggesting that Lyb-5+, but not Lyb-5- cells are efficient APC. We also found that activated and resting normal splenic B cells, separated by buoyant density, presented antigen equally. Both populations also contained Lyb-5+ B cells although they were a larger fraction of the activated cells. Lyb-5 is now thought to be an activation antigen rather than a differentiation antigen. If this idea is correct, then our data indicate that anti-Lyb-5 more cleanly separates activated and resting B cells than buoyant density techniques. (author). 38 refs, 7 figs, 1 tab

  13. The T-cell anergy induced by Leishmania amazonensis antigens is related with defective antigen presentation and apoptosis

    Directory of Open Access Journals (Sweden)

    Roberta O. Pinheiro

    2004-09-01

    Full Text Available Leishmania amazonensis is the main agent of diffuse cutaneous leishmaniasis, a disease associated with anergic immune responses. In this study we show that the crude antigen of Leishmania amazonensis (LaAg but not L. braziliensis promastigotes (LbAg contains substances that suppress mitogenic and spontaneous proliferative responses of T cells. The suppressive substances in LaAg are thermoresistant (100ºC/1h and partially dependent on protease activity. T cell anergy was not due to a decreased production of growth factors as it was not reverted by addition of exogenous IL-2, IL-4, IFN-gamma or IL-12. LaAg did not inhibit anti-CD3-induced T cell activation, suggesting that anergy was due to a defect in antigen presentation. It was also not due to cell necrosis, but was accompanied by expressive DNA fragmentation in lymph node cells, indicative of apoptosis. Although pre-incubation of macrophages with LaAg prevented their capacity to present antigens, this effect was not due to apoptosis of the former. These results suggest that the T cell anergy found in diffuse leishmaniasis may be the result of parasite antigen-driven apoptosis of those cells following defective antigen presentation.A Leishmania amazonensis é o principal agente etiológico da leishmaniose cutânea difusa, uma doença associada a respostas imunes anérgicas. Neste estudo nós mostramos que o extrato bruto de promastigotas de Leishmania amazonensis (LaAg, mas não de L. braziliensis (LbAg, contém substâncias que suprimem respostas proliferativas, espontâneas e mitogênicas, de células T. As substâncias supressoras no LaAg são termo-resistentes (100°C/1h e parcialmente dependentes da atividade de proteases. A anergia de células T não foi devida à diminuição na produção de fatores de crescimento, uma vez que não foi revertida pela adição de: IL-2, IL-4, IFN-gama ou IL-12. O LaAg não inibiu a ativação de células T induzida por anti-CD3, sugerindo que a anergia

  14. A Novel Laser Vaccine Adjuvant Increases the Motility of Antigen Presenting Cells

    OpenAIRE

    Farinelli, Bill; Doukas, Apostolos; Gelfand, Jeffrey Alan; Anderson, Richard Rox; Mei X. Wu; Chen, Xinyuan; Kim, Pilhan; Yun, Seok-Hyun

    2010-01-01

    Background Development of a potent vaccine adjuvant without introduction of any side effects remains an unmet challenge in the field of the vaccine research. Methodology/Principal Findings We found that laser at a specific setting increased the motility of antigen presenting cells (APCs) and immune responses, with few local or systemic side effects. This laser vaccine adjuvant (LVA) effect was induced by brief illumination of a small area of the skin or muscle with a nondestructive...

  15. Antigen presenting cells costimulatory signaling during pre-implantation pregnancy 

    Directory of Open Access Journals (Sweden)

    Anna Sławek

    2012-09-01

    Full Text Available  Success of pregnancy depends on many factors. Three phenomena inducing immune tolerance against semi-allogeneic conceptus may play a crucial role in the pre-implantation period of pregnancy: influence of sex hormones in sex cycle, presence of oocyte or embryo and the presence of semen in the female reproductive tract. On the other hand dendritic cells are the most effective antigen-presenting cells in regulation of immune phenomena and also are considered as potent participants in inducing immune tolerance in the pregnancy. They communicate with T cells in cell contact-dependent manner or via cytokines. During cell-cell contacts, costimulatory molecules play a key role and their expression is often dependent on cytokines milieu. Both costimulatory molecules and cytokines influence generation of T regulatory cells. Interactions of these molecules are closely related. In this paper we would like to pay attention to the importance of antigen presenting cells costimulatory potency in immune regulation during a pre-implantation period of pregnancy.

  16. ImmunoChip study implicates antigen presentation to T cells in narcolepsy.

    Directory of Open Access Journals (Sweden)

    Juliette Faraco

    Full Text Available Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip. Three loci located outside the Human Leukocyte Antigen (HLA region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@, variants in two additional narcolepsy loci, Cathepsin H (CTSH and Tumor necrosis factor (ligand superfamily member 4 (TNFSF4, also called OX40L, attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.

  17. Target antigen expression on a professional antigen-presenting cell induces superior proliferative antitumor T-cell responses via chimeric T-cell receptors.

    Science.gov (United States)

    Rossig, Claudia; Bär, Annette; Pscherer, Sibylle; Altvater, Bianca; Pule, Martin; Rooney, Cliona M; Brenner, Malcolm K; Jürgens, Heribert; Vormoor, Josef

    2006-01-01

    Human T cells expressing tumor antigen-specific chimeric receptors fail to sustain their growth and activation in vivo, which greatly reduces their therapeutic value. The defective proliferative response to tumor cells in vitro can partly be overcome by concomitant CD28 costimulatory signaling. We investigated whether T-cell activation via chimeric receptors (chRec) can be further improved by ligand expression on antigen-presenting cells of B-cell origin. We generated Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) expressing a CD19-specific chRec. These CTLs are provided with native receptor stimulation by autologous EBV-transformed B-lymphoblastoid cell lines (LCLs) but exclusively with chRec (CD19-specific) stimulation by allogeneic, human leukocyte antigen (HLA)-mismatched CD19+ LCLs. CD19zeta-transduced EBV-specific CTLs specifically lysed both allogeneic EBV targets and CD19+ tumor cells through the chRec in a major histocompatibility complex-independent manner, while maintaining their ability to recognize autologous EBV targets through the native T-cell receptor. The transduced CTLs failed to proliferate in response to CD19+ tumor targets even in the presence of CD28 costimulatory signaling. By contrast, CD19 expressed on HLA-mismatched LCL-induced T-cell activation and long-term proliferation that essentially duplicated the result from native receptor stimulation with autologous LCLs, suggesting that a deficit of costimulatory molecules on target cells in addition to CD28 is indeed responsible for inadequate chRec-mediated T-cell function. Hence, effective tumor immunotherapy may be favored if engagement of the chRec on modified T cells is complemented by interaction with multiple costimulator molecules. The use of T cells with native specificity for EBV may be one means of attaining this objective. PMID:16365597

  18. Survival and signaling changes in antigen presenting cell subsets after radiation

    Science.gov (United States)

    Parker, Jennifer Janell

    Radiation therapy is a widely used cancer treatment that has the potential to influence anti-tumor immune responses. Both myeloablative and non-myeloablative radiation are often used as part of preparatory regimens for hematopoetic stem cell transplantation, in combination with other chemotherapy or immuno-modulatory (e.g. Anti-thymocyte globulin (ATG)) therapies for both cytotoxic and immune modulatory purposes. However, the mechanisms responsible for the effect of radiation on antigen presenting cell (APC) responsiveness and radioresistance are poorly understood. The first studies described in this thesis were designed to identify and characterize early radiation-induced signaling changes in antigen presenting cells and to determine the effects of these signaling changes on APC receptor expression and function. The NFkappaB pathway in antigen presenting cells was chosen for study because it is activated by radiation in a wide range of other cell types and plays a vital role in the maintenance and regulation of the immune system. The effects of therapeutically relevant doses radiation (2 and 20 Gy) were compared at various timepoints in the human monocytic cell line (U937) using phospho-flow cytometry staining methods and cytometric analysis. These studies demonstrated that radiation-induced changes in the phosphorylation state of NFkappaB family members that were p53 independent. However, these changes were dependent upon activation of ATM in response to single or double-stranded breaks in DNA, as shown in experiments using an inhibitor of ATM and ATM siRNA knockdown U937 cells. In addition, studies examining the effect of radiation on co-stimulatory receptors with and without inhibition of the NFkappaB pathway via phospho-flow cytometry revealed that radiation-induced phosphorylation of NEMO promoted the activation and functional maturation of U937 cells. Furthermore, functional studies using both phospho-flow cytometry and/or mixed lymphocyte reactions to

  19. Antigen uptake, processing and presentation to T-cells is still functional in dendritic cells surviving photodynamic treatment

    International Nuclear Information System (INIS)

    Full text: The effect of photodynamic therapy (PDT) on anti-tumoral immune reactions is still discussed controversially. Several studies have demonstrated that PDT is able to activate immune reactions against tumor antigens. However, there is also evidence that PDT exerts immunosuppressive effects. Dendritic cells (DC) are professional antigen presenting cells and play an important role in, both, the induction of immune reactions as well as the induction and maintenance of immunologic tolerance. Therefore, we investigated the effect of hypericin-mediated PDT on the capability of bone marrow-derived DC for antigen uptake, processing and presentation to CD4+ T lymphocytes. Using beta-galactosidase as model antigens we found that, under sublethal PDT conditions, antigen is still incorporated and degraded by surviving DC. PDT-treated DC, in the presence of beta-galactosidase, were still able to re-activate splenic T cells from immunized but not from naive mice. Similarly, naive allogenic T cells were activated in an antigen-independent manner by PDT-treated DC, albeit at lower efficiency as compared to untreated DC. Based on these data, we hypothesize that DC localized in PDT-treated tumor lesions could play a role in the regulation of anti-tumor immune reactions. (author)

  20. Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells

    Institute of Scientific and Technical Information of China (English)

    Ho-Keun Kwon; Zee Yong Park; Sin-Hyeog Im; Ji-Sun Hwang; Choong-Gu Lee; Jae-Seon So; Anupama Sahoo; Chang-Rok Im; Won Kyung Jeon; Byoung Seob Ko; Sung Haeng Lee

    2011-01-01

    AIM:To investigate the anti-inflammatory effects of cinnamon extract and elucidate its mechanisms for targeting the function of antigen presenting cells. METHODS:Cinnamon extract was used to treat murine macrophage cell line (Raw 264.7),mouse primary antigen-presenting cells (APCs,MHCII+) and CD11c+ dendritic cells to analyze the effects of cinnamon extract on APC function.The mechanisms of action of cinnamon extract on APCs were investigated by analyzing cytokine production,and expression of MHC antigens and co-stimulatory molecules by quantitative real-time PCR and flow cytometry.In addition,the effect of cinnamon extract on antigen presentation capacity and APC-dependent T-cell differentiation were analyzed by [H3]-thymidine incorporation and cytokine analysis,respectively. To confirm the anti-inflammatory effects of cinnamon extract in vivo ,cinnamon or PBS was orally administered to mice for 20 d followed by induction of experimental colitis with 2,4,6 trinitrobenzenesulfonic acid.The protective effects of cinnamon extract against experimental colitis were measured by checking clinical symptoms,histological analysis and cytokine expression profiles in inflamed tissue. RESULTS:Treatment with cinnamon extract inhibited maturation of MHCII+ APCs or CD11c+ dendritic cells (DCs) by suppressing expression of co-stimulatory molecules (B7.1,B7.2,ICOS-L),MHCII and cyclooxygenase (COX)-2.Cinnamon extract induced regulatory DCs (rDCs) that produce low levels of pro-inflammatory cytokines [interleukin (IL)-1β,IL-6,IL-12,interferon (IFN)-γ and tumor necrosis factor (TNF)-α] while expressing high levels of immunoregulatory cytokines (IL-10 and transforming growth factor-β).In addition, rDCs generated by cinnamon extract inhibited APC-dependent T-cell proliferation,and converted CD4+ T cells into IL-10high CD4+ T cells.Furthermore,oral administration of cinnamon extract inhibited development and progression of intestinal colitis by inhibiting expression of COX-2 and pro

  1. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus

    Directory of Open Access Journals (Sweden)

    Farrell Regina M

    2004-09-01

    Full Text Available Abstract Background Human infections with Sin Nombre virus (SNV and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS, a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. Results To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC from deer mouse bone marrow using commercially-available house mouse (Mus musculus granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. Conclusions The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases.

  2. Ly6C(+) monocyte efferocytosis and cross-presentation of cell-associated antigens.

    Science.gov (United States)

    Larson, S R; Atif, S M; Gibbings, S L; Thomas, S M; Prabagar, M G; Danhorn, T; Leach, S M; Henson, P M; Jakubzick, C V

    2016-06-01

    Recently it was shown that circulating Ly6C(+) monocytes traffic from tissue to the draining lymph nodes (LNs) with minimal alteration in their overall phenotype. Furthermore, in the steady state, Ly6C(+) monocytes are as abundant as classical dendritic cells (DCs) within the draining LNs, and even more abundant during inflammation. However, little is known about the functional roles of constitutively trafficking Ly6C(+) monocytes. In this study we investigated whether Ly6C(+) monocytes can efferocytose (acquire dying cells) and cross-present cell-associated antigen, a functional property particularly attributed to Batf3(+) DCs. We demonstrated that Ly6C(+) monocytes intrinsically efferocytose and cross-present cell-associated antigen to CD8(+) T cells. In addition, efferocytosis was enhanced upon direct activation of the Ly6C(+) monocytes through its corresponding TLRs, TLR4 and TLR7. However, only ligation of TLR7, and not TLR4, enhanced cross-presentation by Ly6C(+) monocytes. Overall, this study outlines two functional roles, among others, that Ly6C(+) monocytes have during an adaptive immune response. PMID:26990659

  3. Formaldehyde treatment of proteins can constrain presentation to T cells by limiting antigen processing.

    OpenAIRE

    Di Tommaso, A; De Magistris, M T; Bugnoli, M.; Marsili, I; Rappuoli, R; Abrignani, S.

    1994-01-01

    Proteins to be used as vaccines are frequently treated with formaldehyde, although little is known about the effects of this treatment on protein antigenicity. To investigate the effect of formaldehyde treatment on antigen recognition by T cells, we compared the in vitro T-cell response to proteins that have been formaldehyde treated with the response to untreated proteins. We found that peripheral blood mononuclear cells from individuals vaccinated with three formaldehyde-treated proteins (p...

  4. Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells

    International Nuclear Information System (INIS)

    Nanomaterials improve everyday products but their safety for human health is poorly known. In this study we explored immunological effects of five different nanomaterials on antigen presenting cells (APC) in vitro. Nanomaterials studied were rutile titanium dioxide (TiO2), amorphous silica-coated rutile titanium dioxide (TiO2-silica), zinc oxide (ZnO), single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT). APCs included mouse macrophages (RAW 264.7 cell line) and murine bone marrow-derived dendritic cells (bmDC). All studied particles were cytotoxic to bmDCs, and ZnO, TiO2 and TiO2-silica-induced dose-dependently cell death also in macrophages. ZnO had the most drastic immunological effects leading to high expression of proinflammatory cytokine, IL-1β, and enhanced production of neutrophil chemoattractant CXCL-9 on both cell types. TiO2 and TiO2-silica stimulated the expression of IL-6, MIP-1α and TNF-α in macrophages, and increased their maturation, antigen presentation and co-stimulation activity. In contrast, SWCNT or MWCNT did not seem to have any significant immunological effects on the cell types studied suggesting that APCs might not be the target cells for carbon nanotubes. Due to diverse effects on different nanomaterials on immune cells we suggest that each new nanomaterial should be extensively studied in vitro and in vivo for risk assessment before their use in final products.

  5. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells.

    OpenAIRE

    Nestle, F.O.; Burg, G.; Fäh, J; Wrone-Smith, T; Nickoloff, B. J.

    1997-01-01

    Immune surveillance of skin cancer involves the stimulation of effector T cells by tumor-derived antigens and antigen-presenting cells (APCs). An effective APC must not only display processed antigen in the context of MHC molecules but also express co-stimulatory molecules that are required to fully activate T cells. One of the most common cutaneous neoplasms is basal cell carcinoma. To investigate expression of the co-stimulatory molecules CD80 (B7-1) and CD86 (B7-2) on tumor-associated dend...

  6. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells.

    Science.gov (United States)

    León, Beatriz; Ballesteros-Tato, André; Randall, Troy D; Lund, Frances E

    2014-07-28

    The commitment of naive CD8 T cells to effector or memory cell fates can occur after a single day of antigenic stimulation even though virus-derived antigens (Ags) are still presented by DCs long after acute infection is resolved. However, the effects of extended Ag presentation on CD8 T cells are undefined and the mechanisms that regulate prolonged Ag presentation are unknown. We showed that the sustained presentation of two different epitopes from influenza virus by DCs prevented the premature contraction of the primary virus-specific CD8 T cell response. Although prolonged Ag presentation did not alter the number of memory CD8 T cells that developed, it was essential for programming the capacity of these cells to proliferate, produce cytokines, and protect the host after secondary challenge. Importantly, prolonged Ag presentation by DCs was dependent on virus-specific, isotype-switched antibodies (Abs) that facilitated the capture and cross-presentation of viral Ags by FcγR-expressing DCs. Collectively, our results demonstrate that B cells and Abs can regulate the quality and functionality of a subset of antiviral CD8 T cell memory responses and do so by promoting sustained Ag presentation by DCs during the contraction phase of the primary T cell response. PMID:25002751

  7. HAM56 and CD68 antigen presenting cells surrounding a sarcoidal granulomatous tattoo

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2011-01-01

    Full Text Available Context : Tattoos are produced by introducing colorants of various compositions into the skin, either accidentally or for cosmetic purposes. Case Report: A 62-year-old male presented with a cosmetic tattoo and requested a total excision of the lesion. Dermatopathologic analysis of the excised tissue with hematoxylin and eosin examination, as well as immunohistochemistry was performed. H&E staining demonstrated classic histologic features of a tattoo. Utilizing immunohistochemistry, dermal histiocytic antigen presenting cells stained with HAM56 and CD68 antibodies; the staining was present surrounding the tattoo pigment. Conclusions : We identified two macrophage markers (HAM56 and CD68 surrounding dermal tattoo pigment. A minimal dermal inflammatory immune was noted to the tattoo pigment. Moreover, the immune response and/or tolerance to tattoos is not well characterized. We suggest that tattoo materials and techniques could be utilized in therapeutic delivery for diseases such recessive dystrophic epidermolysis bullosa, potentially preventing immune rejection of gene therapy agents.

  8. Regulation of Hemichannels and Gap Junction Channels by Cytokines in Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Pablo J. Sáez

    2014-01-01

    Full Text Available Autocrine and paracrine signals coordinate responses of several cell types of the immune system that provide efficient protection against different challenges. Antigen-presenting cells (APCs coordinate activation of this system via homocellular and heterocellular interactions. Cytokines constitute chemical intercellular signals among immune cells and might promote pro- or anti-inflammatory effects. During the last two decades, two membrane pathways for intercellular communication have been demonstrated in cells of the immune system. They are called hemichannels (HCs and gap junction channels (GJCs and provide new insights into the mechanisms of the orchestrated response of immune cells. GJCs and HCs are permeable to ions and small molecules, including signaling molecules. The direct intercellular transfer between contacting cells can be mediated by GJCs, whereas the release to or uptake from the extracellular milieu can be mediated by HCs. GJCs and HCs can be constituted by two protein families: connexins (Cxs or pannexins (Panxs, which are present in almost all APCs, being Cx43 and Panx1 the most ubiquitous members of each protein family. In this review, we focus on the effects of different cytokines on the intercellular communication mediated by HCs and GJCs in APCs and their impact on purinergic signaling.

  9. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Hersrud, Samantha L; Kovács, Attila D; Pearce, David A

    2016-07-01

    Mutations of the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive lysosomal storage disorder that causes progressive neurodegeneration in children and adolescents. There is evidence of immune system involvement in pathology that has been only minimally investigated. We characterized bone marrow stem cell-derived antigen presenting cells (APCs), peritoneal macrophages, and leukocytes from spleen and blood, harvested from the Cln3(-/-) mouse model of JNCL. We detected dramatically elevated CD11c surface levels and increased total CD11c protein in Cln3(-/-) cell samples compared to wild type. This phenotype was specific to APCs and also to a loss of CLN3, as surface levels did not differ from wild type in other leukocyte subtypes nor in cells from two other NCL mouse models. Subcellularly, CD11c was localized to lipid rafts, indicating that perturbation of surface levels is attributable to derangement of raft dynamics, which has previously been shown in Cln3 mutant cells. Interrogation of APC function revealed that Cln3(-/-) cells have increased adhesiveness to CD11c ligands as well as an abnormal secretory pattern that closely mimics what has been previously reported for Cln3 mutant microglia. Our results show that CLN3 deficiency alters APCs, which can be a major contributor to the autoimmune response in JNCL. PMID:27101989

  10. Seoul virus suppresses NF-κB-mediated inflammatory responses of antigen presenting cells from Norway rats

    OpenAIRE

    Au, Rebecca Y.; Jedlicka, Anne E.; Li, Wei; Pekosz, Andrew; Klein, Sabra L.

    2010-01-01

    Hantavirus infection reduces antiviral defenses, increases regulatory responses, and causes persistent infection in rodent hosts. To address whether hantaviruses alter the maturation and functional activity of antigen presenting cells (APCs), rat bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs) were generated and infected with Seoul virus (SEOV) or stimulated with TLR ligands. SEOV infected both DCs and macrophages, but copies of viral RNA, viral antigen, and infectious vir...

  11. Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type.

    Science.gov (United States)

    Rimaniol, Anne-Cécile; Gras, Gabriel; Verdier, François; Capel, Francis; Grigoriev, Vladimir B; Porcheray, Fabrice; Sauzeat, Elisabeth; Fournier, Jean-Guy; Clayette, Pascal; Siegrist, Claire-Anne; Dormont, Dominique

    2004-08-13

    Aluminum hydroxide (AlOOH) has been used for many years as a vaccine adjuvant, but little is known about its mechanism of action. We investigated in this study the in vitro effect of aluminum hydroxide adjuvant on isolated macrophages. We showed that AlOOH-stimulated macrophages contain large and persistent intracellular crystalline inclusions, a characteristic property of muscle infiltrated macrophages described in animal models of vaccine injection, as well as in the recently described macrophagic myofasciitis (MMF) histological reaction in humans. AlOOH-loaded macrophages exhibited phenotypical and functional modifications, as they expressed the classical markers of myeloid dendritic cells (HLA-DR(high)/CD86(high)/CD83(+)/CD1a(-)/CD14(-)) and displayed potent ability to induce MHC-II-restricted antigen specific memory responses, but kept a macrophage morphology. This suggests a key role of macrophages, in the reaction to AlOOH-adjuvanted vaccines and these mature antigen-presenting macrophages may therefore be of particular importance in the establishment of memory responses and in vaccination mechanisms leading to long-lasting protection. PMID:15297065

  12. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    International Nuclear Information System (INIS)

    Highlights: → Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. → An ideal artificial APCs system was successfully prepared in vivo. → Controlled release of IL-2 leads to much more T-cell expansion. → This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  13. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hui [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Peng, Ji-Run, E-mail: pengjr@medmail.com.cn [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Chen, Peng-Cheng; Gong, Lei [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Qiao, Shi-Shi [Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052 (China); Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Leng, Xi-Sheng, E-mail: lengxs2003@yahoo.com.cn [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China)

    2011-08-05

    Highlights: {yields} Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. {yields} An ideal artificial APCs system was successfully prepared in vivo. {yields} Controlled release of IL-2 leads to much more T-cell expansion. {yields} This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  14. Antigen Expression on Blast Cells and Hematological Parameters at Presentation in Acute Lymphoblastic Leukemia Patients

    International Nuclear Information System (INIS)

    Objective: To analyze the expression of various antigens on the leukemic blasts and to determine the hematological parameters, in Acute Lymphoblastic Leukemia (ALL) patients at presentation. Study Design: Observational study. Place and Duration of Study: King Edward Medical University, Lahore and Hameed Latif Hospital, Lahore, from February 2013 to March 2014. Methodology: A total of 50 newly diagnosed and untreated patients of ALL were selected from Mayo Hospital and Hameed Latif Hospital. These patients included both genders and all age groups. Hemoglobin, total leukocyte count and platelet count were determined on hematology analyser-Sysmex-Kx-2I. Blast cell percentage was estimated on Giemsa stained blood smears. Immuno phenotyping was done on bone marrow samples by 5 colour flow cytometery on Beckman Counter Navious Flow cytometer. An acute leukemia panel of 23 antibodies was used. The data was entered and analyzed in SPSS version 22. Results: Of the 50 ALL patients, 36 (72 percentage) were B-ALL and 14 (28 percentage) T-ALL. There were 18 (36 percentage) children and 32 (64 percentage) adults. T-ALL included 22 percentage of the childhood and 31 percentage of the adult cases. Immuno phenotypic analysis showed that CD19, CD79a and CD20 were B-lineage specific markers whereas cCD3, CD3 and CD5 were T-lineage specific. CD10 was the most sensitive marker for B-ALL and CD7 was the most sensitive marker of T-ALL. TdT was expressed in 92 percentage B-ALL and 71 percentage T-ALL cases, CD34 in 58 percentage and 43 percentage cases and CD45 in 83 percentage and 100 percentage respectively. High leukocyte count (> 50 x 109/L) was present in 58 percentage cases. Hemoglobin was < 10 g/dl in 74 percentage patients and platelet count was below 20 x 109/Lin 12 percentage patients. Leukocyte count, hemoglobin, platelet count and blast cell percentage did not show a significant difference in the two ALL immuno types. Conclusion: The frequency of T-ALL is higher in childhood

  15. Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers.

    Science.gov (United States)

    Frenz, Theresa; Grabski, Elena; Durán, Verónica; Hozsa, Constantin; Stępczyńska, Anna; Furch, Marcus; Gieseler, Robert K; Kalinke, Ulrich

    2015-09-01

    Targeted drug delivery systems hold promise for selective provision of active compounds to distinct tissues or cell subsets. Thus, locally enhanced drug concentrations are obtained that would confer improved efficacy. As a consequence adverse effects should be diminished, as innocent bystander cells are less affected. Currently, several controlled drug delivery systems based on diverse materials are being developed. Some systems exhibit material-associated toxic effects and/or show low drug loading capacity. In contrast, liposomal nanocarriers are particularly favorable because they are well tolerated, poorly immunogenic, can be produced in defined sizes, and offer a reasonable payload capacity. Compared with other immune cells, professional antigen-presenting cells (APCs) demonstrate enhanced liposome uptake mediated by macropinocytosis, phagocytosis and presumably also by clathrin- and caveolae-mediated endocytosis. In order to further enhance the targeting efficacy toward APCs, receptor-mediated uptake appears advisable. Since APC subsets generally do not express single linage-specific receptors, members of the C-type lectin receptor (CLR) family are compelling targets. Examples of CLR expressed by APCs include DEC-205 (CD205) expressed by myeloid dendritic cells (DC) and monocytes, the mannose receptor C type 1 (MR, CD206) expressed by DC, monocytes and macrophages, DC-SIGN (CD209) expressed by DC, and several others. These receptors bind glycans, which are typically displayed by pathogens and thus support pathogen uptake and endocytosis. Further research will elucidate whether glycan-decorated liposomes will not only enhance APCs targeting but also enable preferential delivery of their payload to discrete subcellular compartments. PMID:25701806

  16. Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells

    Directory of Open Access Journals (Sweden)

    Peterson Hedi

    2010-11-01

    Full Text Available Abstract Background Monocyte-derived macrophages and dendritic cells (DCs are important in inflammatory processes and are often used for immunotherapeutic approaches. Blood monocytes can be differentiated into macrophages and DCs, which is accompanied with transcriptional changes in many genes, including chemokines and cell surface markers. Results To study the chromatin modifications associated with this differentiation, we performed a genome wide analysis of histone H3 trimethylation on lysine 4 (H3K4me3 and 27 (H3K27me3 as well as acetylation of H3 lysines (AcH3 in promoter regions. We report that both H3K4me3 and AcH3 marks significantly correlate with transcriptionally active genes whereas H3K27me3 mark is associated with inactive gene promoters. During differentiation, the H3K4me3 levels decreased on monocyte-specific CD14, CCR2 and CX3CR1 but increased on DC-specific TM7SF4/DC-STAMP, TREM2 and CD209/DC-SIGN genes. Genes associated with phagocytosis and antigen presentation were marked by H3K4me3 modifications. We also report that H3K4me3 levels on clustered chemokine and surface marker genes often correlate with transcriptional activity. Conclusion Our results provide a basis for further functional correlations between gene expression and histone modifications in monocyte-derived macrophages and DCs.

  17. Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived CD141(+)XCR1+ dendritic cells.

    Science.gov (United States)

    Silk, K M; Silk, J D; Ichiryu, N; Davies, T J; Nolan, K F; Leishman, A J; Carpenter, L; Watt, S M; Cerundolo, V; Fairchild, P J

    2012-10-01

    Monocyte-derived dendritic cells (moDC) have been widely used in cancer immunotherapy but show significant donor-to-donor variability and low capacity for the cross-presentation of tumour-associated antigens (TAA) to CD8(+) T cells, greatly limiting the success of this approach. Given recent developments in induced pluripotency and the relative ease with which induced pluripotent stem (iPS) cell lines may be generated from individuals, we have succeeded in differentiating dendritic cells (DC) from human leukocyte antigen (HLA)-A(*)0201(+) iPS cells (iPS cell-derived DC (ipDC)), using protocols compliant with their subsequent clinical application. Unlike moDC, a subset of ipDC was found to coexpress CD141 and XCR1 that have been shown previously to define the human equivalent of mouse CD8α(+) DC, in which the capacity for cross-presentation has been shown to reside. Accordingly, ipDC were able to cross-present the TAA, Melan A, to a CD8(+) T-cell clone and stimulate primary Melan A-specific responses among naïve T cells from an HLA-A(*)0201(+) donor. Given that CD141(+)XCR1(+) DC are present in peripheral blood in trace numbers that preclude their clinical application, the ability to generate a potentially unlimited source from iPS cells offers the possibility of harnessing their capacity for cross-priming of cytotoxic T lymphocytes for the induction of tumour-specific immune responses. PMID:22071967

  18. CD4+ T cell-mediated presentation of non-infectious HIV-1virion antigens to HIV-specific CD8+ T cells

    Institute of Scientific and Technical Information of China (English)

    XU Jian-qing; Franco Lori; Julianna Lisziewicz

    2006-01-01

    Background The mechanism of chronic immune activation and impairment of HIV-specific immune responses during chronic infection is not fully understood. However, it is known that high immune activation leads to more rapid progression to AIDS. We hypothesize that CD4+ T cell-mediated viral antigen presentation contributes to this pathologic immune activation in HIV-infected individuals.Methods HIV-specific T cells, responding to noninfectious HIV-1 virions as antigen, were measured by flow cytometric assays. These experimental conditions reflect the in vivo condition where noninfectious HIV-1 represents more than 99% of the antigens.Results CD4+ T cells purified from HIV-infected individuals were capable of cross presenting exogenous noninfectious HIV-1 virions to HIV-1-specific CD8+ T cells. Cross presentation required the entry of HIV-1 to CD4+ T cells and antigen translocation from endoplasmic reticulum to the Golgi complex. Blocking CD4+mediated activation of HIV-specific CD8+ T cells and redirecting the viral antigens to antigen presenting cells improved HIV-specific T cell responses.Conclusions One possible cause of chronic immune activation and impairment of HIV-1 specific T cell responses is represented by HIV-1 harboring CD4+ T cells cross presenting HIV-1 antigen to activate CD8+ T cells. This new mechanism provides the first evidence that cross presentation of noninfectious HIV-1. Virions play a role in the immunopathogenesis of HIV-1 infection.

  19. Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro

    OpenAIRE

    McLaughlin, Kerry; Seago, Julian; Robinson, Lucy; Kelly, Charles; Charleston, Bryan

    2010-01-01

    International audience Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to th...

  20. Bone marrow-derived thymic antigen-presenting cells determine self-recognition of Ia-restricted T lymphocytes

    International Nuclear Information System (INIS)

    The authors previously have demonstrated that in radiation-induced bone marrow chimeras, T-cell self-Ia restriction specificity appeared to correlate with the phenotype of the bone marrow-derived antigen-presenting (or dendritic) cell in the thymus during T-cell development. However, these correlations were necessarily indirect because of the difficulty in assaying thymic function directly by adult thymus transplant, which has in the past been uniformly unsuccessful. They now report success in obtaining functional T cells from nude mice grafted with adult thymuses reduced in size by treatment of the thymus donor with anti-thymocyte globulin and cortisone. When (B10 Scn X B10.D2)F1 nude mice (I-Ab,d) are given parental B10.D2 (I-Ad) thymus grafts subcutaneously, their T cells are restricted to antigen recognition in association with I-Ad gene products but not I-Ab gene products. Furthermore, thymuses from (B10 X B10.D2)F1 (I-Ab,d)----B10 (I-Ab) chimeras transplanted 6 months or longer after radiation (a time at which antigen-presenting cell function is of donor bone marrow phenotype) into (B10 X B10.D2)F1 nude mice generate T cells restricted to antigen recognition in association with both I-Ad and I-Ab gene products. Thymuses from totally allogeneic bone marrow chimeras appear to generate T cells of bone marrow donor and thymic host restriction specificity. Thus, when thymus donors are radiation-induced bone marrow chimeras, the T-cell I-region restriction of the nude mice recipients is determined at least in part by the phenotype of the bone marrow-derived thymic antigen presenting cells or dendritic cells in the chimeric thymus

  1. A novel approach for reliable detection of cathepsin S activities in mouse antigen presenting cells.

    Science.gov (United States)

    Steimle, Alex; Kalbacher, Hubert; Maurer, Andreas; Beifuss, Brigitte; Bender, Annika; Schäfer, Andrea; Müller, Ricarda; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2016-05-01

    Cathepsin S (CTSS) is a eukaryotic protease mostly expressed in professional antigen presenting cells (APCs). Since CTSS activity regulation plays a role in the pathogenesis of various autoimmune diseases like multiple sclerosis, atherosclerosis, Sjögren's syndrome and psoriasis as well as in cancer progression, there is an ongoing interest in the reliable detection of cathepsin S activity. Various applications have been invented for specific detection of this enzyme. However, most of them have only been shown to be suitable for human samples, do not deliver quantitative results or the experimental procedure requires technical equipment that is not commonly available in a standard laboratory. We have tested a fluorogen substrate, Mca-GRWPPMGLPWE-Lys(Dnp)-DArg-NH2, that has been described to specifically detect CTSS activities in human APCs for its potential use for mouse samples. We have modified the protocol and thereby offer a cheap, easy, reproducible and quick activity assay to detect CTSS activities in mouse APCs. Since most of basic research on CTSS is performed in mice, this method closes a gap and offers a possibility for reliable and quantitative CTSS activity detection that can be performed in almost every laboratory. PMID:26899824

  2. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4+ intestinal intraepithelial lymphocytes

    International Nuclear Information System (INIS)

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4+ IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4+ IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4+ IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4+ IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4+ LPLs and primed splenic CD4+ T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4+ IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo

  3. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru, E-mail: atotuka@mail.ecc.u-tokyo.ac.jp

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  4. Neoantigen Load, Antigen Presentation Machinery, and Immune Signatures Determine Prognosis in Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Matsushita, Hirokazu; Sato, Yusuke; Karasaki, Takahiro; Nakagawa, Tohru; Kume, Haruki; Ogawa, Seishi; Homma, Yukio; Kakimi, Kazuhiro

    2016-05-01

    Tumors commonly harbor multiple genetic alterations, some of which initiate tumorigenesis. Among these, some tumor-specific somatic mutations resulting in mutated protein have the potential to induce antitumor immune responses. To examine the relevance of the latter to immune responses in the tumor and to patient outcomes, we used datasets of whole-exome and RNA sequencing from 97 clear cell renal cell carcinoma (ccRCC) patients to identify neoepitopes predicted to be presented by each patient's autologous HLA molecules. We found that the number of nonsilent or missense mutations did not correlate with patient prognosis. However, combining the number of HLA-restricted neoepitopes with the cell surface expression of HLA or β2-microglobulin(β2M) revealed that an A-neo(hi)/HLA-A(hi) or ABC-neo(hi)/β2M(hi) phenotype correlated with better clinical outcomes. Higher expression of immune-related genes from CD8 T cells and their effector molecules [CD8A, perforin (PRF1) and granzyme A (GZMA)], however, did not correlate with prognosis. This may have been due to the observed correlation of these genes with the expression of other genes that were associated with immunosuppression in the tumor microenvironment (CTLA-4, PD-1, LAG-3, PD-L1, PD-L2, IDO1, and IL10). This suggested that abundant neoepitopes associated with greater antitumor effector immune responses were counterbalanced by a strongly immunosuppressive microenvironment. Therefore, immunosuppressive molecules should be considered high-priority targets for modulating immune responses in patients with ccRCC. Blockade of these molecular pathways could be combined with immunotherapies targeting neoantigens to achieve synergistic antitumor activity. Cancer Immunol Res; 4(5); 463-71. ©2016 AACR. PMID:26980598

  5. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Tana A. Omokoko

    2016-01-01

    Full Text Available Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay’s ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay’s combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies.

  6. Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates

    OpenAIRE

    Gimeno Mariona; Darwich Laila; Diaz Ivan; de la Torre Eugenia; Pujols Joan; Martín Marga; Inumaru Shigeki; Cano Esmeralda; Domingo Mariano; Montoya Maria; Mateu Enric

    2011-01-01

    Abstract The present study examined the immunological response of antigen presenting cells (APC) to genotype-I isolates of porcine reproductive and respiratory syndrome virus (PRRSV) infection by analysing the cytokine profile induced and evaluating the changes taking place upon infection on immunologically relevant cell markers (MHCI, MHCII, CD80/86, CD14, CD16, CD163, CD172a, SWC9). Several types of APC were infected with 39 PRRSV isolates. The results show that different isolates were able...

  7. Loss of proliferation and antigen presentation activity following internalization of polydispersed carbon nanotubes by primary lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mandavi Kumari

    Full Text Available Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs and primary lung epithelial (PLE cells were studied. Peritoneal macrophages (PMs, known phagocytic cells were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells.

  8. Dendritic cells cross-present HIV antigens from live as well as apoptotic infected CD4+ T lymphocytes

    OpenAIRE

    Marañón, Concepción; Desoutter, Jean-François; Hoeffel, Guillaume; Cohen, William; Hanau, Daniel; Hosmalin, Anne

    2004-01-01

    A better understanding of the antigen presentation pathways that lead to CD8+ T cell recognition of HIV epitopes in vivo is needed to achieve better immune control of HIV replication. Here, we show that cross-presentation of very small amounts of HIV proteins from apoptotic infected CD4+ T lymphocytes by dendritic cells to CD8+ T cells is much more efficient than other known HIV presentation pathways, i.e., direct presentation of infectious virus or cross-presentation of defective virus. Unex...

  9. Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus.

    Science.gov (United States)

    Lin, Jiqiang; Yang, Lu; Silva, Hernandez Moura; Trzeciak, Alissa; Choi, Yongwon; Schwab, Susan R; Dustin, Michael L; Lafaille, Juan J

    2016-01-01

    Regulatory T-cell (Treg) selection in the thymus is essential to prevent autoimmune diseases. Although important rules for Treg selection have been established, there is controversy regarding the degree of self-reactivity displayed by T-cell receptors expressed by Treg cells. In this study we have developed a model of autoimmune skin inflammation, to determine key parameters in the generation of skin-reactive Treg cells in the thymus (tTreg). tTreg development is predominantly AIRE dependent, with an AIRE-independent component. Without the knowledge of antigen recognized by skin-reactive Treg cells, we are able to enhance skin-specific tTreg cell generation using three approaches. First, we increase medullary thymic epithelial cells by using mice lacking osteoprotegerin or by adding TRANCE (RANKL, Tnfsf11). Second, we inject intrathymically peripheral dendritic cells from skin-draining sites. Finally, we inject skin tissue lysates intrathymically. These findings have implications for enhancing the generation of organ-specific Treg cells in autoimmune diseases. PMID:26923114

  10. MHC Class Ⅰ Antigen Presentation- Recently Trimmed and Well Presented

    Institute of Scientific and Technical Information of China (English)

    Barry Flutter; Bin Gao

    2004-01-01

    Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class Ⅰ molecules is the key to the cellular immune response. Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class Ⅰ molecules assisted by several chaperone proteins to form trimeric complex. MHC class Ⅰ complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells. The cells presenting non-self peptides are cleared by CD8 positive T cells. In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class Ⅰ expression must be carefully regulated. Many of the cellular components involved in antigen processing and class Ⅰ presentation are known and their various functions are now becoming clearer. Cellular & Molecular Immunology. 2004;1(1):22-30.

  11. MHC Class I Antigen Presentation- Recently Trimmed and Well Presented

    Institute of Scientific and Technical Information of China (English)

    BarryFlutter; BinGao

    2004-01-01

    Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class I molecules is the key to the cellular immune response. Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class I molecules assisted by several chaperone proteins to form trimeric complex. MHC class I complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells. The cells presenting non-self peptides are cleared by CD8 positive T cells. In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class I expression must be carefully regulated. Many of the cellular components involved in antigen processing and class I presentation are known and their various functions are now becoming clearer. Cellular & Molecular Immunology. 2004;1(1):22-30.

  12. Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD.

    Science.gov (United States)

    Leveque-El Mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A; Cheong, Melody; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; Alexander, Kylie A; Clouston, Andrew D; Blazar, Bruce R; Hill, Geoffrey R; MacDonald, Kelli P A

    2016-08-11

    Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD. PMID:27338097

  13. Enhanced immune stimulation by a therapeutic lymphoma tumor antigen vaccine produced in insect cells involves mannose receptor targeting to antigen presenting cells.

    Science.gov (United States)

    Betting, David J; Mu, Xi Y; Kafi, Kamran; McDonnel, Desmond; Rosas, Francisco; Gold, Daniel P; Timmerman, John M

    2009-01-01

    Therapeutic vaccination of lymphoma patients with tumor-specific immunoglobulin (idiotype, Id) coupled to the carrier protein keyhole limpet hemocyanin (Id-KLH) is undergoing clinical investigation, and methods to improve the immunogenicity of these and other protein tumor antigen vaccines are being sought. Id proteins can be produced via tumor-myeloma hybridomas or recombinant methods in mammalian, bacteria, or insect cells. We now demonstrate that terminal mannose residues, characteristic of recombinant proteins produced in insect cells, yield Id proteins with significantly enhanced immunostimulatory properties compared to Id proteins derived from mammalian cells. Recombinant baculovirus-infected insect cell-derived Id showed higher binding to and activation of human dendritic cells mediated by mannose receptors. In vivo, insect cell-derived Id elicited higher levels of tumor-specific CD8+ cytotoxic T lymphocyte (CTL) and improved eradication of pre-established murine lymphoma. Insect cell and mammalian Id generated similar levels of tumor-specific antibodies, showing no impairment in antibody responses to native tumor antigen despite the glycoslylation differences in the immunogen. Combining insect cell production and maleimide-based KLH conjugation offered the highest levels of anti-tumor immunity. Our data comparing sources of recombinant Id protein tumor antigens used in therapeutic cancer vaccines demonstrate that insect cell-derived antigens can offer several immunologic advantages over proteins derived from mammalian sources. PMID:19000731

  14. CD80 and CD86 Differentially Regulate Mechanical Interactions of T-Cells with Antigen-Presenting Dendritic Cells and B-Cells

    OpenAIRE

    Tong Seng Lim; James Kang Hao Goh; Alessandra Mortellaro; Chwee Teck Lim; Hämmerling, Günter J.; Paola Ricciardi-Castagnoli

    2012-01-01

    Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs), including dendritic cells (DCs) and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force ...

  15. A novel strategy to improve antigen presentation for active immunotherapy in cancer. Fusion of the human papillomavirus type 16 E7 antigen to a cell penetrating peptide

    International Nuclear Information System (INIS)

    Facilitating the delivery of exogenous antigens to antigen-presenting cells, ensuing processing and presentation via the major histocompatibility complex class I and induction of an effective immune response are fundamental for an effective therapeutic cancer vaccine. In this regard, we propose the use of cell-penetrating peptides fused to a tumor antigen. To demonstrate this concept we designed a fusion protein comprising a novel cell-penetrating and immunostimulatory peptide corresponding to residues 32 to 51 of the Limulus anti-lipopolysaccharide factor protein (LALF32-51) linked to human papillomavirus 16 E7 antigen (LALF32-51-E7). In this work, we demonstrated that the immunization with LALF32-51-E7 using the TC-1 mouse model induces a potent and long-lasting anti-tumor response supported on an effective E7-specific CD8+T-cell response. The finding that therapeutic immunization with LALF32-51 or E7 alone, or an admixture of LALF32-51 and E7, does not induce significant tumor reduction indicates that covalent linkage between LALF32-51 and E7 is required for the anti-tumor effect. These results support the use of this novel cell-penetrating peptide as an efficient means for delivering therapeutic targets into cellular compartments with the induction of a cytotoxic CD8+T lymphocyte immune response. This approach is promissory for the treatment of tumors associated with the human papillomavirus 16, which is responsible for the 50% of cervical cancer cases worldwide and other malignancies. Furthermore, protein-based vaccines can circumvent the major histocompatibility complex specificity limitation associated with peptide vaccines providing a greater extent in their application

  16. Tubulin and actin interplay at the T cell and Antigen-presenting cell interface

    Directory of Open Access Journals (Sweden)

    Noa B Martín-Cófreces

    2011-07-01

    Full Text Available T cells reorganize their actin and tubulin-based cytoskeletons to provide a physical basis to the immune synapse. However, growing evidence shows that their roles on T cell activation are more dynamic than merely serving as tracks or scaffold for different molecules. The cross-talk between both skeletons may be important for the formation and movement of the lamella at the IS by increasing the adhesion of the T cell to the APC, thus favoring the transport of components towards the plasma membrane and in turn regulating the T-APC intercellular communication. Microtubules and F-actin appear to be essential for the transport of the different signaling microclusters along the membrane, therefore facilitating the propagation of the signal. Finally, they can also be important for regulating the endocytosis, recycling and degradation of the TCR signaling machinery, thus helping both to sustain the activated state and to switch it off.

  17. Self-Antigen Presentation by Keratinocytes in the Inflamed Adult Skin Modulates T-Cell Auto-Reactivity.

    Science.gov (United States)

    Meister, Michael; Tounsi, Amel; Gaffal, Evelyn; Bald, Tobias; Papatriantafyllou, Maria; Ludwig, Julia; Pougialis, Georg; Bestvater, Felix; Klotz, Luisa; Moldenhauer, Gerhard; Tüting, Thomas; Hämmerling, Günter J; Arnold, Bernd; Oelert, Thilo

    2015-08-01

    Keratinocytes have a pivotal role in the regulation of immune responses, but the impact of antigen presentation by these cells is still poorly understood, particularly in a situation where the antigen will be presented only in adult life. Here, we generated a transgenic mouse model in which keratinocytes exclusively present a myelin basic protein (MBP) peptide covalently linked to the major histocompatibility complex class II β-chain, solely under inflammatory conditions. In these mice, inflammation caused by epicutaneous contact sensitizer treatment resulted in keratinocyte-mediated expansion of MBP-specific CD4(+) T cells in the skin. Moreover, repeated contact sensitizer application preceding a systemic MBP immunization reduced the reactivity of the respective CD4(+) T cells and lowered the symptoms of the resulting experimental autoimmune encephalomyelitis. This downregulation was CD4(+) T-cell-mediated and dependent on the presence of the immune modulator Dickkopf-3. Thus, presentation of a neo self-antigen by keratinocytes in the inflamed, adult skin can modulate CD4(+) T-cell auto-aggression at a distal organ. PMID:25835957

  18. Direct stimulation of T cells by membrane vesicles from antigen-presenting cells

    Czech Academy of Sciences Publication Activity Database

    Kovář, Marek; Boyman, O.; Shen, X.; Hwang, I.; Kohler, R.; Sprent, J.

    2006-01-01

    Roč. 103, č. 31 (2006), s. 11671-11676. ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50200510 Keywords : immunotherapy * t cell priming * tumors Subject RIV: EE - Microbiology, Virology Impact factor: 9.643, year: 2006

  19. Interleukin-15-induced CD56(+) myeloid dendritic cells combine potent tumor antigen presentation with direct tumoricidal potential.

    Science.gov (United States)

    Anguille, Sébastien; Lion, Eva; Tel, Jurjen; de Vries, I Jolanda M; Couderé, Karen; Fromm, Phillip D; Van Tendeloo, Viggo F; Smits, Evelien L; Berneman, Zwi N

    2012-01-01

    Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols. PMID:23284789

  20. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Directory of Open Access Journals (Sweden)

    Deanna M Schmitt

    Full Text Available Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS, does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  1. IgE/FcεRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses

    Directory of Open Access Journals (Sweden)

    Barbara Platzer

    2015-03-01

    Full Text Available Epidemiologic studies discovered an inverse association between immunoglobulin E (IgE-mediated allergies and cancer, implying tumor-protective properties of IgE. However, the underlying immunologic mechanisms remain poorly understood. Antigen cross-presentation by dendritic cells (DCs is of key importance for anti-tumor immunity because it induces the generation of cytotoxic CD8+ T lymphocytes (CTLs with specificity for tumor antigens. We demonstrate that DCs use IgE and FcεRI, the high-affinity IgE receptor, for cross-presentation and priming of CTLs in response to free soluble antigen at low doses. Importantly, IgE/FcεRI-mediated cross-presentation is a distinct receptor-mediated pathway because it does not require MyD88 signals or IL-12 induction in DCs. Using passive immunization with tumor antigen-specific IgE and DC-based vaccination experiments, we demonstrate that IgE-mediated cross-presentation significantly improves anti-tumor immunity and induces memory responses in vivo. Our findings suggest a cellular mechanism for the tumor-protective features of IgE and expand the known physiological functions of this immunoglobulin.

  2. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells.

    Science.gov (United States)

    Moffat, Jessica M; Cheong, Wan-Shoo; Villadangos, José A; Mintern, Justine D; Netter, Hans J

    2013-04-26

    Virus-like particles (VLPs) represent high density displays of viral proteins that efficiently trigger immunity. VLPs composed of the small hepatitis B virus envelope protein (HBsAgS) are useful vaccine platforms that induce humoral and cellular immune responses. Notably, however, some studies suggest HBsAgS VLPs impair dendritic cell (DC) function. Here we investigated HBsAgS VLP interaction with DC subsets and antigen access to major histocompatibility complex (MHC) class I and II antigen presentation pathways in primary DCs. HBsAgS VLPs impaired plasmacytoid DC (pDC) interferon alpha (IFNα) production in response to CpG in vitro, but did not alter conventional DC (cDC) or pDC phenotype when administered in vivo. To assess cellular immune responses, HBsAgS VLPs were generated containing the ovalbumin (OVA) model epitopes OVA(257-264) and OVA(323-339) to access MHCI and MHCII antigen presentation pathways, respectively; both in vitro and following immunisation in vivo. HBsAgS VLP-OVA(257-264) elicited CTL responses in vivo that were not enhanced by inclusion of an additional MHCII helper epitope. HBsAgS VLP-OVA(257-264) administered in vivo was cross-presented by CD8(+) DCs, but not CD8(-) DCs. Therefore, HBsAgS VLPs can deliver antigen to both MHCI and MHCII antigen presentation pathways in primary DCs and promote cytotoxic and helper T cell priming despite their suppressive effect on pDCs. PMID:23473776

  3. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization.

    Science.gov (United States)

    Dillard, Pierre; Pi, Fuwei; Lellouch, Annemarie C; Limozin, Laurent; Sengupta, Kheya

    2016-03-14

    We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation. PMID:26887857

  4. B lymphocytes as natural antigen-presenting cells (APC) of their own Ig receptor determinants

    International Nuclear Information System (INIS)

    The authors use Igk-lb allotype-specific rat T cell proliferation(Pr) in vitro as a model of natural Ig determinants B cell presentation in Ig-specific T-B cell interactions. As shown before Igk-lb-specific responsiveness of AUG(RT-l/sup c/, Igk-la) and WAG (RT-l, Igk-la) rats is controlled by dominant Ir gene, linked to RT-l/sup c/. Only IgG(Igk-lb)-pulsed splenic APC of AUG(responder) but not WAG(non-responder) origin induce specific F1 (WAGxAUG) T cell Pr. The same restriction was observed if purified B cells from Igk-l congeneic AUG-lb and WAG-lb rats were used as APC. B cell presentation was found to be sensitive to high irradiation dose(2000 rad). Anti-RT-l monoclonal antibody inhibition studies suggested RT-lB(I-A) molecule as a main restricting element of Igk-lb T cell recognition. B cell and splenic APC presentation of Igk-lb allotype was not inhibited by poly- and monoclonal anti-Igk-lb antibodies. Allelic exclusion of Igk-lb presentation by B cells from heterozygous F1 (WAG-lbx AUG) rats was demonstrated by panning with antiallotypic reagents. Important, that irradiated anti-Igk-lb T cells induce specific Pr of normal Igk-lb-positive B cells. The data demonstrate MHC-restricted B cell presentation of their own receptor determinants, distinct from serologically-defined epitopes. T cell recognition of these determinants induce specific Pr of Ig-recognizing T cells and Ig-presenting B lymphocytes

  5. Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells.

    Science.gov (United States)

    Smed-Sörensen, Anna; Chalouni, Cécile; Chatterjee, Bithi; Cohn, Lillian; Blattmann, Peter; Nakamura, Norihiro; Delamarre, Lélia; Mellman, Ira

    2012-01-01

    Influenza A virus (IAV) infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs). We investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting cells. IAV was internalized by both myeloid DCs (mDCs) and plasmacytoid DCs but only mDCs supported viral replication. Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous IAV was -300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-presentation for the activation and expansion of CD8 T cells during IAV infection. PMID:22412374

  6. Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Anna Smed-Sörensen

    Full Text Available Influenza A virus (IAV infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs. We investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting cells. IAV was internalized by both myeloid DCs (mDCs and plasmacytoid DCs but only mDCs supported viral replication. Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous IAV was -300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-presentation for the activation and expansion of CD8 T cells during IAV infection.

  7. Myeloid Cell Nuclear Differentiation Antigen (MNDA) Expression Distinguishes Extramedullary Presentations of Myeloid Leukemia From Blastic Plasmacytoid Dendritic Cell Neoplasm.

    Science.gov (United States)

    Johnson, Ryan C; Kim, Jinah; Natkunam, Yasodha; Sundram, Uma; Freud, Aharon G; Gammon, Bryan; Cascio, Michael J

    2016-04-01

    Myeloid neoplasms constitute one of the most common malignancies in adults. In most cases these proliferations initially manifest in the blood and marrow; however, extramedullary involvement may precede blood or marrow involvement in a subset of cases, making a definitive diagnosis challenging by morphologic and immunohistochemical assessment alone. Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive entity that frequently presents in extramedullary sites and can show morphologic and immunophenotypic overlap with myeloid neoplasms. Given that BPDCN and myeloid neoplasms may both initially present in extramedullary sites and that novel targeted therapies may be developed that exploit the unique molecular signature of BPDCN, new immunophenotypic markers that can reliably separate myeloid neoplasms from BPDCN are desirable. We evaluated the utility of myeloid cell nuclear differentiation antigen (MNDA) expression in a series of extramedullary myeloid leukemias (EMLs) and BPDCN. Forty biopsies containing EML and 19 biopsies containing BPDCN were studied by MNDA immunohistochemistry. The majority of myeloid neoplasms showed nuclear expression of MNDA (65%). In contrast, all cases of BPDCN lacked MNDA expression. These findings show that MNDA is expressed in the majority of EMLs and support the inclusion of MNDA immunohistochemistry in the diagnostic evaluation of blastic hematopoietic infiltrates, particularly when the differential diagnosis is between myeloid leukemia and BPDCN. PMID:26796502

  8. 1,25-Dihydroxyvitamin D3 inhibits proliferation but not the suppressive function of regulatory T cells in the absence of antigen-presenting cells.

    NARCIS (Netherlands)

    Khoo, A.L.; Joosten, I.; Michels, M.; Woestenenk, R.M.; Preijers, F.W.M.B.; He, X.; Netea, M.G.; Ven, A.J.A.M. van der; Koenen, H.J.P.M.

    2011-01-01

    Vitamin D3 is known to induce regulatory T (Treg) cells by rendering antigen-presenting cells tolerogenic, its direct effect on human naturally occurring Treg cells is unclear. Here, we investigated if and how 1,25-dihydroxyvitamin D(3) [1,25(OH)2D3] can directly affect the proliferation and functio

  9. Immunologic effects of whole body ultraviolet (uv) irradiation. II. Defect in splenic adherent cell antigen presentation for stimulation of T cell proliferation

    International Nuclear Information System (INIS)

    Ultraviolet (uv) irradiation has been shown to alter many parameters of the immunologic reactivity of mice. The altered responsiveness of uv-irradiated mice, as measured by delayed-type hypersensitivity (DTH) and primary in vitro plaque-forming cell (PFC) responses to T-dependent antigens, has recently been correlated with a functional defect in the splenic adherent cell population of these animals. The present studies describe a model of this altered responsiveness, which allows further clarification of the effects of external uv irradiation on the splenic antigen-presenting cell (APC) in its interactions with T cells

  10. Human macrophages and dendritic cells can equally present MART-1 antigen to CD8(+ T cells after phagocytosis of gamma-irradiated melanoma cells.

    Directory of Open Access Journals (Sweden)

    María Marcela Barrio

    Full Text Available Dendritic cells (DC can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8(+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8(+ T cell clone. Confocal microscopy with Alexa Fluor®(647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8(+ T cell cross-presentation thereafter.

  11. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells.

    Science.gov (United States)

    Nestle, F O; Burg, G; Fäh, J; Wrone-Smith, T; Nickoloff, B J

    1997-02-01

    Immune surveillance of skin cancer involves the stimulation of effector T cells by tumor-derived antigens and antigen-presenting cells (APCs). An effective APC must not only display processed antigen in the context of MHC molecules but also express co-stimulatory molecules that are required to fully activate T cells. One of the most common cutaneous neoplasms is basal cell carcinoma. To investigate expression of the co-stimulatory molecules CD80 (B7-1) and CD86 (B7-2) on tumor-associated dendritic cells (TADCs), cryosections from basal cell carcinomas were immunostained. In basal cell carcinomas, only 1 to 2% of intratumor and 5 to 10% of peritumor APCs expressed CD80 or CD86. In contrast, biopsies of immunological/inflammatory dermatoses revealed that 38 to 73% of APCs expressed CD80 and CD86. To further evaluate their phenotype and function, TADCs were isolated from tissue samples of basal cell carcinomas; they were non-adherent to plastic, displayed a typical dendritic morphology, and expressed high levels of major histocompatibility class II molecules on their surface. When TADCs were compared with dendritic cells from blood for presentation of superantigens (staphylococcal enterotoxins A and B) to resting autologous T cells, TADCs were consistently weaker stimulators of T cell proliferation than blood dendritic cells. When analyzed by flow cytometry, TADCs expressed high levels of HLA-DR, but only 5 to 10% co-expressed CD80 or CD86. A 3-day culture in granulocyte/macrophage colony-stimulating factor-containing medium partially reconstituted the TADC expression of CD80 and CD86 as well as their immunostimulatory capacity. Thus, in this common skin cancer, although there are prominent collections of HLA-DR-positive APCs in and around tumor cells, the TADCs are deficient in important co-stimulatory molecules as well as being weak stimulators of T cell proliferation. The paucity of co-stimulatory molecule expression and functional activity of TADCs may explain why

  12. Beta2-Adrenoreceptor agonist inhibits antigen cross-presentation by dendritic cells

    OpenAIRE

    Hervé, Julie; Dubreil, Laurence; Tardif, Virginie; Terme, Mickaël; Pogu, Sylvie; Anegon, Ignacio; Rozec, Bertrand; Gauthier, Chantal; Bach, Jean-Marie; Blancou, Philippe

    2013-01-01

    Despite widespread usage of β-adrenergic receptor (AR) agonists and antagonists in current clinical practice, our understanding of their interactions with the immune system is surprisingly sparse. Among the AR expressed by dendritic cells (DC), β2-AR can modify in vitro cytokine release upon stimulation. Because DC play a pivotal role in CD8(+) T cell immune responses, we examined the effects of β2-AR stimulation on MHC class I exogenous peptide presentation and cross-presentation capacities....

  13. Gene Related to Anergy in Lymphocytes (GRAIL) Expression in CD4+ T Cells Impairs Actin Cytoskeletal Organization during T Cell/Antigen-presenting Cell Interactions*

    OpenAIRE

    Schartner, Jill M.; Simonson, William T; Wernimont, Sarah A.; Nettenstrom, Lauren M.; Huttenlocher, Anna; Seroogy, Christine M.

    2009-01-01

    GRAIL (gene related to anergy in lymphocytes), is an E3 ubiquitin ligase with increased expression in anergic CD4+ T cells. The expression of GRAIL has been shown to be both necessary and sufficient for the induction of T cell (T) anergy. To date, several subsets of anergic T cells have demonstrated altered interactions with antigen-presenting cells (APC) and perturbed TCR-mediated signaling. The role of GRAIL in mediating these aspects of T cell anergy remains unclear. We used flow cytometry...

  14. CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells.

    Science.gov (United States)

    Lim, Tong Seng; Goh, James Kang Hao; Mortellaro, Alessandra; Lim, Chwee Teck; Hämmerling, Günter J; Ricciardi-Castagnoli, Paola

    2012-01-01

    Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs), including dendritic cells (DCs) and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force spectroscopy to characterize and compare the mechanical forces of interactions between DC:T-cells and B:T-cells. Following antigen stimulation, intercellular interactions of DC:T-cell conjugates were stronger than B:T-cell interactions. DCs induced higher levels of T-cell calcium mobilization and production of IL-2 and IFNγ than were elicited by B-cells, thus suggesting that tight intercellular contacts are important in providing mechanically stable environment to initiate T-cell activation. Blocking antibodies targeting surface co-stimulatory molecules CD80 or CD86 weakened intercellular interactions and dampen T-cell activation, highlighting the amplificatory roles of CD80/86 in regulating APC:T-cell interactions and T-cell functional activation. The variable strength of mechanical forces between DC:T-cells and B:T-cell interactions were not solely dependent on differential APC expression of CD80/86, since DCs were superior to B-cells in promoting strong interactions with T-cells even when CD80 and CD86 were inhibited. These data provide mechanical insights into the effects of co-stimulatory molecules in regulating APC:T-cell interactions. PMID:23024807

  15. CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells.

    Directory of Open Access Journals (Sweden)

    Tong Seng Lim

    Full Text Available Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs, including dendritic cells (DCs and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force spectroscopy to characterize and compare the mechanical forces of interactions between DC:T-cells and B:T-cells. Following antigen stimulation, intercellular interactions of DC:T-cell conjugates were stronger than B:T-cell interactions. DCs induced higher levels of T-cell calcium mobilization and production of IL-2 and IFNγ than were elicited by B-cells, thus suggesting that tight intercellular contacts are important in providing mechanically stable environment to initiate T-cell activation. Blocking antibodies targeting surface co-stimulatory molecules CD80 or CD86 weakened intercellular interactions and dampen T-cell activation, highlighting the amplificatory roles of CD80/86 in regulating APC:T-cell interactions and T-cell functional activation. The variable strength of mechanical forces between DC:T-cells and B:T-cell interactions were not solely dependent on differential APC expression of CD80/86, since DCs were superior to B-cells in promoting strong interactions with T-cells even when CD80 and CD86 were inhibited. These data provide mechanical insights into the effects of co-stimulatory molecules in regulating APC:T-cell interactions.

  16. Host MHC class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions

    OpenAIRE

    Chakraverty, Ronjon; Eom, Hyeon-Seok; Sachs, Jessica; Buchli, Jennifer; Cotter, Pete; Hsu, Richard; Zhao, Guiling; Sykes, Megan

    2006-01-01

    Following bone marrow transplantation, delayed donor leukocyte infusions (DLIs) can induce graft-versus-leukemia (GVL) effects without graft-versus-host disease (GVHD). These antitumor responses are maximized by the presence of host hematopoietic antigen-presenting cells (APCs) at the time of DLI. Using a tumor-protection model, we demonstrate here that GVL activity following administration of DLIs to established mixed chimeras is dependent primarily on reactivity to allogeneic MHC antigens r...

  17. Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates.

    Science.gov (United States)

    Gimeno, Mariona; Darwich, Laila; Diaz, Ivan; de la Torre, Eugenia; Pujols, Joan; Martín, Marga; Inumaru, Shigeki; Cano, Esmeralda; Domingo, Mariano; Montoya, Maria; Mateu, Enric

    2011-01-01

    The present study examined the immunological response of antigen presenting cells (APC) to genotype-I isolates of porcine reproductive and respiratory syndrome virus (PRRSV) infection by analysing the cytokine profile induced and evaluating the changes taking place upon infection on immunologically relevant cell markers (MHCI, MHCII, CD80/86, CD14, CD16, CD163, CD172a, SWC9). Several types of APC were infected with 39 PRRSV isolates. The results show that different isolates were able to induce different patterns of IL-10 and TNF-α. The four possible phenotypes based on the ability to induce IL-10 and/or TNF-α were observed, although different cell types seemed to have different capabilities. In addition, isolates inducing different cytokine-release profiles on APC could induce different expression of cell markers. PMID:21314968

  18. Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates

    Directory of Open Access Journals (Sweden)

    Gimeno Mariona

    2011-01-01

    Full Text Available Abstract The present study examined the immunological response of antigen presenting cells (APC to genotype-I isolates of porcine reproductive and respiratory syndrome virus (PRRSV infection by analysing the cytokine profile induced and evaluating the changes taking place upon infection on immunologically relevant cell markers (MHCI, MHCII, CD80/86, CD14, CD16, CD163, CD172a, SWC9. Several types of APC were infected with 39 PRRSV isolates. The results show that different isolates were able to induce different patterns of IL-10 and TNF-α. The four possible phenotypes based on the ability to induce IL-10 and/or TNF-α were observed, although different cell types seemed to have different capabilities. In addition, isolates inducing different cytokine-release profiles on APC could induce different expression of cell markers.

  19. Tunable chemokine production by antigen presenting dendritic cells in response to changes in regulatory T cell frequency in mouse reactive lymph nodes.

    Directory of Open Access Journals (Sweden)

    Valentina Dal Secco

    Full Text Available BACKGROUND: Although evidence exists that regulatory T cells (Tregs can suppress the effector phase of immune responses, it is clear that their major role is in suppressing T cell priming in secondary lymphoid organs. Recent experiments using two photon laser microscopy indicate that dendritic cells (DCs are central to Treg cell function and that the in vivo mechanisms of T cell regulation are more complex than those described in vitro. PRINCIPAL FINDINGS: Here we have sought to determine whether and how modulation of Treg numbers modifies the lymph node (LN microenvironment. We found that pro-inflammatory chemokines -- CCL2 (MCP-1 and CCL3 (MIP-la -- are secreted in the LN early (24 h after T cell activation, that this secretion is dependent on antigen-specific DC-T cell interactions, and that it was inversely related to the frequency of Tregs specific for the same antigen. Furthermore, we demonstrate that Tregs modify the chemoattractant properties of antigen-presenting DCs, which, as the frequency of Tregs increases, fail to produce CCL2 and CCL3 and to attract antigen-specific T cells. CONCLUSIONS: These results substantiate a major role of Tregs in LN patterning during antigen-specific immune responses.

  20. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.

    Directory of Open Access Journals (Sweden)

    Charlotte F Inman

    Full Text Available Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+ antigen-presenting cell subset, whilst SIRPα(-CD11R1(+ antigen-presenting cells (APCs are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+ antigen-presenting cells as orchestrators of early-life mucosal immune development.

  1. Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

    Directory of Open Access Journals (Sweden)

    Kennedy Colleen

    2011-12-01

    Full Text Available Abstract Background Lipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4+ T cell line in the absence of detergents. Results Detergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4+ T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen. Conclusions Findings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.

  2. Use of human antigen presenting cell gene array profiling to examine the effect of human T-cell leukemia virus type 1 Tax on primary human dendritic cells.

    Science.gov (United States)

    Ahuja, Jaya; Kampani, Karan; Datta, Suman; Wigdahl, Brian; Flaig, Katherine E; Jain, Pooja

    2006-02-01

    Human T-cell leukemia virus type 1 (HTLV-1) is etiologically linked to adult T-cell leukemia and a progressive demyelinating disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the most striking features of the immune response in HAM/TSP centers on the expansion of HTLV-1-specific CD8(+) cytotoxic T lymphocyte (CTL) compartment in the peripheral blood and cerebrospinal fluid. More than 90% of the HTLV-1-specific CTLs are directed against the viral Tax (11-19) peptide implying that Tax is available for immune recognition by antigen presenting cells, such as dendritic cells (DCs). DCs obtained from HAM/TSP patients have been shown to be infected with HTLV-1 and exhibit rapid maturation. Therefore, we hypothesized that presentation of Tax peptides by activated DCs to naIve CD8(+) T cells may play an important role in the induction of a Tax-specific CTL response and neurologic dysfunction. In this study, a pathway-specific antigen presenting cell gene array was used to study transcriptional changes induced by exposure of monocyte-derived DCs to extracellular HTLV-1 Tax protein. Approximately 100 genes were differentially expressed including genes encoding toll-like receptors, cell surface receptors, proteins involved in antigen uptake and presentation and adhesion molecules. The differential regulation of chemokines and cytokines characteristic of functional DC activation was also observed by the gene array analyses. Furthermore, the expression pattern of signal transduction genes was also significantly altered. These results have suggested that Tax-mediated DC gene regulation might play a critical role in cellular activation and the mechanisms resulting in HTLV-1-induced disease. PMID:16595374

  3. Forcing Tumor Cells to Present Their Own Tumor Antigens to the Immune System: a Necessary Design for an Efficient Tumor Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    RobertE.Humphreys; GildaG.Hillman; EricyonHofe; MinzhenXu

    2004-01-01

    The general principle for tumor cells to escape from immune surveillance is to prevent tumor antigens from being recognized by the immune system. Many methods have been developed to increase the immunogenecity of the tumor cells. The most efficient methods are able to force tumor cells to present their own tumor antigens to the immune system. Stimulating Th cells by converting tumor cells into MHC class II+/Ii- antigen presenting cells is one of the most efficient technologies. Using antisense methods, we suppress the expression of the Ii protein that normally co-expresses with MHC class II molecules and blocks the antigenic peptide binding site of MHC class II molecules during synthesis in the endoplasmic reticulum. In such tumor cells, the"unprotected" MHC class II molecules pick up endogenous tumor antigenic peptides, which have been transported into the ER for binding to MHC class I molecules. Simultaneous presentation of tumor antigens by both MHC class I and II molecules generates a robust and long-lasting anti-tumor immune response. MHC class II+/Ii- tumor cells are potent tumor cell vaccines and also cure a significant number of animals with renal and prostate tumors. We have developed analogous human gene vectors that are suitable for most patients and cancers.

  4. Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors.

    Science.gov (United States)

    Fong, Fiona Long Yan; Kirjavainen, Pirkka V; El-Nezami, Hani

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) cells have been shown to promote type-1 immune responsiveness; however knowledge of immunomodulation of soluble factors secreted by LGG is limited. This is the first study to investigate whether LGG soluble factors promote a comparable immune responsiveness as the bacterial cells. Both treatments - LGG conditioned medium with (CM + LGG) or without (CM) LGG cells, in this study increased expression of several toll-like receptors (TLRs) in all studied cell types and antigen presentation-associated receptor HLA-DR in macrophages and "intermediate" monocytes; but decreased that of activation markers on monocytes and macrophages and production of IL-10, IL-12 and TNFα in macrophages. In co-culture with mononuclear cells, CM increased Th1-type cytokine profile but not as pronounced as CM + LGG. This study suggests that LGG soluble factors exert similar immunomodulatory effects as the intact cells, but cells may be required for optimal type-1 immune responsiveness polarizing capacity of this probiotic strain. PMID:26961406

  5. An Alternative and Effective HIV Vaccination Approach Based on Inhibition of Antigen Presentation Attenuators in Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Current efforts to develop HIV vaccines that seek to stimulate immune responses have been disappointing, underscoring the inability of natural immune responses to control HIV-1 infection. Here we tested an alternative strategy to induce anti-HIV immune responses by inhibiting a host's natural immune inhibitor. METHODS AND FINDINGS: We used small interfering RNA (siRNA to inhibit suppressor of cytokine signaling (SOCS 1, a key negative regulator of the JAK/STAT pathway, and investigated the effect of this silencing on the ability of dendritic cells (DCs to induce anti-HIV-1 immunity. We found that SOCS1-silenced DCs broadly induced enhanced HIV-1 envelope (Env-specific CD8(+ cytotoxic T lymphocytes and CD4(+ T helper cells, as well as antibody responses, in mice. Importantly, SOCS1-silenced DCs were more resistant to HIV Env-mediated suppression and were capable of inducing memory HIV Env-specific antibody and T cell responses. SOCS1-restricted signaling, as well as production of proinflammatory cytokines such as interleukin-12 by DCs, play a critical role in regulating the anti-HIV immune response. Furthermore, the potency of HIV DNA vaccination is significantly enhanced by coimmunization with SOCS1 siRNA expressor DNA. CONCLUSIONS: This study demonstrates that SOCS1 functions as an antigen presentation attenuator to control both HIV-1-specific humoral and cellular responses. This study represents the first, to our knowledge, attempt to elicit HIV-specific T cell and antibody responses by inhibiting a host's antigen presentation attenuator, which may open a new and alternative avenue to develop effective therapeutic and prophylactic HIV vaccines.

  6. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy

    OpenAIRE

    Klebanoff, Christopher A.; Khong, Hung T.; Antony, Paul A.; Douglas C Palmer; Restifo, Nicholas P

    2005-01-01

    Lymphodepletion followed by adoptive cell transfer (ACT) of autologous, tumor-reactive T cells boosts antitumor immunotherapeutic activity in mouse and in humans. In the most recent clinical trials, lymphodepletion together with ACT has an objective response rate of 50% in patients with solid metastatic tumors. The mechanisms underlying this recent advance in cancer immunotherapy are beginning to be elucidated and include: the elimination of cellular cytokine ‘sinks’ for homeostatic γC-cytoki...

  7. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells

    OpenAIRE

    Latchman, Yvette E.; Liang, Spencer C.; Wu, Yin; Chernova, Tatyana; Sobel, Raymond A.; Klemm, Martina; Kuchroo, Vijay K.; Freeman, Gordon J; Sharpe, Arlene H.

    2004-01-01

    Both positive and negative regulatory roles have been suggested for the B7 family member PD-L1(B7-H1). PD-L1 is expressed on antigen-presenting cells (APCs), activated T cells, and a variety of tissues, but the functional significance of PD-L1 on each cell type is not yet clear. To dissect the functions of PD-L1 in vivo, we generated PD-L1-deficient (PD-L1–/–) mice. CD4+ and CD8+ T cell responses were markedly enhanced in PD-L1–/– mice compared with wild-type mice in vitro and in vivo. PD-L1–...

  8. Type I Interferons as Regulators of Human Antigen Presenting Cell Functions

    Directory of Open Access Journals (Sweden)

    Sandra Gessani

    2014-05-01

    Full Text Available Type I interferons (IFNs are pleiotropic cytokines, initially described for their antiviral activity. These cytokines exhibit a long record of clinical use in patients with some types of cancer, viral infections and chronic inflammatory diseases. It is now well established that IFN action mostly relies on their ability to modulate host innate and adaptive immune responses. Work in recent years has begun to elucidate the mechanisms by which type I IFNs modify the immune response, and this is now recognized to be due to effects on multiple cell types, including monocytes, dendritic cells (DCs, NK cells, T and B lymphocytes. An ensemble of results from both animal models and in vitro studies emphasized the key role of type I IFNs in the development and function of DCs, suggesting the existence of a natural alliance between these cytokines and DCs in linking innate to adaptive immunity. The identification of IFN signatures in DCs and their dysregulation under pathological conditions will therefore be pivotal to decipher the complexity of this DC-IFN interaction and to better exploit the therapeutic potential of these cells.

  9. Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Hasman, Henrik; Schembri, Mark; Klemm, Per

    2002-01-01

    the outer membrane and secretion through the cell envelope is contained within the protein itself. Ag43 consists of two subunits (alpha and beta), where the beta-subunit forms an integral outer membrane translocator to which the alpha-subunit is noncovalently attached. The simplicity of the Ag43...

  10. Antigen Delivery with Poly(Propylacrylic Acid) Conjugation Enhances MHC-1 Presentation and T-Cell Activation

    OpenAIRE

    Flanary, Suzanne; Hoffman, Allan S.; Stayton, Patrick S.

    2009-01-01

    While many infectious diseases are controlled by vaccine strategies, important limitations continue to motivate the development of better antigen delivery systems. This study focuses on the use of a pH-sensitive polymeric carrier based on poly(propylacrylic acid) (PPAA) to address the need for more potent CD8 cytotoxic T-cell (CTL) responses. An MHC-1/CD8 CTL cell model system with ovalbumin as the protein antigen was used to test whether PPAA could enhance the delivery of ovalbumin into the ...

  11. Antigen presenting cells in the skin of a patient with hair loss and systemic lupus erythematosus

    OpenAIRE

    Ana Maria Abreu Velez; Julia G Girard; Michael S. Howard,

    2009-01-01

    Context: Hair loss is one of the most striking clinical features of active systemic lupus erythematosus (SLE), however, very few studies have investigated the immunological features of this process. Case report: We describe a 33 years old female who presented with scalp hair loss and arthralgias. Physical examination revealed erythematous plaques on the nose and scalp, with bitemporal hair loss. Scalp biopsies revealed epidermal hyperkeratosis, with a mild interface infiltrate of lymphocytes ...

  12. Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Despite recent advances in surgery, irradiation, and chemotherapy, the prognosis of patients with lung cancer is still poor. Therefore, the development and application of new therapeutic strategies are essential for improving the prognosis of this disease. Significant progress in our understanding of tumor immunology and molecular biology has allowed us to identify the tumor-associated antigens recognized by cytotoxic T lymphocytes. Immune responses and tumor-associated antigens against not only malignant melanoma but also lung cancer have been elucidated at the molecular level. In a theoretical sense, tumor eradication is considered possible through antigen-based immunotherapy against such diseases. However, many clinical trials of cancer vaccination with defined tumor antigens have resulted in objective clinical responses in only a small number of patients. Tumor escape mechanisms from host immune surveillance remain a major obstacle for cancer immunotherapy. A better understanding of the immune escape mechanisms employed by tumor cells is necessary before we can develop a more effective immunotherapeutic approach to lung cancer. We review recent studies regarding the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer. (author)

  13. Changes in antigen-presenting cell function in the spleen and lymph nodes of ultraviolet-irradiated mice

    International Nuclear Information System (INIS)

    It has been previously reported that mice exposed to ultraviolet (UV) radiation exhibit a decrease in splenic antigen-presenting cell (APC) function. The results presented here confirm this observation and further demonstrate that animals exposed daily to UV for extended periods of time (5 weeks instead of 6 days) no longer exhibit this depressed capability. In spite of the depression in splenic APC activity found in 6-day UV-irradiated mice, lymph node APC function from these same animals was elevated compared with that found in the lymph nodes from normal animals. Lymph node APC activity in animals that were splenectomized prior to the UV irradiation, however, was not enhanced over controls. Treatment of animals with a chemical irritant (turpentine) also caused a depression in splenic APC function without modifying lymph node activity. Collectively, our findings suggest that the observed decrease in splenic APC activity, found after the first week of UV exposures, may be attributable to the migration of splenic APC to peripheral lymphoid tissue which drain the site of epidermal inflammation

  14. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells.

    Science.gov (United States)

    Rancan, Fiorenza; Amselgruber, Sarah; Hadam, Sabrina; Munier, Sevérine; Pavot, Vincent; Verrier, Bernard; Hackbarth, Steffen; Combadiere, Behazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2014-02-28

    Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination. PMID:24384300

  15. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer's disease-like cerebral amyloidosis.

    Science.gov (United States)

    Ferretti, M T; Merlini, M; Späni, C; Gericke, C; Schweizer, N; Enzmann, G; Engelhardt, B; Kulic, L; Suter, T; Nitsch, R M

    2016-05-01

    Cerebral beta-amyloidosis, one of the pathological hallmarks of Alzheimer's disease (AD), elicits a well-characterised, microglia-mediated local innate immune response. In contrast, it is not clear whether cells of the adaptive immune system, in particular T-cells, react to cerebral amyloidosis in AD. Even though parenchymal T-cells have been described in post-mortem brains of AD patients, it is not known whether infiltrating T-cells are specifically recruited to the extracellular deposits of beta-amyloid, and whether they are locally activated into proliferating, effector cells upon interaction with antigen-presenting cells (APCs). To address these issues we have analysed by confocal microscopy and flow-cytometry the localisation and activation status of both T-cells and APCs in transgenic (tg) mice models of AD-like cerebral amyloidosis. Increased numbers of infiltrating T-cells were found in amyloid-burdened brain regions of tg mice, with concomitant up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1, compared to non-tg littermates. The infiltrating T-cells in tg brains did not co-localise with amyloid plaques, produced less interferon-gamma than those in controls and did not proliferate locally. Bona-fide dendritic cells were virtually absent from the brain parenchyma of both non-tg and tg mice, and APCs from tg brains showed an immature phenotype, with accumulation of MHC-II in intracellular compartments. These results indicate that cerebral amyloidosis promotes T-cell infiltration but interferes with local antigen presentation and T-cell activation. The inability of the brain immune surveillance to orchestrate a protective immune response to amyloid-beta peptide might contribute to the accumulation of amyloid in the progression of the disease. PMID:26872418

  16. Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish

    Science.gov (United States)

    Aquilino, Carolina; Granja, Aitor G.; Castro, Rosario; Wang, Tiehui; Abos, Beatriz; Parra, David; Secombes, Christopher J.; Tafalla, Carolina

    2016-01-01

    CK9 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to mammalian CCL25. Although CK9 is known to be transcriptionally regulated in response to inflammation particularly in mucosal tissues, its functionality has never been revealed. In the current work, we have demonstrated that CK9 is chemoattractant for antigen presenting cells (APCs) expressing major histocompatibility complex class II (MHC II) on the cell surface. Among these APCs, CK9 has a strong chemotactic capacity for both B cells (IgM+ and IgT+) and macrophages. Along with its chemotactic capacities, CK9 modulated the MHC II turnover of B lymphocytes and up-regulated the phagocytic capacity of both IgM+ cells and macrophages. Although CK9 had no lymphoproliferative effects, it increased the survival of IgT+ lymphocytes. Furthermore, we have established that the chemoattractant capacity of CK9 is strongly increased after pre-incubation of leukocytes with a T-independent antigen, whereas B cell receptor (BCR) cross-linking strongly abrogated their capacity to migrate to CK9, indicating that CK9 preferentially attracts B cells at the steady state or under BCR-independent stimulation. These results point to CK9 being a key regulator of B lymphocyte trafficking in rainbow trout, able to modulate innate functions of teleost B lymphocytes and macrophages. PMID:27003360

  17. MYELIN ANTIGEN LOAD INFLUENCES ANTIGEN PRESENTATION AND SEVERITY OF CENTRAL NERVOUS SYSTEM AUTOIMMUNITY

    OpenAIRE

    Jaini, Ritika; Popescu, Daniela C.; Flask, Chris A.; Macklin, Wendy B.; Tuohy, Vincent K.

    2013-01-01

    This study was designed to understand the impact of self-antigen load on manifestation of organ specific autoimmunity. Using a transgenic mouse model characterized by CNS hypermyelination, we show that larger myelin content results in greater severity of experimental autoimmune encephalomyelitis attributable to an increased number of microglia within the hypermyelinated brain. We conclude that a larger self-antigen load affects an increase in number of tissue resident antigen presenting cells...

  18. Identification of a peptide binding protein that plays a role in antigen presentation.

    OpenAIRE

    Lakey, E K; Margoliash, E.; Pierce, S K

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface ...

  19. The HIV-1 gp120/V3 modifies the response of uninfected CD4 T cells to antigen presentation: mapping of the specific transcriptional signature

    Directory of Open Access Journals (Sweden)

    Spandidos Demetrios A

    2011-09-01

    Full Text Available Abstract Background The asymptomatic phase of HIV-1 infection is characterized by a progressive depletion of uninfected peripheral effector/memory CD4+ T cells that subsequently leads to immune dysfunction and AIDS symptoms. We have previously demonstrated that the presence of specific gp120/V3 peptides during antigen presentation can modify the activation of normal T-cells leading to altered immune function. The aim of the present study was to map the specific transcriptional profile invoked by an HIV-1/V3 epitope in uninfected T cells during antigen presentation. Methods We exposed primary human peripheral blood monocytes to V3 lipopeptides using a liposome delivery system followed by a superantigen-mediated antigen presentation system. We then evaluated the changes in the T-cell transcriptional profile using oligonucleotide microarrays and performed Ingenuity Pathway Analysis (IPA and DAVID analysis. The results were validated using realtime PCR, FACS, Western blotting and immunofluorescence. Results Our results revealed that the most highly modulated transcripts could almost entirely be categorized as related to the cell cycle or transcriptional regulation. The most statistically significant enriched categories and networks identified by IPA were associated with cell cycle, gene expression, immune response, infection mechanisms, cellular growth, proliferation and antigen presentation. Canonical pathways involved in energy and cell cycle regulation, and in the co-activation of T cells were also enriched. Conclusions Taken together, these results document a distinct transcriptional profile invoked by the HIV-1/V3 epitope. These data could be invaluable to determine the underlying mechanism by which HIV-1 epitopes interfere with uninfected CD4+ T-cell function causing hyper proliferation and AICD.

  20. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen

    Directory of Open Access Journals (Sweden)

    Saluja SS

    2014-11-01

    Full Text Available Sandeep S Saluja,1 Douglas J Hanlon,1 Fiona A Sharp,2 Enping Hong,2 David Khalil,1 Eve Robinson,1 Robert Tigelaar,1 Tarek M Fahmy,2,3 Richard L Edelson1 1Department of Dermatology, Yale University School of Medicine, 2Department of Biomedical Engineering, Yale University, 3Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA Abstract: Targeting antigen to dendritic cells (DCs is a powerful and novel strategy for vaccination. Priming or loading DCs with antigen controls whether subsequent immunity will develop and hence whether effective vaccination can be achieved. The goal of our present work was to increase the potency of DC-based antitumor vaccines by overcoming inherent limitations associated with antigen stability and cross-presentation. Nanoparticles prepared from the biodegradable polymer poly(lactic-co-glycolic acid have been extensively used in clinical settings for drug delivery and are currently the subject of intensive investigation as antigen delivery vehicles for vaccine applications. Here we describe a nanoparticulate delivery system with the ability to simultaneously carry a high density of protein-based antigen while displaying a DC targeting ligand on its surface. Utilizing a targeting motif specific for the DC-associated surface ligand DEC-205, we show that targeted nanoparticles encapsulating a MART-127–35 peptide are both internalized and cross-presented with significantly higher efficiency than isotype control-coated nanoparticles in human cells. In addition, the DEC-205-labeled nanoparticles rapidly escape from the DC endosomal compartment and do not colocalize with markers of early (EEA-1 or late endosome/lysosome (LAMP-1. This indicates that encapsulated antigens delivered by nanoparticles may have direct access to the class I cytoplasmic major histocompatibility complex loading machinery, overcoming the need for “classical” cross-presentation and facilitating heightened DC

  1. Mitochondrial H2O2 in Lung Antigen-Presenting Cells Blocks NF-κB Activation to Prevent Unwarranted Immune Activation

    Directory of Open Access Journals (Sweden)

    Anupriya Khare

    2016-05-01

    Full Text Available Inhalation of environmental antigens such as allergens does not always induce inflammation in the respiratory tract. While antigen-presenting cells (APCs, including dendritic cells and macrophages, take up inhaled antigens, the cell-intrinsic molecular mechanisms that prevent an inflammatory response during this process, such as activation of the transcription factor NF-κB, are not well understood. Here, we show that the nuclear receptor PPARγ plays a critical role in blocking NF-κB activation in response to inhaled antigens to preserve immune tolerance. Tolerance induction promoted mitochondrial respiration, generation of H2O2, and suppression of NF-κB activation in WT, but not PPARγ-deficient, APCs. Forced restoration of H2O2 in PPARγ-deficient cells suppressed IκBα degradation and NF-κB activation. Conversely, scavenging reactive oxygen species from mitochondria promoted IκBα degradation with loss of regulatory and promotion of inflammatory T cell responses in vivo. Thus, communication between PPARγ and the mitochondria maintains immune quiescence in the airways.

  2. Autophagy and ATP-induced anti-apoptosis in antigen presenting cells (APC) follows the cytokine storm in patients after major trauma

    OpenAIRE

    Schneider, E Marion; Flacke, Sarah; Liu, Fengguang; Lorenz, Myriam R.; Schilling, Patricia; Nass, Max E.; Foehr, Karl J.; Huber-Lang, Markus; Weiss, Manfred E.

    2011-01-01

    Severe trauma and the systemic inflammatory response syndrome (SIRS) occur as a result of a cytokine storm which is in part due to ATP released from damaged tissue. This pathology also leads to increased numbers of immature antigen presenting cells (APC) sharing properties of dendritic cells (DC) or macrophages (MΦ). The occurrence of immature APC appears to coincide with the reactivation of herpes virus infections such as Epstein Barr virus (EBV). The aim of this study was the comparative an...

  3. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation.

    Science.gov (United States)

    Fink, Lisbeth N; Zeuthen, Louise H; Ferlazzo, Guido; Frøkiaer, Hanne

    2007-12-01

    The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However, in vitro assessment of the immunomodulatory effects of distinct strains may depend strongly on the cell type used as a model. To select the most appropriate model for screening of beneficial bacteria in human cells, the response to strains of intestinal bacteria of three types of antigen-presenting cells (APC) was compared; blood myeloid dendritic cells (DC), monocyte-derived DC and monocytes, and the effector response of natural killer cells and naïve T cells was characterized. Maturation induced by gut-derived bacteria differed between APC, with blood DC and monocytes responding with the production of IL-6 and tumour necrosis factor-alpha to bacteria, which elicited mainly IL-10 in monocyte-derived DC. In contrast, comparable IFN-gamma production patterns were found in both natural killer cells and T cells induced by all bacteria-matured APC. An inhibitory effect of certain strains on this IFN-gamma production was also mediated by all types of APC. The most potent responses were induced by monocyte-derived DC, which thus constitute a sensitive screening model. PMID:17903206

  4. Differential presentation of endogenous and exogenous hepatitis B surface antigens influences priming of CD8(+) T cells in an epitope-specific manner.

    Science.gov (United States)

    Riedl, Petra; Reiser, Michael; Stifter, Katja; Krieger, Jana; Schirmbeck, Reinhold

    2014-07-01

    Little is known about whether presentation of endogenous and exogenous hepatitis B virus (HBV) surface antigens on APCs targeted by vaccination and/or virus-harboring hepatocytes influences de novo priming of CD8(+) T cells. We showed that surface antigen-expressing transfectants exclusively display a K(b) /S190 epitope, whereas cells pulsed with recombinant surface particles (rSPs) exclusively present a K(b) /S208 epitope to CD8(+) T cells. The differential presentation of these epitopes largely reflects the selective, but not exclusive, priming of K(b) /S190- and K(b) /S208-specific T cells in C57BL/6 mice by endogenous/DNA- or exogenous/protein-based vaccines, respectively. Silencing the K(b) /S190 epitope (K(b) /S190V194F ) in antigen-expressing vectors rescued the presentation of the K(b) /S208 epitope in stable transfectants and significantly enhanced priming of K(b) /S208-specific T cells in C57BL/6 mice. A K(b) /S190-mediated immunodominance operating in surface antigen-expressing cells, but not in rSP-pulsed cells, led to an efficient suppression in the presentation of the K(b) /S208 epitope and a consequent decrease in the priming of K(b) /S208-specific T cells. This K(b) /S190-mediated immunodominance also operated in 1.4HBV-S(mut) transgenic (tg) hepatocytes selectively expressing endogenous surface antigens and allowed priming of K(b) /S208- but not K(b) /S190-specific T cells in 1.4HBV-S(mut) tg mice. However, IFN-γ(+) K(b) /S208-specific T cells could not inhibit HBV replication in the liver of 1.4HBV-S(mut) tg mice. These results have practical implications for the design of T-cell-stimulating therapeutic vaccines. PMID:24723392

  5. Availability of 25-hydroxyvitamin D3 to antigen presenting cells controls the balance between regulatory and inflammatory T cell responses

    OpenAIRE

    Jeffery, Louisa E.; Wood, Alice M; Qureshi, Omar S.; Hou, Tie Zheng; Gardner, David; Briggs, Zoe; Kaur, Satdip; Raza, Karim; Sansom, David M

    2012-01-01

    1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, exerts potent effects on several tissues including cells of the immune system, where it affects T cell activation, differentiation and migration. The circulating, inactive form of vitamin D, 25(OH)D3, is generally used as an indication of “vitamin D status”. However, utilization of this precursor depends on its uptake by cells and subsequent conversion by the enzyme 25(OH)D3-1α-hydroxylase (CYP27B1) into active 1,25(OH)2D3....

  6. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Iris J Gonzalez-Leal

    2014-09-01

    Full Text Available Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb and L (Ctsl play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC and macrophages (BMM from Ctsb-/- and Ctsl-/- mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb-/- BMDC express higher levels of MHC class II molecules than wild-type (WT and Ctsl-/- BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb-/- mice significantly up-regulated the levels of interleukin 12 (IL-12 expression, a key Th1-inducing cytokine. These findings indicate that Ctsb-/- BMDC display more pro-Th1 properties than their WT and Ctsl-/- counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression.

  7. Inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers

    International Nuclear Information System (INIS)

    Exposing skin to UVB (280-320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase, which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosomes treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320-400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function

  8. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  9. Turnover of Ia-peptide complexes is facilitated in viable antigen-presenting cells: biosynthetic turnover of Ia vs. peptide exchange.

    OpenAIRE

    Harding, C V; Roof, R W; Unanue, E R

    1989-01-01

    Macrophages and B cells process antigens to produce antigenic peptides that associate with class II major histocompatibility complex molecules (e.g., Ia molecules); these Ia-peptide complexes are recognized by CD4+ T lymphocytes. Processing of the antigen hen egg white lysozyme was inhibited by cycloheximide in peritoneal exudate cells (PECs, largely macrophages), but not in TA3 B-lymphoma cells. The uptake and metabolism of hen egg white lysozyme was largely intact in cycloheximide-treated P...

  10. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway

    OpenAIRE

    Tundup, Smanla; Srivastava, Leena; Norberg, Thomas; Watford, Wendy; Harn, Donald

    2015-01-01

    The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewis(x) trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NF kappa B activation in a TLR4 dependent mechanism. However, ...

  11. Human cytomegalovirus pp65- and immediate early 1 antigen-specific HLA class I-restricted cytotoxic T cell responses induced by cross-presentation of viral antigens.

    Science.gov (United States)

    Tabi, Z; Moutaftsi, M; Borysiewicz, L K

    2001-05-01

    Dendritic cells (DCs) play a pivotal role in the development of anti-viral CD8(+) CTL responses. This is straightforward if they are directly infected with virus, but is less clear in response to viruses that cannot productively infect DCS: Human CMV (HCMV) shows strain-specific cell tropism: fibroblast (Fb)-adapted laboratory strains (AD169) and recent clinical isolates do not infect DCs, whereas endothelial cell-adapted strains (TB40/E) result in productive lytic DC infection. However, we show here that uninfected DCs induce CD8(+) T cell cytotoxicity and IFN-gamma production against HCMV pp65 and immediate early 1 Ags following in vitro coculture with HCMV-AD169-infected Fbs, regardless of the HLA type of these FBS: CD8(+) T cell stimulation was inhibited by pretreatment of DCs with cytochalasin B or brefeldin A, indicating a phagosome/endosome to cytosol pathway. HCMV-infected Fbs were not apoptotic as measured by annexin V binding, and induction of apoptosis of infected Fbs in vitro did not augment CTL induction by DCs, suggesting a mechanism other than apoptosis in the initiation of cross-presentation. Furthermore, HCMV-infected Fbs provided a maturation signal for immature DCs during coculture, as evidenced by increased CD83 and HLA class II expression. Cross-presentation of HCMV Ags by host DCs enables these professional APCs to bypass some of the evasion mechanisms HCMV has developed to avoid T cell recognition. It may also serve to explain the presence of immediate early 1 Ag-specific CTLs in the face of pp65-induced inhibition of Ag presentation at the level of the infected cell. PMID:11313411

  12. Effects of low dose X-ray irradiation on antigen presentation and IL-12 secretion in human dendritic cells in vitro

    International Nuclear Information System (INIS)

    Objective: To explore the effects of low dose X-ray irradiation on the ability of antigen presentation and IL-12 secretion in human dendritic cells that had been cultured for different time in vitro. Methods: The human peripheral blood mononuclear cells (PBMC) were collected and differentiated to dendritic cells (DCs) by rhGM-CSF and rhIL-4 treatment in vitro. The DCs were divided into 3 groups, group A: DCs were cultured for 2 d and then irradiated with 0.05, 0.1, 0.2 and 0.5 Gy X-rays; group B: DCs were cultured for 6 d and then irradiated as above; group C:DCs were cultured without irradiation.At 8 d of cell culture, the DCs were applied to activate T cells and CCK-8 was used to detect MLR (mixed lymphocyte reaction), and the antigen presentation ability of DCs was evaluated. MTT assay was also used to test the cell-killing effect of the activated T-cells on A549 cells. IL-12 in the culture medium of DCs was detected by ELISA. Results: After irradiation with 0.2 and 0.5 Gy X-rays, the antigen presentation ability of DCs was decreased in group A (t=2.79 and 3.71, P<0.05), but significantly increased in group B (t=3.60 and 3.11, P<0.05). The ability of the T cell activation was detected and the proliferation of A549 cells was slightly inhibited by the DCs in group A (t=2.89 and 2.91, P<0.05), but was obviously inhibited by the DCs in group B (t=2.91 and 2.82, P<0.05). Meanwhile,the level of IL-12 was dramatically decreased in group A (t=4.44 and 6.93, P<0.05), but was increased in group B (t=3.51 and 4.12, P<0.05). Conclusions: The abilities of antigen presentation and proliferation inhibition of DCs could be down-regulated by low dose (<0.5 Gy) of X-ray irradiation at the early stage of DCs, but was up-regulated at the late stage of DCs culture. (authors)

  13. Enhancement in number and function of antigen-presenting cells in the lymphatic tissue of rats after in vivo administration of diphenylhydantoin (DPH).

    Science.gov (United States)

    Petrasch, S; Wacker, H H; Zou, P; Bechtold, D; Brittinger, G

    1989-01-01

    We present a monoclonal IgG1 antibody, KiMy1R, which is specific for macrophages and their derivatives in the lymphatic tissue of the rat, and evaluate the distribution of subsets of mononuclear cells in popliteal and para-aortal lymph nodes of Wistar rats after injection of 50 mg DPH into the hindpads. Compared with resting lymphatic tissue and lymph nodes of animals treated with phenobarbital, DPH induced a significant increase (P less than 0.01) of the proportion of phagocytic cells. Furthermore, the soluble antigen alkaline phosphatase was traced after inoculation into the footpads of rats: in locoregional lymph nodes the percentage (mean 12.8/10(3] and the total number (mean 476 x 10(3) cells/lymph node) of cells with membrane-bound or intracytoplasmic alkaline phosphatase, as detected by a monoclonal anti-alkaline phosphatase antibody, were significantly higher (P less than 0.001) in animals pretreated with DPH than in rats pretreated with phenobarbital (mean 2.1/10(3); 31.2 x 10(3) cells/lymph node) and in untreated animals (mean 1.9/10(3); 4.1 x 10(3) cells/lymph node). If verified in humans, the effect of DPH in enhancing the number and function of macrophages and other antigen-presenting cells may exert favourable effects in patients with impairment of the mononuclear phagocytic system. Images Fig. 1 PMID:2805417

  14. Expression of Scavenger receptor A on antigen presenting cells is important for CD4+ T-cells proliferation in EAE mouse model

    Directory of Open Access Journals (Sweden)

    Levy-Barazany Hilit

    2012-06-01

    Full Text Available Abstract Background Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS characterized by damage to the neuronal myelin sheath. One of the key effectors for inflammatory injury is the antigen-presenting cell (APC. The class A scavenger receptor (SRA, constitutively expressed by APCs, such as macrophages and dendritic cells in peripheral tissues and the CNS, was shown to play a role in the phagocytosis of myelin; however, the role of SRA in the development of experimental autoimmune encephalomyelitis (EAE and autoimmune reaction in the periphery has not yet been studied. Methods We investigated EAE progression in wild-type (WT vs. SRA−/− mice using clinical score measurements and characterized CNS pathology using staining. Furthermore, we assessed SRA role in mediating anti myelin pro-inflammatory response in cell cultures. Results We discovered that EAE progression and CNS demyelination were significantly reduced in SRA−/− mice compared to WT mice. In addition, there was a reduction of infiltrating peripheral immune cells, such as T cells and macrophages, in the CNS lesion of SRA−/− mice, which was associated with reduced astrogliosis. Immunological assessment showed that SRA deficiency resulted in significant reduction of pro-inflammatory cytokines that play a major role in EAE progression, such as IL-2, IFN-gamma, IL-17 and IL-6. Furthermore, we discovered that SRA−/− APCs showed impairments in activation and in their ability to induce pro-inflammatory CD4+ T cell proliferation. Conclusion Expression of SRA on APCs is important for CD4+ T-cells proliferation in EAE mouse model. Further studies of SRA-mediated cellular pathways in APCs may offer useful insights into the development of MS and other autoimmune diseases, providing future avenues for therapeutic intervention.

  15. Lipid peroxidation causes endosomal antigen release for cross-presentation.

    Science.gov (United States)

    Dingjan, Ilse; Verboogen, Daniëlle Rj; Paardekooper, Laurent M; Revelo, Natalia H; Sittig, Simone P; Visser, Linda J; Mollard, Gabriele Fischer von; Henriet, Stefanie Sv; Figdor, Carl G; Ter Beest, Martin; van den Bogaart, Geert

    2016-01-01

    Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer. PMID:26907999

  16. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses

    OpenAIRE

    Wu, Fang; Wuensch, Sherry A.; Azadniv, Mitra; Ebrahimkhani, Mohammad R.; Crispe, I. Nicholas

    2009-01-01

    We aim to define the role of Kupffer cells in intrahepatic antigen presentation, using the selective delivery of antigen to Kupffer cells rather than other populations of liver antigen-presenting cells. To achieve this we developed a novel antigen delivery system that can target antigens to macrophages, based on a galactosylated low-density lipoprotein nano-scale platform. Antigen was delivered via the galactose particle receptor (GPr), internalized, degraded and presented to T cells. The con...

  17. Pharmacologic IKK/NF-κB inhibition causes antigen presenting cells to undergo TNFα dependent ROS-mediated programmed cell death

    Science.gov (United States)

    Tilstra, Jeremy S.; Gaddy, Daniel F.; Zhao, Jing; Davé, Shaival H.; Niedernhofer, Laura J.; Plevy, Scott E.; Robbins, Paul D.

    2014-01-01

    Monocyte-derived antigen presenting cells (APC) are central mediators of the innate and adaptive immune response in inflammatory diseases. As such, APC are appropriate targets for therapeutic intervention to ameliorate certain diseases. APC differentiation, activation and functions are regulated by the NF-κB family of transcription factors. Herein, we examined the effect of NF-κB inhibition, via suppression of the IκB Kinase (IKK) complex, on APC function. Murine bone marrow-derived macrophages and dendritic cells (DC), as well as macrophage and DC lines, underwent rapid programmed cell death (PCD) after treatment with several IKK/NF-κB inhibitors through a TNFα-dependent mechanism. PCD was induced proximally by reactive oxygen species (ROS) formation, which causes a loss of mitochondrial membrane potential and activation of a caspase signaling cascade. NF-κB-inhibition-induced PCD of APC may be a key mechanism through which therapeutic targeting of NF-κB reduces inflammatory pathologies.

  18. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice.

    Science.gov (United States)

    Sevilla, L M; Richter, S S; Miller, J

    2001-06-15

    MHC class II-restricted antigen presentation requires trafficking of newly synthesized class II-invariant chain complexes from the trans-Golgi network to endosomal, peptide-loading compartments. This transport is mediated by dileucine-like motifs within the cytosolic tail of the invariant chain. Although these signals have been well characterized, the cytosolic proteins that interact with these dileucine signals and mediate Golgi sorting and endosomal transport have not been identified. Recently, an adaptor complex, AP-3, has been identified that interacts with dileucine motifs and mediates endosomal/lysosomal transport in yeast, Drosophila, and mammals. In this report, we have assessed class II-invariant chain trafficking in a strain of mice (mocha) which lacks expression of AP-3. Our studies demonstrate that the lack of AP-3 does not affect the kinetics of invariant chain degradation, the route of class II-invariant chain transport, or the rate and extent of class II-peptide binding as assessed by the generation of SDS-stable dimers. The possible role of other known or unknown adaptor complexes in class II-invariant chain transport is discussed. PMID:11520080

  19. The role of FcRn in antigen presentation

    Directory of Open Access Journals (Sweden)

    Kristi eBaker

    2014-08-01

    Full Text Available Immunoglobulins are unique molecules capable of simultaneously recognizing a diverse array of antigens and themselves being recognized by a broad array of receptors. The abundance specifically of the IgG subclass and the variety of signaling receptors to which it binds render this an important immunomodulatory molecule. In addition to the classical Fcγ receptors (FcγR which bind IgG at the cell surface, the neonatal Fc receptor (FcRn is a lifelong resident of the endolysosomal system of most hematopoietic cells where it determines the intracellular fate of both IgG and IgG-containing immune complexes (IgG IC. Crosslinking of FcRn by multivalent IgG IC within antigen presenting cells such as dendritic cells (DC initiates specific mechanisms which result in trafficking of the antigen-bearing IgG IC into compartments from which the antigen can successfully be processed into peptide epitopes compatible with loading onto both MHC class I and II molecules. In turn, this enables the synchronous activation of both CD4+ and CD8+ T cell responses against the cognate antigen, thereby bridging the gap between the humoral and cellular branches of the adaptive immune response. Critically, FcRn-driven T cell priming is efficient at very low doses of antigen due to the exquisite sensitivity of the IgG-mediated antigen delivery system through which it operates. FcRn-mediated antigen presentation has important consequences in tissue compartments replete with IgG and serves not only to determine homeostatic immune activation at a variety of sites but also to induce inflammatory responses upon exposure to antigens perceived as foreign. Therapeutically targeting the pathway by which FcRn enables T cell activation in response to IgG IC is thus a highly attractive prospect not only for the treatment of diseases that are driven by immune complexes but also for manipulating local immune responses against defined antigens such as those present during infections and

  20. Differential Impact of PD-1 and/or Interleukin-10 Blockade on HIV-1-Specific CD4 T Cell and Antigen-Presenting Cell Functions

    Science.gov (United States)

    Porichis, Filippos; Hart, Meghan G.; Zupkosky, Jennifer; Barblu, Lucie; Kwon, Douglas S.; McMullen, Ashley; Brennan, Thomas; Ahmed, Rafi; Freeman, Gordon J.; Kavanagh, Daniel G.

    2014-01-01

    that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection. PMID:24352453

  1. Dendritic Cell Migration and Antigen Presentation Are Coordinated by the Opposing Functions of the Tetraspanins CD82 and CD37.

    Science.gov (United States)

    Jones, Eleanor L; Wee, Janet L; Demaria, Maria C; Blakeley, Jessica; Ho, Po Ki; Vega-Ramos, Javier; Villadangos, Jose A; van Spriel, Annemiek B; Hickey, Michael J; Hämmerling, Günther J; Wright, Mark D

    2016-02-01

    This study supports a new concept where the opposing functions of the tetraspanins CD37 and CD82 may coordinate changes in migration and Ag presentation during dendritic cell (DC) activation. We have previously published that CD37 is downregulated upon monocyte-derived DC activation, promotes migration of both skin and bone marrow-derived dendritic cells (BMDCs), and restrains Ag presentation in splenic and BMDCs. In this article, we show that CD82, the closest phylogenetic relative to CD37, appears to have opposing functions. CD82 is upregulated upon activation of BMDCs and monocyte-derived DCs, restrains migration of skin and BMDCs, supports MHC class II maturation, and promotes stable interactions between T cells and splenic DCs or BMDCs. The underlying mechanism involves the rearrangement of the cytoskeleton via a differential activation of small GTPases. Both CD37(-/-) and CD82(-/-) BMDCs lack cellular projections, but where CD37(-/-) BMDCs spread poorly on fibronectin, CD82(-/-) BMDCs are large and spread to a greater extent than wild-type BMDCs. At the molecular level, CD82 is a negative regulator of RhoA, whereas CD37 promotes activation of Rac-1; both tetraspanins negatively regulate Cdc42. Thus, this study identifies a key aspect of DC biology: an unactivated BMDC is CD37(hi)CD82(lo), resulting in a highly motile cell with a limited ability to activate naive T cells. By contrast, a late activated BMDC is CD37(lo)CD82(hi), and thus has modified its migratory, cytoskeletal, and Ag presentation machinery to become a cell superbly adapted to activating naive T cells. PMID:26729805

  2. Candida soluble cell wall β-glucan facilitates ovalbumin-induced allergic airway inflammation in mice: Possible role of antigen-presenting cells

    Directory of Open Access Journals (Sweden)

    Tamura Hiroshi

    2009-07-01

    Full Text Available Abstract Background Although fungi have been implicated as initiating/deteriorating factors for allergic asthma, their contributing components have not been fully elucidated. We previously isolated soluble β-glucan from Candida albicans (CSBG (Ohno et al., 2007. In the present study, the effects of CSBG exposure on airway immunopathology in the presence or absence of other immunogenic allergen was investigated in vivo, and their cellular mechanisms were analyzed both in vivo and in vitro. Methods In vivo, ICR mice were divided into 4 experimental groups: vehicle, CSBG (25 μg/animal, ovalbumin (OVA: 2 μg/animal, and CSBG + OVA were repeatedly administered intratracheally. The bronchoalveolar lavage cellular profile, lung histology, levels of cytokines and chemokines in the lung homogenates, the expression pattern of antigen-presenting cell (APC-related molecules in the lung digests, and serum immunoglobulin values were studied. In vitro, the impacts of CSBG (0–12.5 μg/ml on the phenotype and function of immune cells such as splenocytes and bone marrow-derived dendritic cells (BMDCs were evaluated in terms of cell proliferation, the surface expression of APC-related molecules, and OVA-mediated T-cell proliferating activity. Results In vivo, repeated pulmonary exposure to CSBG induced neutrophilic airway inflammation in the absence of OVA, and markedly exacerbated OVA-related eosinophilic airway inflammation with mucus metaplasia in mice, which was concomitant with the amplified lung expression of Th2 cytokines and IL-17A and chemokines related to allergic response. Exposure to CSBG plus OVA increased the number of cells bearing MHC class II with or without CD80 in the lung compared to that of others. In vitro, CSBG significantly augmented splenocyte proliferation in the presence or absence of OVA. Further, CSBG increased the expression of APC-related molecules such as CD80, CD86, and DEC205 on BMDCs and amplified OVA-mediated T-cell

  3. Diversity of natural self-derived ligands presented by different HLA class I molecules in transporter antigen processing-deficient cells.

    Directory of Open Access Journals (Sweden)

    Elena Lorente

    Full Text Available The transporter associated with antigen processing (TAP translocates the cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen where they complex with nascent human leukocyte antigen (HLA class I molecules. Non-functional TAP complexes and viral or tumoral blocking of these transporters leads to reduced HLA class I surface expression and a drastic change in the available peptide repertoire. Using mass spectrometry to analyze complex human leukocyte antigen HLA-bound peptide pools isolated from large numbers of TAP-deficient cells, we identified 334 TAP-independent ligands naturally presented by four different HLA-A, -B, and -C class I molecules with very different TAP dependency from the same cell line. The repertoire of TAP-independent peptides examined favored increased peptide lengths and a lack of strict binding motifs for all four HLA class I molecules studied. The TAP-independent peptidome arose from 182 parental proteins, the majority of which yielded one HLA ligand. In contrast, TAP-independent antigen processing of very few cellular proteins generated multiple HLA ligands. Comparison between TAP-independent peptidome and proteome of several subcellular locations suggests that the secretory vesicle-like organelles could be a relevant source of parental proteins for TAP-independent HLA ligands. Finally, a predominant endoproteolytic peptidase specificity for Arg/Lys or Leu/Phe residues in the P(1 position of the scissile bond was found for the TAP-independent ligands. These data draw a new and intricate picture of TAP-independent pathways.

  4. Evolutionary and functional relationships of B cells from fish and mammals: insights into their novel roles in phagocytosis and presentation of particulate antigen.

    Science.gov (United States)

    Sunyer, J Oriol

    2012-06-01

    been shown that phagocytic B-1 B cells have a potent ability to present particulate antigen to CD4+ T cells. Thus, studies carried out originally on fish B cells have lead to the discovery of new innate and adaptive roles of B cells in mammals. This review will concentrate on the evolutionary and functional relationships of fish and mammalian B cells, focusing mainly on the newly discovered roles of these cells in phagocytosis, intracellular killing and presentation of particulate antigen. PMID:22394174

  5. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    Science.gov (United States)

    Cong, Yu; McArthur, Monica A; Cohen, Melanie; Jahrling, Peter B; Janosko, Krisztina B; Josleyn, Nicole; Kang, Kai; Zhang, Tengfei; Holbrook, Michael R

    2016-05-01

    Humans infected with yellow fever virus (YFV), a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM) and dendritic cells (MoDC) from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease. PMID:27191161

  6. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    International Nuclear Information System (INIS)

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine

  7. A Brucella spp. Protease Inhibitor Limits Antigen Lysosomal Proteolysis, Increases Cross-Presentation, and Enhances CD8+ T Cell Responses.

    Science.gov (United States)

    Coria, Lorena M; Ibañez, Andrés E; Tkach, Mercedes; Sabbione, Florencia; Bruno, Laura; Carabajal, Marianela V; Berguer, Paula M; Barrionuevo, Paula; Schillaci, Roxana; Trevani, Analía S; Giambartolomei, Guillermo H; Pasquevich, Karina A; Cassataro, Juliana

    2016-05-15

    In this study, we demonstrate that the unlipidated (U) outer membrane protein (Omp) 19 from Brucella spp. is a competitive inhibitor of human cathepsin L. U-Omp19 inhibits lysosome cathepsins and APC-derived microsome activity in vitro and partially inhibits lysosomal cathepsin L activity within live APCs. Codelivery of U-Omp19 with the Ag can reduce intracellular Ag digestion and increases Ag half-life in dendritic cells (DCs). U-Omp19 retains the Ag in Lamp-2(+) compartments after its internalization and promotes a sustained expression of MHC class I/peptide complexes in the cell surface of DCs. Consequently, U-Omp19 enhances Ag cross-presentation by DCs to CD8(+) T cells. U-Omp19 s.c. delivery induces the recruitment of CD11c(+)CD8α(+) DCs and monocytes to lymph nodes whereas it partially limits in vivo Ag proteolysis inside DCs. Accordingly, this protein is able to induce CD8(+) T cell responses in vivo against codelivered Ag. Antitumor responses were elicited after U-Omp19 coadministration, increasing survival of mice in a murine melanoma challenge model. Collectively, these results indicate that a cysteine protease inhibitor from bacterial origin could be a suitable component of vaccine formulations against tumors. PMID:27084100

  8. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    A limited intralysosomal proteolytic degradation is probably a key event in the accessory cell processing of large protein antigens before their presentation to T cells. With the aid of highly specific inhibitors of proteinases, we have examined the role of proteolysis in the presentation of anti...... inhibitor. Another inhibitor, pepstatin A, which selectively blocks aspartic proteinases, did not block the presentation of dinitrophenyl-poly-L-lysine. The results identify cysteine proteinases, probably lysosomal, as one of the groups of enzymes involved in antigen processing....

  9. Mitomycin C-treated antigen-presenting cells as a tool for control of allograft rejection and autoimmunity: from bench to bedside.

    Science.gov (United States)

    Terness, Peter; Kleist, Christian; Simon, Helmut; Sandra-Petrescu, Flavius; Ehser, Sandra; Chuang, Jing-Jing; Mohr, Elisabeth; Jiga, Lucian; Greil, Johann; Opelz, Gerhard

    2009-07-01

    Cells have been previously used in experimental models for tolerance induction in organ transplantation and autoimmune diseases. One problem with the therapeutic use of cells is standardization of their preparation. We discuss an immunosuppressive strategy relying on cells irreversibly transformed by a chemotherapeutic drug. Dendritic cells (DCs) of transplant donors pretreated with mitomycin C (MMC) strongly prolonged rat heart allograft survival when injected into recipients before transplantation. Likewise, MMC-DCs loaded with myelin basic protein suppressed autoreactive T cells of MS patients in vitro and prevented experimental autoimmune encephalitis in mice. Comprehensive gene microarray analysis identified genes that possibly make up the suppressive phenotype, comprising glucocorticoid leucine zipper, immunoglobulin-like transcript 3, CD80, CD83, CD86, and apoptotic genes. Based on these findings, a hypothetical model of tolerance induction by MMC-treated DCs is delineated. Finally, we describe the first clinical application of MMC-treated monocyte-enriched donor cells in an attempt to control the rejection of a haploidentical stem cell transplant in a sensitized recipient and discuss the pros and cons of using MMC-treated antigen-presenting cells for tolerance induction. Although many questions remain, MMC-treated cells are a promising clinical tool for controlling allograft rejection and deleterious immune responses in autoimmune diseases. PMID:19393276

  10. Alterations in the antigen processing-presenting machinery of transformed plasma cells are associated with reduced recognition by CD8+ T cells and characterize the progression of MGUS to multiple myeloma

    OpenAIRE

    Racanelli, Vito; Leone, Patrizia; Frassanito, Maria Antonia; Brunetti, Claudia; Perosa, Federico; Ferrone, Soldano; Dammacco, Franco

    2010-01-01

    We hypothesized that progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) reflects the escape of transformed plasma cells from T-cell recognition because of impaired antigen processing-presenting machinery (APM). We studied plasma cells and CD8+ T cells from bone marrow of 20 MGUS patients, 20 MM patients, and 10 control patients. Immunofluorescence and flow cytometry revealed significantly different patterns of APM component expression in plasma c...

  11. Endogenous antigen presentation by autoantigen-transfected Epstein-Barr virus-lymphoblastoid cells. I. Generation of human thyroid peroxidase-reactive T cells and their T cell receptor repertoire.

    OpenAIRE

    Martin, A; Magnusson, R P; Kendler, D. L.; Concepcion, E; Ben-Nun, A; Davies, T. F.

    1993-01-01

    To develop a model for endogenous thyroid autoantigen presentation, we transfected EBV-transformed B lymphoblastoid cell lines (EBV-LCL), established from patients with autoimmune thyroid disease and normal controls, with cDNA for the human thyroid autoantigen thyroid peroxidase (hTPO). hTPO-antigen presentation to patient peripheral blood T cells was demonstrated after stimulation in vitro for 7 d with irradiated hTPO-transfected or untransfected autologous EBV-LCL. Anti-hTPO-reactive T cell...

  12. Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors

    OpenAIRE

    Fiona Long Yan Fong; Kirjavainen, Pirkka V.; Hani El-Nezami

    2016-01-01

    Lactobacillus rhamnosus GG (LGG) cells have been shown to promote type-1 immune responsiveness; however knowledge of immunomodulation of soluble factors secreted by LGG is limited. This is the first study to investigate whether LGG soluble factors promote a comparable immune responsiveness as the bacterial cells. Both treatments − LGG conditioned medium with (CM + LGG) or without (CM) LGG cells, in this study increased expression of several toll-like receptors (TLRs) in all studied cell types...

  13. IRF1 and NF-kB Restore MHC Class I-Restricted Tumor Antigen Processing and Presentation to Cytotoxic T Cells in Aggressive Neuroblastoma

    Science.gov (United States)

    Cifaldi, Loredana; Antonucci, Chiara; Citti, Arianna; Boldrini, Renata; Pezzullo, Marco; Castellano, Aurora; Russo, Vincenzo; van der Bruggen, Pierre; Giacomini, Patrizio; Locatelli, Franco; Fruci, Doriana

    2012-01-01

    Neuroblastoma (NB), the most common solid extracranial cancer of childhood, displays a remarkable low expression of Major Histocompatibility Complex class I (MHC-I) and Antigen Processing Machinery (APM) molecules, including Endoplasmic Reticulum (ER) Aminopeptidases, and poorly presents tumor antigens to Cytotoxic T Lymphocytes (CTL). We have previously shown that this is due to low expression of the transcription factor NF-kB p65. Herein, we show that not only NF-kB p65, but also the Interferon Regulatory Factor 1 (IRF1) and certain APM components are low in a subset of NB cell lines with aggressive features. Whereas single transfection with either IRF1, or NF-kB p65 is ineffective, co-transfection results in strong synergy and substantial reversion of the MHC-I/APM-low phenotype in all NB cell lines tested. Accordingly, linked immunohistochemistry expression patterns between nuclear IRF1 and p65 on the one hand, and MHC-I on the other hand, were observed in vivo. Absence and presence of the three molecules neatly segregated between high-grade and low-grade NB, respectively. Finally, APM reconstitution by double IRF1/p65 transfection rendered a NB cell line susceptible to killing by anti MAGE-A3 CTLs, lytic efficiency comparable to those seen upon IFN-γ treatment. This is the first demonstration that a complex immune escape phenotype can be rescued by reconstitution of a limited number of master regulatory genes. These findings provide molecular insight into defective MHC-I expression in NB cells and provide the rational for T cell-based immunotherapy in NB variants refractory to conventional therapy. PMID:23071666

  14. Antigen-presenting cells represent targets for R5 HIV-1 infection in the first trimester pregnancy uterine mucosa.

    Directory of Open Access Journals (Sweden)

    Romain Marlin

    Full Text Available BACKGROUND: During the first trimester of pregnancy, HIV-1 mother-to-child transmission is relatively rare despite the permissivity of placental cells to cell-to-cell HIV-1 infection. The placenta interacts directly with maternal uterine cells (decidual cells but the physiological role of the decidua in the control of HIV-1 transmission and whether decidua could be a source of infected cells is unknown. METHODOLOGY/PRINCIPAL FINDINGS: To answer to this question, decidual mononuclear cells were exposed to HIV-1 in vitro. Decidual cells were shown to be more susceptible to infection by an R5 HIV-1, as compared to an X4 HIV-1. Infected cells were identified by flow cytometry analysis. The results showed that CD14(+ cells were the main targets of HIV-1 infection in the decidua. These infected CD14(+ cells expressed DC-SIGN, CD11b, CD11c, the Fc gamma receptor CD16, CD32 and CD64, classical MHC class-I and class-II and maturation and activation molecules CD83, CD80 and CD86. The permissivity of decidual tissue was also evaluated by histoculture. Decidual tissue was not infected by X4 HIV-1 but was permissive to R5 HIV-1. Different profiles of infection were observed depending on tissue localization. CONCLUSIONS/SIGNIFICANCE: The presence of HIV-1 target cells in the decidua in vitro and the low rate of in utero mother-to-child transmission during the first trimester of pregnancy suggest that a natural control occurs in vivo limiting cell-to-cell infection of the placenta and consequently infection of the fetus.

  15. Runx1 Regulates Myeloid Precursor Differentiation Into Osteoclasts Without Affecting Differentiation Into Antigen Presenting or Phagocytic Cells in Both Males and Females.

    Science.gov (United States)

    Paglia, David N; Yang, Xiaochuan; Kalinowski, Judith; Jastrzebski, Sandra; Drissi, Hicham; Lorenzo, Joseph

    2016-08-01

    Runt-related transcription factor 1 (Runx1), a master regulator of hematopoiesis, is expressed in preosteoclasts. Previously we evaluated the bone phenotype of CD11b-Cre Runx1(fl/fl) mice and demonstrated enhanced osteoclasts and decreased bone mass in males. However, an assessment of the effects of Runx1 deletion in female osteoclast precursors was impossible with this model. Moreover, the role of Runx1 in myeloid cell differentiation into other lineages is unknown. Therefore, we generated LysM-Cre Runx1(fl/fl) mice, which delete Runx1 equally (∼80% deletion) in myeloid precursor cells from both sexes and examined the capacity of these cells to differentiate into osteoclasts and phagocytic and antigen-presenting cells. Both female and male LysM-Cre Runx1(fl/fl) mice had decreased trabecular bone mass (72% decrease in bone volume fraction) and increased osteoclast number (2-3 times) (P nuclear factor-κB ligand to stimulate osteoclast formation and fusion in female and male mice without affecting other myeloid cell fates. In turn, increased osteoclast activity in LysM-Cre Runx1(fl/fl) mice likely contributed to a decrease in bone mass. These dramatic effects were not due to increased osteoclast precursors in the deleted mutants and argue that inhibition of Runx1 in multipotential myeloid precursor cells is important for osteoclast formation and function. PMID:27267711

  16. Antigen presentation by liposomes bearing class II MHC and membrane IL-1.

    OpenAIRE

    Bakouche, O; LACHMAN, L.B.

    1990-01-01

    Liposomes containing membrane IL-1, Iak, and the antigen conalbumin were evaluated as "synthetic antigen presenting cells." The role of these three molecules in macrophage-T cell interaction was studied by testing their ability to induce the proliferation of a T-cell clone specific to conalbumin (the D10 cell line) or immune spleen cells sensitized three times in vivo with conalbumin. In the latter case, splenic macrophages were eliminated by adherence and a lysomotropic agent. The antigen co...

  17. Cross-Presentation of the Oncofetal Tumor Antigen 5T4 from Irradiated Prostate Cancer Cells--A Key Role for Heat-Shock Protein 70 and Receptor CD91.

    Science.gov (United States)

    Salimu, Josephine; Spary, Lisa K; Al-Taei, Saly; Clayton, Aled; Mason, Malcolm D; Staffurth, John; Tabi, Zsuzsanna

    2015-06-01

    Immune responses contribute to the success of radiotherapy of solid tumors; however, the mechanism of triggering CD8(+) T-cell responses is poorly understood. Antigen cross-presentation from tumor cells by dendritic cells (DC) is a likely dominant mechanism to achieve CD8(+) T-cell stimulation. We established a cross-presentation model in which DCs present a naturally expressed oncofetal tumor antigen (5T4) from irradiated DU145 prostate cancer cells to 5T4-specific T cells. The aim was to establish which immunogenic signals are important in radiation-induced cross-presentation. Radiation (12 Gy) caused G2-M cell-cycle arrest and cell death, increased cellular 5T4 levels, high-mobility protein group-B1 (HMGB1) release, and surface calreticulin and heat-shock protein-70 (Hsp70) expression in DU145 cells. DCs phagocytosed irradiated tumor cells efficiently, followed by upregulation of CD86 on phagocytic DCs. CD8(+) 5T4-specific T cells, stimulated with these DCs, proliferated and produced IFNγ. Inhibition of HMGB1 or the TRIF/MyD88 pathway only had a partial effect on T-cell stimulation. Unlike previous investigators, we found no evidence that DCs carrying Asp299Gly Toll-like receptor-4 (TLR4) single-nucleotide polymorphism had impaired ability to cross-present tumor antigen. However, pretreatment of tumor cells with Hsp70 inhibitors resulted in a highly statistically significant and robust prevention of antigen cross-presentation and CD86 upregulation on DCs cocultured with irradiated tumor cells. Blocking the Hsp70 receptor CD91 also abolished cross-presentation. Together, the results from our study demonstrate that irradiation induces immunologically relevant changes in tumor cells, which can trigger CD8(+) T-cell responses via a predominantly Hsp70-dependent antigen cross-presentation process. PMID:25678582

  18. Constitutive expression of a costimulatory ligand on antigen-presenting cells in the nervous system drives demyelinating disease

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Brisebois, Marcel; Tran, Elise;

    2003-01-01

    that transgenic mice constitutively expressing the costimulatory ligand B7.2/CD86 on microglia in the central nervous system (CNS) and on related cells in the proximal peripheral nervous tissue spontaneously develop autoimmune demyelinating disease. Disease-affected nervous tissue in transgenic mice showed...

  19. Freezing and thawing of murine bone marrow-derived dendritic cells does not later their immunophenotype and antigen presentation characteristics

    Czech Academy of Sciences Publication Activity Database

    Mendoza, Luis; Bubeník, Jan; Indrová, Marie; Bieblová, Jana; Vonka, V.; Šímová, Jana

    2002-01-01

    Roč. 48, č. 6 (2002), s. 242-245. ISSN 0015-5500 R&D Projects: GA MZd NC7148; GA ČR GA301/00/0114; GA ČR GA301/01/0985; GA AV ČR IAA7052002; GA AV ČR IAA5052203 Grant ostatní: Liga proti rakovině(CZ) - Institutional research plan: CEZ:AV0Z5052915 Keywords : dendritic cells * tumour lysate * DC priming Subject RIV: FD - Oncology ; Hematology Impact factor: 0.615, year: 2002

  20. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    Science.gov (United States)

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors. PMID:19052565

  1. Antigen-presenting cells exposed to Lactobacillus acidophilus NCFM, Bifidobacterium bifidum BI-98, and BI-504 reduce regulatory T cell activity

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Claesson, Mogens Helweg; Jensen, Simon Skjøde;

    2010-01-01

    enteroantigen-presenting cells (APC) and CD4(+)CD25(+) T-regulatory cells (Tregs) in splenocyte-T cell proliferation assays. METHODS:: Splenocytes exposed to enteroantigen +/- probiotics were used to stimulate cultured CD4(+)CD25(-) T cells to which titrated numbers of Tregs were added. Cytokine assays were...... performed by use of neutralizing antibodies and ELISA. RESULTS:: Exposure of APCs to enteroantigens and the series of probiotic strains mentioned above did not influence the stimulatory capacity of APCs on proliferative enteroantigen-specific T cells. However, exposure to B. bifidum BI-98, BI-504 and L....... acidophilus NCFM consistently reduced the suppressive activity of Tregs. The suppressive activity was analyzed using fractionated components of the probiotics, and showed that a component of the cell wall is responsible for the decreased Treg activity in the system. The probiotic-induced suppression of Treg...

  2. Soluble CD14 and CD83 from Human Neonatal Antigen-Presenting Cells Are Inducible by Commensal Bacteria and Suppress Allergen-Induced Human Neonatal Th2 Differentiation▿ †

    OpenAIRE

    Lundell, Anna-Carin; Andersson, Kerstin; Josefsson, Elisabet; Steinkasserer, Alexander; Rudin, Anna

    2007-01-01

    CD14 is expressed on the cell surface of various antigen-presenting cells, and CD83 is a maturation marker for dendritic cells (DC). CD14 and CD83 are also present as soluble proteins, and both have immunoregulatory functions. We examined whether neonatal cord blood monocytes or DC released soluble CD14 (sCD14) or sCD83 when exposed to the commensal intestinal bacteria Clostridium perfringens, Staphylococcus aureus, Lactobacillus rhamnosus, Escherichia coli, and Bacteroides fragilis. We found...

  3. Histocompatibility antigens on astrocytoma cells.

    OpenAIRE

    Hirschberg, H.; Endresen, L I; Wikeby, P

    1982-01-01

    Biopsies tumour cells from astrocytoma-bearing patients were grown in primary culture for 3-5 days. Both low and high grade tumours were represented in the study. The cultured cells could be shown to express the HLA-A and -B antigens using a multispecific allo-antiserum and a rabbit anti-beta-2 microglobulin antibody. The tumour cells were negative for the HLA-DR determinants when tested with either rabbit anti-Ia-like antisera or specific anti-HLA-DR allo-antisera. They also failed to stimul...

  4. Calcitonin Gene-Related Peptide-Exposed Endothelial Cells Bias Antigen Presentation to CD4+ T Cells toward a Th17 Response.

    Science.gov (United States)

    Ding, Wanhong; Stohl, Lori L; Xu, Linghui; Zhou, Xi K; Manni, Michela; Wagner, John A; Granstein, Richard D

    2016-03-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide with well-established immunomodulatory functions. CGRP-containing nerves innervate dermal blood vessels and lymph nodes. We examined whether CGRP regulates the outcome of Ag presentation by Langerhans cells (LCs) to T cells through actions on microvascular endothelial cells (ECs). Exposure of primary murine dermal microvascular ECs (pDMECs) to CGRP followed by coculture with LCs, responsive CD4(+) T cells and Ag resulted in increased production of IL-6 and IL-17A accompanied by inhibition of IFN-γ, IL-4, and IL-22 compared with wells containing pDMECs treated with medium alone. Physical contact between ECs and LCs or T cells was not required for this effect and, except for IL-4, we demonstrated that IL-6 production by CGRP-treated pDMECs was involved in these effects. CD4(+) cells expressing cytoplasmic IL-17A were increased, whereas cells expressing cytoplasmic IFN-γ or IL-4 were decreased by the presence of CGRP-treated pDMECs. In addition, the level of retinoic acid receptor-related orphan receptor γt mRNA was significantly increased, whereas T-bet and GATA3 expression was inhibited. Immunization at the site of intradermally administered CGRP led to a similar bias in CD4(+) T cells from draining lymph node cells toward IL-17A and away from IFN-γ. Actions of nerve-derived CGRP on ECs may have important regulatory effects on the outcome of Ag presentation with consequences for the expression of inflammatory skin disorders involving Th17 cells. PMID:26829986

  5. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure

    International Nuclear Information System (INIS)

    Silica inhalation results in chronic lung inflammation and fibrosis. While the role of the alveolar macrophage (AM) is considered key to the effects of silica on lung pathology, the etiology is not completely understood. Evidence suggests an increase in antigen presenting cell (APC) activity as a contributing factor to this process, as well as potential roles for both AM and interstitial macrophages (IM) in silicosis. In order to study the effects of crystalline silica on the APC activity of pulmonary macrophages, mice were exposed intranasally and changes in pulmonary macrophage populations were assessed using flow cytometry. Following intranasal instillation of silica, a significant increase in the APC activity of AM was observed, as well as a significant increase in a subset of IM expressing classic APC markers (MHC class II, CD11c). In addition, an in vitro system using bone marrow-derived macrophages (BMDM) was generated to assess the effects of silica on the APC activity of macrophages in vitro. Data using BMDM in the in vitro APC assay demonstrated a significant increase in APC activity following silica exposure, but not following exposure to saline or a control particle (TiO2). Using a combination of in vivo and in vitro experiments, the current study describes a significant increase in an interstitial macrophage subset with an APC phenotype, as well as an increase in the APC activity of both AM and BMDM, as a direct result of exposure to crystalline silica. These studies suggest a specific mechanism, macrophage subset activation, by which crystalline silica exposure results in chronic pulmonary inflammation and, eventually, fibrosis

  6. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    Full Text Available The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs. In addition, LNFPIII-NGC preferentially induced the production of Th2 "favoring" chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 "favoring" chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1-3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1-3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo

  7. Autoantibodies in autoimmune thyroid disease promote immune complex formation with self antigens and increase B cell and CD4+ T cell proliferation in response to self antigens

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Hegedüs, Laszlo; Leslie, Robert Graham Quinton

    2004-01-01

    B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto's thyroidi......B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto...

  8. Differential Impact of PD-1 and/or Interleukin-10 Blockade on HIV-1-Specific CD4 T Cell and Antigen-Presenting Cell Functions

    OpenAIRE

    Porichis, Filippos; Hart, Meghan G.; Zupkosky, Jennifer; Barblu, Lucie; Kwon, Douglas S; McMullen, Ashley; Brennan, Thomas; Ahmed, Rafi; Freeman, Gordon J.; Kavanagh, Daniel G.; Kaufmann, Daniel E.

    2014-01-01

    Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be bet...

  9. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [35S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO4/PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  10. Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis.

    Directory of Open Access Journals (Sweden)

    Qinghong Wang

    Full Text Available IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg efficiently induces IL-23 secretion in a mannose receptor (MR-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4(+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.

  11. Interleukin-19: a constituent of the regulome that controls antigen presenting cells in the lungs and airway responses to microbial products.

    Directory of Open Access Journals (Sweden)

    Carol Hoffman

    Full Text Available BACKGROUND: Interleukin (IL-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+ alveolar macrophages and lung dendritic cells. METHODOLOGY/PRINCIPAL FINDINGS: IL-19-deficient (IL-19-/- mice were studied at baseline (naïve and following intranasal challenge with microbial products, or recombinant cytokines. Naïve IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2 expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of naïve IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13. CONCLUSIONS/SIGNIFICANCE: Because MHCII is the molecular platform that displays peptides to T

  12. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  13. Regulation of antigen presentation by acidic pH

    OpenAIRE

    1990-01-01

    The effect of pH on functional association of peptide antigens with APC membranes was investigated by using aldehyde-fixed B cells and class II- restricted T cell hybridomas to assess antigen/MHC complex formation. The results indicated that the rate and extent of functional peptide binding was markedly increased at pH 5.0 as compared with pH 7.3. The pH dependence of binding was preserved after pretreatment of fixed APC with pH 5.0 buffer, suggesting that pH had a direct effect on the intera...

  14. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses.

    Science.gov (United States)

    Wu, Fang; Wuensch, Sherry A; Azadniv, Mitra; Ebrahimkhani, Mohammad R; Crispe, I Nicholas

    2009-01-01

    We aim to define the role of Kupffer cells in intrahepatic antigen presentation, using the selective delivery of antigen to Kupffer cells rather than other populations of liver antigen-presenting cells. To achieve this we developed a novel antigen delivery system that can target antigens to macrophages, based on a galactosylated low-density lipoprotein nanoscale platform. Antigen was delivered via the galactose particle receptor (GPr), internalized, degraded and presented to T cells. The conjugation of fluoresceinated ovalbumin (FLUO-OVA) and lactobionic acid with LDL resulted in a substantially increased uptake of FLUO-OVA by murine macrophage-like ANA1 cells in preference to NIH3T3 cells, and by primary peritoneal macrophages in preference to primary hepatic stellate cells. Such preferential uptake led to enhanced proliferation of OVA specific T cells, showing that the galactosylated LDL nanoscale platform is a successful antigen carrier, targeting antigen to macrophages but not to all categories of antigen presenting cells. This system will allow targeted delivery of antigen to macrophages in the liver and elsewhere, addressing the question of the role of Kupffer cells in liver immunology. It may also be an effective way of delivering drugs or vaccines directly at macrophages. PMID:19637876

  15. Skewed Helper T-Cell Responses to IL-12 Family Cytokines Produced by Antigen-Presenting Cells and the Genetic Background in Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Jun Shimizu

    2013-01-01

    Full Text Available Behcet’s disease (BD is a multisystemic inflammatory disease and is characterized by recurrent attacks on eyes, brain, skin, and gut. There is evidence that skewed T-cell responses contributed to its pathophysiology in patients with BD. Recently, we found that Th17 cells, a new helper T (Th cell subset, were increased in patients with BD, and both Th type 1 (Th1 and Th17 cell differentiation signaling pathways were overactivated. Several researches revealed that genetic polymorphisms in Th1/Th17 cell differentiation signaling pathways were associated with the onset of BD. Here, we summarize current findings on the Th cell subsets, their contribution to the pathogenesis of BD and the genetic backgrounds, especially in view of IL-12 family cytokine production and pattern recognition receptors of macrophages/monocytes.

  16. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis

    OpenAIRE

    Sinha, Sushmita; Miller, Lisa; Subramanian, Sandhya; McCarty, Owen; Proctor, Thomas; Meza-Romero, Roberto; Burrows, Gregory G.; Vandenbark, Arthur A.; Offner, Halina

    2010-01-01

    Recombinant T cell ligands (RTLs) ameliorate experimental autoimmune encephalomyelitis (EAE) in antigen specific manner. We evaluated effects of RTL401 (I-As α1β1 + PLP-139-151) on splenocytes from mice with EAE to study RTL- T cell-tolerance-inducing mechanisms. RTLs bound to B, macrophages and DCs, through RTL-MHC-α1β1 moiety. RTL binding reduced CD11b expression on splenic macrophages/DC, and RTL401-conditioned macrophages/DC, not B cells, inhibited T cell activation. Reduced ability of RT...

  17. Hepatitis B virus core antigen epitopes presented by HLA-A2 single-chain trimers induce functional epitope-specific CD8+ T-cell responses in HLA-A2.1/Kb transgenic mice.

    Science.gov (United States)

    Zhang, Yuxia; Li, Shu; Shan, Ming; Pan, Xuwen; Zhuang, Ke; He, Lihua; Gould, Keith; Tien, Po

    2007-05-01

    The potency of CD8+ cytotoxic T lymphocyte (CTL) responses toward core antigen has been shown to affect the outcomes of hepatitis B virus (HBV) infection. Since single-chain trimers (SCT) composed of peptide epitope beta2-microglobulin (beta2m) and major histocompatibility complex (MHC) class I heavy chain covalently linked together in a single molecule have been shown to stimulate efficient CTL responses, we investigated the properties of human leucocyte antigen (HLA)-A2 SCTs encoding the HBV core antigen (HBcAg) epitopes C(18-27) and C(107-115). Transfection of NIH-3T3 cells with pcDNA3.0-SCT-C(18-27) and SCT-C(107-115) leads to stable presentation of HBcAg epitopes at the cell surface. HLA-A2.1/Kb transgenic mice vaccinated with the SCT constructs, either as a DNA vaccine alone or followed by a boost with recombinant vaccinia virus, were shown to generate HBcAg-specific CTL responses by enzyme-linked immunospot assay (ELISPOT) and in vitro interferon-gamma release experiments. HBcAg-specific CTLs from vaccinated HLA-A2.1/Kb transgenic mice were able to inhibit HBV surface and e antigen expression as indicated by HepG2.2.15 cells. Our data indicate that a DNA vaccine encoding a human HLA-A2 SCT with HBV epitopes can lead to stable, enhanced HBV core antigen presentation, and may be useful for the control of HBV infection in HLA-A2-positive HBV carriers. PMID:17244158

  18. Distinct Gut-Derived Bacteria Differentially Affect Three Types of Antigen-Presenting Cells and Impact on NK- and T-Cell Responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Hansen, Anne Marie Valentin; Frøkiær, Hanne

    previously been examined, but this study revealed that their effect on other kinds of APCs is markedly different. When APCs matured by different bacteria were added to either NK-cells or T-cells, different APCs combined with distinct strains of bacteria caused the production of varying amounts of cytokines...... through these mechanisms. The bacteria examined can potentially be used in tailored probiotic foods exploring their immunomodulatory properties....

  19. Production of CXC and CC chemokines by human antigen-presenting cells in response to Lassa virus or closely related immunogenic viruses, and in cynomolgus monkeys with lassa fever.

    OpenAIRE

    Delphine Pannetier; Stéphanie Reynard; Marion Russier; Xavier Carnec; Sylvain Baize

    2014-01-01

    International audience The pathogenesis of Lassa fever (LF), a hemorrhagic fever endemic to West Africa, remains unclear. We previously compared Lassa virus (LASV) with its genetically close, but nonpathogenic homolog Mopeia virus (MOPV) and demonstrated that the strong activation of antigen-presenting cells (APC), including type I IFN production, observed in response to MOPV probably plays a crucial role in controlling infection. We show here that human macrophages (MP) produce large amou...

  20. Human antigen-presenting cells respond differently to gut-derived probiotic bacteria but mediate similar strain-dependent NK and T cell activation

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Ferlazzo, Guido;

    2007-01-01

    The intestinal microbiota is essential for homeostasis of the local and systemic immune system, and particularly strains of lactic acid bacteria and Escherichia coli have been shown to have balancing effects on inflammatory conditions such as allergy and inflammatory bowel disease. However...... of IL-6 and tumour necrosis factor-alpha to bacteria, which elicited mainly IL-10 in monocyte-derived DC. In contrast, comparable IFN-gamma production patterns were found in both natural killer cells and T cells induced by all bacteria-matured APC. An inhibitory effect of certain strains on this IFN...

  1. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Sinha, Sushmita; Miller, Lisa; Subramanian, Sandhya; McCarty, Owen J T; Proctor, Thomas; Meza-Romero, Roberto; Huan, Jianya; Burrows, Gregory G; Vandenbark, Arthur A; Offner, Halina

    2010-08-25

    Recombinant T cell ligands (RTLs) ameliorate experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. We evaluated effects of RTL401 (I-A(s) alpha1beta1+PLP-139-151) on splenocytes from SJL/J mice with EAE to study RTL-T cell tolerance-inducing mechanisms. RTLs bound to B, macrophages and DCs, through RTL-MHC-alpha1beta1 moiety. RTL binding reduced CD11b expression on splenic macrophages/DC, and RTL401-conditioned macrophages/DC, not B cells, inhibited T cell activation. Reduced ability of RTL- incubated splenocytes to transfer EAE was likely mediated through macrophages/DC, since B cells were unnecessary for RTL treatment of EAE. These results demonstrate a novel pathway of T cell regulation by RTL-bound APCs. PMID:20546940

  2. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  3. Rapid Antigen Processing and Presentation of a Protective and Immunodominant HLA-B*27-restricted Hepatitis C Virus-specific CD8+ T-cell Epitope

    OpenAIRE

    Julia Schmidt; Iversen, Astrid K N; Stefan Tenzer; Emma Gostick; Price, David A.; Volker Lohmann; Ute Distler; Paul Bowness; Hansjörg Schild; Blum, Hubert E.; Paul Klenerman; Christoph Neumann-Haefelin; Robert Thimme

    2012-01-01

    HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on e...

  4. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens

    NARCIS (Netherlands)

    Fehres, Cynthia M.; Kalay, Hakan; Bruijns, Sven C M; Musaafir, Sara A M; Ambrosini, Martino; Van Bloois, Louis; Van Vliet, Sandra J.; Storm, Gert; Garcia-Vallejo, Juan J.; Van Kooyk, Yvette

    2015-01-01

    Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based

  5. Cross-presentation through langerin and DC-SIGN targeting requires different formulation of glycan-modified antigens

    NARCIS (Netherlands)

    Fehres, Cynthia M.; Kalay, Hakan; Bruijns, Sven C.M.; Musaafir, Sara A.M.; Ambrosini, Martino; Bloois, van Louis; Vliet, van Sandra J.; Storm, Gert; Garcia-Vallejo, Juan J.; Kooyk, van Yvette

    2015-01-01

    Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based

  6. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1999-01-01

    Full Text Available The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  7. Frequent lack of translation of antigen presentation-associated molecules MHC class I, CD1a and Beta(2)-microglobulin in Reed-Sternberg cells

    NARCIS (Netherlands)

    van den Berg, A.; Visser, L; Eberwine, J; Dadvand, L; Poppema, S

    2000-01-01

    Epstein-Barr virus (EBV) is present in Reed-Sternberg (RS) cells of a substantial proportion of Hodgkin's lymphoma cases. Most EBV-positive cases are also MHC class I-positive, whereas the majority of EBV-negative cases lack detectable levels of MHC class I expression. Application of the SAGE techni

  8. Human epidermal Langerhans cells cointernalize by receptor-mediated endocytosis "nonclassical" major histocompatibility complex class I molecules (T6 antigens) and class II molecules (HLA-DR antigens).

    OpenAIRE

    Hanau, D.; Fabre, M.; Schmitt, D A; Garaud, J C; Pauly, G; Tongio, M M; Mayer, S.; Cazenave, J. P.

    1987-01-01

    HLA-DR and T6 surface antigens are expressed only by Langerhans cells and indeterminate cells in normal human epidermis. We have previously demonstrated that T6 antigens are internalized in Langerhans cells and indeterminate cells by receptor-mediated endocytosis. This process is induced by the binding of BL6, a monoclonal antibody directed against T6 antigens. In the present study, using a monoclonal antibody directed against HLA-DR antigens, on human epidermal cells in suspension, we show t...

  9. Synthetic pathogens for integrated biophysical and genetic dissection of antigen cross-presentation

    OpenAIRE

    Freitas, Rui Pedro da Silva Albuquerque e, 1980-

    2010-01-01

    Tese de doutoramento, Ciências Biomédicas (Ciências Morfológicas), Universidade de Lisboa, Faculdade de Medicina, 2010 The study of host-pathogen interactions is crucial to unveil the diversity of the immune response outcome. Dendritic Cells (DCs) play a central role in the initiation and regulation of T-Cell immunity, functioning as master switches that control whether the outcome of antigen presentation results in tolerance, or immunity. Antigen cross-presentation is a necessary mechanis...

  10. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  11. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells.

    Science.gov (United States)

    Zah, Eugenia; Lin, Meng-Yin; Silva-Benedict, Anne; Jensen, Michael C; Chen, Yvonne Y

    2016-06-01

    The adoptive transfer of T cells expressing anti-CD19 chimeric antigen receptors (CARs) has shown remarkable curative potential against advanced B-cell malignancies, but multiple trials have also reported patient relapses due to the emergence of CD19-negative leukemic cells. Here, we report the design and optimization of single-chain, bispecific CARs that trigger robust cytotoxicity against target cells expressing either CD19 or CD20, two clinically validated targets for B-cell malignancies. We determined the structural parameters required for efficient dual-antigen recognition, and we demonstrate that optimized bispecific CARs can control both wild-type B-cell lymphoma and CD19(-) mutants with equal efficiency in vivo To our knowledge, this is the first bispecific CAR capable of preventing antigen escape by performing true OR-gate signal computation on a clinically relevant pair of tumor-associated antigens. The CD19-OR-CD20 CAR is fully compatible with existing T-cell manufacturing procedures and implementable by current clinical protocols. These results present an effective solution to the challenge of antigen escape in CD19 CAR T-cell therapy, and they highlight the utility of structure-based rational design in the development of receptors with higher-level complexity. Cancer Immunol Res; 4(6); 498-508. ©2016 AACRSee related Spotlight by Sadelain, p. 473. PMID:27059623

  12. Functional Development of the T Cell Receptor for Antigen

    Science.gov (United States)

    Ebert, Peter J.R.; Li, Qi-Jing; Huppa, Johannes B.; Davis, Mark M.

    2016-01-01

    For over three decades now, the T cell receptor (TCR) for antigen has not ceased to challenge the imaginations of cellular and molecular immunologists alike. T cell antigen recognition transcends every aspect of adaptive immunity: it shapes the T cell repertoire in the thymus and directs T cell-mediated effector functions in the periphery, where it is also central to the induction of peripheral tolerance. Yet, despite its central position, there remain many questions unresolved: how can one TCR be specific for one particular peptide-major histocompatibility complex (pMHC) ligand while also binding other pMHC ligands with an immunologically relevant affinity? And how can a T cell’s extreme specificity (alterations of single methyl groups in their ligand can abrogate a response) and sensitivity (single agonist ligands on a cell surface are sufficient to trigger a measurable response) emerge from TCR–ligand interactions that are so low in affinity? Solving these questions is intimately tied to a fundamental understanding of molecular recognition dynamics within the many different contexts of various T cell–antigen presenting cell (APC) contacts: from the thymic APCs that shape the TCR repertoire and guide functional differentiation of developing T cells to the peripheral APCs that support homeostasis and provoke antigen responses in naïve, effector, memory, and regulatory T cells. Here, we discuss our recent findings relating to T cell antigen recognition and how this leads to the thymic development of foreign-antigen-responsive αβT cells. PMID:20800817

  13. No major role for insulin-degrading enzyme in antigen presentation by MHC molecules.

    Directory of Open Access Journals (Sweden)

    Slobodan Culina

    Full Text Available Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands.

  14. No major role for insulin-degrading enzyme in antigen presentation by MHC molecules.

    Science.gov (United States)

    Culina, Slobodan; Mauvais, François-Xavier; Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands. PMID:24516642

  15. Langerhans Cell Histiocytosis Presenting as Uncontrolled Asthma

    OpenAIRE

    Rawlins, Frederic A.; Hull, James E.; Morgan, Julia A.; Morris, Michael J.

    2013-01-01

    Langerhans cell histiocytosis (LCH) is an uncommon disorder affecting primarily young adult smokers. It is characterized by abnormal proliferation of Langerhans cells, specialized monocyte-macrophage lineage antigen-presenting cells. LCH can affect the lungs in isolation or as part of a systemic disease. Most commonly, the disease presents in the third or fourth decade without gender predominance. Symptoms typically include dyspnea and cough. Commonly, physical examination is unremarkable but...

  16. Proliferating cell nuclear antigen in neutrophil fate.

    Science.gov (United States)

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  17. Activation of human antigen-presenting cells by the mycobacterial cord factor and its glycolipid adjuvant analogue trehalose-6,6’-dibehenate

    OpenAIRE

    Ostrop, Jenny

    2015-01-01

    The mycobacterial cord factor trehalose-6,6’-dimycolate (TDM) is an abundant cell wall glycolipid of Mycobacterium tuberculosis and other mycobacteria. It causes inflammation and adjuvanticity, but it is also a major virulence factor of M. tuberculosis. Its synthetic analogue trehalose-6,6’-dibehenate (TDB) has robust adjuvant activity and induces a Th1/Th17 T cell response in animal models. The TDB-containing liposomal adjuvant formulation Caf01 has entered phase I clinical studies in humans...

  18. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells

    NARCIS (Netherlands)

    J.J. García-Vallejo; M. Ambrosini; A. Overbeek; W.E. van Riel; K. Bloem; W.W.J. Unger; F. Chiodo; J.G. Bolscher; K. Nazmi; H. Kalay; Y. van Kooyk

    2013-01-01

    Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells

  19. Adjuvant effects of liposomes containing lipid A: enhancement of liposomal antigen presentation and recruitment of macrophages.

    OpenAIRE

    Verma, J N; Rao, M.; Amselem, S; Krzych, U; Alving, C R; Green, S J; Wassef, N M

    1992-01-01

    Liposomes containing lipid A induced potent humoral immune responses in mice against an encapsulated malaria antigen (R32NS1) containing NANP epitopes. The immune response was not enhanced by lipid A alone or by empty liposomes containing lipid A. Experiments to investigate the adjuvant mechanisms of liposomes and lipid A revealed that liposome-encapsulated R32NS1 was actively presented by bone marrow-derived macrophages to NANP-specific cloned T cells. The degree of presentation was related ...

  20. Exposure to ozone enhances antigen-presenting activity concentration dependently in rats

    International Nuclear Information System (INIS)

    The effect of ozone (O3) on the symptoms of allergic asthma and the mechanisms underlying have not yet been fully elucidated. Antigen presentation is one of the factors contributing to the allergic reaction. Therefore, we investigated the effects of repeated exposure to O3 on antigen-presenting (AP) activity, on the expression of cell-surface molecules associated with antigen presentation (Ia, B7.1, B7.2 and CD11b/c) in bronchoalveolar lavage cells (BAL cells), and on allergic asthma-like symptoms. Rats were exposed to 0.3, 0.56, 1 ppm O3 or filtered air for a 3-day period every 2 weeks, this was replicated three times. AP activity was assessed by measuring antigen-specific T-cell proliferation; and the expression of cell-surface molecules, by flow cytometry. Rats were also made to inhale aerosolized 1% ovalbumin (OVA) or saline for 10 min post-exposure to O3, and allergic asthma-like symptoms were measured by determining the increase in enhanced pause (Penh), which correlates well with lung resistance. O3 increased both AP activity and expression of Ia and costimulatory molecules in BAL cells concentration dependently. It also increased lung resistance, and the increase in lung resistance after O3 exposure was significantly higher in the OVA-inhaled group than in the saline-inhaled group. The present results show that O3 increased AP activity concentration dependently and suggest that O3 might aggravate allergy symptoms by enhancing AP activity

  1. Simple solid-phase radioimmunoassay for human leukemia-associated cell membrane antigens

    International Nuclear Information System (INIS)

    In the present study, a simple solid-phase radioimmunoassay was developed to determine detergent-extracted human leukemia-associated cell membrane antigens. In the assay, 96-well microtiter plates are coated with human leukemia cell membrane antigens containing a T cell leukemia or a non-T cell leukemia antigen in the presence of a detergent, and treated with 1.6% bovine serum albumin solution. The coated antigens were reacted with an appropriate murine monoclonal antibody (mAb). The bound mAb is determined by a second reaction with 125I-labeled F(ab')2 of goat anti-mouse Ig. The best antigen dose-dependent antibody binding results were obtained using the plates coated with antigens in the presence of taurocholate. In addition, the usefulness of the present assay with taurocholate during the purification of the antigens was demonstrated. (Auth.)

  2. Pattern of distribution of blood group antigens on human epidermal cells during maturation

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Buschard, Karsten; Hakomori, Sen-Itiroh

    1984-01-01

    The distribution in human epidermis of A, B, and H blood group antigens and of a precursor carbohydrate chain, N-acetyl-lactosamine, was examined using immunofluorescence staining techniques. The material included tissue from 10 blood group A, 4 blood group B, and 9 blood group O persons. Murine...... on the lower spinous cells whereas H antigen was seen predominantly on upper spinous cells or on the granular cells. Epithelia from blood group A or B persons demonstrated A or B antigens, respectively, but only if the tissue sections were trypsinized before staining. In such cases A or B antigens were found...... monoclonal antibodies were used to identify H antigen (type 2 chain) and N-acetyl-lactosamine. Human antisera were used to identify A and B antigens. In all groups N-acetyl-lactosamine and H antigen were found on the cell membranes of the spinous cell layer. N-acetyl-lactosamine was present mainly...

  3. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    Czech Academy of Sciences Publication Activity Database

    Holubová, Jana; Kamanová, Jana; Jelínek, J.; Tomala, Jakub; Mašín, Jiří; Kosová, Martina; Staněk, Ondřej; Bumba, Ladislav; Michálek, J.; Kovář, Marek; Šebo, Peter

    2012-01-01

    Roč. 80, č. 3 (2012), s. 1181-1192. ISSN 0019-9567 R&D Projects: GA AV ČR IAA500200914; GA ČR(CZ) GAP207/11/0717; GA ČR GAP301/11/0325; GA MŠk 1M0506; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : MHC CLASS-I * ESCHERICHIA-COLI * PRESENTATION PATHWAY Subject RIV: EE - Microbiology, Virology Impact factor: 4.074, year: 2012

  4. Antigen expression on recurrent meningioma cells

    International Nuclear Information System (INIS)

    Meningiomas are intracranial brain tumours that frequently recur. Recurrence rates up to 20% in 20 years for benign meningiomas, up to 80% for atypical meningiomas and up to 100% for malignant meningiomas, have been reported. The most important prognostic factors for meningioma recurrence are meningioma grade, meningioma invasiveness and radicality of neurosurgical resection. The aim of our study was to evaluate the differences in antigenic expression on the surface of meningioma cells between recurrent and non-recurrent meningiomas. 19 recurrent meningiomas and 35 non-recurrent meningiomas were compared regarding the expression of MIB-1 antigen, progesterone receptors, cathepsin B and cathepsin L, using immunohistochemistry. MIB-1 antigen expression was higher in the recurrent meningioma group (p=0.001). No difference in progesterone receptor status between recurrent and non-recurrent meningiomas was confirmed. Immunohistochemical intensity scores for cathepsin B (p= 0.007) and cathepsin L (p<0.001) were both higher in the recurrent than in the non-recurrent meningioma group. MIB-1 antigen expression is higher in recurrent compared to non-recurrent meningiomas. There is no difference in expression of progesterone receptors between recurrent and non-recurrent meningiomas. Cathepsins B and L are expressed more in recurrent meningiomas

  5. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens.

    Science.gov (United States)

    Fehres, Cynthia M; Kalay, Hakan; Bruijns, Sven C M; Musaafir, Sara A M; Ambrosini, Martino; van Bloois, Louis; van Vliet, Sandra J; Storm, Gert; Garcia-Vallejo, Juan J; van Kooyk, Yvette

    2015-04-10

    Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based antigen targeting to both the human DC-specific C-type lectin receptor (CLR) DC-SIGN and the LC-specific CLR langerin. Since DC-SIGN and langerin are able to recognize the difucosylated oligosaccharide Lewis Y (Le(Y)), we prepared neoglycoconjugates bearing this glycan epitope to allow targeting of both lectins. Le(Y)-modified liposomes, with an approximate diameter of 200nm, were significantly endocytosed by DC-SIGN(+) DCs and mediated efficient antigen presentation to CD4(+) and CD8(+) T cells. Surprisingly, although langerin bound to Le(Y)-modified liposomes, LCs exposed to Le(Y)-modified liposomes could not endocytose liposomes nor mediate antigen presentation to T cells. However, LCs mediated an enhanced cross-presentation when antigen was delivered through langerin using Le(Y)-modified synthetic long peptides. In contrast, Le(Y)-modified synthetic long peptides were recognized by DC-SIGN, but did not trigger antigen internalization nor antigen cross-presentation. These data demonstrate that langerin and DC-SIGN have different size requirements for antigen uptake. Although using glycans remains an interesting option in the design of anti-cancer vaccines targeting multiple CLRs, aspects such as molecule size and conformation need to be taken in consideration. PMID:25656175

  6. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  7. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity

    NARCIS (Netherlands)

    Kreutz, M.; Giquel, B.; Hu, Q.; Abuknesha, R.; Uematsu, S.; Akira, S.; Nestle, F.O.; Diebold, S.S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is par

  8. Enhanced T cell responses to antigenic peptides targeted to B cell surface Ig, Ia, or class I molecules

    OpenAIRE

    1988-01-01

    The helper T cell recognition of soluble globular protein antigens requires that the proteins be processed by an APC, releasing a peptide that is transported to and held on the APC surface where it is recognized by the specific T cell in conjunction with Ia. When cellular processing functions are blocked, APC lose their ability to present native antigens while retaining the capacity to activate T cells when provided with a cognate peptide fragment that contains the T cell antigenic determinan...

  9. Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group 1 CD1 molecules

    OpenAIRE

    Kaser, Arthur; Hava, David L.; Dougan, Stephanie K.; Chen, Zhangguo; Zeissig, Sebastian; Brenner, Michael B.; Blumberg, Richard S.

    2008-01-01

    Lipid antigens are presented to T cells by the non-polymorphic MHC class I-related CD1 molecules. Microsomal triglyceride transfer protein (MTP) is an endoplasmic reticulum (ER)-resident chaperone that has been shown to lipidate the group 2 CD1 molecule CD1d and thus to regulate its function. We now report that MTP also regulates the function of group 1 CD1 molecules CD1a, CD1b, and CD1c. Pharmacological inhibition of MTP in monocyte-derived dendritic cells and lymphoblastoid B cell lines tra...

  10. Production of CXC and CC chemokines by human antigen-presenting cells in response to Lassa virus or closely related immunogenic viruses, and in cynomolgus monkeys with lassa fever.

    Directory of Open Access Journals (Sweden)

    Delphine Pannetier

    Full Text Available The pathogenesis of Lassa fever (LF, a hemorrhagic fever endemic to West Africa, remains unclear. We previously compared Lassa virus (LASV with its genetically close, but nonpathogenic homolog Mopeia virus (MOPV and demonstrated that the strong activation of antigen-presenting cells (APC, including type I IFN production, observed in response to MOPV probably plays a crucial role in controlling infection. We show here that human macrophages (MP produce large amounts of CC and CXC chemokines in response to MOPV infection, whereas dendritic cells (DC release only moderate amounts of CXC chemokines. However, in the presence of autologous T cells, DCs produced CC and CXC chemokines. Chemokines were produced in response to type I IFN synthesis, as the levels of both mediators were strongly correlated and the neutralization of type I IFN resulted in an inhibition of chemokine production. By contrast, LASV induced only low levels of CXCL-10 and CXCL-11 production. These differences in chemokine production may profoundly affect the generation of virus-specific T-cell responses and may therefore contribute to the difference of pathogenicity between these two viruses. In addition, a recombinant LASV (rLASV harboring the NP-D389A/G392A mutations, which abolish the inhibition of type I IFN response by nucleoprotein (NP, induced the massive synthesis of CC and CXC chemokines in both DC and MP, confirming the crucial role of arenavirus NP in immunosuppression and pathogenicity. Finally, we confirmed, using PBMC samples and lymph nodes obtained from LASV-infected cynomolgus monkeys, that LF was associated with high levels of CXC chemokine mRNA synthesis, suggesting that the very early synthesis of these mediators may be correlated with a favourable outcome.

  11. Production of CXC and CC chemokines by human antigen-presenting cells in response to Lassa virus or closely related immunogenic viruses, and in cynomolgus monkeys with lassa fever.

    Science.gov (United States)

    Pannetier, Delphine; Reynard, Stéphanie; Russier, Marion; Carnec, Xavier; Baize, Sylvain

    2014-01-01

    The pathogenesis of Lassa fever (LF), a hemorrhagic fever endemic to West Africa, remains unclear. We previously compared Lassa virus (LASV) with its genetically close, but nonpathogenic homolog Mopeia virus (MOPV) and demonstrated that the strong activation of antigen-presenting cells (APC), including type I IFN production, observed in response to MOPV probably plays a crucial role in controlling infection. We show here that human macrophages (MP) produce large amounts of CC and CXC chemokines in response to MOPV infection, whereas dendritic cells (DC) release only moderate amounts of CXC chemokines. However, in the presence of autologous T cells, DCs produced CC and CXC chemokines. Chemokines were produced in response to type I IFN synthesis, as the levels of both mediators were strongly correlated and the neutralization of type I IFN resulted in an inhibition of chemokine production. By contrast, LASV induced only low levels of CXCL-10 and CXCL-11 production. These differences in chemokine production may profoundly affect the generation of virus-specific T-cell responses and may therefore contribute to the difference of pathogenicity between these two viruses. In addition, a recombinant LASV (rLASV) harboring the NP-D389A/G392A mutations, which abolish the inhibition of type I IFN response by nucleoprotein (NP), induced the massive synthesis of CC and CXC chemokines in both DC and MP, confirming the crucial role of arenavirus NP in immunosuppression and pathogenicity. Finally, we confirmed, using PBMC samples and lymph nodes obtained from LASV-infected cynomolgus monkeys, that LF was associated with high levels of CXC chemokine mRNA synthesis, suggesting that the very early synthesis of these mediators may be correlated with a favourable outcome. PMID:24421914

  12. Production of CXC and CC Chemokines by Human Antigen-Presenting Cells in Response to Lassa Virus or Closely Related Immunogenic Viruses, and in Cynomolgus Monkeys with Lassa Fever

    Science.gov (United States)

    Russier, Marion; Carnec, Xavier; Baize, Sylvain

    2014-01-01

    The pathogenesis of Lassa fever (LF), a hemorrhagic fever endemic to West Africa, remains unclear. We previously compared Lassa virus (LASV) with its genetically close, but nonpathogenic homolog Mopeia virus (MOPV) and demonstrated that the strong activation of antigen-presenting cells (APC), including type I IFN production, observed in response to MOPV probably plays a crucial role in controlling infection. We show here that human macrophages (MP) produce large amounts of CC and CXC chemokines in response to MOPV infection, whereas dendritic cells (DC) release only moderate amounts of CXC chemokines. However, in the presence of autologous T cells, DCs produced CC and CXC chemokines. Chemokines were produced in response to type I IFN synthesis, as the levels of both mediators were strongly correlated and the neutralization of type I IFN resulted in an inhibition of chemokine production. By contrast, LASV induced only low levels of CXCL-10 and CXCL-11 production. These differences in chemokine production may profoundly affect the generation of virus-specific T-cell responses and may therefore contribute to the difference of pathogenicity between these two viruses. In addition, a recombinant LASV (rLASV) harboring the NP-D389A/G392A mutations, which abolish the inhibition of type I IFN response by nucleoprotein (NP), induced the massive synthesis of CC and CXC chemokines in both DC and MP, confirming the crucial role of arenavirus NP in immunosuppression and pathogenicity. Finally, we confirmed, using PBMC samples and lymph nodes obtained from LASV-infected cynomolgus monkeys, that LF was associated with high levels of CXC chemokine mRNA synthesis, suggesting that the very early synthesis of these mediators may be correlated with a favourable outcome. PMID:24421914

  13. Linkage of bacterial protein synthesis and presentation of MHC class I-restricted Listeria monocytogenes-derived antigenic peptides.

    Directory of Open Access Journals (Sweden)

    Silke Grauling-Halama

    Full Text Available The processing and MHC class I-restricted presentation of antigenic peptides derived from the p60 protein of the facultative intracellular bacterium Listeria monocytogenes is tightly linked to bacterial protein synthesis. We used non-linear regression analysis to fit a mathematical model of bacterial antigen processing to a published experimental data set showing the accumulation and decay of p60-derived antigenic peptides in L. monocytogenes-infected cells. Two alternative models equally describe the experimental data. The simulation accounting for a stable and a hypothetical rapidly degraded form of antigen predicts that the antigenic peptides p60 217-225 and p60 449-457 are derived from a putative instable form of p60 with an average intracellular half-life of approximately 3 minutes accounting for approximately 31% of all p60 molecules synthesized. The alternative model predicts that both antigenic peptides are processed from p60 degraded intracellularly with a half-life of 109 min and that antigen processing only occurs as long as bacterial protein synthesis is not inhibited. In order to decide between both models the intracellular accumulation of p60 in infected cells was studied experimentally and compared with model predictions. Inhibition of p60 degradation by the proteasome inhibitor epoxomicin revealed that during the first 3 h post infection approximately 30% of synthesized p60 molecules were degraded. This value is significantly lower than the approximately 50% degradation of p60 that would be expected in the presence of the predicted putative short-lived state of p60 and also fits precisely with the predictions of the alternative model, indicating that the tight connection of bacterial protein biosynthesis and antigen processing and presentation of L. monocyctogenes-derived antigenic peptides is not caused by the presence of a highly instable antigenic substrate.

  14. An antigen-specific, four-color, B-cell FluoroSpot assay utilizing tagged antigens for detection.

    Science.gov (United States)

    Jahnmatz, Peter; Bengtsson, Theresa; Zuber, Bartek; Färnert, Anna; Ahlborg, Niklas

    2016-06-01

    The FluoroSpot assay, a variant of ELISpot utilizing fluorescent detection, has so far been used primarily for assessment of T cells, where simultaneous detection of several cytokines has allowed a more qualitative analysis of functionally distinct T cells. The potential to measure multiple analytes also presents several advantages when analyzing B cells. Our aim was to develop a B-cell FluoroSpot assay adaptable to studies of a variety of antigens. The assay utilizes anti-IgG antibodies immobilized in 96-well filter membrane plates. During cell culture, IgG antibodies secreted by antibody-secreting cells (ASCs) are captured in the vicinity of each of these cells and the specificity of single ASCs is defined using antigens for detection. The antigens were labeled with biotin or peptide tags enabling secondary detection with fluorophore-conjugated streptavidin or tag-specific antibodies. The assay, utilizing up to four different tag systems and fluorophores simultaneously, was evaluated using hybridomas and immunized splenocytes as ASCs. Assay variants were developed that could: i) identify multiple ASCs with different antigen specificities; ii) detect ASCs showing cross-reactivity with different but related antigens; and iii) define the antigen-specificity and, by including anti-IgG subclass detection reagents, simultaneously determine the IgG subclass of antibodies secreted by ASCs. As demonstrated here, the B-cell FluoroSpot assay using tag-based detection systems provides a versatile and powerful tool to investigate antibody responses by individual cells that can be readily adapted to studies of a variety of antigen-specific ASCs. PMID:26930550

  15. Low dose antigen promotes induction of FOXP3 in human CD4+ T cells

    OpenAIRE

    Long, S. Alice; Rieck, Mary; Tatum, Megan; Bollyky, Paul L.; Wu, Rebecca P.; Muller, Isabelle; Ho, Jhon-Chun; Shilling, Heather G.; Buckner, Jane H.

    2011-01-01

    Low antigen dose promotes induction and persistence of Treg in mice, yet few studies have addressed the role of antigen dose in the induction of adaptive CD4+FOXP3+ Treg in humans. To this end, we examined the level of FOXP3 expression in human CD4+CD25− T cells upon activation with autologous antigen presenting cells and varying doses of peptide. Antigen specific T cells expressing FOXP3 were identified by flow cytometry using MHC Class II tetramer (Tmr). We found an inverse relationship bet...

  16. Toxicities of chimeric antigen receptor T cells: recognition and management.

    Science.gov (United States)

    Brudno, Jennifer N; Kochenderfer, James N

    2016-06-30

    Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy. PMID:27207799

  17. Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells.

    Science.gov (United States)

    Laugel, Bruno; Lloyd, Angharad; Meermeier, Erin W; Crowther, Michael D; Connor, Thomas R; Dolton, Garry; Miles, John J; Burrows, Scott R; Gold, Marielle C; Lewinsohn, David M; Sewell, Andrew K

    2016-08-01

    The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1(-/-) clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1(-/-) clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells. PMID:27307560

  18. Isolation and characterization of NIH 3T3 cells expressing polyomavirus small T antigen

    International Nuclear Information System (INIS)

    The polyomavirus small T-antigen gene, together with the polyomavirus promoter, was inserted into retrovirus vector pGV16 which contains the Moloney sarcoma virus long terminal repeat and neomycin resistance gene driven by the simian virus 40 promoter. This expression vector, pGVST, was packaged into retrovirus particles by transfection of PSI2 cells which harbor packaging-defective murine retrovirus genome. NIH 3T3 cells were infected by this replication-defective retrovirus containing pGVST. Of the 15 G418-resistant cell clones, 8 express small T antigen at various levels as revealed by immunoprecipitation. A cellular protein with an apparent molecular weight of about 32,000 coprecipitates with small T antigen. Immunofluorescent staining shows that small T antigen is mainly present in the nuclei. Morphologically, cells expressing small T antigen are indistinguishable from parental NIH 3T3 cells and have a microfilament pattern similar to that in parental NIH 3T3 cells. Cells expressing small T antigen form a flat monolayer but continue to grow beyond the saturation density observed for parental NIH 3T3 cells and eventually come off the culture plate as a result of overconfluency. There is some correlation between the level of expression of small T antigen and the growth rate of the cells. Small T-antigen-expressing cells form small colonies in soft agar. However, the proportion of cells which form these small colonies is rather small. A clone of these cells tested did not form tumors in nude mice within 3 months after inoculation of 106 cells per animal. Thus, present studies establish that the small T antigen of polyomavirus is a second nucleus-localized transforming gene product of the virus (the first one being large T antigen) and by itself has a function which is to stimulate the growth of NIH 3T3 cells beyond their saturation density in monolayer culture

  19. Antigen Presentation Ability of Salmonella Carrying DNA Vaccine Model and MCP-3 gene

    Directory of Open Access Journals (Sweden)

    Endang Winiati Bachtiar

    2015-11-01

    Full Text Available The objective of this study is to determine the antigen presentation ability of a DNA vaccine model that is co-delivered with that of recombinant Salmonella enterica serovar Typhimurium (STM1 expressing chemokine macrophage chemotactic protein-3 (MCP-3. The DNA vaccine, pVROVA, was constructed by amplification of the ovalbumin coding region from sOVA-C1. Dendritic cells (DCs were obtained from IL-4 and GMCSF stimulated mouse bone marrow stem cell. Cultured DCs were incubated with STM1 carrying a model ovalbumin gene (pVROVA. Furthermore, MHC class I antigen presentation of a dominant OVA peptide was assayed in vitro. The experiments were designed to determine the effect of co-delivering MCP-3 with that of ovalbumin in STM1. Our results show that a plasmid pROVA-carrying ovalbumin gene was succesfully constructed and sequence analysis of the ovalbumin-coding revealed an identity match of 100% with that of the chicken ovalbumin DNA sequences from the GenBank database. We also found that the presence of the MCP-3 encoding plasmid in STM1 or E. coli DH1 could increase the recovery of both STM1 and E. coli DH1 over those that carry the empty plasmids. Antigen presentation assay also indicates that MCP-3 can positively influence the presentation of ovalbumin. Conclusion: the infection of DCs by STM1-carrying DNA vaccine and MCP-3 results in an increase of processing and presentation of ovalbumin in vitro.Keywords : DNA vaccine, MCP-3, APC, Salmonella, Dendritic cells

  20. Activation, Immune Polarization, and Graft-versus-Leukemia Activity of Donor T-cells are Regulated by Specific Subsets of Donor Bone Marrow Antigen-Presenting Cells in Allogeneic Hematopoietic Stem Cell Transplantation1

    OpenAIRE

    Li, Jian-Ming; Southerland, Lauren T.; Lu, Ying; Darlak, Kataryna A.; Giver, Cynthia R.; McMillin, Douglas W.; Harris, Wayne A.C.; Jaye, David L.; Waller, Edmund K.

    2009-01-01

    We investigated the roles of specific subsets of donor APCs purified from bone marrow in donor T cell activation and graft-vs-leukemia (GvL) activity in murine models of hemopoietic stem cell transplantation. Lineage−CD11c+ APC precursors were separated from donor bone marrow based on expression of CD11b. Transplanting lineage−CD11c+CD11b− APC (CD11b− APC) in combination with c-kit+Sca-1+lineage− hemopoietic stem cells (HSC) and congenic donor T cells led to increased donor CD4+ and CD8+ T ce...

  1. Participation of L3T4 in T cell activation in the absence of class II major histocompatibility complex antigens. Inhibition by anti-L3T4 antibodies is a function both of epitope density and mode of presentation of anti-receptor antibody

    DEFF Research Database (Denmark)

    Owens, T; Fazekas de St Groth, B

    1987-01-01

    activation in the complete absence of class II MHC, immobilized antibody (either Sepharose-coupled or plastic-adsorbed) being more effective. The induction of IL 3 production by suboptimal doses of either Con A or plastic-adsorbed F23.1 was inhibited by the anti-L3T4 antibody GK1.5, as was the response to F...... of T cell/antigen interactions. By using antibodies against the T cell antigen receptor (TCR) to activate T cells, thereby circumventing the requirement for antigen presenting cells and MHC-associated antigen, we have been able to study the function of L3T4 in the absence of class II MHC. We have...... used two monoclonal antibodies, KJ16-133.18 and F23.1, that recognize a determinant encoded by the T cell receptor V beta 8 gene family. These antibodies were used to select two clones of T cells with surface phenotype Thy-1.2+, L3T4+, Lyt-2-, KJ16-133.18+, F23.1+, IA-, IE-. One of these clones (E9.D4...

  2. Inhibition of MHC class I-restricted antigen presentation by γ2-herpesviruses

    OpenAIRE

    Stevenson, Philip G.; Efstathiou, Stacey; Doherty, Peter C.; Lehner, Paul J.

    2000-01-01

    The γ-herpesviruses, in contrast to the α- and β-herpesviruses, are not known to inhibit antigen presentation to CD8+ cytotoxic T lymphocytes (CTLs) during lytic cycle replication. However, murine γ-herpesvirus 68 causes a chronic lytic infection in CD4+ T cell-deficient mice despite the persistence of a substantial CTL response, suggesting that CTL evasion occurs. Here we show that, distinct from host protein synthesis shutoff, γ-herpesvirus 68 down-regulates surface MHC class I expression o...

  3. No Major Role for Insulin-Degrading Enzyme in Antigen Presentation by MHC Molecules

    OpenAIRE

    Culina, Slobodan; Mauvais, François-Xavier; Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-...

  4. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity.

    Directory of Open Access Journals (Sweden)

    Martin Kreutz

    Full Text Available Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA and CpG oligodeoxynucleotides (ODN. We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses.

  5. Dendritic Cells in the Periphery Control Antigen-Specific Natural and Induced Regulatory T Cells

    OpenAIRE

    Yamazaki, Sayuri; Morita, Akimichi

    2013-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence...

  6. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8(+) T lymphocytes.

    Science.gov (United States)

    Rodriguez, Galaxia M; Bobbala, Diwakar; Serrano, Daniel; Mayhue, Marian; Champagne, Audrey; Saucier, Caroline; Steimle, Viktor; Kufer, Thomas A; Menendez, Alfredo; Ramanathan, Sheela; Ilangumaran, Subburaj

    2016-06-01

    Cancers can escape immunesurveillance by diminishing the expression of MHC class-I molecules (MHC-I) and components of the antigen-processing machinery (APM). Developing new approaches to reverse these defects could boost the efforts to restore antitumor immunity. Recent studies have shown that the expression of MHC-I and antigen-processing molecules is transcriptionally regulated by NOD-like receptor CARD domain containing 5 (NLRC5). To investigate whether NLRC5 could be used to improve tumor immunogenicity, we established stable lines of B16-F10 melanoma cells expressing NLRC5 (B16-5), the T cell co-stimulatory molecule CD80 (B16-CD80) or both (B16-5/80). Cells harboring NLRC5 constitutively expressed MHC-I and LMP2, LMP7 and TAP1 genes of the APM. The B16-5 cells efficiently presented the melanoma antigenic peptide gp10025-33 to Pmel-1 TCR transgenic CD8(+) T cells and induced their proliferation. In the presence of CD80, B16-5 cells stimulated Pmel-1 cells even without the addition of gp100 peptide, indicating that NLRC5 facilitated the processing and presentation of endogenous tumor antigen. Upon subcutaneous implantation, B16-5 cells showed markedly reduced tumor growth in C57BL/6 hosts but not in immunodeficient hosts, indicating that the NLRC5-expressing tumor cells elicited antitumor immunity. Following intravenous injection, B16-5 and B16-5/80 cells formed fewer lung tumor foci compared to control cells. In mice depleted of CD8(+) T cells, B16-5 cells formed large subcutaneous and lung tumors. Finally, immunization with irradiated B16-5 cells conferred protection against challenge by parental B16 cells. Collectively, our findings indicate that NLRC5 could be exploited to restore tumor immunogenicity and to stimulate protective antitumor immunity. PMID:27471621

  7. Antigen

    Science.gov (United States)

    An antigen is any substance that causes your immune system to produce antibodies against it. This means your immune ... and is trying to fight it off. An antigen may be a substance from the environment, such ...

  8. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    OpenAIRE

    Tipper, Donald J.; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolde...

  9. Cell Wall Anchoring of the Campylobacter Antigens to Lactococcus lactis.

    Science.gov (United States)

    Kobierecka, Patrycja A; Olech, Barbara; Książek, Monika; Derlatka, Katarzyna; Adamska, Iwona; Majewski, Paweł M; Jagusztyn-Krynicka, Elżbieta K; Wyszyńska, Agnieszka K

    2016-01-01

    Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein - CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type C. jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analyzed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ Lactic Acid Bacteria (LAB) strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered as an alternative vector to

  10. Mouse placental macrophages have a decreased ability to present antigen.

    OpenAIRE

    Chang, M D; Pollard, J W; Khalili, H; Goyert, S M; Diamond, B.

    1993-01-01

    Large numbers of macrophages can be found in an animal's uteroplacental unit. This high concentration of macrophages suggests they must play an important role during placental development. To gain a better understanding of the functional capacity of placental macrophages, we have obtained a highly enriched placental macrophage culture and have derived several cell lines from this population. Both placental macrophages and cell lines show colony-stimulating factor 1-dependent growth, express F...

  11. Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individuals.

    Science.gov (United States)

    Altvater, Bianca; Kailayangiri, Sareetha; Theimann, Nadine; Ahlmann, Martina; Farwick, Nicole; Chen, Christiane; Pscherer, Sibylle; Neumann, Ilka; Mrachatz, Gabriele; Hansmeier, Anna; Hardes, Jendrik; Gosheger, Georg; Juergens, Heribert; Rossig, Claudia

    2014-10-01

    Disseminated or relapsed Ewing sarcoma (EwS) has remained fatal in the majority of patients. A promising approach to preventing relapse after conventional therapy is to establish tumor antigen-specific immune control. Efficient and specific T cell memory against the tumor depends on the expansion of rare T cells with native specificity against target antigens overexpressed by the tumor. Candidate antigens in EwS include six-transmembrane epithelial antigen of the prostate-1 (STEAP1), and the human cancer/testis antigens X-antigen family member 1 (XAGE1) and preferentially expressed antigen in melanoma (PRAME). Here, we screened normal donors and EwS patients for the presence of circulating T cells reactive with overlapping peptide libraries of these antigens by IFN-γ Elispot analysis. The majority of 22 healthy donors lacked detectable memory T cell responses against STEAP1, XAGE1 and PRAME. Moreover, ex vivo detection of T cells specific for these antigens in both blood and bone marrow were limited to a minority of EwS patients and required nonspecific T cell prestimulation. Cytotoxic T cells specific for the tumor-associated antigens were efficiently and reliably generated by in vitro priming using professional antigen-presenting cells and optimized cytokine stimulation; however, these T cells failed to interact with native antigen processed by target cells and with EwS cells expressing the antigen. We conclude that EwS-associated antigens fail to induce efficient T cell receptor (TCR)-mediated antitumor immune responses even under optimized conditions. Strategies based on TCR engineering could provide a more effective means to manipulating T cell immunity toward targeted elimination of tumor cells. PMID:24973179

  12. Targeting tumor-associated antigens to the MHC class I presentation pathway.

    Science.gov (United States)

    Gross, G; Margalit, A

    2007-06-01

    There is little doubt that cytotoxic T lymphocytes (CTLs) can kill tumor cells in-vivo. However, most CTL-inducing immunization protocols examined so far in cancer patients have yielded only limited clinical benefits, underscoring the urge to improve current approaches for the effective induction of tumor-reactive CTLs. The tumor side of the immunological frontline is armed with large masses, high mutability and an arsenal of immune evasion and suppression mechanisms. Accordingly, the confronting CTLs should come in large numbers, recognize an assortment of MHC class I (MHC-I) bound tumor-associated peptides and be brought into action under effective immunostimulatory conditions. Naïve CTLs are activated to become effector cells in secondary lymphoid organs, following their productive encounter with MHC-I-bound peptides at the surface of dendritic cells (DCs). Therefore, many cancer vaccines under development focus on the optimization of peptide presentation by DCs at this critical stage. The elucidation of discrete steps and the subsequent identification of inherent bottlenecks in the MHC-I antigen presentation pathway have fueled elaborate efforts to enhance vaccine efficacy by the rational targeting of proteins or peptides, formulated into these vaccines, to this pathway. Protein- and gene-based strategies are accordingly devised to deliver tumor-associated peptides to selected cellular compartments, which are essential for the generation of functional CTL ligands. Many of these strategies target the conventional, endogenous route, while others harness the unique pathways that enable DCs to present exogenous antigens, known as cross-presentation. Here we dissect the intricate machinery that produces CTL ligands and examine how knowledge-based cancer vaccines can target the sequence of workstations, biochemical utensils and molecular intermediates comprising this production line. PMID:17584150

  13. Immune Responses of Dendritic Cells Loaded with Antigens from Apoptotic Cholangiocarcinoma Cells Caused by γ-Irradation

    Institute of Scientific and Technical Information of China (English)

    WUGang; HANBenli; PEIXuetao

    2002-01-01

    Objective:To investigate the induction cytotoxic T cells(CTLs) with antitumor activity and therapeutic efficacy after dendritic cells(DCs) acquired antigen from apoptotic cholangiocarcinoma cells caused by γ-irradiation. Methods:DCs from peripheral blood mononuclear cells (PBMC) that maintain the antigen capturing and processing capacity charateristic of immature cells have been established in vitro, using granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). Then, in cholangiocarcinoma cells apoptosis was induced by γ-irradiation. The experimental groups were as follows:(1)coculture of DCs and apoptotic cancer cells and T cells;(2)coculture of DCs and necrotic cancer cells and T cells;(3)coculture of DCs, cultured cancer cell and T cells. They are cocultured for 7 days.DCs and T cells were riched, isolated and their antitumor response was tested. Results:The cells had typical dendritic morphology, expressed high levels of CDla and B7, acquired antigen from apoptotic cells caused by γ-irradiation and induced an increased T cell stimulatory capacity in mixed lymphocyte reactions (MLR). Conclusion:DCs obtained from PBMCs using GM-CSF and IL-4 can efficiently present antigen derived from apoptotic cells caused by γ-irradiation and efficiently induce T cells.This strategy, therefore, may present an effective approach to transduce DCs with antigen.

  14. The role of antigen in the development of B-cell chronic lymphocytic leukemia

    OpenAIRE

    Hoogeboom, R.

    2013-01-01

    These studies strongly suggest that MALT-lymphomas and M-CLL in majority are highly selected for single extrinsic antigens and that these antigens can be both self-antigens and exo-antigens. Our finding that primary CLL cells are responsive to stimulation with their cognate antigen suggests that antigen-dependent BCR signaling may drive CLL expansion in vivo.

  15. Delayed type hypersensitivity to allogeneic mouse epidermal cell antigens, 2

    International Nuclear Information System (INIS)

    A low dose of ultraviolet B radiation impairs the effectiveness of epidermal cell antigens. We studied the effect of ultraviolet B radiation on the delayed type hypersensitivity induced by allogeneic epidermal cell antigen. The delayed type hypersensitivity response was assayed by footpad swelling in mice. When epidermal cells were exposed to ultraviolet B radiation (660 J/m2), their ability to induce T cells of delayed type hypersensitivity activation was markedly inhibited in any combination of recipient mice and allogeneic epidermal cells. The effect of ultraviolet B radiation on epidermal cells was observed before immunization and challenge. Ultraviolet B treated epidermal cells did not induce suppressor T cells in mice. These results indicate that ultraviolet B radiation destroys the antigenicity of epidermal cells. (author)

  16. Antigen Processing by Autoreactive B Cells Promotes Determinant Spreading

    Institute of Scientific and Technical Information of China (English)

    Yang D.Dai; George Carayanniotis; Eli Sercarz

    2005-01-01

    Acute primary immune responses tend to focus on few immunodominant determinants using a very limited number of T cell clones for expansion, whereas chronic inflammatory responses generally recruit a large number of different T cell clones to attack a broader range of determinants of the invading pathogens or the inflamed tissues.In T cell-mediated organ-specific autoimmune disease, a transition from the acute to the chronic phase contributes to pathogenesis, and the broadening process is called determinant spreading. The cellular components catalyzing the spreading reaction are not identified. It has been suggested that autoreactive B cells may play a central role in diversifying autoreactive T cell responses, possibly through affecting antigen processing and presentation. The clonal identity and diversity of the B cells and antibodies seem critical in regulating T cell activity and subsequent tissue damage or repair. Here, we use two autoimmune animal models, experimental autoimmune thyroiditis (EAT)and type 1 diabetes (T1D), to discuss how autoreactive B cells or antibodies alter the processing and presentation of autoantigens to regulate specific T cell response.

  17. Stimulation of T-cell activation by UV-treated, antigen-pulsed macrophages: evidence for a requirement for antigen processing and interleukin 1 secretion

    International Nuclear Information System (INIS)

    The nature of the defect(s) in the ability of UV-treated guinea pig macrophages to stimulate the proliferative response of guinea pig T cells to soluble protein antigens was investigated. T cells proliferated vigorously when cultured with peritoneal exudate cells (PEC) which had been pulsed with soluble protein antigens, but failed to proliferate when cultured with soluble antigen or with antigen-pulsed, UV-treated PEC. UV-treated macrophages were unable to secrete interleukin 1 (IL-1). Addition of IL-1 partially restored the T-cell proliferative response stimulated by antigen-pulsed, UV-treated PEC. However, IL-1 was able to restore such a response only when the PEC were pulsed with antigen before being exposed to UV. Similar results were obtained when antigen-pulsed PEC were used to stimulate T cells to secrete interleukin 2 (IL-2). These results demonstrate that UV-treated macrophages are defective both in their ability to properly process and present antigen for T-cell recognition and in their ability to secrete IL-1

  18. CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation

    OpenAIRE

    1992-01-01

    Activation of an immune response requires intercellular contact between T lymphocytes and antigen-presenting cells (APC). Interaction of the T cell antigen receptor (TCR) with antigen in the context of major histocompatibility molecules mediates signal transduction, but T cell activation appears to require the induction of a second costimulatory signal transduction pathway. Recent studies suggest that interaction of CD28 with B7 on APC might deliver such a costimulatory signal. To investigate...

  19. Control of T cell antigen reactivity via programmed TCR downregulation.

    Science.gov (United States)

    Gallegos, Alena M; Xiong, Huizhong; Leiner, Ingrid M; Sušac, Bože; Glickman, Michael S; Pamer, Eric G; van Heijst, Jeroen W J

    2016-04-01

    The T cell antigen receptor (TCR) is unique in that its affinity for ligand is unknown before encounter and can vary by orders of magnitude. How the immune system regulates individual T cells that display very different reactivity to antigen remains unclear. Here we found that activated CD4(+) T cells, at the peak of clonal expansion, persistently downregulated their TCR expression in proportion to the strength of the initial antigen recognition. This programmed response increased the threshold for cytokine production and recall proliferation in a clone-specific manner and ultimately excluded clones with the highest antigen reactivity. Thus, programmed downregulation of TCR expression represents a negative feedback mechanism for constraining T cell effector function with a suitable time delay to thereby allow pathogen control while avoiding excess inflammatory damage. PMID:26901151

  20. Autoinflammation and HLA-B27: Beyond Antigen Presentation.

    Science.gov (United States)

    Sibley, Cailin H

    2016-08-01

    HLA-B27 associated disorders comprise a group of inflammatory conditions which have in common an association with the HLA class I molecule, HLA-B27. Given this association, these diseases are classically considered disorders of adaptive immunity. However, mounting data are challenging this assumption and confirming that innate immunity plays a more prominent role in pathogenesis than previously suspected. In this review, the concept of autoinflammation is discussed and evidence is presented from human and animal models to support a key role for innate immunity in HLA-B27 associated disorders. PMID:27229619

  1. Differential use of autophagy by primary dendritic cells specialized in cross-presentation.

    Science.gov (United States)

    Mintern, Justine D; Macri, Christophe; Chin, Wei Jin; Panozza, Scott E; Segura, Elodie; Patterson, Natalie L; Zeller, Peter; Bourges, Dorothee; Bedoui, Sammy; McMillan, Paul J; Idris, Adi; Nowell, Cameron J; Brown, Andrew; Radford, Kristen J; Johnston, Angus Pr; Villadangos, Jose A

    2015-01-01

    Antigen-presenting cells survey their environment and present captured antigens bound to major histocompatibility complex (MHC) molecules. Formation of MHC-antigen complexes occurs in specialized compartments where multiple protein trafficking routes, still incompletely understood, converge. Autophagy is a route that enables the presentation of cytosolic antigen by MHC class II molecules. Some reports also implicate autophagy in the presentation of extracellular, endocytosed antigen by MHC class I molecules, a pathway termed "cross-presentation." The role of autophagy in cross-presentation is controversial. This may be due to studies using different types of antigen presenting cells for which the use of autophagy is not well defined. Here we report that active use of autophagy is evident only in DC subtypes specialized in cross-presentation. However, the contribution of autophagy to cross-presentation varied depending on the form of antigen: it was negligible in the case of cell-associated antigen or antigen delivered via receptor-mediated endocytosis, but more prominent when the antigen was a soluble protein. These findings highlight the differential use of autophagy and its machinery by primary cells equipped with specific immune function, and prompt careful reassessment of the participation of this endocytic pathway in antigen cross-presentation. PMID:25950899

  2. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue.

    Science.gov (United States)

    Majdoubi, Abdelilah; Kishta, Osama A; Thibodeau, Jacques

    2016-06-01

    Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance. PMID:26854212

  3. Antigen-Specific CD4+ T Cells Recognize Epitopes of Protective Antigen following Vaccination with an Anthrax Vaccine

    OpenAIRE

    Laughlin, Elsa M.; Miller, Joseph D.; James, Eddie; Fillos, Dimitri; Ibegbu, Chris C.; Mittler, Robert S.; Akondy, Rama; Kwok, William; Ahmed, Rafi; Nepom, Gerald,

    2007-01-01

    Detection of antigen-specific CD4+ T cells is facilitated by the use of fluorescently labeled soluble peptide-major histocompatibility complex (MHC) multimers which mirror the antigen specificity of T-cell receptor recognition. We have used soluble peptide-MHC class II tetramers containing peptides from the protective antigen (PA) of Bacillus anthracis to detect circulating T cells in peripheral blood of subjects vaccinated with an anthrax vaccine. PA-specific HLA class II-restricted T lympho...

  4. Targeting of antigens to B cells augments antigen-specific T-cell responses and breaks immune tolerance to tumor-associated antigen MUC1

    Science.gov (United States)

    Ding, Chuanlin; Wang, Li; Marroquin, Jose

    2008-01-01

    B cells are antibody (Ab)–secreting cells as well as potent antigen (Ag)–presenting cells that prime T-cell activation, which evokes great interest in their use for vaccine development. Here, we targeted ovalbumin (OVA) to B cells via CD19 and found that a single low dose of anti–CD19-OVA conjugates, but not isotype mAb-OVA, stimulated augmented CD4 and CD8 T-cell proliferation and expansion. Administration of TLR9 agonist CpG could significantly enhance long-term T-cell survival. Similar results were obtained when the tumor-associated Ag MUC1 was delivered to B cells. MUC1 transgenic (Tg) mice were previously found to lack effective T-cell help and produce low-titer of anti-MUC1 Abs after vaccination. Targeting MUC1 to B cells elicited high titer of anti-MUC1 Abs with different isotypes, predominantly IgG2a and IgG2b, in MUC1 Tg mice. The isotype switching of anti-MUC1 Ab was CD4 dependent. In addition, IFN-γ–producing CD8 T cells and in vivo cytolytic activity were significantly increased in these mice. The mice also showed significant resistance to MUC1+ lymphoma cell challenge both in the prophylactic and therapeutic settings. We conclude that Ags targeting to B cells stimulate CD4 and CD8 T-cell responses as well as Th-dependent humoral immune responses. PMID:18669871

  5. Typing of murine cell-surface antigens by cellular radioimmunoassay

    International Nuclear Information System (INIS)

    A cellular radioimmunoassay utilizing 125I-labelled Protein A was used for detecting antigen-antibody complexes on gultaraldehyde fixed cells attached to microtiter plates. This method is rapid, sensitive and specific for revealing H-2 private and public specificities as well as Ia and Lyt antigens. As plates may be kept for months, several reactivities can be tested in one step on a large panel rendering a regular supply of animals unnecessary. (Auth.)

  6. Reassessing target antigens for adoptive T cell therapy

    Science.gov (United States)

    Hinrichs, Christian S.; Restifo, Nicholas P.

    2014-01-01

    Adoptive T cell therapy can target and kill widespread malignant cells thereby inducing durable clinical responses in melanoma and selected other malignances. However, many commonly targeted tumor antigens are also expressed by healthy tissues, and T cells do not distinguish between benign and malignant tissues if both express the target antigen. As such, autoimmune toxicity from T-cell-mediated destruction of normal tissue has limited the development and adoption of this otherwise promising type of cancer therapy. A review of the unique biology of T-cell therapy and of recent clinical experience compels a reassessment of target antigens that traditionally have been viewed from the perspective of weaker immunotherapeutic modalities. In selecting target antigens for adoptive T-cell therapy, expression by tumors and not by essential healthy tissues is of paramount importance. The risk of autoimmune adverse events can be further mitigated by generating antigen receptors using strategies that reduce the chance of cross-reactivity against epitopes in unintended targets. In general, a circumspect approach to target selection and thoughtful preclinical and clinical studies are pivotal to the ongoing advancement of these promising treatments. PMID:24142051

  7. Shedding light on anti-estrogen resistance and antigen presentation through biophysical techniques

    NARCIS (Netherlands)

    Zwart, Willem Teunis

    2009-01-01

    This thesis is composed of two parts part one: The study on anti-estrogen resistance and defining criteria a cell has to meet in order to become resistant to anti-estrogenic compounds. part two: the study of antigen-loading, vesicle positioning and costimulation.

  8. An evolutionary analysis of antigen processing and presentation across different timescales reveals pervasive selection.

    Directory of Open Access Journals (Sweden)

    Diego Forni

    2014-03-01

    Full Text Available The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the CD1D trafficking signal region. In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis of missense mutations responsible for chronic granulomatous disease (CGD showed the action of different selective forces on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome subunits and chaperones and allowed identification of positive selection events in the human lineage. We also investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAP1 and CD207 (langerin. Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human

  9. An evolutionary analysis of antigen processing and presentation across different timescales reveals pervasive selection.

    Science.gov (United States)

    Forni, Diego; Cagliani, Rachele; Tresoldi, Claudia; Pozzoli, Uberto; De Gioia, Luca; Filippi, Giulia; Riva, Stefania; Menozzi, Giorgia; Colleoni, Marta; Biasin, Mara; Lo Caputo, Sergio; Mazzotta, Francesco; Comi, Giacomo P; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela

    2014-03-01

    The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP) pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the CD1D trafficking signal region). In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis of missense mutations responsible for chronic granulomatous disease (CGD) showed the action of different selective forces on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome subunits and chaperones) and allowed identification of positive selection events in the human lineage. We also investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAP1 and CD207 (langerin). Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human phenotypes

  10. Tracking antigen-specific T-cells during clinical tolerance induction in humans.

    Directory of Open Access Journals (Sweden)

    Aamir Aslam

    Full Text Available Allergen immunotherapy presents an opportunity to define mechanisms of induction of clinical tolerance in humans. Significant progress has been made in our understanding of changes in T cell responses during immunotherapy, but existing work has largely been based on functional T cell assays. HLA-peptide-tetrameric complexes allow the tracking of antigen-specific T-cell populations based on the presence of specific T-cell receptors and when combined with functional assays allow a closer assessment of the potential roles of T-cell anergy and clonotype evolution. We sought to develop tools to facilitate tracking of antigen-specific T-cell populations during wasp-venom immunotherapy in people with wasp-venom allergy. We first defined dominant immunogenic regions within Ves v 5, a constituent of wasp venom that is known to represent a target antigen for T-cells. We next identified HLA-DRB1*1501 restricted epitopes and used HLA class II tetrameric complexes alongside cytokine responses to Ves v 5 to track T-cell responses during immunotherapy. In contrast to previous reports, we show that there was a significant initial induction of IL-4 producing antigen-specific T-cells within the first 3-5 weeks of immunotherapy which was followed by reduction of circulating effector antigen-specific T-cells despite escalation of wasp-venom dosage. However, there was sustained induction of IL-10-producing and FOXP3 positive antigen-specific T cells. We observed that these IL-10 producing cells could share a common precursor with IL-4-producing T cells specific for the same epitope. Clinical tolerance induction in humans is associated with dynamic changes in frequencies of antigen-specific T-cells, with a marked loss of IL-4-producing T-cells and the acquisition of IL-10-producing and FOXP3-positive antigen-specific CD4+ T-cells that can derive from a common shared precursor to pre-treatment effector T-cells. The development of new approaches to track antigen

  11. Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells.

    Science.gov (United States)

    Perdicchio, Maurizio; Ilarregui, Juan M; Verstege, Marleen I; Cornelissen, Lenneke A M; Schetters, Sjoerd T T; Engels, Steef; Ambrosini, Martino; Kalay, Hakan; Veninga, Henrike; den Haan, Joke M M; van Berkel, Lisette A; Samsom, Janneke N; Crocker, Paul R; Sparwasser, Tim; Berod, Luciana; Garcia-Vallejo, Juan J; van Kooyk, Yvette; Unger, Wendy W J

    2016-03-22

    Sialic acids are negatively charged nine-carbon carboxylated monosaccharides that often cap glycans on glycosylated proteins and lipids. Because of their strategic location at the cell surface, sialic acids contribute to interactions that are critical for immune homeostasis via interactions with sialic acid-binding Ig-type lectins (siglecs). In particular, these interactions may be of importance in cases where sialic acids may be overexpressed, such as on certain pathogens and tumors. We now demonstrate that modification of antigens with sialic acids (Sia-antigens) regulates the generation of antigen-specific regulatory T (Treg) cells via dendritic cells (DCs). Additionally, DCs that take up Sia-antigen prevent formation of effector CD4(+) and CD8(+)T cells. Importantly, the regulatory properties endowed on DCs upon Sia-antigen uptake are antigen-specific: only T cells responsive to the sialylated antigen become tolerized. In vivo, injection of Sia-antigen-loaded DCs increased de novo Treg-cell numbers and dampened effector T-cell expansion and IFN-γ production. The dual tolerogenic features that Sia-antigen imposed on DCs are Siglec-E-mediated and maintained under inflammatory conditions. Moreover, loading DCs with Sia-antigens not only inhibited the function of in vitro-established Th1 and Th17 effector T cells but also significantly dampened ex vivo myelin-reactive T cells, present in the circulation of mice with experimental autoimmune encephalomyelitis. These data indicate that sialic acid-modified antigens instruct DCs in an antigen-specific tolerogenic programming, enhancing Treg cells and reducing the generation and propagation of inflammatory T cells. Our data suggest that sialylation of antigens provides an attractive way to induce antigen-specific immune tolerance. PMID:26941238

  12. Immune responses of dendritic cells after acquiring antigen from apoptotic hepatocholangioma cells caused by γ-ray

    International Nuclear Information System (INIS)

    Objective: To investigate the induction of cytotoxic T lymphocytes (CTLs) in antitumor responsiveness and therapeutic effects after dendritic cells (DCs) acquired antigen from apoptotic hepatocholangioma cells. Methods: DCs from blood mononuclear cells that maintain the characteristics of immaturity-anti-gen-capturing and-processing capacity were established in vitro by using granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Then, apoptosis in hepatocholangioma cells was induced with γ-radiation. The experimental groups included (1) co-culture of DCs, and apoptotic cancer cells and T cells; (2) co-culture of DCs necrotic cancer cells and T cells; (3) co-culture of DCs-cultured cancer cell and T cells. These cells were co-cultured for 7 days. DCs and T cell were enriched separately. Finally, antitumor response test was carried out. Results: These cells had typical dendritic morphology, expressed high levels of CD1a, B7 and acquired antigen from apoptotic cells caused by γ-rays and induced an increased T cell-stimulatory capacity in MLR. Conclusions: DCs obtained from blood mononuclear cells using GM-CSF and IL-4 and DCs can efficiently present antigen driven from apoptotic cells caused by γ-rays and induce T cells increasing obviously. It can probably become an effective approach of DC transduction with antigen

  13. In situ Delivery of Tumor Antigen- and Adjuvant-Loaded Liposomes Boosts Antigen-Specific T-Cell Responses by Human Dermal Dendritic Cells.

    Science.gov (United States)

    Boks, Martine A; Bruijns, Sven C M; Ambrosini, Martino; Kalay, Hakan; van Bloois, Louis; Storm, Gert; de Gruijl, Tanja; van Kooyk, Yvette

    2015-11-01

    Dendritic cells (DCs) have an important role in tumor control via the induction of tumor-specific T-cell responses and are therefore an ideal target for immunotherapy. The human skin is an attractive site for tumor vaccination as it contains various DC subsets. The simultaneous delivery of tumor antigen with an adjuvant is beneficial for cross-presentation and the induction of tumor-specific T-cell responses. We therefore developed liposomes that contain the melanoma-associated antigen glycoprotein 100280-288 peptide and Toll-like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) as adjuvant. These liposomes are efficiently taken up by monocyte-derived DCs, and antigen presentation to CD8(+) T cells was significantly higher with MPLA-modified liposomes as compared with non-modified liposomes or the co-administration of soluble MPLA. We used a human skin explant model to evaluate the efficiency of intradermal delivery of liposomes. Liposomes were efficiently taken up by CD1a(+) and especially CD14(+) dermal DCs. Induction of CD8(+) T-cell responses by emigrated dermal DCs was significantly higher when MPLA was incorporated into the liposomes as compared with non-modified liposomes or co-administration of soluble MPLA. Thus, the modification of antigen-carrying liposomes with TLR ligand MPLA significantly enhances tumor-specific T-cell responses by dermal DCs and is an attractive vaccination strategy in human skin. PMID:26083554

  14. Antigen-specific murine T cell clones produce soluble interleukin 2 receptor on stimulation with specific antigens

    International Nuclear Information System (INIS)

    In this study, monoclonal antibodies were used to the murine IL 2 receptor (IL 2R) termed 3C7 and 7D4, which bind to different epitopes on the murine IL 2R, to develop an ELISA to measure soluble murine IL 2R. Surprisingly, stimulated murine spleen cells not only expressed cell-associated IL 2R, but also produced a considerable level of cellfree IL 2R in the culture supernatant fluid. To assess the fine specificity of this response, myoglobin-immune murine T cell clones were stimulated with appropriate or inappropriate antigen and syngeneic or allogeneic presenting cells. Proliferation, measured by [3H] thymidine incorporation, and levels of soluble IL 2R were determined at day 4. The production of soluble IL2R displayed the same epitope fine specificity, genetic restriction, and antigen dose-response as the proliferative response. Indeed, in some cases there was sharper discrimination of epitope specificity and genetic restriction with the soluble IL 2R levels. There was also reproducible clone-to-clone variation in the amount of soluble receptor produced in response to antigen among 12 T cell clones and lines tested. In time course experiments, proliferation was greatest at day 3, whereas soluble IL 2R levels continued to rise in subsequent days. To the authors' knowledge, this is the first demonstration of release of secretion of soluble IL 2R by murine T cells, and the first demonstration of the fine specificity and genetic restriction of the induction of soluble IL 2R by specific antigen

  15. Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation

    OpenAIRE

    Kawasaki, Norihito; Vela, Jose Luis; Nycholat, Corwin M.; Rademacher, Christoph; Khurana, Archana; van Rooijen, Nico; Crocker, Paul R.; Kronenberg, Mitchell; Paulson, James C.

    2013-01-01

    Invariant natural killer T (iNKT) cells induce a protective immune response triggered by foreign glycolipid antigens bound to CD1d on antigen-presenting cells (APCs). A limitation of using glycolipid antigens to stimulate immune responses in human patients has been the inability to target them to the most effective APCs. Recent studies have implicated phagocytic CD169+ macrophages as major APCs in lymph nodes for priming iNKT cells in mice immunized with glycolipid antigen in particulate form...

  16. Antigen-induced and non-antigen-induced histamine release from rat mast cells sensitized with mouse antiserum.

    Directory of Open Access Journals (Sweden)

    Kurose,Masao

    1981-10-01

    Full Text Available Marked IgE-mediated histamine release from rat mast cells sensitized in vitro with mouse antiserum occurs in the presence of added Ca++ and phosphatidylserine (PS, although a considerable degree of antigen-induced histamine release which may utilize intracellular or cell-bound calcium is also observed. The decay in the responsiveness to Ca++ of the sensitized cells stimulated by antigen in Ca++-free medium in the presence of PS is relatively slow, and maximum release is produced by Ca++ added 1 min after antigen. Histamine release also occurs when Ca++ is added after PS in the absence of antigen to the sensitized cells suspended in Ca++-free medium. Unlike the antigen-induced release, the intensity of this non-antigen-induced release varies depending on both mast-cell and antiserum pools. A heat-labile factor(s, which is different from antigen-specific IgE antibody and is also contained in normal mouse serum, is involved in this reaction. In the antigen-nondependent (PS + Ca++-induced release, no decay in the responsiveness to Ca++ is observed after PS addition. Both the antigen-induced and non-antigen-induced release are completed fairly rapidly and are dependent of temperature, pH and energy.

  17. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.

    Science.gov (United States)

    Dai, Hanren; Wang, Yao; Lu, Xuechun; Han, Weidong

    2016-07-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  18. Discovery of T cell antigens by high-throughput screening of synthetic minigene libraries.

    Directory of Open Access Journals (Sweden)

    Brian D Hondowicz

    Full Text Available The identification of novel T cell antigens is central to basic and translational research in autoimmunity, tumor immunology, transplant immunology, and vaccine design for infectious disease. However, current methods for T cell antigen discovery are low throughput, and fail to explore a wide range of potential antigen-receptor interactions. To overcome these limitations, we developed a method in which programmable microarrays are used to cost-effectively synthesize complex libraries of thousands of minigenes that collectively encode the content of hundreds of candidate protein targets. Minigene-derived mRNA are transfected into autologous antigen presenting cells and used to challenge complex populations of purified peripheral blood CD8+ T cells in multiplex, parallel ELISPOT assays. In this proof-of-concept study, we apply synthetic minigene screening to identify two novel pancreatic islet autoantigens targeted in a patient with Type I Diabetes. To our knowledge, this is the first successful screen of a highly complex, synthetic minigene library for identification of a T cell antigen. In principle, responses against the full protein complement of any tissue or pathogen can be assayed by this approach, suggesting that further optimization of synthetic libraries holds promise for high throughput antigen discovery.

  19. Langerhans Cell Histiocytosis Presenting as Uncontrolled Asthma

    Directory of Open Access Journals (Sweden)

    Frederic A. Rawlins

    2013-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is an uncommon disorder affecting primarily young adult smokers. It is characterized by abnormal proliferation of Langerhans cells, specialized monocyte-macrophage lineage antigen-presenting cells. LCH can affect the lungs in isolation or as part of a systemic disease. Most commonly, the disease presents in the third or fourth decade without gender predominance. Symptoms typically include dyspnea and cough. Commonly, physical examination is unremarkable but cor pulmonale may be observed in advanced disease. The chest radiograph is typically abnormal with nodular or interstitial infiltrates and cystic changes. High-resolution computed tomography of the chest with these findings in the middle and upper lobes of an adult smoker is virtually diagnostic of LCH. Pulmonary function assessment is variable. Asthma has rarely been reported in association with this disorder. There are only three reported cases of the diagnosis of concomitant asthma which have been made in association with the diagnosis of LCH. We present a case in which our patient presented with signs and symptoms of asthma to include confirmatory findings of airway hyperresponsiveness. The diagnosis of LCH was established after the patient failed to respond to conventional treatment for asthma, and further evaluation was completed.

  20. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells.

    OpenAIRE

    Gómez, A M; Rhodes, J C; Deepe, G S

    1991-01-01

    In order to identify T-cell antigens from Histoplasma capsulatum yeast cells, we prepared a detergent extract of the cell wall and cell membrane of yeast-phase H. capsulatum G217B and analyzed its antigenicity and immunogenicity. Mice injected with viable H. capsulatum yeast cells or with 500 or 1,000 micrograms of the extract mounted a delayed-type hypersensitivity response to solubilized cell wall and cell membrane. Vaccination with this antigenic preparation conferred a protective immune r...

  1. Development of antibodies to human embryonic stem cell antigens

    OpenAIRE

    Stanley Marisa; Rao Mahendra S; Olson Judith M; Cai Jingli; Taylor Eva; Ni Hsiao-Tzu

    2005-01-01

    Abstract Background Using antibodies to specific protein antigens is the method of choice to assign and identify cell lineage through simultaneous analysis of surface molecules and intracellular markers. Embryonic stem cell research can be benefited from using antibodies specific to transcriptional factors/markers that contribute to the "stemness" phenotype or critical for cell lineage. Results In this report, we have developed and validated antibodies (either monoclonal or polyclonal) specif...

  2. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation

    DEFF Research Database (Denmark)

    Bassani-Sternberg, Michal; Pletscher-Frankild, Sune; Jensen, Lars Juhl; Mann, Matthias

    2015-01-01

    HLA class I molecules reflect the health state of cells to cytotoxic T cells by presenting a repertoire of endogenously derived peptides. However, the extent to which the proteome shapes the peptidome is still largely unknown. Here we present a high-throughput mass-spectrometry-based workflow that...

  3. Lewis (y) Antigen Overexpression Increases the Expression of MMP-2 and MMP-9 and Invasion of Human Ovarian Cancer Cells

    OpenAIRE

    Shulan Zhang; Masao Iwamori; Changzhi Wang; Yifei Wang; Chuan Liu; Song Gao; Lili Gao; Bei Lin; Limei Yan

    2010-01-01

    Lewis (y) antigen is a difucosylated oligosaccharide present on the plasma membrane, and its overexpression is frequently found in human cancers and has been shown to be associated with poor prognosis. Our previous studies have shown that Lewis (y) antigen plays a positive role in the process of invasion and metastasis of ovarian cancer cells. However, the mechanisms by which Lewis (y) antigen enhances the invasion and tumor metastasis are still unknown. In this study, we established a stable...

  4. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels; Skou, Rikke Birgitte Lyngaa; Donia, Marco; Ellebæk, Eva; Svane, Inge Marie; Schumacher, Ton N; Thor Straten, Per; Hadrup, Sine Reker

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma......-associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined....

  5. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  6. Immunochemical properties of antigen-specific monkey T-cell suppressor factor induced with a Streptococcus mutans antigen.

    OpenAIRE

    Lamb, J R; Zanders, E D; Kontiainen, S; Lehner, T.

    1980-01-01

    Antigen-specific suppressor factor could be released from monkey suppressor T cells induced in vitro with a protein antigen isolated from the carcinogenic bacterium Streptococcus mutans. The suppressor activity was due to the factor itself and not to carryover of free antigen. Characterization of the monkey factor revealed it to have a molecular weight of ca. 70,000, and to contain a constant region and determinants encoded by the major histocompatibility complex. The presence of immunoglobul...

  7. Comparison of melanoma antigens in whole tumor vaccine to those from IIB-MEL-J cells.

    Science.gov (United States)

    McGee, J M; Patten, M R; Malnar, K F; Price, J A; Mayes, J S; Watson, G H

    1999-06-01

    Immunotherapy for melanoma shows promise. Our previous whole tumor (WT) vaccine was noted to have positive clinical effects. We have now developed a new, safer melanoma vaccine that is derived from IIB-MEL-J tissue culture (TC) cells. In this study, we compare by Western blot analyses the antigens in the WT vaccine to antigens in the TC vaccine. Sera from 12 WT vaccine recipients, 8 melanoma patients who received no immunotherapy, and 8 controls served as a source of antibodies to investigate potential antigens in the vaccines. Three major antigenic peptides with approximate molecular weighs of 46, 40, and 36 kDA were present in both vaccines, while two other antigenic peptides with approximate molecular weighs of 68 and 48 kDA were present only in the TC vaccine. The reaction was similar between the patients who received the WT vaccine and those who did not receive the vaccine. Some of the individuals who did not have melanoma showed some reaction, but not to the extent of the melanoma patients. The intensity of immunostaining was greater for the TC vaccine when compared to the WT vaccine, indicating that these proteins are in a higher concentration in the TC vaccine. This new vaccine from IIB-MEL-J tissue culture cells provides a higher yield and a much more consistent source of potentially clinically relevant antigens without risk of infection or contamination by other irrelevant materials. PMID:10850304

  8. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  9. Hepatitis B virus antigens impair NK cell function.

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Zhang, Cai; Xiao, Min; Zhang, Jian

    2016-09-01

    An inadequate immune response of the host is thought to be a critical factor causing chronic hepatitis B virus (CHB) infection. Natural killer (NK) cells, as one of the key players in the eradication and control of viral infections, were functionally impaired in CHB patients, which might contribute to viral persistence. Here, we reported that HBV antigens HBsAg and HBeAg directly inhibited NK cell function. HBsAg and/or HBeAg blocked NK cell activation, cytokine production and cytotoxic granule release in human NK cell-line NK-92 cells, which might be related to the downregulation of activating receptors and upregulation of inhibitory receptor. Furthermore, the underlying mechanisms likely involved the suppression of STAT1, NF-κB and p38 MAPK pathways. These findings implicated that HBV antigen-mediated inhibition of NK cells might be an efficient strategy for HBV evasion, targeting the early antiviral responses mediated by NK cells and resulting in the establishment of chronic virus infection. Therefore, this study revealed the relationship between viral antigens and human immune function, especially a potential important interaction between HBV and innate immune responses. PMID:27341035

  10. Limited transplantation of antigen-expressing hematopoietic stem cells induces long-lasting cytotoxic T cell responses.

    Directory of Open Access Journals (Sweden)

    Warren L Denning

    Full Text Available Harnessing the ability of cytotoxic T lymphocytes (CTLs to recognize and eradicate tumor or pathogen-infected cells is a critical goal of modern immune-based therapies. Although multiple immunization strategies efficiently induce high levels of antigen-specific CTLs, the initial increase is typically followed by a rapid contraction phase resulting in a sharp decline in the frequency of functional CTLs. We describe a novel approach to immunotherapy based on a transplantation of low numbers of antigen-expressing hematopoietic stem cells (HSCs following nonmyeloablative or partially myeloablative conditioning. Continuous antigen presentation by a limited number of differentiated transgenic hematopoietic cells results in an induction and prolonged maintenance of fully functional effector T cell responses in a mouse model. Recipient animals display high levels of antigen-specific CTLs four months following transplantation in contrast to dendritic cell-immunized animals in which the response typically declines at 4-6 weeks post-immunization. Majority of HSC-induced antigen-specific CD8+ T cells display central memory phenotype, efficiently kill target cells in vivo, and protect recipients against tumor growth in a preventive setting. Furthermore, we confirm previously published observation that high level engraftment of antigen-expressing HSCs following myeloablative conditioning results in tolerance and an absence of specific cytotoxic activity in vivo. In conclusion, the data presented here supports potential application of immunization by limited transplantation of antigen-expressing HSCs for the prevention and treatment of cancer and therapeutic immunization of chronic infectious diseases such as HIV-1/AIDS.

  11. Adsorption of multimeric T cell antigens on carbon nanotubes

    DEFF Research Database (Denmark)

    Fadel, Tarek R; Li, Nan; Shah, Smith;

    2013-01-01

    Antigen-specific activation of cytotoxic T cells can be enhanced up to three-fold more than soluble controls when using functionalized bundled carbon nanotube substrates ((b) CNTs). To overcome the denaturing effects of direct adsorption on (b) CNTs, a simple but robust method is demonstrated to...... stabilize the T cell stimulus on carbon nanotube substrates through non-covalent attachment of the linker neutravidin....

  12. Trafficking of B cell antigen in lymph nodes

    DEFF Research Database (Denmark)

    Gonzalez, Santiago F.; Degn, Søren Egedal; Pitcher, Lisa A.; Woodruff, Matthew; Heesters, Balthasar A.; Carroll, Michael C.

    2011-01-01

    The clonal selection theory first proposed by Macfarlane Burnet is a cornerstone of immunology ( 1 ). At the time, it revolutionized the thinking of immunologists because it provided a simple explanation for lymphocyte specificity, immunological memory, and elimination of self-reactive clones ( 2...... microscopy ( 4, 5 ) have provided new insights into the trafficking of B cells and their antigen. In this review, we summarize these advances in the context of our current view of B cell circulation and activation....

  13. Salt bridge residues between I-Ak dimer of dimers alpha-chains modulate antigen presentation.

    Science.gov (United States)

    Yadati, S; Nydam, T; Demian, D; Wade, T K; Gabriel, J L; Barisas, B G; Wade, W F

    1999-03-15

    Class II dimers of dimers are predicted to have functional significance in antigen presentation. The putative contact amino acids of the I-Ak class II dimer of dimers have been identified by molecular modeling based on the DR1 crystal structure (Nydam et al., Int. Immunol. 10, 1237,1998). We have previously reported the role in antigen presentation of dimer of dimers contact amino acids located in the C-terminal domains of the alpha- and beta-chains of class II. Our calculations show that residues Ealpha89 and Ralpha145 in the alpha2-domain form an inter alpha-chain salt bridge between pairs of alphabeta-heterodimers. Other residues, Qalpha92 and Nalpha115, may be involved in close association in that part of the alpha-chain. We investigated the role of these amino acids on class II expression and antigen presentation. Class II composed of an Ealpha89K substituted alpha-chain paired with a wt beta-chain exhibited inhibited antigen presentation and expression of alpha-chain serologic epitopes. In contrast, mutation of Ralpha145E had less affect on antigen presentation and did not affect I-Ak serologic epitopes. Interchanging charges of the salt bridge residues by expressing both Ralpha145E and Ealpha89K on the same chain obviated the large negative effect of the Ealpha89K mutation on antigen presentation but not on the serologic epitopes. Our results are similar for those reported for mutation of DR3's inter-chain salt bridge with the exception that double mutants did not moderate the DR3 defect. Interestingly, the amino acids differences between I-A and DR change the location of the inter-chain salt bridges. In DR1 these residues are located at positions Ealpha88 and Kalpha111; in I-Ak these residues are located at position Ealpha89 and Ralpha145. Inter alpha-chain salt bridges are thus maintained in various class II molecules by amino acids located in different parts of the alpha2-domain. This conservation of structure suggests that considerable functional

  14. Dendritic cells engineered to express defined allo-HLA peptide complexes induce antigen-specific cytotoxic T cells efficiently killing tumour cells

    DEFF Research Database (Denmark)

    Stronen, E; Abrahamsen, I W; Gaudernack, G; Wälchli, S; Munthe, E; Buus, S; Johansen, F-E; Lund-Johansen, F; Olweus, J

    2009-01-01

    , efficiently present externally loaded peptides from the antigen, Melan-A/MART-1 to T cells from HLA-A*0201-negative donors. CD8(+) T cells binding HLA-A*0201/MART-1 pentamers were detected already after 12 days of co-culture in 11/11 donors. The majority of cells from pentamer(+) cell lines were CTL and...... efficiently killed HLA-A*0201(+) melanoma cells, whilst sparing HLA-A*0201(+) B-cells. Allo-restricted CTL specific for peptides from the leukaemia-associated antigens CD33 and CD19 were obtained with comparable efficiency. Collectively, the results show that dendritic cells engineered to express defined allo...

  15. Cutaneous lymphocyte antigen expression on human effector B cells depends on the site and on the nature of antigen encounter.

    Science.gov (United States)

    Kantele, Anu; Savilahti, Erkki; Tiimonen, Heidi; Iikkanen, Katja; Autio, Soile; Kantele, Jussi M

    2003-12-01

    In contrast to T cells, information on skin-homing B cells expressing the cutaneous lymphocyte antigen (CLA) is sparse. CLA expression on human B cells was investigated among circulating immunoglobulin-secreting cells (ISC) and among antigen-specific antibody-secreting cells (ASC) elicited by parenteral, oral or rectal primary immunization, or by parenteral or oral secondary immunization with Salmonella typhi Ty21a. CLA expression was examined by combining cell sorting with an enzyme-linked immunospot assay. Among all ISC, the proportion of CLA(+) cells was 13-21%. Parenteral immunization induced antigen-specific ASC of which 13% were CLA(+), while oral and rectal immunizations were followed by only 1% of CLA(+) ASC (p<0.001). Oral re-immunization was followed by an up-regulation of CLA (34-48%) regardless of the route of priming. Parenteral re-immunization elicited ASC of which 9-14% were CLA(+). In conclusion, the expression of CLA on human effector B cells depends on the site of antigen encounter: intestinal stimulation elicits cells with no CLA, while parenteral encounter elicits significant numbers of CLA(+) cells. Even though primary antigen encounter in the intestine failed to stimulate CLA expression, up-regulation of CLA was found upon intestinal antigen re-encounter. These findings may be of relevance in the pathogenesis of some cutaneous disorders. PMID:14635035

  16. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  17. Coupling of HIV-1 Antigen to the Selective Autophagy Receptor SQSTM1/p62 Promotes T-Cell-Mediated Immunity

    Science.gov (United States)

    Andersen, Aram Nikolai; Landsverk, Ole Jørgen; Simonsen, Anne; Bogen, Bjarne; Corthay, Alexandre; Øynebråten, Inger

    2016-01-01

    Vaccines aiming to promote T-cell-mediated immune responses have so far showed limited efficacy, and there is a need for novel strategies. Studies indicate that autophagy plays an inherent role in antigen processing and presentation for CD4+ and CD8+ T cells. Here, we report a novel vaccine strategy based on fusion of antigen to the selective autophagy receptor sequestosome 1 (SQSTM1)/p62. We hypothesized that redirection of vaccine antigen from proteasomal degradation into the autophagy pathway would increase the generation of antigen-specific T cells. A hybrid vaccine construct was designed in which the antigen is fused to the C-terminus of p62, a signaling hub, and a receptor that naturally delivers ubiquitinated cargo for autophagic degradation. Fusion of the human immunodeficiency virus-1 antigen Gagp24 to p62 resulted in efficient antigen delivery into the autophagy pathway. Intradermal immunization of mice revealed that, in comparison to Gagp24 delivered alone, fusion to p62 enhanced the number of Gagp24-specific interferon-γ-producing T cells, including CD8+ T cells. The strategy may also have the potential to modulate the antigenic peptide repertoire. Because p62 and autophagy are highly conserved between species, we anticipate this strategy to be a candidate for the development of T-cell-based vaccines in humans.

  18. Analysis of expression profiles of MAGE-A antigens in oral squamous cell carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Reichert Torsten E

    2009-04-01

    Full Text Available Abstract Background The immunological response to solid tumours is insufficient. Therefore, tumour specific antigens have been explored to facilitate the activation of the immune system. The cancer/testis antigen class of MAGE-A antigens is a possible target for vaccination. Their differential expression profiles also modulate the course of the cancer disease and its response to antineoplastic drugs. Methods The expression profiles of MAGE-A2, -A3, -A4, -A6 and -A10 in five own oral squamous cell carcinoma cell lines were characterised by rt-PCR, qrt-PCR and immunocytochemistry with a global MAGE-A antibody (57B and compared with those of an adult keratinocyte cell line (NHEK. Results All tumour cell lines expressed MAGE-A antigens. The antigens were expressed in groups with different preferences. The predominant antigens expressed were MAGE-A2, -A3 and -A6. MAGE-A10 was not expressed in the cell lines tested. The MAGE-A gene products detected in the adult keratinocyte cell line NHEK were used as a reference. Conclusion MAGE-A antigens are expressed in oral squamous cell carcinomas. The expression profiles measured facilitate distinct examinations in forthcoming studies on responses to antineoplastic drugs or radiation therapy. MAGE-A antigens are still an interesting aim for immunotherapy.

  19. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S;

    1987-01-01

    A detailed analysis of the residues within an immunogenic peptide that endow it with the capacity to interact with Ia and to be recognized by T cells is presented. Ia interacts with only a few of the peptide residues and overall exhibits a very broad specificity. Some residues appear to interact...... both with Ia and with T cells, leading to a model in which a peptide antigen is 'sandwiched' between Ia and the T-cell receptor....

  20. Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma

    International Nuclear Information System (INIS)

    To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal in any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.

  1. Bystander T cells in human immune responses to dengue antigens

    Directory of Open Access Journals (Sweden)

    Suwannasaen Duangchan

    2010-09-01

    Full Text Available Abstract Background Previous studies of T cell activation in dengue infection have focused on restriction of specific T cell receptors (TCRs and classical MHC molecules. However, bystander T cell activation, which is TCR independent, occurs via cytokines in other viral infections, both in vitro and in vivo, and enables T cells to bypass certain control checkpoints. Moreover, clinical and pathological evidence has pointed to cytokines as the mediators of dengue disease severity. Therefore, we investigated bystander T cell induction by dengue viral antigen. Results Whole blood samples from 55 Thai schoolchildren aged 13-14 years were assayed for in vitro interferon-gamma (IFN-γ induction in response to inactivated dengue serotype 2 antigen (Den2. The contribution of TCR-dependent and independent pathways was tested by treatment with cyclosporin A (CsA, which inhibits TCR-dependent activation of T cells. ELISA results revealed that approximately 72% of IFN-γ production occurred via the TCR-dependent pathway. The major IFN-γ sources were natural killer (NK (mean ± SE = 55.2 ± 3.3, CD4+T (24.5 ± 3.3 and CD8+T cells (17.9 ± 1.5, respectively, as demonstrated by four-color flow cytometry. Interestingly, in addition to these cells, we found CsA-resistant IFN-γ producing T cells (CD4+T = 26.9 ± 3.6% and CD8+T = 20.3 ± 2.1% implying the existence of activated bystander T cells in response to dengue antigen in vitro. These bystander CD4+ and CD8+T cells had similar kinetics to NK cells, appeared after 12 h and were inhibited by anti-IL-12 neutralization indicating cytokine involvement. Conclusions This study described immune cell profiles and highlighted bystander T cell activation in response to dengue viral antigens of healthy people in an endemic area. Further studies on bystander T cell activation in dengue viral infection may reveal the immune mechanisms that protect or enhance pathogenesis of secondary dengue infection.

  2. Serological identification of tumor antigens of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Shimada, Hideaki; Nakashima, Kazue; Ochiai, Takenori; Nabeya, Yoshihiro; Takiguchi, Masaki; Nomura, Fumio; Hiwasa, Takaki

    2005-01-01

    Autoantibodies are often detected in the patients with esophageal cancer. We applied serological analysis of recombinant cDNA expression libraries (SEREX) to a case of esophageal squamous cell carcinoma in order to identify tumor antigens. A cDNA library derived from an esophageal cancer cell line was bacterially expressed and screened for interaction with antibodies in five allogeneic sera of patients with esophageal squamous cell carcinoma. To examine the specific immunoreactivity of the antigens, sera from 16 more patients with esophageal squamous cell carcinoma, 16 patients with gastric cancer, 16 patients with colon cancer, 16 patients with breast cancer and 37 healthy volunteers were screened. We identified 11 independent cDNA clones that potentially encoded esophageal cancer tumor antigens. The identified cDNA clones were SURF1, HOOK2, CENP-F, ZIC2, hCLA-iso, Ki-1/57, enigma, HCA25a, SPK and two EST clones named LOC146223 and AGENCOURT_7565913. The sero-positive rates of antibodies against SURF1 (48%), LOC146223 (38%), HOOK2 (14%) and AGENCOURT_7565913 (14%) were significantly higher in esophageal cancer patients than in healthy controls. At least one of these antibodies was detected in 18 (86%) of 21 sera from esophageal cancer patients. A disease-specific humoral immune response against SURF1, LOC146223, HOOK2 or AGENCOURT_7565913 was observed in most patients with esophageal squamous cell carcinoma. Antibodies against these SEREX antigens may represent a pool of candidates for serum tumor markers of esophageal squamous cell carcinoma. PMID:15586227

  3. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G; Abal, A T; Ravn, P; Oftung, F; Andersen, P

    1998-01-01

    GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well......-induced proliferation and IFN-gamma secretion showed that the most frequently recognized antigen was ESAT-6, followed by MPT59, GroES, MPB70, MPT64, DnaK, GroEL and PstS. The frequency of ESAT-6 responders, as measured both by proliferation (18/19) and secretion of IFN-gamma (16/19) was comparable to the results...

  4. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition

    DEFF Research Database (Denmark)

    Foged, Camilla; Arigita, Carmen; Sundblad, Anne; Jiskoot, Wim; Storm, Gert; Frøkjær, Sven

    Vaccine efficacy might be improved by exploiting the potent antigen presenting properties of dendrite cells (DCs), since their ability to stimulate specific major histocompatibility complex-restricted immune responses has been well documented during the recent years. In that light, we investigated...

  5. Modification of the immunogenicity and antigenicity of rat hepatoma cells

    International Nuclear Information System (INIS)

    γ-irradiated rat hepatoma cells are immunogenic in syngeneic WAB/Not rats, so that immunized animals are protected against tumour-cell challenge and circulating tumour-specific antibody is produced. Treatment of the immunizing cells with glutaraldehyde at concentrations of 0.001% or greater rendered these cells non-protective and unable to induce significant formation of specific antibody. However, tumour-specific antigens were shown to be expressed upon treated cells; they specifically bound tumour-specific antibody from syngeneic immune sera assessed in indirect membrane-immunofluoresence tests. Also, these cells specifically absorbed antibody from immune or tumour-bearer sera, as demonstrated in the indirect membrane-immunofluorescence test or a complement-dependent 51Cr-release test. Alloantigen expression was not influenced by a glutaraldehyde treatment, although glutaraldehyde-treated hepatoma cells failed to induce alloantibody formation in KX/Not rats. Polyacrylamide-gel electrophoresis of treated cells, surface-labelled with 125I, indicated that extensive cross-linking of the surface protein occurred as a result of glutaraldehyde treatment. These results establish that although the expression of a tumour-specific antigen is necessary for the induction of immuno-protection against tumour-cell challenge, this alone is not a sufficient condition for eliciting tumour immunity. (author)

  6. Isolation of additional monoclonal antibodies directed against cell surface antigens of Myxococcus xanthus cells undergoing submerged development.

    OpenAIRE

    Gill, J.S.; Dworkin, M

    1988-01-01

    Thirteen additional monoclonal antibodies directed against cell surface antigens of Myxococcus xanthus cells undergoing submerged development were isolated and partially characterized. As measured by quantitative enzyme-linked immunosorbent assay, 10 of these antibodies recognized antigens common to both vegetatively growing cells and cells undergoing submerged development; 3 antibodies recognized antigens specific to developing cells. Five antigens were revealed as single bands on Western bl...

  7. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses

    Science.gov (United States)

    Shorter, Shayla K.; Schnell, Frederick J.; McMaster, Sean R.; Pinelli, David F.; Andargachew, Rakieb; Evavold, Brian D.

    2016-01-01

    T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant. PMID:26915099

  8. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  9. Modeling the presentation of C3d-coated antigen by B lymphocytes: enhancement by CR1/2-BCR co-ligation is selective for the co-ligating antigen.

    Science.gov (United States)

    Prechl, József; Baiu, Dana C; Horváth, Attila; Erdei, Anna

    2002-03-01

    We have used a set of single-chain variable fragment antibodies (sc) genetically fused with an influenza hemagglutinin-derived peptide as a means to investigate the role of CR1 and CR2 in antigen presentation by B cells. When incubated with the B cell lymphoma 2PK3, peptide-containing sc specific for either CR1 or CR1/2 mediated activation of the hemagglutinin peptide-specific T cell line IP-12-7, as assessed by IL-2 production. Efficient presentation was dependent on the binding of the constructs to CR1/2, implying that receptor-mediated endocytosis is responsible for the effect. Cross-linkage of CR1/2 or CD19 by mAb did not increase the extent of T cell activation. However, when CR1/2 was co-ligated with the BCR--using either polyclonal goat anti-mouse IgG or recombinant protein LA--the antigen concentration required to activate T cells decreased by two orders of magnitude. Moreover, this enhancement was selective for the antigen included in these complexes and did not affect the presentation of a free peptide or of antigen bound to CR1/2 excluded from the complexes. These results suggest that B cells may bind various C3d-coated antigens at a time, but only the one which reacts with the BCR will be processed with high efficiency. This mechanism may ensure the specificity of cognate T cell help. PMID:11867560

  10. Germinal center B cells recognize antigen through a specialized immune synapse architecture.

    Science.gov (United States)

    Nowosad, Carla R; Spillane, Katelyn M; Tolar, Pavel

    2016-07-01

    B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we found that, in contrast with naive and memory B cells, which gathered antigen toward the synapse center before internalization, germinal center (GC) B cells extracted antigen by a distinct pathway using small peripheral clusters. Both naive and GC B cell synapses required proximal BCR signaling, but GC cells signaled less through the protein kinase C-β-NF-κB pathway and produced stronger tugging forces on the BCR, thereby more stringently regulating antigen binding. Consequently, GC B cells extracted antigen with better affinity discrimination than naive B cells, suggesting that specialized biomechanical patterns in B cell synapses regulate T cell-dependent selection of high-affinity B cells in GCs. PMID:27183103

  11. Boosting the MHC class II-restricted tumor antigen presentation to CD4+ T helper cells: a critical issue for triggering protective immunity and re-orienting the tumor microenvironment toward an anti-tumor state

    Directory of Open Access Journals (Sweden)

    RobertoAccolla

    2014-02-01

    Full Text Available Although the existence of an immune response against tumor cells is well documented, the fact that tumors take off in cancer patients indicates that neoplastic cells can circumvent this response. Over the years many investigators have described strategies to rescue the anti-tumor immune response with the aim of creating specific and long lasting protection against the disease. When exported to human clinical settings, these strategies have revealed in most cases a very limited, if any, positive outcome.We believe that the failure is mostly due to the inadequate triggering of the CD4+ T helper cell (TH arm of the adaptive immunity, as TH cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells. In this review we focus on novel strategies that by stimulating MHC class II-restricted activation of TH cells generate a specific and persistent adaptive immunity against the tumor.This point is of critical importance for both preventive or therapeutic anti-tumor vaccination protocols, because adaptive immunity with its capacity to produce specific, long lasting protection and memory responses, is indeed the final goal of vaccination. We will discuss data from our as well as other laboratories which strongly suggest that triggering a specific and persistent anti-tumor CD4+ TH cell response stably modify not only the tumor microenvironment but also tumor-dependent extratumor microenvironments eliminating and/or reducing the blood-derived tumor infiltrating cells that may have a pro-tumor growth function such as regulatory CD4+/CD25+ T cells (Tregs and myeloid-derived suppressor cells (MDSC. Within this frame therefore, we believe that the establishment of a pro-tumor environment is not the cause but simply the consequence of the tumor strategy to primarily counteract components of the adaptive cellular immunity, particularly TH lymphocytes.

  12. Interferon-gamma-like molecule induces Ia antigens on cultured mast cell progenitors.

    OpenAIRE

    Wong, G H; Clark-lewis, I.; McKimm-Breschkin, J L; Schrader, J W

    1982-01-01

    Persisting (P) cells (murine cells that resemble mast cells and grow continuously in vitro for prolonged periods in the presence of a specific growth factor) did not express detectable levels of Ia antigens (murine class II major histocompatibility antigens) when their growth was supported by partially purified P cell-stimulating factor. However, when these Ia-negative P cells were transferred to medium conditioned by concanavalin A-stimulated spleen cells, Ia antigens appeared within 24 hr. ...

  13. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    Science.gov (United States)

    Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation. PMID:26628378

  14. Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Kvistborg, Pia; Frøsig, Thomas Mørch;

    2012-01-01

    -dimensional combinatorial matrix, these eight fluorochromes are combined to generate 28 unique two-color codes. By the use of combinatorial encoding, a large number of different T cell populations can be detected in a single sample. The method can be used for T cell epitope mapping, and also for the monitoring of CD8......Fluorescently labeled multimeric complexes of peptide-MHC, the molecular entities recognized by the T cell receptor, have become essential reagents for detection of antigen-specific CD8(+) T cells by flow cytometry. Here we present a method for high-throughput parallel detection of antigen......-specific T cells by combinatorial encoding of MHC multimers. Peptide-MHC complexes are produced by UV-mediated MHC peptide exchange and multimerized in the form of streptavidin-fluorochrome conjugates. Eight different fluorochromes are used for the generation of MHC multimers and, by a two...

  15. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G; Abal, A T; Ravn, P; Oftung, F; Andersen, P

    1998-01-01

    We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived (r......GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen...

  16. Emerging roles for antigen presentation in establishing host-microbiome symbiosis.

    Science.gov (United States)

    Bessman, Nicholas J; Sonnenberg, Gregory F

    2016-07-01

    Trillions of beneficial bacteria inhabit the intestinal tract of healthy mammals from birth. Accordingly, mammalian hosts have evolved a series of complementary and redundant pathways to limit pathologic immune responses against these bacteria, while simultaneously protecting against enteric pathogen invasion. These pathways can be generically responsive to the presence of any commensal bacteria and innate in nature, as for IL-22-related pathways. Alternatively, specific bacterial antigens can drive a distinct set of adaptive immune cell responses, including IgA affinity maturation and secretion, and a recently described pathway of intestinal selection whereby MHCII(+) ILC3 deletes commensal bacteria-reactive CD4 T cells. These pathways can either promote or inhibit colonization by specific subsets of commensal bacteria, and cooperatively maintain intestinal homeostasis. In this review, we will highlight recent developments in understanding how these diverse pathways complement each other to cooperatively shape the symbiotic relationship between commensal bacteria and mammalian hosts. PMID:27319348

  17. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus;

    2014-01-01

    microsomal triglyceride transfer protein (MTP), which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen...

  18. Memory and effector T cells modulate subsequently primed immune responses to unrelated antigens

    OpenAIRE

    Tian, Jide D; LU, Y. X.; Hanssen, L.; Dang, H.; Kaufman, D L

    2003-01-01

    Memory and effector T cells modulate subsequently primed T cell responses to the same antigen. However, little is known about the impact of pre-existing memory and effector T cell immunity on subsequently primed immune responses to unrelated antigens. Here, we show that an antigen-primed first wave of Th1 and Th2 immunity enhanced or inhibited the subsequently primed T cell immunity to an unrelated Antigen, depending on whether the second antigen was administered in the same or opposite type ...

  19. Antigen-sensitized CD4+CD62Llow memory/effector T helper 2 cells can induce airway hyperresponsiveness in an antigen free setting

    Directory of Open Access Journals (Sweden)

    Nagatani Katsuya

    2005-05-01

    Full Text Available Abstract Background Airway hyperresponsiveness (AHR is one of the most prominent features of asthma, however, precise mechanisms for its induction have not been fully elucidated. We previously reported that systemic antigen sensitization alone directly induces AHR before development of eosinophilic airway inflammation in a mouse model of allergic airway inflammation, which suggests a critical role of antigen-specific systemic immune response itself in the induction of AHR. In the present study, we examined this possibility by cell transfer experiment, and then analyzed which cell source was essential for this process. Methods BALB/c mice were immunized with ovalbumin (OVA twice. Spleen cells were obtained from the mice and were transferred in naive mice. Four days later, AHR was assessed. We carried out bronchoalveolar lavage (BAL to analyze inflammation and cytokine production in the lung. Fluorescence and immunohistochemical studies were performed to identify T cells recruiting and proliferating in the lung or in the gut of the recipient. To determine the essential phenotype, spleen cells were column purified by antibody-coated microbeads with negative or positive selection, and transferred. Then, AHR was assessed. Results Transfer of spleen cells obtained from OVA-sensitized mice induced a moderate, but significant, AHR without airway antigen challenge in naive mice without airway eosinophilia. Immunization with T helper (Th 1 elicited antigen (OVA with complete Freund's adjuvant did not induce the AHR. Transferred cells distributed among organs, and the cells proliferated in an antigen free setting for at least three days in the lung. This transfer-induced AHR persisted for one week. Interleukin-4 and 5 in the BAL fluid increased in the transferred mice. Immunoglobulin E was not involved in this transfer-induced AHR. Transfer of in vitro polarized CD4+ Th2 cells, but not Th1 cells, induced AHR. We finally clarified that CD4+CD62Llow memory

  20. Relationship between Fc receptors, antigen-binding sites on T and B cells, and H-2 complex-associated determinants.

    Science.gov (United States)

    Basten, A; Miller, J F; Abraham, R

    1975-03-01

    The relationship between H-2 complex-associated determinants, Fc receptors, and specific antigen-recognition sites on T and B cells was examined by binding and functional assays. The Fc receptor was detected by radiolabeled immune complexes or aggregated human IgG. Both these reagents selectively bound to B cells, not to T cells. When spleen cells, from mice primed to several antigens, were exposed to highly substituted radioactive aggregates, their capacity to transfer both a direct and indirect plaque-forming cell response to these antigens was abrogated. Addition of B cells, but not of T cells, restored responsiveness. Complexed Ig binding to Fc receptors was prevented by pretreatment of mixed lymphoid cell populations with antisera directed against membrane components on the same cell (e.g., H-2) and on other cells (e.g., theta). The lack of specificity of inhibition was thought to be due to the formation on cell surfaces of antigen-antibody complexes which would then attach to the Fc receptor during the incubation precedure. Specific blockade of the Fc receptor during the incubation procedure. Specific blockade of the Fc receptor however occurred when B cells were pretreated with the Fab fragments of anti-H-2 antibody. This was demonstrated autoradiographically and by inhibition of aggregate-induced suicide. The blocking activity of ante-H-2 Fab was removed by absorption with spleen cells from thymectomized irradiated mice but not with thymus cells of appropriate specificity. This suggested that the antibodies involved had specificity for determinants on the B-cell membrane distinct from those coded by the K or D end of the H-2 complex, and either absent from, or poorly represented on, thymus cells. Specific antigen-induced suicide of B cells was achieved simply by incubating the cells with radioactive antigen in the cold. T-cell suicide on the other hand required that the 125I-labeled antigen be presented to the T cells at 37 degrees-C on the surface of

  1. Auto-presentation of Staphylococcal enterotoxin A by mouse CD4+ T cells

    Science.gov (United States)

    The currently accepted model for superantigen (SAg )induced T cell activation suggests that SAg, without being processed, cross links both MHC class II, from Antigen Presenting Cells (APC), and V-beta, from T-cell receptor (TCR), initiating nonspecific T-cell activation. This T-cell proliferation in...

  2. Molecular characterization of antigen-peptide pulsed dendritic cells: immature dendritic cells develop a distinct molecular profile when pulsed with antigen peptide.

    Directory of Open Access Journals (Sweden)

    Amy X Yang

    Full Text Available As dendritic cells (DCs are the most potent professional antigen-presenting cells, they are being tested as cancer vaccines for immunotherapy of established cancers. Although numerous studies have characterized DCs by their phenotype and function, few have identified potential molecular markers of antigen presentation prior to vaccination of host. In this study we generated pre-immature DC (piDC, immature DC (iDC, and mature DC (mDC from human peripheral blood monocytes (PBMC obtained from HLA-A2 healthy donors, and pulsed them with human papillomavirus E7 peptide (p11-20, a class I HLA-A2 binding antigen. We then characterized DCs for cell surface phenotype and gene expression profile by microarray technology. We identified a set of 59 genes that distinguished three differentiation stages of DCs (piDC, iDC and mDC. When piDC, iDC and mDC were pulsed with E7 peptide for 2 hrs, the surface phenotype did not change, however, iDCs rather than mDCs showed transcriptional response by up-regulation of a set of genes. A total of 52 genes were modulated in iDC upon antigen pulsing. Elongation of pulse time for iDCs to 10 and 24 hrs did not significantly bring further changes in gene expression. The E7 peptide up-modulated immune response (KPNA7, IGSF6, NCR3, TREM2, TUBAL3, IL8, NFKBIA, pro-apoptosis (BTG1, SEMA6A, IGFBP3 and SRGN, anti-apoptosis (NFKBIA, DNA repair (MRPS11, RAD21, TXNRD1, and cell adhesion and cell migration genes (EPHA1, PGF, IL8 and CYR61 in iDCs. We confirmed our results by Q-PCR analysis. The E7 peptide but not control peptide (PADRE induced up-regulation of NFKB1A gene only in HLA-A2 positive iDCs and not in HLA-A2 negative iDCs. These results suggest that E7 up-regulation of genes is specific and HLA restricted and that these genes may represent markers of antigen presentation and help rapidly assess the quality of dendritic cells prior to administration to the host.

  3. T-cell recognition of a cross-reactive antigen(s) in erythrocyte stages of Plasmodium falciparum and Plasmodium yoelii: inhibition of parasitemia by this antigen(s).

    OpenAIRE

    Lucas, B.; Engels, A; Camus, D; Haque, A.

    1993-01-01

    In the current study, we investigated the presence of a cross-reactive antigen(s) in the erythrocyte stage from Plasmodium yoelii (265 BY strain) and Plasmodium falciparum through recognition by T cells primed in vivo with antigens from each of these parasites. BALB/c mice are naturally resistant to P. falciparum but are susceptible to P. yoelii infection. Mice that had recovered from P. yoelii primary infection became resistant to a second infection. A higher in vitro proliferative response ...

  4. Papaya ringspot virus coat protein gene for antigen presentation Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Chatchen, S.; Juříček, Miloslav; Rueda, P.; Kertbundit, Sunee

    2006-01-01

    Roč. 39, č. 1 (2006), s. 16-21. ISSN 1225-8687 Grant ostatní: Thai Research Fund(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : antigen presentation * canine parvo virus * epitope * papaya ringspot virus Subject RIV: EF - Botanics Impact factor: 1.465, year: 2006 http://www.jbmb.or.kr/view_article.php3?cont=jbmb&kid=174&mid=3&pid=3

  5. Role of the H-2 complex in the induction of T cell tolerance to self minor histocompatibility antigens

    OpenAIRE

    1983-01-01

    The present study has utilized cytotoxic T lymphocyte (CTL) responses specific for minor histocompatibility (minor H) antigens as an experimental approach to determining whether recognition of self MHC determinants is involved in the induction of T cell tolerance to self antigens. It was observed that C3H.SW splenic T cells from C3H.SW leads to B10 X B10.BR radiation bone marrow chimeras contained CTL precursors (pCTL) reactive against self C3H minor H antigens + H-2k but were tolerant to sel...

  6. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming.

    Science.gov (United States)

    Allan, Rhys S; Waithman, Jason; Bedoui, Sammy; Jones, Claerwen M; Villadangos, Jose A; Zhan, Yifan; Lew, Andrew M; Shortman, Ken; Heath, William R; Carbone, Francis R

    2006-07-01

    Skin dendritic cells (DCs) are thought to act as key initiators of local T cell immunity. Here we show that after skin infection with herpes simplex virus (HSV), cytotoxic T lymphocyte (CTL) activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs. Despite a lack of direct presentation by migratory DCs, blocking their egress from infected skin substantially inhibited class I-restricted presentation and HSV-specific CTL responses. These results support the argument for initial transport of antigen by migrating DCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming. Given that relatively robust CTL responses were seen with small numbers of skin-emigrant DCs, we propose that this inter-DC antigen transfer functions to amplify presentation across a larger network of lymphoid-resident DCs for efficient T cell activation. PMID:16860764

  7. Overnight resting of PBMC changes functional signatures of antigen specific T- cell responses: impact for immune monitoring within clinical trials.

    Directory of Open Access Journals (Sweden)

    Sarah Kutscher

    Full Text Available Polyfunctional CD4 or CD8 T cells are proposed to represent a correlate of immune control for persistent viruses as well as for vaccine mediated protection against infection. A well-suited methodology to study complex functional phenotypes of antiviral T cells is the combined staining of intracellular cytokines and phenotypic marker expression using polychromatic flow cytometry. In this study we analyzed the effect of an overnight resting period at 37 °C on the quantity and functionality of HIV-1, EBV, CMV, HBV and HCV specific CD4 and CD8 T-cell responses in a cohort of 21 individuals. We quantified total antigen specific T cells by multimer staining and used 10-color intracellular cytokine staining (ICS to determine IFNγ, TNFα, IL2 and MIP1β production. After an overnight resting significantly higher numbers of functionally active T cells were detectable by ICS for all tested antigen specificities, whereas the total number of antigen specific T cells determined by multimer staining remained unchanged. Overnight resting shifted the quality of T-cell responses towards polyfunctionality and increased antigen sensitivity of T cells. Our data suggest that the observed effect is mediated by T cells rather than by antigen presenting cells. We conclude that overnight resting of PBMC prior to ex vivo analysis of antiviral T-cell responses represents an efficient method to increase sensitivity of ICS-based methods and has a prominent impact on the functional phenotype of T cells.

  8. Antigen-activated dendritic cells ameliorate influenza A infections

    OpenAIRE

    Boonnak, Kobporn; Vogel, Leatrice; Orandle, Marlene; Zimmerman, Daniel; Talor, Eyal; Subbarao, Kanta

    2013-01-01

    Influenza A viruses cause significant morbidity and mortality worldwide. There is a need for alternative or adjunct therapies, as resistance to currently used antiviral drugs is emerging rapidly. We tested ligand epitope antigen presentation system (LEAPS) technology as a new immune-based treatment for influenza virus infection in a mouse model. Influenza-J-LEAPS peptides were synthesized by conjugating the binding ligand derived from the β2-microglobulin chain of the human MHC class I molecu...

  9. Stable isotope labeling of oligosaccharide cell surface antigens

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A. [and others

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  10. Parasite Manipulation of the Invariant Chain and the Peptide Editor H2-DM Affects Major Histocompatibility Complex Class II Antigen Presentation during Toxoplasma gondii Infection.

    Science.gov (United States)

    Leroux, Louis-Philippe; Nishi, Manami; El-Hage, Sandy; Fox, Barbara A; Bzik, David J; Dzierszinski, Florence S

    2015-10-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4(+) T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4(+) T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549

  11. Serological analysis of cell surface antigens of null cell acute lymphocytic leukemia by mouse monoclonal antibodies.

    OpenAIRE

    Ueda, R; Tanimoto, M; Takahashi, T.; Ogata, S; Nishida, K; Namikawa, R.; Nishizuka, Y; Ota, K.

    1982-01-01

    Nine antigens systems were defined. Two were related to HLA-A,B,C and to Ia-like antigens; the others could be grouped into three categories. (i) NL-22, NL-1: NL-22 antibody reacted with leukemia cells from 12 to 16 cases of null cell acute lymphocytic leukemia (null-ALL) but not with any other type of leukemia tested or with lymphoid cells of various origins. Among cultured cell lines tested, one (NALM-6) of three null-ALL cell lines was positive, the others were negative. Absorption analysi...

  12. Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance.

    Science.gov (United States)

    Zheng, Peiguo; Fu, Hanxiao; Wei, Gaohui; Wei, Zhongwei; Zhang, Junhua; Ma, Xuehan; Rui, Dong; Meng, Xianchun; Ming, Liang

    2016-08-01

    Treatment with soluble myelin peptide can efficiently and specifically induce tolerance to demyelination autoimmune diseases including multiple sclerosis, however the mechanism underlying this therapeutic effect remains to be elucidated. In actively induced mouse model of experimental autoimmune encephalomyelitis (EAE) we analyzed T cell and innate immune cell responses in the central nervous system (CNS) and spleen after intraperitoneal (i.p.) infusion of myelin oligodendrocyte glycoprotein (MOG). We found that i.p. MOG infusion blocked effector T cell recruitment to the CNS and protected mice from EAE and lymphoid organ atrophy. Innate immune CD11b(+) cells preferentially recruited MOG-specific effector T cells, particularly when activated to become competent antigen presenting cells (APCs). During EAE development, mature APCs were enriched in the CNS rather than in the spleen, attracting effector T cells to the CNS. Increased myelin antigen exposure induced CNS-APC maturation, recruiting additional effector T cells to the CNS, causing symptoms of disease. MOG triggered functional maturation of splenic APCs. MOG presenting APCs interacted with MOG-specific T cells in the spleen, aggregating to cluster around CD11b(+) cells, and were trapped in the periphery. This process was MHC II dependent as an MHC II directed antibody blocked CD4(+) T cell cluster formation. These findings highlight the role of myelin peptide-loaded APCs in myelin peptide-induced EAE and immune tolerance. PMID:27327113

  13. Role of HLA class I antigens in the development of psoriatic arthritis and its clinical presentation

    Directory of Open Access Journals (Sweden)

    Irina Aleksandrovna Troshkina

    2012-01-01

    Full Text Available Objective: to investigate the association of HLA Class I antigens with the predisposition to psoriatic arthritis (PsA and the severity and types of articular syndrome in PsA. Subjects and methods. The investigation enrolled 99 patients (56 females and 43 males aged 43.5+13 years with PA with a median duration of 2 (range 0.8-10 years. An oligoarthritic type was observed in 28 patients, polyarthritic, distal, and spondyloarthritic types were present in 28, 39, and 10 patients, respectively. Two patient groups were formed according to the age at onset of psoriasis: 1 71 patients aged less than 40 years and 2 23 patients aged over 40 years. Results. As compared with the control group, the patients with PsA were found to have a higher frequency of HLA-B13 (odds ratio [OR] 2.72; p < 0.004, HLA-В16 (OR 3.95; p < 0.0001, and HLA-B27 (OR 3.2; p < 0.003. There was an association of the types of joint injury with HLA antigens: the distal type with HLA-B13 (OR 3.38; p < 0.02 and HLA-В16 (OR 3.95; p < 0.01, the polyarthritic type with HLA-В16 (OR 5.90; p < 0.0001 and HLA-B27 (OR 3.26; p < 0.01, and the spondyloarthritic type with HLA-B27 (OR 6.32; p < 0.001. The young onset of psoriasis was associated with HLA-B13 (OR 3.29; p < 0.001. The detection rate of the B38 antigen (the subtype of HLA-B16 was higher in all X-ray stages of PsA and was 16.4% in Stages I-IIA, 25% in Stage IIB, and 40.9% in Stages III-IV versus 8.7% in the control group, the magnitude of the association being increased with the higher degree of joint destruction. Conclusion. The detailed analysis of the investigation revealed that HLA system antigens were differently involved in the development of PsA and clinical types of articular syndrome.

  14. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad;

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  15. Common antigens of streptococcal and non-streptococcal oral bacteria: immunochemical studies of extracellular and cell-wall-associated antigens from Streptococcus sanguis, Streptococcus mutans, Lactobacillus salivarius, and Actinomyces viscosus.

    Science.gov (United States)

    Schöller, M; Klein, J P; Frank, R M

    1981-01-01

    Soluble extracellular antigens (ESA) were prepared from the culture supernatant of exponential growing cells of Streptococcus sanguis OMZ 9 by a combination of ammonium sulfate precipitation and chromatography on a Bio-Gel P6 column. Soluble cell wall antigens (WEA) were obtained from the bacterial pellet by extraction with 1 M phosphate buffer (pH 6). Antisera against whole cells of S. sanguis and S. mutans of different serotypes, 10% trichloroacetic extracts of bacterial cell walls, dextran, ESA, and WEA were prepared by injecting the different antigens several times in rabbits. ESA and WEA were prepared from a representative strain of Bratthall's seven serological groups, Lactobacillus salivarius, and Actinomyces viscosus. All sera showed various agglutinin titers against heat-killed cells, and titers were generally higher with homologous cells. The comparison of the different antigens using agar gel diffusion and immunoelectrophoresis showed the presence of extracellular common antigens in both ESA and WEA between the different strains. Absorption of anti-ESA sera with WEA, and anti-WEA sera with ESA, showed the existence of a specific antigen common to all bacteria in each fraction. Enzymatic treatment of the antigen before immunodiffusion demonstrated the protein nature of the two antigens present in ESA and WEA. Images PMID:6783541

  16. 小剂量X射线照射对人树突状细胞抗原递呈及白介素-12分泌的影响%Effects of low dose X-ray irradiation on antigen presentation and IL-12 secretion in human dendritic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    闫鹏; 江其生; 李峰生; 何蕊; 王翠兰; 李晓

    2012-01-01

    Objective To explore the effects of low dose X-ray irradiation on the ability of antigen presentation and IL-12 secretion in human dendritic cells that had been cultured for different time in vitro.Methods The human peripheral blood mononuclear cells ( PBMC ) were collected and differentiated to dendritic cells (DCs) by rhGM-CSF and rhIL-4 treatment in vitro.The DCs were divided into 3 groups,group A:DCs were cultured for 2 d and then irradiated with 0.05,0.1,0.2 and 0.5 Gy X-rays; group B:DCs were cultured for 6 d and then irradiated as above; group C:DCs were cultured without irradiation.At 8 d of cell culture,the DCs were applied to activate T cells and CCK-8 was used to detect MLR ( mixed lymphocyte reaction),and the antigen presentation ability of DCs was evaluated.MTT assay was also used to test the cell-killing effect of the activated T-cells on A549 cells.IL-12 in the culture medium of DCs was detected by ELISA.Results After irradiation with 0.2 and 0.5 Gy X-rays,the antigen presentation ability of DCs was decreased in group A (t =2.79 and 3.71,P < 0.05 ),but significantly increased in group B (t =3.60 and 3.11,P < 0.05).The ability of the T cell activation was detected and the proliferation of A549 cells was slightly inhibited by the DCs in group A (t =2.89 and 2.91,P < 0.05),but was obviously inhibited by the DCs in group B (t =2.91 and 2.82,P <0.05).Meanwhile,the level of IL-12 was dramatically decreased in group A (t =4.44 and 6.93,P < 0.05),but was increased in group B (t =3.51 and 4.12,P <0.05).Conclusions The abilities of antigen presentation and proliferation inhibition of DCs could be down-regulated by low dose( < 0.5 Gy) of X-ray irradiation at the early stage of DCs,but was up-regulated at the late stage of DCs culture.%目的 探讨小剂量x射线照射对体外不同培养时间的人外周血树突状细胞( dendritic cell,DC)抗原递呈及白介素-12(IL-12)分泌的影响.方法 分离人外周血单个核细胞(PBMC),以人

  17. MONOCLONAL-ANTIBODIES TO HUMAN EMBRYONAL CARCINOMA-CELLS - ANTIGENIC RELATIONSHIPS OF GERM-CELL TUMORS

    NARCIS (Netherlands)

    DEWIT, TFR; WILSON, L; VANDENELSEN, PJ; THIELEN, F; BREKHOFF, D; OOSTERHUIS, JW; PERA, MF; STERN, PL

    1991-01-01

    Fifteen monoclonal antibodies (mAb) that show specificity for human embryonal carcinoma cells are described. C57BL/6 mice were immunized with Tera-2 embryonal carcinoma cells, and hybridomas were isolated and tested versus a set of human developmental tumor cell lines. The antigens exhibit relativel

  18. From the Deep Sea to Everywhere: Environmental Antigens for iNKT Cells.

    Science.gov (United States)

    Wingender, Gerhard

    2016-08-01

    Invariant natural killer T (iNKT) cells are a unique subset of innate T cells that share features with innate NK cells and adaptive memory T cells. The first iNKT cell antigen described was found 1993 in a marine sponge and it took over 10 years for other, bacterial antigens to be described. Given the paucity of known bacterial iNKT cell antigens, it appeared as if iNKT cells play a very specialist role in the protection against few, rare and unusual pathogenic bacteria. However, in the last few years several publications painted a very different picture, suggesting that antigens for iNKT cells are found almost ubiquitous in the environment. These environmental iNKT cell antigens can shape the distribution, phenotype and function of iNKT cells. Here, these recent findings will be reviewed and their implications for the field will be outlined. PMID:26703211

  19. Present and future of allogeneic natural killer cell therapy

    Directory of Open Access Journals (Sweden)

    Okjae eLim

    2015-06-01

    Full Text Available Natural killer (NK cells are innate lymphocytes that are capable of eliminating tumor cells and are therefore used for cancer therapy. Although many early investigators used autologous NK cells, including lymphokine-activated killer cells, the clinical efficacies were not satisfactory. Meanwhile, human leukocyte antigen (HLA-haploidentical hematopoietic stem cell transplantation revealed the anti-tumor effect of allogeneic NK cells, and HLA-haploidentical, killer cell immunoglobulin-like receptor (KIR ligand-mismatched allogeneic NK cells are currently used for many protocols requiring NK cells. Moreover, allogeneic NK cells from non-HLA-related healthy donors have been recently used in cancer therapy. The use of allogeneic NK cells from non-HLA-related healthy donors allows the selection of donor NK cells with higher flexibility and to prepare expanded, cryopreserved NK cells for instant administration without delay for ex vivo expansion. In cancer therapy with allogeneic NK cells, optimal matching of donors and recipients is important to maximize the efficacy of the therapy. In this review, we summarize the present state of allogeneic NK cell therapy and its future directions.

  20. The role of class I histocompatibility antigens in the regulation of T-cell activation.

    OpenAIRE

    Dasgupta, J D; Cemach, K; Dubey, D P; Yunis, E J; Amos, D. B.

    1987-01-01

    Class I major histocompatibility antigens in humans (HLA antigens) were found to participate in the regulation of T-cell activation and proliferation induced by phytohemagglutinin. W6/32, a monomorphic antibody directed against class I HLA-A,B,C antigens, significantly inhibited the phytohemagglutinin-induced cell proliferation of peripheral blood lymphocytes. Almost complete suppression of cell activation was achieved on a subfraction of peripheral blood lymphocytes enriched in Mo1+ monocyte...

  1. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens

    OpenAIRE

    Suffia, Isabelle J.; Reckling, Stacie K.; Piccirillo, Ciriaco A; Goldszmid, Romina S.; Belkaid, Yasmine

    2006-01-01

    Natural regulatory T (T reg) cells are involved in control of the immune response, including response to pathogens. Previous work has demonstrated that the repertoire of natural T reg cells may be biased toward self-antigen recognition. Whether they also recognize foreign antigens and how this recognition contributes to their function remain unknown. Our studies addressed the antigenic specificity of natural T reg cells that accumulate at sites of chronic infection with Leishmania major in mi...

  2. Antigen transfer from exosomes to dendritic cells as an explanation for the immune enhancement seen by IgE immune complexes.

    Directory of Open Access Journals (Sweden)

    Rebecca K Martin

    Full Text Available IgE antigen complexes induce increased specific T cell proliferation and increased specific IgG production. Immediately after immunization, CD23(+ B cells capture IgE antigen complexes, transport them to the spleen where, via unknown mechanisms, dendritic cells capture the antigen and present it to T cells. CD23, the low affinity IgE receptor, binds IgE antigen complexes and internalizes them. In this study, we show that these complexes are processed onto B-cell derived exosomes (bexosomes in a CD23 dependent manner. The bexosomes carry CD23, IgE and MHC II and stimulate antigen specific T-cell proliferation in vitro. When IgE antigen complex stimulated bexosomes are incubated with dendritic cells, dendritic cells induce specific T-cell proliferation in vivo, similar to IgE antigen complexes. This suggests that bexosomes can provide the essential transfer mechanism for IgE antigen complexes from B cells to dendritic cells.

  3. Exosomes Derived from M. Bovis BCG Infected Macrophages Activate Antigen-Specific CD4+ and CD8+ T Cells In Vitro and In Vivo

    OpenAIRE

    Giri, Pramod K.; Schorey, Jeffrey S.

    2008-01-01

    Activation of both CD4(+) and CD8(+) T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could...

  4. Monoclonal immunoglobulin M antibody to Japanese encephalitis virus that can react with a nuclear antigen in mammalian cells.

    OpenAIRE

    Gould, E A; Chanas, A C; Buckley, A.; Clegg, C S

    1983-01-01

    An immunoglobulin M (IgM) class monoclonal antibody raised against Japanese encephalitis virus reacted with an epitope on the nonstructural virus protein P74 (NV4 in the old nomenclature) of several flaviviruses and also with an antigen present in the nuclei of a variety of mammalian cell types. This antigen had a characteristic granular distribution by immunofluorescence and may correspond to a polypeptide of molecular weight 56,000 seen in nitrocellulose transfers of sodium dodecyl sulfate-...

  5. Detection and partial characterization of a midlamina lucida-hemidesmosome-associated antigen (19-DEJ-1) present within human skin

    DEFF Research Database (Denmark)

    Fine, J D; Horiguchi, Y; Jester, J;

    1989-01-01

    A murine anti-human monoclonal antibody (19-DEJ-1) has been produced that binds to basement membranes (BMs) of the dermoepidermal junction and arrector pili muscles but not to either dermal glandular or vascular BMs. 19-DEJ-1 also recognizes BMs underneath epithelia of buccal mucosa, tongue......, esophagus, cervix, and cornea, and BMs surrounding smooth muscle in medium-sized vessels, placenta, uterus, and esophagus. When 16 human fetal skins (aged 54-142 gestational days) were examined, the antigen was first detected at 81 days. Using immunoperoxidase and immunogold staining techniques, indirect...... cells, 19-DEJ-1 monoclonal antibody specifically precipitated 2.75% of the total radiolabeled proteoglycans produced in culture supernatant and isolated by anion exchange chromatography. On the basis of our present findings, we conclude that 19-DEJ-1 monoclonal antibody defines a unique primate...

  6. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T; Petersen, E L; Aagaard, M; Hansen, Dorte; Christensen, T

    2013-01-01

    expressing increased amounts of human endogenous retrovirus antigens. MS patients also have increased antibody levels to these antigens. The target cells are spontaneously growing peripheral blood mononuclear cells (PBMCs) of B cell lineage, expressing human endogenous retrovirus HERV epitopes on their...

  7. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  8. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    International Nuclear Information System (INIS)

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells

  9. Regulation of T cell response to leishmania antigens by determinants of histocompatibility leukocyte class I and II molecules

    Directory of Open Access Journals (Sweden)

    Bacellar O.

    1998-01-01

    Full Text Available It has been shown that HLA class I molecules play a significant role in the regulation of the proliferation of T cells activated by mitogens and antigens. We evaluated the ability of mAb to a framework determinant of HLA class I molecules to regulate T cell proliferation and interferon gamma (IFN-g production against leishmania, PPD, C. albicans and tetanus toxoid antigens in patients with tegumentary leishmaniasis and healthy subjects. The anti-major histocompatibility complex (MHC mAb (W6/32 suppressed lymphocyte proliferation by 90% in cultures stimulated with aCD3, but the suppression was variable in cultures stimulated with leishmania antigen. This suppression ranged from 30-67% and was observed only in 5 of 11 patients. IFN-g production against leishmania antigen was also suppressed by anti-HLA class I mAb. In 3 patients IFN-g levels were suppressed by more than 60%, while in the other 2 cultures IFN-g levels were 36 and 10% lower than controls. The suppression by HLA class I mAb to the proliferative response in leishmaniasis patients and in healthy controls varied with the antigens and the patients or donors tested. To determine whether the suppression is directed at antigen presenting cells (APCs or at the responding T cells, experiments with antigen-primed non-adherent cells, separately incubated with W6/32, were performed. Suppression of proliferation was only observed when the W6/32 mAb was added in the presence of T cells. These data provide evidence that a mAb directed at HLA class I framework determinants can suppress proliferation and cytokine secretion in response to several antigens.

  10. A Fusion Protein between Streptavidin and the Endogenous TLR4 Ligand EDA Targets Biotinylated Antigens to Dendritic Cells and Induces T Cell Responses In Vivo

    Directory of Open Access Journals (Sweden)

    Laura Arribillaga

    2013-01-01

    Full Text Available The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA, an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC, are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-κβ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer.

  11. A fusion protein between streptavidin and the endogenous TLR4 ligand EDA targets biotinylated antigens to dendritic cells and induces T cell responses in vivo.

    Science.gov (United States)

    Arribillaga, Laura; Durantez, Maika; Lozano, Teresa; Rudilla, Francesc; Rehberger, Federico; Casares, Noelia; Villanueva, Lorea; Martinez, Marta; Gorraiz, Marta; Borrás-Cuesta, Francisco; Sarobe, Pablo; Prieto, Jesús; Lasarte, Juan José

    2013-01-01

    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10(-14) mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF- κβ by TLR4-expressing cells, as well as the production of TNF- α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer. PMID:24093105

  12. Cell-mediated immune response of synovial fluid lymphocytes to ureaplasma antigen in Reiter's syndrome

    Directory of Open Access Journals (Sweden)

    Pavlica Ljiljana

    2003-01-01

    Full Text Available INTRODUCTION Reiter's syndrome (RS is an seronegative arthritis that occurs after urogenital or enteric infection which in addition with occular and/or mucocutaneous manifestations presents complete form of disease. According to previous understanding arthritis in the RS is the reactive one, which means that it is impossible to isolate its causative agent. However, there are the more and more authors suggesting that arthritis in the urogenital form of disease is caused by the infective agent in the affected joint. This suggestion is based on numerous studies on the presence of Chlmaydia trachomatis and Ureaplasma urealyticum in the inflamed joint by using new diagnostic methods in molecular biology published in the recent literature [1-3]. Besides, numerous studies of the humoral and cell-mediated immune response to "triggering" bacteria in the affected joint have supported previous suggestions [4-7]. Aim of the study was to determine whether synovial fluid T-cells specifically recognize the "triggering" bacteria presumably responsible for the Reiter's syndrome. METHOD The 3H-thymidine uptake procedure for measuring lymphocyte responses was applied to lymphocytes derived concurrently from synovial fluid (SF and from peripheral blood (PB [8]. Ureaplasma antigen and mitogen PHA stimulated lymphocytes in 24 RS patients (24 PB samples, 9 SF samples and the results were compared with those found in 10 patients with rheumatoid arthritis (RA (10 PB samples, 5 SF samples. Preparation of ureaplasma antigen. Ureaplasma was cultured on cell-free liquid medium [9]. Sample of 8 ml was heat-inactivated for 15 minutes at 601C and permanently stirred with magnetic mixer. The sample was centrifuged at 2000 x g for 40 minutes and than deposits carefully carried to other sterile glass tubes (Corex and recentrifuged at 9000 x g for 30 minutes. The deposit was washed 3 times in sterile 0.9% NaCl, and final sediment was resuspended in 1.2 ml sterile 0.9% Na

  13. Blockade of LFA-1 augments in vitro differentiation of antigen-induced Foxp3+ Treg cells

    OpenAIRE

    Verhagen, Johan; Wraith, David C.

    2014-01-01

    Adoptive transfer of antigen-specific, in vitro-induced Foxp3+ Treg (iTreg) cells protects against autoimmune disease. To generate antigen-specific iTreg cells at high purity, however, remains a challenge. Whereas polyclonal T cell stimulation with anti-CD3 and anti-CD28 antibody yields Foxp3+ iTreg cells at a purity of 90–95%, antigen-induced iTreg cells typically do not exceed a purity of 65–75%, even in a TCR-transgenic model. In a similar vein to thymic Treg cell selection, iTreg cell dif...

  14. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen specific Interleukin 17 response

    Science.gov (United States)

    Zeng, Xun; Wei, Yu-ling; Huang, Jun; Newell, Evan W.; Yu, Hongxiang; Kidd, Brian A.; Kuhns, Michael S.; Waters, Ray W.; Davis, Mark M.; Weaver, Casey T.; Chien, Yueh-hsiu

    2012-01-01

    Summary γδ T cells contribute uniquely to host immune defense. However, how they function remains an enigma. Although it is unclear what most γδ T cells recognize, common dogma asserts that they recognize self-antigens. While they are the major initial Interleukin-17 (IL-17) producers in infections, it is unclear what is required to trigger these cells to act. Here, we report that a noted B cell antigen, the algae protein-phycoerythrin (PE) is an antigen for murine and human γδ T cells. PE also stained specific bovine γδ T cells. Employing this specificity, we demonstrated that antigen recognition, but not extensive clonal expansion, was required to activate naïve γδ T cells to make IL-17. In this activated state, γδ T cells gained the ability to respond to cytokine signals that perpetuated the IL-17 production. These results underscore the adaptability of lymphocyte antigen receptors and suggest a previously unrecognized antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  15. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response.

    Science.gov (United States)

    Zeng, Xun; Wei, Yu-Ling; Huang, Jun; Newell, Evan W; Yu, Hongxiang; Kidd, Brian A; Kuhns, Michael S; Waters, Ray W; Davis, Mark M; Weaver, Casey T; Chien, Yueh-hsiu

    2012-09-21

    γδ T cells contribute uniquely to immune competence. Nevertheless, how they function remains an enigma. It is unclear what most γδ T cells recognize, what is required for them to mount an immune response, and how the γδ T cell response is integrated into host immune defense. Here, we report that a noted B cell antigen, the algae protein phycoerythrin (PE), is a murine and human γδ T cell antigen. Employing this specificity, we demonstrated that antigen recognition activated naive γδ T cells to make interleukin-17 and respond to cytokine signals that perpetuate the response. High frequencies of antigen-specific γδ T cells in naive animals and their ability to mount effector response without extensive clonal expansion allow γδ T cells to initiate a swift, substantial response. These results underscore the adaptability of lymphocyte antigen receptors and suggest an antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  16. A 125I-protein A-binding assay detecting antibodies to cell surface antigens

    International Nuclear Information System (INIS)

    A 125I-protein A-binding assay detecting antibodies to cell surface antigens on human blood cells was developed and evaluated using sera from multitransfused nonleukemic patients sensitized against HLA antigens. The binding assay was found to be reproducible and more sensitive than conventional HLA testing. Seven patients with acute myelogenous leukemia and two patients with acute lymphoblastic leukemia successfully treated by chemotherapy were than investigated. Sera from seven of the patients studied in partial or complete remission demonstrated significant binding to autochthonous leukemic cells obtained from bone marrow or peripheral blood. In two cases sera taken during the leukemic stage demonstrated the most pronounced binding to the patients' own leukemic cells. Sera from four patients with demonstrable significant binding to autochthonous leukemic cells failed to bind to autochthonous remission cells when both types of target cells were tested in parallel. Differences in serum concentrations of IgG, IgA, and IgM were not the cause of the demonstrated increased binding of leukemic sera to autochthonous target cells. We propose that the 125I-protein A-binding assay presented in this paper detects antibodies reacting selectively with acute leukemia cells. (orig.)

  17. ERAP1 functions override the intrinsic selection of specific antigens as immunodominant peptides, thereby altering the potency of antigen-specific cytolytic and effector memory T-cell responses.

    Science.gov (United States)

    Rastall, David P W; Aldhamen, Yasser A; Seregin, Sergey S; Godbehere, Sarah; Amalfitano, Andrea

    2014-12-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a critical component of the adaptive immune system that has been shown to increase or decrease the presentation of specific peptides on MHC class I molecules. Here, we have demonstrated that ERAP1 functions are not only important during the presentation of antigen-derived peptides, but these functions can also completely change which antigen-derived peptides ultimately become selected as immunodominant T-cell epitopes. Our results suggest that ERAP1 may do this by destroying epitopes that would otherwise become immunodominant in the absence of adequate ERAP1 functionality. We further establish that ERAP1-mediated influences on T-cell functions are both qualitative and quantitative, by demonstrating that loss of ERAP1 function redirects CTL killing toward a different set of antigen-derived epitopes and increases the percent of antigen-specific memory T cells elicited by antigen exposure. As a result, our studies suggest that normal ERAP1 activity can act to suppress the numbers of T effector memory cells that respond to a given antigen. This unique finding may shed light on why certain ERAP1 single nucleotide polymorphisms are associated with several autoimmune diseases, for example, by significantly altering the robustness and quality of CD8+ T-cell memory responses to antigen-derived peptides. PMID:25087231

  18. In situ Delivery of Antigen to DC-SIGN(+)CD14(+) Dermal Dendritic Cells Results in Enhanced CD8(+) T-Cell Responses.

    Science.gov (United States)

    Fehres, Cynthia M; van Beelen, Astrid J; Bruijns, Sven C M; Ambrosini, Martino; Kalay, Hakan; van Bloois, Louis; Unger, Wendy W J; Garcia-Vallejo, Juan J; Storm, Gert; de Gruijl, Tanja D; van Kooyk, Yvette

    2015-09-01

    CD14(+) dendritic cells (DCs) present in the dermis of human skin represent a large subset of dermal DCs (dDCs) that are considered macrophage-like cells with poor antigen (cross)-presenting capacity and limited migratory potential to the lymph nodes. CD14(+) dDC highly express DC-specific ICAM-3-grabbing non-integrin (DC-SIGN), a receptor containing potent endocytic capacity, facilitating intracellular routing of antigens to major histocompatibility complex I and II (MHC-I andII) loading compartments for the presentation to antigen-specific CD8(+) and CD4(+) T cells. Here we show using a human skin explant model that the in situ targeting of antigens to DC-SIGN using glycan-modified liposomes enhances the antigen-presenting capacity of CD14(+) dDCs. Intradermal vaccination of liposomes modified with the DC-SIGN-targeting glycan Lewis(X), containing melanoma antigens (MART-1 or Gp100), accumulated in CD14(+) dDCs and resulted in enhanced Gp100- or MART-1-specific CD8(+) T-cell responses. Simultaneous intradermal injection of the cytokines GM-CSF and IL-4 as adjuvant enhanced the migration of the skin DCs and increased the expression of DC-SIGN on the CD14(+) and CD1a(+) dDCs. These data demonstrate that human CD14(+) dDCs exhibit potent cross-presenting capacity when targeted in situ through DC-SIGN. PMID:25885805

  19. Enhanced expression of beta2-microglobulin and HLA antigens on human lymphoid cells by interferon

    DEFF Research Database (Denmark)

    Heron, I; Hokland, M; Berg, K

    1979-01-01

    Mononuclear cells from the blood of healthy normal humans were kept in cultures under nonstimulating conditions for 16 hr in the presence or absence of human interferon. The relative quantities of HLA antigens and beta(2)-microglobulin on the cultured cells were determined by quantitative...... immunofluorescence (fluorescence-activated cell sorter) and by the capacity of cells to absorb out cytotoxic antibodies against the relevant antigens. Interferons of different origin and purities enhanced the expression of HLA antigens and beta(2)-microglobulins, whereas membrane immunoglobulins and antigens...... recognized by antiserum raised against human brain and T cells were the same on interferon-treated and control cells. Similar interferon effects were observed on an Epstein-Barrvirus-negative Burkitt lymphoma cell line. The enhanced expression of histocompatibility antigen subsequent to intereferon treatment...

  20. Kinetics of T cell-activation molecules in response to Mycobacterium tuberculosis antigens

    Directory of Open Access Journals (Sweden)

    Antas Paulo RZ

    2002-01-01

    Full Text Available The phenotypic features acquired subsequent to antigen-specific stimulation in vitro were evaluated by means of the kinetic expressions of CD69 and CD25 activation molecules on T lymphocytes and assayed by flow cytometry in response to PPD, Ag85B, and ferritin in PPD-positive healthy control individuals. In response to PHA, CD69 staining on both CD4+ and CD8+ T cells became initially marked after 4 h, peaked at 24 h, and quickly decreased after 120 h. For CD25, a latter expression was detected around 8 h, having increased after 96 h. As expected, the response rate to the mycobacterial antigens was much lower than that to the mitogen. Positive staining was high after 96 h for CD25 and after 24 h for CD69. CD69 expression was significantly enhanced (p < 0.05 on CD8+ as compared to CD4+ T cells. High levels were also found between 96-120 h. Regarding Ag85B, CD25+ cells were mostly CD4+ instead of CD8+ T cells. Moreover, in response to ferritin, a lower CD25 expression was noted. The present data will allow further characterization of the immune response to new mycobacterial-specific antigens and their evaluation for possible inclusion in developing new diagnostic techniques for tuberculosis as well in a new vaccine to prevent the disease.

  1. Crystallization and X-ray diffraction studies of crustacean proliferating cell nuclear antigen

    International Nuclear Information System (INIS)

    Proliferating cell nuclear antigen from Litopenaeus vannamei was recombinantly expressed, purified and crystallized. Diffraction data were obtained and processed to 3 Å. Proliferating cell nuclear antigen (PCNA), a member of the sliding clamp family of proteins, interacts specifically with DNA replication and repair proteins through a small peptide motif called the PCNA-interacting protein or PIP box. PCNA is recognized as one of the key proteins involved in DNA metabolism. In the present study, the recombinant PCNA from Litopenaeus vannamei (LvPCNA) was heterologously overexpressed and purified using metal ion-affinity chromatography. Crystals suitable for diffraction grew overnight using the hanging-drop vapour-diffusion method. LvPCNA crystals belong to space group C2 with unit-cell parameters a = 144.6, b = 83.4, c = 74.3 Å, β = 117.6°. One data set was processed to 3 Å resolution, with an overall Rmeas of 0.09 and a completeness of 93.3%. Initial phases were obtained by molecular replacement using a homology model of LvPCNA as the search model. Refinement and structural analysis are underway. This report is the first successful crystallographic analysis of a marine crustacean decapod shrimp (L. vannamei) proliferating cell nuclear antigen

  2. Development of tools to target antigen through mannose receptor

    OpenAIRE

    Abbas, Zaigham

    2011-01-01

    Dendritic cells (DC) are unique antigen presenting cells which play a major role in antigen presentation and initiation of the immune response by regulating B- and T- cell activation. Antigen targeting to DC receptors is an effective, safe and specific method for vaccine development. The mannose receptor (MR) is an endocytic receptor expressed by subpopulations of DC and antigen targeting through MR leads to enhanced antigen uptake and presentation to T -cells. This makes MR a favourite recep...

  3. Renal Cell Carcinoma Presenting as Dysphagia

    OpenAIRE

    Chauhan, Sharad; Yadav, Sher Singh; Tomar, Vinay

    2015-01-01

    Renal cell carcinoma presenting with dysphagia is rare. We report a case who presented with dysphagia as the only manifestations of renal malignancy. Biopsy from the pyriform fossa nodules revealed a clear cell neoplasm. Immuno-histochemical analysis of tissue confirmed metastasis of renal cell carcinoma.

  4. In situ Delivery of Antigen to DC-SIGN + CD14 + Dermal Dendritic Cells Results in Enhanced CD8 + T-Cell Responses

    NARCIS (Netherlands)

    Fehres, Cynthia M.; Van Beelen, Astrid J.; Bruijns, Sven C M; Ambrosini, Martino; Kalay, Hakan; Van Bloois, Louis; Unger, Wendy W J; Garcia-Vallejo, Juan J.; Storm, G; De Gruijl, Tanja D.; Van Kooyk, Yvette V.

    2015-01-01

    CD14 + dendritic cells (DCs) present in the dermis of human skin represent a large subset of dermal DCs (dDCs) that are considered macrophage-like cells with poor antigen (cross)-presenting capacity and limited migratory potential to the lymph nodes. CD14 + dDC highly express DC-specific ICAM-3-grab

  5. Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites.

    Science.gov (United States)

    Wan, Xiaoxiao; Thomas, James W; Unanue, Emil R

    2016-05-30

    Autoantibodies to insulin are a harbinger of autoimmunity in type 1 diabetes in humans and in non-obese diabetic mice. To understand the genesis of these autoantibodies, we investigated the interactions of insulin-specific T and B lymphocytes using T cell and B cell receptor transgenic mice. We found spontaneous anti-insulin germinal center (GC) formation throughout lymphoid tissues with GC B cells binding insulin. Moreover, because of the nature of the insulin epitope recognized by the T cells, it was evident that GC B cells presented a broader repertoire of insulin epitopes. Such broader recognition was reproduced by activating naive B cells ex vivo with a combination of CD40 ligand and interleukin 4. Thus, insulin immunoreactivity extends beyond the pancreatic lymph node-islets of Langerhans axis and indicates that circulating insulin, despite its very low levels, can have an influence on diabetogenesis. PMID:27139492

  6. Dynamic visualization of dendritic cell-antigen interactions in the skin following transcutaneous immunization.

    Directory of Open Access Journals (Sweden)

    Teerawan Rattanapak

    Full Text Available Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC residing in the skin including Langerhans cells (LC and dermal dendritic cells (DDC. However, the main obstacle for transcutaneous immunization (TCI is the effective delivery of the vaccine through the stratum corneum (SC barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN and a lipid-based colloidal delivery system (cubosomes as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207⁺ DC. No uptake of antigen or any response to immunisation by LC could be detected.

  7. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection.

    Science.gov (United States)

    Tipper, Donald J; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%. PMID:27213160

  8. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    Directory of Open Access Journals (Sweden)

    Donald J. Tipper

    2016-01-01

    Full Text Available Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs. YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP or U65-Apolipoprotein A1 (ApoA1 subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

  9. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    Science.gov (United States)

    Tipper, Donald J.; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

  10. Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions.

    Science.gov (United States)

    Henrickson, Sarah E; Perro, Mario; Loughhead, Scott M; Senman, Balimkiz; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P; Omid, Shaida; Jesneck, Jonathan L; Imam, Sabrina; Mempel, Thorsten R; Mazo, Irina B; Haining, W Nicholas; von Andrian, Ulrich H

    2013-09-19

    T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. PMID:24054328

  11. Parasite Manipulation of the Invariant Chain and the Peptide Editor H2-DM Affects Major Histocompatibility Complex Class II Antigen Presentation during Toxoplasma gondii Infection

    OpenAIRE

    Leroux, Louis-Philippe; Nishi, Manami; El-Hage, Sandy; Fox, Barbara A.; Bzik, David J.; Dzierszinski, Florence S.

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4+ T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms...

  12. Lack of Th1 or Th2 polarization of CD4+ T cell response induced by particulate antigen targeted to phagocytic cells.

    Science.gov (United States)

    Sedlik, C; Dériaud, E; Leclerc, C

    1997-01-01

    Several factors are involved in the selective activation of Th1 or Th2 subset of CD4+ T cells, such as the type of antigen-presenting cells, the dose of antigen, the route of immunization, etc. To analyze the influence of accessory cells on Th1/Th2 cell differentiation, we used a particulate antigen prepared by covalent linkage of hemocyanin (LH) to 1 microns synthetic microspheres. This particulate antigen was efficiently presented to T cells by macrophages but not by B lymphocytes. BALB/c mice immunized either with soluble LH in alum or with particulate LH without adjuvant produced both Th1 (IL-2 and IFN-gamma) and Th2 (IL-4 and IL-5) cytokines. Moreover, mice primed either with soluble or particulate LH secreted higher levels of IgG1- than of IgG2a-specific antibodies. The induction of this cytokine profile response was independent of the route of administration of the antigen, and was observed both in BALB/c and C57BL/6 mice. In contrast, immunization of mice with particulate LH in the presence of poly(I):(C) or of IL-12 induced a strong activation of Th1 cells, as shown by an up-regulated IFN-gamma production, and by decreased IL-4 and IL-5 levels associated to a greatly enhanced IgG2a antibody response. These results therefore demonstrate that targeting the antigen to phagocytic cells is not sufficient to stimulate a polarized Th response and that environmental cytokines play the major role in the selective activation of Th1 cells. This study provides important conclusions for the development of new vaccines and shows that particulate antigen associated with appropriate cofactor can selectively activate Th1 cells. PMID:9043951

  13. Gamma delta T cells recognize a microbial encoded B Cell antigen to initiate a rapid antigen-specific Interleukin-17 response

    Science.gov (United States)

    Gamma delta T cells contribute uniquely to host immune defense, but the way in which they do so remains an enigma. Here we show that an algae protein, phycoerythrin (PE) is recognized by gamma delta T cells from mice, bovine and humans and binds directly to specific gamma delta T cell antigen recept...

  14. Human antibodies targeting cell surface antigens overexpressed by the hormone refractory metastatic prostate cancer cells: ICAM-1 is a tumor antigen that mediates prostate cancer cell invasion

    OpenAIRE

    Conrad, Fraser; Zhu, Xiaodong; Zhang, Xin; Chalkley, Robert J.; Burlingame, Alma L; Marks, James D.; Liu, Bin

    2009-01-01

    Transition from hormone-sensitive to hormone-refractory metastatic tumor types poses a major challenge for prostate cancer treatment. Tumor antigens that are differentially expressed during this transition are likely to play important roles in imparting prostate cancer cells with the ability to grow in a hormone-deprived environment and to metastasize to distal sites such as the bone and thus, are likely targets for therapeutic intervention. To identify those molecules and particularly cell s...

  15. Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier and Time Windows

    CERN Document Server

    Gu, Feng; Aickelin, Uwe

    2010-01-01

    As an immune-inspired algorithm, the Dendritic Cell Algorithm (DCA), produces promising performances in the field of anomaly detection. This paper presents the application of the DCA to a standard data set, the KDD 99 data set. The results of different implementation versions of the DXA, including the antigen multiplier and moving time windows are reported. The real-valued Negative Selection Algorithm (NSA) using constant-sized detectors and the C4.5 decision tree algorithm are used, to conduct a baseline comparison. The results suggest that the DCA is applicable to KDD 99 data set, and the antigen multiplier and moving time windows have the same effect on the DCA for this particular data set. The real-valued NSA with constant-sized detectors is not applicable to the data set, and the C4.5 decision tree algorithm provides a benchmark of the classification performance for this data set.

  16. Epithelial membrane antigen in cells from the uterine cervix: immunocytochemical staining of cervical smears.

    OpenAIRE

    Valkova, B; Ormerod, M G; Moncrieff, D.; Coleman, D V

    1984-01-01

    Smears made from cervical scrapes have been stained immunocytochemically for epithelial membrane antigen using a polyclonal antiserum and two monoclonal antibodies. With the polyclonal antiserum malignant cells and those showing dysplasia consistently expressed the antigen. Normal cells were generally negative, with the exception of some metaplastic cells. The monoclonal antibodies, although they stained the abnormal cells less consistently, gave the same pattern of staining. All three antibo...

  17. Amiloride enhances antigen specific CTL by faciliting HBV DNA vaccine entry into cells.

    Directory of Open Access Journals (Sweden)

    Shuang Geng

    Full Text Available The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses.

  18. Germ tube-specific antigens of Candida albicans cell walls

    International Nuclear Information System (INIS)

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specific antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with 125I, or metabolically with [35S] methionine or [3H] mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen

  19. Common polysaccharide antigens from the cell envelope of Clostridium perfringens type A.

    OpenAIRE

    Dayalu, K I; Cherniak, R; Hatheway, C L

    1981-01-01

    Soluble antigens were obtained by extracting five serotype strains of Clostridium perfringens type A with water at 100 degrees C. The type-specific polysaccharides were precipitated with ethanol, and the common antigens were recovered from the ethanol supernatants by concentration, dialysis, and lyophilization. Refluxing the water-extracted cell residues with 1% acetic acid followed by concentration, dialysis, and lyophilization gave additional common antigen fractions. A comprehensive, side-...

  20. Renal cell carcinoma presenting with malignant ascites

    OpenAIRE

    Jennison, Erica; Wathuge, Gayathri W; Gorard, David A

    2015-01-01

    Lesson It is rare for renal cell carcinoma to involve the peritoneum and cause malignant ascites. Furthermore, it is uncommon for malignant ascites to be a presenting feature of this cancer. An unusual case of renal cell carcinoma presenting with malignant ascites is reported, and its response to sunitinib described.

  1. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen

    International Nuclear Information System (INIS)

    Antibody-based immuneotherapy has achieved some success for cancer. But the main problem is that only a few tumor-associated antigens or therapeutic targets have been known to us so far. It is essential to identify more immunogenic antigens (especially cellular membrane markers) for tumor diagnosis and therapy. The membrane proteins of lung adenocarcinoma cell line A549 were used to immunize the BALB/c mice. A monoclonal antibody 4E7 (McAb4E7) was produced with hybridoma technique. MTT cell proliferation assay was carried out to evaluate the inhibitory effect of McAb4E7 on A549 cells. Flow cytometric assay, immunohistochemistry, western blot and proteomic technologies based on 2-DE and mass spectrometry were employed to detect and identify the corresponding antigen of McAb4E7. The monoclonal antibody 4E7 (McAb4E7) specific against A549 cells was produced, which exhibited inhibitory effect on the proliferation of A549 cells. By the proteomic technologies, we identified that ATP synthase beta subunit (ATPB) was the corresponding antigen of McAb4E7. Then, flow cytometric analysis demonstrated the localization of the targeting antigen of McAb4E7 was on the A549 cells surface. Furthermore, immunohistochemstry showed that the antigen of McAb4E7 mainly aberrantly expressed in tumor cellular membrane in non-small cell lung cancer (NSCLC), but not in small cell lung cancer (SCLC). The rate of ectopic expressed ATPB in the cellular membrane in lung adenocarcinoma, squamous carcinoma and their adjacent nontumourous lung tissues was 71.88%, 66.67% and 25.81% respectively. In the present study, we identified that the ectopic ATPB in tumor cellular membrane was the non-small cell lung cancer (NSCLC) associated antigen. ATPB may be a potential biomarker and therapeutic target for the immunotherapy of NSCLC

  2. An indirect immunofluorescence assay using a cell culture-derived antigen for detection of antibodies to the agent of human granulocytic ehrlichiosis.

    OpenAIRE

    Nicholson, W L; Comer, J A; Sumner, J W; Gingrich-Baker, C; Coughlin, R T; Magnarelli, L A; Olson, J G; Childs, J. E.

    1997-01-01

    An indirect immunofluorescence assay for the detection of human antibodies to the agent of human granulocytic ehrlichiosis (HGE) was developed and standardized. Antigen was prepared from a human promyelocytic leukemia cell line (HL-60) infected with a tick-derived isolate of the HGE agent (USG3). Suitable antigen presentation and preservation of cellular morphology were obtained when infected cells were applied and cultured on the slide, excess medium was removed, and cells were fixed with ac...

  3. Cell Wall-Associated Protein Antigens of Streptococcus salivarius: Purification, Properties, and Function in Adherence

    Science.gov (United States)

    Weerkamp, Anton H.; Jacobs, Ton

    1982-01-01

    Three cell wall-associated protein antigens (antigens b, c, and d) were isolated from mutanolysin-solubilized cell walls of Streptococcus salivarius HB and purified to apparent homogeneity by a combination of ion-exchange chromatography, gel filtration, and immunoadsorption chromatography. Antigens b and c were also isolated from culture supernatants. Antigen b consisted of more than 80% protein and had an apparent molecular weight as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 320,000. Antigen c consisted of 57% protein, about 30% neutral sugar, and about 13% amino sugar, and its glycoprotein nature was confirmed by specific staining techniques. During sodium dodecyl sulfate-polyacrylamide gel electrophoresis antigen c resolved into two or more bands, depending on the source or the isolation procedure, in the molecular weight range from 220,000 to 280,000. Antigen d consisted of 95% protein and was observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as two bands with molecular weights of 129,000 and 121,000. Under nondenaturing conditions all three antigens had molecular weights in the range from 1 × 106 to 3 × 106 as determined by gel filtration. The amino acid compositions of antigens b, c, and d were characterized by low amounts of basic amino acids and relatively high levels of nonpolar amino acids. Among oral streptococcal species antigens b and c were virtually restricted to strains of S. salivarius and most often to serotype I strains. Antigen b was recognized as the factor that mediates coaggregation of S. salivarius with Veillonella strains. The purified protein retained its biological activity. Antigen c could be linked to functions relating to adhesion of the streptococci to host tissues on the basis of its absence in mutant strains and blocking by specific antisera. The purified molecule had no detectable biological activity. Antigen d could not be linked to an established adhesion function. Images

  4. Therapeutic Potential of T Cell Chimeric Antigen Receptors (CARs) in Cancer Treatment: Counteracting Off-Tumor Toxicities for Safe CAR T Cell Therapy.

    Science.gov (United States)

    Gross, Gideon; Eshhar, Zelig

    2016-01-01

    A chimeric antigen receptor (CAR) is a recombinant fusion protein combining an antibody-derived targeting fragment with signaling domains capable of activating T cells. Recent early-phase clinical trials have demonstrated the remarkable ability of CAR-modified T cells to eliminate B cell malignancies. This review describes the choice of target antigens and CAR manipulations to maximize antitumor specificity. Benefits and current limitations of CAR-modified T cells are discussed, with a special focus on the distribution of tumor antigens on normal tissues and the risk of on-target, off-tumor toxicities in the clinical setting. We present current methodologies for pre-evaluating these risks and review the strategies for counteracting potential off-tumor effects. Successful implementation of these approaches will improve the safety and efficacy of CAR T cell therapy and extend the range of cancer patients who may be treated. PMID:26738472

  5. Asparagine endopeptidase is not essential for class II MHC antigen presentation but is required for processing of cathepsin L in mice.

    Science.gov (United States)

    Maehr, René; Hang, Howard C; Mintern, Justine D; Kim, You-Me; Cuvillier, Armelle; Nishimura, Mikio; Yamada, Kenji; Shirahama-Noda, Kanae; Hara-Nishimura, Ikuko; Ploegh, Hidde L

    2005-06-01

    Class II MHC molecules survey the endocytic compartments of APCs and present antigenic peptides to CD4 T cells. In this context, lysosomal proteases are essential not only for the generation of antigenic peptides but also for proteolysis of the invariant chain to allow the maturation of class II MHC molecules. Recent studies with protease inhibitors have implicated the asparagine endopeptidase (AEP) in class II MHC-restricted Ag presentation. We now report that AEP-deficient mice show no differences in processing of the invariant chain or maturation of class II MHC products compared with wild-type mice. In the absence of AEP, presentation to primary T cells of OVA and myelin oligodendrocyte glycoprotein, two Ags that contain asparagine residues within or in proximity to the relevant epitopes was unimpaired. Cathepsin (Cat) L, a lysosomal cysteine protease essential for the development to CD4 and NK T cells, fails to be processed into its mature two-chain form in AEP-deficient cells. Despite this, the numbers of CD4 and NK T cells are normal, showing that the single-chain form of Cat L is sufficient for its function in vivo. We conclude that AEP is essential for processing of Cat L but not for class II MHC-restricted Ag presentation. PMID:15905550

  6. Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Pøhl, Mette; Olsen, Karen E; Ditzel, Henrik J

    2013-01-01

    The unique expression pattern and immunogenic properties of cancer/testis antigens make them ideal targets for immunotherapy of cancer. The MAGE-A3 cancer/testis antigen is frequently expressed in non-small cell lung cancer (NSCLC) and vaccination with MAGE-A3 in patients with MAGE-A3-positive...... NSCLC has shown promising results. However, little is known about the expression of other cancer/testis antigens in NSCLC. In the present study the expression of cancer/testis antigens GAGE, NY-ESO-1 and SP17 was investigated in patients with completely resected, early stage, primary NSCLC....

  7. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    Directory of Open Access Journals (Sweden)

    Jodie Lopez

    2015-12-01

    Full Text Available Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV, resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  8. Use of the Recombinant Particles of Potato Virus a (PVA) for Presentation of Foreign Antigens

    Czech Academy of Sciences Publication Activity Database

    Moravec, Tomáš; Čeřovská, Noemi; Velemínský, Jiří

    Aschersleben : International Society of Plant Pathology, 2002, s. 103. [International Plant Virus Epidemiology Symposium /8./.. Aschersleben (DE), 12.03.2002-17.03.2002] Institutional research plan: CEZ:AV0Z5038910 Keywords : recombinant particles * potato virus (PVA) * antigens Subject RIV: EB - Genetics ; Molecular Biology

  9. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer's patch

    Science.gov (United States)

    1996-01-01

    Despite the fact that the Peyer's patch (PP) is the primary site for antigen uptake in the intestine, the cellular basis of antigen handling after transport into the PP is poorly understood. We performed immunohistology of murine PPs using the dendritic cell (DC)-reactive monoclonal antibodies N418, NLDC-145, M342, and 2A1, as well as antibodies to other T cell, B cell, and macrophage markers. N418+, 2A1+, NLDC-145-, M342- cells form a dense layer of cells in the subepithelial dome (SED), just beneath the follicle epithelium, and are scattered throughout the follicle, sparing the germinal center. In contrast, N418+, 2A1+, NLDC-145+, and M342+ DCs are present in the interfollicular T cell regions (IFR). CD3+ and CD4+, but no CD8+ T cells were present in the SED and the follicle, including the germinal center, while CD3+, CD4+, and CD8+ T cells were present in the IFR. B cells and macrophages were poorly represented in the SED as no B220+ cells, only few Mac-1lo cells, and no F4/80+ cells were present at this site. In contrast, Mac-1hi cells were found in the IFR and lamina propria of intestinal villi, while F4/80+ cells were found only in the latter. In further phenotypic studies, we analyzed surface molecules of PP and spleen DCs by flow cytometry and found that these cells had similar fluorescence profiles when stained with N418, NLDC-145, and 33D1 DC-reactive antibodies, and antibodies to the costimulatory molecules B7-1 (1G10) and B7-2 (GL1). In contrast, PP DCs expressed 5- 10-fold higher levels of major histocompatibility complex class II antigens (IEk) than spleen DCs. Finally, in functional studies, we demonstrated that both PP and spleen DCs process soluble protein antigens during overnight culture and induce similar levels of proliferation in CD3+ T cells, and CD4+/Mel 14hi T cells from T cell receptor transgenic mice. The in vivo relevance of such presentation was shown by the fact that PP DCs isolated from Balb/c mice after being fed ovalbumin stimulated

  10. HLA-DR, DQ and T cell antigen receptor constant beta genes in Japanese patients with ulcerative colitis.

    Science.gov (United States)

    Kobayashi, K; Atoh, M; Konoeda, Y; Yagita, A; Inoko, H; Sekiguchi, S

    1990-01-01

    We studied the T cell antigen receptor (TcR) constant beta chain genes on HLA typed Japanese patients with ulcerative colitis (UC). A TcR constant beta EcoRI 6.0-kb fragment was present in all Japanese UC patients (n = 17) but completely absent in the controls (n = 35) (chi2 = 47.6, P less than 0.001). The frequency of HLA-DR2 antigen was significantly higher in UC patients (85% versus 28% in controls, P less than 0.001). Furthermore, HLA-DQw1 antigen was also increased in UC patients (96% versus 60% in controls, P less than 0.001). However, HLA-DR4 antigen was significantly decreased in UC patients (12% versus 37%, P = 0.02). HLA-DR1 antigen was not found in UC patients and was present in only 15% of the controls. These results suggest that TcR beta chain and HLA-DQw1 antigen may be important in the pathogenesis of Japanese UC. Images Fig. 1 PMID:1973647

  11. Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23

    International Nuclear Information System (INIS)

    Epstein-Barr virus (EBV) infection of EBV-negative Burkitt lymphoma (BL) cells includes some changes similar to those seen in normal B lymphocytes that have been growth transformed by EBV. The role of individual EBV genes in this process was evaluated by introducing each of the viral genes that are normally expressed in EBV growth-transformed and latently infected lymphoblasts into an EBV-negative BL cell line, using recombinant retrovirus-mediated transfer. Clones of cells were derived that stably express the EBV nuclear antigen 1 (EBNA-1), EBNA-2, EBNA-3, EBNA-leader protein, or EBV latent membrane protein (LMP). These were compared with control clones infected with the retrovirus vector. All 10 clones converted to EBNA-2 expression differed from control clones or clones expressing other EBV proteins by growth in tight clumps and by markedly increased expression of one particular surface marker of B-cell activation, CD23. Other activation antigens were unaffected by EBNA-2 expression, as were markers already expressed on the parent BL cell line. The results indicate that EBNA-2 is a specific direct or indirect trans-activator of CD23. This establishes a link between an EBV gene and cell gene expression. Since CD23 has been implicated in the transduction of B-cell growth signals, its specific induction by EBNA-2 could be important in EBV induction of B-lymphocyte transformation

  12. Purification and characterization of fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA)

    OpenAIRE

    1983-01-01

    Fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA) were purified from both fetal liver and fetal bone marrow by immune rosetting with sheep erythrocytes coated with rabbit anti-mouse immunoglobulin and by fluorescence-activated cell sorting. Dual fluorescence techniques disclosed that these cells were heterogenous with respect to the expression of a series of differentiation and activation antigens defined by monoclonal antibodies. Thus, whereas all...

  13. Variability in expression of cell surface antigens of Candida albicans during morphogenesis.

    OpenAIRE

    Brawner, D L; Cutler, J. E.

    1986-01-01

    The location and expression of two different cell surface antigens on germinating and nongerminating Candida albicans cells was examined by using transmission electron microscopy after labeling with monoclonal antibodies (H9 or C6) and immunocolloidal gold. Immunodeterminant expression of the two carbohydrate antigens was followed from early germination events through 20 h of development. The determinant detected by H9 antibody, which was initially lost from the mother cell surface and prefer...

  14. Batf3-Dependent Dendritic Cells in the Renal Lymph Node Induce Tolerance against Circulating Antigens

    OpenAIRE

    Gottschalk, Catherine; Damuzzo, Vera; Gotot, Janine; Kroczek, Richard A.; Yagita, Hideo; Murphy, Kenneth M.; Knolle, Percy A.; Ludwig-Portugall, Isis; Kurts, Christian

    2013-01-01

    Although the spleen is a major site where immune tolerance to circulating innocuous antigens occurs, the kidney also contributes. Circulating antigens smaller than albumin are constitutively filtered and concentrated in the kidney and reach the renal lymph node by lymphatic drainage, where resident dendritic cells (DCs) capture them and induce tolerance of specific cytotoxic T cells through unknown mechanisms. Here, we found that the coinhibitory cell surface receptor programmed death 1 (PD-1...

  15. Regulation of murine macrophage Ia-antigen expression by products of activated spleen cells

    OpenAIRE

    1980-01-01

    This investigation examined the effects of mediators derived form activated spleen cells on macrophage Ia-antigen expression and function. Incubation of adherent thioglycollate-induced murine peritoneal macrophages(> 90% Ia-) with concanavalin A (Con A)- stimulated spleen cell supernate (Con A sup) resulted in a dose- dependent increase in the percentage of Ia-containing (Ia+) phagocytic cells, as detected by antiserum-and-complement-mediated cytotoxicity. The Ia-antigen expression of macroph...

  16. Design and Development of Therapies using Chimeric Antigen Receptor-Expressing T cells

    OpenAIRE

    Dotti, Gianpietro; Gottschalk, Stephen; Savoldo, Barbara; Brenner, Malcolm K

    2014-01-01

    Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking and effector functions of a T-cell. This article describes how the past two decades have seen a crescendo of res...

  17. Merkel Cell Polyomavirus Large T Antigen Has Growth-Promoting and Inhibitory Activities

    OpenAIRE

    Cheng, Jingwei; Rozenblatt-Rosen, Orit; Paulson, Kelly G.; Nghiem, Paul; DeCaprio, James A.

    2013-01-01

    Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes...

  18. How T-cells use large deviations to recognize foreign antigens

    CERN Document Server

    Zint, Natali; Hollander, Frank den

    2008-01-01

    A stochastic model for the activation of T-cells is analysed. T-cells are part of the immune system and recognize foreign antigens against a background of the body's own molecules. The model under consideration is a slight generalization of a model introduced by Van den Berg, Rand and Burroughs in 2001, and is capable of explaining how this recognition works on the basis of rare stochastic events. With the help of a refined large deviation theorem and numerical evaluation it is shown that, for a wide range of parameters, T-cells can distinguish reliably between foreign antigens and self-antigens.

  19. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation.

    Directory of Open Access Journals (Sweden)

    Aida M Andrés

    2010-10-01

    Full Text Available A remarkable characteristic of the human major histocompatibility complex (MHC is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2, has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B, with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1, also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.

  20. Human cytotoxic T cells stimulated by antigen on dendritic cells recognize the N, SH, F, M, 22K, and 1b proteins of respiratory syncytial virus.

    OpenAIRE

    Cherrie, A H; Anderson, K.; Wertz, G W; Openshaw, P. J.

    1992-01-01

    We examined the human cytotoxic T-cell repertoire of nine adults to 9 of the 10 proteins of respiratory syncytial (RS) virus. Peripheral blood mononuclear cells from normal adults were stimulated with RS virus in vitro. The resulting polyclonal cultures were tested for lysis of B-lymphoblastoid cell lines infected with recombinant vaccinia viruses expressing each of nine individual RS virus proteins. The use of peripheral blood dendritic cells to present antigen gave more easily reproducible ...

  1. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Pramod K Giri

    Full Text Available Activation of both CD4(+ and CD8(+ T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in naïve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+ and CD8(+ splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+ and CD8(+ T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.

  2. Serum antibodies to whole-cell and recombinant antigens of Borrelia burgdorferi in cottontail rabbits.

    Science.gov (United States)

    Magnarelli, Louis A; Norris, Steven J; Fikrig, Erol

    2012-01-01

    Archived serum samples, from 95 eastern cottontail rabbits (Sylvilagus floridanus) captured in New York, New York, USA and Millbrook, New York, USA, during 1985-86, were analyzed in solid-phase enzyme-linked immunosorbent assays (ELISA) for total and class-specific immunoglobulin (Ig) M antibodies to whole-cell or recombinant antigens of Borrelia burgdorferi sensu stricto. Using a polyvalent conjugate, rabbit sera contained antibodies to whole-cell and recombinant antigens (protein [p]35, p37, or VlsE) during different seasons, but there was no reactivity to outer surface protein (Osp)A or OspB. Seventy-six of the 102 sera (75%) analyzed were reactive with one or more of the antigens; 61 of the positive samples (80%) reacted to whole-cell antigens, followed by results for the p35 (58%, 44/76), VlsE (43%, 33/76), and p37 (29%, 22/ 76) antigens. Fifty-eight sera (76%) contained antibodies to the VlsE or p35 antigens with or without reactivity to whole-cell antigens. High antibody titers (≥1:2,560) recorded for 52 sera indicate robust antibody production. In analyses for IgM antibodies in an ELISA containing whole-cell antigens, there were 30 positive sera; titers ranged from 1:160 to 1:640. There was minimal cross-reactivity when rabbit antisera to Treponema pallidum or four serovars of Leptospira interrogans were screened against B. burgdorferi antigens. Based on more-specific results, VlsE and p35 antigens appear to be useful markers for detecting possible B. burgdorferi infections. PMID:22247369

  3. Monoclonal antibodies to cell surface antigens of human melanoma

    International Nuclear Information System (INIS)

    The authors have worked with three human melanoma antigens which have been defined by monoclonal mouse antibodies: p97, a glycoprotein that is structurally related to transferrin, a proteoglycan, and a GD3 ganglioside that is slightly different from the GD3 of normal brain. All three antigens can be detected in frozen sections of melanoma, using immunohistological techniques. Antibodies and Fab fragments, specific for either p97 or the proteoglycan antigen, have been radiolabelled with 131I and successfully used for tumor imaging, and Phase I therapeutic trails are underway, using 131I-labelled Fab fragments, specific for p97 or the proteoglycan antigen, to localize a potentially therapeutic dose of radiation into tumors. It may be feasible to use the same monoclonal antibodies, or antibody fragments, as carriers of neutron capturers, such as boron, for possible use in tumor therapy. The initial experiments on this are best carried out by using nude mice (or rats) carrying human melanoma xenografts

  4. Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses.

    Science.gov (United States)

    Zhou, Qianqian; Zhang, Yulong; Du, Juan; Li, Yuan; Zhou, Yong; Fu, Qiuxia; Zhang, Jingang; Wang, Xiaohui; Zhan, Linsheng

    2016-02-23

    The lack of efficient antigen and activator delivery systems, as well as the restricted migration of dendritic cells (DCs) to secondary lymph organs, dramatically limits DC-based adoptive immunotherapy. We selected two spherical gold nanoparticle (AuNP)-based vehicles of optimal size for activator and antigen delivery. Their combination (termed the NanoAu-Cocktail) was associated with the dual targeting of CpG oligonucleotides (CpG-ODNs) and an OVA peptide (OVAp) to DC subcellular compartments, inducing enhanced antigen cross-presentation, upregulated expression of costimulatory molecules and elevated secretion of T helper1 cytokines. We demonstrated that the intravenously transfused NanoAu-Cocktail pulsed DCs showed dramatically improved in vivo homing ability to lymphoid tissues and were settled in T cell area. Especially, by tissue-distribution analysis, we found that more than 60% of lymphoid tissues-homing DCs accumulated in liver-draining lymph nodes (LLNs). The improved homing ability of NanoAu-Cocktail pulsed DCs was associated with the high expression of chemokine receptor 7 (CCR7) and rearrangement of the cytoskeletons. In addition, by antigen-specific tetramers detection, NanoAu-Cocktail pulsed DCs were proved able to elicit strong antigen-specific CD8+ T cell responses, which provided enhanced protection from viral invasions. This study highlights the importance of codelivering antigen/adjuvant using different sized gold nanoparticles to improve DC homing and therapy. PMID:26771692

  5. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors.

    Directory of Open Access Journals (Sweden)

    Adiba Isa

    Full Text Available HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced a 9-42 fold increase of all six HLA-A,-B,-C gene transcripts. Interestingly, prior to stimulation, gene transcripts for all but two alleles were present in similar amounts suggesting that post-transcriptional mechanisms regulate the constitutive expression of HLA-A,-B, and -C. Locus-restricted expression of HLA-A, -B and -C challenges our current understanding of the function of these molecules as regulators of CD8(+ T-cell and NK-cell function and should lead to further inquiries into their expression on other cell types.

  6. An adaptive immune response driven by mature, antigen-experienced T and B cells within the microenvironment of oral squamous cell carcinoma.

    Science.gov (United States)

    Quan, Hongzhi; Fang, Liangjuan; Pan, Hao; Deng, Zhiyuan; Gao, Shan; Liu, Ousheng; Wang, Yuehong; Hu, Yanjia; Fang, Xiaodan; Yao, Zhigang; Guo, Feng; Lu, Ruohuang; Xia, Kun; Tang, Zhangui

    2016-06-15

    Lymphocyte infiltrates have been observed in the microenvironment of oral cancer; however, little is known about whether the immune response of the lymphocyte infiltrate affects tumor biology. For a deeper understanding of the role of the infiltrating-lymphocytes in oral squamous cell carcinoma (OSCC), we characterized the lymphocyte infiltrate repertoires and defined their features. Immunohistochemistry revealed considerable T and B cell infiltrates and lymphoid follicles with germinal center-like structures within the tumor microenvironment. Flow cytometry demonstrated that populations of antigen-experienced CD4+ and CD8+ cells were present, as well as an enrichment of regulatory T cells; and T cells expressing programmed death-1 (PD-1) and T cell Ig and mucin protein-3 (Tim-3), indicative of exhaustion, within the tumor microenvironment. Characterization of tumor-infiltrating B cells revealed clear evidence of antigen exposure, in that the cardinal features of an antigen-driven B cell response were present, including somatic mutation, clonal expansion, intraclonal variation and isotype switching. Collectively, our results point to an adaptive immune response occurring within the OSCC microenvironment, which may be sustained by the expression of specific antigens in the tumor. PMID:26815146

  7. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    R Rajkannan; E J Padma Malar

    2007-09-01

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the crystal structure of monoclonal antibody specific for the pres1 region of the hepatitis B virus. At the optimized docked conformation, the interactions between the amino acids of antigen and antibody were examined. It is found that the docked complex is stabilized by 59.3 kcal/mol. The stability of the docked antigen-antibody complex is due to hydrogen bonding and van der Waals interactions. The amino acids of the antigen and antibody responsible for the interaction were identified.

  8. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens.

    Science.gov (United States)

    Altvater, Bianca; Pscherer, Sibylle; Landmeier, Silke; Kailayangiri, Sareetha; Savoldo, Barbara; Juergens, Heribert; Rossig, Claudia

    2012-03-01

    Specific cellular immunotherapy of cancer requires efficient generation and expansion of cytotoxic T lymphocytes (CTLs) that recognize tumor-associated self-antigens. Here, we investigated the capacity of human γδ T cells to induce expansion of CD8+ T cells specific for peptides derived from the weakly immunogenic tumor-associated self-antigens PRAME and STEAP1. Coincubation of aminobisphosphonate-stimulated human peripheral blood-derived γδ T cells (Vγ9+Vδ2+), loaded with HLA-A*02-restricted epitopes of PRAME, with autologous peripheral blood CD8+ T cells stimulated the expansion of peptide-specific cytolytic effector memory T cells. Moreover, peptide-loaded γδ T cells efficiently primed antigen-naive CD45RA+ CD8+ T cells against PRAME peptides. Direct comparisons with mature DCs revealed equal potency of γδ T cells and DCs in inducing primary T-cell responses and peptide-specific T-cell activation and expansion. Antigen presentation by γδ T-APCs was not able to overcome the limited capacity of peptide-specific T cells to interact with targets expressing full-length antigen. Importantly, T cells with regulatory phenotype (CD4+ CD25hiFoxP3+) were lower in cocultures with γδ T cells compared to DCs. In summary, bisphosphonate-activated γδ T cells permit generation of CTLs specific for weakly immunogenic tumor-associated epitopes. Exploiting this strategy for effective immunotherapy of cancer requires strategies that enhance the avidity of CTL responses to allow for efficient targeting of cancer. PMID:21928126

  9. VEGF-C Promotes Immune Tolerance in B16 Melanomas and Cross-Presentation of Tumor Antigen by Lymph Node Lymphatics

    Directory of Open Access Journals (Sweden)

    Amanda W. Lund

    2012-03-01

    Full Text Available Tumor expression of the lymphangiogenic factor VEGF-C is correlated with metastasis and poor prognosis, and although VEGF-C enhances transport to the draining lymph node (dLN and antigen exposure to the adaptive immune system, its role in tumor immunity remains unexplored. Here, we demonstrate that VEGF-C promotes immune tolerance in murine melanoma. In B16 F10 melanomas expressing a foreign antigen (OVA, VEGF-C protected tumors against preexisting antitumor immunity and promoted local deletion of OVA-specific CD8+ T cells. Naive OVA-specific CD8+ T cells, transferred into tumor-bearing mice, were dysfunctionally activated and apoptotic. Lymphatic endothelial cells (LECs in dLNs cross-presented OVA, and naive LECs scavenge and cross-present OVA in vitro. Cross-presenting LECs drove the proliferation and apoptosis of OVA-specific CD8+ T cells ex vivo. Our findings introduce a tumor-promoting role for lymphatics in the tumor and dLN and suggest that lymphatic endothelium in the local microenvironment may be a target for immunomodulation.

  10. Phenotypic studies of natural killer cell subsets in human transporter associated with antigen processing deficiency.

    Directory of Open Access Journals (Sweden)

    Jacques Zimmer

    Full Text Available Peripheral blood natural killer (NK cells from patients with transporter associated with antigen processing (TAP deficiency are hyporesponsive. The mechanism of this defect is unknown, but the phenotype of TAP-deficient NK cells is almost normal. However, we noticed a high percentage of CD56(bright cells among total NK cells from two patients. We further investigated TAP-deficient NK cells in these patients and compared them to NK cells from two other TAP-deficient patients with no clinical symptoms and to individuals with chronic inflammatory diseases other than TAP deficiency (chronic lung diseases or vasculitis. Peripheral blood mononuclear cells isolated from venous blood were stained with fluorochrome-conjugated antibodies and the phenotype of NK cells was analyzed by flow cytometry. In addition, (51Chromium release assays were performed to assess the cytotoxic activity of NK cells. In the symptomatic patients, CD56(bright NK cells represented 28% and 45%, respectively, of all NK cells (higher than in healthy donors. The patients also displayed a higher percentage of CD56(dimCD16(- NK cells than controls. Interestingly, this unusual NK cell subtype distribution was not found in the two asymptomatic TAP-deficient cases, but was instead present in several of the other patients. Over-expression of the inhibitory receptor CD94/NKG2A by TAP-deficient NK cells was confirmed and extended to the inhibitory receptor ILT2 (CD85j. These inhibitory receptors were not involved in regulating the cytotoxicity of TAP-deficient NK cells. We conclude that expansion of the CD56(bright NK cell subtype in peripheral blood is not a hallmark of TAP deficiency, but can be found in other diseases as well. This might reflect a reaction of the immune system to pathologic conditions. It could be interesting to investigate the relative distribution of NK cell subsets in various respiratory and autoimmune diseases.

  11. Biochemical basis of synergy between antigen and T-helper (Th) cell-mediated activation of resting human B cells.

    OpenAIRE

    Chartash, E K; Crow, M K; Friedman, S M

    1989-01-01

    We have utilized CD23 expression as a marker for B cell activation in order to investigate the biochemical basis for synergy between antigen and T helper (Th) cells in the activation of resting human B cells. Our results confirm that while ligation of surface immunoglobulin (sIg) receptors by antigen analogues (e.g., F(ab')2 goat anti-human IgM) does not lead to CD23 expression, this stimulus markedly enhances CD23 expression induced during antigen specific Th-B cell interaction or by rIL-4. ...

  12. Merkel cell polyomavirus large T antigen has growth-promoting and inhibitory activities.

    Science.gov (United States)

    Cheng, Jingwei; Rozenblatt-Rosen, Orit; Paulson, Kelly G; Nghiem, Paul; DeCaprio, James A

    2013-06-01

    Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes the DNA binding and helicase domains. However, the transforming functions of full-length and truncated MCPyV large T antigen are unknown. We compared the transforming activities of full-length, truncated, and alternatively spliced 57kT forms of MCPyV large T antigen. MCPyV large T antigen could bind to Rb but was unable to bind to p53. Furthermore, MCPyV-truncated large T antigen was more effective than full-length and 57kT large T antigen in promoting the growth of human and mouse fibroblasts. In contrast, expression of the MCPyV large T antigen C-terminal 100 residues could inhibit the growth of several different cell types. These data imply that the deletion of the C terminus of MCPyV large T antigen found in MCC serves not only to disrupt viral replication but also results in the loss of a distinct growth-inhibitory function intrinsic to this region. PMID:23514892

  13. Structural analysis of antigen-specific Ia-bearing regulatory T-cell factors: gel electrophoretic analysis of the antigen-specific augmenting T -cell factor.

    OpenAIRE

    Miyatani, S; Hiramatsu, K; Nakajima, P B; Owen, F L; Tada, T

    1983-01-01

    An antigen-specific T-cell factor (TaF) that specifically augments the antibody response was purified and biochemically analyzed by NaDodSO4/polyacrylamide gel electrophoresis and isoelectric focusing. Biosynthetically labeled TaF was separated from the Nonidet P-40 extract of T-cell hybridoma FL10, which produces a keyhole limpet hemocyanin-specific TaF, by affinity chromatography either with antigen or with monoclonal anti-I-A antibodies. The material thus obtained was composed of two diffe...

  14. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody.

    Science.gov (United States)

    Xue, L; Hickling, T; Song, R; Nowak, J; Rup, B

    2016-01-01

    Reliable risk assessment for biotherapeutics requires accurate evaluation of risk factors associated with immunogenicity. Immunogenicity risk assessment tools were developed and applied to investigate the immunogenicity of a fully human therapeutic monoclonal antibody, ATR-107 [anti-interleukin (IL)-21 receptor] that elicited anti-drug antibodies (ADA) in 76% of healthy subjects in a Phase 1 study. Because the ATR-107 target is expressed on dendritic cells (DCs), the immunogenicity risk related to engagement with DC and antigen presentation pathways was studied. Despite the presence of IL-21R on DCs, ATR-107 did not bind to the DCs more extensively than the control therapeutic antibody (PF-1) that had elicited low clinical ADA incidence. However, ATR-107, but not the control therapeutic antibody, was translocated to the DC late endosomes, co-localized with intracellular antigen-D related (HLA-DR) molecules and presented a dominant T cell epitope overlapping the complementarity determining region 2 (CDR2) of the light chain. ATR-107 induced increased DC activation exemplified by up-regulation of DC surface expression of CD86, CD274 (PD-L1) and CD40, increased expansion of activated DC populations expressing CD86(hi), CD40(hi), CD83(hi), programmed death ligand 1 (PD-L1)(hi), HLA-DR(hi) or CCR7(hi), as well as elevated secretion of tumour necrosis factor (TNF)-α by DCs. DCs exposed to ATR-107 stimulated an autologous T cell proliferative response in human donor cells, in concert with the detection of immunoglobulin (Ig)G-type anti-ATR-107 antibody response in clinical samples. Collectively, the enhanced engagement of antigen presentation machinery by ATR-107 was suggested. The approaches and findings described in this study may be relevant to identifying lower immunogenicity risk targets and therapeutic molecules. PMID:26400440

  15. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape.

    Science.gov (United States)

    Hegde, Meenakshi; Mukherjee, Malini; Grada, Zakaria; Pignata, Antonella; Landi, Daniel; Navai, Shoba A; Wakefield, Amanda; Fousek, Kristen; Bielamowicz, Kevin; Chow, Kevin K H; Brawley, Vita S; Byrd, Tiara T; Krebs, Simone; Gottschalk, Stephen; Wels, Winfried S; Baker, Matthew L; Dotti, Gianpietro; Mamonkin, Maksim; Brenner, Malcolm K; Orange, Jordan S; Ahmed, Nabil

    2016-08-01

    In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape. PMID:27427982

  16. Uptake and presentation of myelin basic protein by normal human B cells.

    Directory of Open Access Journals (Sweden)

    Marie Klinge Brimnes

    Full Text Available B cells may play both pathogenic and protective roles in T-cell mediated autoimmune diseases such as multiple sclerosis (MS. These functions relate to the ability of B cells to bind and present antigens. Under serum-free conditions we observed that 3-4% of circulating B cells from healthy donors were capable of binding the MS-associated self-antigen myelin basic protein (MBP and of presenting the immunodominant peptide MBP85-99, as determined by staining with the mAb MK16 recognising the peptide presented by HLA-DR15-positive cells. In the presence of serum, however, the majority of B cells bound MBP in a complement-dependent manner, and almost half of the B cells became engaged in presentation of MBP85-99. Even though complement receptor 1 (CR1, CD35 and CR2 (CD21 both contributed to binding of MBP to B cells, only CR2 was important for the subsequent presentation of MBP85-99. A high proportion of MBP85-99 presenting B cells expressed CD27, and showed increased expression of CD86 compared to non-presenting B cells. MBP-pulsed B cells induced a low frequency of IL-10-producing CD4+ T cells in 3 out of 6 donors, indicating an immunoregulatory role of B cells presenting MBP-derived peptides. The mechanisms described here refute the general assumption that B-cell presentation of self-antigens requires uptake via specific B-cell receptors, and may be important for maintenance of tolerance as well as for driving T-cell responses in autoimmune diseases.

  17. Expression of major histocompatibility complex class I and class II antigens in human Schwann cell cultures and effects of infection with Mycobacterium leprae.

    Science.gov (United States)

    Samuel, N M; Mirsky, R; Grange, J M; Jessen, K R

    1987-06-01

    Recent experiments on rats have raised the possibility that Schwann cells can present antigens to T lymphocytes. We have investigated whether this mechanism might be relevant in leprosy by determining under what conditions human Schwann cells express class I and class II antigens, and whether infection with Mycobacterium leprae affects this expression. The distribution of these antigens was examined on human Schwann cells in dissociated cell cultures derived from human fetal peripheral nerves. We find that both Schwann cells and fibroblastic cells in these cultures normally express class I antigens but not class II antigens. When Schwann cells are infected with live Mycobacterium leprae for 48 h, 73% of Schwann cells phagocytose the bacteria. Mycobacterium leprae prevents 3H-thymidine incorporation into cultured human Schwann cells, but does not affect class I expression in these cells. Treatment of normal and Mycobacterium leprae infected cultures with gamma-interferon for 72 h induces class II expression on most Schwann cells but not on the majority of fibroblastic cells. The fact that human Schwann cells infected with Mycobacterium leprae can be induced by gamma-interferon to express class II antigens suggests that they may be able to present Mycobacterium leprae antigens to T lymphocytes and thus initiate immune responses against the bacteria. We suggest that a failure of this response, such as that seen within nerve trunks in lepromatous leprosy, is caused by deficient class II expression on Schwann cells. This deficiency in class II expression, in turn, may be caused by the reduced gamma-interferon production characteristic of lepromatous leprosy. PMID:3115648

  18. Survival and antigenic profile of irradiated malarial sporozoites in infected liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Suhrbier, A.; Winger, L.A.; Castellano, E.; Sinden, R.E. (Imperial College, London (England))

    1990-09-01

    Exoerythrocytic (EE) stages of Plasmodium berghei derived from irradiated sporozoites were cultured in vitro in HepG2 cells. They synthesized several antigens, predominantly but not exclusively those expressed by normal early erythrocytic schizonts. After invasion, over half the intracellular sporozoites, both normal and irradiated, appeared to die. After 24 h, in marked contrast to the normal parasites, EE parasites derived from irradiated sporozoites continued to break open, shedding their antigens into the cytoplasm of the infected host cells. Increasing radiation dosage, which has previously been shown to reduce the ability of irradiated sporozoites to protect animals, correlated with reduced de novo antigen synthesis by EE parasites derived from irradiated sporozoites.

  19. Location of T cell and major histocompatibility complex antigens in the human thymus

    OpenAIRE

    1980-01-01

    A series of monoclonal antibodies were used to study the intrathymic distribution of T cell-specific antigens, Ia antigens, and beta 2- microglobulin in frozen sections of human thymus by immunofluorescence and immunoperoxidase techniques. Most of the cortical thymocytes reacted with anti-T4, anti-T5, anti-T6, anti-T8, and anti-T10 antibodies, thus indicating coexpression of multiple antigens on cortical lymphocytes. The staining of cells in the medulla was most satisfactorily judged in secti...

  20. Hybrid human immunodeficiency virus Gag particles as an antigen carrier system: induction of cytotoxic T-cell and humoral responses by a Gag:V3 fusion.

    OpenAIRE

    Griffiths, J C; Harris, S. J.; Layton, G T; Berrie, E L; French, T J; Burns, N R; Adams, S E; Kingsman, A J

    1993-01-01

    In attempts to increase the immunogenicity of recombinant antigens, a number of particulate antigen presentation systems have been developed. In this study, we used human immunodeficiency virus Gag particles as carriers for the human immunodeficiency virus envelope V3 region. Gag:V3 fusion proteins were expressed from baculovirus expression vectors; they migrated to the insect cell membrane and budded from the cells as hybrid particles. An immunization study carried out with rats showed that ...

  1. Quantitative interrelations of Lewis antigens in normal mucosa and transitional cell bladder carcinomas.

    OpenAIRE

    Limas, C

    1991-01-01

    The factors regulating the expression of the Lewis blood group related antigens in tissues have yet to be clarified. In an attempt to resolve some of the existing controversies the quantitative interrelationship of the Le(a), Le(b), X and Y antigens in normal urothelium and transitional cell carcinomas (TCC) was studied using biopsy specimens derived from 22 patients whose ABO and Lewis red blood cell phenotype was known. A quantitative scale was devised to encompass both the extent and inten...

  2. SERUM ANTIBODIES TO WHOLE-CELL AND RECOMBINANT ANTIGENS OF BORRELIA BURGDORFERI IN COTTONTAIL RABBITS

    OpenAIRE

    Magnarelli, Louis A.; Norris, Steven J; Fikrig, Erol

    2012-01-01

    Archived serum samples, from 95 eastern cottontail rabbits (Sylvilagus floridanus) captured in New York, New York, USA and Millbrook, New York, USA, during 1985–86, were analyzed in solid-phase enzyme-linked immunosorbent assays (ELISA) for total and class-specific immunoglobulin (Ig) M antibodies to whole-cell or recombinant antigens of Borrelia burgdorferi sensu stricto. Using a polyvalent conjugate, rabbit sera contained antibodies to whole-cell and recombinant antigens (protein [p]35, p37...

  3. Immunohistochemical localization of granzyme B antigen in cytotoxic cells in human tissues.

    OpenAIRE

    Hameed, A.; Truong, L D; Price, V; Kruhenbuhl, O.; Tschopp, J

    1991-01-01

    Human granzyme B antigen is expressed in cytoplasmic granules of activated cytotoxic T lymphocytes and natural killer cells. Recombinant granzyme B was generated using a prokaryotic expression vector under the control of T7 transcription and translation signals. The 25-kd recombinant protein (granzyme B) was used to develop a rabbit polyclonal antiserum. Purified anti-granzyme B antibodies were used to detect the antigen expression in cytotoxic cells in human tissues. Using the avidin-biotin-...

  4. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells

    OpenAIRE

    Frigault, Matthew J.; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U.; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J. N.; Platt, Jesse M.; Johnson, F. Brad; Paulos, Chrystal M.

    2015-01-01

    This study compared second generation chimeric antigen receptors encoding signaling domains composed of CD28, ICOS and 4-1BB. Here we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T-cell with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to three months following a single stimulation through the TCR. Sustained numeric expansion was independent of cognate antigen and...

  5. Involvement of proliferating cell nuclear antigen (cyclin) in DNA replication in living cells.

    OpenAIRE

    Zuber, M; Tan, E M; Ryoji, M

    1989-01-01

    Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase delta but not the other DNA polymerases in vitro. We injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replicatio...

  6. Characterization of antigen processing and presentation by peptide-linked MHC class I molecules

    OpenAIRE

    Tiwari, Neeraj

    2005-01-01

    MHC-Klasse-I-Moleküle präsentieren gewöhnlich Peptide, die aus zytosolischen Antigenproteinen durch proteasomalen Verdau generiert und anschließend vom TAP-Peptidtransporter ins endoplasmatische Retikulum transportiert werden. Es können jedoch auch endozytierte Antigene für die MHC-Klasse-I-vermittelten Antigenpräsentation prozessiert werden, wobei dieser alternative Weg entweder in einer Proteasom/TAP-abhängigen oder unabhängigen Weise abläuft. Während diese so genannte „Kreuzpräsentation“ f...

  7. Clinical presentation of renal cell carcinoma

    International Nuclear Information System (INIS)

    Most common malignant tumour of the kidney is Renal Cell Carcinoma (RCC) and is known for its unpredictable clinical behaviour. Aetiology and risk factors are not completely understood. Extensive workup is being done in the understanding of the disease, especially to diagnose early and to treat promptly. The objective of this study was to determine the clinical presentation and pathological pattern of RCC. Methods: After approval from ethical committee a retrospective review of records was conducted extending from January 2012 to January 2014 to identify clinical characteristics of renal cell carcinomas. The study included all renal cancer patients presented to Sheikh Zayed Hospital Lahore with in this specified period. The data was retrieved regarding, history, physical examination and necessary investigations such as ultrasonography of abdomen and pelvis and CT scan of abdomen and pelvis. Results: There were total of 50 cases. The male to female ratio was 3:2. Mean age of patients were 52.38 (18-93) years old. Most common clinical presentation was gross haematuria(66%).The mean tumour size was 8.34 (3-24) cm. Tumour histology were clear cell (84%), papillary transitional cell carcinoma (12%) and oncosytoma contributed 4%. Conclusion: We observed that large number of the patients with RCC presented with haematuria and most of them were male. Common pathological type was clear cell carcinoma. (author)

  8. Secretion, interaction and assembly of two O-glycosylated cell wall antigens from Candida albicans.

    Science.gov (United States)

    Pavia, J; Aguado, C; Mormeneo, S; Sentandreu, R

    2001-07-01

    The mechanisms of incorporation of two antigens have been determined using a monoclonal antibody (3A10) raised against the material released from the mycelial cell wall by zymolyase digestion and retained on a concanavalin A column. One of the hybridomas secreted an IgG that reacted with two bands in Western blots. Indirect immunofluorescence showed that the antigens were located on the surfaces of mycelial cells, but within the cell walls of yeasts. These antigens were detected in a membrane preparation, in the SDS-soluble material and in the material released by a 1,3-beta-glucanase and chitinase from the cell walls of yeast and mycelial cells. In the latter three samples, an additional high-molecular-mass, highly polydispersed band was also detected. Beta-elimination of each fraction resulted in the disappearance of all antigen bands, suggesting that they are highly O-glycosylated. In addition, the electrophoretic mobility of the high-molecular-mass, highly polydispersed bands increased after digestion with endoglycosidase H, indicating that they are also N-glycosylated. New antigen bands were released when remnants of the cell walls extracted with 1,3-beta-glucanase or chitinase were digested with chitinase or 1,3-beta-glucanase. These results are consistent with the notion that, after secretion, parts of the O-glycosylated antigen molecules are transferred to an N-glycosylated protein(s). This molecular complex, as well as the remaining original 70 and 80 kDa antigen molecules, next bind to 1,3-beta-glucan or chitin, probably via 1,6-beta-glucan, and, in an additional step, to chitin or 1,3-beta-glucan. This process results in the final molecular product of each antigen, and their distribution in the cell walls. PMID:11429475

  9. Aromatic-dependent salmonella as anti-bacterial vaccines and as presenters of heterologous antigens or of DNA encoding them.

    Science.gov (United States)

    Stocker, B A

    2000-09-29

    The development of live bacterial vaccines is reviewed, in particular aromatic-dependent Salmonella, either for protection against the corresponding infections (including typhoid fever) or as carrier-presenter of antigens of unrelated pathogens or of DNA specifying them. Aromatic-dependent Salmonella live vaccines are also compared with BCG and Ty21a and the recent records of exceptional situations are discussed in which aroA (deletion) strains of Salmonella typhimurium cause progressive disease in mice. PMID:11000459

  10. Presentation of human minor histocompatibility antigens by HLA-B35 and HLA-B38 molecules

    International Nuclear Information System (INIS)

    Cytotoxic T lymphocyte (CTL) clones specific for human minor histocompatibility antigens (hmHAs) were produced from a patient who had been grafted with the kidneys from his mother and two HLA-identical sisters. Of eight CTL clones generated, four recognized an hmHA (hmHA-1) expressed on cells from the mother and sister 3 (second donor); two recognized another antigen (hmHA-2) on cells from the father, sister (third donor), and sister 3; and the remaining two clones recognized still another antigen (hmHA-3) on cells from the father and sister 3. Panel studies revealed that CTL recognition of hmHA-1 was restricted by HLA-B35 and that of hmHA-2 and hmHA-3 was restricted by HLA-B38. The HLA-B35 restriction of the hmHA-1 -specific CTL clones was substantiated by the fact that they killed HLA-A null/HLA-B null Hmy2CIR targets transfected with HLA-B35 but not HLA-B51, -Bw52, or -Bw53 transfected Hmy2CIR targets. These data demonstrated that the five amino acids substitutions on the α1 domain between HLA-B35 and -Bw53, which are associated with Bw4/Bw6 epitopes, play a critical role in the relationship of hmHA-1 to HLA-B35 molecules. The fact that the hmHA-1-specific CTLs failed to kill Hmy2CIR cells expressing HLA-B35/51 chimeric molecules composed of the α1 domain of HLA-B35 and other domains of HLA-B51 indicated that eight residues on the α2 domain also affect the interaction of hmHA-1 and the HLA-B35 molecules

  11. Chimeric Antigen Receptor Therapy for B-cell Malignancies

    Directory of Open Access Journals (Sweden)

    David L Porter, Michael Kalos, Zhaohui Zheng, Bruce Levine, Carl June

    2011-01-01

    Full Text Available We presented data showing that the CART-19 cells expressing the 4-1BB signaling domain can have unprecedented and massive in-vivo expansion, traffic to tumor sites, persist long term in vivo, and induce rapid and potent anti-tumor activity in chemotherapy refractory CLL patients.

  12. Chimeric Antigen Receptor Therapy for B-cell Malignancies

    OpenAIRE

    Porter, David L.; Kalos, Michael; Zheng, Zhaohui; Levine, Bruce; June, Carl

    2011-01-01

    We presented data showing that the CART-19 cells expressing the 4-1BB signaling domain can have unprecedented and massive in-vivo expansion, traffic to tumor sites, persist long term in vivo, and induce rapid and potent anti-tumor activity in chemotherapy refractory CLL patients.

  13. Giant cell arteritis presenting as scalp necrosis.

    Science.gov (United States)

    Maidana, Daniel E; Muñoz, Silvia; Acebes, Xènia; Llatjós, Roger; Jucglà, Anna; Alvarez, Alba

    2011-01-01

    The differential of scalp ulceration in older patients should include several causes, such as herpes zoster, irritant contact dermatitis, ulcerated skin tumors, postirradiation ulcers, microbial infections, pyoderma gangrenosum, and giant cell arteritis. Scalp necrosis associated with giant cell arteritis was first described in the 1940s. The presence of this dermatological sign within giant cell arteritis represents a severity marker of this disease, with a higher mean age at diagnosis, an elevated risk of vision loss and tongue gangrene, as well as overall higher mortality rates, in comparison to patients not presenting this manifestation. Even though scalp necrosis due to giant cell arteritis is exceptional, a high level of suspicion must be held for this clinical finding, in order to initiate prompt and proper treatment and avoid blindness. PMID:21789466

  14. Phenotypic Studies of Natural Killer Cell Subsets in Human Transporter Associated with Antigen Processing Deficiency

    OpenAIRE

    Zimmer, Jacques; Bausinger, Huguette; Andrès, Emmanuel; Donato, Lionel; Hanau, Daniel; Hentges, François; Moretta, Alessandro; de la Salle, Henri

    2007-01-01

    Peripheral blood natural killer (NK) cells from patients with transporter associated with antigen processing (TAP) deficiency are hyporesponsive. The mechanism of this defect is unknown, but the phenotype of TAP-deficient NK cells is almost normal. However, we noticed a high percentage of CD56bright cells among total NK cells from two patients. We further investigated TAP-deficient NK cells in these patients and compared them to NK cells from two other TAP-deficient patients with no clinical ...

  15. Interferon-induced changes in expression of antigens defined by monoclonal antibodies on malignant and nonmalignant mononuclear hematopoietic cells

    DEFF Research Database (Denmark)

    Hokland, M; Ritz, J; Hokland, P

    1983-01-01

    HLA-antigens detected by beta 2-Microglobulin (beta 2-M) could be demonstrated for peripheral blood mononuclear cells, non-T cells, Null cells, activated T cells, fetal thymocytes, adherent cells, and on four malignant non-T lymphoblastoid cell lines. In contrast, no significant differences were...... number as well as the amount of lymphocytes expressing the T10 antigen. It thus seems that the enhancing effect of IFN on resting cells of the immune system is highly selective. On the four lymphoblastoid cell lines, the expression of the common acute lymphoblastic leukemia antigen (CALLA) was...... significantly decreased concomitantly with the increase in MHC-antigens. On the other hand, the density of both a HLA-D related Ia antigen (I2) and a B-lymphocyte differentiation antigen (B1) remained unaltered following IFN treatment. The implications of these findings are discussed. Udgivelsesdato: 1983-null...

  16. Bifidobacteria Enhance Antigen Sampling and Processing by Dendritic Cells in Pediatric Inflammatory Bowel Disease.

    Science.gov (United States)

    Strisciuglio, Caterina; Miele, Erasmo; Giugliano, Francesca P; Vitale, Serena; Andreozzi, Marialuisa; Vitale, Alessandra; Catania, Maria R; Staiano, Annamaria; Troncone, Riccardo; Gianfrani, Carmen

    2015-07-01

    Bifidobacteria have been reported to reduce inflammation and contribute to intestinal homeostasis. However, the interaction between these bacteria and the gut immune system remains largely unknown. Because of the central role played by dendritic cells (DCs) in immune responses, we examined in vitro the effects of a Bifidobacteria mixture (probiotic) on DC functionality from children with inflammatory bowel disease. DCs obtained from peripheral blood monocytes of patients with Crohn's disease (CD), ulcerative colitis, and noninflammatory bowel disease controls (HC) were incubated with fluorochrome-conjugated particles of Escherichia coli or DQ-Ovalbumin (DQ-OVA) after a pretreatment with the probiotic, to evaluate DC phenotype, antigen sampling and processing. Moreover, cell supernatants were collected to measure tumor necrosis factor alpha, interferon gamma, interleukin 17, and interleukin 10 production by enzyme-linked immunosorbent assay. DCs from CD children showed a higher bacteria particles uptake and DQ-OVA processing after incubation with the probiotic; in contrast, DC from both ulcerative colitis and HC showed no significant changes. Moreover, a marked tumor necrosis factor alpha release was observed in DC from CD after exposure to E. coli particles, whereas the probiotic did not affect the production of this proinflammatory cytokine. In conclusion, the Bifidobacteria significantly improved the antigen uptake and processing by DCs from patients with CD, which are known to present an impaired autophagic functionality, whereas, in DCs from ulcerative colitis and HC, no prominent effect of probiotic mixture was observed. This improvement of antigen sampling and processing could partially solve the impairment of intestinal innate immunity and reduce uncontrolled microorganism growth in the intestine of children with inflammatory bowel disease. PMID:25895109

  17. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak, Martin; Schjerling, Peter;

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  18. Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule.

    Science.gov (United States)

    Wynne, James W; Woon, Amanda P; Dudek, Nadine L; Croft, Nathan P; Ng, Justin H J; Baker, Michelle L; Wang, Lin-Fa; Purcell, Anthony W

    2016-06-01

    Bats are a major reservoir of emerging and re-emerging infectious diseases, including severe acute respiratory syndrome-like coronaviruses, henipaviruses, and Ebola virus. Although highly pathogenic to their spillover hosts, bats harbor these viruses, and a large number of other viruses, with little or no clinical signs of disease. How bats asymptomatically coexist with these viruses is unknown. In particular, little is known about bat adaptive immunity, and the presence of functional MHC molecules is mostly inferred from recently described genomes. In this study, we used an affinity purification/mass spectrometry approach to demonstrate that a bat MHC class I molecule, Ptal-N*01:01, binds antigenic peptides and associates with peptide-loading complex components. We identified several bat MHC class I-binding partners, including calnexin, calreticulin, protein disulfide isomerase A3, tapasin, TAP1, and TAP2. Additionally, endogenous peptide ligands isolated from Ptal-N*01:01 displayed a relatively broad length distribution and an unusual preference for a C-terminal proline residue. Finally, we demonstrate that this preference for C-terminal proline residues was observed in Hendra virus-derived peptides presented by Ptal-N*01:01 on the surface of infected cells. To our knowledge, this is the first study to identify endogenous and viral MHC class I ligands for any bat species and, as such, provides an important avenue for monitoring and development of vaccines against major bat-borne viruses both in the reservoir and spillover hosts. Additionally, it will provide a foundation to understand the role of adaptive immunity in bat antiviral responses. PMID:27183594

  19. Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Kurtzhals, J A;

    1994-01-01

    The T cell response to antigens from Leishmania major promastigotes was investigated in peripheral blood mononuclear cells from Sudanese individuals with a history of cutaneous leishmaniasis (CL), Sudanese individuals with positive DTH reaction in the leishmanin skin test but with no history...... of skin lesions, and in Danes without known exposure to Leishmania parasites. Proliferation and production of interferon-gamma (IFN-gamma) and IL-4 in antigen-stimulated cultures was measured. Lymphocytes from individuals with a history of CL proliferated vigorously and produced IFN-gamma after...... the unexposed Danes were not activated by gp63. The cells from Danish donors produced either IFN-gamma or IL-4, but not both cytokines after incubation with the crude preparation of L. major antigens. The data show that the T cell response to Leishmania antigens in humans who have had uncomplicated CL...

  20. Changes in distribution of nuclear matrix antigens during the mitotic cell cycle.

    Science.gov (United States)

    Chaly, N; Bladon, T; Setterfield, G; Little, J E; Kaplan, J G; Brown, D L

    1984-08-01

    We examined the distribution of nonlamin nuclear matrix antigens during the mitotic cell cycle in mouse 3T3 fibroblasts. Four monoclonal antibodies produced against isolated nuclear matrices were used to characterize antigens by the immunoblotting of isolated nuclear matrix preparations, and were used to localize the antigens by indirect immunofluorescence. For comparison, lamins and histones were localized using human autoimmune antibodies. At interphase, the monoclonal antibodies recognized non-nucleolar and nonheterochromatin nuclear components. Antibody P1 stained the nuclear periphery homogeneously, with some small invaginations toward the interior of the nucleus. Antibody I1 detected an antigen distributed as fine granules throughout the nuclear interior. Monoclonals PI1 and PI2 stained both the nuclear periphery and interior, with some characteristic differences. During mitosis, P1 and I1 were chromosome-associated, whereas PI1 and PI2 dispersed in the cytoplasm. Antibody P1 heavily stained the periphery of the chromosome mass, and we suggest that the antigen may play a role in maintaining interphase and mitotic chromosome order. With antibody I1, bright granules were distributed along the chromosomes and there was also some diffuse internal staining. The antigen to I1 may be involved in chromatin/chromosome higher-order organization throughout the cell cycle. Antibodies PI1 and PI2 were redistributed independently during prophase, and dispersed into the cytoplasm during prometaphase. Antibody PI2 also detected antigen associated with the spindle poles. PMID:6378926

  1. Inhibition of Ly-6A antigen expression prevents T cell activation

    OpenAIRE

    1990-01-01

    Antisense oligonucleotides complementary to the 5' end of the mRNA encoding the Ly-6A protein were used to block the expression of that protein. Using this approach we could inhibit the expression of Ly-6A by 60-80% in antigen-primed lymph node (LN) T cells as well as in the D10 T cell clone. Inhibition of Ly-6 expression resulted in the inability to restimulate in vitro, antigen-primed T cells. It also blocked the activation of normal spleen cells by Con A, monoclonal antibody (mAb) to CD3, ...

  2. Renal cell carcinoma presenting as mandibular metastasis

    Directory of Open Access Journals (Sweden)

    Hassan Ahmadnia

    2013-01-01

    Full Text Available Renal clear cell carcinoma (RCC has different manifestations, including uncommon metastasis and paraneoplastic syndromes. Here we report a rare case of RCC presenting as metastasis to the mandible. A 57-year-old patient with mandibular swelling was referred to the dentist. After necessary evaluations, an incisional biopsy of mandible showed metastatic RCC. The patient was referred to the urologist. The patient underwent right radical nephrectomy. Pathological examination showed clear renal cell carcinoma. Every abnormal bone lesion in the oral cavity should be evaluated carefully and the possibility of a malignant lesion should always be considered.

  3. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  4. Flow Cytometric Analysis of T, B, and NK Cells Antigens in Patients with Mycosis Fungoides

    Directory of Open Access Journals (Sweden)

    Serkan Yazıcı

    2015-01-01

    Full Text Available We retrospectively analyzed the clinicopathological correlation and prognostic value of cell surface antigens expressed by peripheral blood mononuclear cells in patients with mycosis fungoides (MF. 121 consecutive MF patients were included in this study. All patients had peripheral blood flow cytometry as part of their first visit. TNMB and histopathological staging of the cases were retrospectively performed in accordance with International Society for Cutaneous Lymphomas/European Organization of Research and Treatment of Cancer (ISCL/EORTC criteria at the time of flow cytometry sampling. To determine prognostic value of cell surface antigens, cases were divided into two groups as stable and progressive disease. 17 flow cytometric analyses of 17 parapsoriasis (PP and 11 analyses of 11 benign erythrodermic patients were included as control groups. Fluorescent labeled monoclonal antibodies were used to detect cell surface antigens: T cells (CD3+, CD4+, CD8+, TCRαβ+, TCRγδ+, CD7+, CD4+CD7+, CD4+CD7−, and CD71+, B cells (HLA-DR+, CD19+, and HLA-DR+CD19+, NKT cells (CD3+CD16+CD56+, and NK cells (CD3−CD16+CD56+. The mean value of all cell surface antigens was not statistically significant between parapsoriasis and MF groups. Along with an increase in cases of MF stage statistically significant difference was found between the mean values of cell surface antigens. Flow cytometric analysis of peripheral blood cell surface antigens in patients with mycosis fungoides may contribute to predicting disease stage and progression.

  5. Antigen-specific monoclonal antibodies isolated from B cells expressing constitutively active STAT5.

    Directory of Open Access Journals (Sweden)

    Ferenc A Scheeren

    Full Text Available BACKGROUND: Fully human monoclonal antibodies directed against specific pathogens have a high therapeutic potential, but are difficult to generate. METHODOLOGY/PRINCIPAL FINDINGS: Memory B cells were immortalized by expressing an inducible active mutant of the transcription factor Signal Transducer and Activator of Transcription 5 (STAT5. Active STAT5 inhibits the differentiation of B cells while increasing their replicative life span. We obtained cloned B cell lines, which produced antibodies in the presence of interleukin 21 after turning off STAT5. We used this method to obtain monoclonal antibodies against the model antigen tetanus toxin. CONCLUSIONS/SIGNIFICANCE: Here we describe a novel and relatively simple method of immortalizing antigen-specific human B cells for isolation of human monoclonal antibodies. These results show that STAT5 overexpression can be employed to isolate antigen specific antibodies from human memory B cells.

  6. A rapid method for the detection of antibodies to cell surface antigens: a solid phase radioimmunoassay using cell membranes

    International Nuclear Information System (INIS)

    Cell membranes isolated from murine lymphocytes or ascites tumors bind tightly to the surface of flexible plastic microtiter plates in the absence of additional proteins. This allows the detection of membrane associated molecules by specific antibodies and thus forms the basis for a rapid and sensitive radioimmunoassay for antibodies to membrane-bound components. The assay compares favourably with a variety of methods currently used to detect antibodies to cell surface antigens. The assay detects a variety of well characterized murine cell surface antigens (H-2, I-A, T-200, Thy-1.2, Ig). The level of antibody binding to membranes on plates correlates well with antigen density on intact cells. A modification of the assay involving competition between cross-reacting antibodies allows detection and resolution of closely spaced antigenic determinants. (Auth.)

  7. T cell activation. II. Activation of human T lymphoma cells by cross-linking of their MHC class I antigens

    DEFF Research Database (Denmark)

    Dissing, S; Geisler, C; Rubin, B; Plesner, T; Claesson, M H

    1990-01-01

    The present work demonstrates that antibody-induced cross-linking of MHC class I antigens on Jurkat T lymphoma cells leads to a rise in intracellular calcium (Cai2+) and, in the presence of phorbol ester (PMA), to IL-2 production and IL-2 receptor expression. The rise in Cai2+ exhibited a profile...... very different from that obtained after anti-CD3 antibody-induced activation suggesting that activation signals are transduced differently after binding of anti-CD3 antibody and class I cross-linking, respectively. However, when Cai2+ was examined in individual Jurkat cells by means of a digital image...... the T cell receptor complex and MHC class I molecules....

  8. Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients.

    Science.gov (United States)

    Knights, Ashley J; Nuber, Natko; Thomson, Christopher W; de la Rosa, Olga; Jäger, Elke; Tiercy, Jean-Marie; van den Broek, Maries; Pascolo, Steve; Knuth, Alexander; Zippelius, Alfred

    2009-03-01

    The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions. PMID:18663444

  9. SV40 large T antigen-specific human T cell memory responses.

    Science.gov (United States)

    Coleman, Sharon; Gibbs, Allen; Butchart, Eric; Mason, Malcolm D; Jasani, Bharat; Tabi, Zsuzsanna

    2008-08-01

    The continued presence of simian virus 40 (SV40), a monkey polyomavirus, in man is confirmed by the regular detection of SV40-specific antibodies in 5-10% of children who are unlikely to have received contaminated polio-vaccines. The aim of our experiments was to find cellular immunological evidence of SV40 infection in humans by testing memory T cell responses to SV40 large T antigen (Tag). As there is some indication that the virus may be present in malignant pleural mesothelioma (MPM) cells, we analyzed T cell responses in MPM patients and in healthy donors. The frequencies of responding T cells to overlapping Tag peptides were tested by cytokine flow cytometry. CD8+ T cells from 4 of 32 MPM patients responded (above twofold of control) to SV40 Tag peptides, while no positive responses were detected in 12 healthy donors. Within SV40 Tag we identified three 15 amino acid-long immunogenic sequences and one 9 amino acid-long T cell epitope (p138) (138FPSELLSFL146), the latter including a HLA-B7-restriction motif. T cell responses to p138 were SV40-specific as T cells stimulated with p138 did not cross-react with the corresponding sequences of Tag of human polyomaviruses BKV and JCV. Similarly, the relevant BKV and JCV Tag peptides did not generate T cell responses against SV40 TAg p138. Peptide-stimulated T cells also killed SV40 Tag-transfected target cells. This article demonstrates the presence, and provides a detailed analysis, of SV40-specific T cell memory in man. PMID:18551603

  10. Presenting a foreign antigen on live attenuated Edwardsiella tarda using twin-arginine translocation signal peptide as a multivalent vaccine.

    Science.gov (United States)

    Wang, Yamin; Yang, Weizheng; Wang, Qiyao; Qu, Jiangbo; Zhang, Yuanxing

    2013-12-01

    The twin-arginine translocation (Tat) system is a major pathway for transmembrane translocation of fully folded proteins. In this study, a multivalent vaccine to present foreign antigens on live attenuated vaccine Edwardsiella tarda WED using screened Tat signal peptide was constructed. Because the Tat system increases the yields of folded antigens in periplasmic space or extracellular milieu, it is expected to contribute to the production of conformational epitope-derived specific antibodies. E. tarda Tat signal peptides fused with the green fluorescent protein (GFP) was constructed under the control of an in vivo inducible dps promoter. The resulting plasmids were electroporated into WED and the subcellular localizations of GFP were analyzed with Western blotting. Eight signal peptides with optimized GFP translocation efficiency were further fused to a protective antigen glyceraldehyde-3-phosphate dehydrogenase (GapA) from a fish pathogen Aeromonas hydrophila. Signal peptides of DmsA, NapA, and SufI displayed high efficiency for GapA translocation. The relative percent survival (RPS) of turbot was measured with a co-infection of E. tarda and A. hydrophila, and the strain with DmsA signal peptide showed the maximal protection. This study demonstrated a new platform to construct multivalent vaccines using optimized Tat signal peptide in E. tarda. PMID:23994481

  11. Identification of a novel SEREX antigen family, ECSA, in esophageal squamous cell carcinoma

    OpenAIRE

    Murakami Akihiro; Hachiya Takahisa; Kurei Shunsuke; Nishimori Takanori; Yasuraoka Mari; Nakashima-Fujita Kazue; Kuboshima Mari; Shiratori Tooru; Shimada Hideaki; Kagaya Akiko; Tamura Yutaka; Nomura Fumio; Ochiai Takenori; Matsubara Hisahiro; Takiguchi Masaki

    2011-01-01

    Abstract Background Diagnosis of esophageal squamous cell carcinoma (SCC) may improve with early diagnosis. Currently it is difficult to diagnose SCC in the early stage because there is a limited number of tumor markers available. Results Fifty-two esophageal SCC SEREX antigens were identified by SEREX (serological identification of antigens by recombinant cDNA expression cloning) using a cDNA phage library and sera of patients with esophageal SCC. Sequence analysis revealed that three of the...

  12. Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production.

    OpenAIRE

    Kurane, I; Innis, B L; Nisalak, A; Hoke, C; Nimmannitya, S; Meager, A.; Ennis, F A

    1989-01-01

    The severe complications of dengue virus infections, hemorrhagic manifestations and shock, are more commonly observed during secondary dengue virus infections than during primary infections. It has been speculated that these complications are mediated by cross-reactive host-immune responses. We have begun to analyze human T cell responses to dengue antigens in vitro to explain the possible role of T lymphocytes in the pathogenesis of these complications. Dengue antigens induce proliferative r...

  13. Immunofluorescence of bovine virus diarrhea viral antigen in white blood cells from experimentally infected immunocompetent calves.

    OpenAIRE

    Bezek, D M; Baker, J. C.; Kaneene, J B

    1988-01-01

    A study to evaluate the detection of bovine virus diarrhea viral antigen using immunofluorescence testing of white blood cells was conducted. Five colostrum-deprived calves were inoculated intravenously with a cytopathic strain of the virus. Lymphocyte and buffy coat smears were prepared daily for direct immunofluorescent staining for detection of antigen. Lymphocytes were separated from heparinized blood using a Ficoll density procedure. Buffy coat smears were prepared from centrifuged blood...

  14. Engineered hepatitis B virus surface antigen L protein particles for in vivo active targeting of splenic dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsuo H

    2012-07-01

    Full Text Available Hidenori Matsuo,1 Nobuo Yoshimoto,1 Masumi Iijima,1 Tomoaki Niimi,1 Joohee Jung,2,3 Seong-Yun Jeong,3 Eun Kyung Choi,3,4 Tomomitsu Sewaki,5 Takeshi Arakawa,6,7 Shun’ichi Kuroda11Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan; 2College of Pharmacy, Duksung Women’s University, Seoul, South Korea; 3Institute for Innovative Cancer Research, ASAN Medical Center, Seoul, South Korea; 4Department of Radiation Oncology, University of Ulsan College of Medicine, Seoul, South Korea; 5GenoLac BL Corporation, Okinawa, Japan; 6COMB, Tropical Biosphere Research Center, 7Graduate School of Medicine, University of the Ryukyus, Okinawa, JapanAbstract: Dendritic cells (DCs are key regulators of adaptive T-cell responses. By capturing exogenous antigens and presenting antigen-derived peptides via major histocompatibility complex molecules to naïve T cells, DCs induce antigen-specific immune responses in vivo. In order to induce effective host immune responses, active delivery of exogenous antigens to DCs is considered important for future vaccine development. We recently generated bionanocapsules (BNCs consisting of hepatitis B virus surface antigens that mediate stringent in vivo cell targeting and efficient endosomal escape, and after the fusion with liposomes (LP containing therapeutic materials, the BNC-LP complexes deliver them to human liver-derived tissues in vivo. BNCs were further modified to present the immunoglobulin G (IgG Fc-interacting domain (Z domain derived from Staphylococcus aureus protein A in tandem. When mixed with IgGs, modified BNCs (ZZ-BNCs displayed the IgG Fv regions outwardly for efficient binding to antigens in an oriented-immobilization manner. Due to the affinity of the displayed IgGs, the IgG-ZZ-BNC complexes accumulated in specific cells and tissues in vitro and in vivo. After mixing ZZ-BNCs with antibodies against DCs, we used immunocytochemistry to examine which antibodies delivered ZZ-BNCs to

  15. Degranulation of human mast cells induces an endothelial antigen central to leukocyte adhesion.

    OpenAIRE

    Klein, L M; Lavker, R M; Matis, W L; Murphy, G F

    1989-01-01

    To understand better the role of mast cell secretory products in the genesis of inflammation, a system was developed for in vitro degranulation of human mast cells in skin organ cultures. Within 2 hr after morphine sulfate-induced degranulation, endothelial cells lining microvessels adjacent to affected mast cells expressed an activation antigen important for endothelial-leukocyte adhesion. Identical results were obtained when other mast cell secretagogues (anti-IgE, compound 48/80, and calci...

  16. Antigen dynamics govern the induction of CD4(+) T cell tolerance during autoimmunity.

    Science.gov (United States)

    Challa, Dilip K; Mi, Wentao; Lo, Su-Tang; Ober, Raimund J; Ward, E Sally

    2016-08-01

    Antigen-specific T cell tolerance holds great promise for the treatment of autoimmune diseases. However, strategies to induce durable tolerance using high doses of soluble antigen have to date been unsuccessful, due to lack of efficacy and the risk of hypersensitivity. In the current study we have overcome these limitations by developing a platform for tolerance induction based on engineering the immunoglobulin Fc region to modulate the dynamic properties of low doses (1 μg/mouse; ∼50 μg/kg) of Fc-antigen fusions. Using this approach, we demonstrate that antigen persistence is a dominant factor governing the elicitation of tolerance in the model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), induced by immunizing B10.PL mice with the N-terminal epitope of myelin basic protein. Unexpectedly, our analyses reveal a stringent threshold of antigen persistence for both prophylactic and therapeutic treatments, although distinct mechanisms lead to tolerance in these two settings. Importantly, the delivery of tolerogenic Fc-antigen fusions during ongoing disease results in the downregulation of T-bet and CD40L combined with amplification of Foxp3(+) T cell numbers. The generation of effective, low dose tolerogens using Fc engineering has potential for the regulation of autoreactive T cells. PMID:27236506

  17. Leishmania chagasi T-cell antigens identified through a double library screen.

    Science.gov (United States)

    Martins, Daniella R A; Jeronimo, Selma M B; Donelson, John E; Wilson, Mary E

    2006-12-01

    Control of human visceral leishmaniasis in regions where it is endemic is hampered in part by limited accessibility to medical care and emerging drug resistance. There is no available protective vaccine. Leishmania spp. protozoa express multiple antigens recognized by the vertebrate immune system. Since there is not one immunodominant epitope recognized by most hosts, strategies must be developed to optimize selection of antigens for prevention and immunodiagnosis. For this reason, we generated a cDNA library from the intracellular amastigote form of Leishmania chagasi, the cause of South American visceral leishmaniasis. We employed a two-step expression screen of the library to systematically identify T-cell antigens and T-dependent B-cell antigens. The first step was aimed at identifying the largest possible number of clones producing an epitope-containing polypeptide by screening with a pool of sera from Brazilians with documented visceral leishmaniasis. After removal of clones encoding heat shock proteins, positive clones underwent a second-step screen for their ability to cause proliferation and gamma interferon responses in T cells from immune mice. Six unique clones were selected from the second screen for further analysis. The corresponding antigens were derived from glutamine synthetase, a transitional endoplasmic reticulum ATPase, elongation factor 1gamma, kinesin K39, repetitive protein A2, and a hypothetical conserved protein. Humans naturally infected with L. chagasi mounted both cellular and antibody responses to these proteins. Preparations containing multiple antigens may be optimal for immunodiagnosis and protective vaccines. PMID:17000724

  18. Past, present and future of fuel cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Though the fuel cell was invented by Grove in 1839,there are no commercially viable products at present.The development of fuel cells can be conveniently divided into three phases-exploratory phase(1839-1967).The main emphasis of the work is to increase the area of the three-phase interface at the electrode.The problem was solved by Bacon who invented the dual porosity,biporous nickel electrode.He demonstrated the first H2/O2 fuel cell(180℃,20atm).This cell was later improved and scaled up to power the Apollo lunar mission.However,the cost is too high for civilian applications and we come to the development phase (1967-2001).The main emphasis has been on the use of Teflon bonded electrodes and novel catalysts(PtRu,Pt/WO3 and Pt-Ru/WO3 anode catalyst for the anodic oxidation of impure H2 and methanol.In addition,the recent discovery of gadolinium doped ceria has reduced the operating temperature of solid oxide electrolytes to ~500℃ instead of 1 000℃.From 2001 onwards,we may be entering the breakthrough phase where the most favourable candidates are direct methanol vapor fuel cells and solid oxide electrolyte fuel cells.In the former case,there is a need to reduce the cross-over of methanol to the cathode compartment and the development of air cathode catalyst which are less affected by methanol and in the latter case,there is a need to improve the activity of the anode and cathode catalysts.

  19. High Frequencies of Anti-Host Reactive CD8+ T Cells Ignore Non-Hematopoietic Antigen after Bone Marrow Transplantation in a Murine Model

    Directory of Open Access Journals (Sweden)

    Asmae Gassa

    2016-03-01

    Full Text Available Background: Graft versus host disease (GvHD occurs in 20% of cases with patients having an MHC I matched bone marrow transplantation (BMT. Mechanisms causing this disease remain to be studied. Methods: Here we used a CD8+ T cell transgenic mouse line (P14/CD45.1+ and transgenic DEE mice bearing ubiquitously the glycoprotein 33-41 (GP33 antigen derived from the major lymphocytic choriomeningitis virus (LCMV epitope to study mechanisms of tolerance in anti-host reactive CD8+ T cells after BMT. Results: We found that anti-host reactive CD8+ T cells (P14 T cells were not negatively selected in the thymus and that they were present in wild type (WT recipient mice as well as in DEE recipient mice. Anti-host reactive CD8+ T cells ignored the GP33 antigen expressed ubiquitously by host cells but they could be activated ex vivo via LCMV-infection. Lipopolysaccharides (LPS induced transient cell damage in DEE mice bearing anti-host reactive CD8+ T cells after BMT, suggesting that induction of host inflammatory response could break antigen ignorance. Introducing the GP33 antigen into BM cells led to deletion of anti-host reactive CD8+ T cells. Conclusion: We found that after BMT anti-host reactive CD8+ T cells ignored host antigen in recipients and that they were only deleted when host antigen was present in hematopoietic cells. Moreover, LPS-induced immune activation contributed to induction of alloreactivity of anti-host reactive CD8+ T cells after BMT.

  20. Self-antigen recognition by TGFβ1-deficient T cells causes their activation and systemic inflammation

    OpenAIRE

    Bommireddy, Ramireddy; Pathak, Leena J; Martin, Jennifer; Ormsby, Ilona; Engle, Sandra J; Gregory P. Boivin; Babcock, George F.; Eriksson, Anna U.; Singh, Ram R; DOETSCHMAN, THOMAS

    2006-01-01

    To investigate whether the multifocal inflammatory disease in TGFβ1-deficient mice is caused by self-antigen (self-Ag)-specific autoreactive T cells, or whether it is caused by antigen independent, spontaneous hyperactivation of T cells, we have generated Tgfb1−/− and Tgfb1−/− Rag1−/− mice expressing the chicken OVA-specific TCR transgene (DO11.10). On a Rag1-sufficient background, Tgfb1−/− DO11.10 mice develop a milder inflammation than do Tgfb1−/− mice, and their T cells display a less acti...

  1. TSCOT+ thymic epithelial cell-mediated sensitive CD4 tolerance by direct presentation.

    Directory of Open Access Journals (Sweden)

    Sejin Ahn

    2008-08-01

    Full Text Available Although much effort has been directed at dissecting the mechanisms of central tolerance, the role of thymic stromal cells remains elusive. In order to further characterize this event, we developed a mouse model restricting LacZ to thymic stromal cotransporter (TSCOT-expressing thymic stromal cells (TDLacZ. The thymus of this mouse contains approximately 4,300 TSCOT+ cells, each expressing several thousand molecules of the LacZ antigen. TSCOT+ cells express the cortical marker CDR1, CD40, CD80, CD54, and major histocompatibility complex class II (MHCII. When examining endogenous responses directed against LacZ, we observed significant tolerance. This was evidenced in a diverse T cell repertoire as measured by both a CD4 T cell proliferation assay and an antigen-specific antibody isotype analysis. This tolerance process was at least partially independent of Autoimmune Regulatory Element gene expression. When TDLacZ mice were crossed to a novel CD4 T cell receptor (TCR transgenic reactive against LacZ (BgII, there was a complete deletion of double-positive thymocytes. Fetal thymic reaggregate culture of CD45- and UEA-depleted thymic stromal cells from TDLacZ and sorted TCR-bearing thymocytes excluded the possibility of cross presentation by thymic dendritic cells and medullary epithelial cells for the deletion. Overall, these results demonstrate that the introduction of a neoantigen into TSCOT-expressing cells can efficiently establish complete tolerance and suggest a possible application for the deletion of antigen-specific T cells by antigen introduction into TSCOT+ cells.

  2. M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery.

    Science.gov (United States)

    Sakhon, Olivia S; Ross, Brittany; Gusti, Veronica; Pham, An Joseph; Vu, Kathy; Lo, David D

    2015-01-01

    M cells are a subset of mucosal epithelial cells with specialized capability to transport antigens across the mucosal barrier, but there is limited information on antigen transfer in the subepithelial zone due to the challenges in tracking microparticles and antigens that are transcytosed by this unique cell. Using transgenic reporter mice expressing dsRed in the cytoplasm of M cells and EGFP in myeloid cells, we observed that the M cell basolateral pocket hosts a close interaction between B lymphocytes and dendritic cells. Interestingly, we identified a population of previously undescribed M cell-derived vesicles (MCM) that are constitutively shed into the subepithelial space and readily taken up by CX3CR1(+)CD11b(+) CD11c(+) dendritic cells. These MCM are characterized by their cytoplasmic dsRed confirming their origin from the M cell cytoplasm. MCM showed preferential colocalization in dendritic cells with transcytosed bacteria but not transcytosed polystyrene beads, indicating a selective sorting of cargo fate in the subepithelial zone. The size and number of MCM were found to be upregulated by bacterial transcytosis and soluble toll-like receptor 2 (TLR2) agonist, further pointing to dynamic regulation of this mechanism. These results suggest that MCM provide a unique function by delivering to dendritic cells, various materials such as M cell-derived proteins, effector proteins, toxins, and particles found in the M cell cytoplasm during infection or surveillance. PMID:25838974

  3. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  4. Immunocapture and Identification of Cell Membrane Protein Antigenic Targets of Serum Autoantibodies*

    Science.gov (United States)

    Littleton, Edward; Dreger, Mathias; Palace, Jackie; Vincent, Angela

    2009-01-01

    There is increasing interest in the role of antibodies targeting specific membrane proteins in neurological and other diseases. The target(s) of these pathogenic antibodies is known in a few diseases, usually when candidate cell surface proteins have been tested. Approaches for identifying new antigens have mainly resulted in the identification of antibodies to intracellular proteins, which are often very useful as diagnostic markers for disease but unlikely to be directly involved in disease pathogenesis because they are not accessible to circulating antibodies. To identify cell surface antigens, we developed a “conformational membrane antigen isolation and identification” strategy. First, a cell line is identified that reacts with patient sera but not with control sera. Second, intact cells are exposed to sera to allow the binding of presumptive autoantibodies to their cell surface targets. After washing off non-bound serum components, the cells are lysed, and immune complexes are precipitated. Third, the bound surface antigen is identified by mass spectrometry. As a model system we used a muscle cell line, TE671, that endogenously expresses muscle-specific tyrosine receptor kinase (MuSK) and sera or plasmas from patients with a subtype of the autoimmune disease myasthenia gravis in which patients have autoantibodies against MuSK. MuSK was robustly detected as the only membrane protein in immunoprecipitates from all three patient samples tested and not from the three MuSK antibody-negative control samples processed in parallel. Of note, however, there were many intracellular proteins found in the immunoprecipitates from both patients and controls, suggesting that these were nonspecifically immunoprecipitated from cell extracts. The conformational membrane antigen isolation and identification technique should be of value for the detection of highly relevant antigenic targets in the growing number of suspected antibody-mediated autoimmune disorders. The

  5. Restoration of proliferative response to M. leprae antigens in lepromatous T cells against candidate antileprosy vaccines.

    Science.gov (United States)

    Mustafa, A S

    1996-09-01

    Several studies conducted in the last decade suggest that Mycobacterium lepraereactive T cells exist in lepromatous patients, but their number may be too few to yield a detectable response in cell-mediated immunity (CMI) assays. Immunizations with candidate antileprosy vaccines and stimulation of T cells with M. leprae + interleukin-2 restore the M. leprae-induced CMI response in lepromatous leprosy patients. These immunizations and stimulation may enrich the pre-existing M. leprae-responsive T cells in lepromatous patients and, thereby, induce a detectable CMI response to M. leprae antigens upon repeat testing. To verify this proposition, we carried out a study in a group of 10 lepromatous leprosy patients. Peripheral blood mononuclear cells (PBMC) obtained from these patients were anergic to M. leprae antigens in proliferative assays, but they responded to the antigens of candidate antileprosy vaccines, i.e., M. bovis BCG, M. bovis BCG + M. leprae, and Mycobacterium w. The enrichment of M. leprae-responsive T cells was performed by establishing T-cell lines from the PBMC after in vitro stimulation with M. leprae, M. bovis BCG, M. bovis BCG + M. leprae, and Mycobacterium w. When tested for their proliferative responses, 1/10, 3/10, 6/10 and 2/10 T-cell lines established against M. leprae, M. bovis BCG, M. bovis BCG + M. leprae, and Mycobacterium w, respectively, responded to M. leprae. These results suggest that enrichment of pre-existing M. leprae-responsive T cells may contribute to the restoration of the T-cell response to M. leprae in some lepromatous patients. Four of the 10 M. leprae-induced T-cell lines proliferated in response to the 65 kDa, 36 kDa, 28 kDa, and 12 kDa recombinant antigens of M. leprae, suggesting that the nonresponsiveness of T cells in some lepromatous patients may be overcome by using recombinant antigens of M. leprae. PMID:8862259

  6. Expression of MHC class II antigens in human B-cell leukaemia and non-Hodgkin's lymphoma.

    OpenAIRE

    Guy, K.; Krajewski, A S; Dewar, A E

    1986-01-01

    In this review we have summarized our experiences of serological analysis of MHC class II antigen expression in human B cell malignant disease. Cells from a large number of cases of B-cell chronic lymphocytic leukaemia (CLL) and non-Hodgkin's lymphoma (NHL) have been examined for expression of class II antigens. Using a number of monoclonal antibodies which in some cases are specific for class II subregion products (DP, DQ and DR), MHC class II antigens were detected by indirect immunofluores...

  7. Serum squamous cell carcinoma antigen and CYFRA 21-1 in cervical cancer treatment

    International Nuclear Information System (INIS)

    Purpose: To analyze whether serum squamous cell carcinoma (SCC) antigen and cytokeratin-19 fragments (CYFRA) levels can assist in selecting patients with locally advanced cervical cancer who will benefit from combined treatment or additive surgery. Methods and Materials: Of 114 patients with cervical cancer Stage IB-IV, the first 39 patients received radiotherapy, the following 75 patients received identical radiotherapy plus concomitant chemotherapy (3 cycles of carboplatin and 5-fluorouracil). SCC antigen and CYFRA 21-1 serum levels were measured before treatment, after therapy, and during follow-up. Baseline tumor markers were related to tumor stage and size and clinical outcome. Results: Before treatment, SCC antigen was elevated (>1.9 μg/L) in 60% and CYFRA 21-1 (>2.2 μg/L) in 46% of patients. For all patients, disease-free survival (DFS) was better after combined treatment (67% vs. 43%, p<0.0005). For patients with elevated baseline SCC antigen, DFS was better after combination therapy (67% vs. 27%, p=0.001) which resulted more frequently in a normal SCC antigen (93% vs. 65%, p=0.004). In contrast, in those with a normal baseline CYFRA 21-1, combined therapy resulted in a better DFS (p=0.04). Patients who achieved a normal SCC antigen or CYFRA 21-1 after treatment had a better DFS (respectively 63 vs. 17% and 64 vs. 30%). Elevated SCC antigen posttreatment indicated residual tumor in 11/12 patients (92%), elevated CYFRA 21-1 in 7/10 patients (70%). Forty-seven patients had a tumor recurrence. At recurrence, SCC antigen was raised in 70% and CYFRA 21-1 in 69%. Conclusions: In patients with an elevated pretreatment SCC antigen, SCC antigen normalized more frequently with combined treatment and those patients had a better DFS. Elevated SCC antigen or CYFRA 21-1 levels after treatment completion indicated residual tumor in respectively 92% and 70%. The presence of elevated posttreatment levels of SCC antigen or CYFRA 21-1 indicates the need for additional

  8. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  9. Cytomegalovirus Misleads Its Host by Priming of CD8 T Cells Specific for an Epitope Not Presented in Infected Tissues

    OpenAIRE

    Holtappels, Rafaela; Podlech, Jürgen; Pahl-Seibert, Marcus-Folker; Jülch, Markus; Thomas, Doris; Simon, Christian O.; Wagner, Markus; Reddehase, Matthias J.

    2004-01-01

    Cytomegaloviruses (CMVs) code for several proteins that inhibit the presentation of antigenic peptides to CD8 T cells. Although the molecular mechanisms of CMV interference with the major histocompatibility complex class I pathway are long understood, surprisingly little evidence exists to support a role in vivo. Here we document the first example of the presentation of an antigenic peptide being blocked by a CMV immune evasion protein in organs relevant to CMV disease. Although this Db-restr...

  10. The B cell antigen receptor and overexpression of MYC can cooperate in the genesis of B cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Yosef Refaeli

    2008-06-01

    Full Text Available A variety of circumstantial evidence from humans has implicated the B cell antigen receptor (BCR in the genesis of B cell lymphomas. We generated mouse models designed to test this possibility directly, and we found that both the constitutive and antigen-stimulated state of a clonal BCR affected the rate and outcome of lymphomagenesis initiated by the proto-oncogene MYC. The tumors that arose in the presence of constitutive BCR differed from those initiated by MYC alone and resembled chronic B cell lymphocytic leukemia/lymphoma (B-CLL, whereas those that arose in response to antigen stimulation resembled large B-cell lymphomas, particularly Burkitt lymphoma (BL. We linked the genesis of the BL-like tumors to antigen stimulus in three ways. First, in reconstruction experiments, stimulation of B cells by an autoantigen in the presence of overexpressed MYC gave rise to BL-like tumors that were, in turn, dependent on both MYC and the antigen for survival and proliferation. Second, genetic disruption of the pathway that mediates signaling from the BCR promptly killed cells of the BL-like tumors as well as the tumors resembling B-CLL. And third, growth of the murine BL could be inhibited by any of three distinctive immunosuppressants, in accord with the dependence of the tumors on antigen-induced signaling. Together, our results provide direct evidence that antigenic stimulation can participate in lymphomagenesis, point to a potential role for the constitutive BCR as well, and sustain the view that the constitutive BCR gives rise to signals different from those elicited by antigen. The mouse models described here should be useful in exploring further the pathogenesis of lymphomas, and in preclinical testing of new therapeutics.

  11. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy.

    Science.gov (United States)

    Mirzaei, Hamid Reza; Mirzaei, Hamed; Lee, Sang Yun; Hadjati, Jamshid; Till, Brian G

    2016-10-01

    Excitement is growing for therapies that harness the power of patients' immune systems to combat their diseases. One approach to immunotherapy involves engineering patients' own T cells to express a chimeric antigen receptor (CAR) to treat advanced cancers, particularly those refractory to conventional therapeutic agents. Although these engineered immune cells have made remarkable strides in the treatment of patients with certain hematologic malignancies, success with solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our perspective that these features make γδ T cells promising for use in cellular therapy against several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal tumors. PMID:27392648

  12. Purification and characterization of fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA)

    DEFF Research Database (Denmark)

    Hokland, P; Rosenthal, P; Griffin, J D;

    1983-01-01

    Fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA) were purified from both fetal liver and fetal bone marrow by immune rosetting with sheep erythrocytes coated with rabbit anti-mouse immunoglobulin and by fluorescence-activated cell sorting. Dual...... antigen. Furthermore, using methanol-fixed cells, it could be shown that approximately 20% contained intracytoplasmic mu chains (cyto-mu) and that approximately 15% were positive for the terminal transferase enzyme (TdT) marker. The CALLA+ fetal cells thus closely resemble the childhood acute...... lymphoblastic leukemia cell with respect to surface marker phenotype. A population of CALLA- cells devoid of mature erythroid and myeloid surface markers was found to contain higher numbers of TdT+ cells but lower numbers of cyto-mu, B1, and Ia+ cells than the CALLA+ subset. In vitro analysis of normal...

  13. Memory-Like Antigen-Specific Human NK Cells from TB Pleural Fluids Produced IL-22 in Response to IL-15 or Mycobacterium tuberculosis Antigens

    Science.gov (United States)

    Fu, Xiaoying; Yu, Sifei; Yang, Binyan; Lao, Suihua; Li, Baiqing; Wu, Changyou

    2016-01-01

    Our previous result indicated that memory-like human natural killer (NK) cells from TB pleural fluid cells (PFCs) produced large amounts of IFN-γ in response to Bacille Calmette Guerin (BCG). Furthermore, recent studies have shown that human lymphoid tissues harbored a unique NK cell subset that specialized in production of interleukin (IL)-22, a proinflammatory cytokine that mediates host defense against pathogens. Yet little information was available with regard to the properties of IL-22 production by memory-like human NK cells. In the present study, we found that cytokines IL-15 induced and IL-12 enhanced the levels of IL-22 by NK cells from TB PFCs. In addition, IL-22 but not IL-17 was produced by NK cells from PFCs in response to BCG and M.tb-related Ags. More importantly, the subset of specific IL-22-producing NK cells were distinct from IFN-γ-producing NK cells in PFCs. CD45RO+ or CD45RO- NK cells were sorted, co-cultured with autologous monocytes and stimulated with BCG for the production of IL-22. The result demonstrated that CD45RO+ but not CD45RO- NK cells produced significantly higher level of IL-22. Anti-IL-12Rβ1 mAbs (2B10) partially inhibit the expression of IL-22 by NK cells under the culture with BCG. Consistently, BCG specific IL-22-producing NK cells from PFCs expressed CD45ROhighNKG2Dhighgranzyme Bhigh. In conclusion, our data demonstrated that memory-like antigen-specific CD45RO+ NK cells might participate in the recall immune response for M. tb infection via producing IL-22, which display a critical role to fight against M. tb. PMID:27031950

  14. A rendezvous before rejection: Where do T cells meet transplant antigens?

    OpenAIRE

    Briscoe, David M.; Sayegh, Mohamed H.

    2002-01-01

    Interactions between recipient T cells and donor endothelial graft cells may be an important mechanism for both acute and chronic rejection of vascularized allografts. This finding provides a starting point for investigations to develop novel ways of inducing long-lasting immunologic tolerance to donor antigens.

  15. Cell density related gene expression: SV40 large T antigen levels in immortalized astrocyte lines

    Directory of Open Access Journals (Sweden)

    Jacobberger James W

    2002-04-01

    Full Text Available Abstract Background Gene expression is affected by population density. Cell density is a potent negative regulator of cell cycle time during exponential growth. Here, we asked whether SV40 large T antigen (Tag levels, driven by two different promoters, changed in a predictable and regular manner during exponential growth in clonal astrocyte cell lines, immortalized and dependent on Tag. Results Expression and cell cycle phase fractions were measured and correlated using flow cytometry. T antigen levels did not change or increased during exponential growth as a function of the G1 fraction and increasing cell density when Tag was transcribed from the Moloney Murine Leukemia virus (MoMuLV long terminal repeat (LTR. When an Rb-binding mutant T antigen transcribed from the LTR was tested, levels decreased. When transcribed from the herpes thymidine kinase promoter, Tag levels decreased. The directions of change and the rates of change in Tag expression were unrelated to the average T antigen levels (i.e., the expression potential. Conclusions These data show that Tag expression potential in these lines varies depending on the vector and clonal variation, but that the observed level depends on cell density and cell cycle transit time. The hypothetical terms, expression at zero cell density and expression at minimum G1 phase fraction, were introduced to simplify measures of expression potential.

  16. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  17. Genetic Variant as a Selection Marker for Anti–Prostate Stem Cell Antigen Immunotherapy of Bladder Cancer

    OpenAIRE

    Kohaar, Indu; Porter-Gill, Patricia; Lenz, Petra; Fu, Yi-Ping; Mumy, Adam; Tang, Wei; Apolo, Andrea B.; Rothman, Nathaniel; Baris, Dalsu; Schned, Alan R.; Ylaya, Kris; Schwenn, Molly; Johnson, Alison; Jones, Michael; Kida, Masatoshi

    2012-01-01

    A monoclonal antibody against prostate stem cell antigen (PSCA) has emerged as a novel cancer therapy currently being tested in clinical trials for prostate and pancreatic cancers, but this treatment is likely to be efficient only in patients with PSCA-expressing tumors. The present study demonstrates that a genetic variant (rs2294008) discovered by bladder cancer genome-wide association studies is a strong predictor of PSCA protein expression in bladder tumors, as measured by two-sided multi...

  18. Evaluation of RNA Amplification Methods to Improve DC Immunotherapy Antigen Presentation and Immune Response

    OpenAIRE

    Slagter-Jäger, Jacoba G.; Raney, Alexa; Lewis, Whitney E; DeBenedette, Mark A; Nicolette, Charles A; Tcherepanova, Irina Y

    2013-01-01

    Dendritic cells (DCs) transfected with total amplified tumor cell RNA have the potential to induce broad antitumor immune responses. However, analytical methods required for quantitatively assessing the integrity, fidelity, and functionality of the amplified RNA are lacking. We have developed a series of assays including gel electrophoresis, northern blot, capping efficiency, and microarray analysis to determine integrity and fidelity and a model system to assess functionality after transfect...

  19. Serological survey of normal humans for natural antibody to cell surface antigens of melanoma.

    Science.gov (United States)

    Houghton, A N; Taormina, M C; Ikeda, H; Watanabe, T; Oettgen, H F; Old, L J

    1980-01-01

    Sera of 106 normal adult men were tested for antibodies reacting with cell surface antigens of three established lines of cultured malignant melanoma. Positive reactions with a protein A assay for IgG antibodies were extremely rare (1-2%). The frequency of positive reactions with assays for IgM antibodies was higher: 5-15% in immune adherence assays and 55-82% in anti-C3 mixed hemadsorption assays. After low-titered sera and sera reacting with fetal calf serum components, conventional alloantigens, and widely distributed class 3 antigens were excluded, sera from seven individuals (one with IgG antibody and six with IgM antibodies) were selected for detailed analysis. The serum containing the IgG antibody came from a healthy 65-year-old Caucasian man; titers of antibody in his serum ranged from < 1/10 to 1/40,000 in tests with different melanoma cell lines. This IgG antibody identifies a differentiation antigen of melanocytes, provisionally designated Mel 1, that distinguishes two classes of melanomas: 22 melanoma cell lines typed Mel 1+ and 17 types Mel 1-. Mel 1 is expressed by fetal fibroblasts but not adult fibroblasts and can be found on a proportion of cultured epithelial cancer cell lines (5 out of 23) but not on glioma or B-cell lines. The melanoma antigens detected by the naturally occurring IgM antibodies are serologically unrelated to Mel 1 but, like Mel 1, appear to be differentiation antigens that distinguish subsets of melanoma. These IgM antibodies detect antigens that are identical or closely related to the AH antigen, a melanoma surface antigen that was initially defined by autologous antibody in a patient with melanoma. In view of the immunogenicity of both Mel 1 and the AH antigens in humans and their occurrence on more than 50% of melanomas, it remains to be seen whether antibody to these antigens can be elicited by specific vaccination of seronegative melanoma patients and whether this will have an influence on the clinical course of the disease

  20. Proliferating cell nuclear antigen: a marker for hepatocellular proliferation in rodents.

    OpenAIRE

    Eldrige, S R; Butterworth, B E; Goldsworthy, T L

    1993-01-01

    Two different markers for quantitating cell proliferation were evaluated in livers of control and chemically treated mice and rats. Proliferating cell nuclear antigen (PCNA), an endogenous cell replication marker, and bromodeoxyuridine (BrdU), an exogenously administered DNA precursor label, were detected in formalin-fixed, paraffin-embedded tissues using immunohistochemical techniques. The percentage of cells in S phase (labeling indexes, LI) evaluated as PCNA- or BrdU-positive hepatocellula...

  1. Merkel Cell Polyomavirus Small T Antigen Targets the NEMO Adaptor Protein To Disrupt Inflammatory Signaling

    OpenAIRE

    Griffiths, David A.; Abdul-Sada, Hussein; Knight, Laura M.; Jackson, Brian R.; Richards, Kathryn; Prescott, Emma L.; Peach, A. Howard S.; Blair, G. Eric; MacDonald, Andrew; Whitehouse, Adrian

    2013-01-01

    Merkel cell carcinoma (MCC) is a highly aggressive nonmelanoma skin cancer arising from epidermal mechanoreceptor Merkel cells. In 2008, a novel human polyomavirus, Merkel cell polyomavirus (MCPyV), was identified and is strongly implicated in MCC pathogenesis. Currently, little is known regarding the virus-host cell interactions which support virus replication and virus-induced mechanisms in cellular transformation and metastasis. Here we identify a new function of MCPyV small T antigen (ST)...

  2. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali;

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination of...... costimulatory endodomains for CAR construction to improve the effector functions of the engineered T cells. Camelid single-domain antibodies (VHHs), which are the smallest single domain antibodies, can endow great targeting ability to CAR-engineered T cells....

  3. Enhancement of antigen-induced eosinophilic inflammation in the airways of mast-cell deficient mice by diesel exhaust particles

    International Nuclear Information System (INIS)

    The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/Wv) and normal mice (W/W+). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W+ than in W/Wv. A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/Wv, but not in W/W+. DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/Wv. The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/Wv by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W+

  4. Tumorigenic activity of Merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice

    Science.gov (United States)

    Spurgeon, Megan E.; Cheng, Jingwei; Bronson, Roderick T.; Lambert, Paul F.; DeCaprio, James A.

    2015-01-01

    Merkel cell polyomavirus (MCPyV) is frequently associated with Merkel cell carcinoma (MCC), a highly aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated copies of the viral genome with persistent expression of the MCPyV large T (LT) and small T (ST) antigen. MCPyV isolated from MCC typically contain wild type ST but truncated forms of LT that retain the N-terminus but delete the C-terminus and render LT incapable of supporting virus replication. To determine the oncogenic activity of MCC tumor-derived T antigens in vivo, a conditional, tissue-specific mouse model was developed. Keratin 14-mediated Cre recombinase expression induced expression of MCPyV T antigens in stratified squamous epithelial cells and Merkel cells of the skin epidermis. Mice expressing MCPyV T antigens developed hyperplasia, hyperkeratosis, and acanthosis of the skin with additional abnormalities in whisker pads, footpads and eyes. Nearly half of the mice also developed cutaneous papillomas. Evidence for neoplastic progression within stratified epithelia included increased cellular proliferation, unscheduled DNA synthesis, increased E2F-responsive genes levels, disrupted differentiation, and presence of a DNA damage response. These results indicate that MCPyV T antigens are tumorigenic in vivo, consistent with their suspected etiological role in human cancer. PMID:25596282

  5. Tumorigenic activity of merkel cell polyomavirus T antigens expressed in the stratified epithelium of mice.

    Science.gov (United States)

    Spurgeon, Megan E; Cheng, Jingwei; Bronson, Roderick T; Lambert, Paul F; DeCaprio, James A

    2015-03-15

    Merkel cell polyomavirus (MCPyV) is frequently associated with Merkel cell carcinoma (MCC), a highly aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated copies of the viral genome with persistent expression of the MCPyV large T (LT) and small T (ST) antigen. MCPyV isolated from MCC typically contains wild-type ST but truncated forms of LT that retain the N-terminus but delete the C-terminus and render LT incapable of supporting virus replication. To determine the oncogenic activity of MCC tumor-derived T antigens in vivo, a conditional, tissue-specific mouse model was developed. Keratin 14-mediated Cre recombinase expression induced expression of MCPyV T antigens in stratified squamous epithelial cells and Merkel cells of the skin epidermis. Mice expressing MCPyV T antigens developed hyperplasia, hyperkeratosis, and acanthosis of the skin with additional abnormalities in whisker pads, footpads, and eyes. Nearly half of the mice also developed cutaneous papillomas. Evidence for neoplastic progression within stratified epithelia included increased cellular proliferation, unscheduled DNA synthesis, increased E2F-responsive genes levels, disrupted differentiation, and presence of a DNA damage response. These results indicate that MCPyV T antigens are tumorigenic in vivo, consistent with their suspected etiologic role in human cancer. PMID:25596282

  6. Localization of the simian virus 40 small t antigen in the nucleus and cytoplasm of monkey and mouse cells.

    OpenAIRE

    Ellman, M; Bikel, I; Figge, J; Roberts, T; Schlossman, R; Livingston, D M

    1984-01-01

    Monkey and mouse cells producing simian virus 40 small t antigen in the absence of clearly detectable intact or truncated large T antigens were subjected to indirect immunofluorescence and biochemical cell compartment analyses. Results revealed specific immunofluorescence and small t polypeptide in both the nucleus and cytoplasm of these cells.

  7. An unusual presentation of Langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Palak Agarwal

    2014-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is a relatively rare and unique disease. An incidence of 7.9% in the jaws is reported. We report a case of 9-year-old male child referred to us from dental outpatient department, who presented with a firm swelling in right lower jaw along with bilateral submandibular lymphadenopathy for 1-month. Fine-needle aspiration was done from lytic lesion in the body of mandible and multiple smears were prepared. On the basis of the clinical and cytomorphological findings, a diagnosis of LCH was suggested. The diagnosis was confirmed on histology. Thus, a high possibility of LCH should be considered in children presenting with lytic lesions in head and neck region.

  8. Identification of Leishmania proteins preferentially released in infected cells using change mediated antigen technology (CMAT.

    Directory of Open Access Journals (Sweden)

    Peter E Kima

    Full Text Available Although Leishmania parasites have been shown