WorldWideScience

Sample records for antigen presentation

  1. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  2. Methamphetamine inhibits antigen processing, presentation, and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Zsolt Tallóczy

    2008-02-01

    Full Text Available Methamphetamine (Meth is abused by over 35 million people worldwide. Chronic Meth abuse may be particularly devastating in individuals who engage in unprotected sex with multiple partners because it is associated with a 2-fold higher risk for obtaining HIV and associated secondary infections. We report the first specific evidence that Meth at pharmacological concentrations exerts a direct immunosuppressive effect on dendritic cells and macrophages. As a weak base, Meth collapses the pH gradient across acidic organelles, including lysosomes and associated autophagic organelles. This in turn inhibits receptor-mediated phagocytosis of antibody-coated particles, MHC class II antigen processing by the endosomal-lysosomal pathway, and antigen presentation to splenic T cells by dendritic cells. More importantly Meth facilitates intracellular replication and inhibits intracellular killing of Candida albicans and Cryptococcus neoformans, two major AIDS-related pathogens. Meth exerts previously unreported direct immunosuppressive effects that contribute to increased risk of infection and exacerbate AIDS pathology.

  3. Viral interference with antigen presentation: trapping TAP.

    Science.gov (United States)

    Ressing, Maaike E; Luteijn, Rutger D; Horst, Daniëlle; Wiertz, Emmanuel J

    2013-09-01

    Following primary infection, herpesviruses persist for life in their hosts, even when vigorous anti-viral immunity has been induced. Failure of the host immune system to eliminate infected cells is facilitated by highly effective immune evasion strategies acquired by these herpesviruses during millions of years of co-evolution with their hosts. Here, we review the mechanisms of action of viral gene products that lead to cytotoxic T cell evasion through interference with the function of the transporter associated with antigen processing, TAP. The viral TAP inhibitors impede transport of peptides from the cytosol into the ER lumen, thereby preventing peptide loading onto MHC class I complexes. Recent insights have revealed a pattern of functional convergent evolution. In every herpesvirus subfamily, inhibitors of TAP function have been identified that are, surprisingly, unrelated in genome location, structure, and mechanism of action. Recently, cowpox virus has also been found to encode a TAP inhibitor. Expanding our knowledge on how viruses perturb antigen presentation, in particular by targeting TAP, not only provides information on viral pathogenesis, but also reveals novel aspects of the cellular processes corrupted by these viruses, notably the translocation of peptides by the ATP-binding cassette (ABC) transporter TAP. As the various TAP inhibitors are anticipated to impede discrete conformational transitions it is expected that crystal structures of TAP-inhibitor complexes will reveal valuable structural information on the actual mechanism of peptide translocation by TAP. Viral TAP inhibitors are also used for various (clinical) applications, for example, as effective tools in antigen presentation studies and as immunomodulators in immunotherapy for cancer, heterologous vaccination, and transplant protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Human pathogen subversion of antigen presentation.

    Science.gov (United States)

    Brodsky, F M; Lem, L; Solache, A; Bennett, E M

    1999-04-01

    Many pathogens have co-evolved with their human hosts to develop strategies for immune evasion that involve disruption of the intracellular pathways by which antigens are bound by class I and class II molecules of the major histocompatibility complex (MHC) for presentation to T cells. Here the molecular events in these pathways are reviewed and pathogen interference is documented for viruses, extracellular and intracellular bacteria and intracellular parasites. In addition to a general review, data from our studies of adenovirus, Chlamydia trachomatis and Coxiella burnetii are summarized. Adenovirus E19 is the first viral gene product described that affects class I MHC molecule expression by two separate mechanisms, intracellular retention of the class I heavy chain by direct binding and by binding to the TAP transporter involved in class I peptide loading. Coxiella and Chlamydia both affect peptide presentation by class II MHC molecules as a result of their residence in endocytic compartments, although the properties of the parasitophorous vacuoles they form are quite different. These examples of active interference with antigen presentation by viral gene products and passive interference by rickettsiae and bacteria are typical of the strategies used by these different classes of pathogens, which need to evade different types of immune responses. Pathogen-host co-evolution is evident in these subversion tactics for which the pathogen crime seems tailored to fit the immune system punishment.

  5. Endothelial cells present antigens in vivo

    Directory of Open Access Journals (Sweden)

    Tellides George

    2004-03-01

    Full Text Available Abstract Background Immune recognition of vascular endothelial cells (EC has been implicated in allograft rejection, protection against pathogens, and lymphocyte recruitment. However, EC pervade nearly all tissues and predominate in none, complicating any direct test of immune recognition. Here, we examined antigen presentation by EC in vivo by testing immune responses against E. coli β-galactosidase (β-gal in two lines of transgenic mice that express β-gal exclusively in their EC. TIE2-lacZ mice express β-gal in all EC and VWF-lacZ mice express β-gal in heart and brain microvascular EC. Results Transgenic and congenic wild type FVB mice immunized with β-gal expression vector DNA or β-gal protein generated high titer, high affinity antisera containing comparable levels of antigen-specific IgG1 and IgG2a isotypes, suggesting equivalent activation of T helper cell subsets. The immunized transgenic mice remained healthy, their EC continued to express β-gal, and their blood vessels showed no histological abnormalities. In response to β-gal in vitro, CD4+ and CD8+ T cells from immunized transgenic and FVB mice proliferated, expressed CD25, and secreted IFN-γ. Infection with recombinant vaccinia virus encoding β-gal raised equivalent responses in transgenic and FVB mice. Hearts transplanted from transgenic mice into FVB mice continued to beat and the graft EC continued to express β-gal. These results suggested immunological ignorance of the transgene encoded EC protein. However, skin transplanted from TIE2-lacZ onto FVB mice lost β-gal+ EC and the hosts developed β-gal-specific antisera, demonstrating activation of host immune effector mechanisms. In contrast, skin grafted from TIE2-lacZ onto VWF-lacZ mice retained β-gal+ EC and no antisera developed, suggesting a tolerant host immune system. Conclusion Resting, β-gal+ EC in transgenic mice tolerize specific lymphocytes that would otherwise respond against β-gal expressed by EC within

  6. Presentation of phagocytosed antigens by MHC class I and II

    Science.gov (United States)

    Mantegazza, Adriana R.; Magalhaes, Joao G.; Amigorena, Sebastian; Marks, Michael S.

    2012-01-01

    Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen-specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; While bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross-presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells. PMID:23127154

  7. Application of Antigen Cross-Presentation Research into Patient Care

    NARCIS (Netherlands)

    The activation of adaptive immune responses requires the processing and presentation of protein antigens to lymphocytes. Especially dendritic cells are effective at display of antigen-derived peptides in the form of immunogenic peptide/MHC complexes to CD4 and CD8-positive T cells, and can stimulate

  8. Dissecting antigen processing and presentation routes in dermal vaccination strategies

    NARCIS (Netherlands)

    Platteel, Anouk C M; Henri, Sandrine; Zaiss, Dietmar M; Sijts, Alice J A M

    2017-01-01

    The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8(+) T cell

  9. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  10. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis.

    Science.gov (United States)

    Baena, A; Porcelli, S A

    2009-09-01

    Mycobacterium tuberculosis is one of the most successful of human pathogens and has acquired the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies, including some that interfere with antigen presentation to prevent or alter the quality of T-cell responses. Here, we review an extensive array of published studies supporting the view that antigen presentation pathways are targeted at many points by pathogenic mycobacteria. These studies show the multiple potential mechanisms by which M. tuberculosis may actively inhibit, subvert or otherwise modulate antigen presentation by major histocompatibility complex class I, class II and CD1 molecules. Unraveling the mechanisms by which M. tuberculosis evades or modulates antigen presentation is of critical importance for the development of more effective new vaccines based on live attenuated mycobacterial strains.

  11. The Antigen Presenting Cells Instruct Plasma Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wei eXu

    2014-01-01

    Full Text Available The professional antigen presenting cells (APCs, including many subsets of dendritic cells and macrophages, not only mediate prompt but nonspecific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells, which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only signal 1 (the antigen, but also signal 2 to directly instruct the differentiation process of plasma cells in a T cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  12. The antigen presenting cells instruct plasma cell differentiation.

    Science.gov (United States)

    Xu, Wei; Banchereau, Jacques

    2014-01-06

    The professional antigen presenting cells (APCs), including many subsets of dendritic cells and macrophages, not only mediate prompt but non-specific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only "signal 1" (the antigen), but also "signal 2" to directly instruct the differentiation process of PCs in a T-cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching, and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  13. Effective antigen presentation to helper T cells by human eosinophils.

    Science.gov (United States)

    Farhan, Ruhaifah K; Vickers, Mark A; Ghaemmaghami, Amir M; Hall, Andrew M; Barker, Robert N; Walsh, Garry M

    2016-12-01

    Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4 + T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4 + Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease. © 2016 John Wiley & Sons Ltd.

  14. Viral immune evasion: Lessons in MHC class I antigen presentation.

    Science.gov (United States)

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells

    Science.gov (United States)

    Vela Ramirez, J.E.; Roychoudhury, R.; Habte, H.H.; Cho, M. W.; Pohl, N. L. B.; Narasimhan, B.

    2015-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells, and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by dendritic cells. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and antigen presenting cells and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  16. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  17. The systems biology of MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra

    2012-01-01

    Major histocompatibility class II molecules (MHC class II) are one of the key regulators of adaptive immunity because of their specific expression by professional antigen presenting cells (APC). They present peptides derived from endocytosed material to T helper lymphocytes. Consequently, MHC class

  18. Viral immune evasion : Lessons in MHC class I antigen presentation

    NARCIS (Netherlands)

    van de Weijer, Michael L.; Luteijn, Rutger D.; Wiertz, EJHJ

    2015-01-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I

  19. Invariant Chain Modulates HLA Class II Protein Recycling and Peptide Presentation in Nonprofessional Antigen Presenting Cells

    OpenAIRE

    Haque, Azizul; Hajiaghamohseni, Laela M.; Li, Ping; Toomy, Katherine; Blum, Janice S.

    2007-01-01

    The expression of MHC class II molecules and the invariant chain (Ii) chaperone, is coordinately regulated in professional antigen presenting cells (APC). Ii facilitates class II subunit folding as well as transit and retention in mature endosomal compartments rich in antigenic peptides in these APC. Yet, in nonprofessional APC such as tumors, fibroblasts and endocrine tissues, the expression of class II subunits and Ii may be uncoupled. Studies of nonprofessional APC indicate class II molecu...

  20. Modulation of antigen presenting cell functions during chronic HPV infection

    Directory of Open Access Journals (Sweden)

    Abate Assefa Bashaw

    2017-12-01

    Full Text Available High-risk human papillomaviruses (HR-HPV infect basal keratinocytes, where in some individuals they evade host immune responses and persist. Persistent HR-HPV infection of the cervix causes precancerous neoplasia that can eventuate in cervical cancer. Dendritic cells (DCs are efficient in priming/cross-priming antigen-specific T cells and generating antiviral and antitumor cytotoxic CD8+ T cells. However, HR-HPV have adopted various immunosuppressive strategies, with modulation of DC function crucial to escape from the host adaptive immune response. HPV E6 and E7 oncoproteins alter recruitment and localization of epidermal DCs, while soluble regulatory factors derived from HPV-induced hyperplastic epithelium change DC development and influence initiation of specific cellular immune responses. This review focuses on current evidence for HR-HPV manipulation of antigen presentation in dendritic cells and escape from host immunity.

  1. Unusual antigen presentation offers new insight into HIV vaccine design.

    Science.gov (United States)

    McMichael, Andrew J; Picker, Louis J

    2017-06-01

    Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Granulocytes: New Members of the Antigen-Presenting Cell Family

    Directory of Open Access Journals (Sweden)

    Ang Lin

    2017-12-01

    Full Text Available Granulocytes, the most abundant types of leukocytes, are the first line of defense against pathogen invasion. However, the plasticity and diversity of granulocytes have been increasingly revealed, especially with regard to their versatile functions in orchestrating adaptive immune responses. A substantial body of recent evidence demonstrates that granulocytes can acquire the function as antigen-presenting cells under pathological or inflammatory conditions. In addition, they can acquire surface expression of MHC class II and costimulatory molecules as well as T cell stimulatory behavior when cultured with selected cytokines. The classic view of granulocytes as terminally differentiated, short-lived phagocytes is therefore changing to phenotypically and functionally heterogeneous cells that are engaged in cross-talk with other leukocyte populations and provide an additional link between innate and adaptive immunity. In this brief review, we summarize the current knowledge on the antigen-presenting capacity of granulocyte subsets (neutrophils, eosinophils, and basophils. Underlying mechanisms, relevant physiological significance and potential controversies are also discussed.

  3. Nanoscale artificial antigen presenting cells for cancer immunotherapy.

    Science.gov (United States)

    Rhodes, Kelly R; Green, Jordan J

    2018-03-07

    Exciting developments in cancer nanomedicine include the engineering of nanocarriers to deliver drugs locally to tumors, increasing efficacy and reducing off-target toxicity associated with chemotherapies. Despite nanocarrier advances, metastatic cancer remains challenging to treat due to barriers that prevent nanoparticles from gaining access to remote, dispersed, and poorly vascularized metastatic tumors. Instead of relying on nanoparticles to directly destroy every tumor cell, immunotherapeutic approaches target immune cells to train them to recognize and destroy tumor cells, which, due to the amplification and specificity of an adaptive immune response, may be a more effective approach to treating metastatic cancer. One novel technology for cancer immunotherapy is the artificial antigen presenting cell (aAPC), a micro- or nanoparticle-based system that mimics an antigen presenting cell by presenting important signal proteins to T cells to activate them against cancer. Signal 1 molecules target the T cell receptor and facilitate antigen recognition by T cells, signal 2 molecules provide costimulation essential for T cell activation, and signal 3 consists of secreted cues that further stimulate T cells. Classic microscale aAPCs present signal 1 and 2 molecules on their surface, and biodegradable polymeric aAPCs offer the additional capability of releasing signal 3 cytokines and costimulatory molecules that modulate the T cell response. Although particles of approximately 5-10 μm in diameter may be considered the optimal size of an aAPC for ex vivo cellular expansion, nanoscale aAPCs have demonstrated superior in vivo pharmacokinetic properties and are more suitable for systemic injection. As sufficient surface contact between T cells and aAPCs is essential for activation, nano-aAPCs with microscale contact surface areas have been created through engineering approaches such as shape manipulation and nanoparticle clustering. These design strategies have

  4. Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells

    OpenAIRE

    Liu, Zhenzhen; Roche, Paul A.

    2015-01-01

    AbstractDendritic cells (DCs) are outstanding antigen presenting cells (APCs) due to their robust ability to internalize extracellular antigens using endocytic processes such as receptor-mediated endocytosis, phagocytosis, and macropinocytosis. Macropinocytosis mediates the non-specific uptake of soluble antigens and occurs in DCs constitutively. Macropinocytosis plays a key role in DC-mediated antigen presentation to T cells against pathogens and the efficiency of macropinocytosis in antigen...

  5. Regulation of the Cell Biology of Antigen Cross-Presentation.

    Science.gov (United States)

    Blander, J Magarian

    2018-02-28

    Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and sites of peptide loading during cross-presentation remain key challenges. Expected final online publication date for the Annual Review of Immunology Volume 36 is April 26, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  6. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  7. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens.

    Science.gov (United States)

    Khodadoust, Michael S; Olsson, Niclas; Wagar, Lisa E; Haabeth, Ole A W; Chen, Binbin; Swaminathan, Kavya; Rawson, Keith; Liu, Chih Long; Steiner, David; Lund, Peder; Rao, Samhita; Zhang, Lichao; Marceau, Caleb; Stehr, Henning; Newman, Aaron M; Czerwinski, Debra K; Carlton, Victoria E H; Moorhead, Martin; Faham, Malek; Kohrt, Holbrook E; Carette, Jan; Green, Michael R; Davis, Mark M; Levy, Ronald; Elias, Joshua E; Alizadeh, Ash A

    2017-03-30

    Cancer somatic mutations can generate neoantigens that distinguish malignant from normal cells. However, the personalized identification and validation of neoantigens remains a major challenge. Here we discover neoantigens in human mantle-cell lymphomas by using an integrated genomic and proteomic strategy that interrogates tumour antigen peptides presented by major histocompatibility complex (MHC) class I and class II molecules. We applied this approach to systematically characterize MHC ligands from 17 patients. Remarkably, all discovered neoantigenic peptides were exclusively derived from the lymphoma immunoglobulin heavy- or light-chain variable regions. Although we identified MHC presentation of private polymorphic germline alleles, no mutated peptides were recovered from non-immunoglobulin somatically mutated genes. Somatic mutations within the immunoglobulin variable region were almost exclusively presented by MHC class II. We isolated circulating CD4 + T cells specific for immunoglobulin-derived neoantigens and found these cells could mediate killing of autologous lymphoma cells. These results demonstrate that an integrative approach combining MHC isolation, peptide identification, and exome sequencing is an effective platform to uncover tumour neoantigens. Application of this strategy to human lymphoma implicates immunoglobulin neoantigens as targets for lymphoma immunotherapy.

  8. MHC class II antigen presentation by B cells in health and disease

    NARCIS (Netherlands)

    Souwer, Yuri

    2009-01-01

    MHC class II antigen presentation by B cells is important to activate CD4+ T cells that stimulate the B cell to produce antibodies. Besides this, disruption of MHC class II antigen presentation could play a role in immune escape by tumor cells. This thesis describes MHC class II antigen presentation

  9. Stratification of Antigen-presenting Cells within the Normal Cornea

    Directory of Open Access Journals (Sweden)

    Jared E. Knickelbein

    2009-11-01

    Full Text Available The composition and location of professional antigen presenting cells (APC varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP from the CD11c promoter (pCD11c in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 µm in length and traverse up 20 µm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c-CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class IIpCD11c-CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.

  10. HLA class I and II molecules present influenza virus antigens with different kinetics

    NARCIS (Netherlands)

    Kuijpers, K. C.; van Kemenade, F. J.; Hooibrink, B.; Neefjes, J. J.; Lucas, C. J.; van Lier, R. A.; Miedema, F.

    1992-01-01

    Human leukocyte antigen (HLA) class I and class II molecules differ with respect to their intracellular pathways and the compartments where they associate with processed antigen. To study possible consequences of these differences for the kinetics of antigen presentation by HLA class I and class II

  11. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation.

    Directory of Open Access Journals (Sweden)

    Sebastien Apcher

    Full Text Available Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general.

  12. Polymer blend particles with defined compositions for targeting antigen to both class I and II antigen presentation pathways.

    Science.gov (United States)

    Tran, Kenny K; Zhan, Xi; Shen, Hong

    2014-05-01

    Defense against many persistent and difficult-to-treat diseases requires a combination of humoral, CD4(+) , and CD8(+) T-cell responses, which necessitates targeting antigens to both class I and II antigen presentation pathways. In this study, polymer blend particles are developed by mixing two functionally unique polymers, poly(lactide-co-glycolide) (PLGA) and a pH-responsive polymer, poly(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate) (DMAEMA-co-PAA-co-BMA). Polymer blend particles are shown to enable the delivery of antigens into both class I and II antigen presentation pathways in vitro. Increasing the ratio of the pH-responsive polymer in blend particles increases the degree of class I antigen presentation, while maintaining high levels of class II antigen presentation. In a mouse model, it is demonstrated that a significantly higher and sustained level of CD4(+) and CD8(+) T-cell responses, and comparable antibody responses, are elicited with polymer blend particles than PLGA particles and a conventional vaccine, Alum. The polymer blend particles offer a potential vaccine delivery platform to generate a combination of humoral and cell-mediated immune responses that insure robust and long-lasting immunity against many infectious diseases and cancers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Anti-immunoglobulin augments the B-cell antigen-presentation function independently of internalization of receptor-antigen complex.

    OpenAIRE

    Casten, L A; Lakey, E K; Jelachich, M L; Margoliash, E; Pierce, S K

    1985-01-01

    All mouse splenic B cells, including small resting B cells, process and present the native globular protein antigens, pigeon and tobacco hornworm moth cytochromes c, to a cytochrome c-specific T-cell hybrid in a major histocompatibility complex-restricted fashion, in the micromolar to nanomolar antigen-concentration range. As is the case for macrophages, treatment with paraformaldehyde or the lysosomotropic agents chloroquine and ammonium chloride blocked processing of the native pigeon prote...

  14. Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells.

    Science.gov (United States)

    Liu, Zhenzhen; Roche, Paul A

    2015-01-01

    Dendritic cells (DCs) are outstanding antigen presenting cells (APCs) due to their robust ability to internalize extracellular antigens using endocytic processes such as receptor-mediated endocytosis, phagocytosis, and macropinocytosis. Macropinocytosis mediates the non-specific uptake of soluble antigens and occurs in DCs constitutively. Macropinocytosis plays a key role in DC-mediated antigen presentation to T cells against pathogens and the efficiency of macropinocytosis in antigen capture is regulated during the process of DC maturation. Here, we review the methods to study macropinocytosis, describe our current knowledge of the regulatory mechanisms of antigen uptake via macropinocytosis and the intracellular trafficking route followed by macropinocytosed antigens, and discuss the significance of macropinocytosis for DC function.

  15. Macropinocytosis in Phagocytes: Regulation of MHC Class-II-Restricted Antigen Presentation in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Zhenzhen eLiu

    2015-01-01

    Full Text Available AbstractDendritic cells (DCs are outstanding antigen presenting cells (APCs due to their robust ability to internalize extracellular antigens using endocytic processes such as receptor-mediated endocytosis, phagocytosis, and macropinocytosis. Macropinocytosis mediates the non-specific uptake of soluble antigens and occurs in DCs constitutively. Macropinocytosis plays a key role in DC-mediated antigen presentation to T cells against pathogens and the efficiency of macropinocytosis in antigen capture is regulated during the process of DC maturation. Here, we review the methods to study macropinocytosis, describe our current knowledge of the regulatory mechanisms of antigen uptake via macropinocytosis and the intracellular trafficking route followed by macropinocytosed antigens, and discuss the significance of macropinocytosis for DC function.

  16. Dynamics of the membrane-cytoskeleton interface in MHC class II-restricted antigen presentation.

    Science.gov (United States)

    Bretou, Marine; Kumari, Anita; Malbec, Odile; Moreau, Hélène D; Obino, Dorian; Pierobon, Paolo; Randrian, Violaine; Sáez, Pablo J; Lennon-Duménil, Ana-Maria

    2016-07-01

    Antigen presentation refers to the ability of cells to show MHC-associated determinants to T lymphocytes, leading to their activation. MHC class II molecules mainly present peptide-derived antigens that are internalized by endocytosis in antigen-presenting cells (APCs). Here, we describe how the interface between cellular membranes and the cytoskeleton regulates the various steps that lead to the presentation of exogenous antigens on MHC class II molecules in the two main types of APCs: dendritic cells (DCs) and B lymphocytes. This includes antigen uptake, processing, APC migration, and APC-T cell interactions. We further discuss how the interaction between APC-specific molecules and cytoskeleton elements allows the coordination of antigen presentation and cell migration in time and space. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Viral sequestration of antigen subverts cross presentation to CD8(+ T cells.

    Directory of Open Access Journals (Sweden)

    Eric F Tewalt

    2009-05-01

    Full Text Available Virus-specific CD8(+ T cells (T(CD8+ are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC. Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+. Direct presentation of vaccinia virus (VACV antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation

  18. Transportation of sublingual antigens across sublingual ductal epithelial cells to the ductal antigen-presenting cells in mice.

    Science.gov (United States)

    Nagai, Y; Shiraishi, D; Tanaka, Y; Nagasawa, Y; Ohwada, S; Shimauchi, H; Aso, H; Endo, Y; Sugawara, S

    2015-03-01

    Sublingual immunotherapy (SLIT) has proven to be safe and efficient for the treatment of type I allergies. However, the mechanisms underlying allergen transportation within the sublingual compartment, the localization of antigens, and the identities of the cells responsible for this immunization remain incompletely understood. In this study, we focused on the sublingual ductal system and analysed the localization and transportation of antigens after their sublingual application. In mice given adjuvant-free antigens sublingually, tissues were removed at 0, 0.5, 1, or 2 h after the application and subjected to immunohistochemistry. Cells isolated from the sublingual duct and mucosa were analysed by flow cytometry. Substantial immunoreactivity to ovalbumin (OVA) was evident in sublingual ductal epithelial cells at 30 min and 1 h after sublingual administration of OVA, but it had disappeared at 2 h. The ductal epithelial cells incorporated not only OVA, but also particulate antigens such as latex or silica beads and microbes. MHC class II (MHCII)(+) antigen-presenting cells (APCs) were located around the sublingual ductal system, and MHCII(+) cells were co-localized with, and around, antigen-incorporated sublingual duct cells. CD11b(+) CD11c(-) cells were present among CD45(+) MHCII(+) cells at greater frequency in the sublingual duct than in the sublingual mucosa, and they were the main contributors to the incorporation of OVA in vitro. This study reveals that sublingual antigens can be transported across sublingual ductal epithelial cells to the ductal APCs. If the system is the same in humans as in mice, the ductal APCs may prove to be important target cells for SLIT. © 2014 John Wiley & Sons Ltd.

  19. Defect internalization and tyrosine kinase activation in Aire deficient antigen presenting cells exposed to Candida albicans antigens.

    Science.gov (United States)

    Brännström, Johan; Hässler, Signe; Peltonen, Leena; Herrmann, Björn; Winqvist, Ola

    2006-12-01

    Patients with Autoimmune polyendocrine syndrome type I (APS I) present with multiple endocrine failures due to organ-specific autoimmune disease, thought to be T-cell-mediated. Paradoxically, APS I patients suffer from chronic mucocutaneous candidiasis. The mutated gene has been identified as the Autoimmune regulator (AIRE). Aire is expressed in medullary epithelial cells of the thymus and in antigen presenting cells in the periphery. T cells from Aire deficient mice and men displayed an enhanced proliferative response against Candida antigen in vitro, suggesting that Aire deficient T cells are competent in recognizing Candida albicans. In contrast, monocytes from APS I patients displayed a decreased and delayed internalization of zymosan. Furthermore, Candida antigen activated monocytes from APS I patients show decreased and altered phoshotyrosine kinase activation. In conclusion, Aire deficient APCs have a defect receptor mediated internalization of Candida which affects kinase activation, likely altering the innate Candida immune response.

  20. Chloroquine inhibits accessory cell presentation of soluble natural and synthetic protein antigens

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1984-01-01

    We have studied the in vitro effect of the lysosomotrophic agent, chloroquine, on the presentation of soluble protein antigens by guinea pig accessory cells. Chloroquine inhibited the capacity of antigen-pulsed accessory cells to stimulate proliferation in appropriately primed T cells. The effect...... was time- and dose-dependent. A brief treatment solely of the accessory cells with the drug compromised their ability to stimulate primed T cells in a subsequent culture provided the accessory cells were treated with chloroquine before their exposure to the antigen. These results suggest that chloroquine...... acts on an early event in the antigen handling by accessory cells. Chloroquine is a well known inhibitor of lysosomal proteolysis, and it is likely that its effect on antigen presentation is caused by an inhibition of antigen degradation....

  1. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells

    NARCIS (Netherlands)

    Rodriguez, A; Regnault, A; Kleijmeer, M; Ricciardi-Castagnoli, P; Amigorena, S

    1999-01-01

    In order for cytotoxic T cells to initiate immune responses, peptides derived from internalized antigens must be presented to the cytotoxic T cells on major histocompatibility complex (MHC) class I molecules. Here we show that dendritic cells, the only antigen-presenting cells that initiate immune

  2. Saposins utilize two strategies for lipid transfer and CD1 antigen presentation

    NARCIS (Netherlands)

    Leon, Luis; Tatituri, Raju V. V.; Grenha, Rosa; Sun, Ying; Barral, Duarte C.; Minnaard, Adriaan J.; Bhowruth, Veemal; Veerapen, Natacha; Besra, Gurdyal S.; Kasmar, Anne; Peng, Wei; Moody, D. Branch; Grabowski, Gregory A.; Brenner, Michael B.

    2012-01-01

    Transferring lipid antigens from membranes into CD1 antigen-presenting proteins represents a major molecular hurdle necessary for T-cell recognition. Saposins facilitate this process, but the mechanisms used are not well understood. We found that saposin B forms soluble saposin protein-lipid

  3. Facts on the fragmentation of antigens in presenting cells, on the association of antigen fragments with MHC molecules in cell-free systems, and speculation on the cell biology of antigen processing

    DEFF Research Database (Denmark)

    Werdelin, O; Mouritsen, S; Petersen, B L

    1988-01-01

    The processing of a protein antigen is a multi-step event taking place in antigen-presenting cells. Processing is a prerequisite for the recognition of most antigens by T lymphocytes. The antigen is ingested by endocytosis, transported to an acid cellular compartment and subjected to proteolytic...... fragmentation. Some of the antigen fragments bind to MHC class II molecules and are transported to the surface of the antigen-presenting cell where the actual presentation to T lymphocytes occurs. The nature of the processed antigen, how and where it is derived and subsequently becomes associated with MHC...

  4. Role of autophagy in MHC class I-restricted antigen presentation.

    Science.gov (United States)

    Van Kaer, Luc; Parekh, Vrajesh V; Postoak, J Luke; Wu, Lan

    2017-11-08

    Major histocompatibility complex (MHC) class I molecules present peptide antigens to MHC class I-restricted CD8 + T lymphocytes. The peptides loaded onto MHC class I molecules are typically derived from cytosolic antigens, which includes both self and foreign proteins. In addition to this classical MHC class I antigen presentation pathway, some cell types, especially dendritic cells can present antigens from exogenous sources to MHC class I-restricted CD8 + T cells, in a process called cross-presentation. A variety of cellular processes, including endocytosis, vesicle trafficking, and autophagy, play critical roles in these antigen presentation pathways. In this review article, we discuss the role of autophagy, an intracellular degradation system that delivers cytoplasmic constituents to lysosomes, in MHC class I-restricted antigen presentation. A mechanistic understanding of the role of autophagy-related proteins in MHC class I restricted antigen presentation may guide future efforts in manipulating autophagy to prevent or treat human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation.

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J; Hu, Qingang; Hu, Hongming

    2017-12-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe 2 O 3 /APTS (3-aminopropyltrimethoxysilane) NPs and γFe 2 O 3 /DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe 2 O 3 /APTS NPs, but not negative charged γFe 2 O 3 /DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe 2 O 3 /APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe 2 O 3 /DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  6. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  7. Molecular mechanisms of viral immune evasion proteins to inhibit MHC class I antigen processing and presentation.

    Science.gov (United States)

    Zhou, Fang

    2009-01-01

    Viral products inhibit MHC class I antigen processing and presentation via three major pathways: inhibition of major histocompatibility complex (MHC) class I expression on cells, blockade of peptide trafficking and loading on MHC class I molecules, and inhibition of peptide generation in host cells. Viral products also interfere with IFN-gamma -mediated JAK/STAT signal transduction in cells. These results imply that viral proteins probably inhibit the function of IFN-gamma in MHC class I antigen presentation via inactivation of JAK/STAT signal transduction in host cells. Mechanisms of viral products to inhibit IFN-gamma -mediated MHC class I antigen presentation were summarized in this literature review.

  8. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection.

    Science.gov (United States)

    Cram, Erik D; Simmons, Ryan S; Palmer, Amy L; Hildebrand, William H; Rockey, Daniel D; Dolan, Brian P

    2016-02-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Oligopeptide antigens of the angiotensin lineage compete for presentation by paraformaldehyde-treated accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    The heptapeptide antigen angiotensin III can be presented to guinea pig T cells by paraformaldehyde-treated antigen-presenting cells, which are incapable of processing antigens and presumably cannot even ingest them. We demonstrate here that the decapeptide angiotensin I can outcompete angiotensin...... III for presentation by paraformaldehyde-treated antigen-presenting cells. It seems likely that the competition is for a site on the surface of the presenting cell. This extends earlier findings of competition for presentation between antigens. We also demonstrate that the antigens of the angiotensin...

  10. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [ 35 S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO 4 /PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  11. Licensing of γδT cells for professional antigen presentation

    Science.gov (United States)

    Anderson, John; Gustafsson, Kenth; Himoudi, Nourredine; Yan, Mengyong; Heuijerjans, Jennifer

    2012-01-01

    Following activation, γδ T cells display many properties of lymphocytes from the innate immune system, yet how they mediate antigen presentation remains an open conundrum. In humans, circulating γδ T cells that express the Vγ9Vδ2 T-cell receptor become reversibly licensed for professional antigen presentation only upon interaction with a target cell opsonized with IgGs. PMID:23264926

  12. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  13. HIV immune evasion disruption of antigen presentation by the HIV Nef protein.

    Science.gov (United States)

    Wonderlich, Elizabeth R; Leonard, Jolie A; Collins, Kathleen L

    2011-01-01

    The Human Immunodeficiency Virus (HIV) Nef protein is necessary for high viral loads and for timely progression to AIDS. Nef plays a number of roles, but its effect on antigen presentation and immune evasion are among the best characterized. Cytotoxic T lymphocytes (CTLs) recognize and lyse virally infected cells by detecting viral antigens in complex with host major histocompatibility complex class I (MHC-I) molecules on the infected cell surface. The HIV Nef protein disrupts antigen presentation at the cell surface by interfering with the normal trafficking pathway of MHC-I and thus reduces CTL recognition and lysis of infected cells. The molecular mechanism by which Nef causes MHC-I downmodulation is becoming more clear, but some questions remain. A better understanding of how Nef disrupts antigen presentation may lead to the development of drugs that enhance the ability of the anti-HIV CTLs to control HIV disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Participation of CD1 molecules in the presentation of bacterial protein antigens in humans.

    Science.gov (United States)

    Ulanova, M; Tarkowski, A; Hahn-Zoric, M; Hanson, L A

    1999-10-01

    Human CD1 molecules, expressed on the surface of professional antigen-presenting cells (including dendritic cells, Langerhans' cells, B cells and activated monocytes) are structurally homologous to major histocompatibility complex (MHC) class I and class II molecules. CD1b and CD1c have been shown to present nonpeptide bacterial antigens to T cells. We hypothesized that CD1 molecules may also be involved in the presentation of bacterial protein antigens. Human peripheral blood mononuclear cells (PBMC) were exposed to two medically important proteins, tetanus toxoid (TT) and purified protein derivative (PPD), with and without murine monoclonal antibodies (MoAbs) specific for CD1a, CD1b and CD1c. All the MoAbs substantially inhibited the proliferative responses of PBMC to TT and PPD. Simultaneous interaction of CD1 and MHC class II molecules was even more inhibitory to these antigen-specific proliferative responses. In contrast, neither mixed lymphocyte reaction nor superantigen and mitogenic responses were affected by CD1-specific antibodies, indicating a certain restriction pattern in antigen presentation. Our findings suggest that, besides MHC class I and II molecules, there is a family of nonpolymorphic cell surface molecules that is able to present certain bacterial protein antigens to T cells.

  15. Effective antigen cross-presentation by prostate cancer patients' dendritic cells: implications for prostate cancer immunotherapy.

    Science.gov (United States)

    Orange, D E; Jegathesan, M; Blachère, N E; Frank, M O; Scher, H I; Albert, M L; Darnell, R B

    2004-01-01

    Despite the potency with which dendritic cells (DCs) are able to utilize the exogenous MHC I antigen cross-presentation pathway to cross-present antigen for the activation of killer T cells in model systems, concern about defects in immune function in cancer patients has led to uncertainty regarding whether immune cells derived from patients can effectively be used to generate tumor vaccines. We have undertaken a careful analysis of the potency of using DCs obtained from prostate cancer patients to cross-present antigen derived from human prostate tumor cells for the activation of antigen-specific T cells. Such DCs can be matured ex vivo into functionally active cells and are capable of cross-presenting influenza antigen derived from internalized apoptotic prostate tumor cells. Importantly, we demonstrate effective stimulation of both CD4+ and CD8+ T cells, as evident by production of IFN-gamma, and the ability of CD8+ T cells to differentiate into effector CTLs. These results, defining conditions in which prostate cancer patient DCs can efficiently utilize the cross-presentation pathway and in which apoptotic tumor can serve as a source of antigen for DCs to activate T cells, demonstrate that this system warrants clinical study as a potential immunotherapy.

  16. MHC class I-presented tumor antigen appraisable for T-cell responses against ovarian cancer

    Directory of Open Access Journals (Sweden)

    Jing Yao Wang

    2015-08-01

    Full Text Available The purpose of this study is to assess whether MHC class I-presented tumor antigen is appraisable for T-cell responses against ovarian cancer. In ovarian cancer cell, human leukocyte antigen A2 (HLA-A2 associated with peptides was used to promote the activation of naive T cells so as to activate antigen-specific T cells. 7 or 4 patients were observed grade 1 or 2 injection site reactions, respectively. 5, 2 or 1 patients were observed grade 1, 2 or 3 pain reactions, respectively. 4 or 1 patients were observed grade 1 or 2 induration reactions. Total number mean value of patients experiencing response to the particular peptide was 7.73, and total number mean value of peptides to which the patients responded was 7.45. MHC class I-presented tumor antigen is appraisable for T-cell responses against ovarian cancer in China.

  17. Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    DEFF Research Database (Denmark)

    Kirkin, Alexei F.; Dzhandzhugazyan, Karine N.; Guldberg, Per

    2018-01-01

    In cancer cells, cancer/testis (CT) antigens become epigenetically derepressed through DNA demethylation and constitute attractive targets for cancer immunotherapy. Here we report that activated CD4+ T helper cells treated with a DNA-demethylating agent express a broad repertoire of endogenous CT...... antigens and can be used as antigen-presenting cells to generate autologous cytotoxic T lymphocytes (CTLs) and natural killer cells. In vitro, activated CTLs induce HLA-restricted lysis of tumor cells of different histological types, as well as cells expressing single CT antigens. In a phase 1 trial of 25...... patients with recurrent glioblastoma multiforme, cytotoxic lymphocytes homed to the tumor, with tumor regression ongoing in three patients for 14, 22, and 27 months, respectively. No treatment-related adverse effects were observed. This proof-of-principle study shows that tumor-reactive effector cells can...

  18. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1999-01-01

    Full Text Available The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  19. Killer artificial antigen-presenting cells: the synthetic embodiment of a 'guided missile'.

    Science.gov (United States)

    Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin

    2010-07-01

    At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells ('guided missiles'). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based 'killer artificial antigen-presenting cell' strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity.

  20. Killer artificial antigen-presenting cells: the synthetic embodiment of a ‘guided missile’

    Science.gov (United States)

    Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin

    2010-01-01

    At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells (‘guided missiles’). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based ‘killer artificial antigen-presenting cell’ strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity. PMID:20636007

  1. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation

    Science.gov (United States)

    Adiko, Aimé Cézaire; Babdor, Joel; Gutiérrez-Martínez, Enric; Guermonprez, Pierre; Saveanu, Loredana

    2015-01-01

    Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization. PMID:26191062

  2. Tumor Antigen Cross-Presentation and the Dendritic Cell: Where it All Begins?

    Directory of Open Access Journals (Sweden)

    Alison M. McDonnell

    2010-01-01

    Full Text Available Dendritic cells (DCs are professional antigen-presenting cells (APCs that are critical for the generation of effective cytotoxic T lymphocyte (CTL responses; however, their function and phenotype are often defective or altered in tumor-bearing hosts, which may limit their capacity to mount an effective tumor-specific CTL response. In particular, the manner in which exogenous tumor antigens are acquired, processed, and cross-presented to CD8 T cells by DCs in tumor-bearing hosts is not well understood, but may have a profound effect on antitumor immunity. In this paper, we have examined the role of DCs in the cross-presentation of tumor antigen in terms of their subset, function, migration, and location with the intention of examining the early processes that contribute to the development of an ineffective anti-tumor immune response.

  3. Antigen presentation and MHC class II expression by human esophageal epithelial cells: role in eosinophilic esophagitis.

    Science.gov (United States)

    Mulder, Daniel J; Pooni, Aman; Mak, Nanette; Hurlbut, David J; Basta, Sameh; Justinich, Christopher J

    2011-02-01

    Professional antigen-presenting cells (APCs) play a crucial role in initiating immune responses. Under pathological conditions, epithelial cells at mucosal surfaces act as nonprofessional APCs, thereby regulating immune responses at the site of exposure. Epithelial cells in the esophagus may contribute to the pathogenesis of eosinophilic esophagitis (EoE) by presenting antigens on the major histocompatibility complex (MHC) class II. Our goal was to demonstrate the ability of esophageal epithelial cells to process and present antigens on the MHC class II system and to investigate the contribution of epithelial cell antigen presentation to EoE. Immunohistochemistry detected HLA-DR, CD80, and CD86 expression and enzyme-linked immunosorbent assay detected interferon-γ (IFNγ) in esophageal biopsies. Antigen presentation was studied using the human esophageal epithelial cell line HET-1A by reverse transcriptase-PCR, flow cytometry, and confocal microscopy. T helper cell lymphocyte proliferation was assessed by flow cytometry and IL-2 secretion. IFNγ and MHC class II were increased in mucosa of patients with EoE. IFNγ increased mRNA of HLA-DP, HLA-DQ, HLA-DR, and CIITA in HET-1A cells. HET-1A engulfed cell debris and processed ovalbumin. HET-1A cells expressed HLA-DR after IFNγ treatment. HET-1A stimulated T helper cell activation. In this study, we demonstrated the ability of esophageal epithelial cells to act as nonprofessional APCs in the presence of IFNγ. Esophageal epithelial cell antigen presentation may contribute to the pathophysiology of eosinophilic esophagitis. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra; van den Hoorn, Tineke; Jongsma, Marlieke L. M.; Bakker, Mark J.; Hengeveld, Rutger; Janssen, Lennert; Cresswell, Peter; Egan, David A.; van Ham, Marieke; ten Brinke, Anja; Ovaa, Huib; Beijersbergen, Roderick L.; Kuijl, Coenraad; Neefjes, Jacques

    2011-01-01

    MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and

  5. Antigen detection in vivo after immunization with different presentation forms of rabies virus antigen: Involvement of marginal metallophilic macrophages in the uptake of immune-stimulating complexes

    NARCIS (Netherlands)

    Claassen, I.J.T.M.; Osterhaus, A.D.M.E.; Claassen, E.

    1995-01-01

    Several mechanisms have been postulated to explain the relatively high immunogenicity of antigens presented in immune-stimulating complexes (iscom). Their potency can in part be explained by the specific targeting of these structures to cells presenting antigens to the immune system. However, until

  6. Antigen detection in vivo after immunization with different presentation forms of rabies virus antigen: involvement of marginal metallophilic macrophages in the uptake of immune-stimulating complexes.

    NARCIS (Netherlands)

    I.J.Th.M. Claassen (Ivo); A.D.M.E. Osterhaus (Albert); H.J.H.M. Claassen (Eric)

    1995-01-01

    textabstractSeveral mechanisms have been postulated to explain the relatively high immunogenicity of antigens presented in immune-stimulating complexes (iscom). Their potency can in part be explained by the specific targeting of these structures to cells presenting antigens to the immune system.

  7. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    Directory of Open Access Journals (Sweden)

    Cleo Goyvaerts

    2015-01-01

    Full Text Available In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  8. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines.

    Science.gov (United States)

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  9. The T-cell anergy induced by Leishmania amazonensis antigens is related with defective antigen presentation and apoptosis

    Directory of Open Access Journals (Sweden)

    Roberta O. Pinheiro

    2004-09-01

    Full Text Available Leishmania amazonensis is the main agent of diffuse cutaneous leishmaniasis, a disease associated with anergic immune responses. In this study we show that the crude antigen of Leishmania amazonensis (LaAg but not L. braziliensis promastigotes (LbAg contains substances that suppress mitogenic and spontaneous proliferative responses of T cells. The suppressive substances in LaAg are thermoresistant (100ºC/1h and partially dependent on protease activity. T cell anergy was not due to a decreased production of growth factors as it was not reverted by addition of exogenous IL-2, IL-4, IFN-gamma or IL-12. LaAg did not inhibit anti-CD3-induced T cell activation, suggesting that anergy was due to a defect in antigen presentation. It was also not due to cell necrosis, but was accompanied by expressive DNA fragmentation in lymph node cells, indicative of apoptosis. Although pre-incubation of macrophages with LaAg prevented their capacity to present antigens, this effect was not due to apoptosis of the former. These results suggest that the T cell anergy found in diffuse leishmaniasis may be the result of parasite antigen-driven apoptosis of those cells following defective antigen presentation.A Leishmania amazonensis é o principal agente etiológico da leishmaniose cutânea difusa, uma doença associada a respostas imunes anérgicas. Neste estudo nós mostramos que o extrato bruto de promastigotas de Leishmania amazonensis (LaAg, mas não de L. braziliensis (LbAg, contém substâncias que suprimem respostas proliferativas, espontâneas e mitogênicas, de células T. As substâncias supressoras no LaAg são termo-resistentes (100°C/1h e parcialmente dependentes da atividade de proteases. A anergia de células T não foi devida à diminuição na produção de fatores de crescimento, uma vez que não foi revertida pela adição de: IL-2, IL-4, IFN-gama ou IL-12. O LaAg não inibiu a ativação de células T induzida por anti-CD3, sugerindo que a anergia

  10. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability.

    Science.gov (United States)

    Rivera, Julie A; McGuire, Travis C

    2005-05-10

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV(WSU5) infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with (51)Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection.

  11. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    International Nuclear Information System (INIS)

    Rivera, Julie A.; McGuire, Travis C.

    2005-01-01

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV WSU5 infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with 51 Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection

  12. A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation.

    Science.gov (United States)

    Engeroff, Paul; Fellmann, Marc; Yerly, Daniel; Bachmann, Martin F; Vogel, Monique

    2017-10-23

    IgE-immune complexes (IgE-ICs) have been shown to enhance antibody and T-cell responses in mice by targeting CD23 (FcεRII), the low-affinity receptor for IgE on B cells. In humans, the mechanism by which CD23-expressing cells take up IgE-ICs and process them is not well understood. To investigate this question, we compared the fate of IgE-ICs in human B cells and in CD23-expressing monocyte-derived dendritic cells (moDCs) that represent classical antigen-presenting cells and we aimed at studying IgE-dependent antigen presentation in both cell types. B cells and monocytes were isolated from peripheral blood, and monocytes were differentiated into moDCs. Both cell types were stimulated with IgE-ICs consisting of 4-hydroxy-3-iodo-5-nitrophenylacetyl (NIP)-specific IgE JW8 and NIP-BSA to assess binding, uptake, and degradation dynamics. To assess CD23-dependent T-cell proliferation, B cells and moDCs were pulsed with IgE-NIP-tetanus toxoid complexes and cocultured with autologous T cells. IgE-IC binding was CD23-dependent in B cells, and moDCs and CD23 aggregation, as well as IgE-IC internalization, occurred in both cell types. Although IgE-ICs were degraded in moDCs, B cells did not degrade the complexes but recycled them in native form to the cell surface, enabling IgE-IC uptake by moDCs in cocultures. The resulting proliferation of specific T cells was dependent on cell-cell contact between B cells and moDCs, which was explained by increased upregulation of costimulatory molecules CD86 and MHC class II on moDCs induced by B cells. Our findings argue for a novel model in which human B cells promote specific T-cell proliferation on IgE-IC encounter. On one hand, B cells act as carriers transferring antigen to more efficient antigen-presenting cells such as DCs. On the other hand, B cells can directly promote DC maturation and thereby enhance T-cell stimulation. Copyright © 2017. Published by Elsevier Inc.

  13. Skewing to the LFA-3 adhesion pathway by influenza infection of antigen-presenting cells

    NARCIS (Netherlands)

    van Kemenade, F. J.; Kuijpers, K. C.; de Waal-Malefijt, R.; van Lier, R. A.; Miedema, F.

    1993-01-01

    The effect of influenza (FLU) infection on heterotypic conjugate formation between antigen-presenting cells and T lymphocytes has been studied with FLU-specific T cell clones and FLU-infected B-lymphoblastoid cells (B-LCL). Conjugate formation between FLU-infected B-LCL (FLU+ B-LCL) and T cells was

  14. Immunization with mannosylated peptide induces poor T cell effector functions despite enhanced antigen presentation

    NARCIS (Netherlands)

    Kel, J.M.; Geus, E.D. de; Stipdonk, M.J. van; Drijfhout, J.W.; Koning, F.; Nagelkerken, L.

    2008-01-01

    In this study, we investigated the development of T cell responses in mice after administration of a mannosylated ovalbumin peptide (M-OVA323-339). Immunization with M-OVA323-339 in complete adjuvant resulted in enhanced antigen presentation in draining lymph nodes. Monitoring the fate of

  15. Phosphatase and tensin homolog (PTEN) in antigen-presenting cells controls Th17-mediated autoimmune arthritis

    NARCIS (Netherlands)

    Bluml, S.; Sahin, E.; Saferding, V.; Goncalves-Alves, E.; Hainzl, E.; Niederreiter, B.; Hladik, A.; Lohmeyer, T.; Brunner, J.S.; Bonelli, M.; Koenders, M.I.; Berg, W.B. van den; Superti-Furga, G.; Smolen, J.S.; Schabbauer, G.; Redlich, K.

    2015-01-01

    INTRODUCTION: Autoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not

  16. Antigen-presenting cells in human cutaneous leishmaniasis due to Leishmania major

    DEFF Research Database (Denmark)

    ElHassan, A M; Gaafar, A; Theander, T G

    1995-01-01

    In this study biopsies from skin lesions and draining lymph nodes of patients suffering from cutaneous leishmaniasis caused by Leishmania major were examined by immunohistochemistry, and by light and electron microscopy to identify the types of antigen-presenting cells (APC) and their location. APC...

  17. Fungal pattern-recognition receptors and tetraspanins: partners on antigen-presenting cells.

    NARCIS (Netherlands)

    Figdor, C.G.; Spriel, A.B. van

    2010-01-01

    Fungal pattern-recognition receptors (F-PRRs), including C-type lectins, Toll-like receptors, scavenger receptors and Fc/complement receptors, are crucial for inducing anti-fungal immune responses by antigen-presenting cells. The recent identification of specific F-PRR interactions with tetraspanins

  18. Individual cathepsins degrade immune complexes internalized by antigen-presenting cells via Fcgamma receptors.

    NARCIS (Netherlands)

    Driessen, C.A.G.G.; Lennon-Dumenil, A.M.; Ploegh, H.L.

    2001-01-01

    We have analyzed the intracellular degradation of an immune complex after its FcgammaR-mediated uptake in antigen-presenting cells (APC). Mice that lack the cathepsins (Cat) S, L, B and D allowed us to assess the direct contribution of these individual proteases to the processing events observed.

  19. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Tomasz Łęga

    Full Text Available Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.

  20. Downregulation of integrin β4 decreases the ability of airway epithelial cells to present antigens.

    Directory of Open Access Journals (Sweden)

    Chi Liu

    Full Text Available Airway epithelial cells have been demonstrated to be accessory antigen presentation cells (APC capable of activating T cells and may play an important role in the development of allergic airway inflammation of asthma. In asthmatic airways, loss of expression of the adhesion molecule integrin β4 (ITGB4 and an increase in Th2 inflammation bias has been observed in our previous study. Given that ITGB4 is engaged in multiple signaling pathways, we studied whether disruption of ITGB4-mediated cell adhesion may contribute to the adaptive immune response of epithelial cells, including their ability to present antigens, induce the activate and differentiate of T cells. We silenced ITGB4 expression in bronchial epithelial cells with an effective siRNA vector and studied the effects of ITGB4 silencing on the antigen presentation ability of airway epithelial cells. T cell proliferation and cytokine production was investigated after co-culturing with ITGB4-silenced epithelial cells. Surface expression of B7 homologs and the major histocompatibility complex (MHC class II was also detected after ITGB4 was silenced. Our results demonstrated that silencing of ITGB4 resulted in impaired antigen presentation processes and suppressed T cell proliferation. Meanwhile, decrease in Th1 cytokine production and increase in Th17 cytokine production was induced after co-culturing with ITGB4-silenced epithelial cells. Moreover, HLA-DR was decreased and the B7 homologs expression was different after ITGB4 silencing. Overall, this study suggested that downregulation of ITGB4 expression in airway epithelial cells could impair the antigen presentation ability of these cells, which further regulate airway inflammation reaction in allergic asthma.

  1. Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE

    NARCIS (Netherlands)

    M. van Zwam (Marloes); R. Huizinga (Ruth); M.J. Melief (Marie-José); A.F. Wierenga-Wolf (Annet); M. van Meurs (Marjan); J.S. Voerman (Jane); K.P.H. Biber (Knut); H.W.G.M. Boddeke (Hendrikus); U.E. Höpken (Uta); C. Meisel (Christian); I. Bechmann (Ingo); R.Q. Hintzen (Rogier); B.A. 't Hart (Bert); S. Amor (Sandra); J.D. Laman (Jon); L.A. Boven (Leonie)

    2009-01-01

    textabstractDrainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with

  2. Survival and signaling changes in antigen presenting cell subsets after radiation

    Science.gov (United States)

    Parker, Jennifer Janell

    Radiation therapy is a widely used cancer treatment that has the potential to influence anti-tumor immune responses. Both myeloablative and non-myeloablative radiation are often used as part of preparatory regimens for hematopoetic stem cell transplantation, in combination with other chemotherapy or immuno-modulatory (e.g. Anti-thymocyte globulin (ATG)) therapies for both cytotoxic and immune modulatory purposes. However, the mechanisms responsible for the effect of radiation on antigen presenting cell (APC) responsiveness and radioresistance are poorly understood. The first studies described in this thesis were designed to identify and characterize early radiation-induced signaling changes in antigen presenting cells and to determine the effects of these signaling changes on APC receptor expression and function. The NFkappaB pathway in antigen presenting cells was chosen for study because it is activated by radiation in a wide range of other cell types and plays a vital role in the maintenance and regulation of the immune system. The effects of therapeutically relevant doses radiation (2 and 20 Gy) were compared at various timepoints in the human monocytic cell line (U937) using phospho-flow cytometry staining methods and cytometric analysis. These studies demonstrated that radiation-induced changes in the phosphorylation state of NFkappaB family members that were p53 independent. However, these changes were dependent upon activation of ATM in response to single or double-stranded breaks in DNA, as shown in experiments using an inhibitor of ATM and ATM siRNA knockdown U937 cells. In addition, studies examining the effect of radiation on co-stimulatory receptors with and without inhibition of the NFkappaB pathway via phospho-flow cytometry revealed that radiation-induced phosphorylation of NEMO promoted the activation and functional maturation of U937 cells. Furthermore, functional studies using both phospho-flow cytometry and/or mixed lymphocyte reactions to

  3. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation

    Directory of Open Access Journals (Sweden)

    Schendel Dolores J

    2010-09-01

    Full Text Available Abstract Background Antigen-loaded dendritic cells (DC are capable of priming naïve T cells and therefore represent an attractive adjuvant for vaccine development in anti-tumor immunotherapy. Numerous protocols have been described to date using different maturation cocktails and time periods for the induction of mature DC (mDC in vitro. For clinical application, the use of mDC that can be generated in only three days saves on the costs of cytokines needed for large scale vaccine cell production and provides a method to produce cells within a standard work-week schedule in a GMP facility. Methods In this study, we addressed the properties of antigen uptake, processing and presentation by monocyte-derived DC prepared in three days (3d mDC compared with conventional DC prepared in seven days (7d mDC, which represent the most common form of DC used for vaccines to date. Results Although they showed a reduced capacity for spontaneous antigen uptake, 3d mDC displayed higher capacity for stimulation of T cells after loading with an extended synthetic peptide that requires processing for MHC binding, indicating they were more efficient at antigen processing than 7d DC. We found, however, that 3d DC were less efficient at expressing protein after introduction of in vitro transcribed (ivtRNA by electroporation, based on published procedures. This deficit was overcome by altering electroporation parameters, which led to improved protein expression and capacity for T cell stimulation using low amounts of ivtRNA. Conclusions This new procedure allows 3d mDC to replace 7d mDC for use in DC-based vaccines that utilize long peptides, proteins or ivtRNA as sources of specific antigen.

  4. Herpesviruses Placating the Unwilling Host: Manipulation of the MHC Class II Antigen Presentation Pathway

    Directory of Open Access Journals (Sweden)

    Martin Rowe

    2012-08-01

    Full Text Available Lifelong persistent infection by herpesviruses depends on the balance between host immune responses and viral immune evasion. CD4 T cells responding to antigens presented on major histocompatibility complex class II (MHC-II molecules are known to play an important role in controlling herpesvirus infections. Here we review, with emphasis on human herpesvirus infections, the strategies evolved to evade CD4 T cell immunity. These viruses target multiple points on the MHC class II antigen presentation pathway. The mechanisms include: suppression of CIITA to inhibit the synthesis of MHC class II molecules, diversion or degradation of HLA-DR molecules during membrane transport, and direct targeting of the invariant chain chaperone of HLA-DR.

  5. Herpesviruses placating the unwilling host: manipulation of the MHC class II antigen presentation pathway.

    Science.gov (United States)

    Zuo, Jianmin; Rowe, Martin

    2012-08-01

    Lifelong persistent infection by herpesviruses depends on the balance between host immune responses and viral immune evasion. CD4 T cells responding to antigens presented on major histocompatibility complex class II (MHC-II) molecules are known to play an important role in controlling herpesvirus infections. Here we review, with emphasis on human herpesvirus infections, the strategies evolved to evade CD4 T cell immunity. These viruses target multiple points on the MHC class II antigen presentation pathway. The mechanisms include: suppression of CIITA to inhibit the synthesis of MHC class II molecules, diversion or degradation of HLA-DR molecules during membrane transport, and direct targeting of the invariant chain chaperone of HLA-DR.

  6. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    International Nuclear Information System (INIS)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E.; Ramos, S.G.; Silva, C.L.; Coelho-Castelo, A.A.M.

    2012-01-01

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis

  7. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  8. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    Science.gov (United States)

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P immersion, which was significantly higher than the levels of uptake measured in the other tissues (P immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P immersion, notably 50‰ salinity significantly enhanced antigen uptake and the expression of selected genes associated with antigen presentation, providing evidence for an enhanced immune activation of the fish's immune response by the hyperosmotic immersion treatment prior to vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells.

    Science.gov (United States)

    Hardman, Clare S; Chen, Yi-Ling; Salimi, Maryam; Jarrett, Rachael; Johnson, David; Järvinen, Valtteri J; Owens, Raymond J; Repapi, Emmanouela; Cousins, David J; Barlow, Jillian L; McKenzie, Andrew N J; Ogg, Graham

    2017-12-22

    Group 2 innate lymphoid cells (ILC2) are effectors of barrier immunity, with roles in infection, wound healing, and allergy. A proportion of ILC2 express MHCII (major histocompatibility complex II) and are capable of presenting peptide antigens to T cells and amplifying the subsequent adaptive immune response. Recent studies have highlighted the importance of CD1a-reactive T cells in allergy and infection, activated by the presentation of endogenous neolipid antigens and bacterial components. Using a human skin challenge model, we unexpectedly show that human skin-derived ILC2 can express CD1a and are capable of presenting endogenous antigens to T cells. CD1a expression is up-regulated by TSLP (thymic stromal lymphopoietin) at levels observed in the skin of patients with atopic dermatitis, and the response is dependent on PLA2G4A. Furthermore, this pathway is used to sense Staphylococcus aureus by promoting Toll-like receptor-dependent CD1a-reactive T cell responses to endogenous ligands. These findings define a previously unrecognized role for ILC2 in lipid surveillance and identify shared pathways of CD1a- and PLA2G4A-dependent ILC2 inflammation amenable to therapeutic intervention. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis.

    Directory of Open Access Journals (Sweden)

    Jean-François Marquis

    2011-06-01

    Full Text Available IRF8 (Interferon Regulatory Factor 8 plays an important role in defenses against intracellular pathogens, including several aspects of myeloid cells function. It is required for ontogeny and maturation of macrophages and dendritic cells, for activation of anti-microbial defenses, and for production of the Th1-polarizing cytokine interleukin-12 (IL-12 in response to interferon gamma (IFNγ and protection against infection with Mycobacterium tuberculosis. The transcriptional programs and cellular pathways that are regulated by IRF8 in response to IFNγ and that are important for defenses against M. tuberculosis are poorly understood. These were investigated by transcript profiling and chromatin immunoprecipitation on microarrays (ChIP-chip. Studies in primary macrophages identified 368 genes that are regulated by IRF8 in response to IFNγ/CpG and that behave as stably segregating expression signatures (eQTLs in F2 mice fixed for a wild-type or mutant allele at IRF8. A total of 319 IRF8 binding sites were identified on promoters genome-wide (ChIP-chip in macrophages treated with IFNγ/CpG, defining a functional G/AGAAnTGAAA motif. An analysis of the genes bearing a functional IRF8 binding site, and showing regulation by IFNγ/CpG in macrophages and/or in M. tuberculosis-infected lungs, revealed a striking enrichment for the pathways of antigen processing and presentation, including multiple structural and enzymatic components of the Class I and Class II MHC (major histocompatibility complex antigen presentation machinery. Also significantly enriched as IRF8 targets are the group of endomembrane- and phagosome-associated small GTPases of the IRG (immunity-related GTPases and GBP (guanylate binding proteins families. These results identify IRF8 as a key regulator of early response pathways in myeloid cells, including phagosome maturation, antigen processing, and antigen presentation by myeloid cells.

  11. Surface-Engineering of Red Blood Cells as Artificial Antigen Presenting Cells Promising for Cancer Immunotherapy.

    Science.gov (United States)

    Sun, Xiaoqi; Han, Xiao; Xu, Ligeng; Gao, Min; Xu, Jun; Yang, Rong; Liu, Zhuang

    2017-10-01

    The development of artificial antigen presenting cells (aAPCs) to mimic the functions of APCs such as dendritic cells (DCs) to stimulate T cells and induce antitumor immune responses has attracted substantial interests in cancer immunotherapy. In this work, a unique red blood cell (RBC)-based aAPC system is designed by engineering antigen peptide-loaded major histocompatibility complex-I and CD28 activation antibody on RBC surface, which are further tethered with interleukin-2 (IL2) as a proliferation and differentiation signal. Such RBC-based aAPC-IL2 (R-aAPC-IL2) can not only provide a flexible cell surface with appropriate biophysical parameters, but also mimic the cytokine paracrine delivery. Similar to the functions of matured DCs, the R-aAPC-IL2 cells can facilitate the proliferation of antigen-specific CD8+ T cells and increase the secretion of inflammatory cytokines. As a proof-of-concept, we treated splenocytes from C57 mice with R-aAPC-IL2 and discovered those splenocytes induced significant cancer-cell-specific lysis, implying that the R-aAPC-IL2 were able to re-educate T cells and induce adoptive immune response. This work thus presents a novel RBC-based aAPC system which can mimic the functions of antigen presenting DCs to activate T cells, promising for applications in adoptive T cell transfer or even in direct activation of circulating T cells for cancer immunotherapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes.

    Directory of Open Access Journals (Sweden)

    Carlos Alfaro

    Full Text Available Dendritic cells (DC are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs as a result of being co-attracted by interleukin-8 (IL-8, for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA protein, were able to cross-present the antigen to CD8 (OT-1 and CD4 (OT-2 TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2(d mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2(d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2(b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2(d are coinjected in the footpad of mice with autologous DC (H-2(b. In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC.

  13. Competition for antigen at the level of the antigen presenting cell is a major determinant of immunodominance during memory inflation in murine cytomegalovirus infection

    Science.gov (United States)

    Farrington, Lila A.; Smith, Tameka A.; Grey, Finn; Hill, Ann B.; Snyder, Christopher M.

    2013-01-01

    Cytomegalovirus’s (CMV’s) unique ability to drive the expansion of virus-specific T-cell populations over the course of a lifelong, persistent infection has generated interest in the virus as a potential vaccine strategy. When designing CMV-based vaccine vectors to direct immune responses against HIV or tumor antigens, it becomes important to understand how and why certain CMV-specific populations are chosen to inflate over time. To investigate this, we designed recombinant murine cytomegaloviruses (MCMV) encoding a SIINFEKL-eGFP fusion protein under the control of endogenous immediate early promoters. When mice were infected with these viruses, T cells specific for the SIINFEKL epitope inflated and profoundly dominated T cells specific for non-recombinant (i.e. MCMV-derived) antigens. Moreover, when the virus encoded SIINFEKL, T cells specific for non-recombinant antigens displayed a phenotype indicative of less frequent exposure to antigen. The immunodominance of SIINFEKL-specific T cells could not be altered by decreasing the number of SIINFEKL-specific cells available to respond, or by increasing the number of cells specific for endogenous MCMV antigens. In contrast, coinfection with viruses expressing and lacking SIINFEKL enabled co-inflation of T cells specific for both SIINFEKL and non-recombinant antigens. Because coinfection allows presentation of SIINFEKL and MCMV-derived antigens by different cells within the same animal, these data reveal that competition for, or availability of, antigen at the level of the antigen presenting cell determines the composition of the inflationary response to MCMV. SIINFEKL’s strong affinity for H2-Kb, and its early and abundant expression, may provide this epitope’s competitive advantage. PMID:23455500

  14. ImmunoChip study implicates antigen presentation to T cells in narcolepsy.

    Directory of Open Access Journals (Sweden)

    Juliette Faraco

    Full Text Available Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip. Three loci located outside the Human Leukocyte Antigen (HLA region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@, variants in two additional narcolepsy loci, Cathepsin H (CTSH and Tumor necrosis factor (ligand superfamily member 4 (TNFSF4, also called OX40L, attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.

  15. ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy

    Science.gov (United States)

    Kornum, Birgitte Rahbek; Kenny, Eimear E.; Trynka, Gosia; Einen, Mali; Rico, Tom J.; Lichtner, Peter; Dauvilliers, Yves; Arnulf, Isabelle; Lecendreux, Michel; Javidi, Sirous; Geisler, Peter; Mayer, Geert; Pizza, Fabio; Poli, Francesca; Plazzi, Giuseppe; Overeem, Sebastiaan; Lammers, Gert Jan; Kemlink, David; Sonka, Karel; Nevsimalova, Sona; Rouleau, Guy; Desautels, Alex; Montplaisir, Jacques; Frauscher, Birgit; Ehrmann, Laura; Högl, Birgit; Jennum, Poul; Bourgin, Patrice; Peraita-Adrados, Rosa; Iranzo, Alex; Bassetti, Claudio; Chen, Wei-Min; Concannon, Patrick; Thompson, Susan D.; Damotte, Vincent; Fontaine, Bertrand; Breban, Maxime; Gieger, Christian; Klopp, Norman; Deloukas, Panos; Wijmenga, Cisca; Hallmayer, Joachim; Onengut-Gumuscu, Suna; Rich, Stephen S.; Winkelmann, Juliane; Mignot, Emmanuel

    2013-01-01

    Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease. PMID:23459209

  16. Activation of nickel-specific CD4+ T lymphocytes in the absence of professional antigen-presenting cells.

    Science.gov (United States)

    Nasorri, Francesca; Sebastiani, Silvia; Mariani, Valentina; De Pità, Ornella; Puddu, Pietro; Girolomoni, Giampiero; Cavani, Andrea

    2002-01-01

    Allergic contact dermatitis ensues from exaggerated T cell responses to haptens. Dendritic cells are required for the initiation of hapten sensitization, but they may not be necessary for disease expression. Here we investigated the antigen-presenting cell requirement of nickel-specific CD4+ lymphocytes isolated from the blood of six allergic individuals. A significant proportion (42 out of 121; 35%) of the T cell clones proliferated in vitro to nickel also in the absence of professional antigen-presenting cells, suggesting a direct T-T hapten presentation. Antigen-presenting-cell-independent T cells showed a predominant T helper 1 phenotype. Nickel recognition by these T cells was major histocompatibility complex class II restricted, not influenced by CD28 triggering, independent from their state of activation, and did not require processing. The capacity of this T cell subset to be directly stimulated by nickel was not due to unique antigen-presenting properties, as both antigen-presenting-cell-dependent and antigen-presenting-cell-independent clones displayed comparable levels of HLA-DR, CD80, and CD86, and were equally capable of presenting nickel to antigen-presenting-cell-independent clones. In contrast, neither T cell types activated antigen-presenting-cell-dependent T lymphocytes. T-T presentation induced T cell receptor downregulation, CD25, CD80, CD86, and HLA-DR upregulation, and interferon-gamma release, although to a lesser extent compared to those induced by dendritic cell-T presentation. Following T-T presentation, the clones did not undergo unresponsiveness and maintained the capacity to respond to dendritic cells pulsed with antigen. In aggregate, our data suggest that antigen-presenting-cell-independent T cell activation can effectively amplify hapten- specific immune responses.

  17. Establishment of a yeast-based VLP platform for antigen presentation.

    Science.gov (United States)

    Wetzel, David; Rolf, Theresa; Suckow, Manfred; Kranz, Andreas; Barbian, Andreas; Chan, Jo-Anne; Leitsch, Joachim; Weniger, Michael; Jenzelewski, Volker; Kouskousis, Betty; Palmer, Catherine; Beeson, James G; Schembecker, Gerhard; Merz, Juliane; Piontek, Michael

    2018-02-05

    is highly efficient for antigen presentation and should be considered in the development of future vaccines.

  18. Human histocompatibility leukocyte antigen (HLA)-DM edits peptides presented by HLA-DR according to their ligand binding motifs

    NARCIS (Netherlands)

    van Ham, S. M.; Grüneberg, U.; Malcherek, G.; Bröker, I.; Melms, A.; Trowsdale, J.

    1996-01-01

    Human histocompatibility leukocyte antigen (HLA)-DM is a facilitator of antigen presentation via major histocompatibility complex (MHC) class II molecules. In the absence of HLA-DM, MHC class II molecules do not present natural peptides, but tend to remain associated with class II-associated

  19. Acute Pharmacologic Degradation of a Stable Antigen Enhances Its Direct Presentation on MHC Class I Molecules

    Science.gov (United States)

    Moser, Sarah C.; Voerman, Jane S. A.; Buckley, Dennis L.; Winter, Georg E.; Schliehe, Christopher

    2018-01-01

    Bifunctional degraders, also referred to as proteolysis-targeting chimeras (PROTACs), are a recently developed class of small molecules. They were designed to specifically target endogenous proteins for ubiquitin/proteasome-dependent degradation and to thereby interfere with pathological mechanisms of diseases, including cancer. In this study, we hypothesized that this process of acute pharmacologic protein degradation might increase the direct MHC class I presentation of degraded targets. By studying this question, we contribute to an ongoing discussion about the origin of peptides feeding the MHC class I presentation pathway. Two scenarios have been postulated: peptides can either be derived from homeostatic turnover of mature proteins and/or from short-lived defective ribosomal products (DRiPs), but currently, it is still unclear to what ratio and efficiency both pathways contribute to the overall MHC class I presentation. We therefore generated the intrinsically stable model antigen GFP-S8L-F12 that was susceptible to acute pharmacologic degradation via the previously described degradation tag (dTAG) system. Using different murine cell lines, we show here that the bifunctional molecule dTAG-7 induced rapid proteasome-dependent degradation of GFP-S8L-F12 and simultaneously increased its direct presentation on MHC class I molecules. Using the same model in a doxycycline-inducible setting, we could further show that stable, mature antigen was the major source of peptides presented, thereby excluding a dominant role of DRiPs in our system. This study is, to our knowledge, the first to investigate targeted pharmacologic protein degradation in the context of antigen presentation and our data point toward future applications by strategically combining therapies using bifunctional degraders with their stimulating effect on direct MHC class I presentation. PMID:29358938

  20. A DEFICIENCY OF ANTIGEN-PRESENTING CELLS IN PATIENTS WITH PULMONARY TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    L. V. Sakhno

    2009-01-01

    Full Text Available Abstract. The phenotype and functional properties of antigen-presenting cells (APCs: blood monocytes and in vitro generated macrophages/dendritic cells were investigated in patients with pulmonary tuberculosis (TB, n = 192 with different levels of proliferative response to M. tuberculosis antigens (PPD-responsive vs PPD - anergic patients, n = 118 and 74, respectively. A functional deficiency of all 3 types of APCs was revealed in patients with TB. I.e., a monocyte disfunction was displayed by low CD86 and HLA-DR expression, 2-fold increase of CD14+CD16+ subset, high level of FasL+ and IL-10+ cells, and enhanced IL-10 and IL-6 production upon LPS-stimulation. The in vitro generated macrophages from blood monocytes challenged with GM-CSF, were characterized by shifted Th1/Th2 balance (down-regulated production of IFNγ and IL-18 combined with up-regulation of IL-6 and IL-10, and reduced allostimulatory activity in mixed lymphocyte culture. The dendritic cells were characterized by decrease of mature, activated CD25+ cells, low level of IFNγ production in conjunction with enhanced capacity to produce IL - 10 and IL-6, and profound reduction of functional (allostimulatory activity. The APC disfunction of were most prominent in PPD-anergic patients. A possible role of APC disfunctions in disturbed antigen-specific T-cell response to M. tuberculosis is discussed.

  1. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity.

    Science.gov (United States)

    Alloatti, Andrés; Rookhuizen, Derek C; Joannas, Leonel; Carpier, Jean-Marie; Iborra, Salvador; Magalhaes, Joao G; Yatim, Nader; Kozik, Patrycja; Sancho, David; Albert, Matthew L; Amigorena, Sebastian

    2017-08-07

    CD8 + T cells mediate antigen-specific immune responses that can induce rejection of solid tumors. In this process, dendritic cells (DCs) are thought to take up tumor antigens, which are processed into peptides and loaded onto MHC-I molecules, a process called "cross-presentation." Neither the actual contribution of cross-presentation to antitumor immune responses nor the intracellular pathways involved in vivo are clearly established because of the lack of experimental tools to manipulate this process. To develop such tools, we generated mice bearing a conditional DC-specific mutation in the sec22b gene, a critical regulator of endoplasmic reticulum-phagosome traffic required for cross-presentation. DCs from these mice show impaired cross-presentation ex vivo and defective cross-priming of CD8 + T cell responses in vivo. These mice are also defective for antitumor immune responses and are resistant to treatment with anti-PD-1. We conclude that Sec22b-dependent cross-presentation in DCs is required to initiate CD8 + T cell responses to dead cells and to induce effective antitumor immune responses during anti-PD-1 treatment in mice. © 2017 Alloatti et al.

  3. Effect of cold nerve allograft preservation on antigen presentation and rejection

    Science.gov (United States)

    Ray, Wilson Z.; Kale, Santosh S.; Kasukurthi, Rahul; Papp, Esther M.; Johnson, Philip J.; Santosa, Katherine B.; Yan, Ying; Hunter, Daniel A.; Mackinnon, Susan E.; Tung, Thomas H.

    2010-01-01

    Object Nerve allotransplantation provides a temporary scaffold for host nerve regeneration and allows for the reconstruction of significant segmental nerve injuries. The need for systemic the current clinical utilization of nerve allografts, although this need is reduced by the practice of cold nerve allograft preservation. Activation of T cells in response to alloantigen presentation occurs in the context of donor antigen presenting cells (direct pathway) or host antigen-presenting cells (indirect pathway). The relative role of each pathway in eliciting an alloimmune response and its potential for rejection of the nerve allograft model has not previously been investigated. The objective of this investigation was to study the effect of progressive periods of cold nerve allograft preservation on antigen presentation and the alloimmune response. Methods The authors used wild type C57Bl/6 (B6), BALB/c, and major histocompatibility Class II–deficient (MHC−/−) C57Bl/6 mice as both nerve allograft recipients and donors. A nonvascularized nerve allograft was used to reconstruct a 1-cm sciatic nerve gap. Progressive cold preservation of donor nerve allografts was used. Quantitative assessment was made after 3 weeks using nerve histomorphometry. Results The donor-recipient combination lacking a functional direct pathway (BALB/c host with MHC−/− graft) rejected nerve allografts as vigorously as wild-type animals. Without an intact indirect pathway (MHC−/− host with BALB/c graft), axonal regeneration was improved (p < 0.052). One week of cold allograft preservation did not improve regeneration to any significant degree in any of the donor-recipient preservation did improve regeneration significantly (p < 0.05) for all combinations compared with wild-type animals without pretreatment. However, only in the presence of an intact indirect pathway (no direct pathway) did 4 weeks of cold preservation improve regeneration significantly compared with 1 week and no

  4. A sub-population of circulating porcine gammadelta T cells can act as professional antigen presenting cells.

    Science.gov (United States)

    Takamatsu, H-H; Denyer, M S; Wileman, T E

    2002-09-10

    A sub-population of circulating porcine gammadelta T cells express cell surface antigens associated with antigen presenting cells (APCs), and are able to take up soluble antigen very effectively. Functional antigen presentation by gammadelta T cells to memory helper T cells was studied by inbred pig lymphocytes immunised with ovalbumin (OVA). After removing all conventional APCs from the peripheral blood of immunised pigs, the remaining lymphocytes still proliferated when stimulated with OVA. When gammadelta T cells were further depleted, OVA specific proliferation was abolished, but reconstitution with gammadelta T cells restored proliferation. The proliferation was blocked by monoclonal antibodies (mAb) against MHC class II or CD4, and by pre-treatment of gammadelta T cells with chloroquine. These results indicate that a sub-population of circulating porcine gammadelta T cells act as APCs and present antigen via MHC class II.

  5. Papaya ringspot virus coat protein gene for antigen presentation Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Chatchen, S.; Juříček, Miloslav; Rueda, P.; Kertbundit, Sunee

    2006-01-01

    Roč. 39, č. 1 (2006), s. 16-21 ISSN 1225-8687 Grant - others:Thai Research Fund(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : antigen presentation * canine parvo virus * epitope * papaya ringspot virus Subject RIV: EF - Botanics Impact factor: 1.465, year: 2006 http://www.jbmb.or.kr/view_article.php3?cont=jbmb&kid=174&mid=3& pid =3

  6. MHC I presentation of Toxoplasma gondii immunodominant antigen does not require Sec22b and is regulated by antigen orientation at the vacuole membrane.

    Science.gov (United States)

    Buaillon, Célia; Guerrero, Nestor A; Cebrian, Ignacio; Blanié, Sophie; Lopez, Jodie; Bassot, Emilie; Vasseur, Virginie; Santi-Rocca, Julien; Blanchard, Nicolas

    2017-07-01

    The intracellular Toxoplasma gondii parasite replicates within a parasitophorous vacuole (PV). T. gondii secretes proteins that remain soluble in the PV space, are inserted into PV membranes or are exported beyond the PV boundary. In addition to supporting T. gondii growth, these proteins can be processed and presented by MHC I for CD8 + T-cell recognition. Yet it is unclear whether membrane binding influences the processing pathways employed and if topology of membrane antigens impacts their MHC I presentation. Here we report that the MHC I pathways of soluble and membrane-bound antigens differ in their requirement for host ER recruitment. In contrast to the soluble SAG1-OVA model antigen, we find that presentation of the membrane-bound GRA6 is independent from the SNARE Sec22b, a key molecule for transfer of host endoplasmic reticulum components onto the PV. Using parasites modified to secrete a transmembrane antigen with opposite orientations, we further show that MHC I presentation is highly favored when the C-terminal epitope is exposed to the host cell cytosol, which corresponds to GRA6 natural orientation. Our data suggest that the biochemical properties of antigens released by intracellular pathogens critically guide their processing pathway and are valuable parameters to consider for vaccination strategies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    Science.gov (United States)

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  8. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus

    Directory of Open Access Journals (Sweden)

    Farrell Regina M

    2004-09-01

    Full Text Available Abstract Background Human infections with Sin Nombre virus (SNV and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS, a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. Results To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC from deer mouse bone marrow using commercially-available house mouse (Mus musculus granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. Conclusions The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases.

  9. Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product.

    Science.gov (United States)

    Gilbert, M J; Riddell, S R; Plachter, B; Greenberg, P D

    1996-10-24

    Recognition of virus-infected cells by CD8+ cytotoxic T lymphocytes requires that the viral proteins be processed into peptides, the derived peptides transported into the endoplasmic reticulum and inserted into the binding groove of a major histocompatibility complex class I molecule, and the antigenic complex exported to the cell surface. However, viral pathogens can disrupt this process and interfere with immune recognition. These mechanisms may be vital to large viruses such as human cytomegalovirus (CMV), which causes persistent infection despite producing over 200 potentially antigenic proteins during the sequential immediate-early, early and late phases of viral gene expression. Products of CMV early-phase gene expression can globally block class I presentation and prevent recognition of infected cells by cytotoxic T lymphocytes, but an essential viral transcription factor, the 72K principal immediate-early protein, is abundantly expressed before this blockade. However, only a few host CD8+ cytotoxic T lymphocytes specific for immediate-early protein are present in seropositive individuals, and these lyse CMV-infected cells poorly. Here we demonstrate selective abrogation of immediate-early peptide presentation by a CMV matrix protein with associated kinase activity and suggest that modification of a viral protein can result in limiting access to the processing machinery and evasion of cytotoxic-T-cell recognition.

  10. Antigen presenting cells costimulatory signaling during pre-implantation pregnancy 

    Directory of Open Access Journals (Sweden)

    Anna Sławek

    2012-09-01

    Full Text Available  Success of pregnancy depends on many factors. Three phenomena inducing immune tolerance against semi-allogeneic conceptus may play a crucial role in the pre-implantation period of pregnancy: influence of sex hormones in sex cycle, presence of oocyte or embryo and the presence of semen in the female reproductive tract. On the other hand dendritic cells are the most effective antigen-presenting cells in regulation of immune phenomena and also are considered as potent participants in inducing immune tolerance in the pregnancy. They communicate with T cells in cell contact-dependent manner or via cytokines. During cell-cell contacts, costimulatory molecules play a key role and their expression is often dependent on cytokines milieu. Both costimulatory molecules and cytokines influence generation of T regulatory cells. Interactions of these molecules are closely related. In this paper we would like to pay attention to the importance of antigen presenting cells costimulatory potency in immune regulation during a pre-implantation period of pregnancy.

  11. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus

    2014-01-01

    microsomal triglyceride transfer protein (MTP), which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen...... presenting cells (APCs), which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis....

  12. P2X7 receptor activation impairs exogenous MHC class I oligopeptides presentation in antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Alberto Baroja-Mazo

    Full Text Available Major histocompatibility complex class I (MHC I on antigen presenting cells (APCs is a potent molecule to activate CD8(+ T cells and initiate immunity. P2X7 receptors (P2X7Rs are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5'-triphosphate (ATP. P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8(+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8(+ T cell immunity.

  13. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation.

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.

  14. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  15. Engineering tolerance using biomaterials to target and control antigen presenting cells.

    Science.gov (United States)

    Tostanoski, Lisa H; Gosselin, Emily A; Jewell, Christopher M

    2016-05-01

    Autoimmune diseases occur when cells of the adaptive immune system incorrectly recognize and attack "self" tissues. Importantly, the proliferation and differentiation of these cells is triggered and controlled by interactions with antigen presenting cells (APCs), such as dendritic cells. Thus, modulating the signals transduced by APCs (e.g., cytokines, costimulatory surface proteins) has emerged as a promising strategy to promote tolerance for diseases such as multiple sclerosis, type 1 diabetes, and lupus. However, many approaches have been hindered by non-specific activity of immunosuppressive or immunoregulatory cues, following systemic administration of soluble factors via traditional injections routes (e.g., subcutaneous, intravenous). Biomaterials offer a unique opportunity to control the delivery of tolerogenic signals in vivo via properties such as controlled particle size, tunable release kinetics, and co-delivery of multiple classes of cargo. In this review, we highlight recent reports that exploit these properties of biomaterials to target APCs and promote tolerance via three strategies, i) passive or active targeting of particulate carriers to APCs, ii) biomaterial-mediated control over antigen localization and processing, and iii) targeted delivery of encapsulated or adsorbed immunomodulatory signals. These reports represent exciting advances toward the goal of more effective therapies for autoimmune diseases, without the broad suppressive effects associated with current clinically-approved therapies.

  16. A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge

    Science.gov (United States)

    Deliyannis, Georgia; Boyle, Jefferey S.; Brady, Jamie L.; Brown, Lorena E.; Lew, Andrew M.

    2000-06-01

    Improving the immunological potency, particularly the Ab response, is a serious hurdle for the protective efficacy and hence broad application of DNA vaccines. We examined the immunogenicity and protective efficacy of a hemagglutinin-based influenza DNA vaccine that was targeted to antigen-presenting cells (APCs) by fusion to CTLA4. The targeted vaccine was shown to induce an accelerated and increased Ab response (as compared with those receiving the nontargeted control) that was predominated by IgG1 and recognized conformationally dependent viral epitopes. Moreover, mice receiving the APC-targeted DNA vaccine had significantly reduced viral titers (100-fold) after a nonlethal virus challenge. The increased protective efficacy was most likely because of increased Ab responses, as cytotoxic T lymphocyte responses were not enhanced. Targeting was demonstrated by direct binding studies of CTLA4 fusion proteins to the cognate ligand (B7; expressed on APCs in vivo). In addition, a targeted protein was detected at 4-fold higher levels in draining lymph nodes within 2-24 h of administration. Therefore, this study demonstrates that targeting DNA-encoded antigen to APCs results in enhanced immunity and strongly suggests that this approach may be useful in improving the protective efficacy of DNA vaccines.

  17. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells.

    Science.gov (United States)

    Sunshine, Joel C; Perica, Karlo; Schneck, Jonathan P; Green, Jordan J

    2014-01-01

    Previous work developing particle-based acellular, artificial antigen presenting cells (aAPCs) has focused exclusively on spherical platforms. To explore the role of shape, we generated ellipsoidal PLGA microparticles with varying aspect ratios (ARs) and synthesized aAPCs from them. The ellipsoidal biomimetic aAPCs with high-AR showed significantly enhanced in vitro and in vivo activity above spherical aAPCs with particle volume and antigen content held constant. Confocal imaging indicates that CD8+ T cells preferentially migrate to and are activated by interaction with the long axis of the aAPC. Importantly, enhanced activity of high-AR aAPCs was seen in a mouse melanoma model, with high-AR aAPCs improving melanoma survival compared to non-cognate aAPCs (p = 0.004) and cognate spherical aAPCs (p = 0.05). These findings indicate that particle geometry is a critical design criterion in the generation of aAPCs, and may offer insight into the essential role of geometry in the interaction between CD8+ T cells and biological APCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. IDO, PTEN-expressing Tregs and control of antigen-presentation in the murine tumor microenvironment.

    Science.gov (United States)

    Munn, David H; Sharma, Madhav D; Johnson, Theodore S; Rodriguez, Paulo

    2017-08-01

    The tumor microenvironment is profoundly immunosuppressive. This creates a major barrier for attempts to combine immunotherapy with conventional chemotherapy or radiation, because the tumor antigens released by these cytotoxic agents are not cross-presented in an immunogenic fashion. In this Focused Research Review, we focus on mouse preclinical studies exploring the role of immunosuppressive Tregs expressing the PTEN lipid phosphatase, and the links between PTEN+ Tregs and the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO). IDO has received attention because it can be expressed by a variety of human tumor types in vivo, but IDO can also be induced in host immune cells of both humans and mice in response to inflammation, infection or dying (apoptotic) cells. Mechanistically, IDO and PTEN+ Tregs are closely connected, with IDO causing activation of the PTEN pathway in Tregs. Genetic ablation or pharmacologic inhibition of PTEN in mouse Tregs destabilizes their suppressive phenotype, and this prevents transplantable and autochthonous tumors from creating their normal immunosuppressive microenvironment. Genetic ablation of either IDO or PTEN+ Tregs in mice results in a fundamental defect in the ability to maintain tolerance to antigens associated with apoptotic cells, including dying tumor cells. Consistent with this, pharmacologic inhibitors of either pathway show synergy when combined with cytotoxic agents such as chemotherapy or radiation. Thus, we propose that IDO and PTEN+ Tregs represent closely linked checkpoints that can influence the choice between immune activation versus tolerance to dying tumor cells.

  19. Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future

    International Nuclear Information System (INIS)

    Ilinskaya, Anna N.; Dobrovolskaia, Marina A.

    2016-01-01

    Nanoparticle immunogenicity and antigenicity have been under investigation for many years. During the past decade, significant progress has been made in understanding what makes a nanoparticle immunogenic, how immune cells respond to nanoparticles, what consequences of nanoparticle-specific antibody formation exist and how they challenge the application of nanoparticles for drug delivery. Moreover, it has been recognized that accidental contamination of therapeutic protein formulations with nanosized particulate materials may contribute to the immunogenicity of this type of biotechnology products. While the immunological properties of engineered nanomaterials and their application as vaccine carriers and adjuvants have been given substantial consideration in the current literature, little attention has been paid to nanoparticle immuno- and antigenicity. To fill in this gap, we herein provide an overview of this subject to highlight the current state of the field, review past and present research, and discuss future research directions. - Highlights: • Most engineered nanomaterials are not immunogenic per se. • Generation of nanoparticle-specific antibody can be T-cell dependent or independent. • Antibodies can be generated to particle core, terminal groups or surface coatings. • Engineered and accidental nanomaterials have distinct contribution to immunogenicity. • Tunable physicochemical properties make each nanoparticle unique.

  20. Immunology by numbers: quantitation of antigen presentation completes the quantitative milieu of systems immunology!

    Science.gov (United States)

    Purcell, Anthony W; Croft, Nathan P; Tscharke, David C

    2016-06-01

    We review approaches to quantitate antigen presentation using a variety of biological and biochemical readouts and highlight the emerging role of mass spectrometry (MS) in defining and quantifying MHC-bound peptides presented at the cell surface. The combination of high mass accuracy in the determination of the molecular weight of the intact peptide of interest and its signature pattern of fragmentation during tandem MS provide an unambiguous and definitive identification. This is in contrast to the potential receptor cross-reactivity towards closely related peptides and variable dose responsiveness seen in biological readouts. In addition, we gaze into the not too distant future where big data approaches in MS can be accommodated to quantify whole immunopeptidomes both in vitro and in vivo. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  2. Sec61 blockade by mycolactone inhibits antigen cross-presentation independently of endosome-to-cytosol export.

    Science.gov (United States)

    Grotzke, Jeff E; Kozik, Patrycja; Morel, Jean-David; Impens, Francis; Pietrosemoli, Natalia; Cresswell, Peter; Amigorena, Sebastian; Demangel, Caroline

    2017-07-18

    Although antigen cross-presentation in dendritic cells (DCs) is critical to the initiation of most cytotoxic immune responses, the intracellular mechanisms and traffic pathways involved are still unclear. One of the most critical steps in this process, the export of internalized antigen to the cytosol, has been suggested to be mediated by Sec61. Sec61 is the channel that translocates signal peptide-bearing nascent polypeptides into the endoplasmic reticulum (ER), and it was also proposed to mediate protein retrotranslocation during ER-associated degradation (a process called ERAD). Here, we used a newly identified Sec61 blocker, mycolactone, to analyze Sec61's contribution to antigen cross-presentation, ERAD, and transport of internalized antigens into the cytosol. As shown previously in other cell types, mycolactone prevented protein import into the ER of DCs. Mycolactone-mediated Sec61 blockade also potently suppressed both antigen cross-presentation and direct presentation of synthetic peptides to CD8 + T cells. In contrast, it did not affect protein export from the ER lumen or from endosomes into the cytosol, suggesting that the inhibition of cross-presentation was not related to either of these trafficking pathways. Proteomic profiling of mycolactone-exposed DCs showed that expression of mediators of antigen presentation, including MHC class I and β2 microglobulin, were highly susceptible to mycolactone treatment, indicating that Sec61 blockade affects antigen cross-presentation indirectly. Together, our data suggest that the defective translocation and subsequent degradation of Sec61 substrates is the cause of altered antigen cross-presentation in Sec61-blocked DCs.

  3. EpsinR, a target for pyrenocine B, role in endogenous MHC-II-restricted antigen presentation.

    Science.gov (United States)

    Shishido, Tatsuya; Hachisuka, Masami; Ryuzaki, Kai; Miura, Yuko; Tanabe, Atsushi; Tamura, Yasuaki; Kusayanagi, Tomoe; Takeuchi, Toshifumi; Kamisuki, Shinji; Sugawara, Fumio; Sahara, Hiroeki

    2014-11-01

    While the presentation mechanism of antigenic peptides derived from exogenous proteins by MHC class II molecules is well understood, relatively little is known about the presentation mechanism of endogenous MHC class II-restricted antigens. We therefore screened a chemical library of 200 compounds derived from natural products to identify inhibitors of the presentation of endogenous MHC class II-restricted antigens. We found that pyrenocine B, a compound derived from the fungus Pyrenochaeta terrestris, inhibits presentation of endogenous MHC class II-restricted minor histocompatibility antigen IL-4 inducible gene 1 (IL4I1) by primary dendritic cells (DCs). Phage display screening and surface plasmon resonance (SPR) analysis were used to investigate the mechanism of suppressive action by pyrenocine B. EpsinR, a target molecule for pyrenocine B, mediates endosomal trafficking through binding of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Lentiviral-mediated short hairpin (sh) RNA downregulation of EpsinR expression in DCs resulted in a decrease in the responsiveness of CD4+ T cells. Our data thus suggest that EpsinR plays a role in antigen presentation, which provides insight into the mechanism of presentation pathway of endogenous MHC class II-restricted antigen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Expanded human blood-derived γδT cells display potent antigen-presentation functions

    Directory of Open Access Journals (Sweden)

    Mohd Wajid Ali Khan

    2014-07-01

    Full Text Available Cell-based immunotherapy strategies target tumors directly (via cytolytic effector cells or aim at mobilizing endogenous anti-tumor immunity. The latter approach includes dendritic cells (DC, most frequently in the form of in vitro cultured peripheral blood monocytes-derived DC. Human blood γδT cells are selective for a single class of non-peptide agonists (phosphoantigens and develop into potent antigen-presenting cells (APC, termed γδT-APC, within 1-3 days of in vitro culture. Availability of large numbers of γδT-APC would be advantageous for use as a novel cellular vaccine. We here report optimal γδT cell expansion (>107 cells/ml blood when peripheral blood mononuclear cells (PBMC from healthy individuals and melanoma patients were stimulated with zoledronate and then cultured for 14 days in the presence of IL-2 and IL-15, yielding γδT cell cultures of variable purity (77±21% and 56±26%, respectively. They resembled effector-memory αβT (TEM cells and retained full functionality as assessed by in vitro tumor cell killing as well as secretion of proinflammatory cytokines (IFNγ, TNFα and cell proliferation in response to stimulation with phosphoantigens. Importantly, day 14 γδT cells expressed numerous APC-related cell surface markers and, in agreement, displayed potent in vitro APC functions. Day 14 γδT cells from PBMC of patients with cancer were equally effective as their counterparts derived from blood of healthy individuals and triggered potent CD8+ αβT cell responses following processing and cross-presentation of simple (influenza M1 and complex (tuberculin purified protein derivative protein antigens. Of note, and in clear contrast to peripheral blood γδT cells, the ability of day 14 γδT cells to trigger antigen-specific αβT cell responses did not depend on re-stimulation. We conclude that day 14 γδT cell cultures provide a convenient source of autologous APC for use in immunotherapy of

  5. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    Science.gov (United States)

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  6. Characterization of antigen-presenting cells from the porcine respiratory system.

    Science.gov (United States)

    López-Robles, Guadalupe; Silva-Campa, Erika; Burgara-Estrella, Alexel; Hernández, Jesús

    2015-06-01

    Antigen-presenting cells (APCs) are strategically placed in all anatomic sites with high antigen exposure such as the respiratory system. The aim of this study was to evaluate phenotypic and functional properties of APCs from the lung (L-Cs), mediastinal lymph node (LN-Cs) and bronchoalveolar lavage cells (BAL-Cs). The APCs were first analyzed based on forward scatter and side scatter profiles and the selection of MHC-II(high)CD172a(+) cells (referred to as APCs); then the expression of CD1a, CD163, CD206, CD16 and CD11R3 was evaluated in the APCs. The results showed that CD1a, CD163 and CD206 were differentially expressed among L-Cs, LN-Cs and BAL-Cs, suggesting the phenotype MHC-II(high)CD172a(+)CD1a(low/-)CD163(low)CD206(-) for L-Cs and MHC-II(high)CD172a(+)CD1a(+)CD163(low/-)CD206(+) for LN-Cs. BAL-Cs were MHC-II(high)CD172a(+)CD1a(-)CD163(high)CD206(+/-). The functional characteristics of L-Cs and LN-Cs were different from those of BAL-Cs, confirming that L-Cs and LN-Cs resemble specialized APCs. In conclusion, we present the characterization of APCs from L-Cs, LN-Cs and BAL-Cs of the porcine respiratory system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens*

    Science.gov (United States)

    Alpízar, Adán; Marino, Fabio; Ramos-Fernández, Antonio; Lombardía, Manuel; Jeko, Anita; Pazos, Florencio

    2017-01-01

    As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I phospholigands is challenging as the molecular determinants of the presentation of such post-translationally modified peptides are not fully understood. Here, we employed a peptidomic workflow to identify 256 unique phosphorylated ligands associated with HLA-B*40, -B*27, -B*39, or -B*07. Remarkably, these phosphopeptides showed similar molecular features. Besides the specific anchor motifs imposed by the binding groove of each allotype, the predominance of phosphorylation at peptide position 4 (P4) became strikingly evident, as was the enrichment of basic residues at P1. To determine the structural basis of this observation, we carried out a series of peptide binding assays and solved the crystal structures of HLA-B*40 in complex with a phosphorylated ligand or its nonphosphorylated counterpart. Overall, our data provide a clear explanation to the common motif found in the phosphopeptidomes associated to different HLA-B molecules. The high prevalence of phosphorylation at P4 is dictated by the presence of the conserved residue Arg62 in the heavy chain, a structural feature shared by most HLA-B alleles. In contrast, the preference for basic residues at P1 is allotype-dependent and might be linked to the structure of the A pocket. This molecular understanding of the presentation of phosphopeptides by HLA-B molecules provides a base for the improved prediction and identification of phosphorylated neo-antigens, as potentially used for cancer immunotherapy. PMID:27920218

  8. Interaction of Cowpea Mosaic Virus (CPMV) Nanoparticles with Antigen Presenting Cells In Vitro and In Vivo

    Science.gov (United States)

    Rae, Chris S.; Manchester, Marianne

    2009-01-01

    Background Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. Methodology The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. Conclusions We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch. PMID:19956734

  9. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules.

    Science.gov (United States)

    Morita, Daisuke; Sugita, Masahiko

    2016-10-01

    Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine. © 2016 John Wiley & Sons Ltd.

  10. Antigen Expression on Blast Cells and Hematological Parameters at Presentation in Acute Lymphoblastic Leukemia Patients

    International Nuclear Information System (INIS)

    Naeem, S.; Bukhari, M. H.

    2015-01-01

    Objective: To analyze the expression of various antigens on the leukemic blasts and to determine the hematological parameters, in Acute Lymphoblastic Leukemia (ALL) patients at presentation. Study Design: Observational study. Place and Duration of Study: King Edward Medical University, Lahore and Hameed Latif Hospital, Lahore, from February 2013 to March 2014. Methodology: A total of 50 newly diagnosed and untreated patients of ALL were selected from Mayo Hospital and Hameed Latif Hospital. These patients included both genders and all age groups. Hemoglobin, total leukocyte count and platelet count were determined on hematology analyser-Sysmex-Kx-2I. Blast cell percentage was estimated on Giemsa stained blood smears. Immuno phenotyping was done on bone marrow samples by 5 colour flow cytometery on Beckman Counter Navious Flow cytometer. An acute leukemia panel of 23 antibodies was used. The data was entered and analyzed in SPSS version 22. Results: Of the 50 ALL patients, 36 (72 percentage) were B-ALL and 14 (28 percentage) T-ALL. There were 18 (36 percentage) children and 32 (64 percentage) adults. T-ALL included 22 percentage of the childhood and 31 percentage of the adult cases. Immuno phenotypic analysis showed that CD19, CD79a and CD20 were B-lineage specific markers whereas cCD3, CD3 and CD5 were T-lineage specific. CD10 was the most sensitive marker for B-ALL and CD7 was the most sensitive marker of T-ALL. TdT was expressed in 92 percentage B-ALL and 71 percentage T-ALL cases, CD34 in 58 percentage and 43 percentage cases and CD45 in 83 percentage and 100 percentage respectively. High leukocyte count (> 50 x 109/L) was present in 58 percentage cases. Hemoglobin was < 10 g/dl in 74 percentage patients and platelet count was below 20 x 109/Lin 12 percentage patients. Leukocyte count, hemoglobin, platelet count and blast cell percentage did not show a significant difference in the two ALL immuno types. Conclusion: The frequency of T-ALL is higher in childhood

  11. Direct Activation of Innate and Antigen-Presenting Functions of Microglia following Infection with Theiler's Virus

    Science.gov (United States)

    Olson, Julie K.; Girvin, Ann M.; Miller, Stephen D.

    2001-01-01

    Microglia are resident central nervous system (CNS) macrophages. Theiler's murine encephalomyelitis virus (TMEV) infection of SJL/J mice causes persistent infection of CNS microglia, leading to the development of a chronic-progressive CD4+ T-cell-mediated autoimmune demyelinating disease. We asked if TMEV infection of microglia activates their innate immune functions and/or activates their ability to serve as antigen-presenting cells for activation of T-cell responses to virus and endogenous myelin epitopes. The results indicate that microglia lines can be persistently infected with TMEV and that infection significantly upregulates the expression of cytokines involved in innate immunity (tumor necrosis factor alpha, interleukin-6 [IL-6], IL-18, and, most importantly, type I interferons) along with upregulation of major histocompatibility complex class II, IL-12, and various costimulatory molecules (B7-1, B7-2, CD40, and ICAM-1). Most significantly, TMEV-infected microglia were able to efficiently process and present both endogenous virus epitopes and exogenous myelin epitopes to inflammatory CD4+ Th1 cells. Thus, TMEV infection of microglia activates these cells to initiate an innate immune response which may lead to the activation of naive and memory virus- and myelin-specific adaptive immune responses within the CNS. PMID:11559811

  12. Human Leukocyte Antigen F Presents Peptides and Regulates Immunity through Interactions with NK Cell Receptors.

    Science.gov (United States)

    Dulberger, Charles L; McMurtrey, Curtis P; Hölzemer, Angelique; Neu, Karlynn E; Liu, Victor; Steinbach, Adriana M; Garcia-Beltran, Wilfredo F; Sulak, Michael; Jabri, Bana; Lynch, Vincent J; Altfeld, Marcus; Hildebrand, William H; Adams, Erin J

    2017-06-20

    Evidence is mounting that the major histocompatibility complex (MHC) molecule HLA-F (human leukocyte antigen F) regulates the immune system in pregnancy, infection, and autoimmunity by signaling through NK cell receptors (NKRs). We present structural, biochemical, and evolutionary analyses demonstrating that HLA-F presents peptides of unconventional length dictated by a newly arisen mutation (R62W) that has produced an open-ended groove accommodating particularly long peptides. Compared to empty HLA-F open conformers (OCs), HLA-F tetramers bound with human-derived peptides differentially stained leukocytes, suggesting peptide-dependent engagement. Our in vitro studies confirm that NKRs differentiate between peptide-bound and peptide-free HLA-F. The complex structure of peptide-loaded β 2 m-HLA-F bound to the inhibitory LIR1 revealed similarities to high-affinity recognition of the viral MHC-I mimic UL18 and a docking strategy that relies on contacts with HLA-F as well as β 2 m, thus precluding binding to HLA-F OCs. These findings provide a biochemical framework to understand how HLA-F could regulate immunity via interactions with NKRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; Mitchell, Hugh D.; Eisfeld-Fenney, Amie J.; Walters, Kevin B.; Nicora, Carrie D.; Purvine, Samuel O.; Casey, Cameron P.; Monroe, Matthew E.; Weitz, Karl K.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gralinski, Lisa; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Sims, Amy C.; Kawaoka, Yoshihiro; Baric, Ralph

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigen presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.

  14. Development of Antigen Presenting Cells for Adoptive Immunotherapy in Prostate Cancer

    National Research Council Canada - National Science Library

    Oelke, Mathias

    2006-01-01

    While adoptive immunotherapy holds promise as a treatment for cancer and infectious diseases, development has been impeded by the lack of reproducible methods for generating therapeutic numbers of antigen-specific CD8+ CTL...

  15. Dually Fluorescent Core-Shell Microgels for Ratiometric Imaging in Live Antigen-Presenting Cells

    Science.gov (United States)

    Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Meldrum, Deirdre R.

    2014-01-01

    Core-shell microgels containing sensors/dyes in a matrix were fabricated by two-stage free radical precipitation polymerization method for ratiometric sensing/imaging. The microgels composing of poly(N-isopropylacrylamide) (PNIPAm) shell exhibits a low critical solution temperature (LCST), underwent an entropically driven transition from a swollen state to a deswollen state, which exhibit a hydrodynamic radius of ∼450 nm at 25°C (in vitro) and ∼190 nm at 37°C (in vivo). The microgel’s ability of escaping from lysosome into cytosol makes the microgel be a potential candidate for cytosolic delivery of sensors/probes. Non-invasive imaging/sensing in Antigen-presenting cells (APCs) was feasible by monitoring the changes of fluorescence intensity ratios. Thus, these biocompatible microgels-based imaging/sensing agents may be expected to expand current molecular imaging/sensing techniques into methods applicable to studies in vivo, which could further drive APC-based treatments. PMID:24505422

  16. Dually fluorescent core-shell microgels for ratiometric imaging in live antigen-presenting cells.

    Directory of Open Access Journals (Sweden)

    Xianfeng Zhou

    Full Text Available Core-shell microgels containing sensors/dyes in a matrix were fabricated by two-stage free radical precipitation polymerization method for ratiometric sensing/imaging. The microgels composing of poly(N-isopropylacrylamide (PNIPAm shell exhibits a low critical solution temperature (LCST, underwent an entropically driven transition from a swollen state to a deswollen state, which exhibit a hydrodynamic radius of ∼ 450 nm at 25 °C (in vitro and ∼ 190 nm at 37 °C (in vivo. The microgel's ability of escaping from lysosome into cytosol makes the microgel be a potential candidate for cytosolic delivery of sensors/probes. Non-invasive imaging/sensing in Antigen-presenting cells (APCs was feasible by monitoring the changes of fluorescence intensity ratios. Thus, these biocompatible microgels-based imaging/sensing agents may be expected to expand current molecular imaging/sensing techniques into methods applicable to studies in vivo, which could further drive APC-based treatments.

  17. HIV-1 Trans Infection of CD4+ T Cells by Professional Antigen Presenting Cells

    Science.gov (United States)

    Rinaldo, Charles R.

    2013-01-01

    Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4+ T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection. PMID:24278768

  18. Improved transfection of spleen-derived antigen-presenting cells in culture using TATp-liposomes.

    Science.gov (United States)

    Pappalardo, Juan Sebastián; Quattrocchi, Valeria; Langellotti, Cecilia; Di Giacomo, Sebastián; Gnazzo, Victoria; Olivera, Valeria; Calamante, Gabriela; Zamorano, Patricia I; Levchenko, Tatyana S; Torchilin, Vladimir P

    2009-02-20

    Antigen presenting cells (APC) are among the most important cells of the immune system since they link the innate and the adaptative immune responses, directing the type of immune response to be elicited. To modulate the immune response in immune preventing or treating therapies, gene delivery into immunocompetent cells could be used. However, APC are very resistant to transfection. To increase the efficiency of APC transfection, we have used liposome-based lipoplexes additionally modified with cell-penetrating TAT peptide (TATp) for better intracellular delivery of a model plasmid encoding for the enhanced-green fluorescent protein (pEGFP). pEGFP-bearing lipoplexes made of a mixture of PC:Chol:DOTAP (60:30:10 molar ratio) with the addition of 2% mol of polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate (plain-L) or TATp-PEG-PE (TATp-L) were shown to effectively protect the incorporated DNA from degradation. Uptake assays of rhodamine-labeled lipoplexes and transfections with the EGFP reporter gene were performed with APC derived from the mouse spleen. TATp-L-based lipoplexes allowed for significantly enhanced both, the uptake and transfection in APC. Such a tool could be used for the APC transfection as a first step in immune therapy.

  19. Sustained accumulation of antigen-presenting cells after infection promotes local T-cell immunity.

    Science.gov (United States)

    Collins, Nicholas; Hochheiser, Katharina; Carbone, Francis R; Gebhardt, Thomas

    2017-11-01

    Antigen-presenting cells (APC), such as dendritic cells (DC) and macrophages, are critical for T-cell-mediated immunity. Although it is established that memory T cells accumulate and persist in peripheral tissues after the resolution of infection, whether this is also the case for APC remains unclear. Here, we report that CCR2-dependent cells infiltrate skin during acute infection with herpes simplex virus (HSV)-1 and subsequently give rise to localized populations of DCs and macrophages. These APC are found at elevated numbers at sites of resolved infection or inflammation compared with unaffected regions of skin. Importantly, this local accumulation of APC is sustained for prolonged periods of time and has important functional consequences, as it promotes interferon-γ responses by virus-specific CD4 + T cells upon localized challenge infection with HSV-1. Thus, our results highlight how infection history determines long-term changes in immune cell composition in skin and how different types of immune cells accumulate, persist and co-operate to provide optimal immunity at this critical barrier site.

  20. HMME-based PDT restores expression and function of transporter associated with antigen processing 1 (TAP1) and surface presentation of MHC class I antigen in human glioma.

    Science.gov (United States)

    Zhang, Shan-Yi; Li, Jun-Liang; Xu, Xin-Ke; Zheng, Mei-Guang; Wen, Cheng-Cai; Li, Fang-Cheng

    2011-11-01

    Numerous studies have established that photodynamic therapy (PDT) can trigger tumor-specific immunity and cancer cell immunogenicity, both of which play a critical role in the long-term control of oncogenesis; however, the underlying mechanisms are largely unexplained. Deficiency of the transporter associated with antigen processing 1 (TAP1) has been observed in a variety of tumors, and the question has been raised whether the restoration of TAP1 could facilitate the activation of antitumor immunity. To elucidate the mechanisms underlying PDT-induced immunopotentiation, we examined the hypothesis that upregulating TAP1 via PDT may contribute to enhancement of antitumor immunity and cancer cell immunogenicity. In this study, we investigated the effects of PDT on the expression and function of TAP1 in glioma cells. We found that HMME-based PDT restored TAP1 expression in a rapid and transient manner. Furthermore, the newly synthesized TAP1 protein was capable of potentiating the activity of transporting antigen peptides. As a result, restoration of the expression and function of TAP1 translated into augmenting the presentation of surface MHC class I molecules. Overall, our data indicate that PDT enables glioma cells to recover both the expression of functional TAP1 and the presentation of surface MHC class I antigens, which are processes that may enhance antitumor immunity after PDT. These findings may have implications for PDT and provide new insights into the mechanisms underlying PDT-induced immunopotentiation.

  1. A Toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population.

    Science.gov (United States)

    Wu, Chiao-Chieh; Liu, Shih-Jen; Chen, Hsin-Wei; Shen, Kuan-Yin; Leng, Chih-Hsiang

    2016-05-24

    The induction of long-lived effector CD8+ T cells is key to the development of efficient cancer vaccines. In this study, we demonstrated that a Toll-like receptor 2 (TLR2) agonist-fused antigen increased antigen presentation via TLR2 signaling and induced effector memory-like CD8+ T cells against cancer after immunization. The N-terminus of ovalbumin (OVA) was biologically fused with a bacterial lipid moiety TLR2 agonist to produce a recombinant lipidated ovalbumin (rlipo-OVA). We demonstrated that rlipo-OVA activated bone marrow-derived dendritic cells (BM-DCs) maturation and increased antigen presentation by major histocompatibility complex (MHC) class I via TLR2. After immunization, rlipo-OVA skewed the immune response towards T helper (Th) 1 and induced OVA-specific cytotoxic T lymphocyte (CTL) responses. Moreover, immunization with rlipo-OVA induced higher numbers of effector memory (CD44+CD62L-) CD8+ T cells compared with recombinant ovalbumin (rOVA) alone or rOVA mixed with the TLR2 agonist Pam3CSK4. Accordingly, the CD27+CD43+ effector memory CD8+ T cells expressed high levels of the long-lived CD127 marker. The administration of rlipo-OVA could inhibit tumor growth, but the anti-tumor effects were lost after the depletion of CD8 or CD127 cells in vivo. These findings suggested that the TLR2 agonist-fused antigen induced long-lived memory CD8+ T cells for efficient cancer therapy.

  2. Proteasomal targeting and minigene repetition improve cell-surface presentation of a transfected, modified melanoma tumour antigen

    DEFF Research Database (Denmark)

    Rasmussen, A B; Zocca, M-B; Bonefeld, C M

    2004-01-01

    on the density of specific major histocompatibility complex-peptide complexes on the surface of the antigen-presenting cell. In this study, we explored the cell-surface presentation of a substituted MART-1 peptide encoded by transfected minigenes. We investigated the potential of proteasomal targeting compared...

  3. A Novel Method Linking Antigen Presentation by Human Monocyte-Derived Macrophages to CD8(+) T Cell Polyfunctionality.

    NARCIS (Netherlands)

    Short, K.R.; Grant, E.J.; Vissers, M.; Reading, P.C.; Diavatopoulos, D.A.; Kedzierska, K.

    2013-01-01

    To understand the interactions between innate and adaptive immunity, and specifically how virally infected macrophages impact T cell function, novel assays examining the ability of macrophages to present antigen to CD8(+) T cells are needed. In the present study, we have developed a robust in vitro

  4. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Directory of Open Access Journals (Sweden)

    Jennifer L Gardell

    Full Text Available Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  5. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Science.gov (United States)

    Gardell, Jennifer L; Parker, David C

    2017-01-01

    Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L) is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  6. Receptor-mediated antigen delivery into macrophages. Complexing antigen to alpha 2-macroglobulin enhances presentation to T cells.

    Science.gov (United States)

    Chu, C T; Pizzo, S V

    1993-01-01

    Macrophages secrete alpha 2-macroglobulin (alpha 2M), a protein that may facilitate early Ag handling. alpha 2M is able to entrap and form covalent linkages with diverse proteins during a transient proteinase-activated state. The resulting complexes are rapidly endocytosed after binding to high affinity receptors. Such a system could be capable of efficiently delivering a multitude of proteins to macrophages. We have used T hybridoma clones that respond only to hen egg lysozyme, in a MHC-restricted manner, to probe the effect of complex formation on Ag uptake and processing by murine macrophages. Radiolabeled lysozyme was internalized more rapidly and to a greater extent when bound to alpha 2M than when unbound. Macrophages pulsed with lysozyme-alpha 2M-elastase complexes required 200 to 250 times less Ag than those pulsed with free lysozyme to achieve effective presentation to T cells. Adding equimolar amounts of alpha 2M-elastase complexes, or of alpha 2M-methylamine, to free lysozyme had no effect on basal lysozyme presentation. Receptor-recognized forms of alpha 2M, but not lysozyme or BSA, competed effectively for both uptake and presentation of lysozyme-alpha 2M-elastase complexes. These results indicate that proteinase-activated alpha 2M can enhance Ag processing by carrying Ag into macrophages through a receptor-mediated process.

  7. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku; Maeda, Nana; Emoto, Tetsuro; Shimizu, Makoto; Totsuka, Mamoru, E-mail: atotuka@mail.ecc.u-tokyo.ac.jp

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.

  8. A molecular basis for the presentation of phosphorylated peptides by HLA-B antigens

    NARCIS (Netherlands)

    Alpízar, Adán; Marino, Fabio; Ramos-Fernández, Antonio; Lombardía, Manuel; Jeko, Anita; Pazos, Florencio; Paradela, Alberto; Santiago, César; Heck, Albert J R; Marcilla, Miguel

    2017-01-01

    As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I

  9. Distribution patterns of mucosally applied particles and characterisation of the antigen presenting cells

    NARCIS (Netherlands)

    de Geus, Eveline D|info:eu-repo/dai/nl/304841161; Degen, Winfried G J; van Haarlem, Daphne A; Schrier, Carla; Broere, Femke|info:eu-repo/dai/nl/264075323; Vervelde, Lonneke|info:eu-repo/dai/nl/134923391

    2015-01-01

    Mucosal application is the most common route of vaccination to prevent outbreaks of infectious diseases like Newcastle disease virus (NDV). To gain more knowledge about distribution and uptake of a vaccine after mucosal vaccination, we studied the distribution pattern of antigens after different

  10. T-cell dysfunction in HIV infection: anergy due to defective antigen-presenting cell function?

    NARCIS (Netherlands)

    Meyaard, L.; Schuitemaker, H.; Miedema, F.

    1993-01-01

    Before CD4+ T cells are depleted, T cells in asymptomatic HIV-infected individuals are functionally abnormal. These T cells are programmed for death, are non-responsive and fail to produce interleukin-2 after antigenic stimulation. Our view is that these different T-cell abnormalities are explained

  11. IgE/FcεRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses

    Directory of Open Access Journals (Sweden)

    Barbara Platzer

    2015-03-01

    Full Text Available Epidemiologic studies discovered an inverse association between immunoglobulin E (IgE-mediated allergies and cancer, implying tumor-protective properties of IgE. However, the underlying immunologic mechanisms remain poorly understood. Antigen cross-presentation by dendritic cells (DCs is of key importance for anti-tumor immunity because it induces the generation of cytotoxic CD8+ T lymphocytes (CTLs with specificity for tumor antigens. We demonstrate that DCs use IgE and FcεRI, the high-affinity IgE receptor, for cross-presentation and priming of CTLs in response to free soluble antigen at low doses. Importantly, IgE/FcεRI-mediated cross-presentation is a distinct receptor-mediated pathway because it does not require MyD88 signals or IL-12 induction in DCs. Using passive immunization with tumor antigen-specific IgE and DC-based vaccination experiments, we demonstrate that IgE-mediated cross-presentation significantly improves anti-tumor immunity and induces memory responses in vivo. Our findings suggest a cellular mechanism for the tumor-protective features of IgE and expand the known physiological functions of this immunoglobulin.

  12. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07

    NARCIS (Netherlands)

    Marino, Fabio; Mommen, Geert P M; Jeko, Anita; Meiring, Hugo D; van Gaans-van den Brink, Jacqueline A M; Scheltema, Richard A; van Els, Cécile A C M; Heck, Albert J R

    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA

  13. Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein-Barr virus nuclear antigen 1.

    Science.gov (United States)

    Blake, N W; Moghaddam, A; Rao, P; Kaur, A; Glickman, R; Cho, Y G; Marchini, A; Haigh, T; Johnson, R P; Rickinson, A B; Wang, F

    1999-09-01

    Most humans and Old World nonhuman primates are infected for life with Epstein-Barr virus (EBV) or closely related gammaherpesviruses in the same lymphocryptovirus (LCV) subgroup. Several potential strategies for immune evasion and persistence have been proposed based on studies of EBV infection in humans, but it has been difficult to test their actual contribution experimentally. Interest has focused on the EBV nuclear antigen 1 (EBNA1) because of its essential role in the maintenance and replication of the episomal viral genome in latently infected cells and because EBNA1 endogenously expressed in these cells is protected from presentation to the major histocompatibility complex class-I restricted cytotoxic T-lymphocyte (CTL) response through the action of an internal glycine-alanine repeat (GAR). Given the high degree of biologic conservation among LCVs which infect humans and Old World primates, we hypothesized that strategies essential for viral persistence would be well conserved among viruses of this subgroup. We show that the rhesus LCV EBNA1 shares sequence homology with the EBV and baboon LCV EBNA1 and that the rhesus LCV EBNA1 is a functional homologue for EBV EBNA1-dependent plasmid maintenance and replication. Interestingly, all three LCVs possess a GAR domain, but the baboon and rhesus LCV EBNA1 GARs fail to inhibit antigen processing and presentation as determined by using three different in vitro CTL assays. These studies suggest that inhibition of antigen processing and presentation by the EBNA1 GAR may not be an essential mechanism for persistent infection by all LCV and that other mechanisms may be important for immune evasion during LCV infection.

  14. Macrophages present pinocytosed exogenous antigen via MHC class I whereas antigen ingested by receptor-mediated endocytosis is presented via MHC class II

    NARCIS (Netherlands)

    Peppelenbosch, M. P.; DeSmedt, M.; Pynaert, G.; van Deventer, S. J.; Grooten, J.

    2000-01-01

    Macrophages present exogenous Ag either via MHC class I or MHC class II molecules. We investigated whether the mode of hemagglutinin (HA) uptake influences the class of MHC molecule by which this Ag is presented. Normally, HA is ingested by receptor-mediated endocytosis, but this may be switched to

  15. Tumor Destruction and In Situ Delivery of Antigen Presenting Cells Promote Anti-Neoplastic Immune Responses: Implications for the Immunotherapy of Pancreatic Cancer

    OpenAIRE

    Manfredi AA; Rovere-Querini P

    2004-01-01

    Antigen presenting cells (APCs) activate helper and cytotoxic T cells specific for antigens expressed by tissue cells, including neoplastic cells. This event occurs after the antigen transfer from tissue cells to APC, and is referred to as "cross-presentation". The number and the state of activation of APC in the tumor control the outcome of cross-presentation, including the establishment of protective immune responses. Cell death favors cross-presentation. Cancer cells normally die, either s...

  16. Engineering biodegradable guanidyl-decorated PEG-PCL nanoparticles as robust exogenous activators of DCs and antigen cross-presentation.

    Science.gov (United States)

    Li, Pan; Song, Huijuan; Zhang, Hao; Yang, Pengxiang; Zhang, Chuangnian; Huang, Pingsheng; Kong, Deling; Wang, Weiwei

    2017-09-21

    Nanoparticles (NPs)-based adjuvants are attracting much attention in the development of vaccines. Previously, we reported a type of guanidyl-decorated polymeric NPs used as antigen delivery carriers for the first time. However, its un-degradability may restrict potential clinical translation. More importantly, the specific cellular pathway by which dendritic cells (DCs) endocytosed these NPs and the relationship among guanidyl with the antigen cross-presentation, cytokine secretion, and lymph node targeting still remain unclear. Here, we show NPs assembled by biodegradable methoxyl poly(ethylene glycol)-block-poly(ε-caprolactone)-graft-poly(2-(guanidyl) ethyl methacrylate) (mPEG-b-PCL-g-PGEM, PECG) copolymers can robustly activate DCs and promote their maturation; additionally antigen cross-presentation was improved both in vitro and in vivo. Significantly, our results also demonstrate the increase of surface guanidyl on nanoparticles modulates the depot effect and lymph node drainage of PECG NPs-based adjuvants, as well as immune responses, by regulating the secretion of cytokines including IFN-γ and TNF-α. Our study provides insights into the action of guanidyl-decorated nanoscale adjuvants and new adjuvants for vaccines containing protein antigens. We anticipate the strategy of guanidyl decoration to be a starting point for the development of more exciting immunoadjuvants.

  17. Bone marrow-derived thymic antigen-presenting cells determine self-recognition of Ia-restricted T lymphocytes

    International Nuclear Information System (INIS)

    Longo, D.L.; Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.

    1985-01-01

    The authors previously have demonstrated that in radiation-induced bone marrow chimeras, T-cell self-Ia restriction specificity appeared to correlate with the phenotype of the bone marrow-derived antigen-presenting (or dendritic) cell in the thymus during T-cell development. However, these correlations were necessarily indirect because of the difficulty in assaying thymic function directly by adult thymus transplant, which has in the past been uniformly unsuccessful. They now report success in obtaining functional T cells from nude mice grafted with adult thymuses reduced in size by treatment of the thymus donor with anti-thymocyte globulin and cortisone. When (B10 Scn X B10.D2)F1 nude mice (I-Ab,d) are given parental B10.D2 (I-Ad) thymus grafts subcutaneously, their T cells are restricted to antigen recognition in association with I-Ad gene products but not I-Ab gene products. Furthermore, thymuses from (B10 X B10.D2)F1 (I-Ab,d)----B10 (I-Ab) chimeras transplanted 6 months or longer after radiation (a time at which antigen-presenting cell function is of donor bone marrow phenotype) into (B10 X B10.D2)F1 nude mice generate T cells restricted to antigen recognition in association with both I-Ad and I-Ab gene products. Thymuses from totally allogeneic bone marrow chimeras appear to generate T cells of bone marrow donor and thymic host restriction specificity. Thus, when thymus donors are radiation-induced bone marrow chimeras, the T-cell I-region restriction of the nude mice recipients is determined at least in part by the phenotype of the bone marrow-derived thymic antigen presenting cells or dendritic cells in the chimeric thymus

  18. ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy

    DEFF Research Database (Denmark)

    Faraco, Juliette; Lin, Ling; Kornum, Birgitte Rahbek

    2013-01-01

    Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals...... with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell...

  19. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.; Morozov, Giora I.; Mage, Michael G.; Margulies, David H. (NIH); (Hebrew)

    2017-10-12

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.

  20. Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing

    Directory of Open Access Journals (Sweden)

    Heidi Hofer

    2017-06-01

    Full Text Available Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates.

  1. Correlation between expression of major histocompatibility complex class I and that of antigen presenting machineries in carcinoma cell lines of the pancreas, biliary tract and colon

    OpenAIRE

    Imanishi, Tatsuya; Kamigaki, Takashi; Nakamura, Tetsu; Hayashi, Shun; Yasuda, Takashi; Kawasaki, Kentaro; Takase, Shiro; Ajiki, Tetsuo; Kuroda, Yoshikazu

    2006-01-01

    To elicit a tumor immune response, tumor antigens represented by majorhistocompatibility (MHC) class I complex on the cell surface is indispensable. Someinvestigators demonstrated that many cancer cells reduce expression ofβ2-microglobulin, a transporter of antigen presenting (TAP) or low molecular protein(LMP), due to the deletion mutant or point mutation. We investigated gene expressionlevels of antigen presenting machineries in 13 cell lines of the pancreas, biliary tractand colon cancer b...

  2. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro

    Science.gov (United States)

    Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S

    2012-01-01

    AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167

  3. Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signalling.

    Science.gov (United States)

    Kistowska, Magdalena; Fenini, Gabriele; Jankovic, Dragana; Feldmeyer, Laurence; Kerl, Katrin; Bosshard, Philipp; Contassot, Emmanuel; French, Lars E

    2014-12-01

    Although being a normal part of the skin flora, yeasts of the genus Malassezia are associated with several common dermatologic conditions including pityriasis versicolour, seborrhoeic dermatitis (SD), folliculitis, atopic eczema/dermatitis (AE/AD) and dandruff. While Malassezia spp. are aetiological agents of pityriasis versicolour, a causal role of Malassezia spp. in AE/AD and SD remains to be established. Previous reports have shown that fungi such as Candida albicans and Aspergillus fumigatus are able to efficiently activate the NLRP3 inflammasome leading to robust secretion of the pro-inflammatory cytokine IL-1β. To date, innate immune responses to Malassezia spp. are not well characterized. Here, we show that different Malassezia species could induce NLRP3 inflammasome activation and subsequent IL-1β secretion in human antigen-presenting cells. In contrast, keratinocytes were not able to secrete IL-1β when exposed to Malassezia spp. Moreover, we demonstrate that IL-1β secretion in antigen-presenting cells was dependent on Syk-kinase signalling. Our results identify Malassezia spp. as potential strong inducers of pro-inflammatory responses when taken up by antigen-presenting cells and identify C-type lectin receptors and the NLRP3 inflammasome as crucial actors in this process. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Loss of Proliferation and Antigen Presentation Activity following Internalization of Polydispersed Carbon Nanotubes by Primary Lung Epithelial Cells

    Science.gov (United States)

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K.

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells. PMID:22384094

  5. Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus

    Science.gov (United States)

    Litherland, S.A.; Xie, X.T.; Hutson, A.D.; Wasserfall, C.; Whittaker, D.S.; She, J.-X.; Hofig, A.; Dennis, M.A.; Fuller, K.; Cook, R.; Schatz, D.; Moldawer, L.L.; Clare-Salzler, M.J.

    1999-01-01

    Prostaglandins (PGs) are lipid molecules that profoundly affect cellular processes including inflammation and immune response. Pathways contributing to PG output are highly regulated in antigen-presenting cells such as macrophages and monocytes, which produce large quantities of these molecules upon activation. In this report, we demonstrate aberrant constitutive expression of the normally inducible cyclooxygenase PG synthase 2 (PGS2/ COX-2) in nonactivated monocytes of humans with insulin-dependent diabetes mellitus (IDDM) and those with islet autoantibodies at increased risk of developing this disease. Constitutive PGS2 appears to characterize a high risk for diabetes as it correlates with and predicts a low first-phase insulin response in autoantibody-positive subjects. Abnormal PGS2 expression in at-risk subjects affected immune response in vitro, as the presence of a specific PGS2 inhibitor, NS398, significantly increased IL-2 receptor α-chain (CD25) expression on phytohemagglutinin-stimulated T cells. The effect of PGS2 on CD25 expression was most profound in subjects expressing both DR04 and DQβ0302 high-risk alleles, suggesting that this cyclooxygenase interacts with diabetes-associated MHC class II antigens to limit T-cell activation. These results indicate that constitutive PGS2 expression in monocytes defines an antigen-presenting cell defect affecting immune response, and that this expression is a novel cell-associated risk marker for IDDM. J. Clin. Invest. 104:515-523 (1999). PMID:10449443

  6. Effect of BSA Antigen Sensitization during the Acute Phase of Influenza A Viral Infection on CD11c+ Pulmonary Antigen Presenting Cells

    Directory of Open Access Journals (Sweden)

    Fumitaka Sato

    2009-01-01

    Conclusions: BSA antigen sensitization during the acute phase of influenza A viral infection enhanced IL-10 production from naive CD4+ T cell interaction with CD11c+ pulmonary APCs. The IL-10 secretion evoked Th2 responses in the lungs with downregulation of Th1 responses and was important for the eosinophil recruitment into the lungs after BSA antigen challenge.

  7. Prolonged antigen presentation by immune complex–binding dendritic cells programs the proliferative capacity of memory CD8 T cells

    Science.gov (United States)

    León, Beatriz; Ballesteros-Tato, André; Randall, Troy D.

    2014-01-01

    The commitment of naive CD8 T cells to effector or memory cell fates can occur after a single day of antigenic stimulation even though virus-derived antigens (Ags) are still presented by DCs long after acute infection is resolved. However, the effects of extended Ag presentation on CD8 T cells are undefined and the mechanisms that regulate prolonged Ag presentation are unknown. We showed that the sustained presentation of two different epitopes from influenza virus by DCs prevented the premature contraction of the primary virus-specific CD8 T cell response. Although prolonged Ag presentation did not alter the number of memory CD8 T cells that developed, it was essential for programming the capacity of these cells to proliferate, produce cytokines, and protect the host after secondary challenge. Importantly, prolonged Ag presentation by DCs was dependent on virus-specific, isotype-switched antibodies (Abs) that facilitated the capture and cross-presentation of viral Ags by FcγR-expressing DCs. Collectively, our results demonstrate that B cells and Abs can regulate the quality and functionality of a subset of antiviral CD8 T cell memory responses and do so by promoting sustained Ag presentation by DCs during the contraction phase of the primary T cell response. PMID:25002751

  8. Interferon-β Suppresses Murine Th1 Cell Function in the Absence of Antigen-Presenting Cells

    Science.gov (United States)

    Boivin, Nicolas; Baillargeon, Joanie; Doss, Prenitha Mercy Ignatius Arokia; Roy, Andrée-Pascale; Rangachari, Manu

    2015-01-01

    Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals. PMID:25885435

  9. p62 Plays a Specific Role in Interferon-γ-Induced Presentation of a Toxoplasma Vacuolar Antigen

    Directory of Open Access Journals (Sweden)

    Youngae Lee

    2015-10-01

    Full Text Available Also known as Sqstm1, p62 is a selective autophagy adaptor with a ubiquitin-binding domain. However, the role of p62 in the host defense against Toxoplasma gondii infection is unclear. Here, we show that interferon γ (IFN-γ stimulates ubiquitin and p62 recruitment to T. gondii parasitophorous vacuoles (PVs. Some essential autophagy-related proteins, but not all, are required for this recruitment. Regardless of normal IFN-γ-induced T. gondii clearance activity and ubiquitination, p62 deficiency in antigen-presenting cells (APCs and mice diminishes the robust IFN-γ-primed activation of CD8+ T cells that recognize the T. gondii-derived antigen secreted into PVs. Because the expression of Atg3 and Irgm1/m3 in APCs is essential for PV disruption, ubiquitin and p62 recruitment, and vacuolar-antigen-specific CD8+ T cell activation, IFN-γ-mediated ubiquitination and the subsequent recruitment of p62 to T. gondii are specifically required for the acquired immune response after PV disruption by IFN-γ-inducible GTPases.

  10. Trogocytosis of peptide–MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils

    Science.gov (United States)

    Miyake, Kensuke; Shiozawa, Nozomu; Nagao, Toshihisa; Yoshikawa, Soichiro; Yamanishi, Yoshinori; Karasuyama, Hajime

    2017-01-01

    Th2 immunity plays important roles in both protective and allergic responses. Nevertheless, the nature of antigen-presenting cells responsible for Th2 cell differentiation remains ill-defined compared with the nature of the cells responsible for Th1 and Th17 cell differentiation. Basophils have attracted attention as a producer of Th2-inducing cytokine IL-4, whereas their MHC class II (MHC-II) expression and function as antigen-presenting cells are matters of considerable controversy. Here we revisited the MHC-II expression on basophils and explored its functional relevance in Th2 cell differentiation. Basophils generated in vitro from bone marrow cells in culture with IL-3 plus GM-CSF displayed MHC-II on the cell surface, whereas those generated in culture with IL-3 alone did not. Of note, these MHC-II–expressing basophils showed little or no transcription of the corresponding MHC-II gene. The GM-CSF addition to culture expanded dendritic cells (DCs) other than basophils. Coculture of basophils and DCs revealed that basophils acquired peptide–MHC-II complexes from DCs via cell contact-dependent trogocytosis. The acquired complexes, together with CD86, enabled basophils to stimulate peptide-specific T cells, leading to their proliferation and IL-4 production, indicating that basophils can function as antigen-presenting cells for Th2 cell differentiation. Transfer of MHC-II from DCs to basophils was also detected in draining lymph nodes of mice with atopic dermatitis-like skin inflammation. Thus, the present study defined the mechanism by which basophils display MHC-II on the cell surface and appears to reconcile some discrepancies observed in previous studies. PMID:28096423

  11. Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils.

    Science.gov (United States)

    Miyake, Kensuke; Shiozawa, Nozomu; Nagao, Toshihisa; Yoshikawa, Soichiro; Yamanishi, Yoshinori; Karasuyama, Hajime

    2017-01-31

    Th2 immunity plays important roles in both protective and allergic responses. Nevertheless, the nature of antigen-presenting cells responsible for Th2 cell differentiation remains ill-defined compared with the nature of the cells responsible for Th1 and Th17 cell differentiation. Basophils have attracted attention as a producer of Th2-inducing cytokine IL-4, whereas their MHC class II (MHC-II) expression and function as antigen-presenting cells are matters of considerable controversy. Here we revisited the MHC-II expression on basophils and explored its functional relevance in Th2 cell differentiation. Basophils generated in vitro from bone marrow cells in culture with IL-3 plus GM-CSF displayed MHC-II on the cell surface, whereas those generated in culture with IL-3 alone did not. Of note, these MHC-II-expressing basophils showed little or no transcription of the corresponding MHC-II gene. The GM-CSF addition to culture expanded dendritic cells (DCs) other than basophils. Coculture of basophils and DCs revealed that basophils acquired peptide-MHC-II complexes from DCs via cell contact-dependent trogocytosis. The acquired complexes, together with CD86, enabled basophils to stimulate peptide-specific T cells, leading to their proliferation and IL-4 production, indicating that basophils can function as antigen-presenting cells for Th2 cell differentiation. Transfer of MHC-II from DCs to basophils was also detected in draining lymph nodes of mice with atopic dermatitis-like skin inflammation. Thus, the present study defined the mechanism by which basophils display MHC-II on the cell surface and appears to reconcile some discrepancies observed in previous studies.

  12. Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Patrizia Puddu

    Full Text Available Lactoferrin (LF, a key element in mammalian immune system, plays pivotal roles in host defence against infection and excessive inflammation. Its protective effects range from direct antimicrobial activities against a large panel of microbes, including bacteria, viruses, fungi and parasites, to antinflammatory and anticancer activities. In this study, we show that monocyte-derived dendritic cells (MD-DCs generated in the presence of bovine LF (bLF fail to undergo activation by up-modulating CD83, co-stimulatory and major histocompatibility complex molecules, and cytokine/chemokine secretion. Moreover, these cells are weak activators of T cell proliferation and retain antigen uptake activity. Consistent with an impaired maturation, bLF-MD-DC primed T lymphocytes exhibit a functional unresponsiveness characterized by reduced expression of CD154 and impaired expression of IFN-γ and IL-2. The observed imunosuppressive effects correlate with an increased expression of molecules with negative regulatory functions (i.e. immunoglobulin-like transcript 3 and programmed death ligand 1, indoleamine 2,3-dioxygenase, and suppressor of cytokine signaling-3. Interestingly, bLF-MD-DCs produce IL-6 and exhibit constitutive signal transducer and activator of transcription 3 activation. Conversely, bLF exposure of already differentiated MD-DCs completely fails to induce IL-6, and partially inhibits Toll-like receptor (TLR agonist-induced activation. Cell-specific differences in bLF internalization likely account for the distinct response elicited by bLF in monocytes versus immature DCs, providing a mechanistic base for its multiple effects. These results indicate that bLF exerts a potent anti-inflammatory activity by skewing monocyte differentiation into DCs with impaired capacity to undergo activation and to promote Th1 responses. Overall, these bLF-mediated effects may represent a strategy to block excessive DC activation upon TLR-induced inflammation, adding

  13. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Science.gov (United States)

    Schmitt, Deanna M; O'Dee, Dawn M; Horzempa, Joseph; Carlson, Paul E; Russo, Brian C; Bales, Jacqueline M; Brown, Matthew J; Nau, Gerard J

    2012-01-01

    Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  14. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Directory of Open Access Journals (Sweden)

    Deanna M Schmitt

    Full Text Available Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS, does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  15. Relative Efficacy of Uptake and Presentation of Mycobacterium bovis BCG Antigens by Type I Mouse Lung Epithelial Cells and Peritoneal Macrophages ▿

    Science.gov (United States)

    Kumari, Mandavi; Saxena, Rajiv K.

    2011-01-01

    Flow cytometric studies indicated that both peritoneal macrophages (PMs) and primary lung epithelial (PLE) cells isolated from mouse lungs could take up fluorescence-tagged Mycobacterium bovis BCG. BCG uptake in both cases was significantly inhibited by cytochalasin D, indicating active internalization of BCG by these cells. Confocal microscopy data further confirmed that BCG was internalized by PLE cells. BCG sonicate antigen (sBCG) had marked toxicity toward PMs but was relatively nontoxic to PLE cells. Accordingly, BCG sonicate antigen induced a significantly higher apoptotic and necrotic response in PMs compared to that in PLE cells. Both PMs and PLE cells exposed to BCG antigens and fixed thereafter could efficiently present antigens to purified BCG-sensitized T helper cells, as assessed by the release of interleukin-2 (IL-2) and gamma interferon (IFN-γ). If, however, PLE cells were fixed before exposure to BCG, antigen presentation was abrogated, indicating that the PLE cells may in some way process the BCG antigen. A comparison of efficacies of BCG-pulsed PLE cells and PMs to present antigen at various antigen-presenting cell (APC)/T cell ratios indicated that PMs had only marginally greater APC function than that of PLE cells. Staining with specific monoclonal antibodies indicated that the cultured PLE cells used for antigen presentation essentially comprised type I epithelial cells. Our results suggest that type I lung epithelial cells may present BCG antigens to sensitized T helper cells and that their performance as APCs is comparable with that of PMs. PMID:21646448

  16. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control.

    Science.gov (United States)

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation.

  17. The hemochromatosis protein HFE 20 years later: An emerging role in antigen presentation and in the immune system.

    Science.gov (United States)

    Reuben, Alexandre; Chung, Jacqueline W; Lapointe, Réjean; Santos, Manuela M

    2017-09-01

    Since its discovery, the hemochromatosis protein HFE has been primarily defined by its role in iron metabolism and homeostasis, and its involvement in the genetic disease termed hereditary hemochromatosis (HH). While HH patients are typically afflicted by dysregulated iron levels, many are also affected by several immune defects and increased incidence of autoimmune diseases that have thereby implicated HFE in the immune response. Growing evidence has supported an immunological role for HFE with recent studies describing HFE specifically as it relates to MHC I antigen presentation. Here, we present a comprehensive overview of the relationship between iron metabolism, HFE, and the immune system to better understand the origin and cause of immune defects in HH patients. We further describe the role of HFE in MHC I antigen presentation and its potential to impair autoimmune responses in homeostatic conditions, a mechanism which may be exploited by tumors to evade immune surveillance. Overall, this increased understanding of the role of HFE in the immune response sets the stage for better treatment and management of HH and other iron-related diseases, as well as of the immune defects related to this condition. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  18. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    Science.gov (United States)

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  19. IL-2/neuroantigen fusion proteins as antigen-specific tolerogens in experimental autoimmune encephalomyelitis (EAE): correlation of T cell-mediated antigen presentation and tolerance induction.

    Science.gov (United States)

    Mannie, Mark D; Clayson, Barbara A; Buskirk, Elizabeth J; DeVine, Jarret L; Hernandez, Jose J; Abbott, Derek J

    2007-03-01

    The purpose of this study was to assess whether the Ag-targeting activity of cytokine/neuroantigen (NAg) fusion proteins may be associated with mechanisms of tolerance induction. To assess this question, we expressed fusion proteins comprised of a N-terminal cytokine domain and a C-terminal NAg domain. The cytokine domain comprised either rat IL-2 or IL-4, and the NAg domain comprised the dominant encephalitogenic determinant of the guinea pig myelin basic protein. Subcutaneous administration of IL2NAg (IL-2/NAg fusion protein) into Lewis rats either before or after an encephalitogenic challenge resulted in an attenuated course of experimental autoimmune encephalomyelitis. In contrast, parallel treatment of rats with IL4NAg (IL-4/NAg fusion protein) or NAg lacked tolerogenic activity. In the presence of IL-2R(+) MHC class II(+) T cells, IL2NAg fusion proteins were at least 1,000 times more potent as an Ag than NAg alone. The tolerogenic activity of IL2NAg in vivo and the enhanced potency in vitro were both dependent upon covalent linkage of IL-2 and NAg. IL4NAg also exhibited enhanced antigenic potency. IL4NAg was approximately 100-fold more active than NAg alone in the presence of splenic APC. The enhanced potency of IL4NAg also required covalent linkage of cytokine and NAg and was blocked by soluble IL-4 or by a mAb specific for IL-4. Other control cytokine/NAg fusion proteins did not exhibit a similar enhancement of Ag potency compared with NAg alone. Thus, the IL2NAg and IL4NAg fusion proteins targeted NAg for enhanced presentation by particular subsets of APC. The activities of IL2NAg revealed a potential relationship between NAg targeting to activated T cells, T cell-mediated Ag presentation, and tolerance induction.

  20. Human plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen.

    NARCIS (Netherlands)

    Tel, J.; Lambeck, A.J.A.; Cruz, L.J.; Tacken, P.J.; Vries, I.J.M. de; Figdor, C.G.

    2010-01-01

    Plasmacytoid dendritic cells (pDCs) play a major role in shaping both innate and adaptive immune responses, mainly via their production of large amounts of type I IFNs. pDCs are considered to primarily present endogenous Ags and are thought not to participate in the uptake and presentation of Ags

  1. RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation

    Directory of Open Access Journals (Sweden)

    Daniel Enosi Tuipulotu

    2017-08-01

    Full Text Available Viruses inherently exploit normal cellular functions to promote replication and survival. One mechanism involves transcriptional control of the host, and knowledge of the genes modified and their molecular function can aid in understanding viral-host interactions. Norovirus pathogenesis, despite the recent advances in cell cultivation, remains largely uncharacterized. Several studies have utilized the related murine norovirus (MNV to identify innate response, antigen presentation, and cellular recognition components that are activated during infection. In this study, we have used next-generation sequencing to probe the transcriptomic changes of MNV-infected mouse macrophages. Our in-depth analysis has revealed that MNV is a potent stimulator of the innate response including genes involved in interferon and cytokine production pathways. We observed that genes involved in viral recognition, namely IFIH1, DDX58, and DHX58 were significantly upregulated with infection, whereas we observed significant downregulation of cytokine receptors (Il17rc, Il1rl1, Cxcr3, and Cxcr5 and TLR7. Furthermore, we identified that pathways involved in protein degradation (including genes Psmb3, Psmb4, Psmb5, Psmb9, and Psme2, antigen presentation, and lymphocyte activation are downregulated by MNV infection. Thus, our findings illustrate that MNV induces perturbations in the innate immune transcriptome, particularly in MHC maturation and viral recognition that can contribute to disease pathogenesis.

  2. Corruption of dendritic cell antigen presentation during acute GVHD leads to regulatory T-cell failure and chronic GVHD.

    Science.gov (United States)

    Leveque-El Mouttie, Lucie; Koyama, Motoko; Le Texier, Laetitia; Markey, Kate A; Cheong, Melody; Kuns, Rachel D; Lineburg, Katie E; Teal, Bianca E; Alexander, Kylie A; Clouston, Andrew D; Blazar, Bruce R; Hill, Geoffrey R; MacDonald, Kelli P A

    2016-08-11

    Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD. © 2016 by The American Society of Hematology.

  3. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets.

    Science.gov (United States)

    Chiang, Meng-Chieh; Tullett, Kirsteen M; Lee, Yoke Seng; Idris, Adi; Ding, Yitian; McDonald, Kylie J; Kassianos, Andrew; Leal Rojas, Ingrid M; Jeet, Varinder; Lahoud, Mireille H; Radford, Kristen J

    2016-02-01

    Cross-presentation is the mechanism by which exogenous Ag is processed for recognition by CD8(+) T cells. Murine CD8α(+) DCs are specialized at cross-presenting soluble and cellular Ag, but in humans this process is poorly characterized. In this study, we examined uptake and cross-presentation of soluble and cellular Ag by human blood CD141(+) DCs, the human equivalent of mouse CD8α(+) DCs, and compared them with human monocyte-derived DCs (MoDCs) and blood CD1c(+) DC subsets. MoDCs were superior in their capacity to internalize and cross-present soluble protein whereas CD141(+) DCs were more efficient at ingesting and cross-presenting cellular Ag. Whilst cross-presentation by CD1c(+) DCs and CD141(+) DCs was dependent on the proteasome, and hence cytosolic translocation, cross-presentation by MoDCs was not. Inhibition of endosomal acidification enhanced cross-presentation by CD1c(+) DCs and MoDCs but not by CD141(+) DCs. These data demonstrate that CD1c(+) DCs, CD141(+) DCs, and MoDCs are capable of cross-presentation; however, they do so via different mechanisms. Moreover, they demonstrate that human CD141(+) DCs, like their murine CD8α(+) DC counterparts, are specialized at cross-presenting cellular Ag, most likely mediated by an enhanced capacity to ingest cellular Ag combined with subtle changes in lysosomal pH during Ag processing and use of the cytosolic pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    Science.gov (United States)

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  5. Enhanced Class I Tumor Antigen Presentation via Cytosolic Delivery of Exosomal Cargos by Tumor-Cell-Derived Exosomes Displaying a pH-Sensitive Fusogenic Peptide.

    Science.gov (United States)

    Morishita, Masaki; Takahashi, Yuki; Nishikawa, Makiya; Ariizumi, Reiichi; Takakura, Yoshinobu

    2017-11-06

    Tumor-cell-derived exosomes contain endogenous tumor antigens and can be used as a potential cancer vaccine without requiring identification of the tumor-specific antigen. To elicit an effective antitumor effect, efficient tumor antigen presentation by MHC class I molecules on dendritic cells (DC) is desirable. Because DC endocytose exosomes, an endosomal escape mechanism is required for efficient MHC class I presentation of exosomal tumor antigens. In the present study, efficient cytosolic delivery of exosomal tumor antigens was performed using genetically engineered tumor-cell-derived exosomes and pH-sensitive fusogenic GALA peptide. Murine melanoma B16BL6 cells were transfected with a plasmid vector encoding a streptavidin (SAV; a protein that binds to biotin with high affinity)-lactadherin (LA; an exosome-tropic protein) fusion protein to obtain SAV-LA-modified exosomes (SAV-exo). SAV-exo was mixed with biotinylated GALA to obtain GALA-modified exosomes (GALA-exo). Fluorescent microscopic observation using fluorescent-labeled GALA showed that the exosomes were modified with GALA. GALA-exo exerted a membrane-lytic activity under acidic conditions and efficiently delivered exosomal cargos to the cytosol. Moreover, DC treated with GALA-exo showed enhanced tumor antigen presentation capacity by MHC class I molecules. Thus, genetically engineered GALA-exo are effective in controlling the intracellular traffic of tumor-cell-derived exosomes and for enhancing tumor antigen presentation capacity.

  6. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer.

    Science.gov (United States)

    Ramakrishnan, Rupal; Tyurin, Vladimir A; Tuyrin, Vladimir A; Veglia, Filippo; Condamine, Thomas; Amoscato, Andrew; Mohammadyani, Dariush; Johnson, Joseph J; Zhang, Lan Min; Klein-Seetharaman, Judith; Celis, Esteban; Kagan, Valerian E; Gabrilovich, Dmitry I

    2014-03-15

    Cross-presentation is one of the main features of dendritic cells (DCs), which is critically important for the development of spontaneous and therapy-inducible antitumor immune responses. Patients, at early stages of cancer, have normal presence of DCs. However, the difficulties in the development of antitumor responses in patients with low tumor burden raised the question of the mechanisms of DC dysfunction. In this study, we found that, in differentiated DCs, tumor-derived factors blocked the cross-presentation of exogenous Ags without inhibiting the Ag presentation of endogenous protein or peptides. This effect was caused by intracellular accumulation of different types of oxidized neutral lipids: triglycerides, cholesterol esters, and fatty acids. In contrast, the accumulation of nonoxidized lipids did not affect cross-presentation. Oxidized lipids blocked cross-presentation by reducing the expression of peptide-MHC class I complexes on the cell surface. Thus, this study suggests the novel role of oxidized lipids in the regulation of cross-presentation.

  7. Effects of virulent and attenuated transmissible gastroenteritis virus on the ability of porcine dendritic cells to sample and present antigen.

    Science.gov (United States)

    Zhao, Shanshan; Gao, Qi; Qin, Tao; Yin, Yinyan; Lin, Jian; Yu, Qinghua; Yang, Qian

    2014-06-25

    Virulent transmissible gastroenteritis virus (TGEV) results in an acute, severe pathology and high mortality in piglets, while attenuated TGEV only causes moderate clinical reactions. Dendritic cells (DCs), through uptake and presentation of antigens to T cells, initiate distinct immune responses to different infections. In this study, an attenuated TGEV (STC3) and a virulent TGEV (SHXB) were used to determine whether porcine DCs play an important role in pathogenetic differences between these two TGEVs. Our results showed that immature and mature monocyte-derived dendritic cells (Mo-DCs) were susceptible to infection with SHXB and STC3. However, only SHXB inhibited Mo-DCs to activate T-cell proliferation by down-regulating the expression of cell-surface markers and the secretion of cytokines in vitro. In addition, after 48 h of SHXB infection, there was the impairment in the ability of porcine intestinal DCs to sample the antigen, to migrate from the villi to the lamina propria and to activate T-cell proliferation in vivo. In contrast, these abilities of intestinal DCs were enhanced in STC3-infected piglets. In conclusion, our results show that SHXB significantly impaired the functions of Mo-DCs and intestinal DCs in vitro and in vivo, while STC3 had the opposite effect. These differences may underlie the pathogenesis of virulent and attenuated TGEV in piglets, and could help us to develop a better strategy to prevent virulent TGEV infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. MHC class II-derived peptides can bind to class II molecules, including self molecules, and prevent antigen presentation

    DEFF Research Database (Denmark)

    Rosloniec, E F; Vitez, L J; Buus, S

    1990-01-01

    the alpha k-3 peptide binds slightly less well. These combined data, suggesting that class II-derived peptides can bind to MHC class II molecules, including the autologous molecule from which they are derived, have important implications for the molecular basis of alloreactivity and autoreactivity. Further...... found in the first and third polymorphic regions (PMR) of the A alpha k chain (alpha k-1 and alpha k-3) were capable of inhibiting the presentation of three different HEL-derived peptide antigens to their appropriate T cells. In addition, the alpha k-1 peptide inhibited the presentation of the OVA(323......-339) immunodominant peptide to the I-Ad-restricted T cell hybridomas specific for it. Prepulsing experiments demonstrated that the PMR peptides were interacting with the APC and not with the T cell hybridomas. These observations were confirmed and extended by the demonstration that the alpha k-1 and alpha k-3...

  9. Suboptimal Antigen Presentation Contributes to Virulence of Mycobacterium tuberculosis In Vivo.

    Science.gov (United States)

    Grace, Patricia S; Ernst, Joel D

    2016-01-01

    Mycobacterium tuberculosis commonly causes persistent or chronic infection, despite the development of Ag-specific CD4 T cell responses. We hypothesized that M. tuberculosis evades elimination by CD4 T cell responses by manipulating MHC class II Ag presentation and CD4 T cell activation and tested this hypothesis by comparing activation of Ag85B-specific CD4 T cell responses to M. tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) Pasteur in vivo and in vitro. We found that, although M. tuberculosis persists in lungs of immunocompetent mice, M. bovis BCG is cleared, and clearance is T cell dependent. We further discovered that M. tuberculosis-infected macrophages and dendritic cells activate Ag85B-specific CD4 T cells less efficiently and less effectively than do BCG-infected cells, in vivo and in vitro, despite higher production and secretion of Ag85B by M. tuberculosis. During BCG infection, activation of Ag85B-specific CD4 T cells requires fewer infected dendritic cells and fewer Ag-producing bacteria than during M. tuberculosis infection. When dendritic cells containing equivalent numbers of M. tuberculosis or BCG were transferred to mice, BCG-infected cells activated proliferation of more Ag85B-specific CD4 T cells than did M. tuberculosis-infected cells. Differences in Ag85B-specific CD4 T cell activation were attributable to differential Ag presentation rather than differential expression of costimulatory or inhibitory molecules. These data indicate that suboptimal Ag presentation contributes to persistent infection and that limiting Ag presentation is a virulence property of M. tuberculosis. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Antigen-presenting dendritic cells as regulators of the growth of thyrocytes: a role of interleukin-1beta and interleukin-6

    NARCIS (Netherlands)

    P.J. Simons (Peter); F.G. Delemarre; H.A. Drexhage (Hemmo)

    1998-01-01

    textabstractAn accumulation of antigen-presenting dendritic cells (DC) in the thyroid gland, followed by thyroid autoimmune reactivity, occurs in normal Wistar rats during iodine deficiency, and spontaneously in diabetic-prone Biobreeding rats. This intrathyroidal DC

  11. A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation

    Directory of Open Access Journals (Sweden)

    S. Julia Wu

    2017-06-01

    Full Text Available Cross-presentation initiates immune responses against tumors and viral infections by presenting extracellular antigen on MHC I to activate CD8+ T cell-mediated cytotoxicity. In vitro studies in dendritic cells (DCs established SNARE protein SEC22B as a specific regulator of cross-presentation. However, the in vivo contribution of SEC22B to cross-presentation has not been tested. To address this, we generated DC-specific Sec22b knockout (CD11c-Cre Sec22bfl/fl mice. Contrary to the paradigm, SEC22B-deficient DCs efficiently cross-present both in vivo and in vitro. Although in vitro small hairpin RNA (shRNA-mediated Sec22b silencing in bone-marrow-derived dendritic cells (BMDCs reduced cross-presentation, treatment of SEC22B-deficient BMDCs with the same shRNA produced a similar defect, suggesting the Sec22b shRNA modulates cross-presentation through off-target effects. RNA sequencing of Sec22b shRNA-treated SEC22B-deficient BMDCs demonstrated several changes in the transcriptome. Our data demonstrate that contrary to the accepted model, SEC22B is not necessary for cross-presentation, cautioning against extrapolating phenotypes from knockdown studies alone.

  12. A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation.

    Science.gov (United States)

    Wu, S Julia; Niknafs, Yashar S; Kim, Stephanie H; Oravecz-Wilson, Katherine; Zajac, Cynthia; Toubai, Tomomi; Sun, Yaping; Prasad, Jayendra; Peltier, Daniel; Fujiwara, Hideaki; Hedig, Israel; Mathewson, Nathan D; Khoriaty, Rami; Ginsburg, David; Reddy, Pavan

    2017-06-27

    Cross-presentation initiates immune responses against tumors and viral infections by presenting extracellular antigen on MHC I to activate CD8 + T cell-mediated cytotoxicity. In vitro studies in dendritic cells (DCs) established SNARE protein SEC22B as a specific regulator of cross-presentation. However, the in vivo contribution of SEC22B to cross-presentation has not been tested. To address this, we generated DC-specific Sec22b knockout (CD11c-Cre Sec22b fl/fl ) mice. Contrary to the paradigm, SEC22B-deficient DCs efficiently cross-present both in vivo and in vitro. Although in vitro small hairpin RNA (shRNA)-mediated Sec22b silencing in bone-marrow-derived dendritic cells (BMDCs) reduced cross-presentation, treatment of SEC22B-deficient BMDCs with the same shRNA produced a similar defect, suggesting the Sec22b shRNA modulates cross-presentation through off-target effects. RNA sequencing of Sec22b shRNA-treated SEC22B-deficient BMDCs demonstrated several changes in the transcriptome. Our data demonstrate that contrary to the accepted model, SEC22B is not necessary for cross-presentation, cautioning against extrapolating phenotypes from knockdown studies alone. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Repopulated antigen presenting cells induced an imbalanced differentiation of the helper T cells in whole body gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Paik, Sang Kee [Chungnam National University, Taejon (Korea, Republic of)

    2004-07-01

    Therapeutic irradiation of cancer patients, although it may be protected by several antioxidant agents against free radicals, often induces chronic sequelae such as inflammation (allergic inflammation). This is a limiting factor for radiotherapy. Following radiotherapy, the inflammation or injury can occur in any organ with a high radiosensitivity such as the lung, bladder, kidney, liver, stomach and intestine. The mechanism by which ionizing radiation initiates inflammation is, however, poorly understood. In recent studies, it was suggested that a factor for irradiation-induced inflammation might be the over production of IL-4 that enhances fibroblast proliferation and collagen synthesis. During the early stages after irradiation, type 2 of the helper T cells might be the major source of IL-4, and later on there seems to be an activation of the other IL-4 producing cell types, e.q. macrophages or mast cells. This is interesting because inflammation is classically seen to be dominated by Th1 cells secreting IFN-{gamma}. In the previous study, we were interested in the enhancement of the IL-4 and the IgE production during the development of immune cells after {gamma}-irradiation. We were able to deduce that IL-4 production was increased because of the shifted differentiation of the naive Th cells by the repopulated antigen presenting cells after irradiation. The aim of the present study was to precisely define whether antigen-presenting cells (APCs) of whole body irradiation-treated mice could influence the shifted differentiation of the Th cells. This view can be demonstrated by confirming that the shifted functional status of the Th cells is induced by the altered function of the repopulated macrophages after whole body irradiation (WBI)

  14. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease.

    Science.gov (United States)

    Unanue, Emil R; Turk, Vito; Neefjes, Jacques

    2016-05-20

    MHC class II (MHC-II) molecules are critical in the control of many immune responses. They are also involved in most autoimmune diseases and other pathologies. Here, we describe the biology of MHC-II and MHC-II variations that affect immune responses. We discuss the classic cell biology of MHC-II and various perturbations. Proteolysis is a major process in the biology of MHC-II, and we describe the various components forming and controlling this endosomal proteolytic machinery. This process ultimately determines the MHC-II-presented peptidome, including cryptic peptides, modified peptides, and other peptides that are relevant in autoimmune responses. MHC-II also variable in expression, glycosylation, and turnover. We illustrate that MHC-II is variable not only in amino acids (polymorphic) but also in its biology, with consequences for both health and disease.

  15. Recognition of Salmonella by Dectin-1 induces presentation of peptide antigen to type B T cells.

    Science.gov (United States)

    Jackson, Nicola; Compton, Evan; Trowsdale, John; Kelly, Adrian P

    2014-04-01

    Type B T cells recognize peptide-MHC class II (pMHCII) isoforms that are structurally distinct from those recognized by conventional type A T cells. These alternative type B conformers result from peptide loading in the absence of HLA-DM. Type A conformers are more stable than type B pMHCII conformers but bind the same peptide in the same register. Here, we show that interaction of Salmonella Typhimurium with bone marrow derived dendritic cells (BMDCs) isolated from C3H/HeNCr1 mice results in enhanced presentation of peptide Ag to type B T cells. The effect could be mimicked by purified PAMPs, the most potent of which were curdlan and zymosan, β-(1,3)-glucan-containing polymers that are recognized by Dectin-1. Blocking of Dectin-1 with Ab and laminarin inhibited the induction of the type B T-cell response by BMDCs, confirming its role as a PRR for S. Typhimurium. Splenic DCs (sDCs) expressed Dectin-1 but were refractive to the induction of type B responses by S. Typhimurium and curdlan. Type B T cells have been shown to escape thymic tolerance and to transfer pathology in an autoimmune disease model. The induction of type B responses by gram-negative bacteria provides a mechanism by which autoreactive T cells may be produced during infection. © 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.

    Science.gov (United States)

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne; Grødeland, Gunnveig

    2017-12-01

    Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  17. Anergy-associated T cell antigen presentation. A mechanism of infectious tolerance in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Mannie, M D; Rendall, S K; Arnold, P Y; Nardella, J P; White, G A

    1996-08-01

    CD4+ T cells promote immune responses against foreign Ags while actively suppressing responses against self Ags. To address how CD4+ T cells ensure self-tolerance, we focused on two CD4+ T helper cells specific for myelin basic protein (MBP). GP2.E5/R1 T cells recognized rat MBP (RMBP) as a partial agonist and mediated mild experimental autoimmune encephalomyelitis (EAE), whereas R2 T cells recognized RMBP with full efficacy and mediated severe EAE. GP2.E5/R1 T cells were more susceptible to anergy induction than R2 T cells. Anergic GP2.E5/R1 T cells lacked proliferative reactivity, but expressed both I-A glycoproteins and high levels of radioresistant APC activity. During induction of anergy, these T cells acquired the ability to present MBP. In a separate subsequent culture without further addition of Ag, anergic GP2.E5/R1 T cells elicited full proliferative and IL-2 production responses by R2 T cells. Unlike activations induced via irradiated splenocytes, irradiated anergic T cells elicited anergy in R2 T cells in the form of a postactivational phase of nonresponsiveness. Anergic GP2.E5/R1 T cells not only transferred anergy to pathogenic R2 T cells in vitro, but these anergic T cells also transferred resistance to EAE in Lewis rats subsequently challenged with guinea pig MBP in CFA. Antagonistic signaling by autologous RMBP was more tolerogenic than that of guinea pig MBP in both in vitro and in vivo models of infectious anergy. We conclude that in the presence of tolerogenic mAb, antagonistic signaling by a self protein elicited the coordinate expression of anergy and T cell-mediated APC activity as a mechanism for the genesis and spread of infectious tolerance.

  18. Minimum information about tolerogenic antigen-presenting cells (MITAP: a first step towards reproducibility and standardisation of cellular therapies

    Directory of Open Access Journals (Sweden)

    Phillip Lord

    2016-08-01

    Full Text Available Cellular therapies with tolerogenic antigen-presenting cells (tolAPC show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP, providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application.

  19. Expression, Purification and Characterization of Ricin vectors used for exogenous antigen delivery into the MHC Class I presentation pathway

    Directory of Open Access Journals (Sweden)

    Smith Daniel C.

    2003-01-01

    Full Text Available Disarmed versions of the cytotoxin ricin can deliver fused peptides into target cells leading to MHC class I-restricted antigen presentation [Smith et al. J Immunol 2002; 169:99-107]. The ricin delivery vector must contain an attenuated catalytic domain to prevent target cell death, and the fused peptide epitope must remain intact for delivery and functional loading to MHC class I molecules. Expression in E. coli and purification by cation exchange chromatography of the fusion protein is described. Before used for delivery, the activity of the vector must be characterized in vitro, via an N-glycosidase assay, and in vivo, by a cytotoxicity assay. The presence of an intact epitope must be confirmed using mass spectrometry by comparing the actual mass with the predicted mass.

  20. Inhibition of Antigen Presentation by the Glycine/Alanine Repeat Domain Is Not Conserved in Simian Homologues of Epstein-Barr Virus Nuclear Antigen 1

    OpenAIRE

    Blake, Neil W.; Moghaddam, Amir; Rao, Pasupuleti; Kaur, Amitinder; Glickman, Rhona; Cho, Young-gyu; Marchini, Andrew; Haigh, Tracey; Johnson, R. Paul; Rickinson, Alan B.; Wang, Fred

    1999-01-01

    Most humans and Old World nonhuman primates are infected for life with Epstein-Barr virus (EBV) or closely related gammaherpesviruses in the same lymphocryptovirus (LCV) subgroup. Several potential strategies for immune evasion and persistence have been proposed based on studies of EBV infection in humans, but it has been difficult to test their actual contribution experimentally. Interest has focused on the EBV nuclear antigen 1 (EBNA1) because of its essential role in the maintenance and re...

  1. Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Anna Smed-Sörensen

    Full Text Available Influenza A virus (IAV infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs. We investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting cells. IAV was internalized by both myeloid DCs (mDCs and plasmacytoid DCs but only mDCs supported viral replication. Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous IAV was -300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-presentation for the activation and expansion of CD8 T cells during IAV infection.

  2. Antigen-specific B cells reactivate an effective cytotoxic T cell response against phagocytosed Salmonella through cross-presentation.

    Science.gov (United States)

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S Marieke

    2010-09-27

    The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+) T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8(+) T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons. Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8(+) T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8(+) T cells is dependent on CD4(+) T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis. B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection.

  3. Spatial separation of the processing and MHC class I loading compartments for cross-presentation of the tumor-associated antigen HER2/neuby human dendritic cells.

    Science.gov (United States)

    Baleeiro, Renato B; Rietscher, René; Diedrich, Andrea; Czaplewska, Justyna A; Lehr, Claus-Michael; Scherließ, Regina; Hanefeld, Andrea; Gottschaldt, Michael; Walden, Peter

    2015-11-01

    Cross-presentation is the process by which professional antigen presenting cells (APCs) (B cells, dendritic cells (DCs) and macrophages) present endocytosed antigens (Ags) via MHC-I to CD8 + T cells. This process is crucial for induction of adaptive immune responses against tumors and infected cells. The pathways and cellular compartments involved in cross-presentation are unresolved and controversial. Among the cells with cross-presenting capacity, DCs are the most efficient, which was proposed to depend on prevention of endosomal acidification to block degradation of the epitopes. Contrary to this view, we show in this report that some cargoes induce strong endosomal acidification following uptake by human DCs, while others not. Moreover, processing of the tumor-associated antigen HER2/ neu delivered in nanoparticles (NP) for cross-presentation of the epitope HER2/ neu 369-377 on HLA-A2 depended on endosomal acidification and cathepsin activity as well as proteasomes, and newly synthesized HLA class I. However, the HLA-A*0201/HER2/ neu 369-377 complexes were not found in the endoplasmic reticulum (ER) nor in endolysosomes but in hitherto not described vesicles. The data thus indicate spatial separation of antigen processing and loading of MHC-I for cross-presentation: antigen processing occurs in the uptake compartment and the cytosol whereas MHC-I loading with peptide takes place in a distinct subcellular compartment. The findings further elucidate the cellular pathways involved in the cross-presentation of a full-length, clinically relevant tumor-associated antigen by human DCs, and the impact of the vaccine formulation on antigen processing and CD8 + T cell induction.

  4. [Antigenic analysis of two chimeric hepatitis B core particles presenting the preS1 neutralizing epitopes].

    Science.gov (United States)

    Su, Qin-Dong; Guo, Min-Zhuo; Yi, Yao; Chen, Si-Yong; Jia, Zhi-Yuan; Lu, Xue-Xin; Qiu, Feng; Bi, Sheng-Li

    2013-10-01

    To construct full-length hepatitis B core particles presenting preS1 aa 21-47 epitope and truncated core particles presenting preS1 aa 37-45 epitope on their surface and compare their antigenicity. PreS1 aa21-47 epitope and aa 37-45 epitope were inserted respectively into full-length hepatitis B core (aa 1-183) and truncated HBcAg (aa 1-144), between the 78th (Asp) and 79th (Pro). The genes synthesized after the codon optimization were ligated to the pET43. 1a vector with the same cohesive terminal (NdeI and XhoI) and expressed in the E. coli expression system. The morphology of the proteins of interest were observed by electron microscope and characterized by ELISA and Western Blotting. The morphology of the virus-like particles were confirmed by electron microscope. H2 were solid particles with a diameter of (31.61 +/- 1.27) nm, while H3 were hollow particles with a diameter of (28.46 +/- 1.16) nm. Statistical analysis showed that H2 is larger than H3 in the diameter (P particles presenting the preS1 neutralizing epitopes on their surface have been expressed, purified and identified, which lays the foundation for its application in vaccine research.

  5. MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis.

    Science.gov (United States)

    Lipski, Deborah A; Dewispelaere, Rémi; Foucart, Vincent; Caspers, Laure E; Defrance, Matthieu; Bruyns, Catherine; Willermain, François

    2017-07-18

    II-associated antigen presentation and in T cell activation than non-hematopoietic cells. Our results highlight the potential of cells of hematopoietic origin in local antigen presentation, whatever their Ly6C expression. Our work further provides a first transcriptomic study of MHC class II-expressing retinal cells during EAU and delivers a series of new candidate genes possibly implicated in the pathogenesis of retinal autoimmunity.

  6. Effect of Phosphate Ion on the Structure of Lumazine Synthase, an Antigen Presentation System From Bacillus anthracis.

    Science.gov (United States)

    Wei, Yangjie; Wahome, Newton; Kumar, Prashant; Whitaker, Neal; Picking, Wendy L; Middaugh, C Russell

    2018-03-01

    Lumazine synthase (LS) is an oligomeric enzyme involved in the biosynthesis of riboflavin in microorganisms, fungi, and plants. LS has become of significant interest to biomedical science because of its critical biological role and attractive structural properties for antigen presentation in vaccines. LS derived from Bacillus anthracis (BaLS) consists of 60 identical subunits forming an icosahedron. Its crystal structure has been solved, but its dynamic conformational properties have not yet been studied. We investigated the conformation of BaLS in response to different stress conditions (e.g., chemical denaturants, pH, and temperature) using a variety of biophysical techniques. The physical basis for these thermal transitions was studied, indicating that a molten globular state was present during chemical unfolding by guanidine HCl. In addition, BaLS showed 2 distinct thermal transitions in phosphate-containing buffers. The first transition was due to the dissociation of phosphate ions from BaLS and the second one came from the dissociation and conformational alteration of its icosahedral structure. A small conformational alteration was induced by the binding/dissociation of phosphate ions to BaLS. This work provides a closer view of the conformational behavior of BaLS and provides important information for the formulation of vaccines which use this protein. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells.

    Science.gov (United States)

    Bachem, Annabell; Güttler, Steffen; Hartung, Evelyn; Ebstein, Frédéric; Schaefer, Michael; Tannert, Astrid; Salama, Abdulgabar; Movassaghi, Kamran; Opitz, Corinna; Mages, Hans W; Henn, Volker; Kloetzel, Peter-Michael; Gurka, Stephanie; Kroczek, Richard A

    2010-06-07

    In recent years, human dendritic cells (DCs) could be subdivided into CD304+ plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter encompassing the CD1c+, CD16+, and CD141+ DC subsets. To date, the low frequency of these DCs in human blood has essentially prevented functional studies defining their specific contribution to antigen presentation. We have established a protocol for an effective isolation of pDC and cDC subsets to high purity. Using this approach, we show that CD141+ DCs are the only cells in human blood that express the chemokine receptor XCR1 and respond to the specific ligand XCL1 by Ca2+ mobilization and potent chemotaxis. More importantly, we demonstrate that CD141+ DCs excel in cross-presentation of soluble or cell-associated antigen to CD8+ T cells when directly compared with CD1c+ DCs, CD16+ DCs, and pDCs from the same donors. Both in their functional XCR1 expression and their effective processing and presentation of exogenous antigen in the context of major histocompatibility complex class I, human CD141+ DCs correspond to mouse CD8+ DCs, a subset known for superior antigen cross-presentation in vivo. These data define CD141+ DCs as professional antigen cross-presenting DCs in the human.

  8. Streptococcus salivarius-mediated CD8+T cell stimulation required antigen presentation by macrophages in oral squamous cell carcinoma.

    Science.gov (United States)

    Wang, Jie; Yang, Lina; Mao, Xiaohe; Li, Zaiye; Lin, Xiaoyu; Jiang, Canhua

    2018-05-15

    It has been shown that the peripheral blood mononuclear cells (PBMCs) from oral squamous cell carcinoma (OSCC) patients presented cytotoxic CD8 T cell response against Streptococcus salivarius (S. salivarius), of which the frequency was positively associated with recurrence-free survival in OSCC patients. To identify the conditions required for regulating S. salivarius-specific CD8 T cell-mediated cytotoxicity, we selectively depleted individual components of the PBMCs, and observed that the depletion of monocytes/macrophages, but not other immune cell subsets, significantly downregulated the S. salivarius-specific CD8 T cell cytotoxicity. Monocyte/macrophage alone was sufficient to reconstitute optimal granzyme B expression from S. salivarius-specific CD8 T cells. Also, both the memory and the naive CD8 T cells reacted to S. salivarius-stimulation, with the memory CD8 T cells presenting significantly higher S. salivarius-reactivity. Using M1- and M2-polarized macrophages from circulating monocytes, we found that M1-polarized macrophages, with significantly higher IL-12 expression and significantly lower IL-10 and MHC class II molecule expression, was more effective at promoting granzyme B responses in CD8 T cells, and required CD80/CD86 costimulating molecules for optimal responses. Interestingly, the tumor-associated macrophages (TAMs) from resected tumors presented characteristics of M2-polarized macrophages with high MHC class II expression and low IL-12 secretion. The frequency of tumor-infiltrating S. salivarius-specific cytotoxic CD8 T cell was inversely correlated with the level of IL-10 secretion and the MHC class II molecule expression in autologous TAMs. Together, we demonstrated that monocyte/macrophages presented essential antigen-presentation and costimulatory roles in CD8 T cell-mediated S. salivarius-specific granzyme B responses, and the polarization of macrophages could influence the potency of CD8 T cell responses. Copyright © 2018 Elsevier Inc

  9. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Fredholm, Simon; Willerslev-Olsen, Andreas

    2017-01-01

    Short chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are products of microbial macronutrients fermentation that distribute systemically and are believed to modulate host immune responses. Recent data have indicated that certain SCFAs, such as butyrate and propionate, directly...... modulate human dendritic cell (DC) function. Given the role of DCs in initiating and shaping the adaptive immune response, we now explore how SCFAs affect the activation of antigen-specific CD8+ T cells stimulated with autologous, MART1 peptide-pulsed DC. We show that butyrate reduces the frequency...... of peptide-specific CD8+ T cells and, together with propionate, inhibit the activity of those cells. On the contrary, acetate does not affect them. Importantly, butyrate and propionate inhibit the production of IL-12 and IL-23 in the DCs and exogenous IL-12 fully restores the activation of the MART-1...

  10. Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Løbner, Morten; Cédile, Oriane

    2014-01-01

    (DC) and macrophages infiltrate the CNS during experimental autoimmune encephalomyelitis (EAE). Microglia are not considered to be as effective APC as DC or macrophages. METHODS: In this work we compared the antigen presenting capacity of CD11c+ and CD11c- microglia subsets with infiltrating CD11c......+ APC, which include DC. The microglial subpopulations (CD11c- CD45dim CD11b+ and CD11c+ CD45dim CD11b+) as well as infiltrating CD11c+ CD45high cells were sorted from CNS of C57BL/6 mice with EAE. Sorted cells were characterised by flow cytometry for surface phenotype and by quantitative real-time PCR...... for cytokine expression. They were co-cultured with primed T cells to measure induction of T cell proliferation and cytokine response. RESULTS: The number of CD11c+ microglia cells increased dramatically in EAE. They expressed equivalent levels of major histocompatibility complex and co-stimulatory ligands CD...

  11. The 2.5 Å Structure of CD1c in Complex with a Mycobacterial Lipid Reveals an Open Groove Ideally Suited for Diverse Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Louise; Li, Nan-Sheng; Hawk, Andrew J.; Garzón, Diana; Zhang, Tejia; Fox, Lisa M.; Kazen, Allison R.; Shah, Sneha; Haddadian, Esmael J.; Gumperz, Jenny E.; Saghatelian, Alan; Faraldo-Gómez, José D.; Meredith, Stephen C.; Piccirilli, Joseph A.; Adams, Erin J. (Harvard); (UC); (MXPL-G); (UW-MED)

    2011-08-24

    CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 {angstrom} resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-{beta}1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A pocket, aided by a unique exit portal underneath the {alpha}1 helix. Most striking was an open F pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.

  12. Detection rate of prostate cancer using prostate specific antigen in patients presenting with lower urinary tract symptoms: A retrospective study

    Directory of Open Access Journals (Sweden)

    Chavan P

    2009-01-01

    Full Text Available Background: Need for undertaking prostate biopsies for detection of prostate cancer is often decided on the basis of serum levels of prostate specific antigen (PSA. Aim: To evaluate the case detection rate of prostate cancer among patients presenting with lower urinary tract symptoms (LUTS on the basis of PSA levels and to assess the scope of prostate biopsy in these patients. Setting and Design: A retrospective study from a tertiary care center. Materials and Methods: The clinical and histopathological data of 922 patients presenting with LUTS in the last five years was obtained from the medical record section. They had been screened for prostate cancer using PSA and /or digital rectal examination examination followed by confirmation with prostate biopsy. Statistical Analysis Used: Detection rate and receiver operating characteristic curve were performed using SPSS 16 and Medcalc softwares. Results: The detection rate of prostate cancer according to the PSA levels was 0.6%, 2.3%, 2.5%, 34.1% and 54.9% in the PSA range of 0-4, 4-10, 10-20, 20-50 and> 50 ng/ml, respectively. Maximum prostate cancer cases were detected beyond a PSA value of 20 ng/ml whereas no significant difference in the detection rate was observed in the PSA range of 0-4, 4-10 and 10-20 ng/ml. Conclusion: A low detection rate of prostate cancer observed in the PSA range of 4-20 ng/ml in LUTS patients indicates the need for use of higher cutoff values of PSA in such cases. Therefore we recommend a cutoff of 20 ng/ml of PSA for evaluation of detection rate of prostate cancer among patients presenting with LUTS.

  13. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients.

    Science.gov (United States)

    Morse, Michael A; Chapman, Robert; Powderly, John; Blackwell, Kimberly; Keler, Tibor; Green, Jennifer; Riggs, Renee; He, Li-Zhen; Ramakrishna, Venky; Vitale, Laura; Zhao, Biwei; Butler, Stephen A; Hobeika, Amy; Osada, Takuya; Davis, Thomas; Clay, Timothy; Lyerly, H Kim

    2011-07-15

    The use of tumor-derived proteins as cancer vaccines is complicated by tolerance to these self-antigens. Tolerance may be broken by immunization with activated, autologous, ex vivo generated and antigen-loaded, antigen-presenting cells (APC); however, targeting tumor antigen directly to APC in vivo would be a less complicated strategy. We wished to test whether targeted delivery of an otherwise poorly immunogenic, soluble antigen to APC through their mannose receptors (MR) would induce clinically relevant immunity. Two phase I studies were conducted with CDX-1307, a vaccine composed of human chorionic gonadotropin beta-chain (hCG-β) fused to an MR-specific monoclonal antibody, administered either locally (intradermally) or systemically (intravenously) in patients with advanced epithelial malignancies. An initial dose escalation of single-agent CDX-1307 was followed by additional cohorts of CDX-1307 combined with granulocyte-macrophage colony-stimulating factor (GM-CSF) and the Toll-like receptor (TLR) 3 agonist polyinosinic-polycytidylic acid (poly-ICLC) and TLR7/8 agonist resiquimod to activate the APC. CDX-1307 induced consistent humoral and T-cell responses to hCG-β when coadministered with TLR agonists. Greater immune responses and clinical benefit, including the longest duration of stable disease, were observed with immunization combined with local TLR agonists. Immune responses were induced equally efficiently in patients with elevated and nonelevated levels of serum hCG-β. Antibodies within the serum of vaccinated participants had tumor suppressive function in vitro. Toxicity consisted chiefly of mild injection site reactions. APC targeting and activation induce adaptive immunity against poorly immunogenic self-antigens which has implications for enhancing the efficacy of cancer immunotherapy.

  14. Homing of antigen-presenting cells (APCs in head kidney and spleen – salmon head kidney hosts diverse APC types

    Directory of Open Access Journals (Sweden)

    Dimitar Borisov Iliev

    2013-06-01

    Full Text Available Lymph nodes and spleen are major organs where mammalian APCs initiate and orchestrate Ag-specific immune responses. Unlike mammals, teleosts lack lymph nodes and an interesting question is whether alternative organs may serve as sites for antigen presentation in teleosts. In the current study, fluorescent ovalbumin (Ova and CpG oligonucleotides (ODNs injected intra-abdominally were detected in significant numbers of salmon head kidney (HK MHCII+ cells over a period of 2 weeks while in spleen the percentage of these was transient and declined from day 1 post injection. In vitro studies further shed light on the properties of the diverse MHCII+ cell types found in HK. The ultrastructure of a subpopulation of MHCII+ cells with a high capacity to endocytose and process Ova indicated that these were able to perform constitutive macropinocytosis. Upon stimulation with CpG ODNs these cells upregulated CD86 and gave very high levels of TNF mRNA indicating that these are professional APCs, related to macrophages and dendritic cells (DCs. A subpopulation of HK granulocytes expressed high levels of surface MHCII and upon CpG stimulation upregulated most of the tested APC marker genes. Although these granulocytes expressed TNF weakly, they had relatively high basal levels of IL-1β mRNA and the CpG stimulation upregulated IL-1β, along with its signaling and decoy receptors, to the highest levels as compared to other HK cell types. Interestingly, the high expression of IL-1β mRNA in the granulocytes correlated with a high autophagy flux as demonstrated by LC3-II conversion. Autophagy has recently been found to be implicated in IL-1β processing and secretion and the presented data suggests that granulocytes of salmon, and perhaps other teleost species, may serve as a valuable model to study the involvement of autophagy in regulation of the vertebrate immune response.

  15. Tunable chemokine production by antigen presenting dendritic cells in response to changes in regulatory T cell frequency in mouse reactive lymph nodes.

    Directory of Open Access Journals (Sweden)

    Valentina Dal Secco

    Full Text Available BACKGROUND: Although evidence exists that regulatory T cells (Tregs can suppress the effector phase of immune responses, it is clear that their major role is in suppressing T cell priming in secondary lymphoid organs. Recent experiments using two photon laser microscopy indicate that dendritic cells (DCs are central to Treg cell function and that the in vivo mechanisms of T cell regulation are more complex than those described in vitro. PRINCIPAL FINDINGS: Here we have sought to determine whether and how modulation of Treg numbers modifies the lymph node (LN microenvironment. We found that pro-inflammatory chemokines -- CCL2 (MCP-1 and CCL3 (MIP-la -- are secreted in the LN early (24 h after T cell activation, that this secretion is dependent on antigen-specific DC-T cell interactions, and that it was inversely related to the frequency of Tregs specific for the same antigen. Furthermore, we demonstrate that Tregs modify the chemoattractant properties of antigen-presenting DCs, which, as the frequency of Tregs increases, fail to produce CCL2 and CCL3 and to attract antigen-specific T cells. CONCLUSIONS: These results substantiate a major role of Tregs in LN patterning during antigen-specific immune responses.

  16. Induction of protective immunity to Theileria annulata using two major merozoite surface antigens presented by different delivery systems

    NARCIS (Netherlands)

    C. D'Oliveira; A. Feenstra; H.W. Vos (Helma); A.D.M.E. Osterhaus (Albert); B.R. Shiels; A.W.C.A. Cornelissen; F. Jongejan

    1997-01-01

    textabstractAllelic forms (Tams1-1 and Tams1-2) of the major merozoite surface antigen gene of Theileria annulata have recently been expressed in Escherichia coli and in Salmonella typhimurium aroA vaccine strain SL3261. To test the potential of subunit vaccines against T. annulata infection, we

  17. Detection and partial characterization of a midlamina lucida-hemidesmosome-associated antigen (19-DEJ-1) present within human skin

    DEFF Research Database (Denmark)

    Fine, J D; Horiguchi, Y; Jester, J

    1989-01-01

    immunoelectron microscopy demonstrated localization of 19-DEJ-1 to the level of the midlamina lucida, directly underneath hemidesmosomes; absent staining was noted beneath melanocytes. 19-DEJ-1 antigen was detectable in unfixed A431 cells grown on coverslips. After radioincorporation of 35S-methionine into A431...

  18. In vitro activation of antigen-presenting cells (APC) by defined composition of Quillaja saponaria Molina triterpenoids.

    Science.gov (United States)

    Behboudi, S; Morein, B; Villacres-Eriksson, M

    1996-07-01

    The capacity of adjuvants to stimulate cytokine production by APC is important for the initiation of the immune response. Novel adjuvant formulations based on the iscom technology have been developed using selected triterpenoid components from Quillaja saponaria Molina. Five of these new Quillaja formulations were used to prepare matrix (an antigen-free particle) and tested for their capacity to stimulate IL-1 secretion by murine peritoneal cells in vitro. The formulation denominated QH 7.0.3 was superior to the other matrix formulations, including the original spikoside matrix. The QH 7.0.3 formulation in iscoms containing influenza virus envelope antigens induced IL-1 secretion more efficiently than the antigen-free matrix, or a mixture of matrix and viral antigens, or the free Quillaja components of similar composition. Compared with adjuvants known as IL-1 inducers, QH 7.0.3 flu-iscoms were as efficient as the most prominent IL-1 inducer, i.e. lipopolysaccharide (LPS) and superior to cholera toxin (CT) and muramyl dipeptide (MDP). These results indicate that the composition per se of triterpenoids included in iscoms or matrix has a prominent influence on the level of APC activation which may result in qualitatively different immune responses in vivo.

  19. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45

    NARCIS (Netherlands)

    van Vliet, Sandra J.; Gringhuis, Sonja I.; Geijtenbeek, Teunis B. H.; van Kooyk, Yvette

    2006-01-01

    Homeostatic control of T cells involves tight regulation of effector T cells to prevent excessive activation that can cause tissue damage and autoimmunity. Little is known, however, about whether antigen-presenting cells (APCs) are also involved in maintaining immune system homeostasis once effector

  20. The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection.

    Science.gov (United States)

    Brown, Damien P; Jones, Des C; Anderson, Katie J; Lapaque, Nicolas; Buerki, Robin A; Trowsdale, John; Allen, Rachel L

    2009-10-27

    Leukocyte Ig-like receptors (LILR) are a family of innate immune receptors with immunomodulatory functions. High-level expression of the receptors LILRB2 (ILT4) and LILRB4 (ILT3) is a feature of tolerogenic antigen presenting cells and has been observed in cancer and transplant situations. There are relatively few studies regarding these receptors in the context of infection and it is not yet clear how LILRB4 exerts its inhibitory effects. We studied the effects of LILRB4 ligation on antigen presenting cell phenotype, and the expression of LILRB2 and LILRB4 on Salmonella-infected antigen presenting cells. Ligation of LILRB4 throughout in vitro culture of dendritic cells led to an upregulation of the co-stimulatory protein CD86. Alterations in the production of IL-8 and IL-10 by LILRB4-ligated macrophages were also observed. Infection with Salmonella typhimurium or TLR stimulation with Salmonella components led to an upregulation of LILRB2 and LILRB4. Our results indicate that the inhibitory effects of LILRB4 do not result from a failure to upregulate co-stimulatory proteins. In addition to the high level expression that can render antigen presenting cells tolerogenic, there may be a role for lower level expression and activity of LILRB2 and LILRB4 in response to TLR signalling during an immune response to bacterial infection.

  1. The inhibitory receptor LILRB4 (ILT3 modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4, is upregulated in response to Salmonella infection

    Directory of Open Access Journals (Sweden)

    Buerki Robin A

    2009-10-01

    Full Text Available Abstract Background Leukocyte Ig-like receptors (LILR are a family of innate immune receptors with immunomodulatory functions. High-level expression of the receptors LILRB2 (ILT4 and LILRB4 (ILT3 is a feature of tolerogenic antigen presenting cells and has been observed in cancer and transplant situations. There are relatively few studies regarding these receptors in the context of infection and it is not yet clear how LILRB4 exerts its inhibitory effects. Results We studied the effects of LILRB4 ligation on antigen presenting cell phenotype, and the expression of LILRB2 and LILRB4 on Salmonella-infected antigen presenting cells. Ligation of LILRB4 throughout in vitro culture of dendritic cells led to an upregulation of the co-stimulatory protein CD86. Alterations in the production of IL-8 and IL-10 by LILRB4-ligated macrophages were also observed. Infection with Salmonella typhimurium or TLR stimulation with Salmonella components led to an upregulation of LILRB2 and LILRB4. Conclusion Our results indicate that the inhibitory effects of LILRB4 do not result from a failure to upregulate co-stimulatory proteins. In addition to the high level expression that can render antigen presenting cells tolerogenic, there may be a role for lower level expression and activity of LILRB2 and LILRB4 in response to TLR signalling during an immune response to bacterial infection.

  2. Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

    Directory of Open Access Journals (Sweden)

    Kennedy Colleen

    2011-12-01

    Full Text Available Abstract Background Lipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4+ T cell line in the absence of detergents. Results Detergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4+ T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen. Conclusions Findings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.

  3. Toxocara canis: Analysis of the kinetics of antigen release and antibody production in an in vivo model for the detection of past or present infection.

    Science.gov (United States)

    Rodríguez-Caballero, Aarón; Martínez-Gordillo, Mario Noé; Caballero-Salazar, Silvia; Rufino-González, Yadira; Ponce-Macotela, Martha

    2017-08-30

    Worldwide, Toxocara canis is an important zoonotic nematode of public health concern. This soil-transmitted helminth causes visceral larva and ocular larva migrans in paratenic hosts. The detection of T. canis larva migrans is complicated because current immunological tests detect only IgG antibodies, which can cross-react with antigens from other parasites and cannot distinguish between the past and present infection. Analysis of antigen release and antibody production could help improve the detection of larva migrans. Here, we report the kinetics of antigen release, IgM and IgG production in an in vivo model for the detection of past or present infection. We used four groups of seven mice: two groups infected orally with 50 or 100 embryonated eggs, and the other two infected intraperitoneally with 50 or 100 live larvae. We obtained blood samples at 0, 3, 7, and 14days and, then, every two weeks until day 140. Sandwich ELISA and indirect ELISA were performed for antigen capture and the detection of immunoglobulins, respectively. Mice inoculated with larvae developed an immune response faster than those inoculated with eggs. In all groups, antigen capture was positive starting at 3days until 140days post-inoculation (dpi). Detection of immunoglobulins was at 14 or 28dpi in mice inoculated with larvae or eggs, respectively. Negative IgM values were detected at days 98 and 112. The samples remained positive for IgG until the last day of the experiment. Data suggest that in mice inoculated with T canis eggs, some larvae did not hatch, others died or never reached the bloodstream. Based on our model, we propose that there is early infection when only antigens are present, and active larva migrans when antigen and immunoglobulins are detected, implying an immune response of the host against the antigen. Our study offers a view into the parasite-host relationship and enables us to infer if there are live larvae. Additionally, these findings provide a foundation for the

  4. Prevention of Tracheal High-Dose Tolerance Induction by Granulocyte-Macrophage Colony Stimulating Factor- Dependent Restoration of Antigen-Presenting Cell Function

    Directory of Open Access Journals (Sweden)

    Kanna Haneda

    2000-01-01

    Full Text Available The intrusion of airborne allergens into airways elicits eosinophilic inflammation, as represented by bronchial asthma. It has been shown that excessive amounts of allergen in murine trachea lead to an unexpected evasion of deleterious eosinophilic inflammation by inducing T cell tolerance. In the present study, the mechanisms of tracheal high-dose tolerance are examined with regard to accessory cell functions and the effects of pro-inflammatory cytokines on tolerance. Antigen-induced tracheal eosinophilia was suppressed on instillation of high doses of antigen into the trachea, while concurrent instillation of granulocyte-macrophage colony stimulating factor (GM-CSF with the antigen restored the diminished responses. The restoration of eosinophilic infiltration by GM-CSF occurred in parallel with an increase in interleukin (IL-4 production by CD4+ T cells from the mediastinal lymph nodes. This was found to reflect the empowerment of antigen-presenting cells by GM-CSF, because the impaired ability of Ia+ cells from the tolerant mice to stimulate IL-4-producing T cells is restored by GM-CSF administration. The prevention of tolerance by up-regulating accessory cell functions is a feature unique to GM-CSF, because another pro-inflammatory cytokine, IL-iβ, failed to empower antigen-presenting cells. Thus, besides the induction of transforming growth factor-β-secreting CD4+ T cells, high-dose tolerance in the trachea includes an impairment of the accessory cell functions that support IL-4 production from T cells, which was reversed by GM-CSF. This report is the first demonstration that GM-CSF breaks the T cell tolerance of IL-4-producing T helper cells.

  5. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    OpenAIRE

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-01-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generate...

  6. Role of the mononuclear phagocyte as an antigen-presenting cell for human gamma delta T cells activated by live Mycobacterium tuberculosis.

    OpenAIRE

    Boom, W H; Chervenak, K A; Mincek, M A; Ellner, J J

    1992-01-01

    gamma delta T cells, both human and murine, have been found to be highly responsive to mycobacterial antigens. However, the role and function of gamma delta T cells in the immune response to Mycobacterium tuberculosis remain largely unknown. In earlier studies, we demonstrated that monocytes infected with live M. tuberculosis were particularly effective inducers of human peripheral blood gamma delta T cells. The present studies were performed to further characterize the interaction between hu...

  7. Selection of restriction specificities of virus-specific cytotoxic T cells in the thymus: no evidence for a crucial role of antigen-presenting cells

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.

    1982-01-01

    The proposal was tested that (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras expressed predominantly P1-restricted T cells because donor derived stem cells were exposed to recipient derived antigen-presenting cells in the thymus. Because P1 recipient-derived antigen-presenting cells are replaced only slowly after 6-8 wk by (P1 X P2) donor-derived antigen-presenting cells in the thymus and because replenished pools of mature T cells may by then prevent substantial numbers of P2-restricted T cells to be generated, a large portion of thymus cells and mature T cells were eliminated using the following treatments of 12-20-wk-old (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras: (a) cortisone plus antilymphocyte serum, (b) Cytoxan, (c) three doses of sublethal irradiation (300 rad) 2d apart, and (d) lethal irradiation (850 rad) and reconstitution with T cell-depleted (P1 X P2) F1 stem cells. 12-20 wk after this second treatment, (P1 X P2) leads to P1 chimeras were infected with vaccinia-virus. Virus-specific cytotoxic T cell reactivity was expressed by chimeric T cells of (P1 X P[2) F1 origin and was restricted predominantly to P1. Virus-specific cytotoxic T cells, therefore, do not seem to be selected to measurable extent by the immigrating donor-derived antigen-presenting cells in the thymus; their selection depends apparently from the recipient-derived radioresistant thymus cells

  8. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.

    Directory of Open Access Journals (Sweden)

    Charlotte F Inman

    Full Text Available Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+ antigen-presenting cell subset, whilst SIRPα(-CD11R1(+ antigen-presenting cells (APCs are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+ antigen-presenting cells as orchestrators of early-life mucosal immune development.

  9. Characterisation of Antigen B Protein Species Present in the Hydatid Cyst Fluid of Echinococcus canadensis G7 Genotype

    Science.gov (United States)

    Folle, Ana Maite; Kitano, Eduardo S.; Lima, Analía; Gil, Magdalena; Cucher, Marcela; Mourglia-Ettlin, Gustavo; Iwai, Leo K.; Rosenzvit, Mara; Batthyány, Carlos

    2017-01-01

    The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in

  10. Organic extract of diesel exhaust particles stimulates expression of Ia and costimulatory molecules associated with antigen presentation in rat peripheral blood monocytes but not in alveolar macrophages

    International Nuclear Information System (INIS)

    Koike, Eiko; Kobayashi, Takahiro

    2005-01-01

    We hypothesized that diesel exhaust particles (DEP) induce the activation of antigen-presenting cells (APC) in lung. The present study was designed to clarify the following about DEP: (1) whether it affects the expression of Ia and B7 molecules in alveolar macrophages (AM) as a mature cell or in peripheral blood monocytes (PBM) as an immature cell (2) if it affects the antigen-presenting (AP) activity of PBM (3) what component of DEP is responsible for the effects, and (4) whether the effect of DEP is related to oxidative stress. DEP was extracted with methylene chloride. Cells were exposed to whole DEP, organic extract, or residual particles for 24 h. Cell-surface molecules were measured by flow cytometry. AP activity was assessed by antigen-specific T cell proliferation. Whole DEP or organic extract significantly increased the expression of Ia and B7 molecules on PBM but not on AM. No significant effect of residual particles was observed. A low concentration of organic extract also increased the AP activity of PBM. When the induction of an antioxidative enzyme was assessed, heme oxygenase-1 protein was found to be significantly increased by exposure to whole DEP, and the organic extract was more effective than the residual particles. Furthermore, the organic extract-induced expression of Ia antigen on PBM was reduced by the addition of an antioxidative agent. These results suggest that DEP may act on immature APC and enhance their AP activity and that the action contributing to oxidative stress may be mediated by organic compounds of DEP

  11. Tolerance induction to cytoplasmic beta-galactosidase by hepatic AAV gene transfer: implications for antigen presentation and immunotoxicity.

    Directory of Open Access Journals (Sweden)

    Ashley T Martino

    2009-08-01

    Full Text Available Hepatic gene transfer, in particular using adeno-associated viral (AAV vectors, has been shown to induce immune tolerance to several protein antigens. This approach has been exploited in animal models of inherited protein deficiency for systemic delivery of therapeutic proteins. Adequate levels of transgene expression in hepatocytes induce a suppressive T cell response, thereby promoting immune tolerance. This study addresses the question of whether AAV gene transfer can induce tolerance to a cytoplasmic protein.AAV-2 vector-mediated hepatic gene transfer for expression of cytoplasmic beta-galactosidase (beta-gal was performed in immune competent mice, followed by a secondary beta-gal gene transfer with E1/E3-deleted adenoviral Ad-LacZ vector to provoke a severe immunotoxic response. Transgene expression from the AAV-2 vector in approximately 2% of hepatocytes almost completely protected from inflammatory T cell responses against beta-gal, eliminated antibody formation, and significantly reduced adenovirus-induced hepatotoxicity. Consequently, approximately 10% of hepatocytes continued to express beta-gal 45 days after secondary Ad-LacZ gene transfer, a time point when control mice had lost all Ad-LacZ derived expression. Suppression of inflammatory T cell infiltration in the liver and liver damage was linked to specific transgene expression and was not seen for secondary gene transfer with Ad-GFP. A combination of adoptive transfer studies and flow cytometric analyses demonstrated induction of Treg that actively suppressed CD8(+ T cell responses to beta-gal and that was amplified in liver and spleen upon secondary Ad-LacZ gene transfer.These data demonstrate that tolerance induction by hepatic AAV gene transfer does not require systemic delivery of the transgene product and that expression of a cytoplasmic neo-antigen in few hepatocytes can induce Treg and provide long-term suppression of inflammatory responses and immunotoxicity.

  12. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    Science.gov (United States)

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-07-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generated a strong p17-specific CD4+ T helper response preceding both p17-specific humoral and effector T cell responses. Moreover, we show that T0-p17 infection did not interfere with the endogenous processing of the transgene encoded antigen, since infected APCs were able to evoke a strong recall response in vitro. Our results demonstrate that replication-deficient HSV vectors can be appealing candidates for the development of vaccines able to trigger T helper responses.

  13. MHC class I-presented lung cancer-associated tumor antigens identified by immunoproteomics analysis are targets for cancer-specific T cell response.

    Science.gov (United States)

    Shetty, Vivekananda; Sinnathamby, Gomathinayagam; Nickens, Zacharie; Shah, Punit; Hafner, Julie; Mariello, Lisa; Kamal, Shivali; Vlahović, Gordana; Lyerly, H Kim; Morse, Michael A; Philip, Ramila

    2011-05-01

    The development of potent cancer vaccines for common malignancies such as lung cancer requires identification of suitable target antigens. We hypothesized that peptide epitopes naturally presented by MHC class I molecules on the surface of cancer cells would be the most relevant targets. We used LC/MS/MS analysis and identified 68 MHC class I-presented peptides from lung cancer cells. Using the criteria of strong consensus for HLA-A2 binding and relevance of the source proteins to malignant phenotype, we selected 8 peptides for functional characterization. These peptides, with a range of binding affinities, were confirmed to stabilize HLA-A2 molecules and were used to activate peptide-specific CTLs that efficiently recognized lung tumor cells. No correlation between the transcript levels of the source proteins and the extent of peptide-specific T cell recognition of lung cancer cells was observed. Furthermore, the peptide specific CTLs failed to recognize HLA-A2+ normal lung cells despite expression of the mRNA encoding the source proteins from which the peptides were derived. We conclude that MHC class I associated peptide epitopes are a more relevant source of authentic tumor antigens than over-expressed proteins and the identified peptides may be used as antigens for therapeutic vaccine strategies to treat lung cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    Science.gov (United States)

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  15. AntigenMap 3D: an online antigenic cartography resource.

    Science.gov (United States)

    Barnett, J Lamar; Yang, Jialiang; Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2012-05-01

    Antigenic cartography is a useful technique to visualize and minimize errors in immunological data by projecting antigens to 2D or 3D cartography. However, a 2D cartography may not be sufficient to capture the antigenic relationship from high-dimensional immunological data. AntigenMap 3D presents an online, interactive, and robust 3D antigenic cartography construction and visualization resource. AntigenMap 3D can be applied to identify antigenic variants and vaccine strain candidates for pathogens with rapid antigenic variations, such as influenza A virus. http://sysbio.cvm.msstate.edu/AntigenMap3D

  16. Native IgG2a(b) is barely antigenic to major histocompatibility complex class II-restricted T cells owing to inefficient internalization by professional antigen-presenting cells.

    Science.gov (United States)

    Bartnes, K; Hannestad, K

    2000-04-01

    Peptide epitopes derived from immunoglobulin variable regions represent tumour-specific antigens on B-cell neoplasms and can be recognized by syngeneic, major histocompatibility complex (MHC) class II-restricted T cells. Immunoglobulin peptide/MHC class II complexes may also be involved in autoimmunity and CD4+ T-cell-mediated B-cell regulation. Thus, the IgG2a(b) H-chain allopeptide gamma2a(b) 435-451 presented on I-Ad mimics the epitope implicated in herpes simplex virus-induced autoimmune stromal keratitis and is the target of T helper 1 (Th1) clones that suppress IgG2a(b) production in vivo. We here report that spleen and thymus cells constitutively present the autologous gamma2a(b) epitope to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma as a function of the animal housing conditions (specific pathogen-free or not) and the serum levels of IgG2a(b). Constitutive presentation in the spleen was predominantly performed by dendritic cells. Whereas spleen cells poorly presented native IgG2a(b) to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma, IgG2a(b) in the form of immune complexes were presented > 200-fold more efficiently owing to internalization via low-affinity FcgammaR on macrophages. The antigenicity could also be improved by homotypic aggregation and by targeting IgG2a(b) to complement receptors on the A20 B-cell lymphoma. Mice without detectable IgG2a(b)-containing immune complexes typically exhibited minimal constitutive presentation. Nevertheless, native IgG2a(b) can sensitize antigen-presenting cells in vivo, as mice that were devoid of immune complexes and carried an IgG2a(b)-producing tumour did present constitutively, even at physiological IgG2a(b) serum levels. Whereas the amounts of IgG released from most B-cell lymphomas may be too low to allow spontaneous priming of tumour-specific MHC class II-restricted T cells, administration of tumour immunoglobulin in aggregated form might improve the efficacy of idiotype vaccination.

  17. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    A limited intralysosomal proteolytic degradation is probably a key event in the accessory cell processing of large protein antigens before their presentation to T cells. With the aid of highly specific inhibitors of proteinases, we have examined the role of proteolysis in the presentation...... of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...... of antigen-presenting cells causes a profound inhibition of both the proteolytic degradation and the presentation of the synthetic antigen dinitrophenyl-poly-L-lysine. In contrast, the presentation of another synthetic antigen, the copolymer of L-glutamic acid and L-alanine, was enhanced by the same...

  18. Antigen presentation by B cells guides programing of memory CD4+T-cell responses to a TLR4-agonist containing vaccine in mice.

    Science.gov (United States)

    Dubois Cauwelaert, Natasha; Baldwin, Susan L; Orr, Mark T; Desbien, Anthony L; Gage, Emily; Hofmeyer, Kimberly A; Coler, Rhea N

    2016-12-01

    The contribution of B cells to immunity against many infectious diseases is unquestionably important and well characterized. Here, we sought to determine the role of B cells in the induction of T-helper 1 (T H 1) CD4 + T cells upon vaccination with a tuberculosis (TB) antigen combined with a TLR4 agonist. We used B-cell deficient mice (μMT -/- ), tetramer-positive CD4 + T cells, markers of memory "precursor" effector cells (MPECs), and T-cell adoptive transfers and demonstrated that the early antigen-specific cytokine-producing T H 1 responses are unaffected in the absence of B cells, however MPEC induction is strongly impaired resulting in a deficiency of the memory T H 1 response in μMT -/- mice. We further show that antigen-presentation by B cells is necessary for their role in MPEC generation using B-cell adoptive transfers from wt or MHC class II knock-out mice into μMT -/- mice. Our study challenges the view that B-cell deficiency exclusively alters the T H 1 response at memory time-points. Collectively, our results provide new insights on the multifaceted roles of B cells that will have a high impact on vaccine development against several pathogens including those requiring T H 1 cell-mediated immunity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles.

    Science.gov (United States)

    Ramirez, Alejandro; Morris, Stephen; Maucourant, Sophie; D'Ascanio, Isabella; Crescente, Vincenzo; Lu, I-Na; Farinelle, Sophie; Muller, Claude P; Whelan, Michael; Rosenberg, William

    2018-02-01

    Existing Influenza A virus (IAV) vaccines target variable parts of the virus that may change between seasons. Vaccine design relies on predicting the predominant circulating influenza strains but when there is a mismatch between vaccine and circulating strains, efficacy is sub-optimal. Furthermore, current approaches provide limited protection against emerging influenza strains that may cause pandemics. One solution is to design vaccines that target conserved protein domains of influenza, which remain largely unchanged over time and are likely to be found in emergent variants. We present a virus-like particle (VLP), built using the hepatitis B virus tandem core platform, as an IAV vaccine candidate containing multiple conserved antigens. Hepatitis B core protein spontaneously assembles into a VLP that is immunogenic and confers immunogenicity to proteins incorporated into the major insertion region (MIR) of core monomers. However, insertion of antigen sequences may disrupt particle assembly preventing VLP formation or result in unstable particles. We have overcome these problems by genetically manipulating the hepatitis B core to express core monomers in tandem, ligated with a flexible linker, incorporating different antigens at each of the MIRs. Immunisation with this VLP, named Tandiflu1, containing 4 conserved antigens from matrix protein 2 ectodomain and hemagglutinin stalk, leads to production of cross-reactive and protective antibodies. The polyclonal antibodies induced by Tandiflu1 can bind IAV Group 1 hemagglutinin types H1, H5, H11, H9, H16 and a conserved epitope on matrix protein 2 expressed by most strains of IAV. Vaccination with Tandiflu1 results in 100% protection from a lethal influenza challenge with H1N1 IAV. Serum transfer from vaccinated animals is sufficient to confer protection from influenza-associated illness in naïve mice. These data suggest that a Tandem Core based IAV vaccine might provide broad protection against common and emergent H1

  20. A molecular assembly system for presentation of antigens on the surface of HBc virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Blokhina, Elena A.; Kuprianov, Victor V. [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); Stepanova, Ludmila A.; Tsybalova, Ludmila M. [Research Institute of Influenza, Russian Federation Ministry of Health and Social Development, St. Petersburg (Russian Federation); Kiselev, Oleg I. [Research Institute of Influenza, Russian Federation Ministry of Health and Social Development, St. Petersburg (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation); Ravin, Nikolai V., E-mail: nravin@biengi.ac.ru [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation); Skryabin, Konstantin G. [Centre ' Bioengineering' , Russian Academy of Sciences, 117312 Prosp. 60-letya Oktyabrya 7-1, Moscow (Russian Federation); GenNanotech Ltd, St. Petersburg (Russian Federation)

    2013-01-20

    Hepatitis B virus-like particles, icosahedral structures formed by multiple core protein dimers, are promising immune-enhancing vaccine carriers for foreign antigens. Insertions into the surface-exposed immunodominant loop are especially immunogenic. However, the need to conserve the particulate structure to ensure high immunogenicity imposes restraints on the nature of the heterologous sequence that can be inserted. We propose a new approach to constructing HBc particles linked to the target epitopes that relies on non-covalent interactions between the epitope and pre-assembled unmodified HBc particles. Interaction was enabled by fusion of the epitope to the GSLLGRMKGA peptide, binding to the spike tips. This peptide may be used as a 'binding tag' allowing in vitro construction of HBc particles carrying the target peptide. Such virus-like particles carrying multiple copies of the extracellular domain of the M2 protein of different influenza strains appeared to be highly immunogenic and protected immunised mice against a lethal influenza challenge.

  1. RIP2 Is a Critical Regulator for NLRs Signaling and MHC Antigen Presentation but Not for MAPK and PI3K/Akt Pathways.

    Science.gov (United States)

    Wu, Xiao Man; Chen, Wen Qin; Hu, Yi Wei; Cao, Lu; Nie, Pin; Chang, Ming Xian

    2018-01-01

    RIP2 is an adaptor protein which is essential for the activation of NF-κB and NOD1- and NOD2-dependent signaling. Although NOD-RIP2 axis conservatively existed in the teleost, the function of RIP2 was only reported in zebrafish, goldfish, and rainbow trout in vitro . Very little is known about the role and mechanisms of piscine NOD-RIP2 axis in vivo . Our previous study showed the protective role of zebrafish NOD1 in larval survival through CD44a-mediated activation of PI3K-Akt signaling. In this study, we examined whether RIP2 was required for larval survival with or without pathogen infection, and determined the signaling pathways modulated by RIP2. Based on our previous report and the present study, our data demonstrated that NOD1-RIP2 axis was important for larval survival in the early ontogenesis. Similar to NOD1, RIP2 deficiency significantly affected immune system processes. The significantly enriched pathways were mainly involved in immune system, such as "Antigen processing and presentation" and "NOD-like receptor signaling pathway" and so on. Furthermore, both transcriptome analysis and qRT-PCR revealed that RIP2 was a critical regulator for expression of NLRs (NOD-like receptors) and those genes involved in MHC antigen presentation. Different from NOD1, the present study showed that NOD1, but not RIP2 deficiency significantly impaired protein levels of MAPK pathways. Although RIP2 deficiency also significantly impaired the expression of CD44a, the downstream signaling of CD44a-Lck-PI3K-Akt pathway remained unchanged. Collectively, our works highlight the similarity and discrepancy of NOD1 and RIP2 in the regulation of immune signaling pathways in the zebrafish early ontogenesis, and confirm the crucial role of RIP2 in NLRs signaling and MHC antigen presentation, but not for MAPK and PI3K/Akt pathways.

  2. Human macrophages and dendritic cells can equally present MART-1 antigen to CD8(+ T cells after phagocytosis of gamma-irradiated melanoma cells.

    Directory of Open Access Journals (Sweden)

    María Marcela Barrio

    Full Text Available Dendritic cells (DC can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8(+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8(+ T cell clone. Confocal microscopy with Alexa Fluor®(647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8(+ T cell cross-presentation thereafter.

  3. Rapid Antigen Processing and Presentation of a Protective and Immunodominant HLA-B*27-restricted Hepatitis C Virus-specific CD8+ T-cell Epitope

    Science.gov (United States)

    Schmidt, Julia; Iversen, Astrid K. N.; Tenzer, Stefan; Gostick, Emma; Price, David A.; Lohmann, Volker; Distler, Ute; Bowness, Paul; Schild, Hansjörg; Blum, Hubert E.; Klenerman, Paul

    2012-01-01

    HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope. PMID:23209413

  4. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Iris J Gonzalez-Leal

    2014-09-01

    Full Text Available Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb and L (Ctsl play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC and macrophages (BMM from Ctsb-/- and Ctsl-/- mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb-/- BMDC express higher levels of MHC class II molecules than wild-type (WT and Ctsl-/- BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb-/- mice significantly up-regulated the levels of interleukin 12 (IL-12 expression, a key Th1-inducing cytokine. These findings indicate that Ctsb-/- BMDC display more pro-Th1 properties than their WT and Ctsl-/- counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression.

  5. Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines

    Directory of Open Access Journals (Sweden)

    Mina eJohn

    2014-10-01

    Full Text Available Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-existent among certain populations by virtue of common blood-borne, sexual or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4+ and CD8+ T cell responses. However frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however studies of elite controllers, or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy has provided the strongest evidence for CD8+ T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human leucocyte antigen (HLA-restricted T cell immunity in natural infection, and the challenges these pose for designing effective

  6. Effects of low dose X-ray irradiation on antigen presentation and IL-12 secretion in human dendritic cells in vitro

    International Nuclear Information System (INIS)

    Yan Peng; Jiang Qisheng; Li Fengsheng; He Rui; Wang Cuilan; Li Xiao

    2012-01-01

    Objective: To explore the effects of low dose X-ray irradiation on the ability of antigen presentation and IL-12 secretion in human dendritic cells that had been cultured for different time in vitro. Methods: The human peripheral blood mononuclear cells (PBMC) were collected and differentiated to dendritic cells (DCs) by rhGM-CSF and rhIL-4 treatment in vitro. The DCs were divided into 3 groups, group A: DCs were cultured for 2 d and then irradiated with 0.05, 0.1, 0.2 and 0.5 Gy X-rays; group B: DCs were cultured for 6 d and then irradiated as above; group C:DCs were cultured without irradiation.At 8 d of cell culture, the DCs were applied to activate T cells and CCK-8 was used to detect MLR (mixed lymphocyte reaction), and the antigen presentation ability of DCs was evaluated. MTT assay was also used to test the cell-killing effect of the activated T-cells on A549 cells. IL-12 in the culture medium of DCs was detected by ELISA. Results: After irradiation with 0.2 and 0.5 Gy X-rays, the antigen presentation ability of DCs was decreased in group A (t=2.79 and 3.71, P<0.05), but significantly increased in group B (t=3.60 and 3.11, P<0.05). The ability of the T cell activation was detected and the proliferation of A549 cells was slightly inhibited by the DCs in group A (t=2.89 and 2.91, P<0.05), but was obviously inhibited by the DCs in group B (t=2.91 and 2.82, P<0.05). Meanwhile,the level of IL-12 was dramatically decreased in group A (t=4.44 and 6.93, P<0.05), but was increased in group B (t=3.51 and 4.12, P<0.05). Conclusions: The abilities of antigen presentation and proliferation inhibition of DCs could be down-regulated by low dose (<0.5 Gy) of X-ray irradiation at the early stage of DCs, but was up-regulated at the late stage of DCs culture. (authors)

  7. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells

    OpenAIRE

    Bachem, Annabell; G?ttler, Steffen; Hartung, Evelyn; Ebstein, Fr?d?ric; Schaefer, Michael; Tannert, Astrid; Salama, Abdulgabar; Movassaghi, Kamran; Opitz, Corinna; Mages, Hans W.; Henn, Volker; Kloetzel, Peter-Michael; Gurka, Stephanie; Kroczek, Richard A.

    2010-01-01

    In recent years, human dendritic cells (DCs) could be subdivided into CD304+ plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter encompassing the CD1c+, CD16+, and CD141+ DC subsets. To date, the low frequency of these DCs in human blood has essentially prevented functional studies defining their specific contribution to antigen presentation. We have established a protocol for an effective isolation of pDC and cDC subsets to high purity. Using this approach, we show that CD141+ DC...

  8. Slc11a1 Enhances the Autoimmune Diabetogenic T-Cell Response by Altering Processing and Presentation of Pancreatic Islet Antigens

    OpenAIRE

    Dai, Yang D.; Marrero, Idania G.; Gros, Philippe; Zaghouani, Habib; Wicker, Linda S.; Sercarz, Eli E.

    2009-01-01

    OBJECTIVE?Efforts to map non?major histocompatibility complex (MHC) genes causing type 1 diabetes in NOD mice identified Slc11a1, formerly Nramp1, as the leading candidate gene in the Idd5.2 region. Slc11a1 is a membrane transporter of bivalent cations that is expressed in late endosomes and lysosomes of macrophages and dendritic cells (DCs). Because DCs are antigen-presenting cells (APCs) known to be critically involved in the immunopathogenic events leading to type 1 diabetes, we hypothesiz...

  9. Recent advances in Major Histocompatibility Complex (MHC class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Andy van Hateren

    2017-02-01

    Full Text Available We have known since the late 1980s that the function of classical major histocompatibility complex (MHC class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity. We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related, which has been shown to act as a second quality-control stage in MHC I antigen presentation.

  10. The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion.

    Science.gov (United States)

    Kavanagh, D G; Gold, M C; Wagner, M; Koszinowski, U H; Hill, A B

    2001-10-01

    Both human cytomegaloviruses (HCMVs) and murine cytomegaloviruses (MCMVs) encode multiple genes that interfere with antigen presentation by major histocompatibility complex (MHC) class I, and thus protect infected targets from lysis by virus-specific cytotoxic T lymphocytes (CTLs). HCMV has been shown to encode four such genes and MCMV to encode two. MCMV m152 blocks the export of class I from a pre-Golgi compartment, and MCMV m6 directs class I to the lysosome for degradation. A third MCMV gene, m4, encodes a glycoprotein which is expressed at the cell surface in association with class I. Here we here show that m4 is a CTL-evasion gene which, unlike previously described immune-evasion genes, inhibited CTLs without blocking class I surface expression. m152 was necessary to block antigen presentation to both K(b)- and D(b)-restricted CTL clones, while m4 was necessary to block presentation only to K(b)-restricted clones. m152 caused complete retention of D(b), but only partial retention of K(b), in a pre-Golgi compartment. Thus, while m152 effectively inhibited D(b)-restricted CTLs, m4 was required to completely inhibit K(b)-restricted CTLs. We propose that cytomegaloviruses encode multiple immune-evasion genes in order to cope with the diversity of class I molecules in outbred host populations.

  11. An Antigen-Presenting and Apoptosis-Inducing Polymer Microparticle Prolongs Alloskin Graft Survival by Selectively and Markedly Depleting Alloreactive CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-06-01

    Full Text Available Selectively depleting the pathogenic T cells is a fundamental strategy for the treatment of allograft rejection and autoimmune disease since it retains the overall immune function of host. The concept of killer artificial antigen-presenting cells (KaAPCs has been developed by co-coupling peptide–major histocompatibility complex (pMHC multimer and anti-Fas monoclonal antibody (mAb onto the polymeric microparticles (MPs to induce the apoptosis of antigen-specific T cells. But little information is available about its in vivo therapeutic potential and mechanism. In this study, polyethylenimine (PEI-coated poly lactic-co-glycolic acid microparticle (PLGA MP was fabricated as a cell-sized scaffold to covalently co-couple H-2Kb-Ig dimer and anti-Fas mAb for the generation of alloantigen-presenting and apoptosis-inducing MPs. Intravenous infusions of the biodegradable KaAPCs prolonged the alloskin graft survival for 43 days in a single MHC-mismatched murine model, depleted the most of H-2Kb-alloreactive CD8+ T cells in peripheral blood, spleen, and alloskin graft in an antigen-specific manner and anti-Fas-dependent fashion. The cell-sized KaAPCs circulated throughout vasculature into liver, kidney, spleen, lymph nodes, lung, and heart, but few ones into local allograft at early stage, with a retention time up to 36 h in vivo. They colocalized with CD8+ T cells in secondary lymphoid organs while few ones contacted with CD4+ T cells, B cells, macrophage, and dendritic cells, or internalized by phagocytes. Importantly, the KaAPC treatment did not significantly impair the native T cell repertoire or non-pathogenic immune cells, did not obviously suppress the overall immune function of host, and did not lead to visible organ toxicity. Our results strongly document the high potential of PLGA MP-based KaAPCs as a novel antigen-specific immunotherapy for allograft rejection and autoimmune disorder. The in vivo mechanism of alloinhibition, tissue

  12. Antigen Presenting Cells and Stromal Cells Trigger Human Natural Killer Lymphocytes to Autoreactivity: Evidence for the Involvement of Natural Cytotoxicity Receptors (NCR and NKG2D

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2006-01-01

    Full Text Available Human natural killer (NK lymphocytes should not damage autologous cells due to the engagement of inhibitory receptor superfamily (IRS members by HLA-I. Nevertheless, NK cells kill self cells expressing low levels or lacking HLA-I, as it may occur during viral infections (missing-self hypothesis. Herein, we show that human NK cells can be activated upon binding with self antigen presenting cells or stromal cells despite the expression of HLA-I. Indeed, NK cells can kill and produce pro-inflammatory and regulating cytokines as IFN-γ, TNF-α and IL10 during interaction with autologous dendritic cells or bone marrow stromal cells or skin fibroblasts. The killing of antigen presenting and stromal cells is dependent on LFA1/ICAM1 interaction. Further, the natural cytotoxicity receptors (NCR NKp30 and NKp46 are responsible for the delivery of lethal hit to DC, whereas NKG2D activating receptor, the ligand of the MHC-related molecule MIC-A and the UL16 binding protein, is involved in stromal cell killing. These findings indicate that different activating receptors are involved in cell to self cell interaction. Finally, NK cells can revert the veto effect of stromal cells on mixed lymphocyte reaction further supporting the idea that NK cells may alter the interaction between T lymphocytes and microenvironment leading to autoreactivity.

  13. Cholera Toxin Promotes Th17 Cell Differentiation by Modulating Expression of Polarizing Cytokines and the Antigen-Presenting Potential of Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Jung-Ok Kang

    Full Text Available Cholera toxin (CT, an exotoxin produced by Vibrio cholera, acts as a mucosal adjuvant. In a previous study, we showed that CT skews differentiation of CD4 T cells to IL-17-producing Th17 cells. Here, we found that intranasal administration of CT induced migration of migratory dendritic cell (DC populations, CD103+ DCs and CD11bhi DCs, to the lung draining mediastinal lymph nodes (medLN. Among those DC subsets, CD11bhi DCs that were relatively immature had a major role in Th17 cell differentiation after administration of CT. CT-treated BMDCs showed reduced expression of MHC class II and CD86, similar to CD11bhi DCs in medLN, and these BMDCs promoted Th17 cell differentiation more potently than other BMDCs expressing higher levels of MHC class II and CD86. By analyzing the expression of activation markers such as CD25 and CD69, proliferation and IL-2 production, we determined that CT-treated BMDCs showed diminished antigen-presenting potential to CD4+ T cells compared with normal BMDCs. We also found that CT-stimulated BMDCs promote activin A expression as well as IL-6 and IL-1β, and activin A had a synergic role with TGF-β1 in CT-mediated Th17 cell differentiation. Taken together, our results suggest that CT-stimulated DCs promote Th17 cell differentiation by not only modulating antigen-presenting potential but also inducing Th polarizing cytokines.

  14. Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines

    Directory of Open Access Journals (Sweden)

    Accolla Roberto S

    2012-07-01

    Full Text Available Abstract Present immunoprevention and immunotherapeutic approaches against cancer suffer from the limitation of being not “sterilizing” procedures, as very poor protection against the tumor is obtained. Thus newly conceived anti-tumor vaccination strategies are urgently needed. In this review we will focus on ways to provide optimal MHC class II-restricted tumor antigen presentation to CD4+ T helper cells as a crucial parameter to get optimal and protective adaptive immune response against tumor. Through the description of successful preventive or therapeutic experimental approaches to vaccinate the host against the tumor we will show that optimal activation of MHC class II-restricted tumor specific CD4+ T helper cells can be achieved in various ways. Interestingly, the success in tumor eradication and/or growth arrest generated by classical therapies such as radiotherapy and chemotherapy in some instances can be re-interpreted on the basis of an adaptive immune response induced by providing suitable access of tumor-associated antigens to MHC class II molecules. Therefore, focussing on strategies to generate better and suitable MHC class II–restricted activation of tumor specific CD4+ T helper cells may have an important impact on fighting and defeating cancer.

  15. HLA-F and MHC-I open conformers cooperate in a MHC-I antigen cross-presentation pathway.

    Science.gov (United States)

    Goodridge, Jodie P; Lee, Ni; Burian, Aura; Pyo, Chul-Woo; Tykodi, Scott S; Warren, Edus H; Yee, Cassian; Riddell, Stanley R; Geraghty, Daniel E

    2013-08-15

    Peptides that are presented by MHC class I (MHC-I) are processed from two potential sources, as follows: newly synthesized endogenous proteins for direct presentation on the surface of most nucleated cells and exogenous proteins for cross-presentation typically by professional APCs. In this study, we present data that implicate the nonclassical HLA-F and open conformers of MHC-I expressed on activated cells in a pathway for the presentation of exogenous proteins by MHC-I. This pathway is distinguished from the conventional endogenous pathway by its independence from TAP and tapasin and its sensitivity to inhibitors of lysosomal enzymes, and further distinguished by its dependence on MHC-I allotype-specific epitope recognition for Ag uptake. Thus, our data from in vitro experiments collectively support a previously unrecognized model of Ag cross-presentation mediated by HLA-F and MHC-I open conformers on activated lymphocytes and monocytes, which may significantly contribute to the regulation of immune system functions and the immune defense.

  16. Peroxisome proliferator-activated receptor γ-regulated cathepsin D is required for lipid antigen presentation by dendritic cells.

    Science.gov (United States)

    Nakken, Britt; Varga, Tamas; Szatmari, Istvan; Szeles, Lajos; Gyongyosi, Adrienn; Illarionov, Petr A; Dezso, Balazs; Gogolak, Peter; Rajnavolgyi, Eva; Nagy, Laszlo

    2011-07-01

    It is well established that dendritic cells (DCs) take up, process, and present lipid Ags in complex with CD1d molecules to invariant NKT cells. The lipid-activated transcription factor, peroxisome proliferator-activated receptor γ (PPARγ), has previously been shown to regulate CD1d expression in human monocyte-derived DCs, providing a link between lipid metabolism and lipid Ag presentation. We report that PPARγ regulates the expression of a lysosomal protease, cathepsin D (CatD), in human monocyte-derived DCs. Inhibition of CatD specifically reduced the expansion of invariant NKT cells and furthermore resulted in decreased maturation of saposins, a group of lipid transfer proteins required for lysosomal lipid Ag processing and loading. These results reveal a novel mechanism of lipid Ag presentation and identify CatD as a key component of this machinery and firmly place PPARγ as the transcriptional regulator linking lipid metabolism and lipid Ag processing.

  17. Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: coupling cytosolic peptide stability to antigen presentation

    NARCIS (Netherlands)

    Herberts, Carla A.; Neijssen, Joost J.; de Haan, Jolanda; Janssen, Lennert; Drijfhout, Jan Wouter; Reits, Eric A.; Neefjes, Jacques J.

    2006-01-01

    Ag presentation by MHC class I is a highly inefficient process because cytosolic peptidases destroy most peptides after proteasomal generation. Various mechanisms shape the MHC class I peptidome. We define a new one: intracellular peptide stability. Peptides with two N-terminal basic amino acids are

  18. The Ia.2 Epitope Defines a Subset of Lipid Raft Resident MHC Class II Molecules Crucial to Effective Antigen Presentation1

    Science.gov (United States)

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.

    2016-01-01

    Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648

  19. B7.1 expression on tumor cells circumvents the need of professional antigen presentation for in vitro propagation of cytotoxic T cell lines.

    Science.gov (United States)

    Iezzi, G; Protti, M P; Rugarli, C; Bellone, M

    1996-01-01

    In vitro propagation of tumor-specific CTLs, to be used for identification of tumor antigens (Ag) and/or adoptive immunotherapy, is hampered by the need of large amounts of professional antigen-presenting cells (APC) used for periodical cycles of restimulation. We evaluated whether RMA T lymphoma cells, stably transfected with the cDNA encoding for the B7.1 costimulatory molecule, provided the activation signals to CD8+ T lymphocytes in the absence of professional APC and CD4+ helper cells. We demonstrate here that long-term CD8+ cell lines can be efficiently propagated in vitro by repeated cycles of stimulation with tumor cells stably expressing B7.1. Professional APC and CD4+ helper cells are not required as far as interleukin 2 is exogenously provided. Furthermore, CD8+ blasts needed both signal 1 (Ag in the contest of the MHC molecule) and signal 2 (interaction of costimulatory molecules) for restimulation. T cell blasts in the presence of signal 1 or 2 only still retained their effector potential but did not undergo clonal expansion. These results are very promising for further applications of specific immunotherapies in humans.

  20. T cell recognition of rat myelin basic protein as a TCR antagonist inhibits reciprocal activation of antigen-presenting cells and engenders resistance to experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Walker, M R; Mannie, M D

    2001-06-01

    The aim of this study was to assess whether T cell recognition of myelin basic protein (MBP) as a partially antagonistic self antigen regulates the reciprocal activation of professional antigen-presenting cells (APC). This study focused on the rat 3H3 T cell clone that recognized guinea pig (GP) MBP as a full agonist and self rat (R) MBP as a partial agonist. In cultures of 3H3 T cells and splenic APC, the agonist GPMBP elicited several responses by splenic APC, including production of nitric oxide, down-regulation of I-A, induction of B7.1 and B7.2, and prolongation of APC survival. RMBP stimulated a partial increase in production of nitric oxide, partially promoted survival of splenic APC, but did not alter expression of I-A, B7.1, or B7.2 on splenic APC. In the presence ofGPMBP, RMBP antagonized agonist-stimulated induction of B7 molecules, reversed the loss of I-A, and promoted the generation of I-A(+), costimulus-deficient APC. Furthermore, 3H3 T cells cultured with RMBP and irradiated splenocytes reduced the severity of EAE upon adoptive transfer into naive rat recipients subsequently challenged with an encephalitogenic dose of GPMBP/CFA. Overall, this study indicates that T cell receptor antagonism blocks T cell activation, inhibits feedback activation of splenic APC, and promotes T cell-dependent regulatory activities in EAE.

  1. Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish.

    Science.gov (United States)

    Aquilino, Carolina; Granja, Aitor G; Castro, Rosario; Wang, Tiehui; Abos, Beatriz; Parra, David; Secombes, Christopher J; Tafalla, Carolina

    2016-04-05

    CK9 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to mammalian CCL25. Although CK9 is known to be transcriptionally regulated in response to inflammation particularly in mucosal tissues, its functionality has never been revealed. In the current work, we have demonstrated that CK9 is chemoattractant for antigen presenting cells (APCs) expressing major histocompatibility complex class II (MHC II) on the cell surface. Among these APCs, CK9 has a strong chemotactic capacity for both B cells (IgM+ and IgT+) and macrophages. Along with its chemotactic capacities, CK9 modulated the MHC II turnover of B lymphocytes and up-regulated the phagocytic capacity of both IgM+ cells and macrophages. Although CK9 had no lymphoproliferative effects, it increased the survival of IgT+ lymphocytes. Furthermore, we have established that the chemoattractant capacity of CK9 is strongly increased after pre-incubation of leukocytes with a T-independent antigen, whereas B cell receptor (BCR) cross-linking strongly abrogated their capacity to migrate to CK9, indicating that CK9 preferentially attracts B cells at the steady state or under BCR-independent stimulation. These results point to CK9 being a key regulator of B lymphocyte trafficking in rainbow trout, able to modulate innate functions of teleost B lymphocytes and macrophages.

  2. MHC class I-presented tumor antigens identified in ovarian cancer by immunoproteomic analysis are targets for T-cell responses against breast and ovarian cancer.

    Science.gov (United States)

    Morse, Michael A; Secord, Angeles A; Blackwell, Kimberly; Hobeika, Amy C; Sinnathamby, Gomathinayagam; Osada, Takuya; Hafner, Julie; Philip, Mohan; Clay, Timothy M; Lyerly, H Kim; Philip, Ramila

    2011-05-15

    The purpose of this study is to test whether peptide epitopes chosen from among those naturally processed and overpresented within MHC molecules by malignant, but not normal cells, when formulated into cancer vaccines, could activate antitumor T-cell responses in humans. Mixtures of human leukocyte antigen A2 (HLA-A2)-binding ovarian cancer-associated peptides were used to activate naive T cells to generate antigen-specific T cells that could recognize ovarian and breast cancers in vitro. Combinations of these peptides (0.3 mg of each peptide or 1 mg of each peptide) were formulated into vaccines in conjunction with Montanide ISA-51 and granulocyte monocyte colony stimulating factor which were used to vaccinate patients with ovarian and breast cancer without evidence of clinical disease in parallel pilot clinical trials. T cells specific for individual peptides could be generated in vitro by using mixtures of peptides, and these T cells recognized ovarian and breast cancers but not nonmalignant cells. Patient vaccinations were well tolerated with the exception of local erythema and induration at the injection site. Nine of the 14 vaccinated patients responded immunologically to their vaccine by inducing peptide-specific T-cell responses that were capable of recognizing HLA-matched breast and ovarian cancer cells. Mixtures of specific peptides identified as naturally presented on cancer cells and capable of activating tumor-specific T cells in vitro also initiate or augment immune responses toward solid tumors in cancer patients. ©2011 AACR.

  3. Effect of gamma radiation on resting B lymphocytes. II. Functional characterization of the antigen-presentation defect

    International Nuclear Information System (INIS)

    Ashwell, J.D.; Jenkins, M.K.; Schwartz, R.H.

    1988-01-01

    The effect of radiation on three discrete Ag-presentation functions in resting B cells was examined: 1) Ag uptake and processing, 2) expression of processed Ag in the context of functional class II molecules, and 3) provision of necessary co-stimulatory, or second, signals. Analysis of radiation's effect on B cell presentation of intact vs fragmented Ag or its effect on presentation by Ag-pulsed B cells indicated that damage to Ag uptake and processing could not account for the bulk of the radiation-induced Ag-presentation defect. Experiments with phosphatidylinositol hydrolysis as an indirect measure of TCR occupancy suggested that irradiation caused a fairly rapid (within 1 to 2 h) decrease in the ability of the B cell APC to display a stimulatory combination of Ag and class II molecule. Ag dose-response analyses demonstrated that when presenting a fragment of the Ag pigeon cytochrome c to a T cell clone, 3000 rad-treated B cell APC were able to stimulate approximately 50% as much phosphatidylinositol turnover as unirradiated B cells. It was also found that, in contrast to their inability to initiate T cell proliferation, and similarly to chemically cross-linked splenocytes, heavily irradiated resting B cells plus Ag induced a state of Ag hyporesponsiveness in T cell clones. This effect on T cells had the same Ag- and MHC-specificity as did receptor occupancy required for proliferation, indicating that heavily irradiated resting B cells bear functional class II molecules. Co-culture of T cells with allogeneic B cells and syngeneic heavily irradiated B cells or chemically cross-linked splenic APC plus Ag resulted in T cell proliferation and interfered with the induction of the hyporesponsive state. This co-stimulatory function was radiosensitive in resting allogeneic B cells

  4. Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The presented materials consist of presentations of international workshop which held in Warsaw from 4 to 5 October 2007. Main subject of the meeting was progress in manufacturing as well as research program development for neutron detector which is planned to be placed at GANIL laboratory and will be used in nuclear spectroscopy research

  5. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    OpenAIRE

    Van Hateren, Andrew; Elliott, Timothy; Bailey, Alistair

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significan...

  6. Men presenting with prostate-specific antigen (PSA) values of over 100 ng/mL.

    Science.gov (United States)

    Ang, Mann; Rajcic, Branimir; Foreman, Darren; Moretti, Kim; O'Callaghan, Michael E

    2016-04-01

    To investigate overall survival and prostate cancer-specific mortality in men with prostate cancer presenting with a PSA level PSA level extracted from the South Australian Prostate Cancer Clinical Outcomes Collaborative (SA-PCCOC) database. Men included were diagnosed between January 1998 and August 2013. Patients were divided into groups according to diagnostic PSA level: 500 ng/mL. Outcomes measured include overall survival and prostate cancer-specific mortality. Clinical stage, Gleason score and the presence of bony metastasis was evaluated to determine if they were prognostic factors in patients with PSA over 100 at diagnosis. Cox proportional hazards and competing risks regression were used to model overall survival and prostate cancer-specific mortality outcomes respectively. Of this cohort, 241 patients (4.2%) had a diagnostic PSA level >100 ng/mL. Patients with PSA >100 ng/mL have a significant reduction in five (29.1% vs 62.5% vs 87%) and ten-year (18.2% vs 36.7% vs 70.7%) overall survival when compared to men with diagnostic PSA 20-100 and PSA level at diagnosis. Overall survival was associated with PSA level, Gleason score and age. There was a linear increase in risk (overall survival) as PSA increased until 200 and no association thereafter. Models of overall survival and prostate cancer-specific mortality incorporating a risk stratification developed by Izumi et al. predicted overall survival but not prostate cancer-specific mortality. The use of this stratification did not improve model accuracy. Only a small number of men (4.2%) with prostate cancer present with PSA >100 ng/mL at diagnosis. Overall survival at five and ten years was significantly poorer in patients with PSA >100 ng/mL. In this cohort of men presenting with PSA >100 at diagnosis, PSA level was not associated with prostate cancer-specific mortality. Gleason score and metastases are significant prognostic factors in this group of men. © 2016 The Authors BJU International © 2016

  7. Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation

    Science.gov (United States)

    Salio, Mariolina; Ghadbane, Hemza; Dushek, Omer; Shepherd, Dawn; Cypen, Jeremy; Gileadi, Uzi; Aichinger, Michael C.; Napolitani, Giorgio; Qi, Xiaoyang; van der Merwe, P. Anton; Wojno, Justyna; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Yuan, Weiming; Cresswell, Peter; Cerundolo, Vincenzo

    2013-01-01

    Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a “lipid editor,” capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity. PMID:24248359

  8. Mutation patterns in genes encoding interferon signaling and antigen presentation: A pan-cancer survey with implications for the use of immune checkpoint inhibitors.

    Science.gov (United States)

    Budczies, Jan; Bockmayr, Michael; Klauschen, Frederick; Endris, Volker; Fröhling, Stefan; Schirmacher, Peter; Denkert, Carsten; Stenzinger, Albrecht

    2017-08-01

    Blockade of immune checkpoints has become a powerful tool in cancer medicine, which is effective across various solid cancer types and hematologic malignancies. While immunohistochemical detection of PD-L1 expression in tumor cells, immune cells, or both has been introduced as predictive biomarker in several clinical trials, shortcomings and limitations of this approach were quickly recognized. As a single biomarker is unlikely to adequately reflect the complex interplay between immune cells and cancer, various genetic determinants of therapy success, including microsatellite instability, mutational burden, and PD-L1 amplification, are being investigated. Very recent work indicates that mutations in B2M, JAK1, and JAK2 render melanoma resistant to immune checkpoint blockade, thus serving as negative response predictors. Using the TCGA dataset, we performed a pan-cancer analysis of potentially damaging mutations in key genes implicated in antigen presentation and interferon-gamma signaling and investigated associations with transcript levels of immune checkpoint genes, cytolytic activity, and mutational burden. For B2M, JAK1, and JAK2, we observed overall mutation frequencies of 1.8%, 2%, and 2.6%, respectively, and found significant associations with mutational burden. On pathway level, melanoma as well as bladder, gastric, and lung cancer were most frequently affected by putative resistance mutations with mutation rates of 27%-50% in the antigen presentation pathway and of 16%-21% in the interferon signaling pathway. Our analysis suggests that a significant number of tumors harbor mutations that may negatively interfere with immune checkpoint inhibition, or confer a higher likelihood of resistance for which a second hit is ultimately required. Since these mutations are prevalent in treatment-naïve tumors, genetic screening prior to therapy might complement current approaches at predicting response to immune checkpoint blockade. © 2017 Wiley Periodicals, Inc.

  9. Presentations

    International Nuclear Information System (INIS)

    2007-01-01

    The PARIS meeting held in Cracow, Poland from 14 to 15 May 2007. The main subjects discussed during this meeting were the status of international project dedicated to gamma spectroscopy research. The scientific research program includes investigations of giant dipole resonance, probe of hot nuclei induced in heavy reactions, Jacobi shape transitions, isospin mixing and nuclear multifragmentation. The mentioned programme needs Rand D development such as new scintillations materials as lanthanum chlorides and bromides as well as new photo detection sensors as avalanche photodiodes - such subjects are also subjects of discussion. Additionally results of computerized simulations of scintillation detectors properties by means of GEANT- 4 code are presented

  10. Δ9-tetrahydrocannabinol impairs the inflammatory response to influenza infection: role of antigen-presenting cells and the cannabinoid receptors 1 and 2.

    Science.gov (United States)

    Karmaus, Peer W F; Chen, Weimin; Crawford, Robert; Kaplan, Barbara L F; Kaminski, Norbert E

    2013-02-01

    Δ(9)-tetrahydrocannabinol (Δ(9)-THC) has potent immune modulatory properties and can impair pathogen-induced immune defenses, which in part have been attributed to ligation of the cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). Most recently, dendritic cells (DC) were identified for their potential to enhance influenza-induced immunopathology in mice lacking CB(1) and CB(2) (CB(1) (-/-)CB(2) (-/-)). This study focused on the modulation of the inflammatory immune response to influenza by Δ(9)-THC and the role of CB(1) and/or CB(2) as receptor targets for Δ(9)-THC. C57Bl/6 (wild type) and CB(1) (-/-)CB(2) (-/-) mice were administered Δ(9)-THC (75 mg/kg) surrounding the intranasal instillation of A/PR/8/34 influenza virus. Three days post infection (dpi), Δ(9)-THC broadly decreased expression levels of mRNA induced by the innate immune response to influenza, suppressed the percentage of interferon-gamma (IFN-γ)-producing CD4(+) and interleukin-17-producing NK1.1(+) cells, and reduced the influx of antigen-presenting cells (APC), including inflammatory myeloid cells and monocytes/macrophages, into the lung in a CB(1)- and/or CB(2)-dependent manner. Δ(9)-THC had little effect on the expression of CD86, major histocompatibility complex I (MHC I), and MHC II by APC isolated from the lung. In vitro studies demonstrated that lipopolysaccharide (LPS)-induced maturation was suppressed by Δ(9)-THC in bone marrow-derived DC (bmDC). Furthermore, antigen-specific IFN-γ production by CD8(+) T cells after coculture was reduced by Δ(9)-THC treatment of bmDC in a CB(1)- and/or CB(2)-dependent manner. Collectively, these studies suggest that Δ(9)-THC potently suppresses myeloid cell immune function, in a manner involving CB(1) and/or CB(2), thereby impairing immune responses to influenza infection.

  11. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses.

    Science.gov (United States)

    Duong, Huu Thuy Trang; Kim, Nak Won; Thambi, Thavasyappan; Giang Phan, V H; Lee, Min Sang; Yin, Yue; Jeong, Ji Hoon; Lee, Doo Sung

    2018-01-10

    Successful delivery of a DNA vaccine to antigen-presenting cells and their subsequent stimulation of CD4 + and CD8 + T cell immunity remains an inefficient process. In general, the delivery of prophylactic vaccines is mainly mired by low transfection efficacy, poor immunogenicity, and safety issues from the materials employed. Currently, several strategies have been exploited to improve immunogenicity, but an effective strategy for safe and pain-free delivery of DNA vaccines is complicated. Herein, we report the rapid delivery of polyplex-based DNA vaccines using microneedle arrays coated with a polyelectrolyte multilayer assembly of charge reversal pH-responsive copolymer and heparin. The charge reversal pH-responsive copolymer, composed of oligo(sulfamethazine)-b-poly(ethylene glycol)-b-poly(amino urethane) (OSM-b-PEG-b-PAEU), was used as a triggering layer in the polyelectrolyte multilayer assembly on microneedles. Charge reversal characteristics of this copolymer, that is, the OSM-b-PEG-b-PAEU copolymer exhibit, positive charge at low pH (pH4.03) and becoming negative charge when exposed to physiological pH conditions (pH7.4), allowing the facile assembly and disassembly of polyelectrolyte multilayers. The electrostatic repulsion between heparin and OSM-b-PEG-b-PAEU charge reversal copolymer triggered the release of DNA vaccines. DNA vaccines laden on microneedles are effectively transfected into RAW 264.7 macrophage cells in vitro. Vaccination of BALB/c mice by DNA vaccine-loaded microneedle arrays coated with a polyelectrolyte multilayer generated antigen-specific robust immune responses. These findings provide potential strategy of charge reversal pH-responsive copolymers coated microneedles for DNA vaccine delivery. Copyright © 2017. Published by Elsevier B.V.

  12. Presentation

    Directory of Open Access Journals (Sweden)

    Eduardo Vicente

    2013-06-01

    Full Text Available In the present edition of Significação – Scientific Journal for Audiovisual Culture and in the others to follow something new is brought: the presence of thematic dossiers which are to be organized by invited scholars. The appointed subject for the very first one of them was Radio and the invited scholar, Eduardo Vicente, professor at the Graduate Course in Audiovisual and at the Postgraduate Program in Audiovisual Media and Processes of the School of Communication and Arts of the University of São Paulo (ECA-USP. Entitled Radio Beyond Borders the dossier gathers six articles and the intention of reuniting works on the perspectives of usage of such media as much as on the new possibilities of aesthetical experimenting being build up for it, especially considering the new digital technologies and technological convergences. It also intends to present works with original theoretical approach and original reflections able to reset the way we look at what is today already a centennial media. Having broadened the meaning of “beyond borders”, four foreign authors were invited to join the dossier. This is the first time they are being published in this country and so, in all cases, the articles where either written or translated into Portuguese.The dossier begins with “Radio is dead…Long live to the sound”, which is the transcription of a thought provoking lecture given by Armand Balsebre (Autonomous University of Barcelona – one of the most influential authors in the world on the Radio study field. It addresses the challenges such media is to face so that it can become “a new sound media, in the context of a new soundscape or sound-sphere, for the new listeners”. Andrew Dubber (Birmingham City University regarding the challenges posed by a Digital Era argues for a theoretical approach in radio studies which can consider a Media Ecology. The author understands the form and discourse of radio as a negotiation of affordances and

  13. A novel HLA-B18 restricted CD8+ T cell epitope is efficiently cross-presented by dendritic cells from soluble tumor antigen.

    Directory of Open Access Journals (Sweden)

    Rona Y Zhao

    Full Text Available NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8(+ T cell epitope, NY-ESO-1(88-96 (LEFYLAMPF and compared its direct- and cross-presentation to that of the reported NY-ESO-1(157-165 epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1(88-96 is much more efficiently cross-presented from the soluble form, than NY-ESO-1(157-165. On the other hand, NY-ESO-1(157-165 is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A(26-35; whereas NY-ESO-1(88-96 was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1(88-96 is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18(+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1(88-96 from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8(+ T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed.

  14. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    International Nuclear Information System (INIS)

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh; Banerjee-Bhatnagar, Nirupama

    2006-01-01

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine

  15. Extreme-Risk Prostate Adenocarcinoma Presenting With Prostate-Specific Antigen (PSA) >40 ng/ml: Prognostic Significance of the Preradiation PSA Nadir

    International Nuclear Information System (INIS)

    Alexander, Abraham S.; Mydin, Aminudin; Jones, Stuart O.; Christie, Jennifer; Lim, Jan T.W.; Truong, Pauline T.; Ludgate, Charles M.

    2011-01-01

    Purpose: To examine the impact of patient, disease, and treatment characteristics on survival outcomes in patients treated with neoadjuvant androgen deprivation therapy (ADT) and radical external-beam radiotherapy (RT) for clinically localized, extreme-risk prostate adenocarcinoma with a presenting prostate-specific antigen (PSA) concentration of >40 ng/ml. Methods and Materials: A retrospective chart review was conducted of 64 patients treated at a single institution between 1991 and 2000 with ADT and RT for prostate cancer with a presenting PSA level of >40 ng/ml. The effects of patient age, tumor (presenting PSA level, Gleason score, and T stage), and treatment (total ADT duration and pre-RT PSA level) characteristics on rates of biochemical disease-free survival (bDFS), prostate cancer-specific survival (PCSS), and overall survival (OS) were examined. Results: Median follow-up time was 6.45 years (range, 0.09–15.19 years). Actuarial bDFS, PCSS, and OS rates at 5 years were 39%, 87%, and 78%, respectively, and 17%, 64%, and 45%, respectively, at 10 years. On multivariate analysis, the pre-RT PSA level (≤0.1 versus >0.1 ng/ml) was the single most significant prognostic factor for bDFS (p = 0.033) and OS (p = 0.018) rates, whereas age, T stage, Gleason score, and ADT duration (≤6 versus >6 months) were not predictive of outcomes. Conclusion: In prostate cancer patients with high presenting PSA levels, >40 ng/ml, treated with combined modality, neoadjuvant ADT, and RT, the pre-RT PSA nadir, rather than ADT duration, was significantly associated with improved survival. This observation supports the use of neoadjuvant ADT to drive PSA levels to below 0.1 ng/ml before initiation of RT, to optimize outcomes for patients with extreme-risk disease.

  16. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    Science.gov (United States)

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors.

  17. Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells

    Science.gov (United States)

    Varani, Stefania; Gelsomino, Francesco; Bartoletti, Michele; Viale, Pierluigi; Mastroianni, Antonio; Briganti, Elisabetta; Ortolani, Patrizia; Albertini, Francesco; Calzetti, Carlo; Prati, Francesca; Cenni, Patrizia; Castellani, Gastone; Morini, Silvia; Rossini, Giada; Landini, Maria Paola; Sambri, Vittorio

    2015-01-01

    Toscana virus (TOSV) is a Phlebotomus-transmitted RNA virus and a frequent cause of human meningitis and meningoencephalitis in Southern Europe during the summer season. While evidence for TOSV-related central nervous system (CNS) cases is increasing, little is known about the host defenses against TOSV. We evaluated innate immune response to TOSV by analyzing frequency and activation of blood antigen-presenting cells (APCs) and cytokine levels in plasma and cerebrospinal fluid (CSF) from patients with TOSV neuroinvasive infection and controls. An altered frequency of different blood APC subsets was observed in TOSV-infected patients, with signs of monocytic deactivation. Nevertheless, a proper or even increased responsiveness of toll-like receptor 3 and 7/8 was observed in blood APCs of these patients as compared to healthy controls. Systemic levels of cytokines remained low in TOSV-infected patients, while levels of anti-inflammatory and antiviral mediators were significantly higher in CSF from TOSV-infected patients as compared to patients with other infectious and noninfectious neurological diseases. Thus, the early host response to TOSV appears effective for viral clearance, by proper response to TLR3 and TLR7/8 agonists in peripheral blood and by a strong and selective antiviral and anti-inflammatory response in the CNS. PMID:26569288

  18. Recipient dendritic cells, but not B cells, are required antigen-presenting cells for peripheral alloreactive CD8+ T-cell tolerance.

    Science.gov (United States)

    Mollov, J L; Lucas, C L; Haspot, F; Gaspar, J Kurtz C; Guzman, A; Sykes, M

    2010-03-01

    Induction of mixed allogeneic chimerism is a promising approach for achieving donor-specific tolerance, thereby obviating the need for life-long immunosuppression for solid organ allograft acceptance. In mice receiving a low dose (3Gy) of total body irradiation, allogeneic bone marrow transplantation combined with anti-CD154 tolerizes peripheral CD4 and CD8 T cells, allowing achievement of mixed chimerism with specific tolerance to donor. With this approach, peripheral CD8 T-cell tolerance requires recipient MHC class II, CD4 T cells, B cells and DCs. Recipient-type B cells from chimeras that were tolerant to donor still promoted CD8 T-cell tolerance, but their role could not be replaced by donor-type B cells. Using recipients whose B cells or DCs specifically lack MHC class I and/or class II or lack CD80 and CD86, we demonstrate that dendritic cells (DCs) must express CD80/86 and either MHC class I or class II to promote CD8 tolerance. In contrast, B cells, though required, did not need to express MHC class I or class II or CD80/86 to promote CD8 tolerance. Moreover, recipient IDO and IL-10 were not required. Thus, antigen presentation by recipient DCs and not by B cells is critical for peripheral alloreactive CD8 T cell tolerance.

  19. Identification of an immunodominant region of the major house dust mite allergen Der p 2 presented by common human leucocyte antigen alleles.

    Science.gov (United States)

    Crack, L R; Chan, H W; McPherson, T; Ogg, G S

    2012-04-01

    Better understanding of the relevance of the immune response to common environmental allergens, such as the major house dust mite (HDM) allergen Der p 2, requires characterization of constituent T-cell epitopes. To identify CD4(+) T-cell epitopes within Der p 2 recognized by commonly expressed human leucocyte antigen (HLA) alleles. HLA-blocking antibodies, peptide pools and truncations were used in ELISpot assays to establish restricted T-cell epitopes. People with and without atopic dermatitis have detectable Der p 2-specific T cells in the peripheral blood, which can proliferate in response to Der p 2 peptides. Interleukin-4-specific responses, both ex vivo and cultured to Der p 2 peptides, had a significant positive correlation with HDM-specific serum IgE. Within one pool of Der p 2 peptides, the 20mer D11 was found to induce multiple responses restricted through several alleles, including HLA-DPB1*0401 and HLA-DRB1*01. We have identified an immunogenic region of Der p 2 presented by common HLA class II alleles, including the most commonly expressed HLA allele DPB1*0401. Identification of such epitopes may be of future value in peptide immunotherapeutic approaches. © The Author(s). CED © 2011 British Association of Dermatologists.

  20. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Meningitis Caused by Toscana Virus Is Associated with Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Stefania Varani

    2015-11-01

    Full Text Available Toscana virus (TOSV is a Phlebotomus-transmitted RNA virus and a frequent cause of human meningitis and meningoencephalitis in Southern Europe during the summer season. While evidence for TOSV-related central nervous system (CNS cases is increasing, little is known about the host defenses against TOSV. We evaluated innate immune response to TOSV by analyzing frequency and activation of blood antigen-presenting cells (APCs and cytokine levels in plasma and cerebrospinal fluid (CSF from patients with TOSV neuroinvasive infection and controls. An altered frequency of different blood APC subsets was observed in TOSV-infected patients, with signs of monocytic deactivation. Nevertheless, a proper or even increased responsiveness of toll-like receptor 3 and 7/8 was observed in blood APCs of these patients as compared to healthy controls. Systemic levels of cytokines remained low in TOSV-infected patients, while levels of anti-inflammatory and antiviral mediators were significantly higher in CSF from TOSV-infected patients as compared to patients with other infectious and noninfectious neurological diseases. Thus, the early host response to TOSV appears effective for viral clearance, by proper response to TLR3 and TLR7/8 agonists in peripheral blood and by a strong and selective antiviral and anti-inflammatory response in the CNS.

  2. Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions.

    Science.gov (United States)

    Lemmermann, Niels A W; Fink, Annette; Podlech, Jürgen; Ebert, Stefan; Wilhelmi, Vanessa; Böhm, Verena; Holtappels, Rafaela; Reddehase, Matthias J

    2012-11-01

    Medical interest in cytomegalovirus (CMV) is based on lifelong neurological sequelae, such as sensorineural hearing loss and mental retardation, resulting from congenital infection of the fetus in utero, as well as on CMV disease with multiple organ manifestations and graft loss in recipients of hematopoietic cell transplantation or solid organ transplantation. CMV infection of transplantation recipients occurs consequent to reactivation of virus harbored in a latent state in the transplanted donor cells and tissues, or in the tissues of the transplantation recipient herself or himself. Hence, CMV infection is a paradigm for a viral infection that causes disease primarily in the immunocompromised host, while infection of the immunocompetent host is associated with only mild and nonspecific symptoms so that it usually goes unnoticed. Thus, CMV is kept under strict immune surveillance. These medical facts are in apparent conflict with the notion that CMVs in general, human CMV as well as animal CMVs, are masters of 'immune evasion', which during virus-host co-speciation have convergently evolved sophisticated mechanisms to avoid their recognition by innate and adaptive immunity of their respective host species, with viral genes apparently dedicated to serve just this purpose (Reddehase in Nat Rev Immunol 2:831-844, 2002). With focus on viral interference with antigen presentation to CD8 T cells in the preclinical model of murine CMV infection, we try here to shed some more light on the in vivo balance between host immune surveillance of CMV infection and viral 'immune evasion' strategies.

  3. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    A limited intralysosomal proteolytic degradation is probably a key event in the accessory cell processing of large protein antigens before their presentation to T cells. With the aid of highly specific inhibitors of proteinases, we have examined the role of proteolysis in the presentation...... of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...... inhibitor. Another inhibitor, pepstatin A, which selectively blocks aspartic proteinases, did not block the presentation of dinitrophenyl-poly-L-lysine. The results identify cysteine proteinases, probably lysosomal, as one of the groups of enzymes involved in antigen processing....

  4. A major isoform of the E3 ubiquitin ligase March-I in antigen-presenting cells has regulatory sequences within its gene.

    Science.gov (United States)

    Kaul, Sunil; Mittal, Sharad K; Roche, Paul A

    2018-03-23

    Regulation of major histocompatibility complex class II (MHC-II) expression is important not only to maintain a diverse pool of MHC-II-peptide complexes but also to prevent development of autoimmunity. The membrane-associated RING-CH (March) E3 ubiquitin ligase March-I regulates ubiquitination and turnover of MHC-II-peptide complexes in resting dendritic cells (DCs) and B cells. However, activation of either cell type terminates March-I expression, thereby stabilizing MHC-II-peptide complexes. Despite March-I's important role in the biology of antigen-presenting cells (APCs), how expression of March-I mRNA is regulated remains unknown. We now show that both DCs and B cells possess a distinct isoform of March-I whose expression is regulated by a promoter located within the March-I gene. Using March-I promoter fragments to drive expression of GFP , we also identified a core promoter for expression of March-I in DCs and B cells, but not in fibroblasts, kidney cells, or epithelial cells, that contains regulatory regions that down-regulate March-I expression upon activation of DCs. Curiously, we found downstream sequence elements, present in the first coding exon of March-I in APCs, that confer regulation of March-I expression in activated APCs. In summary, our study identifies regulatory regions of the March-I gene that confer APC-specific expression and activation-induced modulation of March-I expression in DCs and B cells.

  5. Inositol-C2-PAF down-regulates components of the antigen presentation machinery in a 2D-model of epidermal inflammation.

    Science.gov (United States)

    Semini, Geo; Hildmann, Annette; Klein, Andreas; Lucka, Lothar; Schön, Margarete; Schön, Michael P; Shmanai, Vadim; Danker, Kerstin

    2014-02-01

    In cutaneous inflammatory diseases, such as psoriasis, atopic dermatitis and allergic contact dermatitis, skin-infiltrating T lymphocytes and dendritic cells modulate keratinocyte function via the secretion of pro-inflammatory cytokines. Keratinocytes then produce mediators that recruit and activate immune cells and amplify the inflammatory response. These pathophysiological tissue changes are caused by altered gene expression and the proliferation and maturation of dermal and epidermal cells. We recently demonstrated that the glycosidated phospholipid Ino-C2-PAF down-regulates a plethora of gene products associated with innate and acquired immune responses and inflammation in the HaCaT keratinocyte cell line. To further evaluate the influence of Ino-C2-PAF we established an in vitro 2D-model of epidermal inflammation. The induction of inflammation and the impact of Ino-C2-PAF were assessed in this system using a genome-wide microarray analysis. In addition, the expression of selected genes was validated using qRT-PCR and flow cytometry. Treatment of the keratinocytes with a mix of proinflammatory cytokines resulted in transcriptional effects on a variety of genes involved in cutaneous inflammation and immunity, while additional treatment with Ino-C2-PAF counteracted the induction of many of these genes. Remarkably, Ino-C2-PAF suppressed the expression of a group of targets that are implicated in antigen processing and presentation, including MHC molecules. Thus, it is conceivable that Ino-C2-PAF possess therapeutic potential for inflammatory skin disorders, such as psoriasis and allergic contact dermatitis. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Eosinofil Sel Penyaji Antigen

    Directory of Open Access Journals (Sweden)

    Safari Wahyu Jatmiko

    2015-04-01

    Full Text Available Sel eosinofil merupakan jenis sel lekosit yang terlibat dalam berbagai patogenesis penyakit. Sel eosinofil pada awalnya dikenal sebagai sel efektor  dari sistem imunitas alamiah. Akan tetapi, kemampuan sel eosinofil dalam memfagositosis patogen menimbulkan dugaan bahwa sel eosinofil ikut berperan sebagai sel penyaji antigen. Hal ini dianalogikan dengan sel makrofag dan sel dendritik yang bisa memfagositosis dan menyajikan antigen sebagai hasil dari degradasi patogen yang difagositosis. Untuk menjawab permasalahan ini, penulis melakukan penelusuran artikel tentang eosinofil sebagai sel penyaji antigen melalui US National Library of Medicine National Institute of Healthdengan kata kunci eoshinophil dan antigen presenting cell. Hasil penelusuran adalah ditemukannya 10 artikel yang relevan dengan topik. Hasil dari sintesis kesepuluh jurnal tersebut adalah sel eosinofil mampu berperan sebagai sel penyaji antigen yang profesional (professionalantigenpresentng cell

  7. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    Full Text Available The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs. In addition, LNFPIII-NGC preferentially induced the production of Th2 "favoring" chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 "favoring" chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1-3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1-3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo

  8. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Cong

    2016-05-01

    Full Text Available Humans infected with yellow fever virus (YFV, a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM and dendritic cells (MoDC from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  9. CD80 and CD86 Costimulatory Molecules Differentially Regulate OT-II CD4+ T Lymphocyte Proliferation and Cytokine Response in Cocultures with Antigen-Presenting Cells Derived from Pregnant and Pseudopregnant Mice

    Directory of Open Access Journals (Sweden)

    Tomasz Maj

    2014-01-01

    Full Text Available Immune phenomena during the preimplantation period of pregnancy are poorly understood. The aim of our study was to assess the capacity for antigen presentation of splenic antigen-presenting cells (APCs derived from pregnant and pseudopregnant mice in in vitro conditions. Therefore, sorted CD11c+ dendritic cells and macrophages F4/80+ and CD11b+ presenting ovalbumin (OVA were cocultured with CD4+ T cells derived from OT-II mice’s (C57BL6/J-Tg(TcraTcrb1100Mjb/J spleen. After 132 hours of cell culture, proliferation of lymphocytes (ELISA-BrdU, activation of these cells (flow cytometry, cytokine profile (ELISA, and influence of costimulatory molecules blocking on these parameters were measured. We did not detect any differences in regulation of Th1/Th2 cytokine balance. CD86 seems to be the main costimulatory molecule involved in the proliferation response but CD80 is the main costimulatory molecule influencing cytokine secretion in pregnant mice. In conclusion, this study showed that CD80 and CD86 costimulatory molecules regulate OT-II CD4+ T lymphocyte proliferation and cytokine response in cocultures with antigen-presenting cells derived from pregnant and pseudopregnant mice. The implications of these changes still remain unclear.

  10. Successful cross-presentation of allogeneic myeloma cells by autologous alpha-type 1-polarized dendritic cells as an effective tumor antigen in myeloma patients with matched monoclonal immunoglobulins.

    Science.gov (United States)

    Yang, Deok-Hwan; Kim, Mi-Hyun; Lee, Youn-Kyung; Hong, Cheol Yi; Lee, Hyun Ju; Nguyen-Pham, Thanh-Nhan; Bae, Soo Young; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Chung, Ik-Joo; Kim, Hyeoung-Joon; Kalinski, Pawel; Lee, Je-Jung

    2011-12-01

    For wide application of a dendritic cell (DC) vaccination in myeloma patients, easily available tumor antigens should be developed. We investigated the feasibility of cellular immunotherapy using autologous alpha-type 1-polarized dendritic cells (αDC1s) loaded with apoptotic allogeneic myeloma cells, which could generate myeloma-specific cytotoxic T lymphocytes (CTLs) against autologous myeloma cells in myeloma patients. Monocyte-derived DCs were matured by adding the αDC1-polarizing cocktail (TNFα/IL-1β/IFN-α/IFN-γ/poly-I:C) and loaded with apoptotic allogeneic CD138(+) myeloma cells from other patients with matched monoclonal immunoglobulins as a tumor antigen. There were no differences in the phenotypic expression between αDC1s loaded with apoptotic autologous and allogeneic myeloma cells. Autologous αDC1s effectively took up apoptotic allogeneic myeloma cells from other patients with matched subtype. Myeloma-specific CTLs against autologous target cells were successfully induced by αDC1s loaded with allogeneic tumor antigen. The cross-presentation of apoptotic allogeneic myeloma cells to αDC1s could generate CTL responses between myeloma patients with individual matched monoclonal immunoglobulins. There was no difference in CTL responses between αDC1s loaded with autologous tumor antigen and allogeneic tumor antigen against targeting patient's myeloma cells. Our data indicate that autologous DCs loaded with allogeneic myeloma cells with matched immunoglobulin can generate potent myeloma-specific CTL responses against autologous myeloma cells and can be a highly feasible and effective method for cellular immunotherapy in myeloma patients.

  11. Non-covalent pomegranate (Punica granatum) hydrolyzable tannin-protein complexes modulate antigen uptake, processing and presentation by a T-cell hybridoma line co-cultured with murine peritoneal macrophages.

    Science.gov (United States)

    Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D

    2016-12-01

    In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.

  12. Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis.

    Directory of Open Access Journals (Sweden)

    Qinghong Wang

    Full Text Available IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg efficiently induces IL-23 secretion in a mannose receptor (MR-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4(+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.

  13. Interference with major histocompatibility complex class II-restricted antigen presentation in the brain by herpes simplex virus type 1: a possible mechanism of evasion of the immune response.

    Science.gov (United States)

    Lewandowski, G A; Lo, D; Bloom, F E

    1993-03-01

    Host survival of herpes simplex virus type 1 (HSV-1) infection depends on the establishment of latent infections in both peripheral and central nervous systems. Strains of HSV-1 that are successful in escaping the immune response produce a lethal infection. We now report a possible mechanism of immune response evasion used by HSV-1. After intraocular inoculation of mice, HSV-1 strain F established a latent infection in the brain, whereas strain KOS did not. The immune response to HSV-1 infection (strains KOS and F) in the brain was characterized by induction of major histocompatibility complex class II expression and recruitment of CD4+ and CD8+ cells to highly restricted sites of intracerebral viral infection. Major histocompatibility complex class II antigen expression was primarily intracellular in strain KOS infection centers and at the cell surface in strain F infection centers. We propose that major histocompatibility complex class II-restricted viral-antigen presentation to T cells is interrupted during strain KOS infections, thereby allowing KOS infection to evade T-cell-mediated events that would normally protect the host from a lethal infection. Immunocompromised mice (athymic or irradiate mice) could not survive strain F infections; however, latent F infections were established in irradiated mice reconstituted with naive lymph node and spleen cells. These data suggest that class II-restricted presentation of viral antigens is required for the control of HSV-1 infections in the nervous system.

  14. Interleukin-19: a constituent of the regulome that controls antigen presenting cells in the lungs and airway responses to microbial products.

    Directory of Open Access Journals (Sweden)

    Carol Hoffman

    Full Text Available Interleukin (IL-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+ alveolar macrophages and lung dendritic cells.IL-19-deficient (IL-19-/- mice were studied at baseline (naïve and following intranasal challenge with microbial products, or recombinant cytokines. Naïve IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2 expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of naïve IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13.Because MHCII is the molecular platform that displays peptides to T lymphocytes and Notch2 determines cell fate decisions, our studies suggest that

  15. BRAFV600E Co-opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-cell Recognition of Melanoma.

    Science.gov (United States)

    Bradley, Sherille D; Chen, Zeming; Melendez, Brenda; Talukder, Amjad; Khalili, Jahan S; Rodriguez-Cruz, Tania; Liu, Shujuan; Whittington, Mayra; Deng, Wanleng; Li, Fenge; Bernatchez, Chantale; Radvanyi, Laszlo G; Davies, Michael A; Hwu, Patrick; Lizée, Gregory

    2015-06-01

    Oncogene activation in tumor cells induces broad and complex cellular changes that contribute significantly to disease initiation and progression. In melanoma, oncogenic BRAF(V600E) has been shown to drive the transcription of a specific gene signature that can promote multiple mechanisms of immune suppression within the tumor microenvironment. We show here that BRAF(V600E) also induces rapid internalization of MHC class I (MHC-I) from the melanoma cell surface and its intracellular sequestration within endolysosomal compartments. Importantly, MAPK inhibitor treatment quickly restored MHC-I surface expression in tumor cells, thereby enhancing melanoma antigen-specific T-cell recognition and effector function. MAPK pathway-driven relocalization of HLA-A*0201 required a highly conserved cytoplasmic serine phosphorylation site previously implicated in rapid MHC-I internalization and recycling by activated immune cells. Collectively, these data suggest that oncogenic activation of BRAF allows tumor cells to co-opt an evolutionarily conserved MHC-I trafficking pathway as a strategy to facilitate immune evasion. This link between MAPK pathway activation and the MHC-I cytoplasmic tail has direct implications for immunologic recognition of tumor cells and provides further evidence to support testing therapeutic strategies combining MAPK pathway inhibition with immunotherapies in the clinical setting. ©2015 American Association for Cancer Research.

  16. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xiao-Xian Cui

    2017-12-01

    Full Text Available Hepatitis B virus (HBV infection is endemic in Asia and chronic hepatitis B (CHB is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b or lamivudine (3TC, the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy.

  17. Cancer testis antigen and immunotherapy

    Directory of Open Access Journals (Sweden)

    Krishnadas DK

    2013-04-01

    Full Text Available Deepa Kolaseri Krishnadas, Fanqi Bai, Kenneth G Lucas Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA Abstract: The identification of cancer testis (CT antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1, melanoma antigen family A, 3 (MAGE-A3, and New York esophageal squamous cell carcinoma-1 (NY-ESO-1 in various malignancies, and presents our current understanding of CT antigen based immunotherapy. Keywords: cancer testis antigens, immunotherapy, vaccine

  18. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells

    OpenAIRE

    Bachem, Annabell; Güttler, Steffen; Hartung, Evelyn; Ebstein, Frédéric; Schaefer, Michael; Tannert, Astrid; Salama, Abdulgabar; Movassaghi, Kamran; Opitz, Corinna; Mages, Hans Werner; Henn, Volker; Kloetzel, Peter-Michael; Gurka, Stephanie; Kroczek, Richard

    2010-01-01

    In recent years, human dendritic cells (DCs) could be subdivided into CD304+ plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter encompassing the CD1c+, CD16+, and CD141+ DC subsets. To date, the low frequency of these DCs in human blood has essentially prevented functional studies defining their specific contribution to antigen presentation. We have established a protocol for an effective isolation of pDC and cDC subsets to high purity. Using this approach, we show that CD141+ DC...

  19. Limited density of an antigen presented by RMA-S cells requires B7-1/CD28 signaling to enhance T-cell immunity at the effector phase.

    Directory of Open Access Journals (Sweden)

    Xiao-Lin Li

    Full Text Available The association of B7-1/CD28 between antigen presenting cells (APCs and T-cells provides a second signal to proliferate and activate T-cell immunity at the induction phase. Many reports indicate that tumor cells transfected with B7-1 induced augmented antitumor immunity at the induction phase by mimicking APC function; however, the function of B7-1 on antitumor immunity at the effector phase is unknown. Here, we report direct evidence of enhanced T-cell antitumor immunity at the effector phase by the B7-1 molecule. Our experiments in vivo and in vitro indicated that reactivity of antigen-specific monoclonal and polyclonal T-cell effectors against a Lass5 epitope presented by RMA-S cells is increased when the cells expressed B7-1. Use of either anti-B7-1 or anti-CD28 antibodies to block the B7-1/CD28 association reduced reactivity of the T effectors against B7-1 positive RMA-S cells. Transfection of Lass5 cDNA into or pulse of Lass5 peptide onto B7-1 positive RMA-S cells overcomes the requirement of the B7-1/CD28 signal for T effector response. To our knowledge, the data offers, for the first time, strong evidence that supports the requirement of B7-1/CD28 secondary signal at the effector phase of antitumor T-cell immunity being dependent on the density of an antigenic peptide.

  20. Identification of an Antigen from Normal Human Tissue That Crossreacts with the Carcinoembryonic Antigen

    Science.gov (United States)

    Kleist, S. Von; Chavanel, G.; Burtin, P.

    1972-01-01

    A glycoprotein present in normal human tissue is characterized that is neither organ- nor tumor-specific (nonspecific crossreacting antigen) and that crossreacts (by the Ouchterlony double-diffusion technique) with the carcinoembryonic antigen. This immunological relationship indicates common determinants on the molecules of both antigens. We demonstrate that the nonspecific crossreacting antigen is not a fragment of the carcinoembryonic antigen molecule. Images PMID:4115954

  1. Frequent lack of translation of antigen presentation-associated molecules MHC class I, CD1a and Beta(2)-microglobulin in Reed-Sternberg cells

    NARCIS (Netherlands)

    van den Berg, A.; Visser, L; Eberwine, J; Dadvand, L; Poppema, S

    2000-01-01

    Epstein-Barr virus (EBV) is present in Reed-Sternberg (RS) cells of a substantial proportion of Hodgkin's lymphoma cases. Most EBV-positive cases are also MHC class I-positive, whereas the majority of EBV-negative cases lack detectable levels of MHC class I expression. Application of the SAGE

  2. The highly antigenic 53/25 kDa Taenia solium protein fraction with cathepsin-L like activity is present in the oncosphere/cysticercus and induces non-protective IgG antibodies in pigs.

    Science.gov (United States)

    Zimic, Mirko; Pajuelo, Mónica; Gilman, Robert H; Gutiérrez, Andrés H; Rueda, Luis D; Flores, Myra; Chile, Nancy; Verástegui, Manuela; Gonzalez, Armando; García, Héctor H; Sheen, Patricia

    2012-01-15

    Cathepsin L-like proteases are secreted by several parasites including Taenia solium. The mechanism used by T. solium oncospheres to degrade and penetrate the intestine and infect the host is incompletely understood. It is assumed that intestinal degradation is driven by the proteolytic activity of enzymes secreted by the oncosphere. Blocking the proteolytic activity by an antibody response would prevent the oncosphere penetration and further infection. Serine and cysteine proteases including chymotrypsin, trypsin, elastase, and cathepsin L, are secreted by T. solium and Taenia saginata oncospheres when cultured in vitro, being potential vaccine candidates. However, the purification of a sufficient quantity of proteases secreted by oncospheres to conduct a vaccine trial is costly and lengthy. A 53/25 kDa cathepsin L-like fraction partially purified from T. solium cyst fluid was described previously as an important antigen for immunodiagnostics. In this study we found that this antigen is present in the T. solium oncosphere and is also secreted by the cysticercus. This protein fraction was tested for its ability to protect pigs against an oral challenge with T. solium oncospheres in a vaccine trial. IgG antibodies against the 53/25 kDa cathepsin L-like protein fraction were elicited in the vaccinated animals but did not confer protection. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Bcl-xL regulates CD1d-mediated antigen presentation to NKT cells by altering CD1d trafficking through the endocytic pathway.

    Science.gov (United States)

    Subrahmanyam, Priyanka B; Carey, Gregory B; Webb, Tonya J

    2014-09-01

    NKT cells are a unique subset of T cells that recognize glycolipid Ags presented in the context of CD1d molecules. NKT cells mount strong antitumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, little is known about the regulation of CD1d-mediated Ag processing and presentation in B cell lymphoma. Prosurvival factors of the Bcl-2 family, such as Bcl-xL, are often upregulated in B cell lymphomas and are intimately linked to sphingolipid metabolism, as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated Ag presentation to NKT cells. We found that overexpression or induction of Bcl-xL led to increased Ag presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to lysosome-associated membrane protein 1(+) compartments. Rab7, a late endosomal protein, was upregulated and CD1d molecules accumulated in the Rab7(+) late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated Ag processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. The central repeat domain 1 of Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) prevents cis MHC class I peptide presentation

    International Nuclear Information System (INIS)

    Kwun, Hyun Jin; Ramos da Silva, Suzane; Qin Huilian; Ferris, Robert L.; Tan Rusung; Chang Yuan; Moore, Patrick S.

    2011-01-01

    KSHV LANA1, a latent protein expressed during chronic infection to maintain a viral genome, inhibits major histocompatibility complex class I (MHC I) peptide presentation in cis as a means of immune evasion. Through deletional cloning, we localized this function to the LANA1 central repeat 1 (CR1) subregion. Other CR subregions retard LANA1 translation and proteasomal processing but do not markedly inhibit LANA1 peptide processing by MHC I. Inhibition of proteasomal processing ablates LANA1 peptide presentation. Direct expression of LANA1 within the endoplasmic reticulum (ER) overcomes CR1 inhibition suggesting that CR1 acts prior to translocation of cytoplasmic peptides into the ER. By physically separating CR1 from other subdomains, we show that LANA1 evades MHC I peptide processing by a mechanism distinct from other herpesviruses including Epstein-Barr virus (EBV). Although LANA1 and EBV EBNA1 are functionally similar, they appear to use different mechanisms to evade host cytotoxic T lymphocyte surveillance.

  5. Increased antigen presentation but impaired T cells priming after upregulation of interferon-beta induced by lipopolysaccharides is mediated by upregulation of B7H1 and GITRL.

    Directory of Open Access Journals (Sweden)

    Fang Wang

    Full Text Available Dendritic cells are able to present Ag-derived peptides on MHC class I and II molecules and induce T cells priming. Lipopolysaccharides (LPS, an activator of Toll-like 4 receptor (TLR4 signaling, has been demonstrated to facilitate Ag-presentation, up-regulate surface molecules expression but impair T cells priming. In this study, we investigated the effect of LPS on nicotine-enhanced DCs-dependent T cells priming and the mechanisms of LPS orchestrating the immunosuppressive program. We could demonstrate that the treatment with LPS resulted in increased surface molecules expression, enhanced Ag-presentation, up-regulated release of TGF-beta, TNF-alpha, IL-6, and IFN-beta. Concomititantly, the upregulation of IFN-beta in DCs induces the up-regulation of coinhibitory molecules B7H1 and GITRL, which cause an impaired activation of naïve Ag-specific T cells and the induction of T cell tolerance by enhancing B7H1-PD-1 interactions and promoting GITRL-GITL facilitated Treg generation, respectively. These data provide a mechanistic basis for the immunomodulatory action of IFN-beta which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune response and persistent infection.

  6. Radioimmunoassays of hidden viral antigens

    International Nuclear Information System (INIS)

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-01-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure

  7. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    Czech Academy of Sciences Publication Activity Database

    Holubová, Jana; Kamanová, Jana; Jelínek, J.; Tomala, Jakub; Mašín, Jiří; Kosová, Martina; Staněk, Ondřej; Bumba, Ladislav; Michálek, J.; Kovář, Marek; Šebo, Peter

    2012-01-01

    Roč. 80, č. 3 (2012), s. 1181-1192 ISSN 0019-9567 R&D Projects: GA AV ČR IAA500200914; GA ČR(CZ) GAP207/11/0717; GA ČR GAP301/11/0325; GA MŠk 1M0506; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : MHC CLASS -I * ESCHERICHIA-COLI * PRESENTATION PATHWAY Subject RIV: EE - Microbiology, Virology Impact factor: 4.074, year: 2012

  8. Improved Prediction of Bovine Leucocyte Antigens (BoLA) Presented Ligands by Use of Mass-Spectrometry-Determined Ligand and in Vitro Binding Data

    DEFF Research Database (Denmark)

    Nielsen, Morten; Connelley, Tim; Ternette, Nicola

    2018-01-01

    of the data. We here outline a general pipeline for dealing with this challenge and accurately annotate ligands to the relevant MHC-I molecule they were eluted from by use of GibbsClustering and binding motif information inferred from in silico models. We illustrate the approach here in the context of MHC......, and predictors of peptide-MHC interactions constitute an attractive alternative. Recently, an increasing amount of MHC presented peptides identified by mass spectrometry (MS ligands) has been published. Handling and interpretation of MS ligand data is, in general, challenging due to the polyspecificity nature......-I molecules (BoLA) of cattle. Next, we demonstrate how such annotated BoLA MS ligand data can readily be integrated with in vitro binding affinity data in a prediction model with very high and unprecedented performance for identification of BoLA-I restricted T-cell epitopes. The prediction model is freely...

  9. Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. Induction of specific clonal anergy in CD4+ T helper 1 cells

    International Nuclear Information System (INIS)

    Simon, J.C.; Tigelaar, R.E.; Bergstresser, P.R.; Edelbaum, D.; Cruz, P.D. Jr.

    1991-01-01

    We have recently demonstrated that a single dose (200 J/m2) of UVB radiation abrogates the capacity of mouse epidermal Langerhans cells (LC) or splenic adherent cells (SAC) to present keyhole limpet hemocyanin (KLH) to Ag-specific, MHC-restricted CD4+ Th1 cells. In the present study we determined whether such Th1 unresponsiveness represented long-lasting immunologic tolerance. To address this question, Th1 were preincubated with KLH-pulsed UVB-LC or UVB-SAC, then isolated and restimulated with unirradiated APC (LC or SAC) plus KLH or with exogenous rIL-2 in the absence of APC. Preincubation with KLH and UVB-LC or UVB-SAC rendered Th1 unresponsive to subsequent restimulation with APC and KLH. In addition, such Th1 were defective in their autocrine IL-2 production, but could respond normally to exogenous rIL-2, indicating that unresponsiveness was due to functional inactivation and not to cell death. Th1 unresponsiveness was Ag-specific, MHC-restricted, and long lasting (greater than 16 days). In addition, it appears that Th1 unresponsiveness is not due to the release of soluble suppressor factors from UVB-LC or UVB-SAC because supernatants from such cells had no effect on Th1 proliferation. Addition of unirradiated allogeneic SAC during preincubation prevented the induction of unresponsiveness by UVB-LC or UVB-SAC, suggesting that UVB interferes with the capacity of LC or SAC to deliver a costimulatory signal(s) that can be provided by allogeneic SAC. We conclude that UVB can convert LC or SAC from immunogenic to tolerogenic APC

  10. African-American (AA) men with local-regional prostate cancer (PC) present with higher prostate specific antigen (PSA) levels than whites: results of RTOG 94-12

    International Nuclear Information System (INIS)

    Vijayakumar, S.; Winter, K.; Sause, W.; Gallagher, M.J.; Perez, C.; Bondy, M.

    1996-01-01

    Purpose/Objective: To use pretreatment serum PSA levels as an 20), gleason score (2-5,6-7,7-10), race (whites and AAs), and two interactions viz (a) PSA by race (p=0.0012) and (b) PSA by total gleason score (p=0.0001). When race was replaced by educational status, or income, or both, the fits (0.8246,0.8197, and 0.7815, respectively) were not as good as the fit with race in the model. Conclusion: The findings of this nation-wide prospective registration study with a high percentage of AA patient participation confirms previous, smaller, geographically-limited studies (1,2,3) results that AA patients with non-metastatic PC present with a higher mean PSA values than whites. The multivariate findings imply that, for each level of total gleason score, there is a higher percentage of whites with PSA levels 20. Education and/or income as surrogates of sociological status could not completely explain the racial differences. Other reasons for health-care barriers among AAs need to be identified

  11. The Ia.2 epitope defines a subset of lipid raft-resident MHC class II molecules crucial to effective antigen presentation.

    Science.gov (United States)

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A; Drake, James R

    2011-06-15

    Previous work established that binding of the 11-5.2 anti-I-A(k) mAb, which recognizes the Ia.2 epitope on I-A(k) class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-A(k) mAbs that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-A(k) molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2-bearing subset of I-A(k) class II molecules is critically necessary for effective B cell-T cell interactions, especially at low Ag doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-A(k) class II molecules possessing a β-chain-tethered hen egg lysosome peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2(-) tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous Ag to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II conformer vital to the initiation of MHC class II-restricted B cell-T cell interactions.

  12. The Structure of the MHC Class I Molecule of Bony Fishes Provides Insights into the Conserved Nature of the Antigen-Presenting System.

    Science.gov (United States)

    Chen, Zhaosan; Zhang, Nianzhi; Qi, Jianxun; Chen, Rong; Dijkstra, Johannes M; Li, Xiaoying; Wang, Zhenbao; Wang, Junya; Wu, Yanan; Xia, Chun

    2017-11-15

    MHC molecules evolved with the descent of jawed fishes some 350-400 million years ago. However, very little is known about the structural features of primitive MHC molecules. To gain insight into these features, we focused on the MHC class I Ctid -UAA of the evolutionarily distant grass carp ( Ctenopharyngodon idella ). The Ctid -UAA H chain and β2-microglobulin ( Ctid -β2m) were refolded in vitro in the presence of peptides from viruses that infect carp. The resulting peptide- Ctid -UAA (p/ Ctid -UAA) structures revealed the classical MHC class I topology with structural variations. In comparison with known mammalian and chicken peptide-MHC class I (p/MHC I) complexes, p/ Ctid -UAA structure revealed several distinct features. Notably, 1) although the peptide ligand conventionally occupied all six pockets (A-F) of the Ag-binding site, the binding mode of the P3 side chain to pocket D was not observed in other p/MHC I structures; 2) the AB loop between β strands of the α1 domain of p/ Ctid -UAA complex comes into contact with Ctid -β2m, an interaction observed only in chicken p/BF2*2101-β2m complex; and 3) the CD loop of the α3 domain, which in mammals forms a contact with CD8, has a unique position in p/ Ctid -UAA that does not superimpose with the structures of any known p/MHC I complexes, suggesting that the p/ Ctid -UAA to Ctid -CD8 binding mode may be distinct. This demonstration of the structure of a bony fish MHC class I molecule provides a foundation for understanding the evolution of primitive class I molecules, how they present peptide Ags, and how they might control T cell responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation.

    Science.gov (United States)

    Bronte, V; Chappell, D B; Apolloni, E; Cabrelle, A; Wang, M; Hwu, P; Restifo, N P

    1999-05-15

    Tumor cells gene-modified to produce GM-CSF potently stimulate antitumor immune responses, in part, by causing the growth and differentiation of dendritic cells (DC). However, GM-CSF-modified tumor cells must be gamma-irradiated or they will grow progressively, killing the host. We observed that 23 of 75 (31%) human tumor lines and two commonly used mouse tumor lines spontaneously produced GM-CSF. In mice, chronic GM-CSF production by tumors suppressed Ag-specific CD8+ T cell responses. Interestingly, an inhibitory population of adherent CD11b(Mac-1)/Gr-1 double-positive cells caused the observed impairment of CD8+ T cell function upon direct cell-to-cell contact. The inhibitory cells were positive for some markers associated with Ag presenting cells, like F4/80, but were negative for markers associated with fully mature DC like DEC205, B7. 2, and MHC class II. We have previously reported that a similar or identical population of inhibitory "immature" APC was elicited after immunization with powerful recombinant immunogens. We show here that these inhibitory cells can be elicited by the administration of recombinant GM-CSF alone, and, furthermore, that they can be differentiated ex vivo into "mature" APC by the addition of IL-4 and GM-CSF. Thus, tumors may be able to escape from immune detection by producing "unopposed" GM-CSF, thereby disrupting the balance of cytokines needed for the maturation of fully functional DC. Further, CD11b/Gr-1 double-positive cells may function as "inhibitory" APC under the influence of GM-CSF alone.

  14. Unopposed Production of Granulocyte-Macrophage Colony-Stimulating Factor by Tumors Inhibits CD8+ T Cell Responses by Dysregulating Antigen-Presenting Cell Maturation1

    Science.gov (United States)

    Bronte, Vincenzo; Chappell, Dale B.; Apolloni, Elisa; Cabrelle, Anna; Wang, Michael; Hwu, Patrick; Restifo, Nicholas P.

    2008-01-01

    Tumor cells gene-modified to produce GM-CSF potently stimulate antitumor immune responses, in part, by causing the growth and differentiation of dendritic cells (DC). However, GM-CSF-modified tumor cells must be γ-irradiated or they will grow progressively, killing the host. We observed that 23 of 75 (31%) human tumor lines and two commonly used mouse tumor lines spontaneously produced GM-CSF. In mice, chronic GM-CSF production by tumors suppressed Ag-specific CD8+ T cell responses. Interestingly, an inhibitory population of adherent CD11b(Mac-1)/Gr-1 double-positive cells caused the observed impairment of CD8+ T cell function upon direct cell-to-cell contact. The inhibitory cells were positive for some markers associated with Ag presenting cells, like F4/80, but were negative for markers associated with fully mature DC like DEC205, B7.2, and MHC class II. We have previously reported that a similar or identical population of inhibitory “immature” APC was elicited after immunization with powerful recombinant immunogens. We show here that these inhibitory cells can be elicited by the administration of recombinant GM-CSF alone, and, furthermore, that they can be differentiated ex vivo into “mature” APC by the addition of IL-4 and GM-CSF. Thus, tumors may be able to escape from immune detection by producing “unopposed” GM-CSF, thereby disrupting the balance of cytokines needed for the maturation of fully functional DC. Further, CD11b/Gr-1 double-positive cells may function as “inhibitory” APC under the influence of GM-CSF alone. PMID:10229805

  15. Carcinoma-associated antigens

    International Nuclear Information System (INIS)

    Bartorelli, A.; Accinni, R.

    1981-01-01

    This invention relates to novel antigens associated with breast carcinoma, anti-sera specific to said antigens, 125 I-labeled forms of said antigens and methods of detecting said antigens in serum or plasma. The invention also relates to a diagnostic kit containing standardised antigens or antisera or marked forms thereof for the detection of said antigens in human blood, serum or plasma. (author)

  16. Combination of cancer antigen 125 and carcinoembryonic antigen can improve ovarian cancer diagnosis

    DEFF Research Database (Denmark)

    Sørensen, Sofie Sølvsten; Mosgaard, Berit Jul

    2011-01-01

    The purpose of the present study was to evaluate the ability of the tumour marker carcinoembryonic antigen (CEA) in combination with cancer antigen 125 (CA-125) to differentiate between malignant ovarian and malignant non-ovarian disease.......The purpose of the present study was to evaluate the ability of the tumour marker carcinoembryonic antigen (CEA) in combination with cancer antigen 125 (CA-125) to differentiate between malignant ovarian and malignant non-ovarian disease....

  17. ANTIGENIC PROMOTION

    Science.gov (United States)

    Wu, Chin-Yu; Cinader, Bernard

    1971-01-01

    Rabbits were immunized with p-azobenzene arsonic acid derivatives of human serum albumin (HA-As) or of dissociated keyhole limpet hemocyanin. The IgM response to the hapten was evaluated in terms of the number of hapten-specific plaque-forming cells in the lymph node draining the injection site. In some experiments, antibody was measured by agglutination of tanned and sensitized erythrocytes. The hapten response of animals immunized with HA-As was increased (promoting effect) when the animals were injected with one of several structurally unrelated macromolecules: keyhole limpet hemocyanin (KLH), horse spleen ferritin (HSF), lysozyme (Lys), alum-precipitated human gamma globulin (alum-precipitated HGG). Different macromolecules differed in the magnitude of the promoting effect they induced, e.g., promotion by the associated form of KLH was greater than that by the dissociated form; alum-precipitated HGG was a better promoter than was soluble HGG. The relative magnitude of promotion by different macromolecules (associated vs. dissociated KLH, alum-precipitated vs. soluble HGG) correlated with the relative magnitude of the carrier effect, as judged by the hapten response induced by p-azobenzene arsonic acid conjugated to various proteins. Promotion was detected by agglutination assay of circulating antibody, by plaque assay of cells from the popliteal lymph node draining the site of preinjection, but not by plaque assay of cells from the contralateral lymph node. Promotion was dependent on the dose of the promoting macromolecule and on the dose of the hapten-protein conjugate. It was not observed in animals tolerant to the promoting macromolecule. Inhibition (i.e. antigenic competition), rather than promotion, was observed upon a secondary response to the preinjected macromolecule or when the hapten-protein conjugate was incorporated in Freund's adjuvant. PMID:15776570

  18. Protein antigen delivery by gene gun-mediated epidermal antigen incorporation (EAI).

    Science.gov (United States)

    Scheiblhofer, Sandra; Ritter, Uwe; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The gene gun technology can not only be employed for efficient transfer of gene vaccines into upper layers of the skin, but also for application of protein antigens. As a tissue rich in professional antigen presenting cells, the skin represents an attractive target for immunizations. In this chapter we present a method for delivery of the model antigen ovalbumin into the skin of mice termed epidermal antigen incorporation and describe in detail how antigen-specific proliferation in draining lymph nodes can be followed by flow cytometry.

  19. Time-dependent effect of E. coli LPS in spleen DC activation in vivo: Alteration of numbers, expression of co-stimulatory molecules, production of pro-inflammatory cytokines, and presentation of antigens.

    Science.gov (United States)

    Xu, Li; Kwak, Minseok; Zhang, Wei; Lee, Peter Chang-Whan; Jin, Jun-O

    2017-05-01

    Lipopolysaccharide (LPS) is a well-known stimuli of dendritic cells (DCs). However, in vivo spleen DC maturation by Escherichia coli (E.coli) LPS has not been fully investigated. In this study, we examined the effect of LPS on the activation of spleen DCs and its subsets in a time-dependent manner on mice in vivo. The frequency, number and migration of spleen conventional DCs (cDCs) were increased 6 and 12h after completion of LPS treatment. Those increased DC numbers in spleen were then gradually decreased with apoptosis of the DCs. The highest levels of co-stimulatory molecule expression in the spleen cDCs and their subsets occurred 18h after LPS treatment, while the pro-inflammatory cytokines reached their maximum in the intracellular levels of the spleen cDCs and their subsets 3h after LPS treatment. The antigen presentation of the spleen cDCs and their subsets increased gradually from 3 to 12h after LPS treatment, but those levels decreased rapidly after 18h post-LPS treatment. Thus, by highlighting the importance of time in the stimulation of spleen DCs by LPS in mice in vivo, our data provided a model that could be used by immunologists when considering the manipulation of DC functions in vivo for experimental and clinical applications. Copyright © 2017. Published by Elsevier Ltd.

  20. Modulation of interferon-γ synthesis by the effects of lignin-like enzymatically polymerized polyphenols on antigen-presenting cell activation and the subsequent cell-to-cell interactions.

    Science.gov (United States)

    Yamanaka, Daisuke; Motoi, Masuro; Ishibashi, Ken-ichi; Miura, Noriko N; Adachi, Yoshiyuki; Ohno, Naohito

    2013-12-15

    Lignin-like polymerized polyphenols strongly activate lymphocytes and induce cytokine synthesis. We aimed to characterise the mechanisms of action of polymerized polyphenols on immunomodulating functions. We compared the reactivity of leukocytes from various organs to that of polymerized polyphenols. Splenocytes and resident peritoneal cavity cells (PCCs) responded to polymerized polyphenols and released several cytokines, whereas thymocytes and bone-marrow cells showed no response. Next, we eliminated antigen-presenting cells (APCs) from splenocytes to study their involvement in cytokine synthesis. We found that APC-negative splenocytes showed significantly reduced cytokine production induced by polymerized polyphenols. Additionally, adequate interferon-γ (IFN-γ) induction by polymerized polyphenols was mediated by the coexistence of APCs and T cells because the addition of T cells to PCCs increased IFN-γ production. Furthermore, inhibition of the T cell-APC interaction using neutralising antibodies significantly decreased cytokine production. Thus, cytokine induction by polymerized polyphenols was mediated by the interaction between APCs and T cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Gene Electrotransfer of Plasmid-Encoding IL-12 Recruits the M1 Macrophages and Antigen-Presenting Cells Inducing the Eradication of Aggressive B16F10 Murine Melanoma

    Directory of Open Access Journals (Sweden)

    Ursa Lampreht Tratar

    2017-01-01

    Full Text Available Cancer immunotherapy is currently one of the leading approaches in cancer treatment. Gene electrotransfer of plasmids encoding interleukin 12 (IL-12 into the cells leads to the production of IL-12, which drives immune cell polarization to an antitumoral response. One of the cell types that shows great promise in targeting tumor cells under the influence of IL-12 cytokine milieu is that of macrophages. Therefore, the aim of this study was to evaluate gene electrotransfer of antibiotic resistance-free plasmid DNA-encoding murine IL-12 (mIL-12 in mice bearing aggressive B16F10 murine melanoma. IL-12 electrotransfer resulted in the complete long-term eradication of the tumors. Serum mIL-12 and murine interferon γ (mIFNγ were increased after IL-12 gene electrotransfer. Further on, hematoxylin and eosin (HE staining showed increased infiltration of immune cells that lasted from day 4 until day 14. Immunohistochemistry (IHC staining of F4/80, MHCII, and CD11c showed higher positive staining in the IL-12 gene electrotransfer group than in the control groups. Immune cell infiltration into the tumors and the high density of MHCII- and CD11c-positive cells suggest an antitumor polarization of macrophages and the presence of antigen-presenting cells that contributes to the important antitumor effectiveness of IL-12.

  2. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells

    Science.gov (United States)

    Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh

    2013-01-01

    Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046

  3. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells

    Science.gov (United States)

    Harker-Murray, Paul; Porter, Stephen B.; Merkel, Sarah C.; Londer, Aryel; Taylor, Dawn K.; Bina, Megan; Panoskaltsis-Mortari, Angela; Rubinstein, Pablo; Van Rooijen, Nico; Golovina, Tatiana N.; Suhoski, Megan M.; Miller, Jeffrey S.; Wagner, John E.; June, Carl H.; Riley, James L.

    2008-01-01

    Previously, we showed that human umbilical cord blood (UCB) regulatory T cells (Tregs) could be expanded approximately 100-fold using anti-CD3/28 monoclonal antibody (mAb)–coated beads to provide T-cell receptor and costimulatory signals. Because Treg numbers from a single UCB unit are limited, we explored the use of cell-based artificial antigen-presenting cells (aAPCs) preloaded with anti-CD3/28 mAbs to achieve higher levels of Treg expansion. Compared with beads, aAPCs had similar expansion properties while significantly increasing transforming growth factor β (TGF-β) secretion and the potency of Treg suppressor function. aAPCs modified to coexpress OX40L or 4-1BBL expanded UCB Tregs to a significantly greater extent than bead- or nonmodified aAPC cultures, reaching mean expansion levels exceeding 1250-fold. Despite the high expansion and in contrast to studies using other Treg sources, neither OX40 nor 4-1BB signaling of UCB Tregs reduced in vitro suppression. UCB Tregs expanded with 4-1BBL expressing aAPCs had decreased levels of proapoptotic bim. UCB Tregs expanded with nonmodified or modified aAPCs versus beads resulted in higher survival associated with increased Treg persistence in a xeno-geneic graft-versus-host disease lethality model. These data offer a novel approach for UCB Treg expansion using aAPCs, including those coexpressing OX40L or 4-1BBL. PMID:18645038

  4. Polymorphisms of transporter associated with antigen presentation, tumor necrosis factor-α and interleukin-10 and their implications for protection and susceptibility to severe forms of dengue fever in patients in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Anira N Fernando

    2015-01-01

    Full Text Available Context: To date, a clear understanding of dengue disease pathogenesis remains elusive. Some infected individuals display no symptoms while others develop severe life-threatening forms of the disease. It is widely believed that host genetic factors influence dengue severity. Aims: This study evaluates the relationship between certain polymorphisms and dengue severity in Sri Lankan patients. Settings and Design: Polymorphism studies are carried out on genes for; transporter associated with antigen presentation (TAP, promoter of tumor necrosis factor-α (TNF-α, and promoter of interleukin-10 (IL-10. In other populations, TAP1 (333, TAP2 (379, TNF-α (−308, and IL-10 (−1082, −819, −592 have been associated with dengue and a number of different diseases. Data have not been collected previously for these polymorphisms for dengue patients in Sri Lanka. Materials and Methods: The polymorphisms were typed by amplification refractory mutation system polymerase chain reaction in 107 dengue hemorrhagic fever (DHF patients together with 62 healthy controls. Statistical Analysis Used: Pearson′s Chi-square contingency table analysis with Yates′ correction. Results: Neither the TAP nor the IL-10 polymorphisms considered individually can define dengue disease outcome with regard to severity. However, the genotype combination, IL-10 (−592/−819/−1082 CCA/ATA was significantly associated with development of severe dengue in these patients, suggesting a risk factor to developing DHF. Also, identified is the genotype combination IL-10 (−592/−819/−1082 ATA/ATG which suggested a possibility for protection from DHF. The TNF-α (−308 GG genotype was also significantly associated with severe dengue, suggesting a significant risk factor. Conclusions: The results reported here are specific to the Sri Lankan population. Comparisons with previous reports imply that data may vary from population to population.

  5. Virosomes for antigen and DNA delivery

    NARCIS (Netherlands)

    Daemen, T; de Mare, A; Bungener, L; de Jonge, J; Huckriede, A; Wilschut, J

    2005-01-01

    Specific targeting and delivery as well as the display of antigens on the surface of professional antigen-presenting cells (APCs) are key issues in the design and development of new-generation vaccines aimed at the induction of both humoral and cell-mediated immunity. Prophylactic vaccination

  6. In vivo neutralization of naturally existing antibodies against linear alpha(1,3)-galactosidic carbohydrate epitopes by multivalent antigen presentation: a solution for the first hurdle of pig-to-human xenotransplantation.

    Science.gov (United States)

    Duthaler, Rudolf O; Ernst, Beat; Fischer, Reto; Katopodis, Andreas G; Kinzy, Willy; Marterer, Wolfgang; Oehrlein, Reinhold; Streiff, Markus B; Thoma, Gebhard

    2010-01-01

    Pig-to-human xenotransplantation of islet cells or of vascularized organs would offer a welcome treatment alternative for the ever-increasing number of patients with end-stage organ failure who are waiting for a suitable allograph. The main hurdle are preexisting antibodies, most of which are specific for 'Linear-B', carbohydrate epitopes terminated by the unbranched Gal-alpha(1,3)Gal disaccharide. These antibodies are responsible for the 'hyper-acute rejection' of the xenograft by complement mediated hemorrhage. For depletion of such antibodies we have developed an artificial injectable antigen, a glycopolymer (GAS914) with a charge neutral poly-lysine backbone (degree of polymerization n = 1000) and 25% of its side chains coupled to Linear-B-trisaccharide. With an average molecular weight of 400 to 500 kD, presenting 250 trisaccharide epitopes per molecule, this multivalent array binds anti-alphaGal antibodies with at least three orders of magnitude higher avidity on a per-saccharide basis than the monomeric epitope. In vivo experiments with non-human primates documented that rather low doses--1 to 5 mg/kg of GAS914 injected i.v.--efficiently reduce the load of anti-Linear-B antibodies quickly by at least 80%. This treatment can be repeated without any sensitization to GAS914. Interestingly, although the antibody levels start raising 12 h after injection, they do not reach pretreatment levels. The polymer is degraded and excreted within hours, with a minute fraction remaining in lymphoid tissue of anti-alphaGal producing animals only, probably binding to and inhibiting antibody-producing B-cells. The results of pig-to-non-human primate xenotransplantations established GAS914 as a relevant therapeutic option for pig-to-human transplantations as well. The synthesis of GAS914 was successfully scaled up to kg amounts needed for first clinical studies. Key was the use of galactosyl transferases and UDP-galactose for the synthesis of the trisaccharide.

  7. Antigens of Streptococcus sanguis

    Science.gov (United States)

    Rosan, Burton

    1973-01-01

    An antigenic analysis of the alpha-hemolytic streptococci isolated from dental plaque was performed by use of antisera against a strain of Streptococcus sanguis (M-5) which was isolated from dental plaque. Immunoelectrophoretic and Ouchterlony tests of Rantz and Randall extracts of 45 strains gave positive reactions with the M-5 antisera. These strains represented 60% of the strains tested. The number of antigens which could be identified in these extracts varied from one to five and were designated a to e. The a antigen was found in 36 of the strains tested, including reference strains of S. sanguis and the group H streptococci. The strains reacting with the M-5 antisera were divided into two majors types: type I consisted of 23 strains in which the a antigen was found alone or with one or more of the c, d, and e antigens; type II consisted of 13 strains in which both the a and b antigens were found with or without one or more of the c, d, and e antigens. The remaining strains contained, either singly or in combination, the b, c, d, and e antigens but not the a antigen. Biochemical tests of representatives of each serotype and reference strains indicated that strains reacting with M-5 antisera were S. sanguis. These findings suggest that S. sanguis strains share common physiological and serological properties. Images PMID:4633291

  8. A computational framework for influenza antigenic cartography.

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2010-10-07

    Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.

  9. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans

    Science.gov (United States)

    Masure, Dries; Wang, Tao; Nejsum, Peter; Hokke, Cornelis H.; Geldhof, Peter

    2016-01-01

    Background The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Methodology/Principal Findings Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12) that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively) and specificity (95.5% and 90.0%) in pigs and humans, respectively. Conclusions/Significance These findings show the presence of a highly stage specific, glycolipid-like component (As12) that is actively secreted by infectious Ascaris larvae and which acts as a major antibody

  10. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans.

    Science.gov (United States)

    Vlaminck, Johnny; Masure, Dries; Wang, Tao; Nejsum, Peter; Hokke, Cornelis H; Geldhof, Peter

    2016-12-01

    The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12) that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively) and specificity (95.5% and 90.0%) in pigs and humans, respectively. These findings show the presence of a highly stage specific, glycolipid-like component (As12) that is actively secreted by infectious Ascaris larvae and which acts as a major antibody target in infected humans and pigs.

  11. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans.

    Directory of Open Access Journals (Sweden)

    Johnny Vlaminck

    2016-12-01

    Full Text Available The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential.Pigs were immunized by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies purified from the intestinal mucus or from the supernatant of cultured antibody secreting cells from mesenteric lymph nodes of immune pigs were used to probe L3 extracts to identify antibody targets. This resulted in the recognition of a 12kDa antigen (As12 that is actively shed from infective Ascaris L3. As12 was characterized as a phosphorylcholine-containing glycolipid-like antigen that is highly resistant to different enzymatic and chemical treatments. Vaccinating pigs with an As12 fraction did not induce protective immunity to challenge infection. However, serological analysis using sera or plasma from experimentally infected pigs or naturally infected humans demonstrated that the As12 ELISA was able to detect long-term exposure to Ascaris with a high diagnostic sensitivity (98.4% and 92%, respectively and specificity (95.5% and 90.0% in pigs and humans, respectively.These findings show the presence of a highly stage specific, glycolipid-like component (As12 that is actively secreted by infectious Ascaris larvae and which acts as a major antibody target in infected humans and pigs.

  12. Carcinoembryonic antigen (CEA)

    International Nuclear Information System (INIS)

    Ephraim, K.H.; Cox, P.H.; Hamer, C.J.A. v.d.; Berends, W.; Delhez, H.

    1977-01-01

    The carcinoembryonic antigen (CEA) is a complex of antigen determinants and also the carrier of these determinants. Chemically it is a glycoprotein. Its occurrence in blood serum or urine is correlated with malignant disease. Several radioimmunoassays (RIA) have been developed, one by Hoffmann-Laroche and one by the Rotterdam Radiotherapeutic Institute. Both methods and the Hoffmann assay kit are tested. Specifications are given for isolation of the antigen, preparation of the antiserum, and the execution of the RIA. Biochemical and clinical aspects are discussed

  13. Indirect haemagglutination reaction with Sarcocystis dispersa antigen.

    Science.gov (United States)

    Cerva, L; Cerná, Z

    1982-01-01

    A description is given of the preparation of antigen from Sarcocystis dispersa cystozoites and the procedure of the indirect haemagglutination test (IHA). The antibodies against this antigen were detected in experimentally infected mice from day 20 p.i. (1: 640). In the following weeks the antibody titres reached the value of 1: 40,960. The sera of pigs, sheep and horses spontaneously infected with other Sarcocystis species reacted with this antigen in low titres only. The bovine sera gave negative reactions even in cases when Sarcocystis cysts were present in the muscles of the examined animals. A possible application of IHA for the research and diagnostic purposes is discussed.

  14. A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans

    DEFF Research Database (Denmark)

    Vlaminck, Johnny; Masure, Dries; Wang, Tao

    2016-01-01

    Background The pig parasite Ascaris suum plays and important role in veterinary medicine and represents a suitable model for A. lumbricoides, which infects over 800 million people. In pigs, continued exposure to Ascaris induces immunity at the level of the gut, protecting the host against migrating...... larvae. The objective of this study was to identify and characterize parasite antigens targeted by this local immune response that may be crucial for parasite invasion and establishment and to evaluate their protective and diagnostic potential. Methodology/Principal Findings Pigs were immunized...... by trickle infection for 30 weeks, challenged with 2,000 eggs at week 32 and euthanized two weeks after challenge. At necropsy, there was a 100% reduction in worms recovered from the intestine and a 97.2% reduction in liver white spots in comparison with challenged non-immune control animals. Antibodies...

  15. Dendritic Versus Tumor Cell Presentation of Autologous Tumor Antigens for Active Specific Immunotherapy in Metastatic Melanoma: Impact on Long-Term Survival by Extent of Disease at the Time of Treatment.

    Science.gov (United States)

    Dillman, Robert O; McClay, Edward F; Barth, Neil M; Amatruda, Thomas T; Schwartzberg, Lee S; Mahdavi, Khosrow; de Leon, Cristina; Ellis, Robin E; DePriest, Carol

    2015-06-01

    In patients with metastatic melanoma, sequential single-arm and randomized phase II trials with a therapeutic vaccine consisting of autologous dendritic cells (DCs) loaded with antigens from self-renewing, proliferating, irradiated autologous tumor cells (DC-TC) showed superior survival compared with similar patients immunized with irradiated tumor cells (TC). We wished to determine whether this difference was evident in cohorts who at the time of treatment had (1) no evidence of disease (NED) or (2) had detectable disease. Eligibility criteria and treatment schedules were the same for all three trials. Pooled data confirmed that overall survival (OS) was longer in 72 patients treated with DC-TC compared with 71 patients treated with TC (median OS 60 versus 22 months; 5-year OS 51% versus 32%, p=0.004). Treatment with DC-TC was associated with longer OS in both cohorts. Among 70 patients who were NED at the time that treatment was started, OS was better for DC-TC: 5-year OS 73% versus 43% (p=0.015). Among 73 patients who had detectable metastases, OS was better for DC-TC: median 38.8 months versus 14.7 months, 5-year OS 33% versus 20% (p=0.025). This approach is promising as an adjunct to other therapies in patients who have had metastatic melanoma.

  16. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses.

    Science.gov (United States)

    Wu, Fang; Wuensch, Sherry A; Azadniv, Mitra; Ebrahimkhani, Mohammad R; Crispe, I Nicholas

    2009-01-01

    We aim to define the role of Kupffer cells in intrahepatic antigen presentation, using the selective delivery of antigen to Kupffer cells rather than other populations of liver antigen-presenting cells. To achieve this we developed a novel antigen delivery system that can target antigens to macrophages, based on a galactosylated low-density lipoprotein nanoscale platform. Antigen was delivered via the galactose particle receptor (GPr), internalized, degraded and presented to T cells. The conjugation of fluoresceinated ovalbumin (FLUO-OVA) and lactobionic acid with LDL resulted in a substantially increased uptake of FLUO-OVA by murine macrophage-like ANA1 cells in preference to NIH3T3 cells, and by primary peritoneal macrophages in preference to primary hepatic stellate cells. Such preferential uptake led to enhanced proliferation of OVA specific T cells, showing that the galactosylated LDL nanoscale platform is a successful antigen carrier, targeting antigen to macrophages but not to all categories of antigen presenting cells. This system will allow targeted delivery of antigen to macrophages in the liver and elsewhere, addressing the question of the role of Kupffer cells in liver immunology. It may also be an effective way of delivering drugs or vaccines directly at macrophages.

  17. The distribution of blood group antigens in experimentally produced carcinomas of rat palate

    DEFF Research Database (Denmark)

    Reibel, J; Philipsen, H P; Fisker, A V

    1986-01-01

    It has been shown previously that rat oral epithelia express antigens cross-reacting with antibodies against human blood group antigen B and its structural precursor, the H antigen (Type 2 chain). In the present study we investigated the expression of these antigens in malignant changes in the rat....... The blood group antigen staining pattern in experimentally produced verrucous carcinomas showed an almost normal blood group antigen expression. This may have diagnostic significance. Localized areas of hyperplastic palatal epithelium with slight dysplasia revealed loss of H antigen and the presence of B...

  18. Allosensibilisation to erythrocyte antigens (literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2015-01-01

    Full Text Available In this article literature review of the causes of allosensibilisation to erythrocyte antigens are presented. It is shown that the ability to produce antierythrocyte antibodies is affected by many factors, principal of whom it is difficult to identify. For the allosensibilisation development requires genetically determined differences in erythrocyte antigens phenotypes of donor and recipient, mother and fetus, which can lead to immune response and antibodies production. The biochemical nature of erythrocyte antigens, antigen dose (the amount of transfused doses, the number of antigens determinants on donor and fetus erythrocytes, the number of pregnancies are important. Individual patient characteristics: age, gender, diseases, the use of immunosuppressive therapy and the presence of inflammatory processes, are also relevant. Note that antibody to one erythrocyte antigens have clinical value, and to the other – have no. The actual data about frequency of clinically significant antibodies contribute to the development of post-transfusion hemolytic complications prophylaxis as well as the improvement of laboratory diagnosis of hemolytic disease of the newborn in the presence of maternal antierythrocyte antibodies.

  19. A monkey antigen crossreacting with carcinoembryonic antigen, CEA.

    Science.gov (United States)

    Engvall, E.; Vuento, M.; Ruoslahti, E.

    1976-01-01

    Normal monkey tissues were found to contain an antigen which crossreacts immunologically with the carcinoembryonic antigen (CEA) of the human digestive tract. The monkey antigen reacted with complete or partial identity to the normal crossreacting antigen (NCA) in humans when tested in immunodiffusion against anti-CEA or anti-NCA. Extracts of monkey tissues inhibited in radioimmunoassays measuring human NCA. It is possible that monkey foetuses and colonic tumours contain CEA. Images Fig. 1 PMID:823952

  20. Antigen smuggling in tuberculosis.

    Science.gov (United States)

    Hudrisier, Denis; Neyrolles, Olivier

    2014-06-11

    The importance of CD4 T lymphocytes in immunity to M. tuberculosis is well established; however, how dendritic cells activate T cells in vivo remains obscure. In this issue of Cell Host & Microbe, Srivastava and Ernst (2014) report a mechanism of antigen transfer for efficient activation of antimycobacterial T cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 58, č. 6 (2001), s. 425-430 ISSN 0001-2815. [Conference on Human leucocyte differentiation antigens /7./. Harrogate, 20.06.2000-25.06.2000] Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules, HLDA Subject RIV: EC - Immunology Impact factor: 2.864, year: 2001

  2. CD antigens 2002

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2002-01-01

    Roč. 99, č. 10 (2002), s. 3877-3880 ISSN 0006-4971. [Conference on Human leucocyte differentiation antigens /7./. Harrogate, 20.06.2000-25.06.2000] Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules, HLDA Subject RIV: EC - Immunology Impact factor: 9.631, year: 2002

  3. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2002-01-01

    Roč. 168, č. 5 (2002), s. 2083-2086 ISSN 0022-1767. [Conference on Human leucocyte differentiation antigens /7./. Harrogate, 20.06.2000-25.06.2000] Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules, HLDA Subject RIV: EC - Immunology Impact factor: 7.014, year: 2002

  4. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 103, č. 4 (2001), s. 401-406 ISSN 0019-2805 R&D Projects: GA ČR GA310/99/0349 Institutional research plan: CEZ:AV0Z5052915 Keywords : antigen * CD * leukocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.656, year: 2001

  5. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 19, č. 6 (2001), s. 556-562 ISSN 1066-5099 R&D Projects: GA AV ČR IAA7052904 Institutional research plan: CEZ:AV0Z5052915 Keywords : CD * leukocyte antigens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.689, year: 2001

  6. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 31, č. 10 (2001), s. 2841-2847 ISSN 0014-2980 R&D Projects: GA AV ČR IAA7052904 Keywords : CD * leukocyte antigens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.990, year: 2001

  7. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 211, č. 2 (2001), s. 81-85 ISSN 0008-8749 R&D Projects: GA ČR GA310/99/0349 Institutional research plan: CEZ:AV0Z5052915 Keywords : antigen * CD * leukocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.604, year: 2001

  8. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2002-01-01

    Roč. 15, č. 1 (2002), s. 71-76 ISSN 0893-3952. [Conference on Human leucocyte differentiation antigens /7./. Harrogate, 20.06.2000-25.06.2000] Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules, HLDA Subject RIV: EC - Immunology Impact factor: 3.821, year: 2002

  9. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 70, č. 5 (2001), s. 685-690 ISSN 0741-5400 R&D Projects: GA AV ČR IAA7052904 Institutional research plan: CEZ:AV0Z5052915 Keywords : CD * leukocyte antigens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.516, year: 2001

  10. CD antigens 2001

    Czech Academy of Sciences Publication Activity Database

    Mason, D.; Andre, P.; Bensussan, A.; Buckley, C.; Civin, C.; Clark, E.; de Haas, M.; Goyert, S.; Hadam, M.; Hart, D.; Hořejší, Václav; Meuer, S.; Morrissey, J.; Schwartz-Albiez, R.; Shaw, S.; Simmons, D.; Uguccioni, M.; van der Schoot, E.; Vivier, E.; Zola, H.

    2001-01-01

    Roč. 13, č. 9 (2001), s. 1095-1098 ISSN 0953-8178 R&D Projects: GA ČR GA310/99/0349 Institutional research plan: CEZ:AV0Z5052915 Keywords : antigen * CD * leukocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.611, year: 2001

  11. β-endorphin antigen

    International Nuclear Information System (INIS)

    1981-01-01

    This invention relates to the production of antigens comprising β-endorphin, βsub(h)-endorphin, or βsub(c)-endorphin, in covalent conjugation with human gammaglobulin as immunogenic carrier material, and an antibody having the property of specifically binding β-endorphin or fragments thereof, containing the (6-15) residue sequence. (U.K.)

  12. SPECIFIC CARCINOEMBRYONIC ANTIGENS OF THE HUMAN DIGESTIVE SYSTEM

    Science.gov (United States)

    Gold, Phil; Freedman, Samuel O.

    1965-01-01

    A wide variety of human adult and fetal tissues were studied by immune-diffusion techniques in agar gel to determine whether they contained the tumor-specific antigen(s) previously found in coionic cancers. In the adult tissues it was demonstrated that identical antigens were present in all tested specimens of malignant tumors of the entodermally derived epithelium of the gastrointestinal tract and pancreas, but were absent from all other tested adult tissues. The common antigenic constituents, therefore, represent system-specific cancer antigens of the human digestive system. System-specific cancer antigens have not previously been demonstrated in humans. Experiments with fetal tissues demonstrated that identical antigens were also present in fetal gut, liver, and pancreas between 2 and 6 months of gestation. These components were named "carcinoembryonic" antigens of the human digestive system. On the basis of the present findings and the recent work regarding control of the expression of genetic potentialities in various types of cells, it was concluded that the carcinoembryonic antigens represent cellular constituents which are repressed during the course of differentiation of the normal digestive system epithelium and reappear in the corresponding malignant cells by a process of derepressive-dedifferentiation. PMID:4953873

  13. Idiopathic focal segmental glomerulosclerosis and HLA antigens

    Directory of Open Access Journals (Sweden)

    M. Gerbase-DeLima

    1998-03-01

    Full Text Available The objective of the present study was to investigate a possible association between HLA class II antigens and idiopathic focal segmental glomerulosclerosis (FSGS. HLA-A, -B, -DR and -DQ antigens were determined in 19 Brazilian patients (16 white subjects and three subjects of Japanese origin with biopsy-proven FSGS. Comparison of the HLA antigen frequencies between white patients and white local controls showed a significant increase in HLA-DR4 frequency among FSGS patients (37.7 vs 17.2%, P<0.05. In addition, the three patients of Japanese extraction, not included in the statistical analysis, also presented HLA-DR4. In conclusion, our data confirm the association of FSGS with HLA-DR4 previously reported by others, thus providing further evidence for a role of genes of the HLA complex in the susceptibility to this disease

  14. Tissue distribution of histo-blood group antigens

    DEFF Research Database (Denmark)

    Ravn, V; Dabelsteen, Erik

    2000-01-01

    The introduction of immunohistochemical techniques and monoclonal antibodies to specific carbohydrate epitopes has made it possible to study in detail the tissue distribution of histo-blood group antigens and related carbohydrate structures. The present paper summarizes the available data...... concerning the histological distribution of histo-blood group antigens and their precursor structures in normal human tissues. Studies performed have concentrated on carbohydrate antigens related to the ABO, Lewis, and TTn blood group systems, i.e. histo-blood group antigens carried by type 1, 2, and 3 chain...... carrier carbohydrate chains. Histo-blood group antigens are found in most epithelial tissues. Meanwhile, several factors influence the type, the amount, and the histological distribution of histoblood group antigens, i.e. the ABO, Lewis, and saliva-secretor type of the individual, and the cell- and tissue...

  15. Tissue distribution of histo-blood group antigens

    DEFF Research Database (Denmark)

    Ravn, V; Dabelsteen, Erik

    2000-01-01

    carrier carbohydrate chains. Histo-blood group antigens are found in most epithelial tissues. Meanwhile, several factors influence the type, the amount, and the histological distribution of histoblood group antigens, i.e. the ABO, Lewis, and saliva-secretor type of the individual, and the cell- and tissue......The introduction of immunohistochemical techniques and monoclonal antibodies to specific carbohydrate epitopes has made it possible to study in detail the tissue distribution of histo-blood group antigens and related carbohydrate structures. The present paper summarizes the available data...... concerning the histological distribution of histo-blood group antigens and their precursor structures in normal human tissues. Studies performed have concentrated on carbohydrate antigens related to the ABO, Lewis, and TTn blood group systems, i.e. histo-blood group antigens carried by type 1, 2, and 3 chain...

  16. Cancer-germline antigen vaccines and epigenetic enhancers

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Burns, Jorge; Ditzel, Henrik Jorn

    2010-01-01

    can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW: We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential...... synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN: The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE: Chemoimmunotherapy using epigenetic drugs and CG...

  17. Human platelet antigens - 2013.

    Science.gov (United States)

    Curtis, B R; McFarland, J G

    2014-02-01

    To date, 33 human platelet alloantigens (HPAs) have been identified on six functionally important platelet glycoprotein (GP) complexes and have been implicated in alloimmune platelet disorders including foetal and neonatal alloimmune thrombocytopenia (FNAIT), posttransfusion purpura (PTP) and multitransfusion platelet refractoriness (MPR). The greatest number of recognized HPA (20 of 33) resides on the GPIIb/IIIa complex, which serves as the receptor for ligands important in mediating haemostasis and inflammation. These include HPA-1a, the most commonly implicated HPA in FNAIT and PTP in Caucasian populations. Other platelet GP complexes, GPIb/V/IX, GPIa/IIa and CD109, express the remaining 13 HPAs. Of the recognized HPAs, 12 occur as six serologically and genetically defined biallelic 'systems' where the -a form designates the higher frequency allele and the -b form, the lower. Twenty-one other HPAs are low-frequency or rare antigens for which postulated higher frequency -a alleles have not yet been identified as antibody specificities. In addition to the HPA markers, platelets also express ABO and human leucocyte antigen (HLA) antigens; antibodies directed at the former are occasionally important in FNAIT, and to the latter, in MPR. © 2013 International Society of Blood Transfusion.

  18. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity

    NARCIS (Netherlands)

    Kreutz, M.; Giquel, B.; Hu, Q.; Abuknesha, R.; Uematsu, S.; Akira, S.; Nestle, F.O.; Diebold, S.S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is

  19. Calcipotriol inhibits the proliferation of hyperproliferative CD29 positive keratinocytes in psoriatic epidermis in the absence of an effect on the function and number of antigen-presenting cells

    DEFF Research Database (Denmark)

    Jensen, A.M.; Llado, Minna Fyhn Lykke; Skov, L.

    1998-01-01

    -presenting cells in psoriatic epidermis. In contrast, we found that calcipotriol significantly inhibited the proliferation of epidermal cells isolated from psoriatic skin after in vivo treatment, as determined by propidium iodide staining and flow cytometry. More specifically, we stained for CD29+ keratinocytes...... and found an even more significant reduction in proliferative capacity. This cell type contains the population of hyperproliferative keratinocytes in psoriatic epidermis. In conclusion, calcipotriol seems to act via an inhibitory effect on hyperproliferative basal keratinocytes of psoriatic epidermis...

  20. Antigenic analysis of some Nigerian street rabies virus using ...

    African Journals Online (AJOL)

    The authors studied 12 street rabies virus isolates from 3 states of Nigeria using both the anti-nucleocapsid and anti-glycoprotein monoclonal antibodies and cross-protection tests. It was observed that all the viruses were rabies having divergent antigenic presentation. Also noticed was an antigenic shift when the viruses ...

  1. Comparison of bovine lymphocyte antigen DRB3.2 allele ...

    African Journals Online (AJOL)

    The bovine lymphocyte antigen (BoLA-DRB3) gene encodes cell surface glycoproteins that initiate immune responses by presenting processed antigenic peptides to CD4 T helper cells. DRB3 is the most polymorphic bovine MHC class II gene which encodes the peptide-binding groove. Since different alleles favor the ...

  2. HLA antigens, epilepsy and cytomegalovirus infection.

    Science.gov (United States)

    Iannetti, P; Morellini, M; Raucci, U; Cappellacci, S

    1988-01-01

    Thirty-one epileptic patients, selected from among 900 children with previous febrile convulsions and subsequent epilepsy, were typed for HLA antigens. In 16 of the 31 patients CMV was isolated from the urine shortly after the appearance of spontaneous fits; in the remaining 15 patients the virus was never detected. All the examined children were typed for 14 HLA-A, 23 HLA-B, 7 HLA-C and 9 HLA-DR specificities, and compared with a group of healthy subjects. The HLA-A11 antigen was present in 25% of the children with chronic CMV infection and epilepsy, and absent in patients with epilepsy but without CMV infection (p less than 0.02). The possibility that the A11 antigen is a marker of the predisposing genes for CMV infection in children with epilepsy following FC is proposed.

  3. Cloning, expression, purification and antigenic evaluation of ...

    African Journals Online (AJOL)

    Streptococcus pyogenes produce an extracellular hyaluronidase which is associated with the spread of the organism during infection. Enzyme hyaluronidase is capable of degrading hyaluronic acid. The aim of the present study was to clone and express antigenic regions of the hylA of S.pyogenes in Escherichia coli.

  4. Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.

    Science.gov (United States)

    Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A

    2018-01-30

    Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. The potential for induction of autoimmune disease by a randomly-mutated self-antigen

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm

    2007-01-01

    -antigens can be immunogenic and lead to autoimmunity against wildtype self-antigens. In theory, modified self-antigens can arise by random errors and mutations during protein synthesis and would be recognized as foreign antigens by naïve B and T lymphocytes. Here, it is postulated that the initial auto......-antigen is not a germline self-antigen, but rather a mutated self-antigen. This mutated self-antigen might interfere with peripheral tolerance if presented to the immune system during an infection. The infection lead to bystander activation of naïve T and B cells with specificity for mutated self-antigen and this can lead......The pathology of most autoimmune diseases is well described. However, the exact event that triggers the onset of the inflammatory cascade leading to disease is less certain and most autoimmune diseases are complex idiopathic diseases with no single gene known to be causative. In many cases...

  6. Feeding dendritic cells with tumor antigens: self-service buffet or à la carte?

    OpenAIRE

    Melero, I. (Ignacio); Vile, R.G. (Richard G.); Colombo, M.P. (Mario P.)

    2000-01-01

    Adoptive transfer of autologous dendritic cells (DC) presenting tumor-associated antigens initiate and sustain an immune response which eradicate murine malignancies. Based on these observations, several clinical trials are in progress testing safety and efficacy with encouraging preliminary reports. In these approaches, ex vivo incubation of DC with a source of tumor antigens is required to load the relevant antigenic epitopes on the adequate antigen presenting molecules. Recent data show th...

  7. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    Energy Technology Data Exchange (ETDEWEB)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D. [Centenary Institute of Cancer Medicine and Cell Biology, Sydney (Australia)] [and others

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  8. Development of Artificial Antigen Presenting Cells for Prostate Cancer Immunotherapy

    National Research Council Canada - National Science Library

    Schneck, Jonathan P; Oelke, Mathias

    2007-01-01

    While adoptive immunotherapy holds promise as a treatment for cancer, development of adoptive immunotherapy has been impeded by the lack of a reproducible and economically viable method for generating...

  9. Specific proliferative response of human lymphocytes to purified soluble antigens from Plasmodium falciparum in vitro cultures and to antigens from malaria patients' sera

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Jepsen, S; Theander, T G

    1985-01-01

    Antigens of Plasmodium falciparum, in supernatants of in vitro cultures of the parasite were affinity purified on columns prepared with the IgG fraction of the serum of an immune individual. The purified antigens induced proliferation of lymphocytes from persons who had recently had malaria. The ...... purified antigen preparations from malaria patients' sera indicating that significant amounts of non-specific mitogens were not present.......Antigens of Plasmodium falciparum, in supernatants of in vitro cultures of the parasite were affinity purified on columns prepared with the IgG fraction of the serum of an immune individual. The purified antigens induced proliferation of lymphocytes from persons who had recently had malaria...

  10. Antigen antibody interactions

    CERN Document Server

    DeLisi, Charles

    1976-01-01

    1. 1 Organization of the Immune System One of the most important survival mechanisms of vertebrates is their ability to recognize and respond to the onslaught of pathogenic microbes to which they are conti- ously exposed. The collection of host cells and molecules involved in this recognition­ 12 response function constitutes its immune system. In man, it comprises about 10 cells 20 (lymphocytes) and 10 molecules (immunoglobulins). Its ontogenic development is c- strained by the requirement that it be capable of responding to an almost limitless variety of molecular configurations on foreign substances, while simultaneously remaining inert to those on self components. It has thus evolved to discriminate, with exquisite precision, between molecular patterns. The foreign substances which induce a response, called antigens, are typically large molecules such as proteins and polysaccharides. The portions of these with which immunoglobulins interact are called epitopes or determinants. A typical protein epitope m...

  11. Antigen Loss Variants: Catching Hold of Escaping Foes.

    Science.gov (United States)

    Vyas, Maulik; Müller, Rolf; Pogge von Strandmann, Elke

    2017-01-01

    Since mid-1990s, the field of cancer immunotherapy has seen steady growth and selected immunotherapies are now a routine and preferred therapeutic option of certain malignancies. Both active and passive cancer immunotherapies exploit the fact that tumor cells express specific antigens on the cell surface, thereby mounting an immune response specifically against malignant cells. It is well established that cancer cells typically lose surface antigens following natural or therapy-induced selective pressure and these antigen-loss variants are often the population that causes therapy-resistant relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lymphocytic leukemia, respectively, and lineage switching in leukemia associated with mixed lineage leukemia (MLL) gene rearrangements are well-documented evidences in this regard. Although increasing number of novel immunotherapies are being developed, majority of these do not address the control of antigen loss variants. Here, we review the occurrence of antigen loss variants in leukemia and discuss the therapeutic strategies to tackle the same. We also present an approach of dual-targeting immunoligand effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. Novel immunotherapies simultaneously targeting more than one tumor antigen certainly hold promise to completely eradicate tumor and prevent therapy-resistant relapses.

  12. Oral vaccination of animals with antigens encapsulated in alginate microspheres.

    Science.gov (United States)

    Bowersock, T L; HogenEsch, H; Suckow, M; Guimond, P; Martin, S; Borie, D; Torregrosa, S; Park, H; Park, K

    1999-03-26

    Most infectious diseases begin at a mucosal surface. Prevention of infection must therefore consider ways to enhance local immunity to prevent the attachment and invasion of microbes. Despite this understanding, most vaccines depend on parenterally administered vaccines that induce a circulating immune response that often does not cross to mucosal sites. Administration of vaccines to mucosal sites induces local immunity. To be effective requires that antigen be administered often. This is not always practical depending on the site where protection is needed, nor comfortable to the patient. Not all mucosal sites have inductive lymphoid tissue present as well. Oral administration is easy to do, is well accepted by humans and animals and targets the largest inductive lymphoid tissue in the body in the intestine. Oral administration of antigen requires protection of antigen from the enzymes and pH of the stomach. Polymeric delivery systems are under investigation to deliver vaccines to the intestine while protecting them from adverse conditions that could adversely affect the antigens. They also can enhance delivery of antigen specifically to the inductive lymphoid tissue. Sodium alginate is a readily available, inexpensive polymer that can be used to encapsulate a wide variety of antigens under mild conditions. Orally administered alginate microspheres containing antigen have successfully induced immunity in mice to enteric (rotavirus) pathogens and in the respiratory tract in cattle with a model antigen (ovalbumin). This delivery system offers a safe, effective means of orally vaccinating large numbers of animals (and perhaps humans) to a variety of infectious agents.

  13. Cancer antigen 125 and prognosis

    DEFF Research Database (Denmark)

    Høgdall, Estrid Vilma Solyom

    2008-01-01

    cancer antigen 125 determination may be implemented into clinical practice, cut-off levels must be evaluated and internationally defined. Studies examining serum cancer antigen 125 levels after surgery but before, during, or after treatment confirmed that changes in serum levels are of prognostic value...

  14. Antigen cross-priming of cell-associated proteins is enhanced by macroautophagy within the antigen donor cell

    Directory of Open Access Journals (Sweden)

    Matthew eAlbert

    2012-03-01

    Full Text Available Phagocytosis of dying cells constitutes an importance mechanism of antigen capture for the cross-priming of CD8+ T cells. This process has been shown to be critical for achieving tumor and viral immunity. While most studies have focused on the mechanisms inherent in the dendritic cell that account for exogenous antigen accessing MHC I, several recent reports have highlighted the important contribution made by the antigen donor cell. Specifically, the cell stress and cell death pathways that precede antigen transfer are now known to impact cross-presentation and cross-priming. Herein, we review the current literature regarding a role for macro-autophagy within the antigen donor cell. Further examination of this point of immune regulation is warranted and may contribute to a better understanding of how to optimize immunotherapy for treatment of cancer and chronic infectious disease.

  15. Goodbye warts, hello vitiligo: Candida antigen-induced depigmentation.

    Science.gov (United States)

    Wilmer, Erin N; Burkhart, Craig N; Morrell, Dean S

    2013-01-01

    Depigmentation after the use of topical immune modulators is a rare but reported event. Herein we present what is to our knowledge the first case of vitiligo at a site of Candida antigen injection. © 2012 Wiley Periodicals, Inc.

  16. Increasing vaccine potency through exosome antigen targeting.

    Science.gov (United States)

    Hartman, Zachary C; Wei, Junping; Glass, Oliver K; Guo, Hongtao; Lei, Gangjun; Yang, Xiao-Yi; Osada, Takuya; Hobeika, Amy; Delcayre, Alain; Le Pecq, Jean-Bernard; Morse, Michael A; Clay, Timothy M; Lyerly, Herbert K

    2011-11-21

    While many tumor associated antigens (TAAs) have been identified in human cancers, efforts to develop efficient TAA "cancer vaccines" using classical vaccine approaches have been largely ineffective. Recently, a process to specifically target proteins to exosomes has been established which takes advantage of the ability of the factor V like C1C2 domain of lactadherin to specifically address proteins to exosomes. Using this approach, we hypothesized that TAAs could be targeted to exosomes to potentially increase their immunogenicity, as exosomes have been demonstrated to traffic to antigen presenting cells (APC). To investigate this possibility, we created adenoviral vectors expressing the extracellular domain (ECD) of two non-mutated TAAs often found in tumors of cancer patients, carcinoembryonic antigen (CEA) and HER2, and coupled them to the C1C2 domain of lactadherin. We found that these C1C2 fusion proteins had enhanced expression in exosomes in vitro. We saw significant improvement in antigen specific immune responses to each of these antigens in naïve and tolerant transgenic animal models and could further demonstrate significantly enhanced therapeutic anti-tumor effects in a human HER2+ transgenic animal model. These findings demonstrate that the mode of secretion and trafficking can influence the immunogenicity of different human TAAs, and may explain the lack of immunogenicity of non-mutated TAAs found in cancer patients. They suggest that exosomal targeting could enhance future anti-tumor vaccination protocols. This targeting exosome process could also be adapted for the development of more potent vaccines in some viral and parasitic diseases where the classical vaccine approach has demonstrated limitations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Towards patient-specific tumor antigen selection for vaccination.

    Science.gov (United States)

    Rammensee, Hans-Georg; Weinschenk, Toni; Gouttefangeas, Cécile; Stevanović, Stefan

    2002-10-01

    In this review, we discuss the possibilities for combining the power of molecular analysis of the antigens expressed in a given individual tumor with the design of a tailored vaccine containing defined antigens. Step 1 is a differential gene expression analysis of tumor and corresponding normal tissue. Step 2 is the analysis of human leukocyte antigen (HLA) ligands on tumor cells. Step 3 is data mining with the aim to select those antigens that might be suitable for tumor attack by the adaptive immune system. Step 4 is the on-the-spot clinical grade production of the constituents of the patient tailored vaccine, e.g. peptides. Step 5 is then vaccination and monitoring. Although it will not be possible to cover all relevant antigens expressed in a tumor, the antigens that can be identified with our present technical possibilities might be enough for improved immunotherapy. The scope of the present review is to explore the possibilities and the formidable technical and logistical challenge for such individual patient-oriented antigen definition to be used for therapeutic immunization.

  18. COLONOSCOPY AND CARCINOEMBRYONIC ANTIGEN VARIATIONS

    Directory of Open Access Journals (Sweden)

    Rita G SOUSA

    2014-03-01

    Full Text Available Context Colonoscopy is essential for synchronous and metachronous cancer detection. Carcinoembryonic antigen is a colorectal cancer tumor marker, important as a follow-up tool in patients with previous colorectal cancer. False-positive carcinoembryonic antigen elevation results in multiples exams and in patient anxiety. In literature, there is reference to transient carcinoembryonic antigen increase with colonoscopy. Objective To evaluate the influence of bowel preparation and colonoscopy in carcinoembryonic antigen blood levels. Methods We prospectively studied subjects that underwent routine colonoscopy in our institution. Blood samples were collected (1 before bowel cleaning, (2 before colonoscopy and (3 immediately after colonoscopy. Blood carcinoembryonic antigen levels were determined by “Sandwich” immunoassay. The statistical methods used were the paired t-test and ANOVA. Results Thirty-seven patients (22M/15F were included; age range 28-84 (mean 56 years. Mean carcinoembryonic antigen values were 1.9, 2 and 1.8 for (1, (2 and (3, respectively. An increase in value (2 compared with (1 was observed in 20/37 patients (P = 0.018, mainly in younger patients and in patients requiring more endoluminal interventions. In 29/37 patients, the CEA value decreased from (2 to (3 (P = 1.3x10-7. Conclusions A trend for carcinoembryonic antigen increase after bowel cleaning was observed, especially in younger patients and in patients with more endoluminal interventions, but without clinical meaning.

  19. Colonoscopy and carcinoembryonic antigen variations.

    Science.gov (United States)

    Sousa, Rita G; Nunes, Ana; Meira, Tânia; Carreira, Olga; Pires, Ana M; Freitas, João

    2014-01-01

    Colonoscopy is essential for synchronous and metachronous cancer detection. Carcinoembryonic antigen is a colorectal cancer tumor marker, important as a follow-up tool in patients with previous colorectal cancer. False-positive carcinoembryonic antigen elevation results in multiples exams and in patient anxiety. In literature, there is reference to transient carcinoembryonic antigen increase with colonoscopy. To evaluate the influence of bowel preparation and colonoscopy in carcinoembryonic antigen blood levels. We prospectively studied subjects that underwent routine colonoscopy in our institution. Blood samples were collected (1) before bowel cleaning, (2) before colonoscopy and (3) immediately after colonoscopy. Blood carcinoembryonic antigen levels were determined by "Sandwich" immunoassay. The statistical methods used were the paired t-test and ANOVA. Thirty-seven patients (22M/15F) were included; age range 28-84 (mean 56 years). Mean carcinoembryonic antigen values were 1.9, 2 and 1.8 for (1), (2) and (3), respectively. An increase in value (2) compared with (1) was observed in 20/37 patients (P = 0.018), mainly in younger patients and in patients requiring more endoluminal interventions. In 29/37 patients, the CEA value decreased from (2) to (3) (P = 1.3x10-7). A trend for carcinoembryonic antigen increase after bowel cleaning was observed, especially in younger patients and in patients with more endoluminal interventions, but without clinical meaning.

  20. Filamentous bacteriophage fd as an antigen delivery system in vaccination.

    Science.gov (United States)

    Prisco, Antonella; De Berardinis, Piergiuseppe

    2012-01-01

    Peptides displayed on the surface of filamentous bacteriophage fd are able to induce humoral as well as cell-mediated immune responses, which makes phage particles an attractive antigen delivery system to design new vaccines. The immune response induced by phage-displayed peptides can be enhanced by targeting phage particles to the professional antigen presenting cells, utilizing a single-chain antibody fragment that binds dendritic cell receptor DEC-205. Here, we review recent advances in the use of filamentous phage fd as a platform for peptide vaccines, with a special focus on the use of phage fd as an antigen delivery platform for peptide vaccines in Alzheimer's Disease and cancer.

  1. Antigenic relationships among four herpesviruses.

    Science.gov (United States)

    Blue, W T; Plummer, G

    1973-06-01

    Common viral antigens were detected, by fluorescent-antibody studies, in cells infected with herpes simplex virus 1, squirrel monkey herpesvirus 1, bovine rhinotracheitis, and equine abortion viruses. The two primate viruses showed slight cross-neutralization.

  2. HLA-B27 antigen

    Science.gov (United States)

    Human leukocyte antigen B27; Ankylosing spondylitis-HLA; Psoriatic arthritis-HLA; Reactive arthritis-HLA ... Erythrocyte sedimentation rate ( ESR ) Rheumatoid factor X-rays HLA testing is also used to match donated tissue ...

  3. Molecular mimics of the tumour antigen MUC1.

    Directory of Open Access Journals (Sweden)

    Tharappel C James

    Full Text Available A key requirement for the development of cancer immunotherapy is the identification of tumour-associated antigens that are differentially or exclusively expressed on the tumour and recognized by the host immune system. However, immune responses to such antigens are often muted or lacking due to the antigens being recognized as "self", and further complicated by the tumour environment and regulation of immune cells within. In an effort to circumvent the lack of immune responses to tumour antigens, we have devised a strategy to develop potential synthetic immunogens. The strategy, termed mirror image phage display, is based on the concept of molecular mimicry as demonstrated by the idiotype/anti-idiotype paradigm in the immune system. Here as 'proof of principle' we have selected molecular mimics of the well-characterised tumour associated antigen, the human mucin1 protein (MUC1 from two different peptide phage display libraries. The putative mimics were compared in structure and function to that of the native antigen. Our results demonstrate that several of the mimic peptides display T-cell stimulation activity in vitro when presented by matured dendritic cells. The mimic peptides and the native MUC1 antigenic epitopes can cross-stimulate T-cells. The data also indicate that sequence homology and/or chemical properties to the original epitope are not the sole determining factors for the observed immunostimulatory activity of the mimic peptides.

  4. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  5. Epicutaneous sensitization with protein antigen

    Directory of Open Access Journals (Sweden)

    I-Lin Liu

    2012-12-01

    Full Text Available In the past few decades there has been a progressive understanding that epicutaneous sensitization with protein antigen is an important sensitization route in patients with atopic dermatitis. A murine protein-patch model has been established, and an abundance of data has been obtained from experiments using this model. This review discusses the characteristics of epicutaneous sensitization with protein antigen, the induced immune responses, the underlying mechanisms, and the therapeutic potential.

  6. Antigens in human glioblastomas and meningiomas: Search for tumour and onco-foetal antigens. Estimation of S-100 and GFA protein

    DEFF Research Database (Denmark)

    Dittmann, L; Axelsen, N H; Norgaard-Pedersen, B

    1977-01-01

    Extracts of glioblastomas and meningiomas were analysed by quantitative immunoelectrophoresis for the presence of foetal brain antigens and tumour-associated antigens, and levels of 2 normal brain-specific proteins were also determined. The following antibodies were used: monospecific anti-S-100......-alpha-foetoprotein; and monospecific anti-ferritin. Using the antibodies raised against the tumours, several antigens not present in foetal or adult normal brain were found in the glioblastomas and the meningiomas. These antigens cross-reacted with antigens present in normal liver and were therefore not tumour-associated. S-100...... was found in glioblastomas in approximately one tenth the amount in whole brain homogenate, whereas GFA was found 2-4 times enriched. The 2 proteins were absent in meningiomas. The possible use of the GFA protein as a marker for astroglial neoplasia is discussed. Five foetal antigens were found in foetal...

  7. Nanoparticles for the Induction of Antigen-Specific Immunological Tolerance.

    Science.gov (United States)

    Kishimoto, Takashi Kei; Maldonado, Roberto A

    2018-01-01

    Antigen-specific immune tolerance has been a long-standing goal for immunotherapy for the treatment of autoimmune diseases and allergies and for the prevention of allograft rejection and anti-drug antibodies directed against biologic therapies. Nanoparticles have emerged as powerful tools to initiate and modulate immune responses due to their inherent capacity to target antigen-presenting cells (APCs) and deliver coordinated signals that can elicit an antigen-specific immune response. A wide range of strategies have been described to create tolerogenic nanoparticles (tNPs) that fall into three broad categories. One strategy includes tNPs that provide antigen alone to harness natural tolerogenic processes and environments, such as presentation of antigen in the absence of costimulatory signals, oral tolerance, the tolerogenic environment of the liver, and apoptotic cell death. A second strategy includes tNPs that carry antigen and simultaneously target tolerogenic receptors, such as pro-tolerogenic cytokine receptors, aryl hydrocarbon receptor, FAS receptor, and the CD22 inhibitory receptor. A third strategy includes tNPs that carry a payload of tolerogenic pharmacological agents that can "lock" APCs into a developmental or metabolic state that favors tolerogenic presentation of antigens. These diverse strategies have led to the development of tNPs that are capable of inducing antigen-specific immunological tolerance, not just immunosuppression, in animal models. These novel tNP technologies herald a promising approach to specifically prevent and treat unwanted immune reactions in humans. The first tNP, SEL-212, a biodegradable synthetic vaccine particle encapsulating rapamycin, has reached the clinic and is currently in Phase 2 clinical trials.

  8. The role of Dirofilaria immitis antigen in the pathogenesis of pulmonary arteritis in the dog. 1. The effects of antigen infusion.

    Science.gov (United States)

    Tarish, J H; Atwell, R B

    1989-12-01

    The aim of this study was to investigate the correlation between the Dirofilaria immitis antigen and morphology response of pulmonary tissue. The pulmonary arteries of D. immitis naive dogs were infused with an antigenic extract of adult female D. immitis worms. Light and electron microscopy and an assessment of vascular permeability were performed to compare arterial pathology 1 h and 5 days after antigen infusion. Thrombus formation accompanied by perivascular edema was present initially, but it was not detectable after 5 days.

  9. Pattern of distribution of blood group antigens on human epidermal cells during maturation

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Buschard, Karsten; Hakomori, Sen-Itiroh

    1984-01-01

    The distribution in human epidermis of A, B, and H blood group antigens and of a precursor carbohydrate chain, N-acetyl-lactosamine, was examined using immunofluorescence staining techniques. The material included tissue from 10 blood group A, 4 blood group B, and 9 blood group O persons. Murine...... on the lower spinous cells whereas H antigen was seen predominantly on upper spinous cells or on the granular cells. Epithelia from blood group A or B persons demonstrated A or B antigens, respectively, but only if the tissue sections were trypsinized before staining. In such cases A or B antigens were found...... monoclonal antibodies were used to identify H antigen (type 2 chain) and N-acetyl-lactosamine. Human antisera were used to identify A and B antigens. In all groups N-acetyl-lactosamine and H antigen were found on the cell membranes of the spinous cell layer. N-acetyl-lactosamine was present mainly...

  10. Boosting antibody responses by targeting antigens to dendritic cells.

    Science.gov (United States)

    Caminschi, Irina; Shortman, Ken

    2012-02-01

    Delivering antigens directly to dendritic cells (DCs) in situ, by injecting antigens coupled to antibodies specific for DC surface molecules, is a promising strategy for enhancing vaccine efficacy. Enhanced cytotoxic T cell responses are obtained if an adjuvant is co-administered to activate the DC. Such DC targeting is also effective at enhancing humoral immunity, via the generation of T follicular helper cells. Depending on the DC surface molecule targeted, antibody production can be enhanced even in the absence of adjuvants. In the case of Clec9A as the DC surface target, enhanced antibody production is a consequence of the DC-restricted expression of the target molecule. Few other cells absorb the antigen-antibody construct, therefore, it persists in the bloodstream, allowing sustained antigen presentation, even by non-activated DCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. DNA encoding individual mycobacterial antigens protects mice against tuberculosis

    Directory of Open Access Journals (Sweden)

    C.L. Silva

    1999-02-01

    Full Text Available Over the last few years, some of our experiments in which mycobacterial antigens were presented to the immune system as if they were viral antigens have had a significant impact on our understanding of protective immunity against tuberculosis. They have also markedly enhanced the prospects for new vaccines. We now know that individual mycobacterial protein antigens can confer protection equal to that from live BCG vaccine in mice. A critical determinant of the outcome of immunization appears to be the degree to which antigen-specific cytotoxic T cells are generated by the immune response. Our most recent studies indicate that DNA vaccination is an effective way to establish long-lasting cytotoxic T cell memory and protection against tuberculosis.

  12. Vaccination and the TAP-independent antigen processing pathways.

    Science.gov (United States)

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  13. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules*

    Science.gov (United States)

    Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.

    2015-01-01

    Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081

  14. Therapeutic Antibodies against Intracellular Tumor Antigens

    Directory of Open Access Journals (Sweden)

    Iva Trenevska

    2017-08-01

    Full Text Available Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8–10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I molecules. These tumor-associated peptide–MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm or T-cell receptor (TCR-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.

  15. Human sensitization to Ganoderma antigen.

    Science.gov (United States)

    Tarlo, S M; Bell, B; Srinivasan, J; Dolovich, J; Hargreave, F E

    1979-07-01

    Continuous air sampling with a Hirst volumetric spore trap over 3 yr has identified basidiospores of Ganoderma applanatum, a bracket fungus, as the most numerous fungal spores in two southern Ontario locations. The particle size is small and the calculated total spore mass approximates that of the spores of Cladosporium and Alternaria. Extracts of Ganoderma applanatum bracket fungus and spores in w/v, 1:10 concentration were prepared after collection of samples of the fungus from local woods. Skin prick tests with the extracts were performed in 294 consecutive children and adults attending two chest/allergy clinics. Of these patients, 182 (61.9%) reacted to 1 or more of the common inhalant allergen extracts and 24 (8.2%) reacted to Ganoderma antigen. There was no consistent relationship between reactivity to Ganoderma antigen and any of the common inhaled allergens. IgE-dependent sensitization to Ganoderma was confirmed by the radioallergosorbent test (RAST). Rabbit antisera to Ganoderma antigen preparations did not appear to cross-react with preparations of the various clinically important allergens. The findings indicate that Ganoderma antigen is commonly encountered, can induce human sensitization, and has unique antigenicity among common allergens of clinical importance.

  16. Antigen processing and immune regulation in the response to tumours.

    Science.gov (United States)

    Reeves, Emma; James, Edward

    2017-01-01

    The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8 + cytotoxic and CD4 + helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8 + cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4 + T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8 + cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets. © 2016 John Wiley & Sons Ltd.

  17. Characterisation of Sarcoptes scabiei antigens.

    Science.gov (United States)

    Hejduk, Gloria; Hofstätter, Katja; Löwenstein, Michael; Peschke, Roman; Miller, Ingrid; Joachim, Anja

    2011-02-01

    In pig herds, the status of Sarcoptes scabiei infections is routinely monitored by serodiagnosis. Crude antigen for ELISA is usually prepared from S. scabiei var. canis or other variations and may lead to variations in the outcome of different tests, making assay standardisation difficult. This study was performed to investigate the antigen profiles of S. scabiei, including differences between hydrophilic and more hydrophobic protein fractions, by Western blotting with sera from pigs with defined infection status. Potential cross-reactivity among S. scabiei (var. canis, suis and bovis), Dermatophagoides farinae and Tyrophagus putrescentiae was also analysed. Hydrophobic S. scabiei antigens were detectable in the range of 40-50 kDa, whilst the hydrophilic fraction showed no specific antigenicity. In the hydrophobic fractions of D. farinae and T. putrescentiae, two major protein fractions in a similar size range could be identified, but no cross-reactivity with Sarcoptes-positive sera was detectable. However, examination of the hydrophilic fractions revealed cross-reactivity between Sarcoptes-positive sera and both the house dust mite and the storage mite in the range of 115 and 28/38 kDa. Specific bands in the same range (42 and 48 kDa) could be detected in blots from hydrophobic fractions of all three tested variations of S. scabiei (var. canis, bovis and suis). These results show that there are considerable differences in mange antibody reactivity, including reactions with proteins from free-living mites, which may interfere with tests based on hydrophilic antigens. Further refinement of antigen and the use of specific hydrophobic proteins could improve ELISA performance and standardisation.

  18. [Farmer's lung antigens in Germany].

    Science.gov (United States)

    Sennekamp, J; Joest, M; Sander, I; Engelhart, S; Raulf-Heimsoth, M

    2012-05-01

    Recent studies suggest that besides the long-known farmer's lung antigen sources Saccharopolyspora rectivirgula (Micropolyspora faeni), Thermoactinomyces vulgaris, and Aspergillus fumigatus, additionally the mold Absidia (Lichtheimia) corymbifera as well as the bacteria Erwinia herbicola (Pantoea agglomerans) and Streptomyces albus may cause farmer's lung in Germany. In this study the sera of 64 farmers with a suspicion of farmer's lung were examined for the following further antigens: Wallemia sebi, Cladosporium herbarum, Aspergillus versicolor, and Eurotium amstelodami. Our results indicate that these molds are not frequent causes of farmer's lung in Germany. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Antigen-specific immune reactions to ischemic stroke

    Directory of Open Access Journals (Sweden)

    Xabier eUrra

    2014-09-01

    Full Text Available Brain proteins are detected in the CSF and blood of stroke patients and their concentration is related to the extent of brain damage. Antibodies against brain antigens develop after stroke, suggesting a humoral immune response to the brain injury. Furthermore, induced immune tolerance is beneficial in animal models of cerebral ischemia. The presence of circulating T cells sensitized against brain antigens, and antigen presenting cells (APCs carrying brain antigens in draining lymphoid tissue of stroke patients support the notion that stroke might induce antigen-specific immune responses. After stroke, brain proteins that are normally hidden from the periphery, inflammatory mediators, and danger signals can exit the brain through several efflux routes. They can reach the blood after leaking out of the damaged blood-brain barrier or following the drainage of interstitial fluid to the dural venous sinus, or reach the cervical lymph nodes through the nasal lymphatics following CSF drainage along the arachnoid sheaths of nerves across the nasal submucosa. The route and mode of access of brain antigens to lymphoid tissue could influence the type of response. Central and peripheral tolerance prevents autoimmunity, but the actual mechanisms of tolerance to brain antigens released into the periphery in the presence of inflammation, danger signals, and APCs, are not fully characterized. Stroke does not systematically trigger autoimmunity, but under certain circumstances, such as pronounced systemic inflammation or infection, autoreactive T cells could escape the tolerance controls. Further investigation is needed to elucidate whether antigen-specific immune events could underlie neurological complications impairing stroke outcome.

  20. Targeting novel antigens in the arterial wall in thromboangiitis obliterans.

    Directory of Open Access Journals (Sweden)

    Murat Akkus

    2010-06-01

    Full Text Available Thromboangiitis obliterans is an inflammatory disease possibly resulting from cigarette smoking as a primary etiologic factor, perhaps as a delayed type of hypersensitivity or toxic angiitis. As little is known about the pathogenesis of the disease, we aimed to determine novel antigens that might be responsible from the local inflammatory reactions and structural changes observed in this disease. An indirect immunoperoxidase technique is used to examine the tissue samples obtained from the dorsalis pedis artery of affected individuals with twenty monoclonal antibodies. Among these several antigens which are not previously reported in TAO like CD34, CD44 and CD90 were determined in the tissue samples examined. On the other hand, many other antigens like cytokine/chemokine receptors, several enzymes and leukocyte/lymphocyte antigens were lacking giving some clues about the local pathological reactions. We briefly discussed our findings for several critical antigens those first described in the present work, possibly having roles in the development of the disease. Expression of the CD90/CD11c receptor/ligand pair seems to play an important role in mononuclear cell recruitment to the damage site. Vascular invasion of not only tunica intima but also the tunica media in affected vessels is clearly demonstrated using endothelial cell specific antigens.

  1. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    Science.gov (United States)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  2. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity

    Directory of Open Access Journals (Sweden)

    Marcela V Maus

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are synthetic receptors that usually redirect T cells to surface antigens independent of human leukocyte antigen (HLA. Here, we investigated a T cell receptor-like CAR based on an antibody that recognizes HLA-A*0201 presenting a peptide epitope derived from the cancer-testis antigen NY-ESO-1. We hypothesized that this CAR would efficiently redirect transduced T cells in an HLA-restricted, antigen-specific manner. However, we found that despite the specificity of the soluble Fab, the same antibody in the form of a CAR caused moderate lysis of HLA-A2 expressing targets independent of antigen owing to T cell avidity. We hypothesized that lowering the affinity of the CAR for HLA-A2 would improve its specificity. We undertook a rational approach of mutating residues that, in the crystal structure, were predicted to stabilize binding to HLA-A2. We found that one mutation (DN lowered the affinity of the Fab to T cell receptor-range and restored the epitope specificity of the CAR. DN CAR T cells lysed native tumor targets in vitro, and, in a xenogeneic mouse model implanted with two human melanoma lines (A2+/NYESO+ and A2+/NYESO−, DN CAR T cells specifically migrated to, and delayed progression of, only the HLA-A2+/NY-ESO-1+ melanoma. Thus, although maintaining MHC-restricted antigen specificity required T cell receptor-like affinity that decreased potency, there is exciting potential for CARs to expand their repertoire to include a broad range of intracellular antigens.

  3. Immunization of rabbits with nematode Ascaris lumbricoides antigens induces antibodies cross-reactive to house dust mite Dermatophagoides farinae antigens.

    Science.gov (United States)

    Nakazawa, Takuya; Khan, Al Fazal; Yasueda, Hiroshi; Saito, Akemi; Fukutomi, Yuma; Takai, Toshiro; Zaman, Khalequz; Yunus, Md; Takeuchi, Haruko; Iwata, Tsutomu; Akiyama, Kazuo

    2013-01-01

    There are controversial reports on the relationship between helminthic infection and allergic diseases. Although IgE cross-reactivity between nematode Ascaris antigens and house dust-mite allergens in allergic patients have been reported, whether Ascaris or the mite is the primary sensitizer remains unknown. Here we found that immunization of naïve animals with Ascaris lumbricoides (Al) antigens induced production of antibodies cross-reactive to mite antigens from Dermatophagoides farinae (Df). Sera from Bangladeshi children showed IgE reactivity to Ascaris and mite extracts. IgG from rabbits immunized with Al extract exhibited reactivity to Df antigens. Treatment of the anti-Al antibody with Df antigen-coupled beads eliminated the reactivity to Df antigens. In immunoblot analysis, an approximately 100-kDa Df band was the most reactive to anti-Al IgG. The present study is the first step towards the establishment of animal models to study the relationship between Ascaris infection and mite-induced allergic diseases.

  4. Antigenic Shift and Drift

    Science.gov (United States)

    Balgopal, Meena; Bondy, Cindi

    2011-01-01

    It's that time of year again, when avoiding the flu is on everyone's mind. As we brace ourselves for possible flu outbreaks, the need to understand biological issues related to this virus becomes clear. Through modeling, the lesson presented in this article helps students understand how the influenza virus (or flu) evolves and how flu vaccines are…

  5. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  6. Concepts and applications for influenza antigenic cartography

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza antigenic cartography projects influenza antigens into a two or three dimensional map based on immunological datasets, such as hemagglutination inhibition and microneutralization assays. A robust antigenic cartography can facilitate influenza vaccine strain selection since the antigenic map can simplify data interpretation through intuitive antigenic map. However, antigenic cartography construction is not trivial due to the challenging features embedded in the immunological data, such as data incompleteness, high noises, and low reactors. To overcome these challenges, we developed a computational method, temporal Matrix Completion-Multidimensional Scaling (MC-MDS), by adapting the low rank MC concept from the movie recommendation system in Netflix and the MDS method from geographic cartography construction. The application on H3N2 and 2009 pandemic H1N1 influenza A viruses demonstrates that temporal MC-MDS is effective and efficient in constructing influenza antigenic cartography. The web sever is available at http://sysbio.cvm.msstate.edu/AntigenMap. PMID:21761589

  7. LOCALIZATION OF ANTIGEN IN TISSUE CELLS

    Science.gov (United States)

    Coons, Albert H.; Leduc, Elizabeth H.; Kaplan, Melvin H.

    1951-01-01

    The fate of three proteins, crystalline hen's egg albumin, crystalline bovine plasma albumin, and human plasma γ-globulin, was traced after intravenous injection into mice. This was done by preparing frozen sections of quick-frozen tissue, allowing what foreign protein might be present in the section to react with homologous antibody labelled with fluorescein, and examining the section under the fluorescence microscope. By this means, which employs the serological specificity of the protein as a natural "marker," all three of these proteins were found in the cells of the reticulo-endothelial system, the connective tissue, the vascular endothelium, the lymphocytes of spleen and lymph node, and the epithelium of the kidney tubules, the liver, and in very small amounts in the adrenal. The central nervous system was not studied. All three persisted longest in the reticulo-endothelial system and the connective tissue, and in the doses employed egg white (10 mg.) was no longer detectable after 1 day, bovine albumin (10 mg.) after 2 days, and human γ-globulin (4 mg.) after 6 days, although in a somewhat higher dose (10 mg.) human γ-globulin persisted longer than 8 days. Egg albumin differed from the others in not being detectable in the cells of the renal glomerulus. It was found that each of the three proteins was present in the nuclei of each cell type enumerated above, often in higher concentration than in the cytoplasm. Further, some of the nuclei not only contained antigen, soon after injection, but were also surrounded by a bright ring associated with the nuclear membrane. By means of photographic records under the fluorescence microscope of sections stained for antigen, and direct observation under the light microscope of the same field subsequently stained with hematoxylin and eosin, it could be determined that the antigen was not adsorbed to chromatin or nucleoli, but was apparently in solution in the nuclear sap. PMID:14803641

  8. Delivery presentations

    Science.gov (United States)

    Pregnancy - delivery presentation; Labor - delivery presentation; Occiput posterior; Occiput anterior; Brow presentation ... The mother can walk, rock, and try different delivery positions during labor to help encourage the baby ...

  9. Screening Donors for Rare Antigen Constellations.

    Science.gov (United States)

    Wagner, Franz F

    2009-01-01

    SCREENING BLOOD DONORS FOR RARE ANTIGEN CONSTELLATIONS HAS BEEN IMPLEMENTED USING SIMPLE PCR METHODS: PCR with enzyme digestion has been used to type donor cohorts for Dombrock antigens, and PCR with sequence-specific priming to identify donors negative for antigens of high frequency. The advantages and disadvantages of the methods as well as their current state is discussed.

  10. Lipophilic Muramyl Dipeptide-Antigen Conjugates as Immunostimulating Agents.

    Science.gov (United States)

    Willems, Marian M J H P; Zom, Gijs G; Meeuwenoord, Nico; Khan, Selina; Ossendorp, Ferry; Overkleeft, Herman S; van der Marel, Gijsbert A; Filippov, Dmitri V; Codée, Jeroen D C

    2016-01-19

    Muramyl dipeptide (MDP) is the smallest peptidoglycan fragment capable of triggering the innate immune system through interaction with the intracellular NOD2 receptor. To develop synthetic vaccine modalities composed of an antigenic entity (typically a small peptide) and a molecular adjuvant with well-defined activity, we previously assembled covalent MDP-antigen conjugates. Although these were found to be capable of stimulating the NOD2 receptor and were processed by dendritic cells (DCs) leading to effective antigen presentation, DC maturation--required for an apt immune response--could not be achieved with these conjugates. To improve the efficacy of these vaccine modalities, we equipped the MDP moiety with lipophilic tails, well-known modifications to enhance the immune-stimulatory activity of MDPs. Herein we report the design and synthesis of a lipophilic MDP-antigen conjugate and show that it is a promising vaccine modality capable of stimulating the NOD2 receptor, maturing DCs, and delivering antigen cargo into the MHC-I cross-presentation pathway. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Antigen entrapped in the escheriosomes leads to the generation of CD4(+) helper and CD8(+) cytotoxic T cell response.

    Science.gov (United States)

    Syed, Faisal M; Khan, Masood A; Nasti, Tahseen H; Ahmad, Nadeem; Mohammad, Owais

    2003-06-02

    In previous study, we demonstrated the potential of Escherichia coli (E. coli) lipid liposomes (escheriosomes) to undergo membrane-membrane fusion with cytoplasmic membrane of the target cells including professional antigen presenting cells. Our present study demonstrates that antigen encapsulated in escheriosomes could be successfully delivered simultaneously to the cytosolic as well as endosomal processing pathways of antigen presenting cells, leading to the generation of both CD4(+) T-helper and CD8(+) cytotoxic T cell response. In contrast, encapsulation of same antigen in egg phosphatidyl-choline (egg PC) liposomes, just like antigen-incomplete Freund's adjuvant (IFA) complex, has inefficient access to the cytosolic pathway of MHC I-dependent antigen presentation and failed to generate antigen-specific CD8(+) cytotoxic T cell response. However, both egg PC liposomes as well as escheriosomes-encapsulated antigen elicited strong humoral immune response in immunized animals but antibody titre was significantly higher in the group of animals immunized with escheriosomes-encapsulated antigen. These results imply usage of liposome-based adjuvant as potential candidate vaccine capable of eliciting both cell-mediated as well as humoral immune responses. Furthermore, antigen entrapped in escheriosomes stimulates antigen-specific CD4(+) T cell proliferation and also enhances the level of IL-2, IFN-gamma and IL-4 in the immunized animals.

  12. A strategy for identifying serodiagnostically relevant antigens of Leishmania or other pathogens in genetic libraries.

    Science.gov (United States)

    Teixeira, Márcia C A; Oliveira, Geraldo G S; Silvany, Marco A; Alcântara-Neves, Neuza M; Soares, Milena B P; Ribeiro-Dos-Santos, Ricardo; Jerônimo, Selma M B; Costa, Carlos H; dos-Santos, Washington L C; Eichinger, Daniel; Pontes-de-Carvalho, Lain

    2007-03-01

    Different individuals, when infected with the same parasite, rarely produce antibodies against the same set of antigens. Indeed, unless a particular antigen happens to be recognized by antibodies in all individuals, the use of a single antigen in the serodiagnosis of parasitic diseases leads, invariably, to false-negative results. A straightforward method for pin-pointing, in genetic libraries, the precise antigens that would increase serodiagnostic assay sensitivities is presented. The method is based on the utilization of sera that produced false-negative results against previously available antigens. Employing this false-negative serum-selection methodology for the identification of new Leishmania infantum recombinant antigens (rAgs), the sensitivity of a dipstick assay for anti-Leishmania antibodies in a panel of sera from patients with visceral leishmaniasis was increased from 83.3% to 98.1%, without affecting its specificity, by the inclusion of a fifth and a sixth L. infantum rAg.

  13. Glycoconjugates as target antigens in peripheral neuropathies

    Directory of Open Access Journals (Sweden)

    Ljubica Suturkova

    2014-12-01

    Full Text Available Identification and characterization of antigens present at the human peripheral nerve is a great challenge in the field of neuroimmunology. The latest investigations are focused on the understanding of the biology of glycoconjugates present at the peripheral nerve, and their immunological reactivity. Increased titers of antibodies that recognize carbohydrate determinants of glycoconjugates (glycolipids and glycoproteins are associated with distinct neuropathic syndromes. There is considerable cross-reactivity among anti-ganglioside antibodies, resulting from shared oligosaccharide epitopes, possibly explaining the overlap in syndromes observed in many affected patients. Sera from patients with neuropathies (GBS, chronic inflammatory demielynating polyneuropathy - CIDP, multifocal motor neuropathy - MMN, cross-react with glycoproteins isolated from human peripheral nerve and from Campylobacter jejuni O:19. The frequency of occurrence of antibodies against these glycoproteins is different, depending of the type of neuropathy. Identification of the cross-reactive glycoproteins and possible additional auto antigens could be useful in laboratory evaluation of peripheral neuropathies and help to develop a more effective therapeutic approach.

  14. Cancer Immunotherapy Utilized Bubble Liposomes and Ultrasound as Antigen Delivery System

    Science.gov (United States)

    Oda, Yusuke; Otake, Shota; Suzuki, Ryo; Otake, Shota; Nishiie, Norihito; Hirata, Keiichi; Taira, Yuichiro; Utoguchi, Naoki; Maruyama, Kazuo

    2010-03-01

    In dendritic cells (DCs)-based cancer immunotherapy, it is important to present the epitope peptide derived from tumor associated antigens (TAAs) on MHC class I in order to induce tumor specific cytotoxic T lymphocytes (CTLs). However, MHC class I molecules generally present the epitope peptides derived from endogenous antigens for DCs but not exogenous ones such as TAAs. Recently, we developed the novel liposomal bubbles (Bubble liposomes) encapsulating perfluoropropane nanobubbles. In this study, we attempted to establish the novel antigen delivery system to induce MHC class I presentation using the combination of ultrasound and Bubble liposomes. Using ovalbumin (OVA) as model antigen, the combination of Bubble liposomes and ultrasound exposure for the DC could induce MHC class I presentation. In addition, the viability of DCs was more than 80%. These results suggest that Bubble liposomes might be a novel ultrasound enhanced antigen delivery tool in DC-based cancer immunotherapy.

  15. Role of the Antigen Capture Pathway in the Induction of a Neutralizing Antibody Response to Anthrax Protective Antigen

    Directory of Open Access Journals (Sweden)

    Anita Verma

    2018-02-01

    Full Text Available Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA, the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses.

  16. Delivery presentations

    Science.gov (United States)

    ... is delivered under the pubic bone. After the shoulder, the rest of the body is usually delivered without a problem. Alternative Names Shoulder presentation; Malpresentations; Breech birth; Cephalic presentation; Fetal lie; ...

  17. Specificity of antigens on UV radiation-induced antigenic tumor cell variants measured in vitro and in vivo

    International Nuclear Information System (INIS)

    Hostetler, L.W.; Romerdahl, C.A.; Kripke, M.L.

    1989-01-01

    The purpose of this study was to determine whether antigenic variants cross-react immunologically with the parental tumor and whether the UVR-associated antigen unique to UVR-induced tumors is also present on the variants. Antigenic (regressor) variants and nonimmunogenic (progressor) clones derived from UV-irradiated cultures of the C3H K1735 melanoma and SF19 spontaneous fibrosarcoma cell lines were used to address these questions. In an in vivo immunization and challenge assay, the antigenic variants did not induce cross-protection among themselves, but each induced immunity against the immunizing variant, the parent tumor cells, and nonimmunogenic clones derived from UV-irradiated parent cultures. Therefore, the variants can be used to induce in mice a protective immunity that prevents the growth of the parent tumor and nonimmunogenic clones, but not other antigenic variants. In contrast, immunization with cells of the parental tumor or the nonimmunogenic clones induced no protective immunity against challenge with any of the cell lines. Utilizing the K1735 melanoma-derived cell lines in vitro, T-helper (Th) cells isolated from tumor-immunized mice were tested for cross-reactivity by their ability to collaborate with trinitrophenyl-primed B-cells in the presence of trinitrophenyl-conjugated tumor cells. Also, the cross-reactivity of cytotoxic T-lymphocytes from tumor-immunized mice was assessed by a 4-h 51Cr-release assay. Antigenic variants induced cytotoxic T-lymphocytes and Th activity that was higher than that induced by the parent tumor and nonimmunogenic clones from the UVR-exposed parent tumor and cross-reacted with the parental tumor cells and nonimmunogenic clones, but not with other antigenic variants

  18. The global antigenic diversity of swine influenza A viruses

    Science.gov (United States)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky; Anderson, Tavis K; Berger, Kathryn; Bielejec, Filip; Burke, David F; Dudas, Gytis; Fonville, Judith M; Fouchier, Ron AM; Kellam, Paul; Koel, Bjorn F; Lemey, Philippe; Nguyen, Tung; Nuansrichy, Bundit; Peiris, JS Malik; Saito, Takehiko; Simon, Gaelle; Skepner, Eugene; Takemae, Nobuhiro; Webby, Richard J; Van Reeth, Kristien; Brookes, Sharon M; Larsen, Lars; Watson, Simon J; Brown, Ian H; Vincent, Amy L

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans. DOI: http://dx.doi.org/10.7554/eLife.12217.001 PMID:27113719

  19. A new antigen retrieval technique for human brain tissue.

    Science.gov (United States)

    Alelú-Paz, Raúl; Iturrieta-Zuazo, Ignacio; Byne, William; Haroutunian, Vahram; García-Villanueva, Mercedes; Rábano, Alberto; García-Amado, María; Prensa, Lucía; Giménez-Amaya, José Manuel

    2008-01-01

    Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times.

  20. DETECTION OF PNEUMOCOCCAL CAPSULAR ANTIGEN IN THE PRESENCE OF PENICILLIN IN-VITRO

    NARCIS (Netherlands)

    HOLLOWAY, Y; BOERSMA, WG; KUTTSCHRUTTER, H; SNIJDER, JAM

    1993-01-01

    Eight strains of Streptococcus pneumoniae were tested in vitro for their ability to produce capsular antigen in the presence of penicillin. It was found that, provided 10(6) to 10(7) pneumococci/ml were present, capsular antigen could be detected during the 72 h in which the experiment was

  1. Signal transduction by HLA class II antigens expressed on activated T cells

    DEFF Research Database (Denmark)

    Ødum, Niels; Martin, P J; Schieven, G L

    1991-01-01

    Human T cells express HLA class II antigens upon activation. Although activated, class II+ T cells can present alloantigens under certain circumstances, the functional role of class II antigens on activated T cells remains largely unknown. Here, we report that cross-linking of HLA-DR molecules...

  2. The role of CD4 in antigen-independent activation of isolated single T lymphocytes

    DEFF Research Database (Denmark)

    Kelso, A; Owens, T

    1988-01-01

    The membrane molecule CD4 (L3T4) is thought to facilitate activation of Class II H-2-restricted T cells by binding to Ia determinants on antigen-presenting cells. Recent reports suggest that CD4 can also contribute to antigen-independent activation by anti-T cell receptor (TCR) antibodies. An assay...

  3. Molecular typing of human platelet and neutrophil antigens (HPA and HNA)

    NARCIS (Netherlands)

    Veldhuisen, Barbera; Porcelijn, Leendert; Ellen van der Schoot, C.; de Haas, Masja

    2014-01-01

    Genotyping is an important tool in the diagnosis of disorders involving allo-immunisation to antigens present on the membranes of platelets and neutrophils. To date 28 human platelet antigens (HPAs) have been indentified on six polymorphic glycoproteins on the surface of platelets. Antibodies

  4. De nonklassiske humant leukocyt-antigen (HLA)-vaevstyper--fra implantation til transplantation

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F

    2006-01-01

    The classical and extremely polymorphic human leukocyte antigens (HLA) classes Ia and II have been studied in great detail and have significant importance in organ transplantation, autoimmune diseases and presentation of antigen peptides. However, in the human major histocompatibility complex (MHC...... of rejection episodes in heart and kidney/liver transplants....

  5. Interferon-gamma administration after abdominal surgery rescues antigen-specific helper T cell immune reactivity

    NARCIS (Netherlands)

    Rentenaar, R. J.; de Metz, J.; Bunders, M.; Wertheim-van Dillen, P. M.; Gouma, D. J.; Romijn, J. A.; Sauerwein, H. P.; ten Berge, I. J.; van Lier, R. A.

    2001-01-01

    Antigen-induced activation of T cells is determined by many factors. Among these factors are (i) the number of T-cell receptors (TCRs) triggered by TCR ligands on antigen-presenting cells (APCs), and (ii) the intrinsic cellular threshold for activation. T-cell receptor triggering is optimized by

  6. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity.

    Science.gov (United States)

    van Montfoort, Nadine; Camps, Marcel G; Khan, Selina; Filippov, Dmitri V; Weterings, Jimmy J; Griffith, Janice M; Geuze, Hans J; van Hall, Thorbald; Verbeek, J Sjef; Melief, Cornelis J; Ossendorp, Ferry

    2009-04-21

    Dendritic cells (DCs) are crucial for priming of naive CD8(+) T lymphocytes to exogenous antigens, so-called "cross-priming." We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I-peptide complexes at the cell surface.

  7. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  8. CATCHY PRESENTATIONS

    DEFF Research Database (Denmark)

    Eriksen, Kaare; Tollestrup, Christian; Ovesen, Nis

    2011-01-01

    An important competence for designers is the ability to communicate and present ideas and proposals for customers, partners, investors and colleagues. The Pecha Kucha principle, developed by Astrid Klein and Mark Dytham, has become a widely used and easy format for the presentation of new concepts...... their proposals at the final examination of their project work. The authors conclude that Pecha Kucha is suitable for this type of presentations, although the flow of such presentations should be considered if used in connection with formal examination....

  9. Immunoregulation by Taenia crassiceps and Its Antigens

    Directory of Open Access Journals (Sweden)

    Alberto N. Peón

    2013-01-01

    Full Text Available Taenia crassiceps is a cestode parasite of rodents (in its larval stage and canids (in its adult stage that can also parasitize immunocompromised humans. We have studied the immune response elicited by this helminth and its antigens in mice and human cells, and have discovered that they have a strong capacity to induce chronic Th2-type responses that are primarily characterized by high levels of Th2 cytokines, low proliferative responses in lymphocytes, an immature and LPS-tolerogenic profile in dendritic cells, the recruitment of myeloid-derived suppressor cells and, specially, alternatively activated macrophages. We also have utilized the immunoregulatory capabilities of this helminth to successfully modulate autoimmune responses and the outcome of other infectious diseases. In the present paper, we review the work of others and ourselves with regard to the immune response induced by T. crassiceps and its antigens, and we compare the advances in our understanding of this parasitic infection model with the knowledge that has been obtained from other selected models.

  10. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... proteins and peptides. Little information is available presently about the consequences of such modifications on the immune response. To model oxidative modification of an immunodominant antigenic peptide, we oxidized the methionine residue of the human CMV pp65(495-503) (NLVPMVATV) peptide...... of antigenic peptides may affect T cell responses severely by binding T cell clones with different affinity. This may lead to an altered immune response against infectious agents as well as against tumor or autoantigens under oxidative stress conditions....

  11. Potent antigen-specific immune response induced by infusion of spleen cells coupled with succinimidyl-4-(N-maleimidomethyl cyclohexane)-1-carboxylate (SMCC) conjugated antigens.

    Science.gov (United States)

    Guo, Yixian; Werbel, Tyler; Wan, Suigui; Wu, Haitao; Li, Yaohua; Clare-Salzler, Michael; Xia, Chang-Qing

    2016-02-01

    In the present study, we report our recently developed new approach to inducing antigen-specific immune response. We use two nucleophilic substitution "click" chemistry processes to successfully couple protein antigens or peptides to mouse spleen cells or T cells by a heterobifunctional crosslinker, succinimidyl-4-(N-maleimidomethyl cyclohexane)-1-carboxylate (SMCC) or sulfo-SMCC. SMCC and its water-soluble analog sulfo-SMCC contain N-hydroxysuccinimide (NHS) ester and maleimide groups, which allow stable covalent conjugation of amine- and sulfhydryl-containing molecules in trans. Protein coupling to cells relies on the free sulfhydryls (thiols) on cell surfaces and the free amines on protein antigens. Although the amount of protein coupled to cells is limited due to the limited number of cell surface thiols, the injection of spleen cells coupled with antigenic proteins, such as keyhole limpet hemocyanin (KLH) or ovalbumin (OVA), induces a potent antigen-specific immune response in vivo, which is even stronger than that induced by the injection of a large dose of protein plus adjuvants. In addition, short peptides coupled to purified splenic T cells also potently elicit peptide-specific T cell proliferation in vivo after injection. Further studies show that antigen-coupled spleen cell treatment leads to augmented IFN-γ-producing T cells. Our study provides a unique antigen delivery method that efficiently distributes antigen to the entire immune system, subsequently eliciting a potent antigen-specific immune response with enhanced IFN-γ production. The findings in the present study suggest that this antigen-cell coupling strategy could be employed in immunotherapy for cancers, infectious diseases as well as immune-mediated disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Prognostic, Diagnostic, and Therapeutic Potential of Tumor Antigens

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn

    Tumor antigens are a group of proteins recognized by the cells of immune system. Specifically, they are recognized in tumor cells where they are present in larger than usual amounts, or are physiochemically altered to a degree at which they no longer resemble native human proteins. Their presence...

  13. Detection of canine parvovirus antigen in dogs in Kumasi, Ghana ...

    African Journals Online (AJOL)

    Background: Canine Parvovirus (CPV) in dogs has been documented in many countries. However, evidence of the infection is scanty in Ghana. This study was conducted to detect canine parvovirus antigen in dogs presented with diarrhoea to the Government Veterinary Clinic in Kumasi, Ghana. Materials and Methods: ...

  14. Innovative DNA vaccine to break immune tolerance against tumor self-antigen.

    Science.gov (United States)

    Kang, Tae Heung; Mao, Chih-Ping; La, Victor; Chen, Alexander; Hung, Chien-Fu; Wu, T-C

    2013-02-01

    Vaccination is, in theory, a safe and effective approach for controlling disseminated or metastatic cancer due to the specificity of the mammalian immune system, yet its success in the clinic has been hampered thus far by the problem of immune tolerance to tumor self-antigen. Here we describe a DNA vaccination strategy that is able to control cancer by overcoming immune tolerance to tumor self-antigen. We engineered a DNA construct encoding a dimeric form of a secreted single-chain trimer of major histocompatibility complex class I heavy chain, β2-microglobulin, and peptide antigen linked to immunoglobulin G (SCT-Ag/IgG). The chimeric protein was able to bind to antigen-specific CD8(+) T cells with nearly 100% efficiency and strongly induce their activation and proliferation. In addition, the chimeric protein was able to coat professional antigen-presenting cells through the F(c) receptor to activate antigen-specific CD8(+) T cells. Furthermore, intradermal vaccination with DNA-encoding SCT-Ag/IgG could generate significant numbers of cytotoxic effector T cells against tumor self-antigen and leads to successful therapeutic outcomes in a preclinical model of metastatic melanoma. Our data suggest that the DNA vaccine strategy described in the current study is able to break immune tolerance against endogenous antigen from melanoma and result in potent therapeutic antitumor effects. Such strategy may be used in other antigenic systems for the control of infections and/or cancers.

  15. Automated alarm to detect antigen excess in serum free immunoglobulin light chain kappa and lambda assays.

    Science.gov (United States)

    Urdal, Petter; Amundsen, Erik K; Toska, Karin; Klingenberg, Olav

    2014-10-01

    Antigen excess causing a falsely low concentration result may occur when measuring serum free immunoglobulin light chains (SFLC). Automated antigen excess detection methods are available only with some analyzers. We have now developed and verified such a method. Residuals of sera with known SFLC-κ and -λ concentrations were analyzed using Binding Site reagents and methods adapted to the Roche Cobas® c.501 analyzer. We analyzed 117 sera for SFLC-κ and -λ and examined how the absorbance increased with time during the 7 minutes of reaction (absorbance reading points 12-70). From this an antigen excess alarm factor (ratio of absorbance increases between reading points 68-60 and 20-12, multiplied by 100) was defined. Upon our request, Roche added to our two SFLC assays a program which calculated this antigen excess alarm factor and triggered an alarm when the factor was below a defined value. We verified this antigen excess alarm function by analyzing serum from 325 persons of whom 143 were multiple myeloma patients. All samples with a known concentration above 30 mg/L triggered either an antigen excess alarm, an 'above test' alarm or both. Also, all samples above 200 mg/L (SFLC-λ) and 300 mg/L (SFLC-κ) triggered the antigen excess alarm and all but one triggered the above test alarm. The antigen excess alarm function presented here detected all known antigen excess samples at no increased time of analysis, a reduced workload and reduced reagent cost.

  16. A Model System for Concurrent Detection of Antigen and Antibody Based on Immunological Fluorescent Method

    Directory of Open Access Journals (Sweden)

    Yuan-Cheng Cao

    2015-01-01

    Full Text Available This paper describes a combined antigen/antibody immunoassay implemented in a 96-well plate using fluorescent spectroscopic method. First, goat anti-human IgG was used to capture human IgG (model antigen; goat anti-human IgG (Cy3 or FITC was used to detect the model antigen; a saturating level of model antigen was then added followed by unlabelled goat anti-human IgG (model antibody; finally, Cy3 labelled rabbit anti-goat IgG was used to detect the model antibody. Two approaches were applied to the concomitant assay to analyze the feasibility. The first approach applied FITC and Cy3 when both targets were present at the same time, resulting in 50 ng/mL of the antibody detection limit and 10 ng/mL of antigen detection limit in the quantitative measurements of target concentration, taking the consideration of FRET efficiency of 68% between donor and acceptor. The sequential approach tended to lower the signal/noise (S/N ratio and the detection of the model antigen (lower than 1 ng/mL had better sensitivity than the model antibody (lower than 50 ng/mL. This combined antigen/antibody method might be useful for combined detection of antigens and antibodies. It will be helpful to screen for both antigen and antibody particularly in the situations of the multiserotype and high-frequency mutant virus infections.

  17. Differential use of autophagy by primary dendritic cells specialized in cross-presentation.

    Science.gov (United States)

    Mintern, Justine D; Macri, Christophe; Chin, Wei Jin; Panozza, Scott E; Segura, Elodie; Patterson, Natalie L; Zeller, Peter; Bourges, Dorothee; Bedoui, Sammy; McMillan, Paul J; Idris, Adi; Nowell, Cameron J; Brown, Andrew; Radford, Kristen J; Johnston, Angus Pr; Villadangos, Jose A

    2015-01-01

    Antigen-presenting cells survey their environment and present captured antigens bound to major histocompatibility complex (MHC) molecules. Formation of MHC-antigen complexes occurs in specialized compartments where multiple protein trafficking routes, still incompletely understood, converge. Autophagy is a route that enables the presentation of cytosolic antigen by MHC class II molecules. Some reports also implicate autophagy in the presentation of extracellular, endocytosed antigen by MHC class I molecules, a pathway termed "cross-presentation." The role of autophagy in cross-presentation is controversial. This may be due to studies using different types of antigen presenting cells for which the use of autophagy is not well defined. Here we report that active use of autophagy is evident only in DC subtypes specialized in cross-presentation. However, the contribution of autophagy to cross-presentation varied depending on the form of antigen: it was negligible in the case of cell-associated antigen or antigen delivered via receptor-mediated endocytosis, but more prominent when the antigen was a soluble protein. These findings highlight the differential use of autophagy and its machinery by primary cells equipped with specific immune function, and prompt careful reassessment of the participation of this endocytic pathway in antigen cross-presentation.

  18. Workshop presentations

    International Nuclear Information System (INIS)

    Sanden, Per-Olof; Edland, Anne; Reiersen, Craig; Mullins, Peter; Ingemarsson, Karl-Fredrik; Bouchard, Andre; Watts, Germaine; Johnstone, John; Hollnagel, Erik; Ramberg, Patric; Reiman, Teemu

    2009-01-01

    An important part of the workshop was a series of invited presentations. The presentations were intended to both provide the participants with an understanding of various organisational approaches and activities as well as to stimulate the exchange of ideas during the small group discussion sessions. The presentation subjects ranged from current organisational regulations and licensee activities to new organisational research and the benefits of viewing organisations from a different perspective. There were more than a dozen invited presentations. The initial set of presentations gave the participants an overview of the background, structure, and aims of the workshop. This included a short presentation on the results from the regulatory responses to the pre-workshop survey. Representatives from four countries (Sweden, Canada, Finland, and the United Kingdom) expanded upon their survey responses with detailed presentations on both regulatory and licensee safety-related organisational activities in their countries. There were also presentations on new research concerning how to evaluate safety critical organisations and on a resilience engineering perspective to safety critical organisations. Below is the list of the presentations, the slides of which being available in Appendix 2: 1 - Workshop Welcome (Per-Olof Sanden); 2 - CSNI Working Group on Human and Organisational Factors (Craig Reiersen); 3 - Regulatory expectations on justification of suitability of licensee organisational structures, resources and competencies (Anne Edland); 4 - Justifying the suitability of licensee organisational structures, resources and competencies (Karl-Fredrik Ingemarsson); 5 - Nuclear Organisational Suitability in Canada (Andre Bouchard); 6 - Designing and Resourcing for Safety and Effectiveness (Germaine Watts); 7 - Organisational Suitability - What do you need and how do you know that you've got it? (Craig Reiersen); 8 - Suitability of Organisations - UK Regulator's View

  19. CERN presentations

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Presentation by CERN (10 minutes each) Rolf Landua - Education and Outreach Salvatore Mele - Open Access Jean-Yves Le Meur - Digital Library in Africa Francois Fluckiger - Open Source/Standards (tbc) Tim Smith - Open Data for Science Tullio Basiglia - tbc

  20. Antigenicity of Dermatophilus congolensis hemolysin.

    Science.gov (United States)

    Skalka, B; Pospísil, L

    1993-05-01

    The separated cell-free form of hemolytic exosubstance was obtained from five strains of Dermatophilus congolensis. Three strains produced exosubstance with high activity, two strains produced exosubstance with lower intensity of activity. The separated forms exhibited the same hemolytic interactions as the native forms produced by growing strains, namely the antagonism with staphylococcal beta hemolysin and the synergism with staphylococcal delta hemolysin, streptococcal CAMP factor and rhodococcal equi factor. Rabbit sera obtained after intravenous or intraperitoneal application of the separated forms contained precipitation and neutralization antibodies. Cross tests of precipitation and neutralization proved antigen identity of hemolysins of different D. congolensis, strains which makes the serodiagnostics of this species possible.

  1. A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms

    Science.gov (United States)

    Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.

    2014-01-01

    Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.

  2. Identification of a Highly Antigenic Linear B Cell Epitope within Plasmodium vivax Apical Membrane Antigen 1 (AMA-1)

    Science.gov (United States)

    Bueno, Lilian Lacerda; Lobo, Francisco Pereira; Morais, Cristiane Guimarães; Mourão, Luíza Carvalho; de Ávila, Ricardo Andrez Machado; Soares, Irene Silva; Fontes, Cor Jesus; Lacerda, Marcus Vinícius; Olórtegui, Carlos Chavez; Bartholomeu, Daniella Castanheira; Fujiwara, Ricardo Toshio; Braga, Érika Martins

    2011-01-01

    Apical membrane antigen 1 (AMA-1) is considered to be a major candidate antigen for a malaria vaccine. Previous immunoepidemiological studies of naturally acquired immunity to Plasmodium vivax AMA-1 (PvAMA-1) have shown a higher prevalence of specific antibodies to domain II (DII) of AMA-1. In the present study, we confirmed that specific antibody responses from naturally infected individuals were highly reactive to both full-length AMA-1 and DII. Also, we demonstrated a strong association between AMA-1 and DII IgG and IgG subclass responses. We analyzed the primary sequence of PvAMA-1 for B cell linear epitopes co-occurring with intrinsically unstructured/disordered regions (IURs). The B cell epitope comprising the amino acid sequence 290–307 of PvAMA-1 (SASDQPTQYEEEMTDYQK), with the highest prediction scores, was identified in domain II and further selected for chemical synthesis and immunological testing. The antigenicity of the synthetic peptide was identified by serological analysis using sera from P. vivax-infected individuals who were knowingly reactive to the PvAMA-1 ectodomain only, domain II only, or reactive to both antigens. Although the synthetic peptide was recognized by all serum samples specific to domain II, serum with reactivity only to the full-length protein presented 58.3% positivity. Moreover, IgG reactivity against PvAMA-1 and domain II after depletion of specific synthetic peptide antibodies was reduced by 18% and 33% (P = 0.0001 for both), respectively. These results suggest that the linear epitope SASDQPTQYEEEMTDYQK is highly antigenic during natural human infections and is an important antigenic region of the domain II of PvAMA-1, suggesting its possible future use in pre-clinical studies. PMID:21713006

  3. Presentation Technique

    International Nuclear Information System (INIS)

    Froejmark, M.

    1992-10-01

    The report presents a wide, easily understandable description of presentation technique and man-machine communication. General fundamentals for the man-machine interface are illustrated, and the factors that affect the interface are described. A model is presented for describing the operators work situation, based on three different levels in the operators behaviour. The operator reacts routinely in the face of simple, known problems, and reacts in accordance with predetermined plans in the face of more complex, recognizable problems. Deep fundamental knowledge is necessary for truly complex questions. Today's technical status and future development have been studied. In the future, the operator interface will be based on standard software. Functions such as zooming, integration of video pictures, and sound reproduction will become common. Video walls may be expected to come into use in situations in which several persons simultaneously need access to the same information. A summary of the fundamental rules for the design of good picture ergonomics and design requirements for control rooms are included in the report. In conclusion, the report describes a presentation technique within the Distribution Automation and Demand Side Management area and analyses the know-how requirements within Vattenfall. If different systems are integrated, such as geographical information systems and operation monitoring systems, strict demands are made on the expertise of the users for achieving a user-friendly technique which is matched to the needs of the human being. (3 figs.)

  4. Lecture Presentations

    International Nuclear Information System (INIS)

    2008-01-01

    The Symposium on Physics of Elementary Interactions in the LHC Era held in Warsaw from 21 to 22 April 2008. The main subject of the workshop was to present the progress in CERN LHC collider project. Additionally some satellite activities in field of education, knowledge and technology transfer in the frame of CERN - Poland cooperation were shown

  5. Voting Present

    Directory of Open Access Journals (Sweden)

    James Lo

    2013-12-01

    Full Text Available During his time as a state senator in Illinois, Barack Obama voted “Present” 129 times, a deliberate act of nonvoting that subsequently became an important campaign issue during the 2008 presidential elections. In this article, I examine the use of Present votes in the Illinois state senate. I find evidence that Present votes can largely be characterized as protest votes used as a legislative tool by the minority party. Incorporating information from Present votes into a Bayesian polytomous item-response model, I find that this information increases the efficiency of ideal point estimates by approximately 35%. There is little evidence of significant moderation by Obama when Present votes are accounted for, though my results suggest that Obama’s voting record may have moderated significantly before his subsequent election to the U.S. Senate. My results also suggest that because legislative nonvoting may occur for a variety of reasons, naive inclusion of nonvoting behavior into vote choice models may lead to biased results.

  6. Isolation of Fasciola hepatica tegument antigens.

    OpenAIRE

    Hillyer, G V

    1980-01-01

    Fasciola hepatica tegument antigens were isolated from intact worms in the cold by using Nonidet P-40. Proof of the tegumental nature of the antigens was shown by the peroxidase-antiperoxidase immunocytochemical technique at the light microscope level. The potential of F. hepatica tegument antigens for the immunodiagnosis of rabbit and human fascioliasis was shown by Ouchterlony immunodiffusion, although cross-reactivity was evident in one of six serum samples from patients infected with Schi...

  7. Engineering antigen-specific immunological tolerance.

    Energy Technology Data Exchange (ETDEWEB)

    Kontos, Stephan; Grimm, Alizee J.; Hubbell, Jeffrey A.

    2015-05-01

    Unwanted immunity develops in response to many protein drugs, in autoimmunity, in allergy, and in transplantation. Approaches to induce immunological tolerance aim to either prevent these responses or reverse them after they have already taken place. We present here recent developments in approaches, based on engineered peptides, proteins and biomaterials, that harness mechanisms of peripheral tolerance both prophylactically and therapeutically to induce antigenspecific immunological tolerance. These mechanisms are based on responses of B and T lymphocytes to other cells in their immune environment that result in cellular deletion or ignorance to particular antigens, or in development of active immune regulatory responses. Several of these approaches are moving toward clinical development, and some are already in early stages of clinical testing.

  8. Technical presentation

    CERN Multimedia

    FI Department

    2008-01-01

    RADIOSPARES, the leading catalogue distributor of components (electronic, electrical, automation, etc.) and industrial supplies will be at CERN on Friday 3 October 2008 (Main Building, Room B, from 9.00 a.m. to 3.00 p.m.) to introduce its new 2008/2009 catalogue. This will be the opportunity for us to present our complete range of products in more detail: 400 000 part numbers available on our web site (Radiospares France, RS International, extended range of components from other manufacturers); our new services: quotations, search for products not included in the catalogue, SBP products (Small Batch Production: packaging in quantities adapted to customers’ requirements); partnership with our focus manufacturers; demonstration of the on-line purchasing tool implemented on our web site in conjunction with CERN. RADIOSPARES will be accompanied by representatives of FLUKE and TYCO ELECTRONICS, who will make presentations, demonstrate materials and answer any technical questio...

  9. Identification of candidate antigens from adult stages of Toxocara canis for the serodiagnosis of human toxocariasis

    Directory of Open Access Journals (Sweden)

    Patrícia Longuinhos Peixoto

    2011-03-01

    Full Text Available In the present work, we identified adult Toxocara canis antigens through sodium dodecyl sulfate-polyacrylamide gel electrophoresis for potential use in human toxocariasis immunodiagnosis. The sensitivity and specificity of several semi-purified antigens, as well as their cross-reactivity with other parasitic infections, were assessed by IgM and IgG-enzime linked immunosorbent assay. Whilst we found that the crude extract of the parasite presented limited sensitivity, specificity and high cross-reactivity against other parasites, we identified 42, 58, 68 and 97-kDa semi-purified antigens as the most promising candidates for immunodiagnosis. Moreover, the 58 and 68-kDa antigens presented the lowest IgM cross-reactivity. When tested as a combination, a mixture of the 58 and 68-kDa antigens presented 100% sensitivity and specificity, as well as minor cross-reactivity. Although the combination of the 42, 58, 68 and 97-kDa antigens presented 100% sensitivity at a dilution of 1:40, the low specificity and high cross-reactivity observed suggested a limited use for diagnostic purposes. Our data suggested that the 58 and 68-kDa antigens might be most suitable for the immunodiagnosis of human toxocariasis.

  10. Autoantibodies in autoimmune thyroid disease promote immune complex formation with self antigens and increase B cell and CD4+ T cell proliferation in response to self antigens

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Hegedüs, Laszlo; Leslie, Robert Graham Quinton

    2004-01-01

    B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto......'s thyroiditis (HT), Graves' disease (GD) and healthy controls were incubated with human thyroglobulin (Tg) before adding normal peripheral blood mononuclear cells. The deposition of immunoglobulins and C3 fragments on B cells was then assessed. Inclusion of Tg in serum from HT patients promoted B cell capture...

  11. Blastogenic response of human lymphocytes to early antigen(s) of human cytomegalovirus.

    OpenAIRE

    Waner, J L; Kong, N; Biano, S

    1983-01-01

    The lymphocytes of asymptomatic, seropositive donors demonstrated blastogenic responses to early antigens of human cytomegalovirus whether or not antibodies to early antigens were detectable. The lymphocytes of six of nine patients with active cytomegalovirus infections gave stimulation indexes of greater than or equal to 2.00 with antigens of productively infected cells, whereas only two patients demonstrated comparable stimulation indexes with early antigens. Four patients with stimulation ...

  12. Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation.

    Science.gov (United States)

    Anderson, Christopher S; McCall, Patrick R; Stern, Harry A; Yang, Hongmei; Topham, David J

    2018-02-12

    The ease at which influenza virus sequence data can be used to estimate antigenic relationships between strains and the existence of databases containing sequence data for hundreds of thousands influenza strains make sequence-based antigenic distance estimates an attractive approach to researchers. Antigenic mismatch between circulating strains and vaccine strains results in significantly decreased vaccine effectiveness. Furthermore, antigenic relatedness between the vaccine strain and the strains an individual was originally primed with can affect the cross-reactivity of the antibody response. Thus, understanding the antigenic relationships between influenza viruses that have circulated is important to both vaccinologists and immunologists. Here we develop a method of mapping antigenic relationships between influenza virus stains using a sequence-based antigenic distance approach (SBM). We used a modified version of the p-all-epitope sequence-based antigenic distance calculation, which determines the antigenic relatedness between strains using influenza hemagglutinin (HA) genetic coding sequence data and provide experimental validation of the p-all-epitope calculation. We calculated the antigenic distance between 4838 H1N1 viruses isolated from infected humans between 1918 and 2016. We demonstrate, for the first time, that sequence-based antigenic distances of H1N1 Influenza viruses can be accurately represented in 2-dimenstional antigenic cartography using classic multidimensional scaling. Additionally, the model correctly predicted decreases in cross-reactive antibody levels with 87% accuracy and was highly reproducible with even when small numbers of sequences were used. This work provides a highly accurate and precise bioinformatics tool that can be used to assess immune risk as well as design optimized vaccination strategies. SBM accurately estimated the antigenic relationship between strains using HA sequence data. Antigenic maps of H1N1 virus strains reveal

  13. Purification of nonlipopolysaccharide antigen from Brucella abortus during preparation of antigen used for indirect hemolysis test.

    OpenAIRE

    Hoffmann, E M; Houle, J J

    1986-01-01

    The indirect hemolysis test (IHLT) for the diagnosis of brucellosis uses a lipopolysaccharide (LPS) antigen obtained by dimethyl sulfoxide extraction of Brucella abortus. We showed that a non-LPS antigen can be obtained as a by-product of the IHLT antigen preparation. The antigen was purified to homogeneity by a combination of gel-filtration chromatography and ion-exchange chromatography. The substance contained 8% protein and about 65% carbohydrate. The molecular weight of the primary unit w...

  14. Defining cross presentation for a wider audience.

    Science.gov (United States)

    Norbury, Christopher C

    2016-06-01

    Cross presentation is the process of production of peptide-MHC Class I complexes by cells in which the antigen that is the source of peptide is not translated. The majority of recent studies have described many facets of the classical TAP-dependent cross presentation pathway, but numerous pathways for transfer of antigenic material from a donor to a recipient cell followed by subsequent MHC-I-restricted presentation have been established, including transfer of protein antigen, peptide, RNA, DNA or even peptide-MHC-I complexes. The extent to which each of these pathways generates overlapping or unique peptide repertoires is unknown, as is the contribution of each of these pathways to generation of protective CD8+ T cells during infection or anti-tumor immune responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    NARCIS (Netherlands)

    Dolen, Y.; Kreutz, M.; Gileadi, U.; Tel, J.; Vasaturo, A.; Dinther, E.A.W. van; Hout-Kuijer, M.A. van; Cerundolo, V.; Figdor, C.G.

    2016-01-01

    Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here,

  16. Human Leukocyte Antigen-DR Expression is Significantly Related to an Increased Disease-Free and Disease-Specific Survival in Patients With Cervical Adenocarcinoma

    NARCIS (Netherlands)

    Samuels, Sanne; Spaans, Vivian M.; Osse, Michelle; Peters, Lex A. W.; Kenter, Gemma G.; Fleuren, Gertjan J.; Jordanova, Ekaterina S.

    2016-01-01

    Human leukocyte antigen (HLA) class II antigens are expressed on antigen-presenting cells, that is, macrophages, dendritic cells, and B lymphocytes. Under the influence of IFN-γ, HLA class II molecules can also be expressed on T lymphocytes, epithelial and endothelial cells. In addition, HLA class

  17. Technical presentation

    CERN Multimedia

    FP Department

    2009-01-01

    07 April 2009 Technical presentation by Leuze Electronics: 14.00 – 15.00, Main Building, Room 61-1-017 (Room A) Photoelectric sensors, data identification and transmission systems, image processing systems. We at Leuze Electronics are "the sensor people": we have been specialising in optoelectronic sensors and safety technology for accident prevention for over 40 years. Our dedicated staff are all highly customer oriented. Customers of Leuze Electronics can always rely on one thing – on us! •\tFounded in 1963 •\t740 employees •\t115 MEUR turnover •\t20 subsidiaries •\t3 production facilities in southern Germany Product groups: •\tPhotoelectric sensors •\tIdentification and measurements •\tSafety devices

  18. Toward a network model of MHC class II-restricted antigen processing

    Directory of Open Access Journals (Sweden)

    Laurence C Eisenlohr

    2013-12-01

    Full Text Available The standard model of Major Histocompatibility Complex class II (MHCII-restricted antigen processing depicts a straightforward, linear pathway: Internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4+ T cells (TCD4+. Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell.

  19. A Safe Bacterial Microsyringe for In Vivo Antigen Delivery and Immunotherapy

    Science.gov (United States)

    Le Gouëllec, Audrey; Chauchet, Xavier; Laurin, David; Aspord, Caroline; Verove, Julien; Wang, Yan; Genestet, Charlotte; Trocme, Candice; Ahmadi, Mitra; Martin, Sandrine; Broisat, Alexis; Cretin, François; Ghezzi, Catherine; Polack, Benoit; Plumas, Joël; Toussaint, Bertrand

    2013-01-01

    The industrial development of active immunotherapy based on live-attenuated bacterial vectors has matured. We developed a microsyringe for antigen delivery based on the type III secretion system (T3SS) of P. aeruginosa. We applied the “killed but metabolically active” (KBMA) attenuation strategy to make this bacterial vector suitable for human use. We demonstrate that attenuated P. aeruginosa has the potential to deliver antigens to human antigen-presenting cells in vitro via T3SS with considerable attenuated cytotoxicity as compared with the wild-type vector. In a mouse model of cancer, we demonstrate that this KBMA strain, which cannot replicate in its host, efficiently disseminates into lymphoid organs and delivers its heterologous antigen. The attenuated strain effectively induces a cellular immune response to the cancerous cells while lowering the systemic inflammatory response. Hence, a KBMA P. aeruginosa microsyringe is an efficient and safe tool for in vivo antigen delivery. PMID:23531551

  20. Diagnostic Values of Carcinoembryonic Antigen, Cancer Antigen 15-3 and Cancer Antigen 125 Levels in Nipple Discharge.

    Science.gov (United States)

    Zhao, Song; Gai, Xiaodong; Wang, Yongmei; Liang, Weili; Gao, Haidong; Zhang, Kai; Wang, Huimin; Liu, Yanhong; Wang, Jianli; Ma, Rong

    2015-12-31

    An expedient and cost-effective diagnostic tool is needed to complement galactography and exfoliative cytology for detection of benign or malignant breast diseases with nipple discharge. The aim of this prospective study is to explore the utility of carcinoembryonic antigen, cancer antigen 15-3 and cancer antigen 125 levels in nipple discharge for the diagnosis of various breast diseases. We evaluated the pre-operative tumor marker levels in 153 nipple discharge samples collected from one or both breasts of 142 women undergoing surgery. Patients with nipple discharge underwent auxiliary examination (ultrasonography, exfoliative cytology, ductoscopy and galactography). Statistically higher levels of carcinoembryonic antigen and cancer antigen 15-3 were found in patients in the malignant group as compared to those in the benign group. No statistically significant difference in the level of cancer antigen 125 (P = 0.895). Sensitivities of carcinoembryonic antigen and cancer antigen 15-3 for diagnosing breast cancer were 74.42% and 58.14%, and specificities were 87.27% and 80.00% where as the cutoff values with max-sum of sensitivity and specificity were 224.3 ng/ml and 1368.2 U/ml, respectively. The following sensitivities for telling malignant from benign could be determined: exfoliative cytology 46.67%, ultrasonography 76.74%, galactography 75.00%, and ductoscopy 0%. Exfoliative cytology was found to be a valuable alternative method for differentiating benign from malignancy. Thus, tumor marker analysis of nipple discharge fluid for carcinoembryonic antigen and cancer antigen 15-3 would enhance the accurate assessment and treatment planning for patients with nipple discharge.

  1. Monoclonal antibodies against rat leukocyte surface antigens

    NARCIS (Netherlands)

    van den Berg, T. K.; Puklavec, M. J.; Barclay, A. N.; Dijkstra, C. D.

    2001-01-01

    Monoclonal antibodies have proven to be powerful tools for studying the properties of leukocyte surface antigens and the cells that express them. In the past decades many monoclonal antibodies (mAb) for identifying the different rat leukocyte surface antigens have been described. A list of mAb is

  2. Prostate-Specific Antigen (PSA) Test

    Science.gov (United States)

    ... antigen level New England Journal of Medicine 2004;350(22):2239-2246. [PubMed Abstract] Barry ... antigen testing for early diagnosis of prostate cancer. New England Journal of Medicine 2001;344(18):1373-1377. [PubMed Abstract] Pinsky ...

  3. Evaluation of an Antigen-Antibody

    African Journals Online (AJOL)

    GB

    1. ABSTRACT. BACKGROUND: Development of “combination” assays detecting in parallel, within a single test,. Hepatitis C Virus (HCV) antigens and antibodies, not ... considered above threshold of detection for antigen proteins suggested a lack of sensitivity by this assay ..... Hepatic veno-occlusive disease (sinusoidal.

  4. Vaccination and antigenic drift in influenza.

    Science.gov (United States)

    Boni, Maciej F

    2008-07-18

    The relationship between influenza antigenic drift and vaccination lies at the intersection of evolutionary biology and public health, and it must be viewed and analyzed in both contexts simultaneously. In this paper, 1 review what is known about the effects of antigenic drift on vaccination and the effects of vaccination on antigenic drift, and I suggest some simple ways to detect the presence of antigenic drift in seasonal influenza data. If antigenic drift occurs on the time scale of a single influenza season, it may be associated with the presence of herd immunity at the beginning of the season and may indicate a need to monitor for vaccine updates at the end of the season. The relationship between antigenic drift and vaccination must also be viewed in the context of the global circulation of influenza strains and the seeding of local and regional epidemics. In the data sets I consider--from New Zealand, New York, and France--antigenic drift can be statistically detected during some seasons, and seeding of epidemics appears to be endogenous sometimes and exogenous at other times. Improved detection of short-term antigenic drift and epidemic seeding would significantly benefit influenza monitoring efforts and vaccine selection.

  5. Isolation and characterization of NIH 3T3 cells expressing polyomavirus small T antigen

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T.; Satake, M.; Robins, T.; Ito, Y.

    1986-10-01

    The polyomavirus small T-antigen gene, together with the polyomavirus promoter, was inserted into retrovirus vector pGV16 which contains the Moloney sarcoma virus long terminal repeat and neomycin resistance gene driven by the simian virus 40 promoter. This expression vector, pGVST, was packaged into retrovirus particles by transfection of PSI2 cells which harbor packaging-defective murine retrovirus genome. NIH 3T3 cells were infected by this replication-defective retrovirus containing pGVST. Of the 15 G418-resistant cell clones, 8 express small T antigen at various levels as revealed by immunoprecipitation. A cellular protein with an apparent molecular weight of about 32,000 coprecipitates with small T antigen. Immunofluorescent staining shows that small T antigen is mainly present in the nuclei. Morphologically, cells expressing small T antigen are indistinguishable from parental NIH 3T3 cells and have a microfilament pattern similar to that in parental NIH 3T3 cells. Cells expressing small T antigen form a flat monolayer but continue to grow beyond the saturation density observed for parental NIH 3T3 cells and eventually come off the culture plate as a result of overconfluency. There is some correlation between the level of expression of small T antigen and the growth rate of the cells. Small T-antigen-expressing cells form small colonies in soft agar. However, the proportion of cells which form these small colonies is rather small. A clone of these cells tested did not form tumors in nude mice within 3 months after inoculation of 10/sup 6/ cells per animal. Thus, present studies establish that the small T antigen of polyomavirus is a second nucleus-localized transforming gene product of the virus (the first one being large T antigen) and by itself has a function which is to stimulate the growth of NIH 3T3 cells beyond their saturation density in monolayer culture.

  6. Prostate specific antigen doubling time calculation: not as easy as 1, 2, 4.

    Science.gov (United States)

    Daskivich, Timothy J; Regan, Meredith M; Oh, William K

    2006-11-01

    Although prostate specific antigen doubling time is widely used to predict outcomes such as time to progression and prostate cancer specific mortality, clinicians may be unaware of the impact of method on prostate specific antigen doubling time calculation. We present a critical review of the literature to assess the diversity of methods used to calculate prostate specific antigen doubling time. We then describe the need for methodological consistency with the literature by showing examples from our clinical experience at our institution. A comprehensive review of articles evaluating prostate specific antigen doubling time as a prognostic and predictive indicator in various prostate cancer disease states was performed using PubMed. Case examples were drawn from the prostate cancer database at our institution. The database is a registry of 4,651 patients with prostate cancer who have been seen at our institution since 1998. The methodology of prostate specific antigen doubling time calculation is inconsistent in the literature. Based on our experience and data presented in the literature the different methods in the literature are not always interchangeable. Small deviations from the methods outlined in a study can sometimes lead to wide variation in calculated prostate specific antigen doubling time. This variation of up to several months or longer is large enough to cause errors in assessment of prognosis and can even lead to incorrect management. The rules for prostate specific antigen doubling time calculation found in the literature can be categorized into 4 parameter groups, including method, calculation interval, data acquisition rules and data analysis rules. Case examples illustrate the importance of adherence to the literature with regard to each parameter. Consistency with the literature in methodological elements of prostate specific antigen doubling time calculation is essential for the accurate calculation of prostate specific antigen doubling time

  7. Monoclonal Antibody Production against Human Spermatozoal Surface Antigens

    Directory of Open Access Journals (Sweden)

    M Jedi-Tehrani

    2005-10-01

    Full Text Available Introduction: As monoclonal antibodies are potential tools for characterization of soluble or cellular surface antigens, use of these proteins has always been considered in infertility and reproduction research. Therefore, in this study, monoclonal antibodies against human sperm surface antigens were produced. Material and Methods: To produce specific clones against human sperm surface antigens, proteins were extracted using solubilization methods. Balb/c mice were immunized intraperitoneally with the proteins using complete Freund’s adjuvant in the first injection and incomplete Adjuvant in the following booster injections. Hybridoma cells producing ASA were cloned by limiting dilution. Results: Five stable ASA producing hybridoma clones were achieved and their antibody isotypes were determined by ELISA. All the isotypes were of IgG class. Their cross reactivity with rat and mice spermatozoa was examined but they did not have any cross reactivity. Conclusion: The produced antibodies can be used in further studies to characterize and evaluate each of the antigens present on human sperm surface and determining their role in fertilization.

  8. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors.

    Directory of Open Access Journals (Sweden)

    Hannah Karlsson

    Full Text Available CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.

  9. Study of the antigenic cross reactivity between carcinoembryonic antigen and "nonspecific cross reacting antigens" (NCA and NCA 2).

    Science.gov (United States)

    Neveu, T.; Staebler, D.; Chavanel, G.; Burtin, P.

    1975-01-01

    The immunochemical relationship between CEA, NCA and NCA 2 was studied in guinea-pigs. Strong cross reactions were found between these antigens, either in delayed or anaphylactic reactions. Some specific determinants for each antigen could still be demonstrated. Delayed hypersensitivity is likely to be due to the protein moiety of the molecules while anaphylactic reactivity could probably be related to their glucidic parts. Consequently, CEA and NCA have common antigenic determinants on their glucidic and peptidic moieties, perhaps more on the latter ones. PMID:50854

  10. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  11. Diagnostic value of preoperative serum carcinoembryonic antigen and carbohydrate antigen 19-9 in colorectal cancer

    Science.gov (United States)

    Polat, E.; Duman, U.; Duman, M.; Atici, A.E.; Reyhan, E.; Dalgic, T.; Bostanci, E.B.; Yol, S.

    2014-01-01

    Background Since the first introduction of tumour markers, their usefulness for diagnosis has been a challenging question. The aim of the present prospective study was to investigate, in colorectal cancer patients, the relationship between preoperative tumour marker concentrations and various clinical variables. Methods The study prospectively enrolled 131 consecutive patients with a confirmed diagnosis of colorectal carcinoma and 131 age- and sex-matched control subjects with no malignancy. The relationships of the tumour markers carcinoembryonic antigen (cea) and carbohydrate antigen (ca) 19-9 with disease stage, tumour differentiation (grade), mucus production, liver function tests, T stage, N stage, M stage were investigated. Results Serum concentrations of cea were significantly higher in the patient group than in the control group (p = 0.001); they were also significantly higher in stage iii (p = 0.018) and iv disease (p = 0.001) than in stage i. Serum concentrations of cea were significantly elevated in the presence of spread to lymph nodes (p = 0.005) in the patient group. Levels of both tumour markers were significantly elevated in the presence of distant metastasis in the patient group (p = 0.005 for cea; p = 0.004 for ca 19-9). Conclusions Preoperative levels of cea and ca 19-9 might provide an estimate of lymph node invasion and distant metastasis in colorectal cancer patients. PMID:24523606

  12. Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition

    Energy Technology Data Exchange (ETDEWEB)

    Archbold, Julia K.; Macdonald, Whitney A.; Gras, Stephanie; Ely, Lauren K.; Miles, John J.; Bell, Melissa J.; Brennan, Rebekah M.; Beddoe, Travis; Wilce, Matthew C.J.; Clements, Craig S.; Purcell, Anthony W.; McCluskey, James; Burrows, Scott R.; Rossjohn, Jamie; (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2009-07-10

    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.

  13. Determining the binding affinity of therapeutic monoclonal antibodies towards their native unpurified antigens in human serum.

    Science.gov (United States)

    Bee, Christine; Abdiche, Yasmina N; Pons, Jaume; Rajpal, Arvind

    2013-01-01

    Monoclonal antibodies (mAbs) are a growing segment of therapeutics, yet their in vitro characterization remains challenging. While it is essential that a therapeutic mAb recognizes the native, physiologically occurring epitope, the generation and selection of mAbs often rely on the use of purified recombinant versions of the antigen that may display non-native epitopes. Here, we present a method to measure both, the binding affinity of a therapeutic mAb towards its native unpurified antigen in human serum, and the antigen's endogenous concentration, by combining the kinetic exclusion assay and Biacore's calibration free concentration analysis. To illustrate the broad utility of our method, we studied a panel of mAbs raised against three disparate soluble antigens that are abundant in the serum of healthy donors: proprotein convertase subtilisin/kexin type 9 (PCSK9), progranulin (PGRN), and fatty acid binding protein (FABP4). We also determined the affinity of each mAb towards its purified recombinant antigen and assessed whether the interactions were pH-dependent. Of the six mAbs studied, three did not appear to discriminate between the serum and recombinant forms of the antigen; one mAb bound serum antigen with a higher affinity than recombinant antigen; and two mAbs displayed a different affinity for serum antigen that could be explained by a pH-dependent interaction. Our results highlight the importance of taking pH into account when measuring the affinities of mAbs towards their serum antigens, since the pH of serum samples becomes increasingly alkaline upon aerobic handling.

  14. Cell wall anchoring of the Campylobacter antigens to Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Patrycja Anna Kobierecka

    2016-02-01

    Full Text Available Campylobacter jejuni is the most frequent cause of human food-borne gastroenteritis and chicken meat is the main source of infection. Recent studies showed that broiler chicken immunization against Campylobacter should be the most efficient way to lower the number of human infections by this pathogen. Induction of the mucosal immune system after oral antigen administration should provide protective immunity to chickens. In this work we tested the usefulness of Lactococcus lactis, the most extensively studied lactic acid bacterium, as a delivery vector for Campylobacter antigens. First we constructed hybrid protein – CjaA antigen presenting CjaD peptide epitopes on its surface. We showed that specific rabbit anti-rCjaAD serum reacted strongly with both CjaA and CjaD produced by a wild type Campylobacter jejuni strain. Next, rCjaAD and CjaA were fused to the C-terminus of the L. lactis YndF containing the LPTXG motif. The genes expressing these proteins were transcribed under control of the L. lactis Usp45 promoter and their products contain the Usp45 signal sequences. This strategy ensures a cell surface location of both analysed proteins, which was confirmed by immunofluorescence assay. In order to evaluate the impact of antigen location on vaccine prototype efficacy, a L. lactis strain producing cytoplasm-located rCjaAD was also generated. Animal experiments showed a decrease of Campylobacter cecal load in vaccinated birds as compared with the control group and showed that the L. lactis harboring the surface-exposed rCjaAD antigen afforded greater protection than the L. lactis producing cytoplasm-located rCjaAD. To the best of our knowledge, this is the first attempt to employ LAB (Lactic Acid Bacteria strains as a mucosal delivery vehicle for chicken immunization. Although the observed reduction of chicken colonization by Campylobacter resulting from vaccination was rather moderate, the experiments showed that LAB strains can be considered

  15. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates

    Directory of Open Access Journals (Sweden)

    Valérie Bouchez

    2015-09-01

    Full Text Available Evolution of Bordetella pertussis is driven by natural and vaccine pressures. Isolates circulating in regions with high vaccination coverage present multiple allelic and antigenic variations as compared to isolates collected before introduction of vaccination. Furthermore, during the last epidemics reported in regions using pertussis acellular vaccines, isolates deficient for vaccine antigens, such as pertactin (PRN, were reported to reach high proportions of circulating isolates. More sporadic filamentous hemagglutinin (FHA or pertussis toxin (PT deficient isolates were also collected. The whole genome of some recent French isolates, deficient or non-deficient in vaccine antigens, were analyzed. Transcription profiles of the expression of the main virulence factors were also compared. The invasive phenotype in an in vitro human tracheal epithelial (HTE cell model of infection was evaluated. Our genomic analysis focused on SNPs related to virulence genes known to be more likely to present allelic polymorphism. Transcriptomic data indicated that isolates circulating since the introduction of pertussis vaccines present lower transcription levels of the main virulence genes than the isolates of the pre-vaccine era. Furthermore, isolates not producing FHA present significantly higher expression levels of the entire set of genes tested. Finally, we observed that recent isolates are more invasive in HTE cells when compared to the reference strain, but no multiplication occurs within cells.

  16. Cell-to-Cell Transfer of M. tuberculosis Antigens Optimizes CD4 T Cell Priming

    Science.gov (United States)

    Srivastava, Smita; Ernst, Joel D.

    2014-01-01

    SUMMARY During Mycobacterium tuberculosis and other respiratory infections, optimal T cell activation requires pathogen transport from the lung to a local draining lymph node (LN). However, the infected inflammatory monocyte-derived dendritic cells (DCs) that transport M. tuberculosis to the local lymph node are relatively inefficient at activating CD4 T cells, possibly due to bacterial inhibition of antigen presentation. We found that infected migratory DCs release M. tuberculosis antigens as soluble, unprocessed proteins for uptake and presentation by uninfected resident lymph node DCs. This transfer of bacterial proteins from migratory to local DCs results in optimal priming of antigen-specific CD4 T cells, which are essential in controlling tuberculosis. Additionally, this mechanism does not involve transfer of the whole bacterium and is distinct from apoptosis or exosome shedding. These findings reveal a mechanism that bypasses pathogen inhibition of antigen presentation by infected cells and generates CD4 T cell responses that control the infection. PMID:24922576

  17. Methyldopa blocks MHC class II binding to disease-specific antigens in autoimmune diabetes.

    Science.gov (United States)

    Ostrov, David A; Alkanani, Aimon; McDaniel, Kristen A; Case, Stephanie; Baschal, Erin E; Pyle, Laura; Ellis, Samuel; Pöllinger, Bernadette; Seidl, Katherine J; Shah, Viral N; Garg, Satish K; Atkinson, Mark A; Gottlieb, Peter A; Michels, Aaron W

    2018-02-13

    Major histocompatibility (MHC) class II molecules are strongly associated with many autoimmune disorders. In type 1 diabetes, the DQ8 molecule is common, confers significant disease risk and is involved in disease pathogenesis. We hypothesized blocking DQ8 antigen presentation would provide therapeutic benefit by preventing recognition of self-peptides by pathogenic T cells. We used the crystal structure of DQ8 to select drug-like small molecules predicted to bind structural pockets in the MHC antigen-binding cleft. A limited number of the predicted compounds inhibited DQ8 antigen presentation in vitro with one compound preventing insulin autoantibody production and delaying diabetes onset in an animal model of spontaneous autoimmune diabetes. An existing drug of similar structure, methyldopa, specifically blocked DQ8 in recent-onset patients with type 1 diabetes along with reducing inflammatory T cell responses toward insulin, highlighting the relevance of blocking disease-specific MHC class II antigen presentation to treat autoimmunity.

  18. Effects of Co60 gamma radiation on the immunogenic and antigenic properties of Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.; Nascimento, Nanci do; Rogero, Jose R.

    1997-01-01

    Ionizing radiation has been successfully employed to attenuate animals toxins and venoms for immunizing antisera producing animals. However, the radiation effects on antigenicity and immunogenecity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenicity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenic behaviour of Bothrops jararacussu venon. Venom samples (2mg/ml in 150 mM NaCl) were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. These samples were submitted to antigen capture ELISA on plates coated with commercial bothropic antiserum. Results suggest a loss of reactivity of the 1000 and 2000 Gy irradiated samples. Antibodies against native and 2000 Gy irradiated venoms were produced in rabbits. Both sera able to bind native venom with a slightly higher titer for anti-irradiated serum. These data suggest that radiation promoted structural modification on the antigen molecules. However since the antibodies produced against irradiated antivenom were able to recognize native venom, there must have been preservation of some antigenic determinants. It has already been demosntrated that irradiation of proteins leads to structural modifications and unfolding of the molecules. Our data suggest that irradiation led to conformational epitopes destruction with preservation of linear epitopes and that the response against irradiated venom may be attributed to these linear antigenic determinants. (author). 8 refs., 3 figs

  19. Autoantibodies in autoimmune thyroid disease promote immune complex formation with self antigens and increase B cell and CD4+ T cell proliferation in response to self antigens

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Hegedüs, Laszlo; Leslie, Robert Graham Quinton

    2004-01-01

    B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto's thyroidi......B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto......'s thyroiditis (HT), Graves' disease (GD) and healthy controls were incubated with human thyroglobulin (Tg) before adding normal peripheral blood mononuclear cells. The deposition of immunoglobulins and C3 fragments on B cells was then assessed. Inclusion of Tg in serum from HT patients promoted B cell capture...... of Tg by boiling reduced the proliferative responses. The data indicate that anti-Tg antibodies associated with AITD facilitate the formation of complement-activating Tg/anti-Tg complexes, binding of IC to B cells, and the subsequent proliferation of B and T cell subsets. This represents a novel...

  20. Posttransplant chimeric antigen receptor therapy.

    Science.gov (United States)

    Smith, Melody; Zakrzewski, Johannes; James, Scott; Sadelain, Michel

    2018-03-08

    Therapeutic T-cell engineering is emerging as a powerful approach to treat refractory hematological malignancies. Its most successful embodiment to date is based on the use of second-generation chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule found in most B-cell leukemias and lymphomas. Remarkable complete remissions have been obtained with autologous T cells expressing CD19 CARs in patients with relapsed, chemo-refractory B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. Allogeneic CAR T cells may also be harnessed to treat relapse after allogeneic hematopoietic stem cell transplantation. However, the use of donor T cells poses unique challenges owing to potential alloreactivity. We review different approaches to mitigate the risk of causing or aggravating graft-versus-host disease (GVHD), including CAR therapies based on donor leukocyte infusion, virus-specific T cells, T-cell receptor-deficient T cells, lymphoid progenitor cells, and regulatory T cells. Advances in CAR design, T-cell selection and gene editing are poised to enable the safe use of allogeneic CAR T cells without incurring GVHD. © 2018 by The American Society of Hematology.

  1. Demonstration of Antigenic Identity Between Purified Equine Infectious Anemia Virus and an Antigen Extracted from Infected Horse Spleen

    Science.gov (United States)

    Nakajima, Hideo; Norcross, Neil L.; Coggins, Leroy

    1972-01-01

    Antigenic relationship between purified equine infectious anemia (EIA) virus and spleen-derived antigen from EIA-infected horses was examined by immunodiffusion. Identical antigenicity of these two antigens has been proven because precipitation lines formed between the two antigens and EIA antiserum connected with each other. The results indicate that the antigenic substance derived from infected spleen is a component of EIA virus. Images PMID:4629262

  2. Association between HLA-DR1 and -DR3 antigens and unexplained repeated miscarriage

    DEFF Research Database (Denmark)

    Christiansen, O B; Ring, Mette; Rosgaard, A

    1999-01-01

    antigens--other studies have been unable to demonstrate such associations. For the present meta-analysis, 18 cross-sectional or case-control studies (published or unpublished) reporting on frequencies of HLA-DR1 and -DR3 antigens among Caucasian women with unexplained repeated miscarriage were identified...... and because patients with only two miscarriages were included in many studies; this is defined as repeated miscarriage. The odds ratios of repeated miscarriage for the HLA-DR1 and -DR3 antigens were calculated for the individual studies and subsequently the pooled odds ratios for the studies were calculated...

  3. Investigations of FIBCD1: Immunohistochemical localization and immunomodulatory role upon helminth antigen stimulation in colon epithelium

    DEFF Research Database (Denmark)

    von Huth, Sebastian; Skallerup, Sofie; Buragaite, Benita

    as a pattern recognition receptor in the innate immune response. Aim: In the present study, we investigate the localization of FIBCD1 in 49 different healthy human tissues by immunohistochemistry. Further, we investigate the in vitro effects of excretory-secretory (ES) antigens from pig whipworm (Trichuris...... system. FIBCD1 binds to ES antigens. Stimula-tion with ES antigens does not appear to be influenced by FIBCD1 transfection in vitro. FIBCD1 may play a role in whipworm infections in vivo....

  4. Detection of filarial antigen and antibody in serum and hydrocele fluid of 100 patients of hydrocele.

    Science.gov (United States)

    Goel, Ravishankar S; Verma, Nimesh S; Mullan, Sumaiya A; Ashdown, Andrew C

    2006-05-01

    The present study was carried out to detect an association between isolated non-communicable hydrocoele and filariasis and to provide awareness to positive patients regarding sequel and advising methods for the reduction of morbidity. Blood samples and hydrocoele fluids were used to detect filarial antigen and antibody by ICT Kit, Trop-bio kit and Sevafilachek Kit. These were followed by statistical evaluation by chi2 test. 14% of cases were positive for filarial antigen and antibody in hydrocoele patient serum, while 15% of cases were positive for filarial antigen and antibody in the serum of non-hydrocoele patients. Probability is less than 0.05, which is statistically significant.

  5. Preserved MHC class II antigen processing in monocytes from HIV-infected individuals.

    Directory of Open Access Journals (Sweden)

    Laila Woc-Colburn

    2010-03-01

    Full Text Available MHC-II restricted CD4+ T cells are dependent on antigen presenting cells (APC for their activation. APC dysfunction in HIV-infected individuals could accelerate or exacerbate CD4+ T cell dysfunction and may contribute to increased levels of immunodeficiency seen in some patients regardless of their CD4+ T cell numbers. Here we test the hypothesis that APC from HIV-infected individuals have diminished antigen processing and presentation capacity.Monocytes (MN were purified by immuno-magnetic bead isolation techniques from HLA-DR1.01+ or DR15.01+ HIV-infected and uninfected individuals. MN were analyzed for surface MHC-II expression and for antigen processing and presentation capacity after overnight incubation with soluble antigen or peptide and HLA-DR matched T cell hybridomas. Surface expression of HLA-DR was 20% reduced (p<0.03 on MN from HIV-infected individuals. In spite of this, there was no significant difference in antigen processing and presentation by MN from 14 HIV-infected donors (8 HLA-DR1.01+ and 6 HLA-DR15.01+ compared to 24 HIV-uninfected HLA-matched subjects.We demonstrated that MHC class II antigen processing and presentation is preserved in MN from HIV-infected individuals. This further supports the concept that this aspect of APC function does not further contribute to CD4+ T cell dysfunction in HIV disease.

  6. Tissue polypeptide antigen activity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Bach, F; Söletormos, Georg; Dombernowsky, P

    1991-01-01

    Tissue polypeptide antigen (TPpA) in the cerebrospinal fluid (CSF) was measured in 59 consecutive breast cancer patients with suspected central nervous system (CNS) metastases. Subsequently, we determined that 13 patients had parenchymal brain metastases, 10 had leptomeningeal carcinomatosis...

  7. HLA antigens in three populations of India.

    Science.gov (United States)

    Papiha, S S; Wentzel, J; Shah, K C; Roberts, D F

    1989-01-01

    In blood samples from a Hindu population of Uttar Pradesh (North India) and from two Muslim groups, one from Andhra Pradesh (South India) and the other from Gujurat (West India), frequencies of 38 HLA-A, -B and -C antigens were investigated. Eight antigens - A23, A25, A29, A32, Bw45, B21, Bw22 and Bw53 - were absent in the Hindu population, four different antigens - A29, Bw52, B14 and Bw42 - were absent in Hyderabad Muslims, two antigens - A31 and Bw45 - were lacking in Surat Muslims. The three populations showed considerable genetic heterogeneity. The genetic difference between the two Muslim groups was small, but the Hindu population showed pronounced differences from each of the Muslim groups.

  8. 9 CFR 113.407 - Pullorum antigen.

    Science.gov (United States)

    2010-01-01

    ... determined by a colorimetric method. (2) The phenol content for Pullorum Tube Antigen shall be 0.55 ±0.05 percent as determined by direct titration with a standardized bromide-bromate solution. (d) Sensitivity...

  9. The effect of home characteristics on dust antigen concentrations and loads in homes.

    Science.gov (United States)

    Cho, Seung-Hyun; Reponen, Tiina; Bernstein, David I; Olds, Rolanda; Levin, Linda; Liu, Xiaolei; Wilson, Kimberly; Lemasters, Grace

    2006-12-01

    On-site home visits, consisting of a home inspection, dust sampling, and questionnaires were conducted in 777 homes belonging to an ongoing birth cohort study in Cincinnati, Ohio. Various home characteristics were investigated, and antigen levels (concentrations [microg/g] and loadings [microg/m(2)]; IU for cockroach allergen) in floor dust samples collected in child's primary activity room were analyzed by ELISA. Monoclonal antibodies were used for the analysis of cat, house dust mite, and cockroach allergens, and polyclonal antibodies for Alternaria and dog antigens. The relationship between the antigen levels and home characteristics was investigated through a generalized multiple regression model. More than half of the homes experienced mold/water damage. Cats and dogs were present in 19.7% and 31.1% of homes, respectively. More than 90% of homes had either carpet or area rug covering their floors. Among 777 homes, 87-92% of homes had measurable amount of Alternaria, cat, and dog allergen/antigen in house dust, whereas only 38% and 14% of homes had measurable levels of house dust mite and cockroach, respectively. Alternaria antigen level in house dust was not associated with visual mold/water damage, which was suspected to be one of the sources for this antigen in homes. Instead, the antigen level was high in samples taken in fall and in homes having dogs implicating that Alternaria antigen appears to be transported from outdoors to indoors. A high level was also measured in homes using a dehumidifier (these homes have experienced excessive humidity) and in-home venting of clothes dryer, which might be associated with microclimate affecting mold growth and spore release. The allergen/antigen level (both concentration and loading) of cat, dog and cockroach was significantly associated with the number of cats and dogs, or the appearance of cockroaches, respectively. High level of house dust mite allergen was measured in bedrooms and in homes using dehumidifier

  10. Shedding of CD9 antigen into cerebrospinal fluid by acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Komada, Y; Ochiai, H; Shimizu, K; Azuma, E; Kamiya, H; Sakurai, M

    1990-07-01

    The accurate identification of small numbers of leukemic cells in the cerebrospinal fluid (CSF) presents a diagnostic problem in the treatment of acute lymphoblastic leukemia (ALL). We demonstrated that soluble CD9 antigen was shed into CSF obtained from children with ALL, using enzyme-linked immunosorbent assay (ELISA), which used the activity of CD9 antigen to bind the Ricinus communis agglutinin (RCA1) and a monoclonal antibody, SJ-9A4, simultaneously. Using RCA1/SJ-9A4 ELISA, CD9 antigen was detectable in CSF but not in plasma from 12 cases of CD9+ ALL in central nervous system (CNS) relapse. However, CD9 antigen was not released into CSF from 11 cases of CD9- ALL with CNS involvement, 136 cases of CD9+ ALL in complete remission (CR), 29 cases of CD9- ALL in CR, or 21 cases of aseptic meningitis. Interestingly, the levels of CD9 antigen were elevated in CSF from 7 of 10 CD9+ ALL patients without cytologically proven CNS involvement at diagnosis, with subsequent return to undetectable levels after initial induction chemotherapy was begun. In addition, sequential analysis of CSF from a 5-year-old boy with CD9+ ALL in CNS relapse showed that levels of CD9 antigen correlated well with the number of leukemic cells in CSF. Serial quantitative analysis of CD9 antigen in CSF could be useful to detect the proliferation of residual leukemic cells before the clinical manifestation.

  11. Comparative Evaluation of Native Antigens for the Development of Brucellosis Antibody Detection System

    Directory of Open Access Journals (Sweden)

    Yasmin Bano

    2015-09-01

    Full Text Available Brucellosis is a highly infectious zoonotic disease and an economically important infection of humans and livestock with a worldwide distribution. The main mode of transmission of this disease to humans is through the consumption of infected milk, milk products, and uncooked or raw meat. The present study was designed to prepare few native antigens, that is, sonicated antigen (SA, cell envelope (CE antigen, and freeze and thaw (FT antigen from Brucella abortus S99 culture and to test them in a highly sensitive and specific indirect enzyme-linked immunosorbent assay (I-ELISA in both a microtiter plate and a dot-blot format for the development of field-based diagnosis. All 50 suspected bovine samples were tested by plate as well as in dot ELISA formats for all the three antigens prepared. The CE antigen was found to be more suitable as it had the maximum agreement with the Rose Bengal plate agglutination test results followed by the SA and the least agreement was found with that of the FT antigen. This detection system in microtiter plates and a dot-blot format will be useful for the rapid screening of samples for the disease surveillance and routine diagnosis.

  12. Expression of PCV2 antigen in the ovarian tissues of gilts

    Science.gov (United States)

    TUMMARUK, Padet; PEARODWONG, Pachara

    2015-01-01

    The present study was performed to determine the expression of porcine circovirus type 2 (PCV2) antigen in the ovarian tissue of naturally infected gilts. Ovarian tissues were obtained from 11 culled gilts. The ovarian tissues sections were divided into two groups according to PCV2 DNA detection using PCR. PCV2 antigen was assessed in the paraffin embedded ovarian tissue sections by immunohistochemistry. A total of 2,131 ovarian follicles (i.e., 1,437 primordial, 133 primary, 353 secondary and 208 antral follicles), 66 atretic follicles and 131 corpora lutea were evaluated. It was found that PCV2 antigen was detected in 280 ovarian follicles (i.e., 239 primordial follicles, 12 primary follicles, 10 secondary follicles and 19 antral follicles), 1 atretic follicles and 3 corpora lutea (P<0.05). PCV2 antigen was detected in primordial follicles more often than in secondary follicles, atretic follicles and corpora lutea (P<0.05). The detection of PCV2 antigen was found mainly in oocytes. PCV2 antigen was found in both PCV2 DNA positive and negative ovarian tissues. It can be concluded that PCV2 antigen is expressed in all types of the ovarian follicles and corpora lutea. Further studies should be carried out to determine the influence of PCV2 on porcine ovarian function and oocyte quality. PMID:26522687

  13. Increased prevalence of Dirofilaria immitis antigen in canine samples after heat treatment.

    Science.gov (United States)

    Velasquez, Luisa; Blagburn, Byron L; Duncan-Decoq, Rebecca; Johnson, Eileen M; Allen, Kelly E; Meinkoth, James; Gruntmeir, Jeff; Little, Susan E

    2014-11-15

    Canine serum samples may contain factors that prevent detection of antigen of Dirofilaria immitis on commercial assays, precluding accurate diagnosis. To determine the degree to which the presence of blocking antibodies or other inhibitors of antigen detection may interfere with our ability to detect circulating antigen in canine samples, archived plasma and serum samples (n=165) collected from dogs in animal shelters were tested for D. immitis antigen before and after heat treatment. Negative samples were also evaluated for their ability to block detection of D. immitis antigen in a sample from a positive dog. All 165 samples were negative prior to heating, but 11/154 (7.1%) became positive after heat treatment, a conversion that was documented and quantified on spectrophotometric plate assays, and 7/165 (4.2%) samples decreased detection of antigen when mixed with a known positive sample, suggesting some blocking ability was present. An additional 103 plasma and serum samples that tested positive prior to heating also were evaluated; the optical density of 14/101 (13.9%) increased by ≥50%, and one sample by as much as 15-fold, after heat treatment. Our results suggest that canine serum and plasma samples from dogs in the southeastern United States can contain inhibitors of D. immitis antigen detection, and that prevalence estimates of heartworm infection based on these assays would benefit from heat treatment of samples prior to testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Characterization of entamoeba histolytica antigens in circulating immune complexes in sera of patients with amoebiasis.

    Science.gov (United States)

    Sengupta, K; Ghosh, P K; Ganguly, S; Das, P; Maitra, T K; Jalan, K N

    2002-09-01

    Isolated circulating immune complexes (CICs) from sera of patients with amoebiasis were characterized to determine Entamoeba histolytica antigens that participate in the disease process. In total, 116 serum samples were collected before starting anti-amoebic therapy, and their CICs were isolated by differential polyethylene glycol precipitation. The presence of amoeba-specific antigens in CICs was detected by antigen capture enzyme-linked immunosorbent assay (ELISA) and by immunoblot assay. Antigen capture ELISA showed significantly higher optical density (p amoebiasis than in the normal healthy controls and patients of non-amoebic hepatic disorder. Immunoblot assay detected amoeba-specific CICs in all 18 patients (100%) with confirmed amoebic liver abscess, 28 (80%) of 35 patients with clinically-suspected amoebic liver abscess, and 18 (78.26%) of 23 patients with amoebic colitis. No patients with non-amoebic hepatic disorders and healthy control subjects had any detectable level of amoebic antigens in CICs. Immunoblot assay revealed E. histolytica antigens of relative molecular masses of 35, 56, 70, and 90 kDa present in CICs of 64 of 76 patients with amoebiasis. The 35-kDa polypeptide was observed in 52 patients (81.25%). The results of the study suggest that the 35-kDa polypeptide antigen can be a diagnostic marker in active amoebiasis.

  15. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    International Nuclear Information System (INIS)

    Xu, Juan; Wang, Shixia; Gan, Weihua; Zhang, Wenhong; Ju, Liwen; Huang, Zuhu; Lu, Shan

    2012-01-01

    Highlights: ► EV71 is a major emerging infectious disease in many Asian countries. ► Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. ► Developing subunit based EV71 vaccines is significant and novel antigen design is needed. ► DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. ► Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  16. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Microbiology and Immunology, Nanjing Medical University (China); Wang, Shixia [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States); Gan, Weihua [Department of Pediatrics, The Second Affiliated Hospital, Nanjing Medical University (China); Zhang, Wenhong [Department of Infectious Diseases, Huashan Hospital, Fudan University (China); Ju, Liwen [School of Public Health, Fudan University (China); Huang, Zuhu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Lu, Shan, E-mail: shan.lu@umassmed.edu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  17. EVALUATION OF HUMAN LEUKOCYTE ANTIGEN CLASS I AND II ANTIGENS IN HELICOBACTER PYLORI-POSITIVE PEDIATRIC PATIENTS WITH ACTIVE GASTRITIS AND DUODENAL ULCER.

    Science.gov (United States)

    Gönen, Sevim; Sari, Sinan; Kandur, Yaşar; Dalgiç, Buket; Söylemezoğlu, Oğuz

    2017-12-01

    As being the first bacteria determined to be carcinogenic, Helicobacter pylori (H. pylori) is a pathogen localized in the stomach in more than half of the world population. Some earlier studies have found a relation between tissue histocompatibility antigens and gastric cancers depending on the regions. The present study aimed to determine the distribution of human leukocyte antigen (HLA) class I and class II antigens in H. pylori-positive pediatric patients with active gastritis and duodenal ulcer, excluding cancer cases, in our center. The study included 40 patients diagnosed with H. pylori-positive active gastritis and duodenal ulcer and 100 controls consisting of healthy donor candidates. The HLA class I and class II antigens were studied in the isolated DNA samples using the polymerase chain reaction sequence-specific oligonucleotide probes. The frequency of HLA-B*51 antigen was significantly higher in the patient group than in the control group (40% vs 17%; P=0.003). There was no difference between the two groups in terms of the frequencies of HLA-A, HLA-C, HLA-DR, and HLA-DQ antigens. It was determined that HLA-B*51 plays a critical role in H. pylori infection.

  18. EVALUATION OF HUMAN LEUKOCYTE ANTIGEN CLASS I AND II ANTIGENS IN HELICOBACTER PYLORI-POSITIVE PEDIATRIC PATIENTS WITH ACTIVE GASTRITIS AND DUODENAL ULCER

    Directory of Open Access Journals (Sweden)

    Sevim GÖNEN

    2017-10-01

    Full Text Available ABSTRACT BACKGROUND: As being the first bacteria determined to be carcinogenic, Helicobacter pylori (H. pylori is a pathogen localized in the stomach in more than half of the world population. Some earlier studies have found a relation between tissue histocompatibility antigens and gastric cancers depending on the regions. OBJECTIVE: The present study aimed to determine the distribution of human leukocyte antigen (HLA class I and class II antigens in H. pylori-positive pediatric patients with active gastritis and duodenal ulcer, excluding cancer cases, in our center. METHODS: The study included 40 patients diagnosed with H. pylori-positive active gastritis and duodenal ulcer and 100 controls consisting of healthy donor candidates. The HLA class I and class II antigens were studied in the isolated DNA samples using the polymerase chain reaction sequence-specific oligonucleotide probes. RESULTS: The frequency of HLA-B*51 antigen was significantly higher in the patient group than in the control group (40% vs 17%; P=0.003. There was no difference between the two groups in terms of the frequencies of HLA-A, HLA-C, HLA-DR, and HLA-DQ antigens. CONCLUSION: It was determined that HLA-B*51 plays a critical role in H. pylori infection.

  19. Carcinoembryonic antigen in thyroid cancer

    International Nuclear Information System (INIS)

    Weissel, M.; Hoefer, R.

    1982-01-01

    In order to investigate the usefulness of determining the serum concentrations of carcinoembryonic antigen (CEA) as a specific tumor marker in thyroid cancer, CEA serum levels were measured (enzymeimmunoassay, Abbott-Kit) repeatedly at the routine followup checks performed at various intervals after total thyroidectomy, in 65 patients with papillary, 82 with follicular, 25 with mixed type (papillary/follicular), 8 with anaplastic, and in 18 patients with medullary thyroid cancer. The postoperative observation period of these patients ranged from 2 to 36 months. Calcitonin serum levels were additionally determined in patients with medullary carcinoma (radioimmunoassay kit of Immuno-Nuclear Corp.). In the family of one patient with medullary carcinoma we also had an opportunity to investigate, within the framework of family screening (pentagastrin tests, etc.), the value of preoperative CEA determination. In the patients with ''non-medullary'' histological types of thyroid cancer, the maximum CEA serum concentration was 9.8 ng/ml. 6% of the patients with papillary, 9% of the patients with follicular, and 8% of those with mixed type thyroid cancer had serum levels above the upper limit of our normal range (5 ng/ml). All patients with anaplastic carcinoma had values below 3 ng/ml. The values quoted represent maximal values and were confirmed at various follow-up checks. However, 1 year after thyroidectomy, a female patient with follicular thyroid carcinoma developed an adenocarcinoma of the rectum: The CEA levels measured in this patient were: 4.2 ng/ml 3 weeks after thyroidectomy, 8.4 ng/ml 6 months later, and 37 ng/ml 1 week before operation on the rectum. In none of the other patients with elevated CEA levels were metastases of thyroid cancer, or any other malignancy, detected. (orig.) [de

  20. Antigenic variation in vector-borne pathogens.

    OpenAIRE

    Barbour, A. G.; Restrepo, B. I.

    2000-01-01

    Several pathogens of humans and domestic animals depend on hematophagous arthropods to transmit them from one vertebrate reservoir host to another and maintain them in an environment. These pathogens use antigenic variation to prolong their circulation in the blood and thus increase the likelihood of transmission. By convergent evolution, bacterial and protozoal vector-borne pathogens have acquired similar genetic mechanisms for successful antigenic vari