WorldWideScience

Sample records for antifungal protein ppebl21

  1. New constitutive latex osmotin-like proteins lacking antifungal activity.

    Science.gov (United States)

    Freitas, Cleverson D T; Silva, Maria Z R; Bruno-Moreno, Frederico; Monteiro-Moreira, Ana C O; Moreira, Renato A; Ramos, Márcio V

    2015-11-01

    Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events. PMID:26231325

  2. Characterization of a new antifungal lipid transfer protein from wheat.

    Science.gov (United States)

    Kirubakaran, S Isaac; Begum, S Mubarak; Ulaganathan, K; Sakthivel, N

    2008-10-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, a novel gene Ltp 3F1 encoding an antifungal protein from wheat (Sumai 3) was subcloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation followed by gel permeation chromatography. Molecular phylogeny analyses of wheat Ltp 3F1 gene showed a strong identity to other plant LTPs. Predicted three-dimensional structural model showed the presence of 6 alpha-helices and 9 loop turns. The active site catalytic residues Gly30, Pro50, Ala52 and Cys55 may be suggested for catalyzing the reaction involved in lipid binding. SDS-PAGE analysis confirmed the production of recombinant fusion protein. The LTP fusion protein exhibited a broad-spectrum antifungal activity against Alternaria sp., Rhizoctonia solani, Curvularia lunata, Bipolaris oryzae, Cylindrocladium scoparium, Botrytis cinerea and Sarocladium oryzae. Gene cassette with cyanamide hydratase (cah) marker and Ltp 3F1 gene was constructed for genetic transformation in tobacco. Efficient regeneration was achieved in selective media amended with cyanamide. Transgenic plants with normal phenotype were obtained. Results of PCR and Southern, Northern and Western hybridization analyses confirmed the integration and expression of genes in transgenic plants. Experiments with detached leaves from transgenic tobacco expressing Ltp 3F1 gene showed fungal resistance. Due to the innate potential of broad-spectrum antifungal activity, wheat Ltp 3F1 gene can be used to enhance resistance against fungi in crop plants. PMID:18595724

  3. A novel antifungal protein with lysozyme-like activity from seeds of Clitoria ternatea.

    Science.gov (United States)

    K, Ajesh; K, Sreejith

    2014-06-01

    An antifungal protein with a molecular mass of 14.3 kDa was isolated from the seeds of butterfly pea (Clitoria ternatea) and designated as Ct protein. The antifungal protein was purified using different methods including ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration on Sephadex G-50 column. Ct protein formed a single colourless rod-shaped crystal by hanging drop method after 7 days of sample loading. The protein showed lytic activity against Micrococcus luteus and broad-spectrum, fungicidal activity, particularly against the most clinically relevant yeasts, such as Cryptococcus neoformans, Cryptococcus albidus, Cryptococcus laurentii, Candida albicans and Candida parapsilosis. It also exerted an inhibitory activity on mycelial growth in several mould species including Curvularia sp., Alternaria sp., Cladosporium sp., Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhizopus sp., and Sclerotium sp. The present study adds to the literature on novel seed proteins with antifungal activity. PMID:24691882

  4. Antifungal traits of a 14 kDa maize kernel trypsin inhibitor protein in transgenic cotton

    Science.gov (United States)

    Transgenic cotton plants expressing the maize kernel trypsin inhibitor (TI) protein were produced and evaluated for antifungal traits. This 14 kD trypsin inhibitor protein has been previously associated with resistance to aflatoxin-producing fungus Aspergillus flavus. Successful transformation of ...

  5. Expression of osmotin, an antifungal protein from Nicotiana tabacum in Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Viktorová, J.; Macková, M.; Macek, Tomáš

    Praha : Institute of Organic Chemistry and Biochemistry AS CR, v. v. i, 2011 - (Slaninová, J.), s. 154-155 ISBN 978-80-86241-44-9. - (Collection Symposium Series. 13). [Biologically Active Peptides /12./. Praha (CZ), 27.04.2011-29.04.2011] Grant ostatní: GA ČR(CZ) GAP501/11/1654 Institutional research plan: CEZ:AV0Z40550506 Keywords : pathogenesis-related proteins * osmotin * antifungal activity * recombinant protein Subject RIV: CC - Organic Chemistry

  6. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    Energy Technology Data Exchange (ETDEWEB)

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Miszti-Blasius, Kornél [Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Kollár, Sándor; Kovács, Ilona [Department of Pathology, Kenézy Hospital LTD, Debrecen (Hungary); Emri, Miklós; Márián, Teréz [Department of Nuclear Medicine, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Leiter, Éva; Pócsi, István [Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, Centre of Arts, Humanities and Sciences, University of Debrecen, Debrecen (Hungary); Csősz, Éva; Kalló, Gergő [Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Hegedűs, Csaba; Virág, László [Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Csernoch, László [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Szentesi, Péter, E-mail: szentesi.peter@med.unideb.hu [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2013-05-15

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg{sup −1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.

  7. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    International Nuclear Information System (INIS)

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg−1 daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation

  8. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29"

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Qian YANG; Li-hua ZHAO; Shu-mei ZHANG; Yu-xia WANG; Xiao-yu ZHAO

    2009-01-01

    An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel P-100.The protein was absorbed on DEAE-cellulose and Bio-Gel P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pl value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited in-hibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia scle-rotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 μmol/L, respectively. B291 also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germi-nated spores.

  9. Antifungal and Anticancer Activities of a Protein from the Mushroom Cordyceps militaris

    OpenAIRE

    Park, Byung Tae; Na, Kwang Heum; Jung, Eui Cha; Park, Jae Wan; Kim, Ha Hyung

    2009-01-01

    The mushroom Cordyceps militaris has been used for a long time in eastern Asia as a nutraceutical and in traditional Chinese medicine as a treatment for cancer patients. In the present study, a cytotoxic antifungal protease was purified from the dried fruiting bodies of C. militaris using anion-exchange chromatography on a DEAE-Sepharose column. Electrophoretic analyses indicated that this protein, designated C. militaris protein (CMP), has a molecular mass of 12 kDa and a pI of 5.1. The opti...

  10. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves

    DEFF Research Database (Denmark)

    Kristensen, A K; Brunstedt, J; Madsen, M T;

    2000-01-01

    cysteines at conserved positions, the protein can be classified as a member of the plant family of non-specific lipid transfer proteins (nsLTPs). The protein is 47% identical to IWF1, an antifungal nsLTP previously isolated from leaves of sugar beet. A potential site for N-linked glycosylation present in...... sequence of 26 amino acid residues. The protein shows a strong in vitro antifungal activity against Cercospora beticola (causal agent of leaf spot disease in sugar beet) and inhibits fungal growth at concentrations below 10 µg ml(-1)....

  11. Antifungal and Anticancer Activities of a Protein from the Mushroom Cordyceps militaris.

    Science.gov (United States)

    Park, Byung Tae; Na, Kwang Heum; Jung, Eui Cha; Park, Jae Wan; Kim, Ha Hyung

    2009-02-01

    The mushroom Cordyceps militaris has been used for a long time in eastern Asia as a nutraceutical and in traditional Chinese medicine as a treatment for cancer patients. In the present study, a cytotoxic antifungal protease was purified from the dried fruiting bodies of C. militaris using anion-exchange chromatography on a DEAE-Sepharose column. Electrophoretic analyses indicated that this protein, designated C. militaris protein (CMP), has a molecular mass of 12 kDa and a pI of 5.1. The optimum conditions for protease activity were a temperature of 37 and pH of 7.0~9.0. The enzyme activity was specifically inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride. Amino acid composition of intact CMP and amino acid sequences of three major peptides from a tryptic digest of CMP were determined. CMP exerted strong antifungal effect against the growth of the fungus Fusarium oxysporum, and exhibited cytotoxicity against human breast and bladder cancer cells. These results indicate that C. militaris represents a source of a novel protein that might be applied in diverse biological and medicinal applications. PMID:19885026

  12. Purification of antifungal protein against blister bark pathogen of Casuarina equisetifolia J. R. Forster et G. Forster

    OpenAIRE

    Ghosh, M.; Thangamani, D.; Thapliyal, M.; Yasodha, R.; Gurumurthi, K.

    2004-01-01

    Aprotein extract from the leaves of Andrographis paniculata (Acanthaceae) was found to inhibit the spore germination and hyphal extension of Trichosporium vesiculosum, the blister bark pathogen of Casuarina equisetifolia. The antifungal protein component was further purified from the crude extract and the molecular mass of the toxic protein was estimated to be 39.5 kDa.

  13. Identification and Characterization of an Antifungal Protein, AfAFPR9, Produced by Marine-Derived Aspergillus fumigatus R9.

    Science.gov (United States)

    Rao, Qi; Guo, Wenbin; Chen, Xinhua

    2015-05-01

    A fungal strain, R9, was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein, AfAFPR9, was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which is a member of the ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations of 0.6, 0.6, 1.2, 1.2, and 2.4 μg/disc, respectively. Moreover, AfAFPR9 exhibited a certain extent of thermostability, and metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was cloned from A. fumigatus R9 by RTPCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine-derived Aspergillus fumigatus and indicated its potential application in controlling plant pathogenic fungi. PMID:25394604

  14. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective.

    Science.gov (United States)

    Pinto, Clidia E M; Farias, Davi F; Carvalho, Ana F U; Oliveira, José T A; Pereira, Mirella L; Grangeiro, Thalles B; Freire, José E C; Viana, Daniel A; Vasconcelos, Ilka M

    2015-09-01

    Mo-CBP3 is an antifungal protein produced by Moringa oleifera which has been investigated as potential candidate for developing transgenic crops. Before the use of novel proteins, food safety tests must be conducted. This work represents an early food safety assessment of Mo-CBP3, using the two-tiered approach proposed by ILSI. The history of safe use, mode of action and results for amino acid sequence homology using the full-length and short contiguous amino acids sequences indicate low risk associated to this protein. Mo-CBP3 isoforms presented a reasonable number of alignments (>35% identity) with allergens in a window of 80 amino acids. This protein was resistant to pepsin degradation up to 2 h, but it was susceptible to digestion using pancreatin. Many positive attributes were presented for Mo-CBP3. However, this protein showed high sequence homology with allergens and resistance to pepsin digestion that indicates that further hypothesis-based testing on its potential allergenicity must be done. Additionally, animal toxicity evaluations (e.g. acute and repeated dose oral exposure assays) must be performed to meet the mandatory requirements of several regulatory agencies. Finally, the approach adopted here exemplified the importance of performing an early risk assessment of candidate proteins for use in plant transformation programs. PMID:26032632

  15. Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity.

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    Full Text Available BACKGROUND: Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic and antidiarrheal, but also as a herbal medicine to treat cholecystitis in people. We have found that the protein extractions from C. komarovii seeds have strong antifungal activity. There is strong interest to develop protein medication and antifungal pesticides from C. komarovii for pharmacological or other uses. METHODOLOGY/PRINCIPAL FINDINGS: An antifungal protein with sequence homology to thaumatin-like proteins (TLPs was isolated from C. komarovii seeds and named CkTLP. The three-dimensional structure prediction of CkTLP indicated the protein has an acid cleft and a hydrophobic patch. The protein showed antifungal activity against fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea and Valsa mali. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed the transcription level of CkTLP had a significant increase under the stress of abscisic acid (ABA, salicylic acid (SA, methyl jasmonate (MeJA, NaCl and drought, which indicates that CkTLP may play an important role in response to abiotic stresses. Histochemical staining showed GUS activity in almost the whole plant, especially in cotyledons, trichomes and vascular tissues of primary root and inflorescences. The CkTLP protein was located in the extracellular space/cell wall by CkTLP::GFP fusion protein in transgenic Arabidopsis. Furthermore, over-expression of CkTLP significantly enhanced the resistance of Arabidopsis against V. dahliae. CONCLUSIONS/SIGNIFICANCE: The results suggest that the CkTLP is a good candidate protein or gene for contributing to the development of disease-resistant crops.

  16. Characterization and expression of the antifungal protein from Monascus pilosus and its distribution among various Monascus species.

    Science.gov (United States)

    Tu, Ching-Yu; Chen, Yu-Pei; Yu, Ming-Chen; Hwang, Ing-Er; Wu, Dai-Ying; Liaw, Li-Ling

    2016-07-01

    Monascus species are traditionally used for food preservation. This study used the disc diffusion method to verify the antifungal activity of protein extracted from Monascus pilosus BCRC38072 against 15 fungal pathogens. An antifungal protein, designated as MAFP1, was successfully purified and confirmed through N-terminal sequencing. To further explore the antifungal gene, a mafp1 gene that is similar to that of PgAFP from Penicillium chrysogenum was cloned from M. pilosus BCRC38072. According to the N-terminal sequencing and in silico analysis, the signal peptide was assumed to have 18 amino acids and the mature MAFP1 to contain 58 peptides. Moreover, the mafp1 gene was recognized in Monascus ruber, Monascus barkeri, Monascus floridanus, and Monascus lunisporas through polymerase chain reaction and DNA sequencing and showed high homology. By contrast, the mafp1 gene was absent in Monascus kaoliang, Monascus purpureus, and Monascus sanguineus. In addition, the mafp1 gene with N-terminal polyhistidine fusion was overexpressed in Escherichia coli. However, the antifungal activity of recombinant MAFP1 was significantly lower than that of native MAFP1. According to the properties of MAFP1, Monascus species may have food preservation applications. PMID:26803705

  17. Purification and characterization of a potential antifungal protein from Bacillus subtilis E1R-J against Valsa mali.

    Science.gov (United States)

    Wang, N N; Yan, X; Gao, X N; Niu, H J; Kang, Z S; Huang, L L

    2016-04-01

    In order to identify the antagonistic substances produced by Bacillus subtilis E1R-J as candidate of biocontrol agents for controlling Apple Valsa Canker, hydrochloric acid precipitation, reverse phase chromatography, gel filtration, and ion exchange chromatography were used. The purified fraction EP-2 showed a single band in native-polyacrylamide gel electrophoresis (native-PAGE) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Fraction EP-2 was eluted from native-PAGE and showed a clear inhibition zone against V. mali 03-8. These results prove that EP-2 is one of the most important antifungal substances produced by B. subtilis E1R-J in fermentation broth. SDS-PAGE and Nano-LC-ESI-MS/MS analysis results demonstrated that EP-2 was likely an antifungal peptide (trA0A086WXP9), with a relative molecular mass of 12.44 kDa and isoelectric point of 9.94. The examination of antagonistic mechanism under SEM and TEM showed that EP-2 appeared to inhibit Valsa mali 03-8 by causing hyphal swelling, distortion, abnormality and protoplasts extravasation. Inhibition spectrum results showed that antifungal protein EP-2 had significantly inhibition on sixteen kinds of plant pathogenic fungi. The stability test results showed that protein EP-2 was stable with antifungal activity at temperatures as high as 100 °C for 30 min and in pH values ranging from 1.0 to 8.0, or incubated with each 5 mM Cu(2+), Zn(2+), Mg(2+), or K(+). However, the antifungal activity was negatively affected by Proteinase K treatment. PMID:26925625

  18. Manuscript title: antifungal proteins from moulds: analytical tools and potential application to dry-ripened foods.

    Science.gov (United States)

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Asensio, Miguel A; Núñez, Félix

    2016-08-01

    Moulds growing on the surface of dry-ripened foods contribute to their sensory qualities, but some of them are able to produce mycotoxins that pose a hazard to consumers. Small cysteine-rich antifungal proteins (AFPs) from moulds are highly stable to pH and proteolysis and exhibit a broad inhibition spectrum against filamentous fungi, providing new chances to control hazardous moulds in fermented foods. The analytical tools for characterizing the cellular targets and affected pathways are reviewed. Strategies currently employed to study these mechanisms of action include 'omics' approaches that have come to the forefront in recent years, developing in tandem with genome sequencing of relevant organisms. These techniques contribute to a better understanding of the response of moulds against AFPs, allowing the design of complementary strategies to maximize or overcome the limitations of using AFPs on foods. AFPs alter chitin biosynthesis, and some fungi react inducing cell wall integrity (CWI) pathway. However, moulds able to increase chitin content at the cell wall by increasing proteins in either CWI or calmodulin-calcineurin signalling pathways will resist AFPs. Similarly, AFPs increase the intracellular levels of reactive oxygen species (ROS), and moulds increasing G-protein complex β subunit CpcB and/or enzymes to efficiently produce glutathione may evade apoptosis. Unknown aspects that need to be addressed include the interaction with mycotoxin production by less sensitive toxigenic moulds. However, significant steps have been taken to encourage the use of AFPs in intermediate-moisture foods, particularly for mould-ripened cheese and meat products. PMID:27394712

  19. Role of Multidrug Resistance Protein 3 in Antifungal-Induced Cholestasis.

    Science.gov (United States)

    Mahdi, Zainab M; Synal-Hermanns, Uta; Yoker, Aylin; Locher, Kaspar P; Stieger, Bruno

    2016-07-01

    Drug-induced liver injury is an important clinical entity resulting in a considerable number of hospitalizations. While drug-induced cholestasis due to the inhibition of the bile salt export pump (BSEP) is well investigated, only limited information on the interaction of drugs with multidrug resistance protein 3 (MDR3) exists and its role in the pathogenesis of drug-induced cholestasis is poorly understood. Therefore, we aimed to study the interaction of drugs with MDR3 and the effect of drugs on canalicular lipid secretion in a newly established polarized cell line system that serves as a model of canalicular lipid secretion. LLC-PK1 cells were stably transfected with human Na(+)-taurocholate cotransporting polypeptide, BSEP, MDR3, and ABCG5/G8 and grown in the Transwell system. Apical phospholipid secretion and taurocholate transport were assayed to investigate the effect of selected drugs on MDR3-mediated phospholipid secretion as well as inhibition of BSEP. The established cell line displayed vectorial bile salt transport and specific phosphatidylcholine secretion into the apical compartment. The antifungal azoles, posaconazole, itraconazole, and ketoconazole, significantly inhibited MDR3-mediated phosphatidylcholine secretion. In contrast, amoxicillin clavulanate and troglitazone did not interfere with MDR3 activity. Drugs interfering with MDR3 activity did not display a parallel inhibition of BSEP. Our in vitro model for MDR3-mediated phospholipid secretion facilitates parallel screening for MDR3 and BSEP inhibitors. Our data demonstrate that the cholestatic potential of certain drugs may be aggravated by simultaneous inhibition of BSEP and MDR3. PMID:27112167

  20. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves.

    Science.gov (United States)

    Zhang, Beibei; Xie, Chengjian; Wei, Yunming; Li, Jing; Yang, Xingyong

    2015-03-01

    An antifungal protein, designated MCha-Pr, was isolated from the intercellular fluid of bitter gourd (Momordica charantia) leaves during a screen for potent antimicrobial proteins from plants. The isolation procedure involved a combination of extraction, ammonium sulphate precipitation, gel filtration on Bio-Gel P-6, ion exchange chromatography on CM-Sephadex, an additional gel filtration on HiLoad 16/60 Superdex 30, and finally, HPLC on a SOURCE 5RPC column. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry indicated that the protein had a molecular mass of 25733.46Da. Automated Edman degradation was used to determine the N-terminal sequence of MCha-Pr, and the amino acid sequence was identified as V-E-Y-T-I-T-G-N-A-G-N-T-P-G-G. The MCha-Pr protein has some similarity to the pathogenesis-related proteins from Atropa belladonna (deadly nightshade), Solanum tuberosum (potato), Ricinus communis (castor bean), and Nicotiana tabacum (tobacco). Analysis of the circular dichroism spectra indicated that MCha-Pr predominantly contains α-helix and β-sheet structures. MCha-Pr had inhibitory effects towards a variety of fungal species and the 50% inhibition of fungal growth (IC50) for Alternaria brassicae, Cercospora personata, Fusarium oxysporum, Mucor sp., and Rhizoctonia solani are 33 μM, 42 μM, 37 μM, 40 μM, and 48 μM, respectively. In addition, this antifungal protein can inhibit the germination of A. brassicae spores at 12.5 μM. These results suggest that MCha-Pr in bitter gourd leaves plays a protective role against phytopathogens and has a wide antimicrobial spectrum. PMID:25245535

  1. Antifungal peptides, a heat shock protein-like peptide, and a serine-threonine kinase-like protein from Ceylon spinach seeds.

    Science.gov (United States)

    Wang, Hexiang; Ng, Tzi Bun

    2004-07-01

    Two antifungal peptides (designated alpha- and beta-basrubrins) with molecular masses of 4-5 kDa and distinct N-terminal sequences, and a peptide and a protein with N-terminal sequences resembling heat shock protein (hsp) and serine-threonine kinase, respectively, were isolated from seeds of the Ceylon spinach Basella rubra. The purification procedure entailed saline extraction, (NH4)2SO4 precipitation, ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose, and FPLC-gel filtration on a Superdex peptide column. alpha- and beta-basrubrins inhibited mycelial growth in Botrytis cirerea with an IC50 value of 7.5 and 14.7 microM, respectively, Mycosphaerella arachidicola with an IC50 of 12.4 and 6.9 microM, and Fusarium oxysporum with an IC50 of 5.8 and 6.2 microM. Neither alpha-basrubrin nor beta-basrubin exhibited DNase, RNase, lectin or protease activity, indicating that their antifungal action is not due to these activities. HIV-1 reverse transcriptase was inhibited by alpha- and beta-basrubrins with an IC50 of 246 and 370 microM, respectively. Translation in rabbit reticulocyte lysate was inhibited by alpha- and beta-basrubrins with an IC50 of 400 and 100 nM. The heat shock protein-like peptide and serine-threonine kinase-like protein exhibited a molecular mass of 3 and 30 kDa, respectively. They inhibited neither translation in a rabbit reticulocyte system at concentrations up to 50 microM nor HIV-1 reverse transcriptase activity at concentrations up to 400 microM. They did not exert antifungal activity toward B. cinerea, M. arachidicola, and F. oxysporum when tested up to 16 microg. None of the aforementioned proteins demonstrated DNase, RNase, protease or lectin activity. PMID:15245882

  2. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds.

    Directory of Open Access Journals (Sweden)

    Adelina B Batista

    Full Text Available Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.

  3. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Tomoya Asano

    Full Text Available Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4 antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.

  4. Changes in protein profiles and isoelectric points of different Candida species in response to antifungal agents

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Horká, Marie; Růžička, F.; Vykydalová, Marie; Kubesová, Anna; Šlais, Karel

    Universidad de La Laguna, 2013. s. 127. [International Symposium on Electro- and Liquid Phase-separation Techniques /20./. 06.10.2013-09.10.2013, Puerto de la Cruz, Tenerife] R&D Projects: GA MV VG20102015023; GA MZd(CZ) MZd 9678-4 Institutional support: RVO:68081715 Keywords : capillary isoelectric focusing and MALDI-TOF MS * protein profile * Candida species Subject RIV: CB - Analytical Chemistry, Separation

  5. Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Evangelista, Antonio José de Jesus; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; Melo, Charlline Vládia Silva de; Oliveira, Jonathas Sales de; Franco, Jônatas da Silva; Alencar, Lucas Pereira de; Bandeira, Tereza de Jesus Pinheiro Gomes; Brilhante, Raimunda Sâmia Nogueira; Sidrim, José Júlio Costa; Rocha, Marcos Fébio Gadelha

    2016-02-01

    Heat-shock proteins (Hsps) are chaperones required for the maintenance of cellular homeostasis in different fungal pathogens, playing an important role in the infectious process. This study investigated the effect of pharmacological inhibition of Hsp90 by radicicol on the Cryptococcus neoformans/Cryptococcus gattii species complex - agents of the most common life-threatening fungal infection amongst immunocompromised patients. The influence of Hsp90 inhibition was investigated regarding in vitro susceptibility to antifungal agents of planktonic and sessile cells, ergosterol concentration, cell membrane integrity, growth at 37 °C, production of virulence factors in vitro, and experimental infection in Caenorhabditis elegans. Hsp90 inhibition inhibited the in vitro growth of planktonic cells of Cryptococcus spp. at concentrations ranging from 0.5 to 2 μg ml- 1 and increased the in vitro inhibitory effect of azoles, especially fluconazole (FLC) (P biofilm formation and mature biofilms of Cryptococcus spp., notably for Cryptococcus gattii. Furthermore, Hsp90 inhibition compromised the permeability of the cell membrane, and reduced planktonic growth at 37 °C and the capsular size of Cryptococcus spp. In addition, Hsp90 inhibition enhanced the antifungal activity of FLC during experimental infection using Caenorhabditis elegans. Therefore, our results indicate that Hsp90 inhibition can be an important strategy in the development of new antifungal drugs. PMID:26645478

  6. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea.

    Science.gov (United States)

    Coca, María; Bortolotti, Cristina; Rufat, Mar; Peñas, Gisela; Eritja, Ramón; Tharreau, Didier; del Pozo, Alvaro Martinez; Messeguer, Joaquima; San Segundo, Blanca

    2004-01-01

    The Aspergillus giganteus antifungal protein (AFP), encoded by the afp gene, has been reported to possess in vitro antifungal activity against various economically important fungal pathogens, including the rice blast fungus Magnaporthe grisea. In this study, transgenic rice ( Oryza sativa ) constitutively expressing the afp gene was generated by Agrobacterium -mediated transformation. Two different DNA constructs containing either the afp cDNA sequence from Aspergillus or a chemically synthesized codon-optimized afp gene were introduced into rice plants. In both cases, the DNA region encoding the signal sequence from the tobacco AP24 gene was N-terminally fused to the coding sequence of the mature AFP protein. Transgenic rice plants showed stable integration and inheritance of the transgene. No effect on plant morphology was observed in the afp -expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of afp plants on the in vitro growth of M. grisea indicated that the AFP protein produced by the trangenic rice plants was biologically active. Several of the T(2) homozygous afp lines were challenged with M. grisea in a detached leaf infection assay. Transformants exhibited resistance to rice blast at various levels. Altogether, the results presented here indicate that AFP can be functionally expressed in rice plants for protection against the rice blast fungus M. grisea. PMID:15159626

  7. Antifungal activity of the ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) against the green mould Penicillium digitatum.

    Science.gov (United States)

    Citores, Lucía; Iglesias, Rosario; Gay, Carolina; Ferreras, José Miguel

    2016-02-01

    The ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter- and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N-glycosylase activity on the sarcin-ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C-terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α-helix and a β-hairpin, similar to the γ-core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell. PMID:25976013

  8. Crystallization and X-ray diffraction analysis of an antifungal laticifer protein

    International Nuclear Information System (INIS)

    An osmotin from the latex of C. procera has been crystallized in both tetragonal and trigonal forms suitable for structure determination. An osmotin (CpOsm) from the latex of Calotropis procera has been crystallized in both tetragonal and trigonal forms suitable for structure determination. Crystallographic studies of CpOsm are of great interest because limited information is available concerning the structure of latex proteins and CpOsm has previously been shown to interact with the spore membranes of some plant pathogenic fungi, thus impairing spore germination and hyphal growth. CpOsm crystals were grown using 0.1 M HEPES buffer pH 7.5, 26% PEG 4000, 0.2 M ammonium sulfate (space group P43) or using 0.1 M HEPES buffer pH 7.5, 35% MPD, 0.7 M ammonium sulfate (space group P3112). X-ray diffraction data were collected to 2.17 Å (P43) and 1.80 Å (P3112) resolution and molecular-replacement analyses produced initial phases for both crystal forms

  9. Improvement in plant disease resistance using an anti-fungal protein gene

    International Nuclear Information System (INIS)

    Genetic transformations of rice and hot pepper with ribosome inactivating proteins (RIPs), which are known to have cytotoxic activity on eucaryotic cells by cleaving a specific adenine residue of 28S rRNA, were carried out to improve fungal disease resistance. Two chimeric genes containing the maize RIP gene, Zmcrip3a, under the control of the rice Act1 (pARP7) and rbcS (pBY605RR) promoters were introduced into Oryza sativa cv. Nipponbare using particle bombardment. After the selection of phsophinothricin resistant calli, regeneration into plants and genomic DNA gel-blot analysis of the primary transformants, 13 and 17 independent fertile transgenic plants for the pARP7 and pBY605RR constructs, respectively, were obtained. The reconstructed vector (pGA-RIP) was transformed into hot pepper using the Agrobacterium tumefaciens system. Fourteen regenerants were confirmed as transgenic plants, and all are fertile. (author). 6 refs, 3 figs, 3 tabs

  10. Antifungal agents.

    Science.gov (United States)

    Ryder, N S

    1999-12-01

    At this year's ICAAC Meeting, new data on approximately 20 different antifungal agents were presented, while no new agents were disclosed. Drugs in late development include the triazoles, voriconazole (Pfizer Ltd) and Sch-56592 (Schering-Plough Corp), and the echinocandins, caspofungin (Merck & Co Inc) and FK-463 (Fujisawa Pharmaceutical Co Ltd). In contrast to previous years, presentations on these and earlier developmental compounds were relatively modest in scope, with few significant new data. Little new information appeared on the most recent novel class of agents, the sordarins (Glaxo Wellcome plc). Early clinical results were presented for FK-463, showing acceptable tolerability and dose-dependent efficacy in AIDS-associated esophageal candidiasis. A new liposomal formulation of nystatin (Nyotran; Aronex Pharmaceuticals Inc) was shown to be equivalent to conventional amphotericin B in empiric therapy of presumed fungal infection in neutropenic patients, but with reduced toxicity. Intravenous itraconazole (Janssen Pharmaceutica NV) was an effective prophylactic therapy in invasive pulmonary aspergillosis, while oral itraconazole was discussed as a treatment for fungal infection in heart and liver transplant patients. The allylamine compound, terbinafine (Novartis AG), showed good clinical efficacy against fungal mycetoma, a serious tropical infection. A major highlight was the first presentation of inhibitors of fungal efflux pumps as a strategy for overcoming resistance. MC-510027 (milbemycin alpha-9; Microcide Pharmaceuticals Inc) and its derivatives, potentiated the antifungal activity of triazoles and terbinafine in a number of Candida spp. Another pump inhibitor, MC-005172 (Microcide Pharmaceuticals Inc) showed in vivo potentiation of fluconazole in a mouse kidney infection model. Microcide Pharmaceuticals Inc also presented inhibitors of bacterial efflux pumps. PMID:16113946

  11. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  12. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco

    DEFF Research Database (Denmark)

    Jach, G; Görnhardt, B; Mundy, J;

    1995-01-01

    original cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani, which infects a range of plant species including tobacco....... Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack....... To create a situation similar to 'multi-gene' tolerance, which traditional breeding experience has shown to provide crops with a longer-lasting protection, several of these antifungal genes were combined and protection against fungal attack resulting from their co-expression in planta was evaluated...

  13. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties.

    Science.gov (United States)

    Diz, Mariângela S; Carvalho, Andre O; Ribeiro, Suzanna F F; Da Cunha, Maura; Beltramini, Leila; Rodrigues, Rosana; Nascimento, Viviane V; Machado, Olga L T; Gomes, Valdirene M

    2011-07-01

    Lipid transfer proteins (LTPs) were thus named because they facilitate the transfer of lipids between membranes in vitro. This study was triggered by the characterization of a 9-kDa LTP from Capsicum annuum seeds that we call Ca-LTP(1) . Ca-LTP(1) was repurified, and in the last chromatographic purification step, propanol was used as the solvent in place of acetonitrile to maintain the protein's biological activity. Bidimensional electrophoresis of the 9-kDa band, which corresponds to the purified Ca-LTP(1) , showed the presence of three isoforms with isoelectric points (pIs) of 6.0, 8.5 and 9.5. Circular dichroism (CD) analysis suggested a predominance of α-helices, as expected for the structure of an LTP family member. LTPs immunorelated to Ca-LTP(1) from C. annuum were also detected by western blotting in exudates released from C. annuum seeds and also in other Capsicum species. The tissue and subcellular localization of Ca-LTP(1) indicated that it was mainly localized within dense vesicles. In addition, isolated Ca-LTP(1) exhibited antifungal activity against Colletotrichum lindemunthianum, and especially against Candida tropicalis, causing several morphological changes to the cells including the formation of pseudohyphae. Ca-LTP(1) also caused the yeast plasma membrane to be permeable to the dye SYTOX green, as verified by fluorescence microscopy. We also found that Ca-LTP(1) is able to inhibit mammalian α-amylase activity in vitro. PMID:21382036

  14. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02.

    Science.gov (United States)

    Huh, Chang Ki; Hwang, Tae Yean

    2016-03-01

    This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not H2O2. The molecular weights of the antifungal substances were ≤3,000 Da. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid. PMID:27069906

  15. Antifungal drugs and resistance: Current concepts

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Nigam

    2015-04-01

    Full Text Available Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to these drugs. The main biochemical and molecular mechanisms that contribute to antifungal resistance include reduced uptake of the drug, an active transport out of the cell or modified drug metabolic degradation of the cell, changes in the interaction of the drug to the target site or other enzymes involved in the process by point mutations, overexpression of the target molecule, overproduction or mutation of the target enzyme, amplification and gene conversion (recombination, and increased cellular efflux and occurrence of biofilm. Although, there is considerable knowledge concerning the biochemical, genetic and clinical aspects of resistance to antifungal agents, expansion of our understanding of the mechanisms by which antifungal resistance emerges and spreads, quicker methods for the determination of resistance, targetting efflux pumps, especially ATP binding cassette (ABC transporters and heat shock protein 90, new drug delivery systems, optimizing therapy according to pharmacokinetic and pharmacodynamic characteristics, new classes of antifungal drugs that are active against azole-resistant isolates, and use of combinations of antifungal drugs or use of adjunctive immunostimulatory therapy and other modalities of treatment will clearly be important for future treatment strategies and in preventing development of resistance.

  16. Mystery unraveled about antifungal drug targets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A long-standing mystery about the functional roles of the N-terminal region of protein N-myristoyltransferase, an ideal target for antifungal drugs, was recently decoded, thanks to the threeyear joint efforts of researchers from the CAS Key Laboratory of Molecular Biology and their US colleagues at the DuPont Stine Haskell Research Center.

  17. Evaluation of antifungal activity of protease inhibitors from potato (Solanum tuberosum L.)

    OpenAIRE

    REISEROVÁ, Jana

    2014-01-01

    This diploma thesis is concerned on protease inhibitors isolated from potato (Solanum tuberosum L.) tubers and evaluation of their antifungal properties. Theoretical part of the thesis deals with protease inhibitors which have an antifungal effect. Tubers of potato cultivars Adéla, Ornella, Eurostarch - were used for protease inhibitors isolation. Antifungal activity of isolated protein fractions were evaluated versus fungi from genus Rhizoctonia and Fusarium that are important pathogens in a...

  18. Antibody Peptide Based Antifungal Immunotherapy

    OpenAIRE

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  19. Antifungal therapy in European hospitals

    DEFF Research Database (Denmark)

    Zarb, P; Amadeo, B; Muller, A;

    2012-01-01

    The study aimed to identify targets for quality improvement in antifungal use in European hospitals and determine the variability of such prescribing. Hospitals that participated in the European Surveillance of Antimicrobial Consumption Point Prevalence Surveys (ESAC-PPS) were included. The WHO...... 40,878 (3.7%) antimicrobials. Antifungals were mainly (54.2%) administered orally. Hospital-acquired infections represented 44.5% of indications for antifungals followed by medical prophylaxis at 31.2%. The site of infection was not defined in 36.0% of cases but the most commonly targeted sites were...... respiratory (19.2%) and gastrointestinal (18.8%). The most used antifungal was fluconazole (60.5%) followed by caspofungin (10.5%). Antifungal-antibacterial combinations were frequently used (77.5%). The predominance of fluconazole use in participating hospitals could result in an increase in prevalence of...

  20. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    International Nuclear Information System (INIS)

    Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P213, with unit-cell parameters a = b = c = 143.2 Å

  1. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    Energy Technology Data Exchange (ETDEWEB)

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi [Department of Applied Biochemical Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Hatano, Ken-ichi [Department of Chemistry and Chemical Biology, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biochemical Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2007-09-01

    Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P2{sub 1}3, with unit-cell parameters a = b = c = 143.2 Å.

  2. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2015-01-01

    Full Text Available Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent.

  3. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity.

    Science.gov (United States)

    Gupta, Deepa; Jain, D K

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent. PMID:26317075

  4. Update on azole antifungals.

    Science.gov (United States)

    Zonios, Dimitrios I; Bennett, John E

    2008-04-01

    This is a comprehensive, clinically oriented review of the four commercially available triazoles: fluconazole, itraconazole, voriconazole, and posaconazole. Emphasis is placed in pharmacology, drug interactions, adverse events, antifungal activity, and the evolving perspective of their clinical use. Key clinical trials are briefly discussed, and specific drug indications summarized. Fluconazole remains a valuable low-cost choice for the treatment of various fungal infections, including candidiasis and cryptococcosis. It has relatively few drug interactions and is safe but lacks activity against filamentous fungi. The use of itraconazole is historically plagued by erratic bioavailability of the oral capsule, improved with the oral solution. Drug interactions are numerous. Itraconazole exhibits significant activity against Aspergillus and the endemic fungi. Voriconazole has revolutionized the treatment of aspergillosis in severely immunocompromised patients, but its use is compromised by complicated pharmacokinetics, notable drug interactions, and relatively significant adverse events. Finally, posaconazole is the last addition to the azole armamentarium with extended antifungal spectrum, significant activity against the zygomycetes, and, apparently, optimal safety profile. Posaconazole has a significant role for the prophylaxis of invasive fungal infections in severely immunocompromised patients. Multiple daily dosing, a need for fatty foods for absorption, and absence of an intravenous formulation restrict its use to selected populations. PMID:18366001

  5. Recent advances in antifungal chemotherapy.

    Science.gov (United States)

    Petrikkos, George; Skiada, Anna

    2007-08-01

    For over 50 years, amphotericin B deoxycholate (AmBD) has been the 'gold standard' in antifungal chemotherapy, despite its frequent toxicities. However, improved treatment options for invasive fungal infections (IFIs) have been developed during the last 15 years. Newer antifungal agents, including less toxic lipid preparations of AmBD, triazoles and the echinocandins, have been added to our armamentarium against IFIs. Some of these newer drugs can now replace AmBD as primary therapy (e.g. caspofungin for candidiasis, voriconazole for aspergillosis), whilst others offer new therapeutic options for difficult-to-treat IFIs (e.g. posaconazole for zygomycosis, fusariosis and chromoblastomycosis). It is interesting that extended use of newer antifungals such as fluconazole, despite decreasing the mortality attributed to candidiasis, resulted in selection of species resistant to several antifungals (Candida krusei, Candida glabrata); whilst several publications suggest that prolonged use of voriconazole may expose severely immunocompromised patients to the risk of zygomycosis (breakthrough). On the other hand, the differences in the mode of action of newer antifungals such as echinocandins raise the question whether combination antifungal therapy is more effective than monotherapy. Finally, the availability of an oral formulation with excellent biosafety of several newer antifungals (e.g. posaconazole) makes them candidates for prophylactic or prolonged maintenance therapy. PMID:17524625

  6. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    OpenAIRE

    Deepa Gupta; Jain, D. K.

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antif...

  7. Topical antifungals for seborrhoeic dermatitis

    OpenAIRE

    Okokon, Enembe O; Verbeek, Jos H.; Ruotsalainen, Jani H; Ojo, Olumuyiwa A; Bakhoya, Victor Nyange

    2015-01-01

    Background Seborrhoeic dermatitis is a chronic inflammatory skin condition that is distributed worldwide. It commonly affects the scalp, face and flexures of the body. Treatment options include antifungal drugs, steroids, calcineurin inhibitors, keratolytic agents and phototherapy. Objectives To assess the effects of antifungal agents for seborrhoeic dermatitis of the face and scalp in adolescents and adults. A secondary objective is to assess whether the same interventions are effective in t...

  8. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins.

    Science.gov (United States)

    Spelbrink, Robert G; Dilmac, Nejmi; Allen, Aron; Smith, Thomas J; Shah, Dilip M; Hockerman, Gregory H

    2004-08-01

    Plant defensins are a family of small Cys-rich antifungal proteins that play important roles in plant defense against invading fungi. Structures of several plant defensins share a Cys-stabilized alpha/beta-motif. Structural determinants in plant defensins that govern their antifungal activity and the mechanisms by which they inhibit fungal growth remain unclear. Alfalfa (Medicago sativa) seed defensin, MsDef1, strongly inhibits the growth of Fusarium graminearum in vitro, and its antifungal activity is markedly reduced in the presence of Ca(2+). By contrast, MtDef2 from Medicago truncatula, which shares 65% amino acid sequence identity with MsDef1, lacks antifungal activity against F. graminearum. Characterization of the in vitro antifungal activity of the chimeras containing portions of the MsDef1 and MtDef2 proteins shows that the major determinants of antifungal activity reside in the carboxy-terminal region (amino acids 31-45) of MsDef1. We further define the active site by demonstrating that the Arg at position 38 of MsDef1 is critical for its antifungal activity. Furthermore, we have found for the first time, to our knowledge, that MsDef1 blocks the mammalian L-type Ca(2+) channel in a manner akin to a virally encoded and structurally unrelated antifungal toxin KP4 from Ustilago maydis, whereas structurally similar MtDef2 and the radish (Raphanus sativus) seed defensin Rs-AFP2 fail to block the L-type Ca(2+) channel. From these results, we speculate that the two unrelated antifungal proteins, KP4 and MsDef1, have evolutionarily converged upon the same molecular target, whereas the two structurally related antifungal plant defensins, MtDef2 and Rs-AFP2, have diverged to attack different targets in fungi. PMID:15299136

  9. A Genomewide Screen in Schizosaccharomyces pombe for Genes Affecting the Sensitivity of Antifungal Drugs That Target Ergosterol Biosynthesis

    OpenAIRE

    Fang, Yue; Hu, Lingling; Zhou, Xin; Jaiseng, Wurentuya; Zhang, Ben; Takami, Tomonori; Kuno, Takayoshi

    2012-01-01

    We performed a genomewide screen for altered sensitivity to antifungal drugs, including clotrimazole and terbinafine, that target ergosterol biosynthesis using a Schizosaccharomyces pombe gene deletion library consisting of 3,004 nonessential haploid deletion mutants. We identified 109 mutants that were hypersensitive and 11 mutants that were resistant to these antifungals. Proteins whose absence rendered cells sensitive to these antifungals were classified into various functional categories,...

  10. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties

    OpenAIRE

    Bogdanov, Ivan V.; Shenkarev, Zakhar O.; Finkina, Ekaterina I.; Melnikova, Daria N.; Rumynskiy, Eugene I.; Arseniev, Alexander S.; Ovchinnikova, Tatiana V.

    2016-01-01

    Background Plant lipid transfer proteins (LTPs) assemble a family of small (7–9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and i...

  11. Antifungal therapy with an emphasis on biofilms

    OpenAIRE

    Pierce, Christopher G.; Srinivasan, Anand; Uppuluri, Priya; Anand K. Ramasubramanian; López-Ribot, José Luis

    2013-01-01

    Fungal infections are on the rise as advances in modern medicine prolong the lives of severely ill patients. Fungi are eukaryotic organisms and there are a limited number of targets for antifungal drug development; as a result the antifungal arsenal is exceedingly limited. Azoles, polyenes and echinocandins, constitute the mainstay of antifungal therapy for patients with life-threatening mycoses. One of the main factors complicating antifungal therapy is the formation of fungal biofilms, micr...

  12. Resistance to antifungals that target CYP51.

    Science.gov (United States)

    Parker, Josie E; Warrilow, Andrew G S; Price, Claire L; Mullins, Jonathan G L; Kelly, Diane E; Kelly, Steven L

    2014-10-01

    Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue. PMID:25320648

  13. Use of antifungal drugs in hematology

    Directory of Open Access Journals (Sweden)

    Marcio Nucci

    2012-01-01

    Full Text Available Invasive fungal disease represents a major complication in hematological patients. Antifungal agents are frequently used in hematologic patients for different purposes. In neutropenic patients, antifungal agents may be used as prophylaxis, as empiric or preemptive therapy, or to treat an invasive fungal disease that has been diagnosed. The hematologist must be familiar with the epidemiology, diagnostic tools and strategies of antifungal use, as well as the pharmacologic proprieties of the different antifungal agents. In this paper the principal antifungal agents used in hematologic patients will be discussed as will the clinical scenarios where these agents have been used.

  14. Expression in Escherichia coli, purification, refolding and antifungal activity of an osmotin from Solanum nigrum

    Directory of Open Access Journals (Sweden)

    Magalhães Cláudio P

    2008-03-01

    Full Text Available Abstract Background Heterologous protein expression in microorganisms may contribute to identify and demonstrate antifungal activity of novel proteins. The Solanum nigrum osmotin-like protein (SnOLP gene encodes a member of pathogenesis-related (PR proteins, from the PR-5 sub-group, the last comprising several proteins with different functions, including antifungal activity. Based on deduced amino acid sequence of SnOLP, computer modeling produced a tertiary structure which is indicative of antifungal activity. Results To validate the potential antifungal activity of SnOLP, a hexahistidine-tagged mature SnOLP form was overexpressed in Escherichia coli M15 strain carried out by a pQE30 vector construction. The urea solubilized His6-tagged mature SnOLP protein was affinity-purified by immobilized-metal (Ni2+ affinity column chromatography. As SnOLP requires the correct formation of eight disulfide bonds, not correctly formed in bacterial cells, we adapted an in vitro method to refold the E. coli expressed SnOLP by using reduced:oxidized gluthatione redox buffer. This method generated biologically active conformations of the recombinant mature SnOLP, which exerted antifungal action towards plant pathogenic fungi (Fusarium solani f. sp.glycines, Colletotrichum spp., Macrophomina phaseolina and oomycete (Phytophthora nicotiana var. parasitica under in vitro conditions. Conclusion Since SnOLP displays activity against economically important plant pathogenic fungi and oomycete, it represents a novel PR-5 protein with promising utility for biotechnological applications.

  15. Sensitivity of Neurospora crassa to a Marine-Derived Aspergillus tubingensis Anhydride Exhibiting Antifungal Activity That Is Mediated by the MAS1 Protein

    Directory of Open Access Journals (Sweden)

    Liat Koch

    2014-09-01

    Full Text Available The fungus Aspergillus tubingensis (strain OY907 was isolated from the Mediterranean marine sponge Ircinia variabilis. Extracellular extracts produced by this strain were found to inhibit the growth of several fungi. Among the secreted extract components, a novel anhydride metabolite, tubingenoic anhydride A (1 as well as the known 2-carboxymethyl-3-hexylmaleic acid anhydride, asperic acid, and campyrone A and C were purified and their structure elucidated. Compound 1 and 2-carboxymethyl-3-hexylmaleic acid anhydride inhibited Neurospora crassa growth (MIC = 330 and 207 μM, respectively and affected hyphal morphology. We produced a N. crassa mutant exhibiting tolerance to 1 and found that a yet-uncharacterized gene, designated mas-1, whose product is a cytosolic protein, confers sensitivity to this compound. The ∆mas-1 strain showed increased tolerance to sublethal concentrations of the chitin synthase inhibitor polyoxin D, when compared to the wild type. In addition, the expression of chitin synthase genes was highly elevated in the ∆mas-1 strain, suggesting the gene product is involved in cell wall biosynthesis and the novel anhydride interferes with its function.

  16. Advancements in Topical Antifungal Vehicles.

    Science.gov (United States)

    Kircik, Leon H

    2016-02-01

    The primary treatment for superficial fungal infections is antifungal topical formulations, and allylamines and azoles represent the two major classes of topical formulations that are used to treat these infections. The stratum corneum (SC) is composed of keratinocytes that are surrounded by a matrix of lipids. The efficacy of topically applied formulations depends on their ability to penetrate this lipid matrix, and the vehicle plays an integral role in the penetration of active molecule into skin. There are several challenges to formulating topical drugs, which include the biotransformation of the active molecules as they pass through the SC and the physical changes that occur to the vehicle itself when it is applied to the skin. This article will review current and emerging topical antifungal vehicles. PMID:26885798

  17. EVALUATION OF STRUCTURAL AND BIOCHEMICAL ALTERATIONS IN ASPERGILLUS TERREUS BY THE ACTION OF ANTIFUNGAL ANTIBIOTIC COMPOUND FROM STREPTOMYCES SP. JF714876

    Directory of Open Access Journals (Sweden)

    Babanagare Shankaravva S.

    2011-11-01

    Full Text Available Antifungal compound obtained by Streptomyces sp. JF714876 was examined for its effect on morphological and biochemical alteration in Aspergillus terreus. Microscopic observation revealed swelling of hyphae with deformation and distortion in mycelial structure in presence of moderate concentration of antifungal compound. At high concentration, the compound exhibited fungicidal action. Antifungal treated Aspergillus terreus showed changes in its biochemical content such as, protein, carbohydrates, peroxidase, catalase and amylase as compared to untreated.

  18. Study on Mutagenic Breeding of Bacillus Subtilis and Properties of Its Antifungal Substances

    Science.gov (United States)

    Liu, Jing; Yao, Jianming

    2004-08-01

    Bacillus subtitles JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our studay. After B. subtitles JA was implanted by N+ ions, a strain designated as B. subtitles JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate-enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein.

  19. Study on Mutagenic Breeding of Bacillus Subtilis and Properties of Its Antifungal Substances

    Institute of Scientific and Technical Information of China (English)

    刘静; 姚建铭

    2004-01-01

    Bacillus subtitles JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi,such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our studay. After B. Subtitles JA was implanted by N+ ions,a strain designated as B. Subtitles JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%,the precipitate-enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein.

  20. Study on mutagenic breeding of bacillus subtilis and properties of its antifungal substances

    International Nuclear Information System (INIS)

    Bacillus subtilis JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our study. After B. subtilis JA was implanted by N+ ions, a strain designated as B. Subtilis JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein. (authors)

  1. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

    OpenAIRE

    SAHADEO PATIL; PANKAJ MAKNIKAR; SUSHILKUMAR WANKHADE; CHANDRAKIRAN UKESH; MAHENDRA RA

    2015-01-01

    Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obta...

  2. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  3. Food preservation using antifungal lactic acid bacteria

    OpenAIRE

    Crowley, Sarah Catherine Mary

    2013-01-01

    Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spe...

  4. Evaluation of vaginal antifungal formulations in vivo.

    Science.gov (United States)

    McRipley, R. J.; Erhard, P. J.; Schwind, R. A.; Whitney, R. R.

    1979-01-01

    Relatively simple and rapid procedures have been developed for evaluating the local efficacy of vaginal antifungal agents in vivo in a vaginal candidiasis model in ovariectomized rats. The results of this investigation indicate that the model and methods described are quite suitable for screening potential antifungal substances and for assessing the chemotherapeutic effectiveness of new antifungal agents and formulations before carrying out clinical studies. PMID:392480

  5. Antifungal Activity of C-27 Steroidal Saponins

    OpenAIRE

    Yang, Chong-Ren; Zhang, Ying; Jacob, Melissa R.; Khan, Shabana I.; Zhang, Ying-Jun; Li, Xing-Cong

    2006-01-01

    As part of our search for new antifungal agents from natural resources, 22 C-27 steroidal saponins and 6 steroidal sapogenins isolated from several monocotyledonous plants were tested for their antifungal activity against the opportunistic pathogens Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, and Aspergillus fumigatus. The results showed that the antifungal activity of the steroidal saponins was associated with their aglycone moieties and the number and struct...

  6. Antifungal Activity of Micafungin in Serum ▿

    OpenAIRE

    Ishikawa, Jun; Maeda, Tetsuo; Matsumura, Itaru; Yasumi, Masato; Ujiie, Hidetoshi; Masaie, Hiroaki; Nakazawa, Tsuyoshi; Mochizuki, Nobuo; Kishino, Satoshi; Kanakura, Yuzuru

    2009-01-01

    We have evaluated the antifungal activity of micafungin in serum by using the disk diffusion method with serum-free and serum-added micafungin standard curves. Serum samples from micafungin-treated patients have been shown to exhibit adequate antifungal activity, which was in proportion to both the applied dose and the actual concentration of micafungin measured by high-performance liquid chromatography. The antifungal activity of micafungin in serum was also confirmed with the broth microdil...

  7. Antibacterial and Antifungal Compounds from Marine Fungi

    OpenAIRE

    Lijian Xu; Wei Meng; Cong Cao; Jian Wang; Wenjun Shan; Qinggui Wang

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review.

  8. Use of antifungal drugs in hematology

    OpenAIRE

    Marcio Nucci

    2012-01-01

    Invasive fungal disease represents a major complication in hematological patients. Antifungal agents are frequently used in hematologic patients for different purposes. In neutropenic patients, antifungal agents may be used as prophylaxis, as empiric or preemptive therapy, or to treat an invasive fungal disease that has been diagnosed. The hematologist must be familiar with the epidemiology, diagnostic tools and strategies of antifungal use, as well as the pharmacologic proprieties of the dif...

  9. Diversity and antifungal susceptibility of Norwegian Candida glabrata clinical isolates

    Science.gov (United States)

    Andersen, Kari-Mette; Kristoffersen, Anne Karin; Ingebretsen, André; Vikholt, Katharina Johnsen; Örtengren, Ulf Thore; Olsen, Ingar; Enersen, Morten; Gaustad, Peter

    2016-01-01

    Background Increasing numbers of immunocompromised patients have resulted in greater incidence of invasive fungal infections with high mortality. Candida albicans infections dominate, but during the last decade, Candida glabrata has become the second highest cause of candidemia in the United States and Northern Europe. Reliable and early diagnosis, together with appropriate choice of antifungal treatment, is needed to combat these challenging infections. Objectives To confirm the identity of 183 Candida glabrata isolates from different human body sites using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and VITEK®2, and to analyze isolate protein profiles and antifungal susceptibility. The minimum inhibitory concentration (MIC) of seven antifungal drugs was determined for the isolates to elucidate susceptibility. Design A total of 183 C. glabrata isolates obtained between 2002 and 2012 from Norwegian health-care units were analyzed. For species verification and differentiation, biochemical characterization (VITEK®2) and mass spectrometry (MALDI–TOF) were used. MIC determination for seven antifungal drugs was undertaken using E-tests®. Results Using VITEK®2, 92.9% of isolates were identified as C. glabrata, while all isolates (100%) were identified as C. glabrata using MALDI-TOF. Variation in protein spectra occurred for all identified C. glabrata isolates. The majority of isolates had low MICs to amphotericin B (≤1 mg/L for 99.5%) and anidulafungin (≤0.06 mg/L for 98.9%). For fluconazole, 18% of isolates had MICs >32 mg/L and 82% had MICs in the range ≥0.016 mg/L to ≤32 mg/L. Conclusions Protein profiles and antifungal susceptibility characteristics of the C. glabrata isolates were diverse. Clustering of protein profiles indicated that many azole resistant isolates were closely related. In most cases, isolates had highest susceptibility to amphotericin B and anidulafungin. The results confirmed previous observations of high

  10. Purification and characterization of pathogenesis-related antifungal beta 1,3 glucanase from basrai banana fruit

    International Nuclear Information System (INIS)

    Pathogenesis-related proteins have been described as proteins that are encoded by the plant genome and that are induced specifically in response to infections by pathogens. These represent a collection of unrelated protein families which function as part of the plant defense system. Pathogenesis-related antifungal protein has been isolated from the pulp of ripe Basrai bananas and purified through ammonium sulphate precipitation, Sephadex G- 75 gel filtration chromatography and electro-elution. The purified protein with acidic character (pI 6.81). has molecular weight of 34.5kDa, as determined by MALOI- TOF mass spectrometry. Mascot score obtained was 473 greater than 82, indicate extensive homology at a significant level (p.0.05) and the protein was identified as beta 1,3-glucanase with antifungal activity. It inhibited the growth of Fusarium oxysporum demonstrating the potential role of Basrai banana antifungal protein to control fungal diseases in plants, animals and human. (author)

  11. Antifungal saponins from Swartzia langsdorffii

    International Nuclear Information System (INIS)

    Chromatographic fractionation of the EtOH extract from the leaves of Swartzia langsdorffii afforded the pentacyclic triterpenes oleanolic acid and lupeol, and two saponins: oleanolic acid 3-sophoroside and the new ester 3-O-β-D-(6'-methyl)-glucopyranosyl-28-O-β-D-glucopyranosyl-oleanate.Their structures were elucidated from spectral data, including 2D NMR and HRESIMS experiments. Antifungal activity of all isolated compounds was evaluated, using phytopathogens Cladosporium cladosporioides and C. sphaerospermum, and human pathogens Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans. (author)

  12. Active packaging with antifungal activities.

    Science.gov (United States)

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time. PMID:26803804

  13. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

    Directory of Open Access Journals (Sweden)

    SAHADEO PATIL

    2015-05-01

    Full Text Available Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obtained from cumin seeds using hydrodistillation technique and was later evaluated for the presence of major chemical constituents present in it using gas chromatography and mass spectrometry (GC-MS assay. The GC-MS assay revealed the abundance of γ-terpinene (35.42% followed by p-cymene (30.72%. The agar disc diffusion assay demonstrated highly potent antifungal effect against Candida species. Moreover, the combination of cumin essential oil (CEO with conventional antifungal drugs was found to reduce the individual MIC of antifungal drug suggesting the occurrence of synergistic interactions. Therefore, the therapy involving combinations of CEO and conventional antifungal drugs can be used for reducing the toxicity induced by antifungal drugs and at the same time enhancing their antifungal efficacy in controlling the infections caused due to Candida species.

  14. 21 CFR 333.250 - Labeling of antifungal drug products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Labeling of antifungal drug products. 333.250... Antifungal Drug Products § 333.250 Labeling of antifungal drug products. (a) Statement of identity. The... “antifungal.” (b) Indications. The labeling of the product states, under the heading “Indications,” the...

  15. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli.

    Science.gov (United States)

    Chung, Eu Jin; Lim, He Kyoung; Kim, Jin-Cheol; Choi, Gyung Ja; Park, Eun Jin; Lee, Myung Hwan; Chung, Young Ryun; Lee, Seon-Woo

    2008-02-01

    Using two forest soils, we previously constructed two fosmid libraries containing 113,700 members in total. The libraries were screened to select active antifungal clones using Saccharomyces cerevisiae as a target fungus. One clone from the Yuseong pine tree rhizosphere soil library, pEAF66, showed S. cerevisiae growth inhibition. Despite an intensive effort, active chemicals were not isolated. DNA sequence analysis and transposon mutagenesis of pEAF66 revealed 39 open reading frames (ORFs) and indicated that eight ORFs, probably in one transcriptional unit, might be directly involved in the expression of antifungal activity in Escherichia coli. The deduced amino acid sequences of eight ORFs were similar to those of the core genes encoding type II family polyketide synthases, such as the acyl carrier protein (ACP), ACP synthases, aminotransferase, and ACP reductase. The gene cluster involved in antifungal activity was similar in organization to the putative antibiotic production locus of Pseudomonas putida KT2440, although we could not select a similar active clone from the KT2440 genomic DNA library in E. coli. ORFs encoding ATP binding cassette transporters and membrane proteins were located at both ends of the antifungal gene cluster. Upstream ORFs encoding an IclR family response regulator and a LysR family response regulator were involved in the positive regulation of antifungal gene expression. Our results suggested the metagenomic approach as an alternative to search for novel antifungal antibiotics from unculturable soil bacteria. This is the first report of an antifungal gene cluster obtained from a soil metagenome using S. cerevisiae as a target fungus. PMID:18065615

  16. Synthesis and antifungal activity of trichodermin derivatives

    Institute of Scientific and Technical Information of China (English)

    Jing Li Cheng; Yong Zhou; Jin Hao Zhao; Chu Long Zhang; Fu Cheng Lin

    2010-01-01

    A series of derivatives were synthesized from trichodermin(1)which was an antifungal metabolite produced by Trichoderma taxi sp.nov.Their structures were confirmed by 1H NMR,MS spectrum.Their antifungal activities were evaluated in vitro.The preliminary structure activity relationships(SAR)results indicated that the double bond,epoxide moiety and ester group were main pharmacophore elements,the stereochemistry of C4 position played a key role as well,and the compounds 1e-1g displayed stronger antifungal activity against Magnaporthe grisea than 1.

  17. Antifungal isopimaranes from Hypoestes serpens.

    Science.gov (United States)

    Rasoamiaranjanahary, L; Guilet, D; Marston, A; Randimbivololona, F; Hostettmann, K

    2003-09-01

    Five isopimarane diterpenes (7beta-hydroxyisopimara-8,15-dien-14-one, 14alpha-hydroxyisopimara-7,15-dien-1-one, 1beta,14alpha-dihydroxyisopimara-7,15-diene, 7beta-hydroxyisopimara-8(14),15-dien-1-one and 7beta-acetoxyisopimara-8(14),15-dien-1-one) have been isolated from the leaves of Hypoestes serpens (Acanthaceae). All compounds exhibited antifungal activity against both the plant pathogenic fungus Cladosporium cucumerinum and the yeast Candida albicans; two of them also displayed an acetylcholinesterase inhibition. The structures of the compounds were determined by means of spectrometric methods, including 1D and 2D NMR experiments and MS analysis. PMID:12943772

  18. Early State Research on Antifungal Natural Products

    Directory of Open Access Journals (Sweden)

    Melyssa Negri

    2014-03-01

    Full Text Available Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.

  19. Synthesis of Pyridazinonethiadiazoles as Possible Antifungal Agents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Several 5-[1-aryl-1,4-dihydro-6-methylpyridazin-4-one-3-yl]-2-arylamino-1,3,4-thia diazoles were synthesized.The preliminary bio-active test shows that these compounds exhibit high antifungal activity.

  20. Antifungal drugs and resistance: Current concepts

    OpenAIRE

    Pramod Kumar Nigam

    2015-01-01

    Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to the...

  1. Antifungal properties of Brazilian cerrado plants

    OpenAIRE

    Souza Lúcia Kioko Hasimoto e; Oliveira Cecília Maria Alves de; Ferri Pedro Henrique; Santos Suzana Costa; Oliveira Júnior Juldásio Galdino de; Miranda André Thiago Borges; Lião Luciano Morais; Silva Maria do Rosário Rodrigues

    2002-01-01

    Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in...

  2. Antifungal properties of Brazilian cerrado plants

    Directory of Open Access Journals (Sweden)

    Souza Lúcia Kioko Hasimoto e

    2002-01-01

    Full Text Available Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in "in vitro" assays.

  3. Characterization of an antifungal chitinase from Bacillus sp.SL-13

    Institute of Scientific and Technical Information of China (English)

    Chen; Shan

    2014-01-01

    Bacillus sp.SL-13 produced antifungal proteins.The growth of the plant-pathogenic fungi Rhizoctonia solani was considerably inhibited by the presence of the SL-13 culture supernatant.It is very suitable for the use in a relatively unstable environment,exhibiting effective biological control.

  4. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  5. Antifungal activity of triterpenoid isolated from Azima tetracantha leaves

    International Nuclear Information System (INIS)

    The present study was designed to evaluate the antifungal activity of Azima tetracantha extracts and isolated compound (friedelin) against fungi. Antifungal activity was carried out using broth micro dilution method and fractions were collected using (silica gel) column chromatography. The antifungal activity of Azima tetracantha crude extracts and isolated compound (friedelin) were evaluated using the micro dilution method. Hexane extract showed some antifungal activity. The compound also exhibited antifungal activity against tested fungi. The lowest MIC against Trichophyton rubrum (296) was 62.5 micro g/ml and the MIC for Curvularia lunata was 62.5 micro g/ml. These results suggest that Friedelin is a promising antifungal agent. (authors)

  6. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  7. Antifungal activity of lectins against yeast of vaginal secretion

    Directory of Open Access Journals (Sweden)

    Bruno Severo Gomes

    2012-06-01

    Full Text Available Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256µg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health.

  8. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris.

    Science.gov (United States)

    Wong, Jack H; Ng, Tzi Bun; Wang, Hexiang; Sze, Stephen Cho Wing; Zhang, Kalin Yanbo; Li, Qi; Lu, Xiaoxu

    2011-03-15

    Cordymin, an antifungal peptide with a molecular mass of 10,906 Da and an N-terminal amino acid sequence distinct from those of previously reported proteins, was purified from the medicinal mushroom Cordyceps militaris. The isolation protocol comprised ion exchange chromatography of the aqueous extract on SP-Sepharose and Mono S and gel filtration on Superdex 75 by a fast protein liquid chromatography system. Cordymin was adsorbed on both cation exchangers. The peptide inhibited mycelial growth in Bipolaris maydis, Mycosphaerella arachidicola, Rhizoctonia solani and Candida albicans with an IC(50) of 50 μM, 10 μM, 80 μM, and 0.75 mM, respectively. However, there was no effect on Aspergillus fumigatus, Fusarium oxysporum and Valsa mali when tested up to 2 mM. The antifungal activity of the peptide was stable up to 100°C and in the pH range 6-13, and unaffected by 10 mM Zn(2+) and 10 mM Mg(2+). Cordymin inhibited HIV-1 reverse transcriptase with an IC(50) of 55 μM. Cordymin displayed antiproliferative activity toward breast cancer cells (MCF-7) but there was no effect on colon cancer cells (HT-29). There was no mitogenic activity toward mouse spleen cells and no nitric oxide inducing activity toward mouse macrophages when tested up to 1 mM. PMID:20739167

  9. Antifungal activity of triterpenoid isolated from Azima tetracantha leaves.

    OpenAIRE

    Duraipandiyan, V; M Gnanasekar; S Ignacimuthu

    2010-01-01

    The present study was designed to evaluate the antifungal activity of Azima tetracantha extracts and isolated compound (friedelin) against fungi. Antifungal activity was carried out using broth microdilution method and fractions were collected using (silica gel) column chromatography. The antifungal activity of Azima tetracantha crude extracts and isolated compound (friedelin) were evaluated using the micro dilution method. Hexane extract showed some antifungal activity. The compound also exh...

  10. Epidemiology and antifungal resistance in invasive candidiasis

    Directory of Open Access Journals (Sweden)

    Rodloff AC

    2011-04-01

    Full Text Available Abstract The epidemiology of Candida infections has changed over the last two decades: The number of patients suffering from such infections has increased dramatically and the Candida species involved have become more numerous as Candida albicans is replaced as an infecting agent by various non-C. albicans species (NAC. At the same time, additional antifungal agents have become available. The different Candida species may vary in their susceptibility for these various antifungals. This draws more attention to in vitro susceptibility testing. Unfortunately, several different test methods exist that may deliver different results. Moreover, clinical breakpoints (CBP that classify test results into susceptible, intermediate and resistant are controver- sial between CLSI and EUCAST. Therefore, clinicians should be aware that interpretations may vary with the test system being followed by the microbiological laboratory. Thus, knowledge of actual MIC values and pharmacokinetic properties of individual antifungal agents is important in delivering appropriate therapy to patients

  11. Antifungal drug discovery: the process and outcomes.

    Science.gov (United States)

    Calderone, Richard; Sun, Nuo; Gay-Andrieu, Francoise; Groutas, William; Weerawarna, Pathum; Prasad, Sridhar; Alex, Deepu; Li, Dongmei

    2014-01-01

    New data suggest that the global incidence of several types of fungal diseases have traditionally been under-documented. Of these, mortality caused by invasive fungal infections remains disturbingly high, equal to or exceeding deaths caused by drug-resistant tuberculosis and malaria. It is clear that basic research on new antifungal drugs, vaccines and diagnostic tools is needed. In this review, we focus upon antifungal drug discovery including in vitro assays, compound libraries and approaches to target identification. Genome mining has made it possible to identify fungal-specific targets; however, new compounds to these targets are apparently not in the antimicrobial pipeline. We suggest that 'repurposing' compounds (off patent) might be a more immediate starting point. Furthermore, we examine the dogma on antifungal discovery and suggest that a major thrust in technologies such as structural biology, homology modeling and virtual imaging is needed to drive discovery. PMID:25046525

  12. 21 CFR 333.210 - Antifungal active ingredients.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Antifungal Drug Products § 333.210 Antifungal active ingredients. The active ingredient of the...

  13. Design,Synthesis and Antifungal Activity of Novel Triazole Derivatives

    Institute of Scientific and Technical Information of China (English)

    Chun Quan SHENG; Wan Nian ZHANG; Hai Tao JI; Yun Long SONG; Min ZHANG; You Jun ZHOU; Jia Guo LU; Jü ZHU

    2004-01-01

    Twenty-one 1-(1H-1,2,4-triazolyl)-2-(2,4-diflurophenyl)-3-(4-substituted-1- piperazinyl)-2-propanol derivatives were designed and synthesized,on the basis of the active site of lanosterol 14(-demethylase.In vitro antifungal activities showed that some of the target compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

  14. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

    OpenAIRE

    Huh, Chang Ki; Hwang, Tae Yean

    2016-01-01

    This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear ...

  15. Screening antifungal activities of selected medicinal plants.

    Science.gov (United States)

    Quiroga, E N; Sampietro, A R; Vattuone, M A

    2001-01-01

    Plants synthesise a vast array of secondary metabolites that are gaining importance for their biotechnological applications. The antifungal activity of the ethanolic extracts of ten Argentinean plants used in native medicine is reported. Antifungal assays included radial growth inhibition, disk and well diffusion assays and growth inhibition by broth dilution tests. The chosen test fungi were yeasts, microfungi and wood-rot causing Basidiomycetes. Extracts of Larrea divaricata, Zuccagnia punctata and Larrea cuneifolia displayed remarkable activity in the assays against the majority of the test fungi. In addition to the former plants, Prosopanche americana also inhibited yeast growth. PMID:11137353

  16. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli.

    Science.gov (United States)

    Kirubakaran, S Isaac; Sakthivel, N

    2007-03-01

    Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover. PMID:17029984

  17. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    Energy Technology Data Exchange (ETDEWEB)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  18. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review

    Directory of Open Access Journals (Sweden)

    Lluís Palou

    2015-12-01

    Full Text Available According to their origin, major postharvest losses of citrus fruit are caused by weight loss, fungal diseases, physiological disorders, and quarantine pests. Cold storage and postharvest treatments with conventional chemical fungicides, synthetic waxes, or combinations of them are commonly used to minimize postharvest losses. However, the repeated application of these treatments has led to important problems such as health and environmental issues associated with fungicide residues or waxes containing ammoniacal compounds, or the proliferation of resistant pathogenic fungal strains. There is, therefore, an increasing need to find non-polluting alternatives to be used as part of integrated disease management (IDM programs for preservation of fresh citrus fruit. Among them, the development of novel natural edible films and coatings with antimicrobial properties is a technological challenge for the industry and a very active research field worldwide. Chitosan and other edible coatings formulated by adding antifungal agents to composite emulsions based on polysaccharides or proteins and lipids are reviewed in this article. The most important antifungal ingredients are selected for their ability to control major citrus postharvest diseases like green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively, and include low-toxicity or natural chemicals such as food additives, generally recognized as safe (GRAS compounds, plant extracts, or essential oils, and biological control agents such as some antagonistic strains of yeasts or bacteria.

  19. Synthesis, Antifungal Activities and Qualitative Structure Activity Relationship of Carabrone Hydrazone Derivatives as Potential Antifungal Agents

    OpenAIRE

    Hao Wang; Shuang-Xi Ren; Ze-Yu He; De-Long Wang; Xiao-Nan Yan; Jun-Tao Feng; Xing Zhang

    2014-01-01

    Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which l...

  20. Impact of New Antifungal Breakpoints on Antifungal Resistance in Candida Species

    OpenAIRE

    Fothergill, Annette W.; Sutton, Deanna A.; McCarthy, Dora I.; Wiederhold, Nathan P.

    2014-01-01

    We reviewed our antifungal susceptibility data for micafungin, anidulafungin, fluconazole, and voriconazole against Candida species and compared resistance rates determined by the previous and recently revised CLSI antifungal breakpoints. With the new breakpoints, resistance was significantly increased for micafungin (from 0.8% to 7.6%), anidulafungin (from 0.9% to 7.3%), and voriconazole (from 6.1% to 18.4%) against Candida glabrata. Resistance was also increased for fluconazole against Cand...

  1. Antifungal prophylaxis during neutropenia and immunodeficiency.

    OpenAIRE

    Lortholary, O; Dupont, B

    1997-01-01

    Fungal infections represent a major source of morbidity and mortality in patients with almost all types of immunodeficiencies. These infections may be nosocomial (aspergillosis) or community acquired (cryptococcosis), or both (candidiasis). Endemic mycoses such as histoplasmosis, coccidioidomycosis, and penicilliosis may infect many immunocompromised hosts in some geographic areas and thereby create major public health problems. With the wide availability of oral azoles, antifungal prophylact...

  2. Studies of antifungal activity of forsskalea tenacissima

    International Nuclear Information System (INIS)

    Antifungal activity of different extracts from Forsskalea tenacissima prepared by solvent-solvent extraction and vacuum liquid chromatography (VLC) was determined. Extracts were found to be active against Candida albicans, Trichophyton mentagrophyte, Allescheria boydii, Microsporum canis, Aspergillus niger, Drechslera rostrata, Nigrospora oryzae, Stachybotrys atra, Curvularia lunata, Trichophyton semii and Trichophyton schoenleinii. (author)

  3. Antifungal activity of ajoene derived from garlic.

    OpenAIRE

    Yoshida, S.(Department of Physics, Chiba University, 263-8522, Chiba, Japan); Kasuga, S; Hayashi, N; Ushiroguchi, T; Matsuura, H.; Nakagawa, S

    1987-01-01

    The antifungal activity of six fractions derived from garlic was investigated in an in vitro system. Ajoene had the strongest activity in these fractions. The growth of both Aspergillus niger and Candida albicans was inhibited by ajoene at less than 20 micrograms/ml.

  4. Type I methionine aminopeptidase from Saccharomyces cerevisiae is a potential target for antifungal drug screening

    Institute of Scientific and Technical Information of China (English)

    Ling-ling CHEN; Jia LI; Jing-ya LI; Qun-li LUO; Wei-feng MAO; Qiang SHEN; Fa-jun NAN; Qi-zhuang YE

    2004-01-01

    AIM: To screen antifungal drug candidates using in vitro and in vivo assays based on type I methionine aminopeptidase from Saccharomyces cerevisiae (ScMetAP1). METHODS: A colorimetric assay suitable for high throughput screening (HTS) using recombinant ScMetAP1 protein expressed in Escherichia coli was established for antifungal lead discovery. A series of pyridine-2-carboxylic acid derivatives were characterized and a chemical library of 12 800 pure organic compounds was screened with the in vitro ScMetAP1 assay. Active compounds from the in vitro assay were further evaluated by a growth inhibition assay on yeast strain with deletion of ScMetAP1 gene mapl in comparison with the wild-type yeast strain and the yeast strain with deletion of type II enzyme (ScMetAP2)gene map2. RESULTS: Active ScMetAP1 inhibitors were identified from HTS. Some of the pyridine-2-carboxylic acid derivatives (compound 2 and 3) had selective inhibition of the growth of map2 deletion yeast and weak inhibition on wild-type yeast growth, while no inhibition on mapl deletion yeast. CONCLUSION: ScMetAP1 is a novel potential target for developing antifungal drugs. The in vitro and in vivo ScMetAP1 assays can serve as tools in discovering antifungal drug candidates.

  5. A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23

    Indian Academy of Sciences (India)

    S K Augustine; S P Bhavsar; B P Kapadnis

    2005-03-01

    In all 312 actinomycete strains were isolated from water and soil samples from different regions. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different temperatures and pH tested and there was no significant loss of the antifungal activity after treatment with various detergents and enzymes. Synergistic effect was observed when the antibiotic was used in combination with hamycin. The antibiotic was fairly stable for a period of 12 months at 4°C. The mode of action of the antibiotic seems to be by binding to the ergosterol present in the fungal cell membrane resulting in the leakage of intracellular material and eventually death of the cell. The structure of the antibiotic was determined by elemental analysis and by ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography mass spectra (LCMS). The antibiotic was found to be a straight chain polyhydroxy, polyether, non-proteinic compound with a single double bond, indicating a nonpolyene antifungal antibiotic.

  6. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa

    OpenAIRE

    Pereira Menezes, Sara; de Andrade Silva, Edson Mario; Matos Lima, Eline; Oliveira de Sousa, Aurizângela; Silva Andrade, Bruno; Santos Lima Lemos, Livia; Peres Gramacho, Karina; da Silva Gesteira, Abelmon; Pirovani, Carlos Priminho; Micheli, Fabienne

    2014-01-01

    Background The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. Results TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b c...

  7. From antidiabetic to antifungal: discovery of highly potent triazole-thiazolidinedione hybrids as novel antifungal agents.

    Science.gov (United States)

    Wu, Shanchao; Zhang, Yongqiang; He, Xiaomeng; Che, Xiaoying; Wang, Shengzheng; Liu, Yang; Jiang, Yan; Liu, Na; Dong, Guoqiang; Yao, Jianzhong; Miao, Zhenyuan; Wang, Yan; Zhang, Wannian; Sheng, Chunquan

    2014-12-01

    In an attempt to discover a new generation of triazole antifungal agents, a series of triazole-thiazolidinedione hybrids were designed and synthesized by molecular hybridization of the antifungal agent fluconazole and rosiglitazone (an antidiabetic). Most of the target compounds showed good to excellent inhibitory activity against a variety of clinically important fungal pathogens. In particular, compounds (Z)-5-(2,4-dichlorobenzylidene)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)thiazolidine-2,4-dione) (15 c), (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 j), and (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 r) were highly active against Candida albicans, with MIC80 values in the range of 0.03-0.15 μM. Moreover, compounds 15 j and 15 r were found to be effective against four fluconazole-resistant clinical isolates; these two compounds are particularly promising antifungal leads for further optimization. Molecular docking studies revealed that the hydrogen bonding interactions between thiazolidinedione and CYP51 from C. albicans are important for antifungal activity. This study also demonstrates the effectiveness of molecular hybridization in antifungal drug discovery. PMID:25196996

  8. ANTIFUNGAL ACTIVITIES OF CUNNINGHAMIA LANCEOLATA HEARTWOOD EXTRACTIVES

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2011-02-01

    Full Text Available Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1 The gas chromatography-mass spectrometry (GC-MS analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39% and the ethyl acetate extract (9.43%. (2 Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteus and two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.

  9. Tolerability and safety of antifungal drugs

    Directory of Open Access Journals (Sweden)

    Francesco Scaglione

    2013-08-01

    Full Text Available When treating critically ill patients, as those with fungal infections, attention should be focused on the appropriate use of drugs, especially in terms of dose, safety, and tolerability. The fungal infection itself and the concomitant physiological disorders concur to increase the risk of mortality in these patients, therefore the use of any antifungal agent should be carefully evaluated, considering both the direct action on the target fungus and the adverse effects eventually caused. Among antifungal drugs, echinocandins have the greatest tolerability. In fact, unlike amphotericin B, showing nephrotoxicity, and azoles, which are hepatotoxic, the use of echinocandins doesn’t result in major adverse events.http://dx.doi.org/10.7175/rhc.v4i2s.873

  10. Antifungal activity of 10 Guadeloupean plants.

    Science.gov (United States)

    Biabiany, Murielle; Roumy, Vincent; Hennebelle, Thierry; François, Nadine; Sendid, Boualem; Pottier, Muriel; Aliouat, El Moukhtar; Rouaud, Isabelle; Lohézic-Le Dévéhat, Françoise; Joseph, Henry; Bourgeois, Paul; Sahpaz, Sevser; Bailleul, François

    2013-11-01

    Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations. PMID:23280633

  11. Antifungal susceptibility and virulence factors of clinically isolated dermatophytes in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afshari

    2016-03-01

    Full Text Available Background and Objectives: Dermatophytes possess a wide array of virulence factors and various antifungal susceptibility patterns which influence their pathogenesis in humans and animals. The aim of this study was to evaluate antifungal suscep- tibility and keratinase and proteinase activity of 49 dermatophyte strains from the genera Microsporum, Trichophyton and Epidermophyton which were isolated from human cases of dermatophytosis.Materials and Methods: Forty-nine dermatophyte strains isolated from clinical samples were cultured on general and spe- cific culture media. Keratinase and proteinase activity was screened on solid mineral media and confirmed in liquid cultures. Drug susceptibility toward azoles (fluconazole, ketoconazole and itraconazole, griseofulvin and terbinafine was evaluated using disk diffusion method on Mueller-Hinton agar and minimum inhibitory concentrations (MICs were determined using microbroth dilution assay according to the Clinical and Laboratory Standards Institute (CLSI guidelines.Results: Our results indicated that clinically isolated dermatophytes from 7 major species produced keratinase and protein- ase at different extents. The mean keratinase and proteinase activity was reported as 6.69 ± 0.31 (U/ml and 2.10 ± 0.22 (U/ ml respectively. Disk diffusion and microbroth dilution (MIC results of antifungal susceptibility testing showed that ke- toconazole was the most effective drug against Epidermophyton floccosum and Trichophyton mentagrophytes, itraconazole against T. rubrum and E. floccosum, and griseofulvin and terbinafine against Trichophyton verrucosum. Our results showed that all dermatophyte isolates were resistant to fluconazole. Overall, ketoconazole and itraconazole were the most effective drugs for all dermatophyte species tested.Conclusion: Our results showed that antifungal susceptibility testing is an urgent need to select drugs of choice for treatment of different types of dermatophytosis and

  12. Penetration of Candida Biofilms by Antifungal Agents

    OpenAIRE

    Al-Fattani, Mohammed A.; Douglas, L. Julia

    2004-01-01

    A filter disk assay was used to investigate the penetration of antifungal agents through biofilms containing single and mixed-species biofilms containing Candida. Fluconazole permeated all single-species Candida biofilms more rapidly than flucytosine. The rates of diffusion of either drug through biofilms of three strains of Candida albicans were similar. However, the rates of drug diffusion through biofilms of C. glabrata or C. krusei were faster than those through biofilms of C. parapsilosi...

  13. Early State Research on Antifungal Natural Products

    OpenAIRE

    Melyssa Negri; Tânia P. Salci; Cristiane S. Shinobu-Mesquita; Isis R. G. Capoci; Terezinha I. E. Svidzinski; Erika Seki Kioshima

    2014-01-01

    Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been cond...

  14. Screening of Embelia ribes for Antifungal Activity

    OpenAIRE

    Maulik Suthar; Rakesh Patel; Kalindi Hapani; Avani Patel

    2009-01-01

    The fruits of Embelia ribes reported to contain mainly benzoquinone derivatives such as Embelin (2, 5-dihydroxy-3-undecyl-2, 5-cyclohexadiene-1, 4-benzoquinone). Chemical structure of Embelin is having quite resemblance with the structure of natural Coenzyme Q10 (ubiquinones) and the role of this is well defined in various biochemical protective mechanism. Aim of the present study was to evaluate the antifungal activity of Embelia ribes (Myrsinaceae) plant extracts using standard in vitro an...

  15. Antifungal Activity of Soil Chitinolytic Bacilli

    Directory of Open Access Journals (Sweden)

    Eiri, AJ. (MSc

    2014-06-01

    Full Text Available Background and Objective: Chitin, which is a linear polymer of N-acetyl glucosamine residues, has been the most abundant polymer in nature after cellulose. In recent decades, Chitinases have received increased attention because of their wide range of applications, especially in biological control against fungi. Material and Methods: the isolation of bacilli producing chitinolytic enzymes was performed by collecting 40 soil samples from various regions of Gorgan, northern of Iran. The chitinolytic potential of the isolates was indicated by observation of clear zone in colloidal chitin agar medium. Identification of selected strains was performed by polyphasic taxonomy, and subtler identification and sequensing were carried out by extraction DNA. Antifungal effect was evaluated by well method against Candida albicans (ATCC 10231 Aspergillus niger (ATCC 2029،Aspergillu sflavus (IR6 Fusarium oxyporum (PTCC 5115 and Alternaria alternata (PTCC 5224. Results: Nine colonies of chitinase positive bacillus were isolated on choloidal Chitin Agar (CCA and five of them had antifungal effect. R6 strain had the highest, and R2 and R3 had the lowest effect on fungi. The 16S rRNA sequence of these isolations in comparison with the known bacteria has 95-97% similarity. Conclusion: Some of the soil bacteria can have antagonestic effects on human and phytopathogenic agents existed in soil. Keywords: Bacillus; Chitinase; Soil; Antifungal

  16. Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc

    Institute of Scientific and Technical Information of China (English)

    Juan; Ascacio-Valdés; Edgardo; Burboa; Antonio; F; Aguilera-Carbo; Mario; Aparicio; Ramón; Pérez-Schmidt; Raúl; Rodríguez; Cristóbal; N; Aguilar

    2013-01-01

    Objective:To study antifungal activity of a new ellagitannin isolated from the plant residues of Euphorbia antisyphilitica(E.antisyphilitica)Zucc in the wax extraction process.Methods:An extract was prepared from dehydrated and pulverized residues and fractionated by liquid chromatography on Amberilte XAD-16,until obtained an ellagitannin-rich ethanolic fraction which was treated by rotaevaporation to recover the ellagitannin as fine powder.An aqueous solution was prepared and treated through ionic exchange liquid chromatography(Q XL)and gel permeation chromatography(G 25).The ellagitannin-rich fraction was thermogravimetrically evaluated(TGA and DTA)to test the thermo-stability of ellagic acid(monomeric unit).Then ellagitannin powder was analyzed by infrared spectrospcopy to determinate the functional groups and.also mass spectroscopy was used to determine the molecular ion.Results:The principal functional groups of ellagitannin were determined,the molecular weight was 860.7 g/mol;and an effective antifungal activity against phytopathogenic fungi was demonstrated.Conclusions:It can be concluded that the new ellagitannin(860.7 g/mol)isolated from E.antisyphilitica Zucc is an effective antifungal agent against Alternaria alternata,Fusarium oxyzporum,Colletotrichum gloeosporoides and Rhizoctnia solani.

  17. [New antifungal agents: voriconazole and caspofungin].

    Science.gov (United States)

    Dupont, B

    2003-12-01

    Among new available antifungal agents voriconazole is a new triazole with an intravenous (i.v.) and oral formulation, and caspofungin is an echinocandin, new family with a new mode of action on the cell wall. It is available as an i.v. preparation. Both drugs have a broad spectrum targeting most of the usual pathogens: Candida and Aspergillus, even with low suceptibility or resistance to other antifungals. Voriconazole is also active on Scedosporium and Fusarium. The efficacy of these molecules was established in vitro and in experimental infections in animals either normal or immunosuppressed. Voriconazole is active in oropharyngeal and esophageal candidiasis, in refractory invasive candidiasis and as a first line treatment of invasive aspergillosis with better results than amphotéricine B. It was also effective in scedosporiosis and in fusariosis. Caspofungin is active in oropharyngeal and esophageal candidiasis, in invasive candidiasis ranking among the best drugs in non neutropenic patients. It was shown effective in refractory aspergillosis. As empirical treatment of febrile neutropenic patients, these molecules should probably be restricted to the highest risk-population. Safety is good, side effects are a rare cause of discontinuation of treatment, class specific drug-drug interactions occur with voriconazole. These molecules open an important field of investigations with combination of antifungal agents. PMID:15022787

  18. Antifungal serum concentration monitoring: an update.

    Science.gov (United States)

    Goodwin, Megan L; Drew, Richard H

    2008-01-01

    Invasive fungal infections (IFIs) are occurring with increasing incidence and are associated with significant morbidity and mortality. Understanding the relationship between the pharmacokinetic and pharmacodynamic properties of antifungals is essential to optimize the potential for favourable clinical and microbiological outcomes while minimizing risks of treatment-related toxicity. Antifungal serum concentrations may aid in the determination of appropriate dosing in select circumstances. The polyene and echinocandin classes of antifungals lack sufficient data to justify serum concentration monitoring in routine clinical practice. In contrast, serum concentration monitoring of flucytosine may help to reduce the risk of treatment-related haematological toxicity. Determination of itraconazole serum concentrations is advised in situations where the drug is used for prolonged periods to treat serious IFIs (such as invasive aspergillosis or histoplasmosis) because of variability in absorption following oral administration (most notable for the capsule formulation). The use of serum concentration monitoring during therapy with the extended-spectrum triazoles (i.e. voriconazole and posaconazole) is still evolving, due primarily to inter-patient variability in drug exposure combined with sparse data regarding relationships with efficacy (posaconazole) and both safety and efficacy (voriconazole). PMID:17999982

  19. New antifungal agents for the systemic mycoses.

    Science.gov (United States)

    Ringel, S M

    1990-02-01

    The azoles are the prominent broad spectrum oral antifungal agents in use or under clinical investigation for the systemic mycoses. This class of antifungal agents is represented by the marketed drug ketoconazole (Nizoral) and the experimental triazoles furthest along in clinical trials in the United States, itraconazole and fluconazole. Ketoconazole use is limited by its side effect profile and activity spectrum. Itraconazole appears to be better tolerated and less toxic to liver function, does not cause adrenal suppression and is more active against Aspergillus and Sporothrix schenckii. Fluconazole appears to be a highly promising agent due its highly favorable pharmacokinetic profile; it is water soluble, is well tolerated, is not metabolized to inactive constituents, it has a long half-life and, unlike the other azoles, high cerebrospinal fluid levels are readily attained for consideration in meningeal mycoses. It remains to be determined what place these new triazoles have in managing immunosuppressed patients including those with acquired immune deficiency syndrome known as AIDS. Other experimental antifungal agents, including ambruticin, amphotericin B methyl ester and saramycetin are also described. Sales figures are presented of drugs marketed in the United States for the systemic mycoses and reflect the growing problem of fungal diseases in the population. PMID:2157984

  20. Econazole imprinted textiles with antifungal activity.

    Science.gov (United States)

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3μg/cm(2)) was reproducible and stable up to 4months storage at 25°C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8°C, which enabled a larger drug release at 32°C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. PMID:26883854

  1. Screening of Embelia ribes for Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Maulik Suthar

    2009-10-01

    Full Text Available The fruits of Embelia ribes reported to contain mainly benzoquinone derivatives such as Embelin (2, 5-dihydroxy-3-undecyl-2, 5-cyclohexadiene-1, 4-benzoquinone. Chemical structure of Embelin is having quite resemblance with the structure of natural Coenzyme Q10 (ubiquinones and the role of this is well defined in various biochemical protective mechanism. Aim of the present study was to evaluate the antifungal activity of Embelia ribes (Myrsinaceae plant extracts using standard in vitro antifungal susceptibility test methods like NCCLS M27- A2 protocol (The National Committee for Clinical Laboratory Standards , USA and EUCAST (European Committee for Antifungal Susceptibility Tests. Values of the MIC50 obtained by NCCLS method revealed that Methanol extract and Embelin exhibited lowest MIC50 values against C. albican (183 which was 120 mg/L. Embelin's MIC50 values were below 700 mg/L for C. albican, C. tropicalis, C. parapsilosis, C. albidus and A. flavus. Diethyl ether extract, petroleum ether extract, methanol extract and embelin obtained MIC50 in range of 300-700 mg/L against C. albican and C. parapsilosis. Petroleum ether extract showed lowest MIC50 values for C. parapsilosis (250 mg/L; C. laurintis (360 mg/L; I.orientalis (180 mg/L and A. fumigatus(170 mg/L.

  2. Antifungal activity of Terminalia superba (combretaceae

    Directory of Open Access Journals (Sweden)

    SIAKA Sohro

    2015-04-01

    Full Text Available The aim of the present study was to optimize the anticandidosic activities of Terminalia superba (TEKAM4 and the identification of major compounds present in the most active chromatographic fraction. The hydroethanolic extract TEKAM4-X0 was prepared by homogenization employing a blender. Two derivatives extracts of TEKAM4-X0 (X1-1 and X1-2 were obtained by a liquid/liquid partition of TEKAM4-X0 in a mixture of hexane and water (v/v. Three chromatographic fractions (F1, F2 and F3 from X1-2 were separated by means of Sephadex-LH20 gel filtration chromatography. All the extracts were incorporated to Sabouraud according to the agar slanted double dilution method. Ketoconazole was used as standards for antifungal assay. The entire fractions were tested on the previously prepared medium culture containing 1000 cells of C. albicans. Antifungal activity was determined by evaluating antifungal parameters values (MFC and IC50. Lastly, the structures of 2 isolated compounds were elucidated by combination of Flash chromatography and spectroscopic methods, including MS, and multiple stage RMN experiments.

  3. Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc

    Institute of Scientific and Technical Information of China (English)

    Juan Ascacio-Valds; Edgardo Burboa; Antonio F Aguilera-Carbo; Mario Aparicio; Ramn Prez-Schmidt; Ral Rodrguez; Cristbal N Aguilar

    2013-01-01

    Objective: To study antifungal activity of a new ellagitannin isolated from the plant residues of Euphorbia antisyphilitica (E. antisyphilitica) Zucc in the wax extraction process. Methods:An extract was prepared from dehydrated and pulverized residues and fractionated by liquid chromatography on Amberilte XAD-16, until obtained an ellagitannin-rich ethanolic fraction which was treated by rotaevaporation to recover the ellagitannin as fine powder. An aqueous solution was prepared and treated through ionic exchange liquid chromatography (Q XL) and gel permeation chromatography (G 25). The ellagitannin-rich fraction was thermogravimetrically evaluated (TGA and DTA) to test the thermo-stability of ellagic acid (monomeric unit). Then ellagitannin powder was analyzed by infrared spectrospcopy to determinate the functional groups and, also mass spectroscopy was used to determine the molecular ion. Results: The principal functional groups of ellagitannin were determined, the molecular weight was 860.7 g/mol; and an effective antifungal activity against phytopathogenic fungi was demonstrated. Conclusions: It can be concluded that the new ellagitannin (860.7 g/mol) isolated from E. antisyphilitica Zucc is an effective antifungal agent against Alternaria alternata, Fusarium oxyzporum, Colletotrichum gloeosporoides and Rhizoctnia solani.

  4. Antifungals of acromyrmex, allomerus, and tetraponera ant- and cultivarassociated bacteria

    OpenAIRE

    Barke, Joerg

    2013-01-01

    The central purpose of this thesis is to test the utility of ant-microbe associations for discovering antifungal compounds with novel molecular (sub-) structures. Novel antifungals displaying reduced adverse side-effects, increased water-solubilities, and/or strong fungicidal properties would be helpful in medical science for responding to the rising prevalence of human mycoses and for solving problems with adverse side-effects in currently used antifungal drugs. Host-symbiont systems m...

  5. Design, synthesis and antifungal activity of novel triazole derivatives

    Institute of Scientific and Technical Information of China (English)

    Qing lie Zhao; Yan Song; Hong Gang Hu; Shi Chong Yu; Qiu Ye Wu

    2007-01-01

    Twenty-three 1 -(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-(N-cycloproyl-N-substituted-amino)-2-propanols were designed and synthesized on the basis of the active site of lanosterol 14α-demethylase.In vitro antifungal activities showed that some of the title compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

  6. Factors predicting prolonged empirical antifungal treatment in critically ill patients

    OpenAIRE

    Zein, Mohamed; Parmentier-Decrucq, Erika; Kalaoun, Amer; Bouton, Olivier; Wallyn, Frédéric; Baranzelli, Anne; Elmanser, Dia; Sendid, Boualem; Nseir, Saad

    2014-01-01

    Objective To determine the incidence, risk factors, and impact on outcome of prolonged empirical antifungal treatment in ICU patients. Methods Retrospective observational study performed during a one-year period. Patients who stayed in the ICU >48 h, and received empirical antifungal treatment were included. Patients with confirmed invasive fungal disease were excluded. Prolonged antifungal treatment was defined as percentage of days in the ICU with antifungals > median percentage in the whol...

  7. ANTIFUNGAL ACTIVITY OF SOME COLEUS SPECIES GROWING IN NILGIRIS

    OpenAIRE

    P Nilani; Duraisamy, B.; Dhanabal, P.S.; khan, Saleemullah; Suresh, B.; Shankar, V; Kavitha, K.Y.; Syamala, G.

    2006-01-01

    The in vitro antifungal activity of solvent extracts of Coleus forskohlii, Coleus blumei and Coleus barbatus were compared by testing against some pathogenic fungi like Aspergillus niger, Aspergillus fumigatus, Aspergillus ruantii, Proteus vulgaris and Candida albicans. The petroleum ether extract of Coleus forskohlii and Coleus barbatus exhibited significant antifungal activity against all the selected organisms. The extracts of Coleus blumei did not show any significant antifungal activity ...

  8. Emerging Threats in Antifungal-Resistant Fungal Pathogens

    OpenAIRE

    Sanglard, Dominique

    2016-01-01

    The use of antifungal drugs in the therapy of fungal diseases can lead to the development of antifungal resistance. Resistance has been described for virtually all antifungal agents in diverse pathogens, including Candida and Aspergillus species. The majority of resistance mechanisms have also been elucidated at the molecular level in these pathogens. Drug resistance genes and genome mutations have been identified. Therapeutic choices are limited for the control of fungal diseases, and it is ...

  9. In vitro Antifungal Activity of Cucumis melo on Candida albicans

    OpenAIRE

    Issa Gholampour-Azizi; Samaneh Rouhi; Fahimeh Yahyayi

    2015-01-01

    Background: With respect to the emergence of susceptibility of some fungi to antifungal agents, making use of medicinal plants is progressing. Objectives: The aim of this study was to verify the anti-fungal characteristics of mature and immature Cucumis melo fruit on Candida albicans. Materials and Methods: In this descriptive study, antifungal activity of aqueous, ethnolic and methanolic extracts of C. melo fruits were tested on C. albicans; also results were obtained by disc and well ...

  10. Antifungal Susceptibility Testing of Ascomycetous Yeasts Isolated from Animals.

    Science.gov (United States)

    Álvarez-Pérez, Sergio; García, Marta E; Peláez, Teresa; Martínez-Nevado, Eva; Blanco, José L

    2016-08-01

    Recent studies suggest that antifungal resistance in yeast isolates of veterinary origin may be an underdiagnosed threat. We tested a collection of 92 ascomycetous yeast isolates that were obtained in Spain from birds, mammals and insects for antifungal susceptibility. MICs to amphotericin B and azoles were low, and no resistant isolates were detected. Despite these results, and given the potential role of animals as reservoirs of resistant strains, continuous monitoring of antifungal susceptibility in the veterinary setting is recommended. PMID:27216048

  11. Preformed antifungal compounds in strawberry fruit and flower tissues

    OpenAIRE

    Terry, Leon A.; Joyce, Daryl C.; Adikaram, Nimal K. B.; Khambay, Bhupinder P. S.

    2004-01-01

    Antifungal activity against the pathogen, Botrytis cinerea, and a bioassay organism, Cladosporium cladosporioides, declined with advancing strawberry fruit maturity as shown by thin layer chromatography (TLC) bioassays. Preformed antifungal activity was also present in flower tissue. The fall in fruit antifungal compounds was correlated with a decline in natural disease resistance (NDR) against B. cinerea in-planta. Crude extracts of green stage I fruit (7 days after anthesi...

  12. Potato Dextrose Agar Antifungal Susceptibility Testing for Yeasts and Molds: Evaluation of Phosphate Effect on Antifungal Activity of CMT-3

    OpenAIRE

    Liu, Yu; Tortora, George; Ryan, Maria E.; Lee, Hsi-Ming; Lorne M. Golub

    2002-01-01

    The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextros...

  13. Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance

    OpenAIRE

    Alcazar-Fuoli, Laura; Mellado, Emilia

    2013-01-01

    Ergosterol, the major sterol of fungal membranes, is essential for developmental growth and the main target of antifungals that are currently used to treat fatal fungal infections. Emergence of resistance to existing antifungals is a current problem and several secondary resistance mechanisms have been described in Aspergillus fumigatus clinical isolates. A full understanding of ergosterol biosynthetic control therefore appears to be essential for improvement of antifungal efficacy and to pre...

  14. Antifungal Effect of Streptomyces 702 Antifungal Monomer Component DZP8 on Rhizoctonia solani and Magnaporthe grisea

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The aim of this study was to investigate the in vitro antifungal effects of antifungal monomer component DZP8 isolated from Streptomyces 702 on the mycelium growth, sclerotium formation and germination of Rhizoctonia solani and on the mycelium growth, conidial formation, germination, appressorium formation of Magnaporthe grisea. The results showed that the antifungal monomer component DZP8 has strong antifungal effect on both the R. solani and M. grisea. The EC50 and EC90 of DZP8 were 1.81 and 3.35 μg/ml on Ft. solani respectively, and 37.01 and 136.21 μg/ml on M. grisea respectively. Under the treatment of 48.01 μg/ml DZP8, the sclerotium formation rate of R. solani was just 39.21%, the formation time delayed by 216 h and the dry weight decreased by 81.37% in comparison the con- trol; and 33.51 μg/ml DZP8 significantly inhibited the sclerotium germination. In the presence of 160.08 μg/ml DZP8, the sporulation of M. grisea was just 9.29% of control sample; 20.14 μg/ml DZP8 inhibited the conidial germination suppression rate by 95.16%, and the appressorium formation by 100%.

  15. Antifungal activity of traditional medicinal plants from Tamil Nadu, India

    Institute of Scientific and Technical Information of China (English)

    Duraipandiyan V; Ignacimuthu S

    2011-01-01

    Objective:To assess the antifungal activity of hexane, ethyl acetate and methanol extracts of 45 medicinal plants and to determine the minimum inhibitory concentration for each extract against human pathogenic fungi. Methods:A total of 45 medicinal plants were collected from different places of Tamil Nadu and identified. Hexane, ethyl acetate and methanol extracts of 45 medicinal plants were assessed for antifungal susceptibility using broth microdilution method. Two known antifungal agents were used as positive controls. Results: Most of the extracts inhibited more than four fungal strains. From the evaluation we found that ethyl acetate extracts inhibited large number of fungal growth. Hexane extracts also nearly showed the same level of inhibition against fungal growth. Methanol extracts showed the minimum antifungal activity. Among the 45 plants tested, broad spectrum antifungal activity was detected in Albizzia procera (A. procera), Atalantia monophylla, Asclepias curassavica, Azima tetracantha, Cassia fistula (C. fistula), Cinnomomum verum, Costus speciosus (C. speciosus), Nymphaea stellata, Osbeckia chinensis, Piper argyrophyllum, Punica granatum, Tinospora cordifolia and Toddalia asiatica (T. asiatica). Promising antifungal activity was seen in A. procera, C. speciosus, C. fistula and T. asiatica. Conclusions:It can be concluded that the plant species assayed possess antifungal properties. Further phytochemical research is needed to identify the active principles responsible for the antifungal effects of some of these medicinal plants.

  16. Antifungal activity of Piper diospyrifolium Kunth (Piperaceae) essential oil

    OpenAIRE

    Vieira, Silvia Cristina Heredia; de Paulo, Luis Fernando; Svidzinski, Terezinha Inez Estivaleti; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; Souza, Amanda de; Young, Maria Cláudia Marx; Cortez, Diógenes Aparício Garcia

    2011-01-01

    In vitro activity of the essential oil from Piper diospyrifolium leaves was tested using disk diffusion techniques. The antifungal assay showed significant potencial antifungal activity: the oil was effective against several clinical fungal strains. The majority compounds in the essential oil were identified as sesquiterpenoids by GC-MS and GC-FID techniques.

  17. Rapid determination of antifungal activity by flow cytometry.

    OpenAIRE

    Green, L.; Petersen, B.; Steimel, L; Haeber, P; Current, W

    1994-01-01

    We have developed a rapid assay of antifungal activity which utilizes flow cytometry to detect accumulation of a vital dye in drug-damaged fungal cells. Results of these studies suggest that flow cytometry may provide an improved, rapid method for determining and comparing the antifungal activities of compounds with differing modes of action.

  18. Antifungal and antiviral products of marine organisms.

    Science.gov (United States)

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  19. Chemical modification of antifungal polyene macrolide antibiotics

    International Nuclear Information System (INIS)

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  20. Synthesis of Novel Antifungal Triazole Compounds

    Institute of Scientific and Technical Information of China (English)

    Yong CHU; Ming Xia XU; Ding LU

    2004-01-01

    Based on our previous studies of 3D-QSAR, 38 novel objective compounds belonging to 4 series were designed and successfully synthesized directed by the idea of reconstructing the structure of non-pharmacophores while reserving essential ones in triazoles. In vitro pilot studies on their antifungal activities showed that most compounds have inhibitory effects on C.albicans and some inhibit S.cerevisiae also. The effects on C.albicans of 5 compounds are more potent than or equal to that of fluconazole or itraconazole.

  1. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents.

    Science.gov (United States)

    Chandrika, Nishad Thamban; Shrestha, Sanjib K; Ngo, Huy X; Garneau-Tsodikova, Sylvie

    2016-08-15

    The rise and emergence of resistance to antifungal drugs by diverse pathogenic fungal strains have resulted in an increase in demand for new antifungal agents. Various heterocyclic scaffolds with different mechanisms of action against fungi have been investigated in the past. Herein, we report the synthesis and antifungal activities of 18 alkylated mono-, bis-, and trisbenzimidazole derivatives, their toxicities against mammalian cells, as well as their ability to induce reactive oxygen species (ROS) in yeast cells. Many of our bisbenzimidazole compounds exhibited moderate to excellent antifungal activities against all tested fungal strains, with MIC values ranging from 15.6 to 0.975μg/mL. The fungal activity profiles of our bisbenzimidazoles were found to be dependent on alkyl chain length. Our most potent compounds were found to display equal or superior antifungal activity when compared to the currently used agents amphotericin B, fluconazole, itraconazole, posaconazole, and voriconazole against many of the strains tested. PMID:27301676

  2. Advances in synthetic approach to and antifungal activity of triazoles

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Sharma

    2011-05-01

    Full Text Available Several five membered ring systems, e.g., triazole, oxadiazole dithiazole and thiadiazole with three heteroatoms at symmetrical or asymmetrical positions have been studied because of their interesting pharmacological properties. In this article our emphasis is on synthetic development and pharmacological activity of the triazole moiety which exhibit a broad spectrum of pharmacological activity such as antifungal, antibacterial, anti-inflammatory and anticancer etc. Triazoles have increased our ability to treat many fungal infections, for example, candidiasis, cryptococcal meningitis, aspergillosis etc. However, mortality due to these infections even with antifungal therapy is still unacceptably high. Therefore, the development of new antifungal agents targeting specific fungal structures or functions is being actively pursued. Rapid developments in molecular mycology have led to a concentrated search for more target antifungals. Although we are entering a new era of antifungal therapy in which we will continue to be challenged by systemic fungal diseases, the options for treatment will have greatly expanded.

  3. Isolation of antifungally active lactobacilli from edam cheese

    DEFF Research Database (Denmark)

    Tuma, S.; Vogensen, Finn Kvist; Plocková, M.;

    2007-01-01

    The antifungal activity of 322 lactobacilli strains isolated from Edam cheese at different stages of the ripening process was tested against Fusarium proliferatum M 5689 using a dual overlay spot assay. Approximately 21% of the isolates showed a certain level of inhibitory activity. Seven strains...... with the strongest antifungal activity were examined by the milk agar plate method with three different mould strains isolated from spoiled dairy products as target microorganisms and were compared with the antifungal effectiveness of standard antifungal strains Lactobacillus rhamnosus VT1 and Lb...... Lb. fermentum ST 41, was comparable to or slightly higher than that of standard strains. By use of both ST 41, was comparable to or slightly higher than that of standard strains. By use of both phenotypic and genotypic methods (REP-PCR, 16S rDNA), four out of seven antifungally active isolates were...

  4. Novel antifungal peptides from Ceylon spinach seeds.

    Science.gov (United States)

    Wang, H; Ng, T B

    2001-11-01

    Two novel antifungal peptides, designated alpha- and beta-basrubrins, respectively, were isolated from seeds of the Ceylon spinach Basella rubra. The purification procedure involved saline extraction, (NH(4))(2)SO(4) precipitation, ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose and FPLC-gel filtration on Superdex peptide column. alpha- and beta-basrubrins exhibited a molecular weight of 4.3 and 5 kDa, respectively. They inhibited translation in a rabbit reticulocyte system with an IC(50) value of 400 and 100 nM, respectively. alpha- and beta-basrubrin inhibited HIV-1 reverse transcriptase by (79.4 +/- 7.8)% and (54.6 +/- 3.6)%, respectively, at a concentration of 400 microM, and (10.56 +/- 0.92)% and (2.12 +/- 0.81)%, respectively, at a concentration of 40 microM. Both alpha- and beta-basrubrins exerted potent antifungal activity toward Botrytis cinerea, Mycosphaerella arachidicola, and Fusarium oxysporum. PMID:11688973

  5. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    RajiniRao

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  6. Characterization and regulation of expression of an antifungal peptide from hemolymph of an insect, Manduca sexta.

    Science.gov (United States)

    Al Souhail, Qasim; Hiromasa, Yasuaki; Rahnamaeian, Mohammad; Giraldo, Martha C; Takahashi, Daisuke; Valent, Barbara; Vilcinskas, Andreas; Kanost, Michael R

    2016-08-01

    Insects secrete antimicrobial peptides as part of the innate immune response. Most antimicrobial peptides from insects have antibacterial but not antifungal activity. We have characterized an antifungal peptide, diapausin-1 from hemolymph of a lepidopteran insect, Manduca sexta (tobacco hornworm). Diapausin-1 was isolated by size exclusion chromatography from hemolymph plasma of larvae that were previously injected with a yeast, Saccharomyces cerevisiae. Fractions containing activity against S. cerevisiae were analyzed by SDS-PAGE and MALDI-TOF MS/MS and found to contain a 45-residue peptide that was encoded by sequences identified in M. sexta transcriptome and genome databases. A cDNA for diapausin-1 was cloned from cDNA prepared from fat body RNA. Diapausin-1 is a member of the diapausin family of peptides, which includes members known to have antifungal activity. The M. sexta genome contains 14 genes with high similarity to diapausin-1, each with 6 conserved Cys residues. Diapausin-1 was produced as a recombinant protein in Escherichia coli. Purified recombinant diapausin-1 was active against S. cerevisiae, with IC50 of 12 μM, but had no detectable activity against bacteria. Spores of some plant fungal pathogens treated with diapausin-1 had curled germination tubes or reduced and branched hyphal growth. Diapausin-1 mRNA level in fat body strongly increased after larvae were injected with yeast or with Micrococcus luteus. In addition, diapausin-1 mRNA levels increased in midgut and fat body at the wandering larval stage prior to pupation, suggesting developmental regulation of the gene. Our results indicate that synthesis of diapausin-1 is part of an antifungal innate immune response to infection in M. sexta. PMID:26976231

  7. Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    Full Text Available BACKGROUND: Development of resistant variants to existing antifungal drugs continues to be the serious problem in Candida albicans-induced fungal pathogenesis, which has a considerable impact on animal and human health. Identification and characterization of newer drugs against C. albicans is, therefore, essential. MMGP1 is a direct cell-penetrating peptide recently identified from marine metagenome, which was found to possess potent antifungal activity against C. albicans. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of antifungal action of MMGP1 against C. albicans. Agarose gel shift assay found the peptide to be having a remarkable DNA-binding ability. The modification of the absorption spectra and fluorescence quenching of the tryptophyl residue correspond to the stacking between indole ring and nucleotide bases. The formation of peptide-DNA complexes was confirmed by fluorescence quenching of SYTO 9 probe. The interaction of peptide with plasmid DNA afforded protection of DNA from enzymatic degradation by DNase I. In vitro transcription of mouse β-actin gene in the presence of peptide led to a decrease in the level of mRNA synthesis. The C. albicans treated with MMGP1 showed strong inhibition of biosynthetic incorporation of uridine analog 5-ethynyluridine (EU into nascent RNA, suggesting the peptide's role in the inhibition of macromolecular synthesis. Furthermore, the peptide also induces endogenous accumulation of reactive oxygen species (ROS in C. albicans. MMGP1 supplemented with glutathione showed an increased viability of C. albicans cells. The hyper-produced ROS by MMGP1 leads to increased levels of protein carbonyls and thiobarbituric acid reactive substances and it also causes dissipation of mitochondrial membrane potential and DNA fragmentation in C. albicans cells. CONCLUSION: And Significance: Therefore, the antifungal activity of MMGP1 could be attributed to its binding with DNA, causing

  8. Antifungal activity of multifunctional Fe3O4-Ag nanocolloids

    International Nuclear Information System (INIS)

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe3O4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe3O4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: →Synthesis of Fe3O4-Ag core-shell nanocolloids. →Antifungal activity of Fe3O4-Ag nanocolloids against Aspergillus glaucus isolates. →The MIC value for A. glaucus is 2000 μg/mL. →Antifungal activity is better or comparable with most prominent antibiotics.

  9. Caspofungin as secondary antifungal prophylaxis and subsequent maintenance antifungal prophylaxis therapy in hematological malignancy patients

    OpenAIRE

    Liu, Mingjuan; Li, Yan; Zhao, Xiaoli; Zhang, Yongqing; Zhai, Bing; Zhang, Qingyi; Wang, Lijun; Zhao, Yu; Li, Honghua; Wang, Quanshun; Gao, Chunji; Huang, Wenrong; Yu, Li

    2015-01-01

    Aim: This study aimed to investigate the efficacy and safety of caspofungin as secondary antifungal prophylaxis (SAP) and subsequent maintenance therapy for SAP in hematological malignancy patients. Methods: Forty four patients receiving caspofungin for SAP and 43 patients not receiving any SAP agents during their subsequent chemotherapy or HSCT were reviewed retrospectively. The clinical characteristics and diagnosis were analyzed according to the diagnostic criteria for IFD. Results: The re...

  10. Antifungal activities of Terminalia ivorensis A. Chev. bark extracts against Candida albicans and Aspergillus fumigatus.

    OpenAIRE

    Ouattara Sitapha; KPOROU KOUASSI ELISEE; Djaman Allico Joseph

    2013-01-01

    Abstract The present study was undertaken to evaluate in vitro antifungal activity of aqueous and hydroacoholic extracts from bark of Terminalia ivorensis A. Chev. (Combretaceae). In vitro antifungal activity of all the extracts was done by agar slant double dilution method. Candida albicans and Aspergillus fumigatus clinically important strains were used for the study. ketoconazole was used as standards for antifungal assay. Antifungal activity was determinated by evaluating of antifung...

  11. Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    Science.gov (United States)

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. PMID:26586600

  12. Voriconazole: a new triazole antifungal agent.

    Science.gov (United States)

    Johnson, Leonard B; Kauffman, Carol A

    2003-03-01

    Voriconazole is a second-generation azole antifungal agent that shows excellent in vitro activity against a wide variety of yeasts and molds. It can be given by either the intravenous or the oral route; the oral formulation has excellent bioavailability. The side effect profile of voriconazole is unique in that non-sight-threatening, transient visual disturbances occur in approximately 30% of patients given the drug. Rash (which can manifest as photosensitivity) and hepatitis also occur. The potential for drug-drug interactions is high and requires that careful attention be given to dosage regimens and monitoring of serum levels and effects of interacting drugs. Voriconazole has been approved for the treatment of invasive aspergillosis and refractory infections with Pseudallescheria/Scedosporium and Fusarium species, and it will likely become the drug of choice for treatment of serious infections with those filamentous fungi. PMID:12594645

  13. Antifungal steroid saponins from Dioscorea cayenensis.

    Science.gov (United States)

    Sautour, M; Mitaine-Offer, A-C; Miyamoto, T; Dongmo, A; Lacaille-Dubois, M-A

    2004-01-01

    From the rhizomes of Dioscorea cayenensis Lam.-Holl (Dioscoreaceae), the new 26- O- beta- D-glucopyranosyl-22-methoxy-3 beta,26-dihydroxy-25( R)-furost-5-en-3- O- alpha- L-rhamnopyranosyl-(1-->4)- alpha- L-rhamnopyranosyl-(1-->4)-[ alpha- L-rhamnopyranosyl-(1-->2)]- beta- D-glucopyranoside ( 1) was isolated together with the known dioscin ( 2) and diosgenin 3- O- alpha- L-rhamnopyranosyl-(1-->4)- alpha- L-rhamnopyranosyl-(1-->4)-[ alpha- L-rhamnopyranosyl-(1-->2)]- beta- D-glucopyranoside ( 3). Their structures were established on the basis of spectral data. Compound 2 exhibited antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata and C. tropicalis (MICs of 12.5, 12.5 and 25 micro g/mL, respectively) whereas 3 showed weak activity and 1 was inactive. PMID:14765305

  14. Naturally occurring antifungal aromatic esters and amides

    International Nuclear Information System (INIS)

    During the search of antifungal natural products from terrestrial plants, a new long chained aromatic ester named grandiflorate along with spatazoate from Portulaca grandiflora and N-[2-methoxy-2-(4-methoxyphenyl) ethyl]-trans-cinnamide and aegeline from Solanum erianthum of Nigeria were isolated and tested against six fungal species. The known constituents have not been reported so far from mentioned investigated plants. Structures of the isolated compounds were elucidated with the aid of spectroscopic techniques including two dimensional NMR experiments. Among the compounds, the esters found more potent than amides against Candida albicans and Aspergillus flavus. The new compound grandiflorate gave response against all tested fungal species while aegeline was found to give lowest inhibition during this study. (author)

  15. Anti-fungal activity of irradiated chitosan

    International Nuclear Information System (INIS)

    Anti-fungal activity of chitosan induced by irradiation has been investigated. Commercial chitosan samples of 8B (80% deacetylation) and l0B (99% deacetylation) were irradiated by γ-ray in dry condition. Highly deacethylated chitosan (10B) at low dose irradiation (75 kGy) was effective for inhibition of fungal growth. The sensitivities of Exobasidium vexans, Septoria chrysanthemum and Gibberella fujikuroi for the irradiated chitosan were different and the necessary concentrations of chitosan were 550, 350 and 250 μg/ml, respectively. For the plant growth, low deacethylation (chitosan 8B) and high dose (500 kGy) was effective and the growth of chrysanthemum was promoted by spraying the irradiated chitosan. (author)

  16. Probiotics as Antifungals in Mucosal Candidiasis.

    Science.gov (United States)

    Matsubara, Victor H; Bandara, H M H N; Mayer, Marcia P A; Samaranayake, Lakshman P

    2016-05-01

    Candidais an opportunistic pathogen that causes mucosal and deep systemic candidiasis. The emergence of drug resistance and the side effects of currently available antifungals have restricted their use as long-term prophylactic agents for candidal infections. Given this scenario, probiotics have been suggested as a useful alternative for the management of candidiasis. We analyzed the available data on the efficacy of probiotics in candidal colonization of host surfaces. A number of well-controlled studies indicate that probiotics, particularly lactobacilli, suppressCandidagrowth and biofilm development in vitro.A few clinical trials have also shown the beneficial effects of probiotics in reducing oral, vaginal, and enteric colonization byCandida; alleviation of clinical signs and symptoms; and, in some cases, reducing the incidence of invasive fungal infection in critically ill patients. Probiotics may serve in the future as a worthy ally in the battle against chronic mucosal candidal infections. PMID:26826375

  17. Research to Identify Effective Antifungal Agents, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl

    1993-10-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990, 1991, and 1992). The objectives of the present study were to select and evaluate candidate fungicides.

  18. Research to Identify Effective Antifungal Agents, 1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl

    1991-09-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990). The objectives of the present study was to evaluate up to 10 candidate fungicides.

  19. Inhibition of Rat and Human Steroidogenesis by Triazole Antifungals

    Science.gov (United States)

    Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles (myclobutanil, propiconazole and triadimefon) that are known to modulate expression of cytochrome P450 (CYP) genes and e...

  20. Antifungal activity of fruit pulp extract from Bromelia pinguin.

    Science.gov (United States)

    Camacho-Hernández, I L; Chávez-Velázquez, J A; Uribe-Beltrán, M J; Ríos-Morgan, A; Delgado-Vargas, F

    2002-08-01

    The methanol extract of the fruit pulp of Bromelia pinguin was evaluated for its antifungal activity. The extract showed a significant activity against some Trichophyton strains, although Candida strains were generally insensitive. PMID:12165338

  1. Antifungal Effect of (+-Pinoresinol Isolated from Sambucus williamsii

    Directory of Open Access Journals (Sweden)

    Bomi Hwang

    2010-05-01

    Full Text Available In this study, we investigated the antifungal activity and mechanism of action of (+-pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+-pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH indicated that the (+-pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV experiments. Therefore, the present study indicates that (+-pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.

  2. Sordarin, an antifungal agent with a unique mode of action

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available The sordarin family of compounds, characterized by a unique tetracyclic diterpene core including a norbornene system, inhibits protein synthesis in fungi by stabilizing the ribosome/EF2 complex. This mode of action is in contrast to typical antifungals, which target the cell membrane. This unusual bioactivity makes sordarin a promising candidate for the development of new fungicidal agents, and provided the motivation for extensive research. Three total syntheses (by the Kato, Mander and Narasaka groups, modifications of the glycosyl unit, and changes to the diterpene core (Cuevas and Ciufolini models will also be discussed in this review.

  3. 致病性曲霉的耐药性研究进展%The progress in antifungal resistance of pathogenic Aspergillus spp.

    Institute of Scientific and Technical Information of China (English)

    王千; 李若瑜; 刘伟

    2015-01-01

    With the wide use of antifungals in the clinic ,there have been increasing reports of resistant strains of Aspergillus spp .to antifungals .The resistance of Aspergillus spp .has important impact on the diagnosis and treatment of invasive aspergillosis .Currently ,the determination of antifungal resistance of pathogenic Aspergillus spp .relies on antifungal susceptibility testing and molecular detection .Recently ,the resistance of Aspergillus spp .to antifungals is mainly focused on azole antifungals .The research progress on antifungal resistance of pathogenic Aspergillus spp ., including the diagnosis for resistance and the molecular mechanisms ,such as over‐expression of efflux pumps ,mutations in the target enzyme (Cyp51) ,formation of biofilm and heat shock protein 90 (Hsp90)‐mediated signaling pathways are reviewed .%随着抗真菌药物在临床上的广泛使用,致病性真菌的耐药率越来越高,耐药曲霉对侵袭性曲霉病的诊治产生了重要影响。目前,致病性曲霉耐药性的确定主要依靠抗真菌药敏试验和分子诊断。在有关曲霉耐药机制的研究中,报道最多的是曲霉对唑类药物的耐药,其机制主要包括外排泵表达增加、靶酶Cyp51突变和表达水平增高、形成生物膜,以及热休克蛋白90(Hsp90)介导的信号通路参与而导致的耐药。本文就上述领域近年来的主要进展进行综述。

  4. Changes in the Proteome of Candida albicans in Response to Azole, Polyene, and Echinocandin Antifungal Agents ▿

    OpenAIRE

    Hoehamer, Christopher F.; Cummings, Edwin D.; Hilliard, George M.; Rogers, P. David

    2010-01-01

    The yeast Candida albicans is an opportunistic human fungal pathogen and the cause of superficial and systemic infections in immunocompromised patients. The classes of antifungal agents most commonly used to treat Candida infections are the azoles, polyenes, and echinocandins. In the present study, we identified changes in C. albicans protein abundance using two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectroscopy foll...

  5. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity

    OpenAIRE

    Drummond, Rebecca A.; Lionakis, Michail S.

    2016-01-01

    Human CARD9 deficiency is an autosomal recessive primary immunodeficiency disorder caused by biallelic mutations in the gene CARD9, which encodes a signaling protein that is found downstream of many C-type lectin receptors (CLRs). CLRs encompass a large family of innate recognition receptors, expressed predominantly by myeloid and epithelial cells, which bind fungal carbohydrates and initiate antifungal immune responses. Accordingly, human CARD9 deficiency is associated with the spontaneous d...

  6. Mechanistic Insights into the Role of C-Type Lectin Receptor/CARD9 Signaling in Human Antifungal Immunity

    OpenAIRE

    Drummond, Rebecca A.; Lionakis, Michail S.

    2016-01-01

    Human CARD9 deficiency is an autosomal recessive primary immunodeficiency disorder caused by biallelic mutations in the gene CARD9, which encodes a signaling protein that is found downstream of many C-type lectin receptors (CLRs). CLRs encompass a large family of innate recognition receptors, expressed predominantly by myeloid and epithelial cells, which bind fungal carbohydrates and initiate antifungal immune responses. Accordingly, human CARD9 deficiency is associated with the spontaneous d...

  7. Antifungal drug discovery through the study of invertebrate model hosts

    OpenAIRE

    Pukkila-Worley, R.; Holson, E.; Wagner, F.; Mylonakis, E.

    2009-01-01

    There is an urgent need for new antifungal agents that are both effective and non-toxic in the therapy of systemic mycoses. The model nematode Caenorhabditis elegans has been used both to elucidate evolutionarily conserved components of host-pathogen interactions and to screen large chemical libraries for novel antimicrobial compounds. Here we review the use of C. elegans models in drug discovery and discuss caffeic acid phenethyl ester, a novel antifungal agent identified using an in vivo sc...

  8. Screening of Iranian plants for antifungal activity: Part 1

    Directory of Open Access Journals (Sweden)

    Amin Gh.R

    2002-07-01

    Full Text Available In this study, 250 species from 37 families of native Iranian plants were screened for in vitro antifungal activity against 19 fungal strains in vitro. Primarily, the crude extracts at concentration of 100μg/ml were tested. Of 250 extracts tested, 185(74% showed antifungal activity against at least one fungal strain. The outstanding species were Artemisia aucheri, Artemisia scoparia, Carthamus oxyacantha, Francoeuria undulate, Tripleurospermum disciform, and Xanthium spinosum.

  9. Recent advances in topical formulation carriers of antifungal agents

    OpenAIRE

    Eman Ahmed Bseiso; Maha Nasr; Omaima Sammour; Nabaweya A Abd El Gawad

    2015-01-01

    Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal inf...

  10. Design, Synthesis and Evaluation of Macrocyclic Antifungal Peptides

    OpenAIRE

    Mulder, M.P.C.

    2012-01-01

    Fungi are increasingly recognised as major additional pathogens in already critically ill patients. Invasive fungal infections represent a growing threat and over the past two decades the incidence and diversity of fungal infections has increased enormously, especially among immunocompromised patients and patients hospitalized with serious underlying diseases. Resistance against and toxicity of the current antifungal agents underscores the urgent need for development of new antifungal compoun...

  11. Antifungal Chemical Compounds Identified Using a C. elegans Pathogenicity Assay

    OpenAIRE

    Breger, Julia; Fuchs, Beth Burgwyn; Aperis, George; Moy, Terence I.; Cormack, Brendan P.; Ausubel, Frederick M; Mylonakis, Eleftherios

    2007-01-01

    There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also ...

  12. Antifungal activity in plants from Chinese traditional and folk medicine

    OpenAIRE

    Liu, Qingfei; Luyten, Walter; Pellens, Klaartje; Wang, Yiming; Thevissen, Karin; Liang, Qionglin; Cammue, Bruno; Schoofs, Liliane; Luo, Guoan

    2012-01-01

    ETHNOPHARMACOLOGICAL RELEVANCE: From over 100 Chinese clinical trial publications, we retrieved 22 commercial preparations and 17 clinical prescriptions used as Traditional Chinese Medicine (TCM) for treating mycotic vaginitis, typically caused by Candida albicans. The 8 most frequently used plants as well as another 7 TCM and 18 folk medicinal plants used in the South of China for antifungal therapy were investigated for in vitro antifungal activity. CONCLUSIONS: The majority of plants, ...

  13. SCREENING OF ANTIFUNGAL EFFECTS OF PSEUDOCLITOCYBE CYATHIFORMIS Bull. (Singer)

    OpenAIRE

    Perihan Güler; Fatih Kutluer; Taşkın Erol; Erkan Eren; İlknur Kunduz; Hayriye Biçer

    2013-01-01

    In this study, antifungal activities of Pseudoclitocybe cyathiformis extracts with the help of acetone and chloroform against to Fusarium species (Fusarium culmorum and Fusarium moniliforme) were investigated. Pseudoclitocybe cyathiformis was dried at aseptic conditions and put thru extractions for 12 hours in solvents. Than the evaporator at 40°C and finally dried material stored at + 4°C.(Jonathan and Fasidi, 2003). Antifungal activities were measured by Disc Diffusion method (Stoke and Rid...

  14. Purification and characterization of an antifungal chitinase from Bacillus sp.SL-13

    Institute of Scientific and Technical Information of China (English)

    Chen; Shan

    2014-01-01

    Bacillus sp.SL-13 produced antifungal proteins.The growth of the plant-pathogenic fungi Rhizoctonia solani was considerably inhibited by the presence of the SL-13 culture supernatant.The proteins were purified by DEAE-Sepharose fast flow ion exchange column chromatography and Sephadex G-75 gel filtration,and the main antifungal protein was purified to be chitinase.The molecular weight of chitinase was estimated to be 36 kD by 12%SDS PAGE.The optimal pH and temperature for the chitinase was 7.0 and 50℃.It demonstrated that the enzyme was stable from pH 5 to 9 and form 40?C to 60℃.The enzyme still kept 70%activity when incubated at 121℃,0.11MPa up to 20 minutes and the enzyme is also not lost the activity when treated with protease K and ultraviolet radiation for 1.5hours.It is very suitable for the use in a relatively unstable environment,exhibiting effective biological control.

  15. An antifungal peptide from Phaseolus vulgaris cv. brown kidney bean

    Institute of Scientific and Technical Information of China (English)

    Yau Sang Chan; Jack Ho Wong; Evandro Fei Fang; Wen Liang Pan; Tzi Bun Ng

    2012-01-01

    A 5.4-kDa antifungal peptide,with an N-terminal sequence highly homologous to defensins and inhibitory activity against Mycosphaerella arachidicola (IC5o=3 μM),Setospaeria turcica and Bipolaris maydis,was isolated from the seeds of Phaseolus vulgaris cv.brown kidney bean.The peptide was purified by employing a protocol that entailed adsorption on Affi-gel blue gel and Mono S and finally gel filtration on Superdex 75.The antifungal activity of the peptide against M.arachidicola was stable in the pH range 3-12 and in the temperature range 0℃ to 80℃.There was a slight reduction of the antifungal activity at pH 2 and 13,and the activity was indiscernible at pH 0,1,and 14.The activity at 90℃ and 100℃ was slightly diminished.Deposition of Congo red at the hyphal tips of M.arachidicola was induced by the peptide indicating inhibition of hyphal growth.The lack of antiproliferative activity of brown kidney bean antifungal peptide toward tumor cells,in contrast to the presence of such activity of other antifungal peptides,indicates that different domains are responsible for the antifungal and antiproliferative activities.

  16. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus.

    Science.gov (United States)

    Chamilos, G; Kontoyiannis, D P

    2005-12-01

    Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis (IA) remains unacceptably high. Aspergillus fumigatus still accounts for the majority of cases of IA; however less susceptible to antifungals non-fumigatus aspergilli began to emerge. Antifungal drug resistance of Aspergillus might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, has brought resistance testing to the forefront of clinical mycology. In addition, molecular biology has started to shed light on the mechanisms of resistance of A. fumigatus to azoles and the echinocandins, while genome-based assays show promise for high-throughput screening for genotypic antifungal resistance. Several problems remain, however, in the study of this complex area. Large multicenter clinical studies--point prevalence or longitudinal--to capture the incidence and prevalence of antifungal resistance in A. fumigatus isolates are lacking. Correlation of in vitro susceptibility with clinical outcome and susceptibility breakpoints has not been established. In addition, the issue of cross-resistance between the newer triazoles is of concern. Furthermore, in vitro resistance testing for polyenes and echinocandins is difficult, and their mechanisms of resistance are largely unknown. This review examines challenges in the diagnosis, epidemiology, and mechanisms of antifungal drug resistance in A. fumigatus. PMID:16488654

  17. Structure-Activity Determinants in Antifungal Plant Defensins MsDef1 and MtDef4 with Different Modes of Action against Fusarium graminearum

    OpenAIRE

    Uma Shankar Sagaram; Raghoottama Pandurangi; Jagdeep Kaur; Thomas J Smith; Dilip M Shah

    2011-01-01

    Plant defensins are small cysteine-rich antimicrobial proteins. Their three-dimensional structures are similar in that they consist of an α-helix and three anti-parallel β-strands stabilized by four disulfide bonds. Plant defensins MsDef1 and MtDef4 are potent inhibitors of the growth of several filamentous fungi including Fusarium graminearum. However, they differ markedly in their antifungal properties as well as modes of antifungal action. MsDef1 induces prolific hyperbranching of fungal h...

  18. Antifungal Hydroxy Fatty Acids Produced during Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread

    OpenAIRE

    Black, Brenna A.; Zannini, Emanuele; Curtis, Jonathan M.; Gänzle, Michael G.

    2013-01-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli...

  19. Pharmacokinetics of antifungal agents in onychomycoses.

    Science.gov (United States)

    Debruyne, D; Coquerel, A

    2001-01-01

    Onychomycosis is caused by infection by fungi, mainly dermatophytes and nondermatophyte yeasts or moulds; it affects the fingernails and, more frequently, the toenails. Dermatophytes are responsible for about 90 to 95% of fungal infections. Trichophyton rubrum is the most common dermatophyte; Candida albicans is the major nondermatophyte yeast. Although topical therapy of onchomycosis does not lead to systemic adverse effects or interactions with concomitantly taken drugs, it does not provide high cure rates and requires complete compliance from the patient. At present there are 3 oral antifungal medications that are generally used for the short term treatment of onychomycosis: itraconazole, terbinafine and fluconazole. The persistence of these active drugs in nails allows weekly administration, reduced treatment or a pulse regimen. Good clinical and mycological efficacies are obtained with itraconazole 100 to 200 mg daily, terbinafine 250mg daily for 3 months, or fluconazole 150 mg weekly for at least 6 months. Itraconazole is a synthetic triazole with a broad spectrum of action. It is well absorbed when administered orally and can be detected in nails 1 to 2 weeks after the start of therapy. The nail : plasma ratio stabilises at around 1 by week 18 of treatment. Itraconazole is still detectable in nails 27 weeks after stopping administration. Nail concentrations are higher than the minimum inhibitory concentration (MIC) for most dermatophytes and Candida species from the first month of treatment. The elimination half-life of itraconazole from nails is long, ranging from 32 to 147 days. Terbinafine is a synthetic allylamine that is effective against dermatophytes. Terbinafine is well absorbed from the gastrointestinal tract, and the time to reach effective concentrations in nail is 1 to 2 weeks. The half-life is from 24 to 156 days, explaining the observed persistence of terbinafine in nails for longer than 252 days. Fluconazole is a bis-triazole broad spectrum

  20. Interaction of Common Azole Antifungals with P Glycoprotein

    Science.gov (United States)

    Wang, Er-jia; Lew, Karen; Casciano, Christopher N.; Clement, Robert P.; Johnson, William W.

    2002-01-01

    Both eucaryotic and procaryotic cells are resistant to a large number of antibiotics because of the activities of export transporters. The most studied transporter in the mammalian ATP-binding cassette transporter superfamily, P glycoprotein (P-gp), ejects many structurally unrelated amphiphilic and lipophilic xenobiotics. Observed clinical interactions and some in vitro studies suggest that azole antifungals may interact with P-gp. Such an interaction could both affect the disposition and exposure to azole antifungal therapeutics and partially explain the clinical drug interactions observed with some antifungals. Using a whole-cell assay in which the retention of a marker substrate is evaluated and quantified, we studied the abilities of the most widely prescribed orally administered azole antifungals to inhibit the function of this transporter. In a cell line presenting an overexpressed amount of the human P-gp transporter, itraconazole and ketoconazole inhibited P-gp function with 50% inhibitory concentrations (IC50s) of ∼2 and ∼6 μM, respectively. Cyclosporin A was inhibitory with an IC50 of 1.4 μM in this system. Uniquely, fluconazole had no effect in this assay, a result consistent with known clinical interactions. The effects of these azole antifungals on ATP consumption by P-gp (representing transport activity) were also assessed, and the Km values were congruent with the IC50s. Therefore, exposure of tissue to the azole antifungals may be modulated by human P-gp, and the clinical interactions of azole antifungals with other drugs may be due, in part, to inhibition of P-gp transport. PMID:11751127

  1. Antifungal Indole Alkaloids from Winchia calophylla.

    Science.gov (United States)

    Yang, Mei-Li; Chen, Jia; Sun, Meng; Zhang, Dong-Bo; Gao, Kun

    2016-05-01

    Ten indole alkaloids (1-10) were obtained from an antifungal extract of Winchia calophylla, of which two (2 and 4) were new. N(4)-Methyl-10-hydroxyl-desacetylakuammilin (2) was an akuammiline-type indole alkaloid. N(1)-Methyl-echitaminic acid (4) was an unusual zwitterion with a basic vincorine-type skeleton. This is the first report of 10 in W. calophylla. The structures of all of the compounds were determined based on spectroscopic data, and their bioactivities were assessed. Compound 1 showed potent activity against the plant pathogenic fungi of Penicillium italicum and Fusarium oxysporum f.sp cubens with IC50 s of 10.4 and 11.5 µM, respectively, and 3 inhibited Rhizoctonia solani with an IC50 of 11.7 µM. Compounds 2 and 4 showed weak cytotoxicity against the human leukemic cell line HL-60 in vitro with IC50 s of 51.4 and 75.3 µM, respectively. Compounds 1 and 2 displayed weak activity against acetylcholinesterase with IC50 s around 61.3 and 52.6 µM, respectively. PMID:27002397

  2. Phytochemical analysis and antifungal activity of selected seaweeds from Okha coast, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Isaiah Nirmal Kumar

    2015-07-01

    Full Text Available Objective: To deal with the assessment of the chemical composition of carbohydrate, protein, phenol, flavanoid, chlorophyll, and carotenoid and antifungal activity of various marine seaweeds collected from Okha coast, Gujarat during September, 2013. Methods: Biochemical compounds of selected seaweeds were quantified and antifungal activity of these species belonging to red, green, and brown seaweeds was explored and the seaweeds were extracted in acetone, ethanol and chloroform. Results: The carbohydrate content was highest in Cystoseira indica Mairh, protein was highest in Gracilaria corticata J. Agardh and phenol content was highest in Padina boergesenii; flavanoid content was found greater in Cystoseira indica, chlorophyll content was found greater in Monostroma latissimum Wittrock and carotenoid content was more in Dictyopteris acrostichoides Bornet. The highest inhibiting effect was noted for Sargassum tenerrimum J. Agardh and Turbinaria ornata J. Agardh belonging to brown algae, against Aspergillus niger and Penicillium janthinellum in chloroform extracts and ethanolic extracts, which caused opportunistic infection of HIV-infected person, lung disease, aspergillosis, and otomycosis (fungal ear infections. Conclusions: The study reveals that the seaweeds contain high amount of biochemical constituents. Besides, the crude extracts of the seaweeds showed promising activity against the tested fungal pathogens. Therefore, seaweeds collected from Okha coast, Gujarat region are biochemical compounds with potential capacity which make them useful for screening natural products for pharmaceutical industry.

  3. Phytochemical analysis and antifungal activity of selected seaweeds from Okha coast, Gujarat, India

    Institute of Scientific and Technical Information of China (English)

    Isaiah Nirmal Kumar; Megha Barot; Rita Kumar

    2015-01-01

    Objective:To deal with the assessment of the chemical composition of carbohydrate, protein, phenol, flavanoid, chlorophyll, and carotenoid and antifungal activity of various marine seaweeds collected from Okha coast, Gujarat during September, 2013. Methods:Biochemical compounds of selected seaweeds were quantified and antifungal activity of these species belonging to red, green, and brown seaweeds was explored and the seaweeds were extracted in acetone, ethanol and chloroform. Results:The carbohydrate content was highest inCystoseira indica Mairh, protein was highest inGracilaria corticataJ. Agardh and phenol content was highest inPadina boergesenii; flavanoid content was found greater inCystoseira indica, chlorophyll content was found greater inMonostroma latissimum Wittrock and carotenoid content was more inDictyopteris acrostichoides Bornet. The highest inhibiting effect was noted forSargassum tenerrimum J. Agardh andTurbinaria ornata J. Agardh belonging to brown algae, againstAspergillus niger andPenicillium janthinellum in chloroform extracts and ethanolic extracts, which caused opportunistic infection ofHIV-infected person, lung disease, aspergillosis, and otomycosis (fungal ear infections). Conclusions:The study reveals that the seaweeds contain high amount of biochemical constituents. Besides, the crude extracts of the seaweeds showed promising activity against the tested fungal pathogens. Therefore, seaweeds collected from Okha coast, Gujarat region are biochemical compounds with potential capacity which make them useful for screening natural products for pharmaceutical industry.

  4. Antifungal activity of ibuprofen against aspergillus species and its interaction with common antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    LI Li-juan; CHEN Wei; XU Hui; WAN Zhe; LI Ruo-yu; LIU Wei

    2010-01-01

    Background The incidence of invasive aspergillosis (IA) has increased in frequency in immunocompromised patients with a variety of diseases. The poor prognosis might be due to limited treatment option. This study aimed to evaluate antifungal activity of ibuprofen against clinical isolates of aspergillus species, as well as its interaction with azoles or with amphotericin B or with micafungin.Methods Antifungal activity of ibuprofen against 10 strains of Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus were tested with both disk diffusion assay and standard broth microdilution method. To determine whether ibuprofen combined with itraconazole, voriconazole, amphotericin B, or micafungin had interactive effects on aspergillus spp., we used both disk diffusion assay and Chequerboard method.Results As for disk diffusion method, ibuprofen produced a zone of growth inhibition with diameters of (20.1±3.9) mm at 48 hours of incubation. As for broth microdilution method, the minimal inhibitory concentration (MIC) ranges of ibuprofen against aspergillus spp. were 1000-2000 μg/ml, and the minimal fungicidal concentration (MFC) ranges of that was 2000-8000 μg/ml. For 2 of 5 isolates, when ibuprofen combined with itraconazole or voriconazole, the zones of growth inhibition were larger than those of the individual drug. The results of Chequerboard method showed that fractional inhibitory concentration index (FICI) ranges were 1.125-2.500.Conclusions Ibuprofen is active against aspergillus spp.. And ibuprofen does not affect the in vitro activity of itraconazole, voriconazole, amphotericin B or micafungin against aspergillus spp..

  5. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    Science.gov (United States)

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333

  6. In Search of the Holy Grail of Antifungal Therapy

    Science.gov (United States)

    Chapman, Stanley W.; Sullivan, Donna C.; Cleary, John D.

    2008-01-01

    The ideal antifungal agent remains an elusive goal for treatment of life-threatening systemic fungal infections. Such an agent would have broad antifungal activity, low rates of resistance, flexible routes of administration, few associated adverse events, and limited drug-drug interactions. Only three of the seven classes of antifungal agents currently available are suitable for treatment of systemic infection: the polyenes, the azoles, and the echinocandins. None match all the characteristics of an ideal agent, the Holy Grail of antifungal therapy. Academia and industry need to collaborate in the search for new lead antifungal compounds using traditional screening methods as well as the new pharmacogenomics methods. Enhancing efficacy and reducing toxicity of the currently available therapeutic agents is also another important avenue of study. As an example, the Mycosis Research Center at the University of Mississippi Medical Center has identified pyogenic polyenes in commercial preparations of amphotericin B deoxycholate which correlate with infusion related toxicities. A highly purified formulation of amphotericin B appears promising, with a better therapeutic index compared to its parent compound as evidenced by results of in vitro and in vivo studies reviewed in this presentation. PMID:18596853

  7. Antimycobacterial and Antifungal Activities of Selected Four Salvia Species

    Directory of Open Access Journals (Sweden)

    Nur Tan

    2016-03-01

    Full Text Available The content of essential oils of endemic Salvia cilicica was analyzed by GC-FID and GC-MS techniques. Spathulenol (23.8 %, caryophyllene oxide (14.9 % and hexadecanoic acid (10.3 % were identified as the major components in the oil of Salvia cilicica. Additionally, in this study ethanol extracts of the aerial parts and essential oils of four Salvia species ( S. cilicica, S. officinalis, S. fruticosa, S. tomentosa , as well as the roots of S. cilicica were investigated their antimycobacterial and antifungal activities including infectious diseases. The antimycobacterial activity was analyzed against three Mycobacterium tuberculosis (sensitive-, resistant-standard strains and multidrug resistance clinical isolate strains and the antifungal activity was compared with two dermotophytes (Microsporum gypseum and Trichophyton mentagrophytes var. erinacei and three Candida species by the broth microdilution method. The essentials oils of the four tested Salvia species showed high antimycobacterial and antifungal activity (MIC between 0.2-12.5 mcg/mL in comparison to the aerial parts and root extracts . The antifungal and antimycobacterial potential of the ethanol extracts and essential oils were introduced to determine whether, Salvia species can be used in phytotherapy against the yeasts, dermatophytes and M. tuberculosis. To the best of our knowledge this is the first study of S. cilicica about their antimycobacterial and antifungal activities and chemical composition of its essential oils.

  8. Antifungal Susceptibility Testing with Etest for Candida Species Isolated from Patients with Oral Candidiasis

    OpenAIRE

    Song, You Bum; Suh, Moo Kyu; Ha, Gyoung Yim; Kim, Heesoo

    2015-01-01

    Background The necessity of performing antifungal susceptibility tests is recently increasing because of frequent cases of oral candidiasis caused by antifungal-resistant Candida species. The Etest (BioMerieux, Marcy l'Etoile, France) is a rapid and easy-to-perform in vitro antifungal susceptibility test. Objective The purpose of this study was to determine the minimal inhibitory concentrations (MICs) of antifungal agents by using the Etest for Candida species isolated from patients with oral...

  9. Evaluation of antifungal susceptibility testing in Candida isolates by Candifast and disk-diffusion method

    OpenAIRE

    Sidhartha Giri; Anupma Jyoti Kindo

    2014-01-01

    With the increase in invasive fungal infections due to Candida species and resistance to antifungal therapy, in vitro antifungal susceptibility testing is becoming an important part of clinical microbiology laboratories. Along with broth microdilution and disk diffusion method, various commercial methods are being increasingly used for antifungal susceptibility testing, especially in the developed world. In our study, we compared the antifungal susceptibility patterns of 39 isolates of Candid...

  10. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology

    OpenAIRE

    Ashbee, H. Ruth; Barnes, Rosemary A.; Johnson, Elizabeth M.; Richardson, Malcolm D.; Gorton, Rebecca; Hope, William W.

    2013-01-01

    The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics–pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the...

  11. Synergistic combinations of antifungals and antivirulence agents to fight against Candida albicans

    DEFF Research Database (Denmark)

    Cui, Jinhui; Ren, Biao; Tong, Yaojun;

    2015-01-01

    -drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time......-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections....

  12. Antifungal activity of nicotine and its cobalt complex

    International Nuclear Information System (INIS)

    Nicotine and its metal complex; Co(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activity against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cobalt(II) chloride was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine had antifungal activity against all species of fungi studied except Candida albicans, Microsporum canis, Epidermophyton floccosum, Candida tropicalis, and Alternaria infectoria. Cobalt(II) nicotine was found to be effective against all selected species of fungi but ineffective against Candida solani, Penicillium notalum, Microsporum canis, Fusarium solani and Fusarium moniliforme. (author)

  13. Survey of small antifungal peptides with chemotherapeutic potential.

    Science.gov (United States)

    Desbois, Andrew P; Tschörner, David; Coote, Peter J

    2011-08-01

    Many cationic peptides with antimicrobial properties have been isolated from bacteria, fungi, plants, and animals. These peptides vary in molecular size, potency and spectra of activities. This report surveyed the literature to highlight the peptides that have antifungal activity and greatest potential for development as new therapeutic agents. Thus, to be included in the evaluation, each peptide had to fulfil the following criteria: (i) potent antifungal activity, (ii) no, or minimal, mammalian cell toxicity, (iii) of ≤25 amino acids in length, which minimises the costs of synthesis, reduces immunogenicity and enhances bioavailability and stability in vivo, (iv) minimal post-translational modifications (also reduces the production costs). The ~80 peptides that satisfied these criteria are discussed with respect to their structures, mechanisms of antimicrobial action and in vitro and in vivo toxicities. Certainly, some of these small peptides warrant further study and have potential for future exploitation as new antifungal agents. PMID:21470150

  14. Antifungal Effect of Chitosan as Ca(2+) Channel Blocker.

    Science.gov (United States)

    Lee, Choon Geun; Koo, Ja Choon; Park, Jae Kweon

    2016-06-01

    The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca(2+), whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca(2+) gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases. PMID:27298599

  15. Antifungal Effect of Chitosan as Ca2+ Channel Blocker

    Science.gov (United States)

    Lee, Choon Geun; Koo, Ja Choon; Park, Jae Kweon

    2016-01-01

    The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca2+, whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca2+ gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases. PMID:27298599

  16. ANTIFUNGAL ACTIVITY OF SECONDARY METABOLITES PROUCED BY PSEUDOMONAS FLUORESCENS

    Directory of Open Access Journals (Sweden)

    R. M. GADE

    2013-01-01

    Full Text Available Thirty isolates of Pseudomonas fluorescens obtained from citrus rhizosphere were tested for antifungal activityagainst Phytophthora spp. P. fluorescens isolate Pf20 was found efficient in inhibiting the mycelial growth upto38.88%. The antifungal compounds were extracted with equal volume of ethyl acetate and were tentativelyidentified on thin layer chromatography (TLC at Rf 0.28. The antifungal compounds extracted from P. fluorescensat 5% were found inhibitory to the growth of Rhizoctonia solani (42.79%, Phytophthora parasitica (28.57%,P. palmivora (25.98% and Fusarium solani (20.45%. In case of HPTLC analysis the characteristic colour andfluorescent band after derivatization with anisaldehyde reagent proved the presence of secondary metabolites incrude extract.

  17. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  18. DMPD: C-type lectin receptors in antifungal immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18160296 C-type lectin receptors in antifungal immunity. Willment JA, Brown GD. Tre...nds Microbiol. 2008 Jan;16(1):27-32. Epub 2007 Dec 21. (.png) (.svg) (.html) (.csml) Show C-type lectin receptors in antifungal... immunity. PubmedID 18160296 Title C-type lectin receptors in antifungal immunity. Author

  19. In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus Isolates from Transplant and Nontransplant Patients

    OpenAIRE

    Steinbach, William J.; Singh, Nina; Miller, Jackie L.; Benjamin, Daniel K; Schell, Wiley A.; Heitman, Joseph; Perfect, John R.

    2004-01-01

    We performed in vitro antifungal checkerboard testing on 12 Aspergillus fumigatus clinical isolates (6 transplant recipients and 6 nontransplant patients) with three antifungal agents (amphotericin B, voriconazole, and caspofungin) and three immunosuppressants (FK506, cyclosporine, and rapamycin). We were not able to detect a difference in calcineurin inhibitor antifungal activity against isolates from transplant recipients and nontransplant patients.

  20. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  1. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  2. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

    2013-12-04

    A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its γ-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the γ-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

  3. Recent advances in topical formulation carriers of antifungal agents.

    Science.gov (United States)

    Bseiso, Eman Ahmed; Nasr, Maha; Sammour, Omaima; Abd El Gawad, Nabaweya A

    2015-01-01

    Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles. PMID:26261140

  4. ANTIFUNGAL ACTIVITY OF HYBANTHUS ENNEASPERMUS ON WET CLOTHES

    Directory of Open Access Journals (Sweden)

    Arumugam Napoleon

    2011-04-01

    Full Text Available During rainy season, when clothes are not properly dried they develop spots. In clothes the spots appear as black or greenish black in color and these spots or mildews were cultured and microscopically examined. It was identified as fungi, viz. Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus. Antifungal activities of different extracts of Hybanthus enneaspermus were screened. The antifungal activity was graded, based on the zone of inhibition. Among the three extracts used for the present studies, methanolic extract exhibited the maximum growth inhibition, followed by chloroform and petroleum ether extract.

  5. Antifungal Drugs for Onychomycosis: Efficacy, Safety, and Mechanisms of Action.

    Science.gov (United States)

    Rosen, Theodore; Stein Gold, Linda F

    2016-03-01

    In 1996, oral terbinafine joined itraconazole and fluconazole on the short list of systemic medications that could be used to treat onychomycosis (although fluconazole was not approved for this indication by the US Food and Drug Administration [FDA], it was commonly used for this purpose). In 1999, ciclopirox was the first topical treatment to be FDA approved. The addition of the topical antifungal agents efinaconazole and tavaborole in 2014 expanded the roster of medications available to more effectively manage onychomycosis in a wide range of patients, including those for whom comorbid conditions, concomitant medications, or patient preference limited the use of systemic antifungals. PMID:27074700

  6. Antifungal activity of three mouth rinses--in vitro study.

    Science.gov (United States)

    Abirami, C P; Venugopal, Pankajalakshmi V

    2005-01-01

    Mouthrinses are nowadays routinely included in the home care oral hygiene maintenance besides dentifrice/tooth paste. Mouthrinses prevent bacterial attachment and prevent or slow down bacterial proliferation. Fungal organisms have now gained more importance due to increased incidence of AIDS/HIV. This has necessitated for mouthrinses to possess antifungal activity also. The mouthrinses used were Povidone iodine ( Wokadine), Thymol with Eucalyptol and Benzoic acid (Listerine) and fluoride with Triclosan (Colgate Plax), which were tested against oral isolates of different species of Candida. The agar diffusion test was used to evaluate the inhibitory activity of the mouthrinses and all of them exhibited antifungal activity especially against Candida albicans. PMID:16758789

  7. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Erick A.; Durango, Diego L.; Garcia, Carlos M. [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Ciencias. Escuela de Quimica], e-mail: cmgarcia@unal.edu.co

    2009-07-01

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  8. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    International Nuclear Information System (INIS)

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  9. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    A microhollow cathode based, direct-current, atmospheric pressure, He/O2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  10. In Vitro antifungal potency of plant extracts against five phytopathogens

    Directory of Open Access Journals (Sweden)

    Ashwani Tapwal

    2011-12-01

    Full Text Available The antifungal activity of aqueous extract of Cannabis sativa, Parthenium hysterophorus, Urtica dioeca, Polystichum squarrosum and Adiantum venustum was investigated against Alternaria solani, Alternaria zinniae, Curvularia lunata, Rhizoctonia solani and Fusarium oxysporum at different concentrations (5, 10, 15 and 20%. At 20%, maximum antifungal potential was observed with the extracts of C. sativa, which recorded excellent inhibitory activity against C. lunata (100%, A. zinniae (59.68%, followed by leaf extract of P. hysterophorus (50% against A. solani. The application of botanical extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.

  11. Recent advances in topical formulation carriers of antifungal agents

    Directory of Open Access Journals (Sweden)

    Eman Ahmed Bseiso

    2015-01-01

    Full Text Available Fungal infections are amongst the most commonly encountered diseases affecting the skin. Treatment approaches include both topical and oral antifungal agents. The topical route is generally preferred due to the possible side effects of oral medication. Advances in the field of formulation may soon render outdated conventional products such as creams, ointments and gels. Several carrier systems loaded with antifungal drugs have demonstrated promising results in the treatment of skin fungal infections. Examples of these newer carriers include micelles, lipidic systems such as solid lipid nanoparticles and nanostructured lipid carriers, microemulsions and vesicular systems such as liposomes, niosomes, transfersomes, ethosomes, and penetration enhancer vesicles.

  12. Efficacy of Cow Urine as Plant Growth Enhancer and Antifungal Agent

    Directory of Open Access Journals (Sweden)

    Savita Jandaik

    2015-01-01

    Full Text Available The present study was conducted to determine antifungal activity of three different concentrations (5, 10, and 15% of cow urine against three fungal pathogens (Fusarium oxysporum, Rhizoctonia solani, and Sclerotium rolfsii isolated from infected plants of Methi and Bhindi that showed symptoms of damping off and wilting disease by poison food technique. The extent of growth of test fungi in plates poisoned with cow urine was lesser when compared with the control plates. Among these concentrations cow urine at 15% concentration was most effective. When the three fungal organisms were compared, maximum growth suppression was observed in Fusarium oxysporum (78.57% at 15% concentration of cow urine followed by Rhizoctonia solani (78.37% and Sclerotium rolfsii (73.84%. Finally we concluded that the cow urine has antifungal activities and the inhibitory activity can be used in the control of fungi. The nutritional effect of cow urine on plant growth was also tested with Trigonella foenum-graecum (Methi and Abelmoschus esculentus (Bhindi plants and the chlorophyll and protein content was also estimated.

  13. In vitro and in silico antifungal efficacy of nitrogen-doped carbon nanohorn (NCNH) against Rhizoctonia solani.

    Science.gov (United States)

    Dharni, Seema; Sanchita; Unni, SreeKuttan M; Kurungot, Sreekumar; Samad, Abdul; Sharma, Ashok; Patra, Dharani Dhar

    2016-01-01

    We have investigated in vitro antifungal efficiency of nitrogen-doped carbon nanohorn (NCNH) against Rhizoctonia solani (R. solani) plant pathogenic fungi. NCNH with size of 50-60 nm and concentrations of 10, 50, 100, and 150 μg mL(-1) were used. The results showed that growth of fungi in the presence of NCNH was significantly (p > .05) inhibited at 150 μg mL(-1) (85.13 ± .97) after 72 h. The results were validated through computational approaches. Molecular docking analysis of NCNH with endochitinase protein of R. solani was performed to validate the potential of antifungal activity of NCNH. Docking results showed different conformations of interaction of NCNH with endochitinase enzyme. The conformation with least binding energy -13.54 kcal/mol was considered further. It is likely that NCNH interacts with the pathogens by mechanically wrapping, which may be one of the major toxicity actions of NCNH against R. solani. The analysis showed that NCNH might interwinds to endochitinase of R. solani leading to the deactivation of the enzyme. To best of our knowledge, this is the first report of antifungal efficacy of NCNH against R. solani and provides useful information about the application of NCNH in resisting crop disease. PMID:25932774

  14. Antibacterial and antifungal activity of liriodenine and related oxoaporphine alkaloids.

    Science.gov (United States)

    Hufford, C D; Sharma, A S; Oguntimein, B O

    1980-10-01

    Liriodenine was evaluated for its antibacterial and antifungal activity against several microorganisms. Other related oxoaporphine alkaloids also were evaluated. Attempts to prepare oxoaporphine alkaloids from N-acetylnoraporphines were unsuccessful, but an unexpected phenanthrene alkaloid was obtained. A novel N-demethylation reaction was noted when oxogaucine methiodide and liriodenine methiodide were treated with alumina. PMID:7420287

  15. ANTIFUNGAL ACTIVITY OF GEOTHERMAL FLUIDS FROM DIFFERENT REGIONS OF TURKEY

    Directory of Open Access Journals (Sweden)

    Ahmet Ali Var,

    2012-07-01

    Full Text Available Antifungal effects of geothermal fluids obtained from the Ankara, Afyon, Denizli, and Eskişehir regions of Turkey on white-rot (Trametes versicolor, MAD-697 and brown-rot (Coniophora puteana, FPRL 11E fungus (Basidiomycetes were studied. Fungal experiments were performed on kraft paper and Scots pine wood (Pinus sylvestris L.. We used non-concentrated geothermal water and concentrated geothermal water (via evaporation in ratios of 25%, 50%, and 75%. To evaluate the results, we measured the concentration of specific minerals in the geothermal fluids such as boron (B, arsenic (As, copper (Cu, sulfate (SO4, sodium (Na, chloride (Cl, fluoride (F, potassium (K, and ammonia (NH3. The highest antifungal effect was observed for a geothermal fluid from the Denizli region, followed by Ankara, Afyon, and Eskişehir, in decreasing order. Antifungal properties of GFs are thought to be associated with the type and amount of mineral substances. In addition, the antifungal effects increased with increasing concentrations of geothermal water.

  16. Prediction of Antifungal Activity of Gemini Imidazolium Compounds

    Directory of Open Access Journals (Sweden)

    Łukasz Pałkowski

    2015-01-01

    Full Text Available The progress of antimicrobial therapy contributes to the development of strains of fungi resistant to antimicrobial drugs. Since cationic surfactants have been described as good antifungals, we present a SAR study of a novel homologous series of 140 bis-quaternary imidazolium chlorides and analyze them with respect to their biological activity against Candida albicans as one of the major opportunistic pathogens causing a wide spectrum of diseases in human beings. We characterize a set of features of these compounds, concerning their structure, molecular descriptors, and surface active properties. SAR study was conducted with the help of the Dominance-Based Rough Set Approach (DRSA, which involves identification of relevant features and relevant combinations of features being in strong relationship with a high antifungal activity of the compounds. The SAR study shows, moreover, that the antifungal activity is dependent on the type of substituents and their position at the chloride moiety, as well as on the surface active properties of the compounds. We also show that molecular descriptors MlogP, HOMO-LUMO gap, total structure connectivity index, and Wiener index may be useful in prediction of antifungal activity of new chemical compounds.

  17. Resistance of Candida albicans biofilms to antifungal agents in vitro.

    OpenAIRE

    Hawser, S. P.; Douglas, L J

    1995-01-01

    Biofilms formed by Candida albicans on small discs of catheter material were resistant to the action of five clinically important antifungal agents as determined by [3H]leucine incorporation and tetrazolium reduction assays. Fluconazole showed the greatest activity, and amphotericin B showed the least activity against biofilm cells. These findings were confirmed by scanning electron microscopy of the biofilms.

  18. [Antifungal activity of 5-benzilidene pyrrolone and furanone derivatives].

    Science.gov (United States)

    de Carvalho, M G; Pitta, I da R; Galdino, S L; Takaki, G de C; Bergé, G

    1989-01-01

    The antifungal activity against Neurospora crassa of some 5-benzilidene pyrrolone and furanone derivatives was realised. Relations between the structure and this biological activity are established with Fujita-Ban and Hansch methods. The preponderant part of lipophilicity, resonance effect and E or Z configurations have been showed. PMID:2535109

  19. Antifungal metabolites from fungal endophytes of Pinus strobus

    DEFF Research Database (Denmark)

    Sumarah, Mark W; Kesting, Julie R; Sørensen, Dan;

    2011-01-01

    The extracts of five foliar fungal endophytes isolated from Pinus strobus (eastern white pine) that showed antifungal activity in disc diffusion assays were selected for further study. From these strains, the aliphatic polyketide compound 1 and three related sesquiterpenes 2-4 were isolated...

  20. New antifungal agents for the treatment of candidaemia

    OpenAIRE

    Muñoz, Patricia; Guinea, Jesus; Rojas, Loreto; Bouza, Emilio

    2010-01-01

    Abstract Suspected or proven invasive candidiasis is an important indication for antifungal drugs and a leading cause of death. Prompt initiation of effective therapy has a marked effect on survival, but the indiscriminate application of different risk factor-based prediction models is massively increasing the number of patients treated unnecessarily. Fluconazole resistance levels are

  1. [New developments in antifungal therapy: fluconazole, itraconazole, voriconazole, caspofungin

    NARCIS (Netherlands)

    Wout, J.W. van 't; Kuijper, E.J.; Verweij, P.E.; Kullberg, B.J.

    2004-01-01

    The azole antifungal voriconazole and the echinocandin caspofungin have recently become available for the treatment of invasive mycoses. Fluconazole remains the drug of choice for candidemia, except for infections with one of the resistent species such as Candida krusei and some strains of Candida g

  2. Echinocandins: A ray of hope in antifungal drug therapy

    Directory of Open Access Journals (Sweden)

    Grover Neeta

    2010-01-01

    Full Text Available Invasive fungal infections are on the rise. Amphotericin B and azole antifungals have been the mainstay of antifungal therapy so far. The high incidence of infusion related toxicity and nephrotoxicity with amphotericin B and the emergence of fluconazole resistant strains of Candida glabrata egged on the search for alternatives. Echinocandins are a new class of antifungal drugs that act by inhibition of β (1, 3-D- glucan synthase, a key enzyme necessary for integrity of the fungal cell wall. Caspofungin was the first drug in this class to be approved. It is indicated for esophageal candidiasis, candidemia, invasive candidiasis, empirical therapy in febrile neutropenia and invasive aspergillosis. Response rates are comparable to those of amphotericin B and fluconazole. Micafungin is presently approved for esophageal candidiasis, for prophylaxis of candida infections in patients undergoing hematopoietic stem cell transplant (HSCT and in disseminated candidiasis and candidemia. The currently approved indications for anidulafungin are esophageal candidiasis, candidemia and invasive candidiasis. The incidence of infusion related adverse effects and nephrotoxicity is much lower than with amphotericin B. The main adverse effect is hepatotoxicity and derangement of serum transaminases. Liver function may need to be monitored. They are, however, safer in renal impairment. Even though a better pharmacoeconomical choice than amphotericin B, the higher cost of these drugs in comparison to azole antifungals is likely to limit their use to azole resistant cases of candidial infections and as salvage therapy in invasive aspergillosis rather than as first line drugs.

  3. Identification of Ebsulfur Analogues with Broad-Spectrum Antifungal Activity.

    Science.gov (United States)

    Ngo, Huy X; Shrestha, Sanjib K; Garneau-Tsodikova, Sylvie

    2016-07-19

    Invasive fungal infections are on the rise due to an increased population of critically ill patients as a result of HIV infections, chemotherapies, and organ transplantations. Current antifungal drugs are helpful, but are insufficient in addressing the problem of drug-resistant fungal infections. Thus, there is a growing need for novel antimycotics that are safe and effective. The ebselen scaffold has been evaluated in clinical trials and has been shown to be safe in humans. This makes ebselen an attractive scaffold for facile translation from bench to bedside. We recently reported a library of ebselen-inspired ebsulfur analogues with antibacterial properties, but their antifungal activity has not been characterized. In this study, we repurposed ebselen, ebsulfur, and 32 additional ebsulfur analogues as antifungal agents by evaluating their antifungal activity against a panel of 13 clinically relevant fungal strains. The effect of induction of reactive oxygen species (ROS) by three of these compounds was evaluated. Their hemolytic and cytotoxicity activities were also determined using mouse erythrocytes and mammalian cells. The MIC values of these compounds were found to be in the range of 0.02-12.5 μg mL(-1) against the fungal strains tested. Notably, yeast cells treated with our compounds showed an accumulation of ROS, which may further contribute to the growth-inhibitory effect against fungi. This study provides new lead compounds for the development of antimycotic agents. PMID:27334363

  4. Research to Identify Effective Antifungal Agents, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Carl

    1993-03-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990 and Schreck et al. 1991). The objectives of the present study were to select and evaluate up to 10 candidate fungicides.

  5. Fusarielin E, a new antifungal antibiotic from Fusarium sp.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new antifungal antibiotic, fusarielin E, was isolated from the marine-derived fungus Fusarium sp. Its structure was established on the basis of various NMR spectroscopic analyses and HR-FAB-MS. Fusarielin E displayed significant biological activity against Pyricularia oryzae.

  6. In vitro antifungal activity of Schizozygia coffaeoides bail. (Apocynaceae) extracts.

    Science.gov (United States)

    Kariba, R M; Siboe, G M; Dossaji, S F

    2001-01-01

    Leaf extracts of Schizozygia coffaeoides were investigated for antifungal activity using the disc diffusion assay technique. Petroleum ether 40-60 degrees C, dichloromethane-ethyl acetate (1:1) and methanol extracts were fungitoxic to Trichophyton mentagrophytes, Microsporum gypseum, Cladosporium cucumerinum and Candida albicans. The extracts were fungistatic in action. PMID:11137346

  7. Identification and biological activity of antifungal saponins from shallot ( Allium cepa L. Aggregatum group).

    Science.gov (United States)

    Teshima, Yoshiki; Ikeda, Tsuyoshi; Imada, Kiyoshi; Sasaki, Kazunori; El-Sayed, Magdi A; Shigyo, Masayoshi; Tanaka, Shuhei; Ito, Shin-Ichi

    2013-08-01

    The n-butanol extract of shallot basal plates and roots showed antifungal activity against plant pathogenic fungi. The purified compounds from the extract were examined for antifungal activity to determine the predominant antifungal compounds in the extract. Two major antifungal compounds purified were determined to be alliospiroside A (ALA) and alliospiroside B. ALA had prominent antifungal activity against a wide range of fungi. The products of acid hydrolysis of ALA showed a reduced antifungal activity, suggesting that the compound's sugar chain is essential for its antifungal activity. Fungal cells treated with ALA showed rapid production of reactive oxygen species. The fungicidal action of ALA was partially inhibited by a superoxide scavenger, Tiron, suggesting that superoxide anion generation in the fungal cells may be related to the compound's action. Inoculation experiments showed that ALA protected strawberry plants against Colletotrichum gloeosporioides , indicating that ALA has the potential to control anthracnose of the plant. PMID:24138065

  8. Sporothrix schenckii complex in Iran: Molecular identification and antifungal susceptibility.

    Science.gov (United States)

    Mahmoudi, Shahram; Zaini, Farideh; Kordbacheh, Parivash; Safara, Mahin; Heidari, Mansour

    2016-08-01

    Sporotrichosis is a global subcutaneous fungal infection caused by the Sporothrix schenckii complex. Sporotrichosis is an uncommon infection in Iran, and there have been no phenotypic, molecular typing or antifungal susceptibility studies of Sporothrix species. This study aimed to identify nine Iranian isolates of the S. schenckii complex to the species level using colony morphology, carbohydrate assimilation tests, and PCR-sequencing of the calmodulin gene. The antifungal susceptibilities of these Sporothrix isolates to five antifungal agents (amphotericin B (AMB), voriconazole (VRC), itraconazole (ITC), fluconazole (FLC), and terbinafine (TRB)) were also evaluated according to the M27-A3 and M38-A2 protocols of the Clinical and Laboratory Standards Institute for yeast and mycelial phases, respectively. Five of seven clinical isolates were identified as S. schenckii, and two clinical and two environmental isolates were identified as S. globosa. This is the first report of S. globosa in Iran. There was significant agreement (73%) between the results of the phenotypic and genotypic identification methods. TRB and ITC were the most effective antifungals against the Sporothrix isolates. The minimum inhibitory concentration (MIC) values of TRB for the yeast and mycelial phases of S. schenckii differed significantly. There was also a significant difference in the minimum fungicidal concentration (MFC) values of AMB and TRB for the two phases. Considering the low efficacy of VRC and FLC and the wide MIC ranges of AMB (1-16 μg/ml and 1-8 μg/ml for yeast and mycelial forms, respectively) observed in the present study, in vitro antifungal susceptibility testing should be performed to determine appropriate therapeutic regimens. PMID:26933207

  9. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. [i]Lavandula angustifolia[/i], [i]Carum carvi[/i], [i]Pinus mungo var. pulmilio[/i], [i]Mentha piperita[/i], [i]Chamomilla recutita[/i] L.,[i] Pinus sylvestris[/i], [i]Satureia hortensis[/i] L., [i]Origanum vulgare[/i] L., [i]Pimpinella anisum[/i], [i]Rosmarinus officinali[/i]s L., [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L. [i]Rausch[/i], [i]Thymus vulgaris[/i] L., [i]Origanum vulgare[/i] L. for antifungal activity against five [i]Penicillium[/i] species: [i]Penicillium brevicompactum[/i], [i]Penicillium citrinum[/i], [i]Penicillium crustosum[/i], [i]Penicillium expansum[/i] and [i]Penicillium griseofulvum[/i]. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against [i]Penicillium[/i] fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: [i]Pimpinella anisum[/i], [i]Chamomilla recutita[/i] L., [i]Thymus vulgaris[/i], [i]Origanum vulgare[/i] L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be [i]Origanum vulgare[/i] L. and [i]Pimpinella anisum[/i]. The lowest level of antifungal activity was demonstrated by the oils [i]Pinus mungo var. pulmilio[/i], [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L.[i] Rausch[/i], [i]Rosmarinus officinalis[/i].

  10. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available The yeast-to-hypha transition plays a crucial role in the pathogenesis of C. albicans. Farnesol, a quorum sensing molecule (QSM secreted by the fungal itself, could prevent the formation of hyphae and subsequently lead to the defect of biofilm formation. The DPP3, encoding phosphatase, is a key gene in regulating farnesol synthesis. In this study, we screened 24 bisbibenzyls and 2 bibenzyls that were isolated from bryophytes or chemically synthesized by using CLSI method for antifungal effect. Seven bisbibenzyls were found to have antifungal effects with IC(80 less than 32 µg/ml, and among them, plagiochin F, isoriccardin C and BS-34 were found to inhibit the hyphae and biofilm formation of C. albicans in a dose-dependent manner. To uncover the underlying relationship between morphogenesis switch and QSM formation, we measured the farnesol production by HPLC-MS and quantified Dpp3 expression by detecting the fluorescent intensity of green fluorescent protein tagged strain using Confocal Laser Scanning microscopy and Multifunction Microplate Reader. The DPP3 transcripts were determined by real-time PCR. The data indicated that the bisbibenzyls exerted antifungal effects through stimulating the synthesis of farnesol via upregulation of Dpp3, suggesting a potential antifungal application of bisbibenzyls. In addition, our assay provides a novel, visual and convenient method to measure active compounds against morphogenesis switch.

  11. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    Science.gov (United States)

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations. PMID:26616822

  12. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi.

    Science.gov (United States)

    Sathiyabama, M; Parthasarathy, R

    2016-10-20

    The aim of the present study was to prepare Chitosan nanoparticles through biological method with high antifungal activities. Chitosan nanoparticles were prepared by the addition of anionic proteins isolated from Penicillium oxalicum culture to chitosan solutions. The formation of chitosan nanoparticles was preliminary confirmed by UV-vis spectrophotometric analysis. The physico-chemical properties of the chitosan nanoparticles were determined by size and zeta potential analysis, FTIR analysis, HRTEM and XRD pattern. The chitosan nanoparticles were evaluated for its potential to inhibit the growth of phytopathogens viz., Pyricularia grisea, Alternaria solani, Fusarium oxysporum. It is evident from our results that chitosan nanoparticles inhibit the growth of phytopathogens tested. Chitosan nanoparticle treated chickpea seeds showed positive morphological effects such as enhanced germination%, seed vigor index and vegetative biomass of seedlings. All these results indicate that chitosan nanoparticle can be used further under field condition to protect various crops from the devastating fungal pathogens as well as growth promoters. PMID:27474573

  13. Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa

    OpenAIRE

    Warrilow, Andrew G. S.; Price, Claire L.; Parker, Josie E.; Rolley, Nicola J.; Smyrniotis, Christopher J.; David D. Hughes; Vera Thoss; W. David Nes; Kelly, Diane E.; Holman, Theodore R.; Kelly, Steven L.

    2016-01-01

    Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with K d values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min−1, 5.6 min−1 and 3.4 min−1. CYP5218 bound a range of fatty acids with linoleic acid binding strongest ...

  14. Oat (Avena sativa) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase.

    Science.gov (United States)

    Sørensen, Hans Peter; Madsen, Lone Søvad; Petersen, Jørgen; Andersen, Jesper Tapdrup; Hansen, Anne Maria; Beck, Hans Christian

    2010-03-01

    Extracts from different higher plants were screened for the ability to inhibit the growth of Penicillium roqueforti, a major contaminating species in industrial food processing. Oat (Avena sativa) seed extracts exhibited a high degree of antifungal activity and could be used directly on rye bread to prevent the formation of P. roqueforti colonies. Proteins in the oat seed extracts were fractionated by column chromatography and proteins in fractions containing antifungal activity were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database searches. Identified antifungal candidates included thaumatin-like proteins, 1,3-beta-glucanase, permatin precursor, pathogenesis-related protein type 1, and chitinases of class I and II. Class I chitinase could be specifically removed from the extracts and was found to be indispensable for 50% of the P. roqueforti inhibiting activity. The purified class I chitinase has a molecular weight of approximately 34 kDa, optimal chitinase activity at pH 7, and exists as at least two basic isoforms (pI values of 7.6 and 8.0). Partial sequencing of the class I chitinase isoforms by LC-MS/MS revealed a primary structure with high similarity to class I chitinases of wheat (Triticum aestivum), barley (Hordeum vulgare), and rye (Secale cereale). Oat, wheat, barley, and rye seed extracts were compared with respect to the abundance of the class I chitinase and decrease in antifungal activity when class I chitinase is removed. We found that the oat seed class I chitinase is at least ten times more abundant than the wheat, barley, and rye homologs and that oat seed extracts are highly active toward P. roqueforti as opposed to extracts of other cereal seeds. PMID:19224400

  15. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    of this thesis has been to explore the tolerance mechanisms of yeast biofilms to systemic antifungal agents and to identify the molecular target of a novel peptidomimetic with anti-biofilm activity. The genetic tractable S. cerevisiae was used as biofilm model system for the pathogenic Candida...... species in an attempt to take advantage of the molecular tools available for S. cerevisiae. Mature biofilms containing mainly growth arrested cells were shown to be tolerant to three out of four tested antifungals, while all drugs had inhibitory activity against proliferating biofilm cells, demonstrating...... physiological state of the cell and the mechanism of action of the drug, and this is independent of mode of growth. Based on these results, it can be suggested that future drug treatment strategies should focus on targeting growth arrested cells, rather than distinguishing between modes of growth. At last, we...

  16. THE IMPACT OF ANTIFUNGALS ON TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    MirceaRaduMihu

    2014-03-01

    Full Text Available Fungi are increasingly recognized as major pathogens in immunocompromised individuals. The most common invasive fungal infections are caused by Candida spp., Aspergillus spp. and Cryptococcus spp. Amphotericin B has remained the cornerstone of therapy against many fulminant fungal infections but its use is limited by its multitude of side effects. Echinocandins are a newer class of antifungal drugs with activity against Candida spp. and Aspergillus spp. and constitutes an alternative to amphotericin B due to superior patient tolerability and fewer side effects. Due to their excellent bioavailability and oral availability, azoles continue to be heavily used for simple, such as fluconazole for candidal vaginitis, and complex diseases, such as voriconazole for aspergilloisis. The objective of this paper is to present current knowledge regarding the multiple interactions between the broad spectrum antifungals and the innate immune response, primarily focusing on the toll-like receptors.

  17. TESTING ANTIFUNGAL ACTIVITY OF SOME ESSENTIAL OILS USING FLOW CYTOMETRY

    Directory of Open Access Journals (Sweden)

    Crina Saviuc

    2012-09-01

    Full Text Available The use of natural antifungal compounds has become a viable alternative for fighting fungal infections since high rates of resistance to synthetic antifungal compounds has emerged. Classical techniques aimed to routinely investigate fungal susceptibility are often limited when using natural essential oils, because of their instability and great volatility that may lead to false results. In this study, we report the results obtained by classical antimicrobial susceptibility testing techniques and flow cytometry regarding the effect of some volatile oils on different Candida clinical isolates. The obtained results revealed that flow cytometry is a very useful and precise technique in investigating the influence of essential oils on the fungal cells, surpassing the disadvantage of their volatility and thus reducing false results often obtained by using the classical methods.

  18. Antifungal activities of thiosemicarbazones and semicarbazones against mycotoxigenic fungi

    Directory of Open Access Journals (Sweden)

    Rojane de Oliveira Paiva

    2014-12-01

    Full Text Available Mycotoxigenic fungi can compromise the quality of food, exposing human and animal health at risk. The antifungal activity of eight thiosemicarbazones (1-8 and nine semicarbazones (9-17 was evaluated against Aspergillus flavus, A. nomius, A. ochraceus, A. parasiticus and Fusarium verticillioides. Thiosemicarbazones had MIC values of 125-500 µg/ml. The thiosemicarbazones 1 and 2 exerted fungistatic activity against Aspergillus spp., and thiosemicarbazone 2 exerted fungicidal activity against F. verticillioides. Compound 2 showed an iron chelating effect of 63%. The ergosterol content of A. parasiticus had a decrease of 28 and 71% for the 31.2 and 62.5 µg/ml concentrations of thiosemicarbazone 2 compared to the control. The obtained results of antifungal activity revealed that thiosemicarbazone class was more active when compared to semicarbazone class and, the thiosemicarbazone 2 was the most active compound, specially, against Aspergillus spp.

  19. Design, synthesis and antifungal activity of novel furancarboxamide derivatives.

    Science.gov (United States)

    Wen, Fang; Jin, Hong; Tao, Ke; Hou, Taiping

    2016-09-14

    Twenty-seven novel furancarboxamide derivatives with a diphenyl ether moiety were synthesized and evaluated for their antifungal activity against Rhizoctonia solani, Botrytis cirerea, Valsa mali and Sphaceloma ampelimum. Antifungal bioassay results indicated that most compounds had good or excellent fungicidal activities for R. solani and S. ampelimum at 20 mg L(-1). Among synthesized compounds, compound 18e showed a greater inhibitory effect against S. ampelimum, with half maximal effective concentration (EC50) values of 0.020 mg L(-1). This strong activity rivals currently used commercial fungicides, such as Boscalid and Carbendazim, and has great potential as a lead compound for future development of novel fungicides. PMID:27191618

  20. Antifungal activity of nicotine and its cadmium complex

    International Nuclear Information System (INIS)

    Nicotine and its metal complex; Cd(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activities against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cadmium(II) iodide was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine is quite effective against the rare pathogenic and Non pathogenic fungi but comparatively less effective against Pathogenic fungi. Nicotine was found to be completely ineffective against the selected species of Occasional pathogenic fungi. Cadmium(II) iodide effectively inhibited Pathogenic and Non pathogenic fungi whereas relatively ineffective against the Occasional pathogenic and Rare pathogenic fungi. On the other hand, Cadmium(II) nicotine complex inhibited all the selected species of fungi except Fusarium solani. (author)

  1. A Novel Infrared Radiant Glaze Exhibiting Antibacterialand Antifungal Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Infrared radiant powder was synthesized by conventional ceramic processing techniques by using Fe2O3, MnO2, CuO, Co2O3 and kaolin as raw materials. A novel infrared radiant glaze was developed by introducing the infrared radiant powder into glazing as a functional additive. Infrared radiant characteristics of the powder and the glaze were investigated. The optimum content of infrared radiant powder in glazing was ascertained to be 5%. The infrared radiant glaze exhibits significant antibacterial and antifungal functions due to the thermal effect of infrared radiation. Antibacterial percentages of the glaze reach 91%-100% when Escherichia coli, Staphylococcus aureus and Bacillus subtilis are used as model bacterium respectively, while antifungal percentage of the glaze exceeds 95% when Penicillum citrinum is used as model fungus.

  2. Conventional and alternative antifungal therapies to oral candidiasis

    Directory of Open Access Journals (Sweden)

    Paula Cristina Anibal

    2010-12-01

    Full Text Available Candida-associated denture stomatitis is the most common form of oral candidal infection, with Candida albicans being the principal etiological agent. Candida adheres directly or via an intermediary layer of plaque-forming bacteria to denture acrylic. Despite antifungal therapy to treat denture stomatitis, infection is reestablished soon after the treatment ceases. In addition, many predisposing factors have been identified as important in the development of oral candidiasis, including malnourishment, common endocrine disorders, such as diabetis mellitus, antibacterial drug therapy, corticosteroids, radiotherapy and other immunocompromised conditions, such as acquired immunodeficiency syndrome (AIDS. These often results in increased tolerance to the most commonly used antifungals. So this review suggests new therapies to oral candidiasis.

  3. Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives.

    Science.gov (United States)

    Li, Rongchun; Guo, Zhanyong; Jiang, Pingan

    2010-09-01

    Three novel quaternary chitosan derivatives were successfully synthesized by reaction of chloracetyl chitosan (CACS) with pyridine (PACS), 4-(5-chloro-2-hydroxybenzylideneamino)-pyridine (CHPACS), and 4-(5-bromo-2-hydroxybenzylideneamino)-pyridine (BHPACS). The chemical structure of the prepared chitosan derivatives was confirmed by Fourier transform infrared (FT-IR) and (13)C nuclear magnetic resonance ((13)C NMR) and their antifungal activity against Cladosporium cucumerinum, Monilinia fructicola, Colletotrichum lagenarium, and Fusarium oxysporum was assessed. Comparing with the antifungal activity of chitosan, CACS, and PACS, CHPACS and BHPACS exhibited obviously better inhibitory effects, which should be related to the synergistic reaction of chitosan itself with the grafted 2-[4-(5-chloro-2-hydroxybenzylideneamino)-pyridyl]acetyl and 2-[4-(5-bromo-2-hydroxybenzylideneamino)-pyridyl]acetyl. PMID:20615498

  4. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans.

    Science.gov (United States)

    Li, Wen-Ru; Shi, Qing-Shan; Dai, Huan-Qin; Liang, Qing; Xie, Xiao-Bao; Huang, Xiao-Mo; Zhao, Guang-Ze; Zhang, Li-Xin

    2016-01-01

    The antifungal activity, kinetics, and molecular mechanism of action of garlic oil against Candida albicans were investigated in this study using multiple methods. Using the poisoned food technique, we determined that the minimum inhibitory concentration of garlic oil was 0.35 μg/mL. Observation by transmission electron microscopy indicated that garlic oil could penetrate the cellular membrane of C. albicans as well as the membranes of organelles such as the mitochondria, resulting in organelle destruction and ultimately cell death. RNA sequencing analysis showed that garlic oil induced differential expression of critical genes including those involved in oxidation-reduction processes, pathogenesis, and cellular response to drugs and starvation. Moreover, the differentially expressed genes were mainly clustered in 19 KEGG pathways, representing vital cellular processes such as oxidative phosphorylation, the spliceosome, the cell cycle, and protein processing in the endoplasmic reticulum. In addition, four upregulated proteins selected after two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) analysis were identified with high probability by mass spectrometry as putative cytoplasmic adenylate kinase, pyruvate decarboxylase, hexokinase, and heat shock proteins. This is suggestive of a C. albicans stress responses to garlic oil treatment. On the other hand, a large number of proteins were downregulated, leading to significant disruption of the normal metabolism and physical functions of C. albicans. PMID:26948845

  5. Synthesis of Novel Pyrimethanil Grafted Chitosan Derivatives with Enhanced Antifungal Activity

    Science.gov (United States)

    Liu, Song; Xing, Ronge; Chen, Xiaolin

    2016-01-01

    In this study, three pyrimethanil grafted chitosan (PML-g-CS) derivatives were obtained. The structures of the conjugates were confirmed by FT-IR, 1H NMR, and EA. The grafting ratios were measured by HPLC. Antifungal properties of pyrimethanil grafted chitosan (PML-g-CS) derivatives against the plant pathogenic fungi Rhizoctonia solani and Gibberella zeae were investigated at concentrations of 100, 200, and 400 mg/L. The PML-g-CS derivatives showed enhanced antifungal activity in comparison with chitosan. The PML-g-CS-1 showed the best antifungal activity against R. solani, whose antifungal index was 58.32%. The PML-g-CS-2 showed the best antifungal activity against G. zeae, whose antifungal index was 53.48%. The conjugation of chitosan and pyrimethanil showed synergistic effect. The PML-g-CS derivatives we developed showed potential for further study and application in crop protection. PMID:27529072

  6. ANTIFUNGAL ACTIVITY OF NEEM (Azadirachta indica: MELIACEAE) EXTRACTS AGAINST DERMATOPHYTES

    OpenAIRE

    Ospina Salazar, Daniel Iván; Hoyos Sánchez, Rodrigo Alberto; Fernando OROZCO SÁNCHEZ; Myrtha ARANGO ARTEAGA; Luisa Fernanda GÓMEZ LONDOÑO

    2015-01-01

    In order to assess the antifungal activity of methanolic extracts from neem tree (Azadirachta indica A. Juss.), several bioassays were conducted following M38-A2 broth microdilution method on 14 isolates of the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum. Neem extracts were obtained through methanol-hexane partitioning of mature green leaves and seed oil. Furthermore, high performance liquid chromatography (HPLC) analyses were...

  7. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    OpenAIRE

    Kanniah Rajasekaran; Jian Chen; BECNEL, JAMES J.; Natasha M. Agramonte; Bernier, Ulrich R.; Maia Tsikolia; Kemal Husnu Can Baser; Betul Demirci; David E. Wedge; Nurhayat Tabanca; Sampson, Blair J.; Hamidou F. Sakhanokho; James M. Spiers

    2013-01-01

    The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum...

  8. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  9. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

    OpenAIRE

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-01-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and ...

  10. Mechanism of Action of Efinaconazole, a Novel Triazole Antifungal Agent

    OpenAIRE

    Tatsumi, Yoshiyuki; Nagashima, Maria; Shibanushi, Toshiyuki; Iwata, Atsushi; Kangawa, Yumi; Inui, Fumie; Siu, William J. Jo; Pillai, Radhakrishnan; Nishiyama, Yayoi

    2013-01-01

    The mechanism of action of efinaconazole, a new triazole antifungal, was investigated with Trichophyton mentagrophytes and Candida albicans. Efinaconazole dose-dependently decreased ergosterol production and accumulated 4,4-dimethylsterols and 4α-methylsterols at concentrations below its MICs. Efinaconazole induced morphological and ultrastructural changes in T. mentagrophytes hyphae that became more prominent with increasing drug concentrations. In conclusion, the primary mechanism of action...

  11. Bioassay for SF 86-327, a new antifungal agent.

    OpenAIRE

    Kan, V L; Henderson, D. K.; Bennett, J.E.

    1986-01-01

    A bioassay with Trichophyton mentagrophytes is described for SF 86-327, an allylamine antifungal agent. SF 86-327 serum concentrations were measured by bioassay in 117 serum sampler from five patients receiving 500 mg/day. The peak, trough, and area under the concentration-time curve were determined after the first dose and at steady state. Drug accumulation occurred with prolonged therapy.

  12. Caenorhabditis elegans-based Model Systems for Antifungal Drug Discovery

    OpenAIRE

    Cleo G Anastassopoulou; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2011-01-01

    The substantial morbidity and mortality associated with invasive fungal infections constitute undisputed tokens of their severity. The continued expansion of susceptible population groups (such as immunocompromised individuals, patients undergoing extensive surgery, and those hospitalized with serious underlying diseases especially in the intensive care unit) and the limitations of current antifungal agents due to toxicity issues or to the development of resistance, mandate the development of...

  13. Peptide-based Antifungal Therapies against Emerging Infections

    OpenAIRE

    Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S-T; Mixson, A. J.

    2010-01-01

    Acquired drug resistance to mycotic infections is rapidly emerging as a major medical problem. Opportunistic fungal infections create therapeutic challenges, particularly in high risk immunocompromised patients with AIDS, cancer, and those undergoing transplantation. Higher mortality and/or morbidity rates due to invasive mycosis have been increasing over the last 20 years, and in light of growing resistance to commonly used antibiotics, novel antifungal drugs and approaches are required. Cur...

  14. Antifungal Activity of Ellagic Acid In Vitro and In Vivo.

    Science.gov (United States)

    Li, Zhi-Jian; Guo, Xin; Dawuti, Gulina; Aibai, Silafu

    2015-07-01

    Ellagic acid (EA) has been shown to have antioxidant, antibacterial, and anti-inflammatory activities. In Uighur traditional medicine, Euphorbia humifusa Willd is used to treat fungal diseases, and recent studies suggest that it is the EA content which is responsible for its therapeutic effect. However, the effects of EA on antifungal activity have not yet been reported. This study aimed to investigate the inhibitory effect of EA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the National Committee for Clinical Laboratory Standards (M38-A and M27-A2) standard method in vitro. EA had a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 18.75 and 58.33 µg/ml. EA was also active against two Candida strains, with MICs between 25.0 and 75.0 µg/ml. It was inactive against Candida glabrata. The susceptibility of six species of dermatophytes to EA was comparable with that of the commercial antifungal, fluconazole. The most sensitive filamentous species was Trichophyton rubrum (MIC = 18.75 µg/ml). Studies on the mechanism of action using an HPLC-based assay and an enzyme linked immunosorbent assay showed that EA inhibited ergosterol biosynthesis and reduced the activity of sterol 14α-demethylase P450 (CYP51) in the Trichophyton rubrum membrane, respectively. An in vivo test demonstrated that topical administration of EA (4.0 and 8.0 mg/cm(2) ) significantly enhanced the cure rate in a guinea-pig infection model of Trichophyton rubrum. The results suggest that EA has the potential to be developed as a natural antifungal agent. PMID:25919446

  15. Interaction of Common Azole Antifungals with P Glycoprotein

    OpenAIRE

    Wang, Er-jia; Lew, Karen; Casciano, Christopher N.; Clement, Robert P.; Johnson, William W.

    2002-01-01

    Both eucaryotic and procaryotic cells are resistant to a large number of antibiotics because of the activities of export transporters. The most studied transporter in the mammalian ATP-binding cassette transporter superfamily, P glycoprotein (P-gp), ejects many structurally unrelated amphiphilic and lipophilic xenobiotics. Observed clinical interactions and some in vitro studies suggest that azole antifungals may interact with P-gp. Such an interaction could both affect the disposition and ex...

  16. In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus

    OpenAIRE

    Steinbach, William J.; Schell, Wiley A.; Blankenship, Jill R.; Onyewu, Chiatogu; Heitman, Joseph; Perfect, John R.

    2004-01-01

    The optimal treatment for invasive aspergillosis remains elusive, despite the increased efficacy of newer agents. The immunosuppressants cyclosporine (CY), tacrolimus (FK506), and sirolimus (formerly called rapamycin) exhibit in vitro and in vivo activity against Candida albicans, Cryptococcus neoformans, and Saccharomyces cerevisiae, including fungicidal synergy with azole antifungals. We report here that both FK506 and CY exhibit a clear in vitro positive interaction with caspofungin agains...

  17. Persistence of histoplasma in adrenals 7 years after antifungal therapy

    Directory of Open Access Journals (Sweden)

    Deepak Kothari

    2013-01-01

    Full Text Available Adrenal histoplasmosis is an uncommon cause for adrenal insufficiency. The duration of treatment for adrenal histoplasmosis is not clear. Existing treatment regimens advocate antifungals given for periods ranging from 6 months to 2 years. We report here a rare case who showed persistence of histoplasma in adrenal biopsy 7 years after being initially treated with itraconazole for 9 months. This calls for a prolonged therapy with regular review of adrenal morphology and histology in these patients.

  18. SUSCEPTIBILITY OF CANDIDA SPECIES TO ANTIFUNGAL DRUGS IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Geeta M Vaghela

    2015-06-01

    Full Text Available Introduction: The increase in candidaemia is associated with high mortality. A shift has been observed in the relative frequency of each Candida spp. isolated from blood. Options of the antifungal drugs available for treatment of systemic and invasive candidiasis are restricted to polyenes, allylamines, azoles and recently developed echinocandin class of molecules. A rise in the incidence of antifungal resistance to Candida spp. has also been reported over the past decade. Studies on prevalence of infections and antifungal susceptibility testing are useful in deciding clinical strategies. Aims: To do species level identification and detect resistance, if any, among Indian clinical isolates of C. albicans. Methodology: From total 135 patients from a tertiary care hospital of Gujarat, Candida species were isolated from different clinical specimens. The growth of Candida on Sabouraud's dextrose agar was confirmed by Gram staining in which gram positive budding fungal cells were observed. Then its growth was examined for colony morphology on Sabouraud's dextrose agar and chlamydospore production on Corn meal tween 80 agar. Germ tube tests and other biochemical tests like sugar fermentation, sugar assimilation and urease test were performed to identify the species of Candida. Antifungal susceptibility testing was performed by NCCLS M44-A Disc diffusion method. Results: Out of total 135 samples, C. Albicans were isolated from 52 (38.5%. Among Non Albican Candid (NAC, Candida glabrata was 36 (26.7% followed by Candida tropicalis 25(18.5%. C. albicans was found resistant to Fluconazole, Itraconazole and Amphotericine B in 3.8%, 3.8% and 1.9% cases respectively. For NAC, resistance of Fluconazole, Itraconazole and Amphotericine B was found in 4.8%, 3.6% and 2.4% cases respectively. [Natl J Med Res 2015; 5(2.000: 122-126

  19. Two Novel Antifungal Saponins from Tibetan Herbal Medicine Clematis tangutica

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Antifungal assay-guided isolation of the ethanol extract of the aerial parts of Clematis tangutica yielded two novel triterpene saponins. Their structures were determined to be 3-O-α-L-arabinopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl ester (1) and 3-O-β-D- glucopyranosyl-(1→4)-α-L-arabinopyranosyl hederagenin 28-O-α-L-rhamnopyranosyl ester (2) on the basis of spectral data and chemical reactions.

  20. Antifungal activity of aloe vera gel against plant pathogenic fungi

    International Nuclear Information System (INIS)

    Aloe vera gel extracted from the Aloe vera leaves was evaluated for their antifungal activity at the rate of 0.15%, 0.25% and 0.35% concentration against five plants pathogenic fungi viz., Aspergillus niger, Aspergillus flavus, Alternaria alternata, Drechslera hawaiensis and Penicillum digitatum 0.35% concentration Aloe vera gel completely inhibited the growth of Drechslera hawaiensis and Alternaria alternata. (author)

  1. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    OpenAIRE

    Shrestha, Sanjib K.; Cheng-Wei T Chang; Meissner, Nicole; Oblad, John; Shrestha, Jaya P.; Sorensen, Kevin N.; Michelle M. Grilley; Jon Y Takemoto

    2014-01-01

    K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20′s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were de...

  2. Standardization of Antifungal Susceptibility Variables for a Semiautomated Methodology

    OpenAIRE

    Rodríguez-Tudela, Juan L.; Cuenca-Estrella, Manuel; Díaz-Guerra, Teresa M.; Mellado, Emilia

    2001-01-01

    Recently, the methodology that will serve as a basis of the standard for antifungal susceptibility testing of fermentative yeasts of the European Committee on Antibiotic Susceptibility Testing has been described. This procedure employs a spectrophotometric method for both inoculum adjustment and endpoint determination. However, the utilization of a spectrophotometer requires studies for standardization. The present work analyzes the following parameters: (i) accuracy of inoculum preparation, ...

  3. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    OpenAIRE

    Shrestha, Sanjib K.; Cheng-Wei Tom Chang; Nicole eMeissner; John eOblad; Shrestha, Jaya P.; Sorensen, Kevin N.; Michelle M. Grilley; Jon Y Takemoto

    2014-01-01

    K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were d...

  4. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    OpenAIRE

    BIASI-GARBIN, Renata Perugini; Fernanda de Oliveira DEMITTO; Renata Claro Ribeiro do AMARAL; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Lilian Cristiane BAEZA; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from...

  5. Antifungal methylphenone derivatives and 5-methylcoumarins from Mutisia friesiana.

    Science.gov (United States)

    Viturro, Carmen I; de la Fuente, Juana R; Maier, Marta S

    2003-01-01

    In addition to the known mutisicoumarin A, the aerial parts of the shrub Mutisia friesiana afforded five new methylphenones, two new 5-methylcoumarins and a new related chromone. Their structures were elucidated by spectroscopic methods 13C NMR data for mutisicoumarin A are reported for the first time. Mutisiphenones A and B and mutisicoumarin A showed antifungal activity against the phytopathogenic fungus Cladosporium cucumerinum. PMID:12939040

  6. Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica.

    Science.gov (United States)

    Ioset, J R; Marston, A; Gupta, M P; Hostettmann, K

    2000-03-01

    In addition to the known cordiaquinones A and B, two novel meroterpenoid naphthoquinones, named cordiaquinones J and K, have been isolated from the roots of Cordia curassavica. Their structures were elucidated by spectrometric methods including EI, D/CI mass spectrometry, 1H, 13C and 2D-NMR experiments. The four naphthoquinones demonstrated antifungal activities against Cladosporium cucumerinum, Candida albicans and toxic properties against larvae of the yellow fever-transmitting mosquito Aedes aegypti. PMID:10724189

  7. Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species

    Directory of Open Access Journals (Sweden)

    Gerard Vilarem

    2010-09-01

    Full Text Available The essential oil of the aerial part (leaves, flowers and stem of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were α-terpinene (51.3%, p-cymene (23.4% and p-mentha-1,8-diène (15.3%. The antifungal properties of this essential oil were investigated in vitro by the well diffusion and broth microdilution methods. The in vitro antifungal activity was concentration dependent and minimum inhibitory concentration values varied from 0.25 to 2 mg/mL. The in vivo antifungal activity was evaluated on an induced vaginal candidiasis rat model. The in vivo activity of the oil on mice vaginal candidiasis was not dose-dependent. Indeed, all the three tested doses; 0.1%, 1% and 10% led to the recovery of mice from the induced infection after 12 days of treatment. The effect of the essential oil on C. albicans ATCC 1663 fatty acid profile was studied. This oil has a relatively important dose-dependent effect on the fatty acids profile.

  8. An overview of antifungal peptides derived from insect.

    Science.gov (United States)

    Faruck, Mohammad Omer; Yusof, Faridah; Chowdhury, Silvia

    2016-06-01

    Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases. PMID:26093218

  9. In vitro Antifungal Activity of Luliconazole against Trichophyton spp.

    Science.gov (United States)

    Maeda, Jun; Nanjoh, Yasuko; Koga, Hiroyasu; Toga, Tetsuo; Makimura, Koichi; Tsuboi, Ryoji

    2016-01-01

    The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of luliconazole against Trichophyton rubrum (14 strains) and Trichophyton mentagrophytes (14 strains), which are the most common cause of tinea, were compared with those of 6 topical antifungal drugs of lanoconazole, bifonazole, efinaconazole, liranaftate, naftifine and terbinafine. Luliconazole showed the most potent antifungal activity (MIC90 =0.00098 μg/ml and MFC90 =0.0078 μg/ml) among the compounds tested against the two species. Efinaconazole and bifonazole, the drug of azole-class, showed a large MFC/MIC ratio. On the other hand, these ratios of luliconazole and lanoconazole were as small as those of liranaftate, naftifine and terbinafine which are thought to possess fungicidal mechanism. These results suggest that luliconazole possesses fungicidal activity against both species of Trichophyton. In this study, we found that luliconazole had the most potent antifungal activity among the major topical antimycotics used in Japan and the US. Luliconazole would be the best-in-class drug for dermatophytosis in clinics. PMID:26936346

  10. New and emerging antifungal agents: impact on respiratory infections.

    Science.gov (United States)

    Feldmesser, Marta

    2003-01-01

    Fungal pathogens are increasingly important causes of respiratory disease, yet the number of antifungal agents available for clinical use is limited. Use of amphotericin B deoxycholate is hampered by severe toxicity. Triazole agents currently available have significant drug interactions; fluconazole has a limited spectrum of activity and itraconazole was, until recently, available only in oral formulations with limited bioavailability. The development of resistance to all three agents is increasingly being recognized and some filamentous fungi are resistant to the action of all of these agents. In the past few years, new antifungal agents and new formulations of existing agents have become available.The use of liposomal amphotericin B preparations is associated with reduced, but still substantial, rates of nephrotoxicity and infusion-related reactions. An intravenous formulation of itraconazole has been introduced, and several new triazole agents have been developed, with the view of identifying agents that have enhanced potency, broader spectra of action and improved pharmacodynamic properties. One of these, voriconazole, has completed large-scale clinical trials. In addition, caspofungin, the first of a new class of agents, the echinocandins, which inhibit cell wall glucan synthesis, was approved for use in the US in 2001 as salvage therapy for invasive aspergillosis. It is hoped that the availability of these agents will have a significant impact on the morbidity and mortality of fungal respiratory infections. However, at the present time, our ability to assess their impact is limited by the problematic nature of conducting trials for antifungal therapy. PMID:14719990

  11. Antifungal defensins and their role in plant defense

    Directory of Open Access Journals (Sweden)

    Ariane eLacerda

    2014-04-01

    Full Text Available Since the beginning of the 90’s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP have been studied. However, Broekaert only coined the term plant defensin in 1995, after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity towards microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM. Its low effective concentration towards fungi, ranging from 0.1 to 10 µM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90’s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i the most studied plant defensins and their fungal targets; (ii the molecular features of plant defensins and their relation with antifungal activity; (iii the possibility of using plant defensin(s genes to generate fungi resistant GM crops and biofungicides; and (iv a brief discussion about the absence of products in the market containing plant antifungal defensins.

  12. Pyridine-grafted chitosan derivative as an antifungal agent.

    Science.gov (United States)

    Jia, Ruixiu; Duan, Yunfei; Fang, Qiang; Wang, Xiangyang; Huang, Jianying

    2016-04-01

    Pyridine moieties were introduced into chitosan by nucleophilic substitution to afford N-(1-carboxybutyl-4-pyridinium) chitosan chloride (pyridine chitosan). The resulting chitosan derivative was well characterized, and its antifungal activity was examined, based on the inhibition of mycelial growth and spore germination. The results indicated that pyridine chitosan exhibited enhanced antifungal activity by comparison with pristine chitosan. The values of the minimum inhibitory concentration and the minimal fungicidal concentration of pyridine chitosan against Fulvia fulva were 0.13 mg/ml and 1 mg/ml, respectively, while the corresponding values against Botrytis cinerea were 0.13 mg/ml and 4 mg/ml, respectively. Severe morphological changes of pyridine chitosan-treated B. cinerea were observed, indicative that pyridine chitosan could damage and deform the structure of fungal hyphae and subsequently inhibit strain growth. Non-toxicity of pyridine chitosan was demonstrated by an acute toxicity study. These results are beneficial for assessing the potential utilization of this chitosan derivative and for exploring new functional antifungal agents with chitosan in the food industry. PMID:26593505

  13. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

    2013-01-01

    Full Text Available New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2 to enhance the antibacterial and anti fungal potency of Alovera extract when compared to bulk tinoxide (SnO2.  The possible advantage and limitations of this result will be discussed. It is hoped that this study would lead to the establishment of nanomaterial compounds that could be used to formulate new and more potent antimicrobial drugs of natural origin. Antibacterial activity of Alovera extracts was checked against these gram positive isolates of Staphylococcus aureus, Escherichia Coli E, Salmonella Typhi, Streptococcus pyogenes and gram negative isolates of Pseudomonas Aeruginosa. We observed that effective anti-bacterial and anti-fungal activities for SnO2 nanoparticles, particularly for Streptococcus pyogenes microorganisms and antifungal microorganisms of Aspergillus niger, Mucor indicus microorganism than bulk SnO2.

  14. Innovative phytosynthesized silver nanoarchitectures with enhanced antifungal and antioxidant properties

    Science.gov (United States)

    Ortan, Alina; Fierascu, Irina; Ungureanu, Camelia; Fierascu, Radu Claudiu; Avramescu, Sorin Marius; Dumitrescu, Ovidiu; Dinu-Pirvu, Cristina Elena

    2015-12-01

    While in the early era of nanotechnology, nanoparticles of noble metals were obtained through expensive methods, using toxic chemical reagents, in the last decade attempts are made to obtain the desired chemical composition, size, morphology, and other properties by eco and green synthesis, using plants. The aim of this paper is to compare two extraction methods (hydroalcoholic extraction and microwave extraction) used to phytosynthesize silver nanoparticles, in terms of nanoparticle (NP) morphology, antioxidant, and antifungal action, using an European native plant, Anthriscus cerefolium (L.) Hoffm. The extracts and the obtained NPs were characterized by modern analytical techniques (GC-MS, UV-Vis, SEM, TEM) and by phytochemical assays (total flavonoids, total terpenoids and total phenolic content). The antifungal activity (evaluated using the Kirby-Bauer method, against Aspergillus niger and Penicillium hirsutum) and the antioxidant activity (determined by the DPPH assay and a chemiluminescence assay) revealed notable differences between the samples, differences due to the extraction procedure followed. Also, preliminary studies regarding the stability and the toxicity of the nanoparticles are presented. By using the microwave-assisted extraction, not only smaller particles (less than 10 nm) were obtained, but also with better antifungal and antioxidant properties than the ones obtained by classical extraction.

  15. Antifungal activity of topical microemulsion containing a thiophene derivative

    Directory of Open Access Journals (Sweden)

    Geovani Pereira Guimarães

    2014-06-01

    Full Text Available Fungal infections have become a major problem of worldwide concern. Yeasts belonging to the Candida genus and the pathogenic fungus Cryptococcus neoformans are responsible for different clinical manifestations, especially in immunocompromised patients. Antifungal therapies are currently based on a few chemotherapeutic agents that have problems related to effectiveness and resistance profiles. Microemulsions are isotropic, thermodynamically stable transparent systems of oil, water and surfactant that can improve the solubilization of lipophilic drugs. Taking into account the need for more effective and less toxic drugs along with the potential of thiophene derivatives as inhibitors of pathogenic fungi growth, this study aimed to evaluate the antifungal activity of a thiophene derivative (5CN05 embedded in a microemulsion (ME. The minimum inhibitory concentration (MIC was determined using the microdilution method using amphotericin B as a control. The formulations tested (ME- blank and ME-5CN05 showed physico-chemical properties that would allow their use by the topical route. 5CN05 as such exhibited moderate or weak antifungal activity against Candida species (MIC = 270-540 µg.mL-1 and good activity against C. neoformans (MIC = 17 µg.mL-1. Candida species were susceptible to ME-5CN05 (70-140 µg.mL-1, but C. neoformans was much more, presenting a MIC value of 2.2 µg.mL-1. The results of this work proved promising for the pharmaceutical industry, because they suggest an alternative therapy against C. neoformans.

  16. Antifungal defensins and their role in plant defense.

    Science.gov (United States)

    Lacerda, Ariane F; Vasconcelos, Erico A R; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term "plant defensin," after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins. PMID:24765086

  17. Use of the Sensititre Colorimetric Microdilution Panel for Antifungal Susceptibility Testing of Dermatophytes

    OpenAIRE

    Pujol, I.; Capilla, J.; Fernández-Torres, B.; Ortoneda, M.; Guarro, J.

    2002-01-01

    The Sensititre YeastOne antifungal panel was used to test 49 dermatophytes belonging to the species Epidermophyton floccosum, Microsporum gypseum, Microsporum canis, Trichophyton tonsurans, Trichophyton rubrum, and Trichophyton mentagrophytes. The MICs of four antifungals obtained with the Sensititre YeastOne antifungal panel were compared with those obtained by the reference NCCLS microdilution method. The levels of agreement between the two methods (≤2 dilutions) were 81.6% with amphoterici...

  18. Anti-fungal activity of Morinda citrifolia (noni) extracts against Candida albicans: An in vitro study

    OpenAIRE

    K Barani; Sunayana Manipal; D Prabu; Adil Ahmed; Preethi Adusumilli; C Jeevika

    2014-01-01

    Aim: The aim of this study was to investigate the anti-fungal activity of Morinda citrifolia fruit extract on Candida albicans. Materials and Methods: Juice extract from M. citrifolia fruit was lyophilized and used in anti-fungal testing. Anti-fungal activity of M. citrifolia fruit extract against C. albicans was tested in vitro at various concentrations. The inhibitory effect of M. citrifolia extract on C. albicans was determined by agar culture and applied broth dilution test. Resul...

  19. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    OpenAIRE

    Seung-Bae Lee

    2016-01-01

    Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV) and sweet bee venom (SBV) against Candida albicans (C. albicans) clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC) strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC) assays were performed by ...

  20. In Vitro Screening of 10 Edible Thai Plants for Potential Antifungal Properties

    OpenAIRE

    Supattra Suwanmanee; Thitinan Kitisin; Natthanej Luplertlop

    2014-01-01

    Growing rates of fungal infections and increasing resistance against standard antifungal drugs can cause serious health problems. There is, therefore, increasing interest in the potential use of medicinal plants as novel antifungal agents. This study investigates the antifungal properties of crude plant extracts from ten medicinal plant species. Crude samples were extracted using the hot water extraction process. The minimum inhibitory concentrations (MIC) and diameter zone of inhibition were...

  1. Exploring the Molecular Basis of Antifungal Synergies Using Genome-Wide Approaches

    OpenAIRE

    Agarwal, Ameeta K.; Tripathi, Siddharth K.; Xu, Tao; Jacob, Melissa R.; Li, Xing-Cong; Clark, Alice M.

    2012-01-01

    Drug resistance poses a significant challenge in antifungal therapy since resistance has been found for all known classes of antifungal drugs. The discovery of compounds that can act synergistically with antifungal drugs is an important strategy to overcome resistance. For such combination therapies to be effective, it is critical to understand the molecular basis for the synergism by examining the cellular effects exerted by the combined drugs. Genomic profiling technologies developed in the...

  2. Anti-fungal activities of medicinal plants extracts of Ivorian pharmacopoeia

    OpenAIRE

    Mathieu, Kra Adou Koffi; Marcel, Ahon Gnamien; Djè, Djo-Bi; Sitapha, Ouattara; Adama, Coulibaly; Joseph, Djaman Allico

    2014-01-01

    Aim: This study was to evaluate in vitro anti-fungal activity of aqueous and hydroethanolic from medicinal plants extracts collected in Côte d’Ivoire. Materials and Methods: Plants extracts were prepared by homogenization and separately incorporated to Sabouraud agar using the agar slanted double dilution method. Ketoconazole was used as standards for anti-fungal assay. The anti-fungal tests were performed by sowing 1000 cells of Candida albicans on the previously prepared medium culture. Ant...

  3. Evaluation of antifungal potential of selected medicinal plants against human pathogenic fungi

    OpenAIRE

    Hayat Sakander; Bhat Akhilesh; A Raveesha Koteshwara

    2015-01-01

    Context: Evaluation of medicinal plants used in traditional medicine lead to novel bioactive compounds with antifungal activity that could be exploited as therapeutic agents. Aims: The aim was to screen selected medicinal plants for antifungal activity against three important human pathogenic fungi and to identify the broad group of phytochemicals responsible for the activity. Materials and Methods: A total of 8 medicinal plants were screened for antifungal activity against three human pathog...

  4. Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones

    OpenAIRE

    Saeed Emami; Hamid Irannejad; Mehraban Falahati; Adile Ayati

    2012-01-01

    Abstract Background The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorpora...

  5. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence.

    Science.gov (United States)

    Delarze, Eric; Sanglard, Dominique

    2015-11-01

    A restricted number of antifungal agents are available for the therapy of fungal diseases. With the introduction of epidemiological cut-off values for each agent in important fungal pathogens based on the distribution of minimal inhibitory concentration (MIC), the distinction between wild type and drug-resistant populations has been facilitated. Antifungal resistance has been described for all currently available antifungal agents in several pathogens and most of the associated resistance mechanisms have been deciphered at the molecular level. Clinical breakpoints for some agents have been proposed and can have predictive value for the success or failure of therapy. Tolerance to antifungals has been a much more ignored area. By definition, tolerance operates at antifungal concentrations above individual intrinsic inhibitory values. Important is that tolerance to antifungal agents favours the emergence of persister cells, which are able to survive antifungal therapy and can cause relapses. Here we will review the current knowledge on antifungal tolerance, its potential mechanisms and also evaluate the role of antifungal tolerance in the efficacy of drug treatments. PMID:26690338

  6. The search for antifungals from Amazonian trees: a bio-inspired screening.

    Science.gov (United States)

    Basseta, Charlie; Eparvier, Véronique; Espindolab, Laila S

    2015-04-01

    The anti-fungal activity of 60 extracts from 15 tree species in the French Guiana rainforest against human and wood-rotting fungi was studied. In this way (+)-mopanol (1) was isolated from the ethyl acetate extract of Peltogyne sp. (Caesalpiniaceae) wood. This work demonstrated that (1) the natural durability of wood can indeed guide the search for antifungal agents, (2) that extracts selected in this bio-inspired process exhibit a broad spectrum of antifungal activity and (3) that the method allows for the isolation of strongly active antifungals. PMID:25973487

  7. Antifungal activity ofOcimum sanctum Linn. (Lamiaceae) on clinically isolated dermatophytic fungi

    Institute of Scientific and Technical Information of China (English)

    Balakumar S; Rajan S; Thirunalasundari T; Jeeva S

    2011-01-01

    Objective:To assess antifungal activity ofOcimum sanctum leaves against dermatophytic fungi. Methods: Antifungal activity ofOcimum sanctum leaves was measured by38 A NCCLS method. Minimum inhibitory concentration(MIC) and minimum fungicidal concentration(MFC) of various extracts and fractions ofOcimum sanctum leaves were also determined.Results:Ocimum sanctum leaves possessed antifungal activity against clinically isolated dermatophytes at the concentration of200μg/mL.MICandMFC were high with water fraction (200 μg/mL) against dermatophytic fungi used.Conclusions:Ocimum sanctum has antifungal activity, and the leaf extracts may be a useful source for dermatophytic infections.

  8. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough.

    Science.gov (United States)

    Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Peyer, Lorenzo C; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    This study was undertaken to assess the antifungal performance of three different Lactobacillus species.Experiments were conducted in vitro and in situ to extend the shelf life of wheat bread. Standard sourdough analyses were performed characterising acidity and carbohydrate levels. Overall, the strains showed good inhibition in vitro against the indicator mould Fusarium culmorum TMW4.2043. Sourdough bread fermented with Lactobacillus amylovorus DSM19280 performed best in the in situ shelf life experiment. An average shelf life extension of six more mould-free days was reached when compared to the non-acidified control bread. A range of antifungal-active acids like 3-phenyllactic acid, 4-hydroxyphenyllactic acid and 2-hydroxyisocaproic acid in quantities between 0.1 and 360 mg/kg were present in the freeze-dried sourdoughs. Their concentration differed greatly amongst the species.However, a higher concentration of these compounds could not completely justify the growth inhibition of environmental moulds. In particular, although Lb. reuteri R29 produced the highest total concentration of these active compounds in the sourdough, its addition to bread did not result in a longest shelf life. Nevertheless, when the artificial compounds were spiked into a chemically acidified dough, it succeeded in a longer shelf life (+25 %) than achieved only by acidifying the dough. This provides evidence of their contribution to the antifungal activity and their synergy in concentration levels far below their single minimal inhibition concentrations under acidic conditions. PMID:26481620

  9. Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa.

    Science.gov (United States)

    Warrilow, Andrew G S; Price, Claire L; Parker, Josie E; Rolley, Nicola J; Smyrniotis, Christopher J; Hughes, David D; Thoss, Vera; Nes, W David; Kelly, Diane E; Holman, Theodore R; Kelly, Steven L

    2016-01-01

    Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min(-1), 5.6 min(-1) and 3.4 min(-1). CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 μM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 μM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 μM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 μM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development. PMID:27291783

  10. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Science.gov (United States)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  11. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    OpenAIRE

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.

  12. Antifungal activities of the leaves of three Pistacia species grown in Turkey.

    Science.gov (United States)

    Kordali, S; Cakir, A; Zengin, H; Duru, M E

    2003-02-01

    The crude extracts obtained from the leaves of Pistacia vera, Pistacia terebinthus and Pistacia lentiscus were tested for antifungal activities against three pathogenic agricultural fungi, Phythium ultimum, Rhizoctania solani and Fusarium sambucinum. The extracts significantly inhibited the growth of P. ultimum and R. solani. However, the antifungal activity was not observed against F. sambucinum. PMID:12628416

  13. Antibacterial, Antifungal and Cytotoxic Activities of Tuberous Roots of Amorphophallus campanulatus

    OpenAIRE

    Khan, Alam; Rahman, Moizur; Islam, Shariful

    2007-01-01

    Antibacterial, antifungal and cytotoxic activities of ethanol extract of tuberous roots of Amorphophallus campanulatus were studied. Disc diffusion technique was used to determine in vitro antibacterial and antifungal activities. Cytotoxicity was determined against brine shrimp nauplii. In addition, minimum inhibitory concentration (MIC) was determined using serial dilution technique to determine antibacterial potency. The extract showed significant antibacterial activities against four gram-...

  14. Antifungal prophylaxis during treatment for haematological malignancies: are we there yet?

    NARCIS (Netherlands)

    Rogers, T.R.; Slavin, M.A.; Donnelly, J.P.

    2011-01-01

    Antifungal prophylaxis during treatment for haematological malignancies has been studied for 50 years, yet it has not been wholly effective even when using antifungal drugs that exhibit potent activity in vitro against a broad range of fungal pathogens. Trials have demonstrated that it can reduce th

  15. In Vitro Investigation of Antifungal Activities of Actinomycetes against Microsporum gypseum

    Directory of Open Access Journals (Sweden)

    Naser Keikha

    2013-02-01

    Conclusion: The findings of the present research show that terrigenous actinomycetes have an antifungal effect upon Microsporum gypseum. So, one hopes that-in future-rather than administering antifungal chemicals that have side-effects, dermatophytic infections can be cured by applying these actinomycetes.

  16. Antifungal Activity of Flocculosin, a Novel Glycolipid Isolated from Pseudozyma flocculosa

    OpenAIRE

    Mimee, Benjamin; Labbé, Caroline; Pelletier, René; Bélanger, Richard R.

    2005-01-01

    Flocculosin, a glycolipid isolated from the yeast-like fungus Pseudozyma flocculosa, was investigated for in vitro antifungal activity. The compound displayed antifungal properties against several pathogenic yeasts. Synergistic activity was observed between flocculosin and amphotericin B, and no significant cytotoxicity was demonstrated when tested against human cell lines.

  17. Some Antifungal Properties of Sorbic Acid Extracted from Berries of Rowan (Sorbus Aucuparia).

    Science.gov (United States)

    Brunner, Ulrich

    1985-01-01

    The food preservative sorbic acid can be extracted from Eurasian mountain ash berries (commercially available) and used to show antifungal properties in microbiological investigations. Techniques for extraction, purification, ultraviolet analysis, and experiments displaying antifungal activity are described. A systematic search for similar…

  18. Synthesis of quarternary ammonium salts with dithiocarbamate moiety and their antifungal activities against Helminthosporium oryzae

    Indian Academy of Sciences (India)

    Mandeep Singh; Anita Garg; Anjali Sidhu; Vineet Kumar

    2013-05-01

    Quaternary ammonium salts containing dithiocarbamate moiety were synthesized and evaluated for their antifungal activities against Helminthosporium oryzae. All the synthesized compounds showed moderate to promising fungitoxicity against the test. Some of the synthesized compounds inflicted antifungal activity greater than the standard fungicide.

  19. Heterologous expression of new antifungal chitinase from wheat.

    Science.gov (United States)

    Singh, Arpita; Kirubakaran, S Isaac; Sakthivel, N

    2007-11-01

    Chitinases (EC 3.2.1.14) have been grouped into seven classes (class I-VII) on the basis of their structural properties. Chitinases expressed during plant-microbe interaction are involved in defense responses of host plant against pathogens. In the present investigation, chitinase gene from wheat has been subcloned and overexpressed in Escherichia coli BL-21 (DE3). Molecular phylogeny analyses of wheat chitinase indicated that it belongs to an acidic form of class VII chitinase (glycosyl hydrolase family 19) and shows 77% identity with other wheat chitinase of class IV and low level identity to other plant chitinases. The three-dimensional structural model of wheat chitinase showed the presence of 10 alpha-helices, 3 beta-strands, 21 loop turns and the presence of 6 cysteine residues that are responsible for the formation of 3 disulphide bridges. The active site residues (Glu94 and Glu103) may be suggested for its antifungal activity. Expression of chitinase (33 kDa) was confirmed by SDS-PAGE and Western hybridization analyses. The yield of purified chitinase was 20 mg/L with chitinase activity of 1.9 U/mg. Purified chitinase exerted a broad-spectrum antifungal activity against Colletotrichum falcatum (red rot of sugarcane) Pestalotia theae (leaf spot of tea), Rhizoctonia solani (sheath blight of rice), Sarocladium oryzae (sheath rot of rice) Alternaria sp. (grain discoloration of rice) and Fusarium sp. (scab of rye). Due to its innate antifungal potential wheat chitinase can be used to enhance fungal-resistance in crop plants. PMID:17697785

  20. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  1. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m2/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m2/g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl2 and NaBH4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl2, however, NaBH4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m2/g for 7 nm and 269 m2/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H+ efflux of the Candida species than 15 nm sized gold nanoparticles.

  2. 3-Methoxysampangine, a novel antifungal copyrine alkaloid from Cleistopholis patens.

    Science.gov (United States)

    Liu, S C; Oguntimein, B; Hufford, C D; Clark, A M

    1990-04-01

    Further examination of the active ethanolic extract of the root bark of Cleistopholis patens by using bioassay-directed fractionation resulted in the isolation of a new alkaloid, 3-methoxysampangine (compound I), together with three known alkaloids, eupolauridine (compound II), liriodenine (compound III), and eupolauridine N-oxide (compound IV). The proposed structure of compound I was based on its physicochemical properties and spectral data. 3-Methoxysampangine exhibited significant antifungal activity against Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. This is the first report of the isolation of liriodenine (compound III) from the root bark of C. patens. PMID:2188584

  3. Caerulomycin A- An antifungal compound isolated from marine actinomycetes.

    Digital Repository Service at National Institute of Oceanography (India)

    Ambavane, V.; Tokdar, P.; Parab, R.; Sreekumar, E.S.; Mahajan, G.B.; Mishra, P.D.; DeSouza, L.; Ranadive, P.

    of the most successful ap- proaches is to screen microbial resources to extract novel antifungal antibiotics. Drug discovery from natural products has been traditionally focused on empirical exploitation of the most prolific microbial groups: actinomycetes... obtained from mass, IR and 1H NMR spectra (Figures 3-5). In 1H NMR spectra, the signals at δ 7.8 and 7.35 were assigned for protons attached at C-3 and C-5 respectively. Proton at unsaturated C-7 appeared at δ 8.13 due to nitrogen and OH group being...

  4. SYNTHESIS AND ANTIFUNGAL ACTIVITY OF SOME SUBSTITUTED BENZIMIDAZOLE ANALOGUES

    Directory of Open Access Journals (Sweden)

    Mehendale Nitin P

    2012-07-01

    Full Text Available In the present scheme, we have an attempt to synthesize some novel benzimidazole derivatives by substituting triazole moiety at N-1 position of benzimidazole by fusion reaction of benzimidazole-1-acetic acid with thiocarbohydrazide. The substituted triazole was refluxed with different aromatic carboxylic acid in the presence of POCl3 yield different benzimidazole derivatives, respectively. The synthesized compounds were characterized by IR, 1H-NMR and Mass spectroscopy. The compounds were screened for antifungal (Candida albicans and Aspergillus niger activities.

  5. Antifungal saponins from Swartzia langsdorffii; Saponinas antifungicas de Swartzia langsdorffii

    Energy Technology Data Exchange (ETDEWEB)

    Marqui, Sara Regina de; Lemos, Renata Brionizio; Santos, Luciana Avila; Castro-Gamboa, Ian; Cavalheiro, Alberto Jose; Bolzani, Vanderlan da Silva; Silva, Dulce Helena Siqueira [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: dhsilva@iq.unesp.br; Scorzoni, Liliana; Fusco-Almeida, Ana Maria; Mendes-Giannini, Maria Jose Soares [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Faculdade de Ciencias Farmaceuticas; Young, Maria Claudia Marx; Torres, Luce Maria Brandao [Inst. de Botanica, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2008-07-01

    Chromatographic fractionation of the EtOH extract from the leaves of Swartzia langsdorffii afforded the pentacyclic triterpenes oleanolic acid and lupeol, and two saponins: oleanolic acid 3-sophoroside and the new ester 3-O-{beta}-D-(6'-methyl)-glucopyranosyl-28-O-{beta}-D-glucopyranosyl-oleanate. Their structures were elucidated from spectral data, including 2D NMR and HRESIMS experiments. Antifungal activity of all isolated compounds was evaluated, using phytopathogens Cladosporium cladosporioides and C. sphaerospermum, and human pathogens Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans. (author)

  6. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

    Science.gov (United States)

    Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2012-01-01

    Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms. PMID:22400016

  7. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

    OpenAIRE

    Al-Amiery, Ahmed A.; Abdul Amir H. Kadhum; Abu Bakar Mohamad

    2012-01-01

    Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using ...

  8. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2012-01-01

    Full Text Available Metal complexes of (Z-2-(pyrrolidin-2-ylidenehydrazinecarbothioamide (L with Cu(II, Co(II, and Ni(II chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.

  9. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.

    Science.gov (United States)

    Jeerapong, Chotika; Phupong, Worrapong; Bangrak, Phuwadol; Intana, Warin; Tuchinda, Patoomratana

    2015-04-15

    A new decalin derivative, trichoharzianol (1), together with three known compounds, eujavanicol A (2), 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3), and 4,6-dihydroxy-5-methylphthalide (4), were isolated from Trichoderma harzianum F031. For the first time, compounds 2-4 were reported from the Trichoderma species. Their structures were characterized by spectroscopic methods. Trichoharzianol (1) showed the highest antifungal activity against Colletotrichum gloeosporioides, with a minimum inhibitory concentration (MIC) of 128 μg/mL. PMID:25817439

  10. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    Directory of Open Access Journals (Sweden)

    Acosta-Torres LS

    2012-09-01

    Full Text Available Laura Susana Acosta-Torres,1 Irasema Mendieta,2 Rosa Elvira Nuñez-Anita,3 Marcos Cajero-Juárez,3 Víctor M Castaño41National School of Higher Education, School of Dentistry - Leon Unit, National Autonomus University of Mexico (UNAM, Leon, Guanajuato, 2Neurobiology Institute, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, 3Animal Biotechnology Laboratory, Faculty of Veterinary Medicine at San Nicolas de Hidalgo, Michoacán University, Michoacán, 4Molecular Materials Department, Applied Physics and Advanced Technology Center, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, MexicoBackground: Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work.Methods: Poly(methyl methacrylate [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay. Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles.Results: The results show that PMMA-silver nanoparticle discs

  11. Antifungal activity of natural and synthetic amides from Piper species

    International Nuclear Information System (INIS)

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 μg. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  12. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

    OpenAIRE

    Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

    2013-01-01

    New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2) to enhance the antibacterial and anti fungal potency of Alovera extract when comp...

  13. Chemistry and antifungal potential of Alantolides from Inula racemosa H

    Indian Academy of Sciences (India)

    Dalvir Kataria; K K Chahal

    2013-01-01

    Alantolactone and isoalantolactone were isolated from powdered roots of Inula racemosa H. using Soxhlet extraction followed by the column chromatography. Pyrazolines of alantolactone and isoalantolactone were synthesized using diazomethane, diazoethane and diazopropane. The structure elucidation of the compounds were carried out using IR and 1H NMR spectroscopic techniques. All the compounds were screened in vitro for their antifungal potential at various concentrations against Alternaria brassicae and Penicillium italicum using spore germination inhibition technique and against Rhizoctonia solani by poisoned food technique. All the compounds exhibited fairly good fungitoxicity against the test fungi with ED50 values of less than 500 g mL-1.

  14. Antifungal activity of natural and synthetic amides from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joaquim V.; Oliveira, Alberto de; Kato, Massuo J., E-mail: majokato@iq.usp.b [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica; Raggi, Ludmila; Young, Maria C. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2010-07-01

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 {mu}g. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  15. ANTIFUNGAL ACTIVITY OF SOME PLANT EXTRACT S AGAINST FUSARIUM SOLANI

    Directory of Open Access Journals (Sweden)

    S.K. BHARADWAJ

    2007-01-01

    Full Text Available The aqueous extracts of twenty plants were screened for their antifungal activity Fusarium solani, causal organism if Sudden Death Syndrome (SDS of Soybean (Glycine max wilt diseases, soft rot of potato. The maximum inhibitory effect was shown by leaf extracts of Camellia sinensis (67.17%, root extracts of Asparagus racemosus (54.43%. Some of the other plants showed moderate to intermediate inhibition against the mycelium growth of test fungi whcih varied in the following range Callistemon lanceolatus> Agegle marmelos> Azadirachta> Acacia catechu> Aloevera.

  16. An antifungal naphthoquinone, xanthones and secoiridoids from Swertia calycina.

    Science.gov (United States)

    Rodriguez, S; Wolfender, J L; Hakizamungu, E; Hostettmann, K

    1995-08-01

    A chemical and biological screening of 25 species of the Gentianaceae family has been undertaken. Both methanolic and dichloromethane extracts of Swertia calycina exhibited a strong antifungal activity against Cladosporium cucumerinum and Candida albicans. The compound responsible for this activity has been isolated and identified as 2-methoxy-1,4-naphthoquinone. It is the first naphthoquinone to be described in Gentianaceae species. LC-UV and LC-TSP-MS analysis of the crude extracts of Swertia calycina also allowed on-line identification of six known xanthones and secoiridoids. PMID:7480185

  17. Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots.

    Science.gov (United States)

    Gafner, S; Wolfender, J L; Nianga, M; Stoeckli-Evans, H; Hostettmann, K

    1996-07-01

    From a dichloromethane extract of Newbouldia laevis roots, four new (6-hydroxydehydroiso-alpha-lapachone, 7-hydroxydehydroiso-alpha-lapachone, 5,7-dihydroxydehydroiso-alpha-lapachone and 3-hydroxy-5-methoxydehydroiso-alpha-lapachone) and six known naphthoquinones have been isolated. Their structures were established by spectroscopic methods (UV, EI mass spectrometry, 1H and 13C NMR) and that of 7-hydroxydehydroiso-alpha-lapachone was confirmed by X-ray crystallography. All naphthoquinones showed antifungal activity against Cladosporium cucumerinum and Candida albicans, and activity against the bacteria Bacillus subtilis and Escherichia coli. PMID:9397206

  18. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014.

    Directory of Open Access Journals (Sweden)

    HaiKuan Wang

    Full Text Available Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds.

  19. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing; Honoré, Anders Hans; Marcussen, J.;

    2015-01-01

    to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile...... produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl......, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate...

  20. ANTIFUNGAL ACTIVITY ASSOCIATED WITH Psoralea corylifolia Linn. (BAKUCHI SEED AND CHEMICAL PROFILE CRUDE METHANOL SEED EXTRACT

    Directory of Open Access Journals (Sweden)

    A. BORATE

    2014-07-01

    Full Text Available Objective: Present study aims to evaluate antifungal efficacy of Bakuchi (Psoralea corylifolia seed extracts prepared in methanol solvents and the bakuchi oil. Bakuchi seed used in the formulations against skin related diseases and disorders in Ayurvedic system of medicine. Method: Antifungal assay was performed by agar well diffusion method against common fungal skin pathogens Candida albicans, Aspergillus niger and Malassezia furfur. Results: Bakuchi seeds extract in methanol was observed the most promising antifungal activity against the selected skin pathogens. The phytochemical and GC MS analysis confirmed the presence of several bioactive components including phenol derivatives as coumarin – psoralen, isopsoralen which might be accountable for its antifungal activity. Conclusion: The study has unveiled the antifungal potential of P. corylifolia seed extract.

  1. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei

    DEFF Research Database (Denmark)

    Honoré, Anders Hans; Aunsbjerg, Stina Dissing; Ebrahimi, Parvaneh;

    2016-01-01

    Lactic acid bacteria with antifungal properties are applied for biopreservation of food. In order to further our understanding of their antifungal mechanism, there is an ongoing search for bioactive molecules. With a focus on the metabolites formed, bioassay-guided fractionation and comprehensive...... screening have identified compounds as antifungal. Although these are active, the compounds have been found in concentrations that are too low to account for the observed antifungal effect. It has been hypothesized that the formation of metabolites and consumption of nutrients during bacterial fermentations...... form the basis for the antifungal effect, i.e., the composition of the exometabolome. To build a more comprehensive view of the chemical changes induced by bacterial fermentation and the effects on mold growth, a strategy for correlating the exometabolomic profiles with mold growth was applied. The...

  2. Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity

    OpenAIRE

    Khedr MA

    2015-01-01

    Mohammed A KhedrDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, EgyptAbstract: Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were sy...

  3. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  4. Purification and characterization of a novel chitinase from Trichosanthes dioica seed with antifungal activity.

    Science.gov (United States)

    Kabir, Syed Rashel; Rahman, Md Musfikur; Tasnim, Shahnima; Karim, Md Rezaul; Khatun, Nazma; Hasan, Imtiaj; Amin, Ruhul; Islam, Shaikh Shohidul; Nurujjaman, Md; Kabir, Ahmad Humayan; Sana, Niranjan Kumar; Ozeki, Yasuhiro; Asaduzzaman, A K M

    2016-03-01

    Chitinases are a group of enzymes that show differences in their molecular structure, substrate specificity, and catalytic mechanism and widely found in organisms like bacteria, yeasts, fungi, arthropods actinomycetes, plants and humans. A novel chitinase enzyme (designated as TDSC) was purified from Trichosanthes dioica seed with a molecular mass of 39±1 kDa in the presence and absence of β-mercaptoethanol. The enzyme was a glycoprotein in nature containing 8% neutral sugar. The N-terminal sequence was determined to be EINGGGA which did not match with other proteins. Amino acid analysis performed by LC-MS revealed that the protein was rich in leucine. The enzyme was stable at a wide range of pH (5.0-11.0) and temperature (30-90 °C). Chitinase activity was little bit inhibited in the presence of chelating agent EDTA (ethylenediaminetetraaceticacid), urea and Ca(2+). A strong fluorescence quenching effect was found when dithiothreitol and sodium dodecyl sulfate were added to the enzyme. TDSC showed antifungal activity against Aspergillus niger and Trichoderma sp. as tested by MTT assay and disc diffusion method. PMID:26666429

  5. Onychomycosis: Potential of Nail Lacquers in Transungual Delivery of Antifungals

    Science.gov (United States)

    Sharma, Hemlata; Pathak, Kamla

    2016-01-01

    Onychomycosis constitutes the most common fungal infection of the nail (skin beneath the nail bed) that affects the finger as well as toe nails. It is an infection that is initiated by yeasts, dermatophytes, and nondermatophyte molds. Nail lacquers are topical solutions intended only for use on fingernails as well as toenails and have been found to be useful in the treatment of onychomycosis. Thus, in the present review an attempt has been made to focus on the treatment aspects of onychomycosis and the ungual delivery of antifungals via nail lacquer. Several patents issued on nail lacquer till date have also been discussed. Penetration efficiency was assessed by several researchers across the human nail plate to investigate the potentiality of nail lacquer based formulations. Various clinical trials have also been conducted in order to evaluate the safety and efficacy of nail lacquers in delivering antifungal agents. Thus, it can be concluded that nail lacquer based preparations are efficacious and stable formulations. These possess tremendous potential for clinical topical application to the nail bed in the treatment of onychomycosis. PMID:27123362

  6. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  7. Antifungal activity of heartwood extracts from three Juniperus species

    Directory of Open Access Journals (Sweden)

    Ibrahim Tumen

    2013-02-01

    Full Text Available Heartwood samples from three species of Juniperus (i.e., J. virginiana, J. occidentalis, and J. ashei were extracted with hexane, ethanol, and methanol. The hexane and ethanol extracts were tested for antifungal activity against four species of wood-rot fungi (i.e, Gloeophyllum trabeum, Postia placenta, Trametes versicolor, and Irpex lacteus. Ashe juniper (AJ gave the highest extract yields (6.60 to 11.27%, followed by Eastern red cedar (ERC (4.78 to 9.56%, and then Western juniper (WJ (4.26 to 7.32%. WJ contained the highest level of cedrol (over 60%, while AJ contained the highest level of thujopsene (over 30%. Methanol and ethanol gave the highest extract yields as well as slightly higher percentages of cedrol and widdrol. The juniper extracts were more effective against white-rot fungi than brown-rot fungi. The ethanol extracts had higher antifungal activity than the hexane extracts. The AJ extracts had the greatest bioactivity against the wood-rot fungi.

  8. Onychomycosis: Potential of Nail Lacquers in Transungual Delivery of Antifungals.

    Science.gov (United States)

    Akhtar, Nida; Sharma, Hemlata; Pathak, Kamla

    2016-01-01

    Onychomycosis constitutes the most common fungal infection of the nail (skin beneath the nail bed) that affects the finger as well as toe nails. It is an infection that is initiated by yeasts, dermatophytes, and nondermatophyte molds. Nail lacquers are topical solutions intended only for use on fingernails as well as toenails and have been found to be useful in the treatment of onychomycosis. Thus, in the present review an attempt has been made to focus on the treatment aspects of onychomycosis and the ungual delivery of antifungals via nail lacquer. Several patents issued on nail lacquer till date have also been discussed. Penetration efficiency was assessed by several researchers across the human nail plate to investigate the potentiality of nail lacquer based formulations. Various clinical trials have also been conducted in order to evaluate the safety and efficacy of nail lacquers in delivering antifungal agents. Thus, it can be concluded that nail lacquer based preparations are efficacious and stable formulations. These possess tremendous potential for clinical topical application to the nail bed in the treatment of onychomycosis. PMID:27123362

  9. Novel, Synergistic Antifungal Combinations that Target Translation Fidelity.

    Science.gov (United States)

    Moreno-Martinez, Elena; Vallieres, Cindy; Holland, Sara L; Avery, Simon V

    2015-01-01

    There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8-fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone. PMID:26573415

  10. Synthesis, Characterization, Antibacterial and Antifungal Evaluation of Novel Monosaccharide Esters

    Directory of Open Access Journals (Sweden)

    Yong Deng

    2012-07-01

    Full Text Available A novel series of 3-(2-furylacrylate monosaccharide esters Iaf and menthyloxycarbonyl monosaccharide esters IIaf were designed and synthesized. The chemical structures of the target compounds were confirmed by IR, 1H- and 13C-NMR and ESI-MS, and the target compounds were investigated for their in vitro antibacterial and antifungal activities. The antibacterial screening results showed that the 3-(2-furylacrylate monosaccharide ester derivatives Iaf were either inactive or only weakly active against the three Gram-positive bacterial strains tested, whereas the menthyloxycarbonyl monosaccharide ester derivatives IIaf exhibited higher levels of activity, with compound IIe being especially potent. The results of the antifungal screening revealed that compounds Ib, Ie, IIb and IIc displayed potent in vitro activities, whereas If and IIf showed promising activities against all of the microorganisms tested, with If exhibiting levels of activity deserving of further investigation.

  11. Antifungal Enantiomeric Styrylpyrones from Sanrafaelia ruffonammari and Ophrypetalum odoratum.

    Science.gov (United States)

    Malebo, Hamisi M; Kihampa, Charles; Mgina, Clarence A; Sung'hwa, Fortunatus; Waibel, Reiner; Jonker, Stephan A; Nkunya, Mayunga H H

    2014-04-01

    Phytochemical investigation of Sanrafaelia ruffonammari Verd and Ophrypetalum odoratum Diels that belongs to the rare genera confined to East African coastal forests led to the isolation of enantiomeric styrylpyrone dimer, (±)-5-methoxy-7-phenyl-[4-methoxy-2-pyronyl]-1-(E)-styryl-2-oxabicyclo-[4.2.0]-octa-4-en-3-one (1) alongside (+)-6-styryl-7,8-epoxy-4-methoxypyran-2-one (2) and the enantiomeric (+)- (3) and (-)-6-styryl-7,8-dihydroxy-4-methoxypyran-2-ones (4). Their structures were established by means of spectroscopic methods. In this paper we reveal for the first time the occurrence of styrylpyrones in East African biodiversity. (+)-6-Styryl-7,8-epoxy-4-methoxypyran-2-one (2) and the dihydroxystyrylpyrone enantiomer (3) showed in vitro antifungal activity against Candida albicans at a concentration of 24.4 and 26.2 µM with zones of inhibition of 17 and 9 mm, respectively. Compound 2 exhibited strong activity in the brine shrimp test with LC50 = 1.7 µg/mL. Their high cytotoxic and antifungal activities render them candidates for further scientific attention for drug development programs against cancer and microbial infections. PMID:24859289

  12. Screening of Azotobacter isolates for PGP properties and antifungal activity

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2015-01-01

    Full Text Available Аmong 50 bacterial isolates obtained from maize rhizospherе, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA, siderophores, hydrogen cyanide (HCN, exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.. Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 μg ml-1 and Azt5 (29.44 and 50.38 μg ml-1 in the medium with addition of L-tryptophan (2.5 and 5 mM. The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%. [Projekat Ministarstva nauke Republike Srbije, br. TR 31073

  13. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  14. Antifungal Activity of Some Extracts Against Some Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Abdulrahman A. Aba AlKhail

    2005-01-01

    Full Text Available In vitro studies were carried out to determine the antifungal activity of five plant extracts viz., Allium sativum, Cymogopogon proxims, Carum carvi, Azadirchia indica and Eugenia caryophyllus extracted with either Cold Distilled Water (CDW, Boiling Distilled Water (BDW or Cold Ethanol (CET as well two culture filtrates of Trichoderma antagonistic fungi against Fusarium oxysporum f. sp. lycopersici, Botrytis cinerea and Rhizoctonia solani. The results revealed that plant extracts especially those extracted with CDW had strong antifungal activity with significant inhibition on the growth of the three tested fungi. In addition, the inhibitory magnitude of the tested plant extracts to the tested pathogen fungi was proportional to the applied concentrations. The most effective plant extracts were Allium sativum, Carum carvi and Eugenia caryophyllus. Also, the study showed that the culture filtrates of the antagonistic fungus, T. harzianum was more efficiency than T. viride to decrease the growth of tested fungi, but with levels less than plants extracted CDW or benomyl. Findings in this study confirmed that plant extracts can be used as natural fungicides to control pathogen fungi to reduce the dependence on the synthetic fungicides.

  15. Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis.

    Science.gov (United States)

    Sharma, Monika; Dhamgaye, Sanjiveeni; Singh, Ashutosh; Prasad, Rajendra

    2012-01-01

    This study shows that antifungal curcumin (CUR), significantly depletes ergosterol levels in Candida albicans. CUR while displaying synergy with fluconazole (FLC) lowers ergosterol. However, CUR alone at its synergistic concentration (lower than MIC50), could not affect ergosterol contents. For deeper insight of CUR effects on lipids, we performed high throughput mass spectroscopy (MS) based lipid profiling of C. albicans cells. The lipidome analysis revealed that there were no major changes in phosphoglycerides (PGLs) composition following CUR treatment of Candida, however, significant differences in molecular species of PGLs were detected. Among major SPLs, CUR treatment resulted in the reduction of ceramide and accumulation of IPCs levels. The lipidome of CUR treated cells confirmed a dramatic drop in the ergosterol levels with a simultaneous accumulation of its biosynthetic precursors. This was further supported by the fact that the mutants defective in ergosterol biosynthesis (ERG2 and ERG11) and those lacking the transcription factor regulating ergosterol biosynthesis, UPC2, were highly susceptible to CUR. Our study first time shows that CUR, for its antifungal activity, targets and down regulates delta 5, 6 desaturase (ERG3) resulting in depletion of ergosterol. This results in parallel accumulation of ergosterol biosynthetic precursors, generation of reactive oxygen species (ROS) and cell death. PMID:22201946

  16. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; do Amaral, Renata Claro Ribeiro; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  17. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa).

    Science.gov (United States)

    Popovic, Milica; Andjelkovic, Uros; Burazer, Lidija; Lindner, Buko; Petersen, Arnd; Gavrovic-Jankulovic, Marija

    2013-10-01

    Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality. PMID:23830694

  18. Antifungal activity and computational study of constituents from Piper divaricatum essential oil against Fusarium infection in black pepper.

    Science.gov (United States)

    da Silva, Joyce Kelly R; Silva, José Rogério A; Nascimento, Soelange B; da Luz, Shirlley F M; Meireles, Erisléia N; Alves, Cláudio N; Ramos, Alessandra R; Maia, José Guilherme S

    2014-01-01

    Fusarium disease causes considerable losses in the cultivation of Piper nigrum, the black pepper used in the culinary world. Brazil was the largest producer of black pepper, but in recent years has lost this hegemony, with a significant reduction in its production, due to the ravages produced by the Fusarium solani f. sp. piperis, the fungus which causes this disease. Scientific research seeks new alternatives for the control and the existence of other Piper species in the Brazilian Amazon, resistant to disease, are being considered in this context. The main constituents of the oil of Piper divaricatum are methyleugenol (75.0%) and eugenol (10.0%). The oil and these two main constituents were tested individually at concentrations of 0.25 to 2.5 mg/mL against F. solani f. sp. piperis, exhibiting strong antifungal index, from 18.0% to 100.0%. The 3D structure of the β-glucosidase from Fusarium solani f. sp. piperis, obtained by homology modeling, was used for molecular docking and molecular electrostatic potential calculations in order to determine the binding energy of the natural substrates glucose, methyleugenol and eugenol. The results showed that β-glucosidase (Asp45, Arg113, Lys146, Tyr193, Asp225, Trp226 and Leu99) residues play an important role in the interactions that occur between the protein-substrate and the engenol and methyleugenol inhibitors, justifying the antifungal action of these two phenylpropenes against Fusarium solani f. sp. piperis. PMID:25375334

  19. Antifungal Activity and Computational Study of Constituents from Piper divaricatum Essential Oil against Fusarium Infection in Black Pepper

    Directory of Open Access Journals (Sweden)

    Joyce Kelly R. da Silva

    2014-11-01

    Full Text Available Fusarium disease causes considerable losses in the cultivation of Piper nigrum, the black pepper used in the culinary world. Brazil was the largest producer of black pepper, but in recent years has lost this hegemony, with a significant reduction in its production, due to the ravages produced by the Fusarium solani f. sp. piperis, the fungus which causes this disease. Scientific research seeks new alternatives for the control and the existence of other Piper species in the Brazilian Amazon, resistant to disease, are being considered in this context. The main constituents of the oil of Piper divaricatum are methyleugenol (75.0% and eugenol (10.0%. The oil and these two main constituents were tested individually at concentrations of 0.25 to 2.5 mg/mL against F. solani f. sp. piperis, exhibiting strong antifungal index, from 18.0% to 100.0%. The 3D structure of the β-glucosidase from Fusarium solani f. sp. piperis, obtained by homology modeling, was used for molecular docking and molecular electrostatic potential calculations in order to determine the binding energy of the natural substrates glucose, methyleugenol and eugenol. The results showed that β-glucosidase (Asp45, Arg113, Lys146, Tyr193, Asp225, Trp226 and Leu99 residues play an important role in the interactions that occur between the protein-substrate and the engenol and methyleugenol inhibitors, justifying the antifungal action of these two phenylpropenes against Fusarium solani f. sp. piperis.

  20. Mechanistic Insights into the Role of C-Type Lectin Receptor/CARD9 Signaling in Human Antifungal Immunity.

    Science.gov (United States)

    Drummond, Rebecca A; Lionakis, Michail S

    2016-01-01

    Human CARD9 deficiency is an autosomal recessive primary immunodeficiency disorder caused by biallelic mutations in the gene CARD9, which encodes a signaling protein that is found downstream of many C-type lectin receptors (CLRs). CLRs encompass a large family of innate recognition receptors, expressed predominantly by myeloid and epithelial cells, which bind fungal carbohydrates and initiate antifungal immune responses. Accordingly, human CARD9 deficiency is associated with the spontaneous development of persistent and severe fungal infections that primarily localize to the skin and subcutaneous tissue, mucosal surfaces and/or central nervous system (CNS). In the last 3 years, more than 15 missense and nonsense CARD9 mutations have been reported which associate with the development of a wide spectrum of fungal infections caused by a variety of fungal organisms. The mechanisms by which CARD9 provides organ-specific protection against these fungal infections are now emerging. In this review, we summarize recent immunological and clinical advances that have provided significant mechanistic insights into the pathogenesis of human CARD9 deficiency. We also discuss how genetic mutations in CARD9-coupled receptors (Dectin-1, Dectin-2) and CARD9-binding partners (MALT1, BCL10) affect human antifungal immunity relative to CARD9 deficiency, and we highlight major understudied research questions which merit future investigation. PMID:27092298

  1. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity

    Directory of Open Access Journals (Sweden)

    Rebecca A. Drummond

    2016-04-01

    Full Text Available Human CARD9 deficiency is an autosomal recessive primary immunodeficiency disorder caused by biallelic mutations in the gene CARD9, which encodes a signaling protein that is found downstream of many C-type lectin receptors (CLRs. CLRs encompass a large family of innate recognition receptors, expressed predominantly by myeloid and epithelial cells, which bind fungal carbohydrates and initiate antifungal immune responses. Accordingly, human CARD9 deficiency is associated with the spontaneous development of persistent and severe fungal infections that primarily localize to the skin and subcutaneous tissue, mucosal surfaces and/or central nervous system (CNS. In the last few years, more than 15 missense and nonsense CARD9 mutations have been reported which associate with the development of a wide spectrum of fungal infections caused by a variety of fungal organisms. The mechanisms by which CARD9 provides organ-specific protection against these fungal infections are now emerging. In this review, we summarize recent immunological and clinical advances that have provided significant mechanistic insights into the pathogenesis of human CARD9 deficiency. We also discuss how genetic mutations in CARD9-coupled receptors (Dectin-1, Dectin-2 and CARD9-binding partners (MALT1, BCL10 affect human antifungal immunity relative to CARD9 deficiency, and we highlight major understudied research questions which merit future investigation.

  2. Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity.

    Science.gov (United States)

    Lee, Heung-Shick; Kim, Younhee

    2016-03-28

    Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicansassociated infections. PMID:26699747

  3. Antifungal treatment in allergic bronchopulmonary aspergillosis with and without cystic fibrosis: a systematic review.

    Science.gov (United States)

    Moreira, A S; Silva, D; Ferreira, A Reis; Delgado, L

    2014-10-01

    Allergic bronchopulmonary aspergillosis (ABPA) is a rare disease that affects patients with asthma or cystic fibrosis. Its debilitating course has led to the search for new treatments, including antifungals and monoclonal antibodies. To evaluate the efficacy and safety of antifungal treatments in patients with ABPA and either asthma or cystic fibrosis, we performed a systematic review of the literature on the effects of antifungal agents in ABPA using three biomedical databases. Quality assessment was performed using the GRADE methodology and, where appropriate, studies with comparable outcomes were pooled for meta-analysis. Thirty-eight studies - four randomized controlled trials and 34 observational studies - met the eligibility criteria. The antifungal interventions described were itraconazole, voriconazole, posaconazole, ketoconazole, natamycin, nystatin and amphotericin B. An improvement in symptoms, frequency of exacerbations and lung function was reported in most of the studies and was more common with oral azoles. Antifungals also had a positive impact on biomarkers and radiological pulmonary infiltrates, but adverse effects were also common. The quality of the evidence supporting these results was low or very low due to a shortage of controlled studies, heterogeneity between studies and potential bias. Antifungal interventions in ABPA improved patient and disease outcomes in both asthma and cystic fibrosis. However, the recommendation for their use is weak and clinicians should therefore weigh up desirable and undesirable effects on a case-by-case basis. More studies with a better methodology are needed, especially in cystic fibrosis, to increase confidence in the effects of antifungal treatments in ABPA. PMID:24809846

  4. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    Directory of Open Access Journals (Sweden)

    Seung-Bae Lee

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV and sweet bee venom (SBV against Candida albicans (C. albicans clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

  5. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  6. Antifungal activity of multifunctional Fe{sub 3}O{sub 4}-Ag nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@thapar.ed [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Vala, Anjana K.; Andhariya, Nidhi [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India); Upadhyay, R.V. [P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388421 (India); Mehta, R.V. [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India)

    2011-05-15

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe{sub 3}O{sub 4}-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe{sub 3}O{sub 4}) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 {mu}g/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: Synthesis of Fe{sub 3}O{sub 4}-Ag core-shell nanocolloids. Antifungal activity of Fe{sub 3}O{sub 4}-Ag nanocolloids against Aspergillus glaucus isolates. The MIC value for A. glaucus is 2000 {mu}g/mL. Antifungal activity is better or comparable with most prominent antibiotics.

  7. In Vitro Antifungal Activity of Various Persian Cultivars of Punica granatum L. Extracts Against Candida species

    Directory of Open Access Journals (Sweden)

    Bassiri-Jahromi

    2015-08-01

    Full Text Available Background Resistance of Candida species to antifungal agents has potentially serious implications for management of infections. Candida species are now the fourth most common organisms isolated from hospitalized patients. Prevention and control of these infections will require new antimicrobial agents. Plant-derived antifungal agents have always been a source of novel therapeutics. Objectives The aim of this study was to investigate the antifungal effect of pomegranate peel and pulp extracts against Candida species. Materials and Methods Pomegranate pulp and peel were dried and powdered separately. The dried powders were extracted using a soxhlet extractor. The antifungal effect of pomegranate peel and pulp extracts were determined in vitro by using the minimum inhibitory concentration (MIC against five standard species, including Candida albicans (ATCC 10231, Candida parapsilosis (ATCC 22019, Candida tropicalis (ATCC 750, Candida glabrata (PTCC 5297 and Candida krusei (PTCC 5295. Results Maximum inhibitions were attributed to peel extract of the pomegranate cultivar against Candida species. The greatest antifungal inhibition among the eight different cultivars was observed for sour malas, sour white peel and sour summer extracts respectively, against the five Candida strains. The antifungal activity of pulp extracts against Candida species was somewhat negative. Conclusions Our work suggested that pomegranate (Punica granatum L. peel has potential antifungal activity against Candidiasis, and it is an attractive option for the development of new management strategies for candidiasis.

  8. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

  9. Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones

    Directory of Open Access Journals (Sweden)

    Ayati Adile

    2012-10-01

    Full Text Available Abstract Background The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives. Methods The 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl-2'-hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents. Results The in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 μg/mL. Among the test compounds, 2-methyl-3-imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score. Conclusion The 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4-chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents.

  10. Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones

    Directory of Open Access Journals (Sweden)

    Saeed Emami

    2012-10-01

    Full Text Available The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives.MethodsThe 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl- 2'-hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents.ResultsThe in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 mug/mL. Among the test compounds, 2-methyl-3- imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score.ConclusionThe 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4- chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents.

  11. IN VITRO ANTIFUNGAL ACTIVITY OF ESSENTIAL OILS ON GROWTH OF PHYTOPATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2010-12-01

    Full Text Available Eleven essential oils (clove, rosemary, cinnamon leaf, sage, scots pine, neroli, peppermint, aniseed, caraway, lavander, common thyme were tested for in vitro antifungal activity on twelve plant pathogenic fungi (Fusarium graminearum, F. verticillioides, F. subglutinans, F. oxysporum, F. avenaceum, Diaporthe helianthi, Diaporthe phaseolorum var. caulivora, Phomopsis longicolla, P. viticola, Helminthosporium sativum, Colletotrichum coccodes, Thanatephorus cucumeris. The results indicated that all oils except scots pine and neroli had antifungal activity against some or all tested fungi. The best antifungal activity had common thyme, cinnamon leaf, clove and aniseed oils. When compared to control, scots pine, neroli and sage oils stimulated mycelium growth of some investigated fungi.

  12. Design,synthesis and antifungal activities in vitro of novel tetralin compounds

    Institute of Scientific and Technical Information of China (English)

    Hui Tang; You Jun Zhou; Yao Wu Li; Jia Guo Lv; Can Hui Zheng; Jun Chen; Ju Zhu

    2008-01-01

    Novel chiral tetralin compounds were designed and synthesized, and their antifungal activities in vitro were tested. The results showed that all of target compounds had potent antifungal activities, and were stronger than that of control compounds tetrahydroisoquinolines. The binding model of lead molecules in the active site of CYP51 of Candida albicans showed that lead compound specifically interacted with the amino acids residues in the active site, without binding with the heme of CYP51, which was different from azole antifungal drugs. The present study might afford a novel lead molecule to develop non-azole CYP51 inhibitors of fungi.

  13. Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique Douglas Melo

    2013-07-01

    Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  14. [Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents].

    Science.gov (United States)

    Opletalová, V; Sedivý, D

    1999-11-01

    Chalcones and their heterocyclic analogues show various biological effects, e.g. anti-inflammatory, antitumour, antibacterial, antituberculous, antiviral, antiprotozoal, gastroprotective, and others. The present review discusses in greater detail the fungistatic and fungicide properties of these compounds and presents also their chemical structures. The mechanism of antifungal effects of chalcones and their analogues has not been investigated in greater detail. Due to the presence of a reactive ketovinyl moiety in the molecule the compounds of this type are able to react with the thiol groups of enzymes. It cannot be excluded that chalcones interfere with the normal function of the membranes of fungi and moulds. Further investigation of chemical, physical, and biological properties of chalcones and their analogues could lead to the elucidation of the mechanism of their action and finding of effective fungicidal and fungistatic agents in this group of organic substances. PMID:10748740

  15. Pavietin, a coumarin from Aesculus pavia with antifungal activity.

    Science.gov (United States)

    Curir, Paolo; Galeotti, Francesco; Dolci, Marcello; Barile, Elisa; Lanzotti, Virginia

    2007-10-01

    A new prenylated coumarin, S-6-[2-(hydroxymethyl)butoxy]-7-hydroxy-4-methyl-2 H-chromen-2-one ( 1), named pavietin, has been isolated from the leaves of an Aesculus pavia genotype along with three known flavonol glycosides, quercetin 3- O-alpha-rhamnoside (quercitrin, 2), quercetin 3- O-alpha-arabinoside ( 3), and isorhamnetin 3- O-alpha-arabinoside (distichin, 4). The chemical structure of compound 1 was determined by chemical and spectroscopic methods, inclusive of UV, MS, and 1D and 2D NMR experiments. It showed appreciable antimicrobial properties against several pathogens, displaying a significant antifungal activity toward one of the main fungal parasites of Aesculus species, Guignardia aesculi. The same biological tests performed with a mixture of flavonoids 2- 4 resulted in weak or no activity. Compound 1 was undetectable in Aesculus hippocastanum, a closely related species lacking resistance to fungal pathogens. The possible role of 1 in plant resistance is discussed. PMID:17914881

  16. Characterization of Chitosan Nanofiber Sheets for Antifungal Application

    Directory of Open Access Journals (Sweden)

    Mayumi Egusa

    2015-11-01

    Full Text Available Chitosan produced by the deacetylation of chitin is a cationic polymer with antimicrobial properties. In this study, we demonstrate the improvement of chitosan properties by nanofibrillation. Nanofiber sheets were prepared from nanofibrillated chitosan under neutral conditions. The Young’s modulus and tensile strength of the chitosan NF sheets were higher than those of the chitosan sheets prepared from dissolving chitosan in acetic acid. The chitosan NF sheets showed strong mycelial growth inhibition against dermatophytes Microsporum and Trichophyton. Moreover, the chitosan NF sheets exhibited resistance to degradation by the fungi, suggesting potentials long-lasting usage. In addition, surface-deacetylated chitin nanofiber (SDCNF sheets were prepared. The SDCNF sheet had a high Young’s modulus and tensile strength and showed antifungal activity to dermatophytes. These data indicate that nanofibrillation improved the properties of chitosan. Thus, chitosan NF and SDCNF sheets are useful candidates for antimicrobial materials.

  17. Fosfluconazole for Antifungal Prophylaxis in Very Low Birth Weight Infants

    Directory of Open Access Journals (Sweden)

    Daijiro Takahashi

    2009-01-01

    Full Text Available We conducted a retrospective case series study to evaluate the safety of fosfluconazole prophylaxis for preventing invasive fungal infection in VLBW infants with a central vascular access. Fosfluconazole was administered intravenously at a dose of 6 mg/kg everyday during which time a central venous catheter was placed. A total of 23 infants met the criteria for enrollment in our study. No cases of fungal infection were detected during the central venous catheter placement in the group. None of the infants had an elevated β-D-glucan, and all of them were still alive at discharge. Regarding the liver and renal function, no statistically significant differences were observed before and at the end of fosfluconazole prophylaxis. The results of this study demonstrate that fosfluconazole prophylaxis in preventing invasive fungal infection was well tolerated by VLBW infants. This is a first report to describe antifungal prophylaxis using fosfluconazole for VLBW infants.

  18. Antifungal and cytotoxic activity of withanolides from Acnistus arborescens.

    Science.gov (United States)

    Roumy, Vincent; Biabiany, Murielle; Hennebelle, Thierry; Aliouat, El Moukhtar; Pottier, Muriel; Joseph, Henry; Joha, Sami; Quesnel, Bruno; Alkhatib, Racha; Sahpaz, Sevser; Bailleul, François

    2010-07-23

    Three compounds were isolated from Acnistus arborescens, a tree commonly used in South and Central America in traditional medicine against several infectious diseases, some of which are caused by fungi. Bioassay-guided fractionation of a MeOH extract of leaves, based on its anti-Pneumocystis carinii activity, led to the isolation of compounds 1-3. Mono- and bidimensional NMR analyses enabled identification of two new withanolides, (20R,22R)-5beta,6beta-epoxy-4beta,12beta,20-trihydroxy-1-oxowith-2-en-24-enolide (1) and (20R,22R)-16beta-acetoxy-3beta,4beta;5beta,6beta-diepoxy-12beta,20-dihydroxy-1-oxowith-24-enolide (2), and withanolide D (3). Antifungal activity on 13 fungi responsible for human infections (five dermatophytes, one nondermatophyte mold, six yeasts, and Pneumocystis carinii) was examined. Cytotoxicity of these compounds was also evaluated in vitro. PMID:20590148

  19. Acetoxychavicol Acetate, an Antifungal Component of Alpinia galanga1.

    Science.gov (United States)

    Janssen, A M; Scheffer, J J

    1985-12-01

    The essential oils from fresh and dried rhizomes of ALPINIA GALANGA showed an antimicrobial activity against gram-positive bacteria, a yeast and some dermatophytes, using the agar overlay technique. The main components of the oils were also tested and terpinen-4-ol was found most active. An N-pentane/diethyl ether extract of dried rhizomes was active against TRICHOPHYTON MENTAGROPHYTES. 1'-Acetoxychavicol acetate, 1'-acetoxyeugenol acetate and 1'-hydroxychavicol acetate identified by MS and NMR were found in the antifungally active fractions obtained by LSC. Acetoxychavicol acetate was active against the seven fungi tested and its MIC value for dermatophytes ranged from 50 to 250 microg/ml. Dried sliced rhizomes contained 1.5% of this compound. The compound was not found in rhizomes of ALPINIA OFFICINARUM, ZINGIBER OFFICINALE and KAEMPFERIA GALANGA. PMID:17345272

  20. Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity

    Science.gov (United States)

    Khedr, Mohammed A

    2015-01-01

    Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were synthesized and evaluated for their antifungal activity. In silico study results showed the high binding affinity to lanosterol 14α-demethylase (−24.49 and −25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (−18.19 kcal/mol) and fluconazole (−16.08 kcal/mol). Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively. The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole. PMID:26309398

  1. Antifungal agents for onychomycosis: new treatment strategies to improve safety.

    Science.gov (United States)

    Zane, Lee T; Chanda, Sanjay; Coronado, Dina; Del Rosso, James

    2016-01-01

    Onychomycosis is a common and difficult-to-treat fungal infection of the nail unit that gradually leads to dystrophic changes of the nail plate and nail bed. If untreated, infection progresses and may lead to discomfort, reduced quality of life, and risk of complications in patients with comorbid conditions (eg, diabetes, human immunodeficiency virus, peripheral vascular disease). Onychomycosis treatments are designed to eradicate causative pathogens (most commonly Trichophyton rubrum and Trichophyton mentagrophytes), restore healthy nails, and prevent recurrence or spread of infection. Given the deep-seated nature of most cases of onychomycosis, an effective antifungal agent needs to achieve and maintain sufficient drug concentrations throughout the nail unit for the duration of healthy nail in-growth. Oral antifungal drugs are the most effective available therapy and are generally well tolerated, but may be limited by safety concerns and the potential for drug-drug interactions (DDIs). Thus, treating physicians and pharmacists must be cognizant of a patient's current medications; indeed, it may not be feasible to treat onychomycosis in patients with diabetes, heart disease, or depression because of the risk for DDIs. Current topical therapy is not associated with risk of DDIs. Tavaborole and efinaconazole, two recently approved topical agents, have demonstrated good nail penetration and high negative culture rates in clinical trials of patients with onychomycosis. This article provides the treating physician and pharmacist with information on the safety and effectiveness of current oral (allylamine, azole) and topical (ciclopirox, efinaconazole, tavaborole) treatment to aid in making informed treatment decisions based on the unique characteristics (medication history, comorbidities, nature of onychomycosis) of each patient. PMID:27136621

  2. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species.

    Science.gov (United States)

    Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

    2016-02-01

    In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

  3. Antifungal properties of silver nanoparticles against indoor mould growth.

    Science.gov (United States)

    Ogar, Anna; Tylko, Grzegorz; Turnau, Katarzyna

    2015-07-15

    The presence of moulds in indoor environments causes serious diseases and acute or chronic toxicological syndromes. In order to inhibit or prevent the growth of microorganisms on building materials, the disruption of their vital processes or the reduction of reproduction is required. The development of novel techniques that impair the growth of microorganisms on building materials is usually based on silver nanoparticles (AgNPs). It makes them an alternative to other biocides. AgNPs have proven antibacterial activity and became promising in relation to fungi. The aim of the study was to assess growth and morphology of mycelia of typical indoor fungal species: Penicillium brevicompactum, Aspergillus fumigatus, Cladosporium cladosporoides, Chaetomium globosum and Stachybotrys chartarum as well as Mortierella alpina, cultured on agar media. The antifungal activity of AgNPs was also tested in relation to C. globosum and S. chartarum grown on the surface of gypsum drywall. It was found that the presence of AgNPs in concentrations of 30-200mg/l significantly decreased the growth of fungi. However, in the case of M. alpina, AgNPs stimulated its growth. Moreover, strong changes in moulds morphology and colour were observed after administration of AgNPs. Parameters of conidiophores/sporangiophores varied depending on mould region and changed significantly after treatment with AgNPs. The experiments have shown antifungal properties of AgNPs against common indoor mould species. Their application to building materials could effectively protect indoor environments from mould development. However, consideration must be given to the fact that the growth of some fungal strains might be stimulated by AgNPs. PMID:25847174

  4. In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections.

    Science.gov (United States)

    Iatta, Roberta; Figueredo, Luciana A; Montagna, Maria Teresa; Otranto, Domenico; Cafarchia, Claudia

    2014-11-01

    Fungaemia caused by Malassezia spp. in hospitalized patients requires prompt and appropriate therapy, but standard methods for the definition of the in vitro antifungal susceptibility have not been established yet. In this study, the in vitro susceptibility of Malassezia furfur from bloodstream infections (BSIs) to amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), posaconazole (POS) and voriconazole (VRC) was assessed using the broth microdilution (BMD) method of the Clinical and Laboratory Standards Institute (CLSI) with different media such as modified Sabouraud dextrose broth (SDB), RPMI and Christensen's urea broth (CUB). Optimal broth media that allow sufficient growth of M. furfur, and produce reliable and reproducible MICs using the CLSI BMD protocol were assessed. Thirty-six M. furfur isolates collected from BSIs of patients before and during AMB therapy, and receiving FLC prophylaxis, were tested. A good growth of M. furfur was observed in RPMI, CUB and SDB at 32 °C for 48 and 72 h. No statistically significant differences were detected between the MIC values registered after 48 and 72 h incubation. ITC, POS and VRC displayed lower MICs than FLC and AMB. These last two antifungal drugs showed higher and lower MICs, respectively, when the isolates were tested in SDB. SDB is the only medium in which it is possible to detect isolates with high FLC MICs in patients receiving FLC prophylaxis. A large number of isolates showed high AMB MIC values regardless of the media used. In conclusion, SDB might be suitable to determine triazole susceptibility. However, the media, the drug formulation or the breakpoints herein applied might not be useful for assessing the AMB susceptibility of M. furfur from BSIs. PMID:25168965

  5. Antibacterial, Antifungal and antioxidant activities of some medicinal plants.

    Science.gov (United States)

    Wazir, Asma; Mehjabeen, -; Jahan, Noor; Sherwani, Sikander Khan; Ahmad, Mansoor

    2014-11-01

    The purpose of this study was to evaluate the antibacterial, antifungal and antioxidant activities of medicinal plants. The antibacterial activity of methanolic extracts of three medicinal plants (Swertia chirata, Terminalia bellerica and Zanthoxylum armatum) were tested against Gentamicin (standard drug) on eleven gram positive and seventeen gram negative bacteria by agar well method. It was revealed that seven-gram negative and six gram positive bacterial species were inhibited by these plant extracts. Minimum inhibitory concentrations (MIC) of the extracts were determined by broth micro-dilution method. The significant MIC value of Swertia chirata was 20mg/ml against Serratia marcesens, Zanthoxylum armatum was 10 mg/ml against Aeromonas hydrophila and Terminali bellerica was 20mg/ml against Acinetobacter baumanii as well as Serratia marcesens. Antifungal screening was done for methanolic extracts of these plants by agar well method with the 6 saprophytic, 5 dermatophytic and 6 yeasts. In this case Griseofulvin was used as a standard. All saprophytes and dermatophytes were showed resistance by these plants extracts except Microsporum canis, which was inhibited by Z. armatum and S. chirata extracts. The significant MIC value of Zanthoxylum armatum was 10mg/ml against Microsporum canis and Swertia chirata was 10mg/ml against Candida tropicalis. The anti-oxidant study was performed by DPPH free radical scavenging assay using ascorbic acid as a reference standard. Significant antioxidant activities were observed by Swertia chirata and Zanthoxylum armatum at concentration 200μg/ml was 70% DPPH scavenging activity (EC50=937.5μg/ml) while Terminalia bellerica showed 55.6% DPPH scavenging activity (EC50=100μg/ml). This study has shown that these plants could provide potent antibacterial compounds and may possible preventive agents in ROS related ailments. PMID:26045377

  6. Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes.

    Science.gov (United States)

    Ricardo, Elisabete; Costa-de-Oliveira, Sofia; Dias, Ana Silva; Guerra, José; Rodrigues, Acácio Gonçalves; Pina-Vaz, Cidália

    2009-06-01

    Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida. The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 microg mL(-1)); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1, CDR2, MDR1, encoding for efflux pumps, and ERG11, encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly (P>0.05), probably acting as a Cdrp blocker. PMID:19416368

  7. Synthesis, Larvicidal Activities and Antifungal Activities of Novel Chlorantraniliprole Derivatives and Their Target in the Ryanodine Receptor

    Directory of Open Access Journals (Sweden)

    Qichao Chen

    2015-03-01

    Full Text Available In order to identify novel chlorantraniliprole derivatives as potential insecticides or fungicides, 25 analogues of chlorantraniliprole were synthesized. The insecticidal activities against oriental armyworm and the antifungal activities against five typical fungi of these derivatives were tested. Compounds 2u, 2x and 2y exhibited good activities against oriental armyworm, especially compounds 2u and 2x which showed higher larvicidal activities than indoxacarb. Moreover, all of the tested compounds exhibited activities against five typical fungi. The Ki values of all synthesized compounds were calculated using AutoDock4. The relationship between the Ki values and the results of insecticidal activities against oriental armyworm further indicated that the membrane-spanning domain protein of the ryanodine receptor might contain chlorantraniliprole binding sites.

  8. QUALITATIVE PHYTOCHEMICAL SCREENING AND ANTIFUNGAL ACTIVITY OF CARICA PAPAYA LEAF EXTRACT AGAINST HUMAN AND PLANT PATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    Sikandar Khan Sherwani

    2013-07-01

    Full Text Available Plants have been explored extensively all over the globe in quest of a novel bioactive compound that could a good therapeutic candidate treating infectious diseases especially against drug resistant microbes. Qualitative phytochemical analyses of Carica papaya leaf extract reveal that except steroids and tannins all the possible phytochemical constituents including carbohydrates, proteins, anthraquinones, flavonoids, saponins, cardiac glycosides and alkaloids were present. Two ways of Carica papaya leaf extract preparations i.e crushed and boiled were tested for their antifungal activity against 6 saprophytic fungi Penicillium sp, Aspergilus flavus, Aspergillus niger, Fusarium sp, Rhizopus and Helminthosporum, 5 dermatophytic fungi Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and 6 yeasts including Candida albicans, Candida albicans ATCC 0383, Saccharomyces cerevisiae, Candida galbrata, Candida tropicalis, Candida kruzei. The activity was found against majority of fungi but was much better in case of crushed leaf extract.

  9. Complete genome sequence of Bacillus amyloliquefaciens L-S60, a plant growth-promoting and antifungal bacterium.

    Science.gov (United States)

    Qin, Yuxuan; Han, Yuzhu; Yu, Yaqiong; Shang, Qingmao; Zhang, Bao; Li, Pinglan

    2015-10-20

    Bacillus amyloliquefaciens L-S60, a gram-positive plant-associated bacterium, which could stimulate plant growth and shows strong antifungal function, was isolated from the turfy soil in Beijing, China. The genome of B. amyloliquefaciens L-S60 comprises a 3903,017bp long circular chromosome that consists of 3909 protein-coding genes and 117 RNA genes. Based on genomic analysis, we identified gene clusters responsible for the biosynthesis of numerous bioactive metabolites with well-established in-vitro activity such as surfactin, iturin and fengycins. Additionally, we also found functionally related genes in the genome of L-S60, which play key roles in the process of plant growth promotion hormone secretion, biofilm formation and volatile compounds production. PMID:26297906

  10. Anti-fungal activity of Morinda citrifolia (noni extracts against Candida albicans: An in vitro study

    Directory of Open Access Journals (Sweden)

    K Barani

    2014-01-01

    Full Text Available Aim: The aim of this study was to investigate the anti-fungal activity of Morinda citrifolia fruit extract on Candida albicans. Materials and Methods: Juice extract from M. citrifolia fruit was lyophilized and used in anti-fungal testing. Anti-fungal activity of M. citrifolia fruit extract against C. albicans was tested in vitro at various concentrations. The inhibitory effect of M. citrifolia extract on C. albicans was determined by agar culture and applied broth dilution test. Results: M. citrifolia extract at 1000 μg/ml concentration effectively inhibited the growth of C. albicans (16.6 ± 0.3 compared with the positive control - amphotericin B (20.6 ± 0.6. It was found to be a dose-dependent reaction. Conclusion: M. citrifolia fruit extract had an anti-fungal effect on C. albicans and the inhibitory effect varied with concentration.

  11. Synthesis and antifungal activity evaluation of new heterocycle containing amide derivatives.

    Science.gov (United States)

    Wang, Xuesong; Gao, Sumei; Yang, Jian; Gao, Yang; Wang, Ling; Tang, Xiaorong

    2016-01-01

    A series of heterocycle containing amide derivatives (1-28) were synthesised by the combination of acyl chlorides (1a, 2a) and heterocyclic/homocyclic ring containing amines, and their in vitro antifungal activity was evaluated against five plant pathogenic fungi, namely Gibberella zeae, Helminthosporium maydis, Rhizoctonia solani, Botrytis cinerea and Sclerotinia sclerotiorum. Results of antifungal activity analysis indicated that some of the products showed good to excellent antifungal activity, as compound 2 showed excellent activity against G. zeae and R. solani and potent activity against H. maydi, B. cinerea and S. sclerotiorum, and compounds 1, 8 and 10 also displayed excellent antifungal potential against H. maydi, B. cinerea and S. sclerotiorum and good activity against R. solani when compared with the standard carbendazim. PMID:26140452

  12. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    Science.gov (United States)

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs. PMID:24836571

  13. Purification and Identification of Two Antifungal Cyclic Peptides Produced by Bacillus amyloliquefaciens L-H15.

    Science.gov (United States)

    Han, Yuzhu; Zhang, Bao; Shen, Qian; You, Chengzhen; Yu, Yaqiong; Li, Pinglan; Shang, Qingmao

    2015-08-01

    Bacillus amyloliquefaciens L-H15 with broad spectrum antifungal activity was used as a biocontrol agent to suppress Fusarium oxysporum and other soil-borne fungal plant pathogens. Two antifungal fractions were isolated by bioactivity-guided reversed-phase high-performance liquid chromatography. The two compounds were identified by tandem Q-TOF mass spectroscopy as C15 Iturin A (1) and a novel cyclic peptide with a molecular weight of 852.4 Da (2). Both compounds showed good inhibitory activities against three plant fungal pathogens in cylinder-plate diffusion assay. To our best knowledge, this is the first report on a cyclic antifungal peptide with a molecular weight of 852.4 Da. The strong antifungal activity suggests that the B. amyloliquefaciens L-H15 and its bioactive components might provide an alternative resource for the biocontrol of plant diseases and sustainable agriculture. PMID:26123083

  14. Novel hybrids of fluconazole and furanones: design, synthesis and antifungal activity.

    Science.gov (United States)

    Borate, Hanumant B; Sawargave, Sangmeshwer P; Chavan, Subhash P; Chandavarkar, Mohan A; Iyer, Ramki; Tawte, Amit; Rao, Deepali; Deore, Jaydeep V; Kudale, Ananada S; Mahajan, Pankaj S; Kangire, Gopinath S

    2011-08-15

    During our efforts to develop new antifungal agents, a number of hybrid molecules containing furanones and fluconazole pharmacophores were designed and synthesized. The new chemical entities thus synthesized were tested for their potential as antifungal agents against various fungal strains and it was observed that the compounds with general structure 7 were potent inhibitors of Candida albicans ATCC 24433, Candida glabrata ATCC 90030, Candida tropicalis ATCC 750 and Candida neoformans ATCC 34664 while the fluconazole analogues 12 exhibited antifungal activity against Candida albicans ATCC 24433 and Candida glabrata ATCC 90030. The structure-activity relationship for these compounds is discussed. The synthetic strategies used in the present work have potential to prepare a large number of compounds for further refinement of structures to obtain molecules suitable for development as antifungal drugs. PMID:21757344

  15. Mode of Action for Reproductive and Hepatic Toxicity Inferred from a Genomic Study of Triazole Antifungals

    Science.gov (United States)

    The mode of action for the reproductive toxicity of triazole antifungals have been previously characterized by an observed increased in serum testosterone, hepatotoxicity, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these m...

  16. Toxicogenomic Effects Common to Triazole Antifungals and Conserved Between Rats and Humans

    Science.gov (United States)

    The triazole antifungals myclobutanil, propiconazole and triadimefon cause varying degrees of hepatic toxicity and disrupt steroid hormone homeostasis in rodent in vivo models. To identify biological pathways consistently modulated across multiple time-points and various study d...

  17. DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lenthmorbus WJ5

    International Nuclear Information System (INIS)

    This simultaneous expression levels of antifungal activity related was analyzed by DNA microarray. We constructured DNA chips contained 2,000 randomly digested genome spots of the antifungal bacterium of Bacillus lentimorbus WJ5 and compared it squantitative aspect with 7 antifungal activity deficient mutants induced by gamma radiation . From the analysis of microarray hybridization by the Gene Cluster, totally 408 genes were expressed and 20 genes among them were significantly suppressed in mutants. pbuX, ywbA, ptsG,yufO, and ftsY were simultaneously down-regulated in all muatants. It suggested that they were supposed to be related to the antifungal activity of B. lentimorbus WJ5

  18. Endocrine disruptive effects in vitro of conazole antifungals used as pesticides and pharmaceutical

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Taxvig, Camilla; Nellemann, Christine Lydia;

    2010-01-01

    Widely used conazole antifungals were tested for endocrine disruptive effects using a panel of in vitro assays. They all showed endocrine disrupting potential and ability to act via several different mechanisms. Overall the imidazoles (econazole, ketoconazole, miconazole, prochloraz) were more...

  19. Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Jagtap, T.G.; Naik, C.G.

    Crude aqueous methanol extracts obtained from 31 species of various marine organisms (including floral and faunal), were screened for their antifungal activity against food poisoning strains of Aspergillus. Seventeen species exhibited mild (+ = zone...

  20. Structural and Functional Studies of a Phosphatidic Acid-Binding Antifungal Plant Defensin MtDef4: Identification of an RGFRRR Motif Governing Fungal Cell Entry

    OpenAIRE

    Sagaram, Uma Shankar; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Raghu S Pandurangi; Thomas J Smith; Dilip M Shah

    2013-01-01

    MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where ...

  1. Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus Avaliação da atividade antifúngica de extrato fenólico de Spirulina platensis contra Aspergillus flavus

    OpenAIRE

    Michele Moraes de Souza; Luciana Prietto; Anelise Christ Ribeiro; Taiana Denardi de Souza; Eliana Badiale-Furlong

    2011-01-01

    The production of safe food has stimulated the search for natural substances that possess antifungal activity. The indirect methods of estimating fungal biomass are based on the measurement of glucosamine, ergosterol and protein - typical compounds produced during the development of biomass. The aim of the study was to assess the effect of the phenolic extract from Spirulina platensis on the production of structural compounds in Aspergillus flavus, in order to identify its action on fungal in...

  2. Radical Scavenging Activity, Total Phenol Content and Antifungal Activity of Cinnamomum Iners Wood

    OpenAIRE

    Zurida Anis; Othman Sulaiman,; Rokiah Hashim; Sayed Hasan Mehdi; Raza Murad Ghalib

    2012-01-01

    The study was done to investigate the antioxidant, total phenol content and antifungal characteristics of phenolics compounds of extracts from Cinnamomum iners (Reinw. ex Blume-Lauraceae) wood. Radical scavenging activity method of DPPH was used to determine antioxidant activity of the extracts. Four fungus, namely white fungi (Pycnoporus sanguineus, Trametes versicolor, Fomitopsis palustris) and brown fungi (Gleophyllum trabeum) were used to determine the antifungal activity of the Cinnamomu...

  3. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism

    OpenAIRE

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-01-01

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalyt...

  4. Chemical Constituents of the Fruiting Bodies of Clitocybe nebularis and Their Antifungal Activity

    OpenAIRE

    Kim, Young-Sook; Lee, In-Kyoung; Seok, Soon-Ja; Yun, Bong-Sik

    2008-01-01

    During a continuing search for antimicrobial substances from Korean native wild mushroom extracts, we found that the methanolic extract of the fruiting body of Clitocybe nebularis exhibited mild antifungal activity against pathogenic fungi. Therefore we evaluated the antifungal substances and other chemical components of the fruiting body of Clitocybe nebularis, which led to the isolation of nebularine, phenylacetic acid, purine, uridine, adenine, uracil, benzoic acid, and mannitol. Nebularin...

  5. Interactive effects of antifungal and antineoplastic agents on yeasts commonly prevalent in cancer patients.

    OpenAIRE

    Ghannoum, M. A.; Motawy, M S; Abu Hatab, M A; Abu Elteen, K H; Criddle, R. S.

    1989-01-01

    The effects of combinations of antifungal and antineoplastic drugs on inhibition of the growth of yeasts which commonly infect cancer patients have been analyzed. It was shown that (i) inhibitory drug combinations could be selected in which all drugs were at levels far below their individual MICs; (ii) interactive effects among antineoplastic and antifungal drugs may be very large; (iii) optimum combinations of drugs for inhibition of yeast growth depended upon both the relative and absolute ...

  6. Role of Antifungal Susceptibility Testing in Non-Aspergillus Invasive Mold Infections.

    Science.gov (United States)

    Lamoth, Frédéric; Damonti, Lauro; Alexander, Barbara D

    2016-06-01

    No clinical breakpoints are available to delineate antifungal drug efficacy in non-Aspergillus invasive mold infections (NAIMIs). In this analysis of 39 NAIMI episodes, the MIC of the first-line antifungal drug was the most important predictor of therapeutic response. For amphotericin B, an MIC of ≤0.5 μg/ml was significantly associated with better 6-week outcomes. PMID:27008871

  7. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

    Science.gov (United States)

    Zhang, Xibo; Fang, Yue; Jaiseng, Wurentuya; Hu, Lingling; Lu, Yabin; Ma, Yan; Furuyashiki, Tomoyuki

    2015-01-01

    Tamoxifen, a selective estrogen receptor modulator used for managing breast cancer, is known to have antifungal activity. However, its molecular mechanism remains unknown. Using the fission yeast Schizosaccharomyces pombe as a model organism, we have explored the mechanism involved in antifungal action of tamoxifen. Since tamoxifen was shown to inhibit the binding of calmodulin to calcineurin in fungi, we first examined involvement of these molecules and found that overexpression of a catalytic subunit of calcineurin and its constitutively active mutant as well as calmodulin increases tamoxifen sensitivity. Since terbinafine and azoles inhibit enzymes for ergosterol biosynthesis, Erg1 and Erg11, for their antifungal actions, we also examined involvement of these molecules. Overexpression of Erg1 and Erg11 reduced the sensitivity to terbinafine and azoles, respectively, but increased tamoxifen sensitivity, suggesting that ergosterol biosynthesis is differently related to the action of tamoxifen and those of terbinafine and azoles. To elucidate molecules involved in tamoxifen action, we performed a genome-wide screen for altered sensitivity to tamoxifen using a fission yeast gene deletion library, and identified various hypersensitive and resistant mutants to this drug. Notably, these mutants are rarely overlapped with those identified in similar genetic screens with currently used antifungals, suggesting a novel mode of antifungal action. Furthermore, tamoxifen augmented antifungal actions of terbinafine and azoles, suggesting synergetic actions between these drugs. Therefore, our findings suggest that calmodulin-calcineurin pathway and ergosterol biosynthesis are related to antifungal action of tamoxifen, and propose novel targets for antifungal development as well as combined therapy with tamoxifen for fungal diseases. PMID:26628015

  8. Intravenous Itraconazole vs. Amphotericin B Deoxycholate for Empirical Antifungal Therapy in Patients with Persistent Neutropenic Fever

    OpenAIRE

    Park, Sun Hee; Choi, Su-Mi; Lee, Dong-Gun; Choi, Jung-Hyun; Yoo, Jin-Hong; Min, Woo-Sung; Shin, Wan-Shik

    2006-01-01

    Background Amphotericin B dexoycholate is currently the standard empirical antifungal therapy for neutropenic patients with hematologic malignancies and who also have persistent fever that does not respond to antibacterial therapy. The antifungal triazoles offer a potentially safer and effective treatment alternative to Amphotericin B dexoycholate. Methods We assessed the efficacy and safety of intravenous itraconazole, as compared with the efficacy and safety of amphotericin B deoxycholate, ...

  9. In Vitro Activities of New and Conventional Antifungal Agents against Clinical Scedosporium Isolates

    OpenAIRE

    Meletiadis, Joseph; Meis, Jacques F. G. M.; Mouton, Johan W.; Rodriquez-Tudela, Juan Luis; Donnelly, J. Peter; Verweij, Paul E.

    2002-01-01

    The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro ...

  10. Antifungal suscepitibility profile of candida spp. oral isolates obtained from denture wearers

    OpenAIRE

    J.P. Lyon; L.M. Moreira; M.A.G. Cardoso; Saade, J.; Resende, M.A.

    2008-01-01

    Denture stomatitis is an inflammatory condition that occurs in denture wearers and is frequently associated with Candida yeasts. Antifungal susceptibility profiles have been extensively evaluated for candidiasis patients or immunosupressed individuals, but not for healthy Candida carriers. In the present study, fluconazole, itraconazole, voriconazole, terbinafine and 5-flucytosin were tested against 109 oral Candida spp. isolates. All antifungal agents were effective against the samples teste...

  11. In vitro Pharmacodynamics of Antifungal Agents in the Treatment of Candida Infections

    OpenAIRE

    Lignell, Anders

    2011-01-01

    Pharmacodynamic studies are important for the optimal use of antimicrobial agents. Combination antifungal therapy may be one method to improve outcome in invasive Candida infections. An in vitro kinetic model to study the pharmacodynamic effects of a combination of two antifungal agents with different elimination rates was developed and the pharmacodynamics of amphotericin B (AMB), voriconazole (VRC) or the combination was evaluated. Exposure to VRC inhibited the fungicidal activity of sequen...

  12. In Vitro Antifungal Activity of Kampo Medicine Water Extracts against Trichophyton rubrum.

    Science.gov (United States)

    Da, Xia; Takahashi, Hitoshi; Hein, Kyaw Zaw; Morita, Eishin

    2016-06-01

    Kampo medicines consist of a variety of crude animal, plant, and mineral extracts that have long been used to relieve different symptoms, and are relatively safe. However, their mechanisms of actions have not been well investigated. We screened 61 commercially available Kampo medicines to determine if they contain constituents with antifungal activity against Trichophyton rubrum. The antifungal effect of the Kampo medicines was determined by measuring the mean absorbance of treated fungal culture media. Lower absorbance values suggested a higher inhibition of the growth rate of T. rubrum by the Kampo medicines. We found that seven of the evaluated formulations exhibited a comparable antifungal activity to that of fluconazole at 14 mg/mL. The seven active Kampo medicines were Saiko-keishi-kankyou-to, Saiko-ka-ryukotsu-borei-to, Saiko-keishi-to, Keishi-ka-ryukotsu-borei-to, Dai-saiko-to, Bohu-tsu-sho-san, and Otsu-ji-to. The seven Kampo medicines with antifungal activity contain 30 different crude extracts, and Ou-gon (Scutellaria root) is a supplement contained in six of the seven formulations. Therefore, Ou-gon was considered to play a major role in their antifungal effect. The antifungal assay of the Ou-gon water extract showed that it significantly inhibited the growth of T. rubrum at a concentration of 20 mg/mL. Future studies will focus on the isolation and identification of the antifungal components of the crude extracts of Ou-gon, which may be potentially useful, new, and safe antifungal drugs. PMID:27534111

  13. Antioxidant and antifungal activities of essential oil of Alpinia calcarata Roscoe rhizomes

    OpenAIRE

    Lakshmi S.R Arambewela; L.D.A. Menuka Arawwawala; Nandakumara Athauda

    2010-01-01

    Antioxidant and antifungal activity were determined for the essential oil of Alpinia calcarata Roscoe (Zingiberaceae) rhizomes. Its antioxidant properties were investigated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and thiobarbituric acid reactive substances (TBARS) assay. Butylated hydroxy toluene (BHT) and vitamin E served as positive controls. Antifungal activities were investigated against crop pathogens Curvularia spp. and Colletorichum spp. using the agar...

  14. Global Antifungal Profile Optimization of Chlorophenyl Derivatives against Botrytis cinerea and Colletotrichum gloeosporioides

    OpenAIRE

    Bustillo Pérez, Antonio; Pinedo Rivilla, Cristina; Aleu Casatejada, Josefina; González Collado, Isidro; Hernández Galán, Rosario; Saiz-Urra, Liane; Cruz-Monteagudo, Maykel

    2009-01-01

    Twenty-two aromatic derivatives bearing a chlorine atom and a different chain in the para or meta position were prepared and evaluated for their in vitro antifungal activity against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides. The results showed that maximum inhibition of the growth of these fungi was exhibited for enantiomers S and R of 1-(40-chlorophenyl)- 2-phenylethanol (3 and 4). Furthermore, their antifungal activity showed a clear structure...

  15. Multidrug-Resistant Transporter Mdr1p-Mediated Uptake of a Novel Antifungal Compound

    OpenAIRE

    Sun, Nuo; Li, Dongmei; Fonzi, William; Xin LI; Zhang, Lixin; Calderone, Richard

    2013-01-01

    The activity of many anti-infectious drugs has been compromised by the evolution of multidrug-resistant (MDR) pathogens. For life-threatening fungal infections, such as those caused by Candida albicans, overexpression of MDR1, which encodes an MDR efflux pump of the major facilitator superfamily (MFS), often confers resistance to chemically unrelated substances, including the most commonly used azole antifungals. As the development of new and efficacious antifungals has lagged far behind the ...

  16. A simple synthesis of kaurenoic esters and other derivatives and evaluation of their antifungal activity

    International Nuclear Information System (INIS)

    Representative esters derived from kaurenoic acid were prepared in order to evaluate their antifungal properties. Alkyl and substituted benzyl esters were obtained in good yield under mild conditions by esterification of kaurenoic acid with the corresponding alkyl halide in KOH-acetone. All synthesized compounds were tested for antifungal properties against pathogenic yeasts, hialohyphomycetes and dermatophytes. Kaurenoic acid and derivatives containing a free carboxyl group were moderately active against dermatophytes. (author)

  17. ANTIFUNGAL ACTIVITY ASSOCIATED WITH Psoralea corylifolia Linn. (BAKUCHI) SEED AND CHEMICAL PROFILE CRUDE METHANOL SEED EXTRACT

    OpenAIRE

    A. BORATE; M. UDGIRE; A. KHAMBHAPATI

    2014-01-01

    Objective: Present study aims to evaluate antifungal efficacy of Bakuchi (Psoralea corylifolia) seed extracts prepared in methanol solvents and the bakuchi oil. Bakuchi seed used in the formulations against skin related diseases and disorders in Ayurvedic system of medicine. Method: Antifungal assay was performed by agar well diffusion method against common fungal skin pathogens Candida albicans, Aspergillus niger and Malassezia furfur. Results: Bakuchi seeds extract in methanol was obs...

  18. Antibacterial and antifungal activities of the endemic species Glaucium vitellinum Boiss. and Buhse

    OpenAIRE

    Mina Mehrara; Mehri Halakoo; Mojdeh Hakemi-Vala; Seyyde Jamal Hashemi; Jinous Asgarpanah

    2015-01-01

    Objectives: Belonging to Papaveraceae family, Glaucium vitellinum is one of the Persian endemic plants which has not been investigated biologically. The present paper focused on the assessment of the antibacterial and antifungal activities of the total methanol extract and alkaloid sub-fraction of the flowering aerial parts of G. vitellinum. Materials and Methods: The antibacterial and antifungal activities were investigated using cup plate method and disc diffusion assay, respectively. The M...

  19. Antifungal Activity of Decursinol Angelate Isolated from Angelica gigas Roots Against Puccinia recondita

    OpenAIRE

    Mi-Young Yoon; Kyoung Soo Jang; Gyung Ja Choi; Young Sup Kim; Yong Ho Choi; Jin-Cheol Kim; Byeongjin Cha

    2011-01-01

    Rust causes significant losses in the yield and quality of various crops. The development of new effective and environmentally benign agents against the pathogen is of great interest. In the course of searching a natural antifungal compound from medicinal plants, we found that the methanol extract of Angelica gigas roots had a potent control efficacy against wheat leaf rust (WLR) caused by Puccinia recondita. The antifungal substance was isolated from the methanol extract by silica gel column...

  20. AN ECO-FRIENDLY HERBAL ANTIFUNGAL FINISH ON COTTON KNITTED FABRIC USING NEEM LEAVES EXTRACT.

    OpenAIRE

    Shweta Sharma; Himadri Ghosh

    2015-01-01

    The existence of Microorganism in nature and Ttheir damaging effect like deterioration andnodor are some of the challenging situations for the woven, nonwoven, knitted and composite fabric industries. For the human being to work at their maximum level health and hygiene is the basic thing.Mostly chemicals are being used to make the fabric antifungal which is very harmful to the human body and environment. In order to give antifungal finish to the textiles an eco-friendly natural antifu...

  1. Candida albicans Biofilm Chip (CaBChip) for High-throughput Antifungal Drug Screening

    OpenAIRE

    Srinivasan, Anand; Lopez-Ribot, Jose L.; Ramasubramanian, Anand K.

    2012-01-01

    Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals1. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating tr...

  2. Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi.

    Science.gov (United States)

    Svetaz, Laura; Tapia, Alejandro; López, Silvia N; Furlán, Ricardo L E; Petenatti, Elisa; Pioli, Rosanna; Schmeda-Hirschmann, Guillermo; Zacchino, Susana A

    2004-06-01

    The crude methanolic extract of Zuccagnia punctata was active toward the fungal pathogens of soybean Phomopsis longicolla and Colletotrichum truncatum. Assay guided fractionation led to the isolation of two chalcones, one flavanone and a new caffeoyl ester derivative as the compounds responsible for the antifungal activity. Another new caffeoyl ester derivative was isolated from the antifungal chloroform extract but proved to be inactive against the soybean infecting fungi up to 50 microg/mL PMID:15161186

  3. Taxonomy and antifungal susceptibility of clinically important Rasamsonia species

    DEFF Research Database (Denmark)

    Houbraken, J.; Giraud, S.; Meijer, M.;

    2013-01-01

    set of Rasamsonia argillacea strains, including 28 clinical strains, was studied, and antifungal susceptibility profiles were generated. Data obtained from morphological studies and from phylogenetic analyses of internal transcribed spacer (ITS) and partial _-tubulin and calmodulin sequences revealed...... recently reported clinical isolates from animal or human patients. Susceptibility tests showed that the antifungal susceptibility profiles of the four members of the R. argillacea complex are similar, and caspofungin showed significant activity in vitro, followed by amphotericin B and posaconazole...

  4. Synthesis, antibacterial and antifungal activity of some derivatives of 2-phenyl-chromen-4-one

    Indian Academy of Sciences (India)

    Sayed Alam

    2004-11-01

    Some derivatives of 2-phenyl-chromen-4-one (flavone ring) have been synthesized and tested for antibacterial and antifungal activities along with their chalcone precursors against four human pathogenic bacteria and five plant mould fungi. The structures of the synthesized compounds were elucidated by UV, IR and 1H NMR spectroscopic techniques, and elemental analysis. The antibacterial and antifungal screens of the synthesized compounds were performed in vitro by the filter paper disc diffusion method and the poisoned food technique.

  5. Antifungal properties of Brazilian cerrado plants Propriedades antifúngicas de plantas do Cerrado brasileiro

    OpenAIRE

    Lúcia Kioko Hasimoto e Souza; Cecília Maria Alves de Oliveira; Pedro Henrique Ferri; Suzana Costa Santos; Juldásio Galdino de Oliveira Júnior; André Thiago Borges Miranda; Luciano Morais Lião; Maria do Rosário Rodrigues Silva

    2002-01-01

    Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in...

  6. Formulation and antifungal performance of natamycin-loaded liposomal suspensions: the benefits of sterol-enrichment.

    Science.gov (United States)

    Bouaoud, Clotilde; Lebouille, Jérôme G J L; Mendes, Eduardo; De Braal, Henriette E A; Meesters, Gabriel M H

    2016-06-01

    The aim of this study is to develop and evaluate food-grade liposomal delivery systems for the antifungal compound natamycin. Liposomes made of various soybean lecithins are prepared by solvent injection, leading to small unilamellar vesicles (Fine-tuning of sterol concentration allows preparation of liposomal suspensions presenting modulated in vitro release kinetics rates and enhanced antifungal activity against the model yeast Saccharomyces cerevisiae. PMID:26009272

  7. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    OpenAIRE

    Neveen Helmy Abou El-Soud; Mohamed Deabes; Lamia Abou El-Kassem; Mona Khalil

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and anal...

  8. Effects of the association of antifungal drugs on the antimicrobial action of endodontic sealers

    Directory of Open Access Journals (Sweden)

    Paulo Henrique WECKWERTH

    2015-01-01

    Full Text Available This in vitro study aimed to determine the susceptibility of oral specimens and ATCC lineages of Candida albicans for five endodontic sealers, which were pure and associated with two antifungal drugs, and to analyze their effect on the physical properties. For this purpose, 30 lineages of C. albicans, collected from the oral cavity of patients assisted at the endodontics clinic of the Universidade Sagrado Coração, were analyzed. Yeasts susceptibility to the sealers was tested by diffusion on agar plates. Physical properties were evaluated according to the ADA specification no. 57. The pure versions of the Sealer 26, AH Plus, Endofill, Fillapex, and Sealapex demonstrated antifungal activity, with Endofill presenting the greatest inhibition zones. All cements, except for Endofill, had their antifungal actions enhanced by addition of ketoconazole and fluconazole (p < 0.05, and the AH Plus presented the best antifungal activity. The addition of antifungal drugs did not interfere with the setting time and flowability of the sealers. It was concluded that the addition of antifungals to endodontic sealers enhanced the antimicrobial action of most cements tested without altering their physical properties.

  9. Cyanobacteria, Lyngbya aestuarii and Aphanothece bullosa as antifungal and antileishmanial drug resources

    Institute of Scientific and Technical Information of China (English)

    Maheep Kumar; Manoj Kumar Tripathi; Akanksha Srivastava; Jalaj Kumar Gour; Rakesh Kumar Singh; Ragini Tilak; Ravi Kumar Asthana

    2013-01-01

    To investigate two cyanobacteria isolated from different origins i.e. Lyngbya aestuarii(L. aestuarii) from brackish water and Aphanothece bullosa (A. bullosa) from fresh water paddy fields for antifungal and antileishmanila activity taking Candida albicans and Leishmaniadonovain as targets. Methods: Biomass of L. aestuarii and A. bullosa were harvested after 40 and 60 d respectively and lyophilized twice in methanol (100%) and redissolved in methanol (5%) for bioassay. Antifungal bioassay was done by agar well diffusion method while antileishmanial, by counting cell numbers and flageller motility observation of promastigotes and amastigotes fromL. donovani . Fluconazole and 5% methanol were used as control. Results: Both the cyanobacteria were found to be potent source of antifungal activity keeping fluconazole as positive control, however, methanolic crude extract (15 mg/mL) of A. bullosa was found more potent (larger inhibition zone) over that of methanolic crude extract of L. aestuarii. Similarly antileishmanial activity of crude extract (24.0 mg/mL) of A. bullosa was superior over that of methanolic crude extract of L. aestuarii (25.6 mg/mL). Conclusions: Antifungal and antileishmanial drugs are still limited in the market. Screening of microbes possessing antifungal and antileishmanial activity drug is of prime importance. Cyanobacteria are little explored in this context because most of the drugs in human therapy are derived from microorganisms, mainly bacterial, fungal and actinomycetes. Thus in the present study two cyanobacterial strains from different origins showed potent source of antifungal and antileishmanial biomolecules.

  10. Isavuconazole: Pharmacology, Pharmacodynamics, and Current Clinical Experience with a New Triazole Antifungal Agent.

    Science.gov (United States)

    Rybak, Jeffrey M; Marx, Kayleigh R; Nishimoto, Andrew T; Rogers, P David

    2015-11-01

    Coinciding with the continually increasing population of immunocompromised patients worldwide, the incidence of invasive fungal infections has grown over the past 4 decades. Unfortunately, infections caused by both yeasts such as Candida and molds such as Aspergillus or Mucorales remain associated with unacceptably high morbidity and mortality. In addition, the available antifungals with proven efficacy in the treatment of these infections remain severely limited. Although previously available second-generation triazole antifungals have significantly expanded the spectrum of the triazole antifungal class, these agents are laden with shortcomings in their safety profiles as well as formulation and pharmacokinetic challenges. Isavuconazole, administered as the prodrug isavuconazonium, is the latest second-generation triazole antifungal to receive U.S. Food and Drug Administration approval. Approved for the treatment of both invasive aspergillosis and invasive mucormycosis, and currently under investigation for the treatment of candidemia and invasive candidiasis, isavuconazole may have therapeutic advantages over its predecessors. With clinically relevant antifungal potency against a broad range of yeasts, dimorphic fungi, and molds, isavuconazole has a spectrum of activity reminiscent of the polyene amphotericin B. Moreover, clinical experience thus far has revealed isavuconazole to be associated with fewer toxicities than voriconazole, even when administered without therapeutic drug monitoring. These characteristics, in an agent available in both a highly bioavailable oral and a β-cyclodextrin-free intravenous formulation, will likely make isavuconazole a welcome addition to the triazole class of antifungals. PMID:26598096

  11. Experimental models in predicting topical antifungal efficacy: practical aspects and challenges.

    Science.gov (United States)

    Lai, J; Maibach, H I

    2009-01-01

    What are efficient screening models for improved topical antifungals? The use of minimum inhibitory concentrations (MICs) as one such parameter is discussed; we focus on the use of animal membranes for in vitro testing while highlighting the pros and cons of each model, exploring alternatives and discussing the importance of data transferability to humans and the influence of penetration kinetics in topical antifungal efficacy. Ultimately, the gold standard of testing is in vivo in humans; however, initiating with human testing, especially for novel topical antifungal agents, may be impractical, which is why we seek the ideal experimental model that most closely mimics human skin. We conclude that the pig may be an appropriate model membrane for topical antifungal testing based on its similarities in anatomical structure, physiology and permeation to human skin. Most importantly, pig and human skins appear equally permeable to several antifungals in prior in vitro and in vivo work. We do not discuss all prior work but highlight important issues in designing the protocol and parameters of the ideal experimental model for topical antifungals. PMID:19729988

  12. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.

    Science.gov (United States)

    Watamoto, T; Samaranayake, L P; Egusa, H; Yatani, H; Seneviratne, C J

    2011-09-01

    Biofilm formation is a major virulence attribute of Candida albicans and is directly associated with therapeutic failure. One method by which Candida acquires antifungal resistance is the expression of drug-resistance genes. This study aimed to evaluate the transcriptional regulation of several genes associated with antifungal resistance of C. albicans under planktonic, recently adhered and biofilm growth modes and in C. albicans biofilms in response to antifungal agents. Initially, the antifungal susceptibility of C. albicans cultures in different growth modes was evaluated by standard antifungal susceptibility testing. Next, to assess CDR1, CDR2, MDR1, ERG11, FKS1 and PIL1 expression, RNA was harvested from cells in each growth mode, and from biofilms after drug treatment, and subjected to quantitative real-time RT-PCR (qRT-PCR). Biofilm C. albicans was more resistant to antifungals than recently adhered cells and stationary-phase planktonic cultures. Transcriptional expression of CDR1, CDR2, MDR1, ERG11 and FKS1 was lower in recently adhered C. albicans than in the stationary-phase planktonic cultures. In contrast, PIL1 levels were significantly increased in recently adhered and biofilm modes of growth. The expression of MDR1 in biofilms greatly increased on challenge with amphotericin B but not with the other drugs tested (PERG11 was significantly upregulated by ketoconazole (PCandida biofilms, and lay a foundation for future large-scale genome-wide expression analysis. PMID:21474609

  13. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action.

    Science.gov (United States)

    Svetaz, Laura; Agüero, María Belén; Alvarez, Sandra; Luna, Lorena; Feresin, Gabriela; Derita, Marcos; Tapia, Alejandro; Zacchino, Susana

    2007-08-01

    Petroleum ether and dichloromethane extracts of fruits, aerial parts and exudate of Zuccagnia punctata Cav. (Fabaceae) showed moderate antifungal activities against the yeasts C. albicans, S. cerevisiae and C. neoformans (MICs: 62.5 - 250 microg/mL) and very strong antifungal activities against the dermatophytes M. gypseum, T. rubrum and T. mentagrophytes (MICs: 8 - 16 microg/mL) thus supporting the ethnopharmacological use of this plant. Antifungal activity-directed fractionation of active extracts by using bioautography led to the isolation of 2',4'-dihydroxy-3'-methoxychalcone (1) and 2',4'-dihydroxychalcone (2) as the compounds responsible for the antifungal activity. Second-order studies included MIC (80), MIC (50) and MFC of both chalcones in an extended panel of clinical isolates of the most sensitive fungi, and also comprised a series of targeted assays. They showed that the most active chalcone 2 is fungicidal rather than fungistatic, does not disrupt the fungal membranes up to 4 x MFC and does not act by inhibiting the fungal cell wall. So, 2',4'-dihydroxychalcone would act by a different mechanism of action than the antifungal drugs in current clinical use, such as amphotericin B, azoles or echinocandins, and thus appears to be very promising as a novel antifungal agent. PMID:17628836

  14. ANTIFUNGAL ACTIVITY OF NEEM (Azadirachta indica: MELIACEAE EXTRACTS AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Daniel Iván OSPINA SALAZAR

    2015-07-01

    Full Text Available In order to assess the antifungal activity of methanolic extracts from neem tree (Azadirachta indica A. Juss., several bioassays were conducted following M38-A2 broth microdilution method on 14 isolates of the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum. Neem extracts were obtained through methanol-hexane partitioning of mature green leaves and seed oil. Furthermore, high performance liquid chromatography (HPLC analyses were carried out to relate the chemical profile with their content of terpenoids, of widely known antifungal activity. The antimycotic Terbinafine served as a positive control. Results showed that there was total growth inhibition of the dermatophytes isolates at minimal inhibitory concentrations (MIC between 50 μg/mL and 200 μg/mL for leaves extract, and between 625 μg/mL and 2500 μg/mL for seed oil extract. The MIC of positive control (Terbinafine ranged between 0.0019 μg/mL and 0.0313 μg/mL. Both neem leaves and seed oil methanol extracts exhibited different chromatographic profiles by HPLC, which could explain the differences observed in their antifungal activity. This analysis revealed the possible presence of terpenoids in both extracts, which are known to have biological activity. The results of this research are a new report on the therapeutic potential of neem to the control of dermatophytosis. Actividad antifúngica de extractos de neem (Azadirachta indica: Meliaceae sobre hongos dermatofitosSe determinó la actividad antifúngica de extractos metanólicos de la especie Azadirachta indica A. Juss. (Meliaceae, conocida comúnmente como neem, empleando el método de microdilución en caldo M38-A2 de referencia para hongos filamentosos y dermatofitos. Se evaluaron 14 aislamientos de los dermatofitos Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis y Epidermophyton floccosum. Los extractos de neem fueron obtenidos mediante partici

  15. Antifungal canthin-6-one series accumulate in lipid droplets and affect fatty acid metabolism in Saccharomyces cerevisiae

    OpenAIRE

    Lagoutte, D.; Nicolas, V; Poupon, E.; Fournet, Anne; Hocquemiller, R.; Libong, D.; Chaminade, P.; Loiseau, P.M.

    2008-01-01

    The mechanism of action of antifungal canthin-6-one series was investigated in Saccharomyces cerevisiae. After a rapid uptake, a preferential accumulation of the drug within lipid droplets was observed. The antifungal action of canthin-6-one was found as reversible. Canthin-6-one did not exhibit affinity for sterols, and membrane ergosterol was not necessary for the antifungal activity since the MICs were similar on an ergosterol-deleted and the wild-type S. cerevisiae clones. Relative amount...

  16. Efficacy of Crude Extract of Antifungal Compounds Produced from Bacillus subtilis on Prevention of Anthracnose Disease in Dendrobium Orchid

    OpenAIRE

    Benjaphorn Prapagdee; Lalita Tharasaithong; Ratchaya Nanthaphot; Cholakan Paisitwiroj

    2012-01-01

    The aim of this study was to evaluate the antifungal efficacy of crude extracts of antifungal compounds produced from Bacillus subtilis SSE4 against plant fungal pathogen; Colletotrichum gloeosporioides. Antifungal compounds in culture filtrate were extracted by ethyl acetate, hexane or dichloromethane and assessed for their efficacy to inhibit the growth of C. gloeosporioides on agar plates and for prevention of anthracnose disease in Dendrobium. The results showed that crude extracts of ant...

  17. Syntheses and Characterizations of Polymer-Ceramic Composites Having Increased Hydrophilicity, Air-Permeability, and Anti-Fungal Property

    International Nuclear Information System (INIS)

    Generally, polymer materials are not air-permeable and hydrophilic. In addition, they do not possess anti-fungal property. Hydrophilicity, air-permeability, and anti-fungal properties of new composites consisting of polymer, ceramic nanoparticles, and silver ion were investigated by contact angle measurements, air permeation time, and cell culture. The hydrophilic, air-permeable, and anti-fungal composites can be used in health care industry

  18. Discovery of New Imidazole Derivatives Containing the 2,4-Dienone Motif with Broad-Spectrum Antifungal and Antibacterial Activity

    OpenAIRE

    Chunli Liu; Ce Shi; Fei Mao; Yong Xu; Jinyan Liu; Bing Wei; Jin Zhu; Mingjie Xiang; Jian Li

    2014-01-01

    A compound containing an imidazole moiety and a 2,4-dienone motif with significant activity toward several fungi was discovered in a screen for new antifungal compounds. Then, a total of 26 derivatives of this compound were designed, synthesized and evaluated through in vitro and in vivo antifungal activity assays. Several compounds exhibited improved antifungal activities compared to the lead compound. Of the derivatives, compounds 31 and 42 exhibited strong, broad-spectrum inhibitory effect...

  19. Inhibition of postharvest penicillium molds of oranges by antifungal hydroxypropyl methylcellulose-lipid edible composite films and coatings

    OpenAIRE

    Silvia A. Valencia-Chamorro; Pérez-Gago, María B.; del Río, Miguel A.; Palou, Lluís

    2010-01-01

    New hydroxypropyl methylcellulose (HPMC)-lipid edible composite films and coatings containing low-toxicity chemicals with antifungal properties were developed. Tested antifungal chemicals were mainly salts of organic acids, salts of parabens, and other compounds, most of them classified as food additives or generally recognized as safe (GRAS) compounds. Stand-alone edible films were used for in vitro evaluation of their antifungal activity against the pathogens Penicillium digitat...

  20. Augmenting the Antifungal Activity of an Oxidizing Agent with Kojic Acid: Control of Penicillium Strains Infecting Crops

    OpenAIRE

    Kim, Jong H.; Chan, Kathleen L.

    2014-01-01

    Oxidative treatment is one of the strategies for preventing Penicillium contamination in crops/foods. The antifungal efficacy of hydrogen peroxide (H2O2; oxidant) was investigated in Penicillium strains by using kojic acid (KA) as a chemosensitizing agent, which can enhance the susceptibility of pathogens to antifungal agents. Co-application of KA with H2O2 (chemosensitization) resulted in the enhancement of antifungal activity of either compound, when compared to the independent application ...

  1. Primary or secondary antifungal prophylaxis in patients with hematological maligancies: efficacy and damage

    Directory of Open Access Journals (Sweden)

    Gedik H

    2014-04-01

    Full Text Available Habip Gedik,1 Funda Şimşek,1 Taner Yildirmak,1 Arzu Kantürk,1 Deniz Arica,2 Demet Aydin,2 Naciye Demirel,2 Osman Yokuş21Department of Infectious Diseases and Clinical Microbiology, 2Department of Hematology, Ministry of Health Okmeydani Training and Research Hospital, İstanbul, TurkeyBackground: Patients with hematological malignancies often develop febrile neutropenia (FN as a complication of cancer chemotherapy. Primary or secondary antifungal prophylaxis is recommended for patients with hematological malignancies to reduce the risk of invasive fungal infection (IFI. This study retrospectively evaluated the efficacy and potential harm of administration of primary and secondary antifungal prophylaxis to patients with hematological malignancies at one hospital.Methods: All patients with hematological malignancies older than 14 years of age who had experienced at least one FN attack during chemotherapy while being treated at one hospital between November 2010 and November 2012 were retrospectively evaluated.Results: A total of 282 FN episodes in 126 consecutive patients were examined during a 2-year study period. The mean patient age was 51.73±14.4 years (range: 17–82 years, and 66 patients were male. Primary prophylaxis with posaconazole was administered to 13 patients and systemic antifungal treatment under induction or consolidation chemotherapy to seven patients. Of 26 patients who received secondary antifungal prophylaxis with either oral voriconazole (n=17 or posaconazole (n=6 during 46 FN episodes, systemic antifungal therapy was administered in 16 of 38 episodes and three of eight episodes, respectively. Secondary antifungal prophylaxis with caspofungin was found effective in treating six FN episodes in three patients who had experienced at least two persistent candidemia attacks. The mortality rates associated with IFI were 9% in the first year, 2% in the second year, and 6% overall. The mortality rates associated with candidemia

  2. A novel antagonistic bacterium SL19 and its antifungal substance%一株新的拮抗细菌SL19及其抑菌活性物质

    Institute of Scientific and Technical Information of China (English)

    刘莲娜; 孙伟明; 郭巍; 冯丽娜; 徐大庆; 刘大群

    2011-01-01

    Microbial biocontrol agents SL19 has strong antimicrobial activity to many plant pathogens.By morphological, physiological and biochemical experiments and 16S rDNA sequence homology analysis, SL19 was identified as Bacillus velezensis. Antifungal spectrum was confirmed by confrontation tests. The results showed that SL19 has significant inhibitory effect against Verticillium dahilae,Fusarium oxysporum, Botrytis cinerea, Rhizoctonia solani, Sreptomyces scabies, etc. Active substances were separated and purified using ammonium sulfate method, and physical and chemical properties were studied. Antifungal substances were heated at 60 ℃, 80 ℃ for 20 min, respectively, and antifungal activity has no difference; After 100 ℃ treatment for 20 min, antifungal activity decreased to 75.3%of the control; after 120 ℃ treatment for 20 min, antifungal activity was completely lost. Antifungal substances were not sensitive to trypsin, pepsin, proteinase K, UV radiation and chloroform.SDS-PAGE analysis revealed that the antifungal substances contained a kind of about 50 kD protein. It can be preliminarily concluded that the antifungal substance secreted by this strain was mainly protein.Tests suggested that the antifungal protein could inhibit the growth of hyphae and spore germination of Verticillium dahilae. The study on this strain would provide theoretical basis for biological control.%生防菌SL19对多种植物病原菌有抑菌活性.通过形态观察,生理生化实验和基于16S rDNA同源性序列分析构建系统发育树,鉴定该菌为Bacillus velezensis.利用对峙实验测定了该菌的抑菌谱,发现该菌对大丽轮枝菌、尖孢镰刀菌、灰葡萄孢菌、立枯丝核菌、疮痂链霉菌等多种植物病原微生物有明显的抑菌作用.利用硫酸铵盐析法分离纯化活性物质,并对其理化性质进行初步探索显示:抑菌活性物质经60℃、80℃处理20 min后的抑菌活性不变;经100℃处理20 min

  3. Selection of antifungal agents for burn patients%烧伤患者抗真菌药物的选择

    Institute of Scientific and Technical Information of China (English)

    郇京宁

    2013-01-01

    Fungal infection is one of the serious complications of severely burned patients with high mortality.Application of antifungal agents timely and rationally is very important to control the infection.Antifungal agents including polyenes,triazoles,and echinocandins have been used widely in burned patients and are proved to be effective.Since diagnosis of fungal infection remains difficult,prophylactic and empirical therapies appear to be particularly necessary.In order to improve the efficacy and safety of antifungal agents,the factors of fungal strains,infection sites,hepatic and renal functions,and age,etc.should be considered in selecting antifungal agents.

  4. Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds.

    Science.gov (United States)

    Scorzoni, Liliana; Sangalli-Leite, Fernanda; de Lacorte Singulani, Junya; de Paula E Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares

    2016-04-01

    In the last decades, the increased number of immunocompromised patients has led to the emergence of many forms of fungal infections. Furthermore, there are a restricted arsenal of antifungals available and an increase in the development of resistance to antifungal drugs. Because of these disadvantages, the search for new antifungal agents in natural sources has increased. The development of these new antifungal drugs involves various steps and methodologies. The evaluation of the in vitro antifungal activity and cytotoxicity are the first steps in the screening. There is also the possibility of antifungal combinations to improve the therapy and reduce toxicity. Despite that, the application of the new antifungal candidate could be used in association with photodynamic therapy or using nanotechnology as an ally. In vivo tests can be performed to evaluate the efficacy and toxicity using conventional and alternative animal models. In this work, we review the methods available for the evaluation of the antifungal activity and safety of natural products, as well as the recent advances of new technology in the application of natural products for antifungal therapy. PMID:26853122

  5. Enhanced antifungal efficacy in experimental invasive pulmonary aspergillosis by combination of AmBisome with Fungizone as assessed by several parameters of antifungal response

    NARCIS (Netherlands)

    M.J. Becker (Martin); S. de Marie (Siem); M.H.A.M. Fens (Marcel); W.C.J. Hop (Wim); H.A. Verbrugh (Henri); I.A.J.M. Bakker-Woudenberg (Irma)

    2002-01-01

    textabstractIn common with a proportion of patients with invasive pulmonary aspergillosis (IPA), the efficacy of AmBisome treatment regimens in our rat model remains suboptimal. To investigate whether this might be the result of initially low antifungal activity of amphotericin B a

  6. Radiation application for upgrading of bioresources - Development of antifungal and-or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Kim, Soo Ki; Lee, Sung Ho; Lee, Jung Suk [Paichai University, Taejon (Korea)

    1999-04-01

    (1) In this study, the antifungal bacterial eight strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Especially, strain KL2143, 2367 were identified as Bacillus subtilis (KL2143/KL2367) and strain KL2326, KL2314 identified as Pseudomonas aurantiaca have never been reported internationally. Considering antifungal(AF) spectrum of strain KL2143 show the broad range of AF activity on a number of pathogenic fungi. Therefore, strain KL2143 was selected with the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) Optimal conditions for the production of antifungal material were analyzed under various environmental conditions (carbon source, nitrogen source, phosphate concentration, pH, temperature, amino acids, vitamins). Growth rates were different according to carbon and nitrogen source, antifungal material production yield were not different, however. Product of antifungal material according to phosphate is proportional to concentration; the higher in high concentration and the low in lower concentration. And productivity of antifungal material is was generally high in the range 30 - 37 deg C at pH7 and in case of adding vitamin B12, lysine and aginine to medium it was enhanced. (3) Moreover, bio-degradability upon agricultural substance and organic substances by AF bacteria was strikingly effective. (4) AF stains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. (5) Establishment of a new technology for the

  7. Antifungal and antibacterial activities of Taxus wallichiana Zucc.

    Science.gov (United States)

    Nisar, Muhammad; Khan, Inamullah; Ahmad, Bashir; Ali, Ihsan; Ahmad, Waqar; Choudhary, Muhammad Iqbal

    2008-04-01

    Current study was undertaken to evaluate the in vitro antifungal and antibacterial potential of methanol extract and subsequent fractions obtained after partitioning in organic solvents with variable polarity of the aerial parts of the tree Taxus wallichiana Zucc. Traditionally, this plant is often used in folk medicines in Pakistan for treating microbial infections. In order to rationalize the traditional use, methanol extracts of leaf, bark, and heartwood of Taxus wallichiana Zucc. were tested against six bacteria and six fungal strains using the Hole diffusion and macro-dilution methods. All extracts and fractions displayed significant antimicrobial effect. Only three fungal strains, Trichophyton longifusus, Microspoum canis, and Fusarium solani were susceptible to the extracts and fractions with MICs ranging from 0.08 to 200 mg/mL. In case of bacterial strains, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi were susceptible to the extracts and fractions with MICs ranging from 0.08 to 200 mg/mL. Comparison results were carried out using imipinem, miconazole and amphotericin B as standard antibiotics. PMID:18343912

  8. Antifungal Effect of Essential Oils against Fusarium Keratitis Isolates.

    Science.gov (United States)

    Homa, Mónika; Fekete, Ildikó Pálma; Böszörményi, Andrea; Singh, Yendrembam Randhir Babu; Selvam, Kanesan Panneer; Shobana, Coimbatore Subramanian; Manikandan, Palanisamy; Kredics, László; Vágvölgyi, Csaba; Galgóczy, László

    2015-09-01

    The present study was carried out to investigate the antifungal effects of Cinnamomum zeylanicum, Citrus limon, Juniperus communis, Eucalyptus citriodora, Gaultheria procumbens, Melaleuca alternifolia, Origanum majorana, Salvia sclarea, and Thymus vulgaris essential oils against Fusarium species, the most common etiologic agents of filamentous fungal keratitis in South India. C. zeylanicum essential oil showed strong anti-Fusarium activity, whereas all the other tested essential oils proved to be less effective. The main component of C. zeylanicum essential oil, trans-cinnamaldehyde, was also tested and showed a similar effect as the oil. The in vitro interaction between trans-cinnamaldehyde and natamycin, the first-line therapeutic agent of Fusarium keratitis, was also investigated; an enhanced fungal growth inhibition was observed when these agents were applied in combination. Light and fluorescent microscopic observations revealed that C. zeylanicum essential oil/trans-cinnamaldehyde reduces the cellular metabolism and inhibits the conidia germination. Furthermore, necrotic events were significantly more frequent in the presence of these two compounds. According to our results, C. zeylanicum essential oil/trans-cinnamaldehyde provides a promising basis to develop a novel strategy for the treatment of Fusarium keratitis. PMID:26227503

  9. Antifungal Activity of Copaifera langsdorffii Desf Oleoresin against Dermatophytes

    Directory of Open Access Journals (Sweden)

    Nádia R. B. Raposo

    2013-10-01

    Full Text Available Dermatophytoses are mycoses that affect keratinized tissues in both humans and animals. The aim of this study was to investigate the antifungal activity of the oleoresin extracted from Copaifera langsdorffii Desf. against the strains Microsporum canis ATCC 32903, Microsporum gypseum ATCC 14683, Trichophyton mentagrophytes ATCC 11481 and Trichophyton rubrum CCT 5507. The antimicrobial activity was determined by minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC values. Ketoconazole and terbinafine were used as reference drugs. The copaiba oleoresin showed moderate fungicidal activity against T. mentagrophytes ATCC 11481 (MIC and MFC = 170 μg mL−1 and weak fungicidal activity against T. rubrum CCT 5507 (MIC = 1,360 μg mL−1 and MFC = 2,720 μg mL−1. There was no activity against M. canis ATCC 32903 and M. gypseum ATCC 14683. SEM analysis revealed physical damage and morphological alterations such as compression and hyphae clustering in the structure of the fungi exposed to the action of the oleoresin. The results stimulate the achievement of in vivo assays to confirm the benefits of the application of oleoresin extracted from copaiba in the treatment of dermatophytosis, both in humans and in animals.

  10. Antifungal and antibacterial activities of Petroselinum crispum essential oil.

    Science.gov (United States)

    Linde, G A; Gazim, Z C; Cardoso, B K; Jorge, L F; Tešević, V; Glamoćlija, J; Soković, M; Colauto, N B

    2016-01-01

    Parsley [Petroselinum crispum (Mill.) Fuss] is regarded as an aromatic, culinary, and medicinal plant and is used in the cosmetic, food, and pharmaceutical industries. However, few studies with conflicting results have been conducted on the antimicrobial activity of parsley essential oil. In addition, there have been no reports of essential oil obtained from parsley aerial parts, except seeds, as an alternative natural antimicrobial agent. Also, microorganism resistance is still a challenge for health and food production. Based on the demand for natural products to control microorganisms, and the re-evaluation of potential medicinal plants for controlling diseases, the objective of this study was to determine the chemical composition and antibacterial and antifungal activities of parsley essential oil against foodborne diseases and opportunistic pathogens. Seven bacteria and eight fungi were tested. The essential oil major compounds were apiol, myristicin, and b-phellandrene. Parsley essential oil had bacteriostatic activity against all tested bacteria, mainly Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica, at similar or lower concentrations than at least one of the controls, and bactericidal activity against all tested bacteria, mainly S. aureus, at similar or lower concentrations than at least one of the controls. This essential oil also had fungistatic activity against all tested fungi, mainly, Penicillium ochrochloron and Trichoderma viride, at lower concentrations than the ketoconazole control and fungicidal activity against all tested fungi at higher concentrations than the controls. Parsley is used in cooking and medicine, and its essential oil is an effective antimicrobial agent. PMID:27525894

  11. Characteristics of bacillus strains with antifungal activity against phytopathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Senthilkumar, M. [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-12-15

    Four bacterial isolates that showed antifungal activity against Alternaria alternata and other phytopathogens were isolates from bean rhizosphere. 16S rDNA analysis and phylogenetic relationship indicated that these isolates belong to Genus Bacillus. Isolate A1 clustered with Bacillus licheniformis while other isolates A2, A3 and A4 clustered together with B.pumilus. n-Butanol extract of these isolates strongly inhibited the growth of A. alternata while, chloroform extract of isolate A2 and ethyl acetate extract of A1,A3, and A4 inhibited the test fungus partially. All the isolates except A4 produced chitinase enzyme. None of the isolates solubilized mineral phosphate. Radiation sensitivity of isolates A1, A2, A3 and A4 were assessed and the LD{sub 99} values are determined as 0.50, 6.69, 11,60, 1.53 kGy, respectively. Mutant libraries of each isolate were prepared by exposing them to gamma radiation at their respective LD{sub 99} dose. Crude metabolite caused drastic changes on A. alternata hyphal morphology. Appearance of shrunken and collapsed hyphae could be due to the leak of cell wall or changes in membrane permeability.

  12. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum.

    Science.gov (United States)

    Tortora, María L; Díaz-Ricci, Juan C; Pedraza, Raúl O

    2011-04-01

    Anthracnose, caused by the fungus Colletotrichum acutatum is one of the most important diseases in strawberry crop. Due to environmental pollution and resistance produced by chemical fungicides, nowadays biological control is considered a good alternative for crop protection. Among biocontrol agents, there are plant growth-promoting bacteria, such as members of the genus Azospirillum. In this work, we demonstrate that under iron limiting conditions different strains of A. brasilense produce siderophores, exhibiting different yields and rates of production according to their origin. Chemical assays revealed that strains REC2 and REC3 secrete catechol type siderophores, including salicylic acid, detected by thin layer chromatography coupled with fluorescence spectroscopy and gas chromatography-mass spectrometry analysis. Siderophores produced by them showed in vitro antifungal activity against C. acutatum M11. Furthermore, this latter coincided with results obtained from phytopathological tests performed in planta, where a reduction of anthracnose symptoms on strawberry plants previously inoculated with A. brasilense was observed. These outcomes suggest that some strains of A. brasilense could act as biocontrol agent preventing anthracnose disease in strawberry. PMID:21234749

  13. Nest sanitation through defecation: antifungal properties of wood cockroach feces

    Science.gov (United States)

    Rosengaus, Rebeca B.; Mead, Kerry; Du Comb, William S.; Benson, Ryan W.; Godoy, Veronica G.

    2013-11-01

    The wood cockroach Cryptocercus punctulatus nests as family units inside decayed wood, a substrate known for its high microbial load. We tested the hypothesis that defecation within their nests, a common occurrence in this species, reduces the probability of fungal development. Conidia of the entomopathogenic fungus, Metarhizium anisopliae, were incubated with crushed feces and subsequently plated on potato dextrose agar. Relative to controls, the viability of fungal conidia was significantly reduced following incubation with feces and was negatively correlated with incubation time. Although the cockroach's hindgut contained abundant β-1,3-glucanase activity, its feces had no detectable enzymatic function. Hence, these enzymes are unlikely the source of the fungistasis. Instead, the antifungal compound(s) of the feces involved heat-sensitive factor(s) of potential microbial origin. When feces were boiled or when they were subjected to ultraviolet radiation and subsequently incubated with conidia, viability was "rescued" and germination rates were similar to those of controls. Filtration experiments indicate that the fungistatic activity of feces results from chemical interference. Because Cryptocercidae cockroaches have been considered appropriate models to make inferences about the factors fostering the evolution of termite sociality, we suggest that nesting in microbe-rich environments likely selected for the coupling of intranest defecation and feces fungistasis in the common ancestor of wood cockroaches and termites. This might in turn have served as a preadaptation that prevented mycosis as these phylogenetically related taxa diverged and evolved respectively into subsocial and eusocial organizations.

  14. In vitro susceptibility testing of Fonsecaea pedrosoi to antifungals

    Directory of Open Access Journals (Sweden)

    BEDOUT Catalina de

    1997-01-01

    Full Text Available Based on the difficulties experienced in the treatment of chromoblastomycosis, 12 primary human isolates of F. pedrosoi, were tested for their in vitro susceptibility to various antimycotics. We adapted the recommendations of the NCCLS for yeasts and followed the indications for mold testing from other authors in order to determine their MIC?s and the MLC?s. It was found that a significant proportion of the isolates were resistant to 3 of the 4 antimycotics tested, as revealed by high MIC values, as follows: 33% were resistant to amphotericin B (AMB, 58.3% to 5 fluocytosine (5 FC and 66.7% to fluconazole (FLU. Contrarywise, none of the isolates proved resistant to itraconazole (ITZ. Determination of the MLC?s revealed that a larger proportion of the isolates were not killed by AMB, 5 FC (91.7%, FLU (100% or even, ITZ (41.7%. These data indicate that it would be desirable to determine the susceptibility of F. pedrosoi before initiating therapy, in order to choose the more effective antifungal and avoid clinical failure

  15. Characteristics of bacillus strains with antifungal activity against phytopathogens

    International Nuclear Information System (INIS)

    Four bacterial isolates that showed antifungal activity against Alternaria alternata and other phytopathogens were isolates from bean rhizosphere. 16S rDNA analysis and phylogenetic relationship indicated that these isolates belong to Genus Bacillus. Isolate A1 clustered with Bacillus licheniformis while other isolates A2, A3 and A4 clustered together with B.pumilus. n-Butanol extract of these isolates strongly inhibited the growth of A. alternata while, chloroform extract of isolate A2 and ethyl acetate extract of A1,A3, and A4 inhibited the test fungus partially. All the isolates except A4 produced chitinase enzyme. None of the isolates solubilized mineral phosphate. Radiation sensitivity of isolates A1, A2, A3 and A4 were assessed and the LD99 values are determined as 0.50, 6.69, 11,60, 1.53 kGy, respectively. Mutant libraries of each isolate were prepared by exposing them to gamma radiation at their respective LD99 dose. Crude metabolite caused drastic changes on A. alternata hyphal morphology. Appearance of shrunken and collapsed hyphae could be due to the leak of cell wall or changes in membrane permeability

  16. Standardization of antifungal susceptibility variables for a semiautomated methodology.

    Science.gov (United States)

    Rodríguez-Tudela, J L; Cuenca-Estrella, M; Díaz-Guerra, T M; Mellado, E

    2001-07-01

    Recently, the methodology that will serve as a basis of the standard for antifungal susceptibility testing of fermentative yeasts of the European Committee on Antibiotic Susceptibility Testing has been described. This procedure employs a spectrophotometric method for both inoculum adjustment and endpoint determination. However, the utilization of a spectrophotometer requires studies for standardization. The present work analyzes the following parameters: (i) accuracy of inoculum preparation, (ii) correlation between optical density and CFU per milliliter, (iii) influence of the wavelength on the endpoint determination, and (iv) influence of the dimethyl sulfoxide concentration on the growth kinetics. The main results can be summarized as follows: (i) inoculum preparation following the methodology recommended by the National Committee for Clinical Laboratory Standards is an exact procedure; (ii) the relationship between optical density and CFU per milliliter is linear (coefficient of determination, r(2) = 0.84); (iii) MICs obtained by means of spectrophotometric readings at different wavelengths are identical (for amphotericin B, an intraclass correlation coefficient of 0.98 was obtained; for fluconazole, the intraclass correlation coefficient was 1); and (iv) a 2% concentration of dimethyl sulfoxide produces a significantly slower and lower growth curve of Candida spp. than other concentrations. PMID:11427562

  17. Mono- and sesquiterpenes and antifungal constituents from Artemisia species.

    Science.gov (United States)

    Tan, R X; Lu, H; Wolfender, J L; Yu, T T; Zheng, W F; Yang, L; Gafner, S; Hostettmann, K

    1999-02-01

    In addition to beta-sitosterol and alpha-amyrin detected in all the investigated species, the extract of the aerial parts of Artemisia giraldii var. giraldii gave stigmasterol, daucosterol, sesamine, luteolin, eupafolin, hispidulin, eupatilin, belamcanidin, pinitol, artemin, ridentin, and a new antifungal monoterpene (named santolinylol) while that of the aerial parts of A. mongolica afforded sesamine, eupafolin, eupatilin, matricarin, and a new germacranolide (3-oxo-11 alpha H-germacra-1(10)E,4Z-dien-12,6 alpha-olide), and that of the aerial parts of A. vestita yielded stigmasterol, daucosterol, umbelliferone, scopolin, scoparone, and isoscopoletin-O-glucoside. Pinitol, first reisolated from Artemisia genus, was shown to inhibit the growth of the human pathogenic fungi Candida albicans, Aspergillus flavus, A. niger, Geotrichun candidum, Trichophyton rubrum, and Epidermophyton floccosum. Umbelliferone was also active against Candida tropicalis, A. flavus, G. candidum, T. rubrum, and E. floccosum. The flavones hispidulin and belamcanidin were almost equally inhibitory to the growth of A. flavus, G. candidum, T. rubrum, and E. floccosum, and santolinylol to C. albicans, A. flavus, A. niger, G. candidum, T. rubrum, and E. floccosum. In addition, ridentin was active against the growth of the plant pathogenic fungus Cladosporium cucumerinum. PMID:10083848

  18. A genome-wide screening of potential target genes to enhance the antifungal activity of micafungin in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Xin Zhou

    Full Text Available Micafungin is a non-reversible inhibitor of 1, 3-β-D-glucan synthase and interferes with fungal cell wall synthesis. Clinically, micafungin has been shown to be efficacious for the treatment of invasive candidiasis and invasive aspergillosis. However, considering its relatively restricted antifungal spectrum, combination therapy with micafungin plus other agents should be considered in critically ill patients. To identify potential therapeutic targets for syncretic drug combinations that potentiate micafungin action, we carried out a genome-wide screen for altered sensitivity to micafungin by using the model yeast Schizosaccharomyces pombe mutant library. We confirmed that 159 deletion strains in the library are micafungin sensitive and classified them into various functional categories, including cell wall biosynthesis, gene expression and chromatin remodeling, membrane trafficking, signaling transduction, ubiquitination, ergosterol biosynthetic process and a variety of other known functions or still unknown functions. On the other hand, we also investigated the growth inhibitory activities of some well-known drugs in combination with micafungin including antifungal drug amphotericin B, fluconazole and immunosuppressive drug FK506. We found that amphotericin B in combination with micafungin showed a more potent inhibitory activity against wild-type cells than that of micafungin alone, whereas fluconazole in combination with micafungin did not. Also, the immunosuppressive drug FK506 showed synergistic inhibitory effect with micafungin on the growth of wild-type cells, whereas it decreased the inhibitory effect of micafungin in Δpmk1 cells, a deletion mutant of the cell wall integrity mitogen-activated protein kinase (MAPK Pmk1. Altogether, our findings provide useful information for new potential drug combinations in the treatment of fungal infections.

  19. The expenditures related to the use of antifungal drugs in patients with hematological cancers: a cost analysis

    Directory of Open Access Journals (Sweden)

    Gedik H

    2015-11-01

    Full Text Available Habip Gedik Department of Infectious Diseases and Clinical Microbiology, Ministry of Health Okmeydani Training and Research Hospital, Istanbul, Turkey Objective: The aim of this study is to analyze the expenditures related to the use of antifungal drugs in patients with hematological malignancies. Methods: In this retrospective study, the expenditures related to use of antifungal drugs for treatment of invasive fungal infections in patients with hematological malignancies between November 2010 and November 2012 were analyzed. Expenditures of antifungal drugs were calculated by converting the price billed to the Republic of Turkey Social Security Institution per patient using the US dollar ($ exchange rate. Results: We retrospectively analyzed the expenditures related to the use of antifungal drugs in 282 febrile episodes of 126 neutropenic patients. Voriconazole (VOR, caspofungin, and liposomal amphotericin B (L-AmB were administered as a first-line antifungal therapy to treat 72 febrile episodes of 65 neutropenic patients, 45 febrile episodes of 37 neutropenic patients, and 34 febrile episodes of 32 neutropenic patients, respectively. The expenditures related to the use of antifungal drugs per febrile neutropenic episode were $3,857.85 for VOR; $15,783.34 for caspofungin, and $21,561.02 for L-AmB, respectively. The expenditure related to the use of posaconazole (POS was $32,167.39 per patient for primary or secondary prophylaxis. Conclusion: Improving conditions in the patient's room, choosing pre-emptive antifungal treatment instead of empirical antifungal treatment, switching to tablet form of VOR after initiation of its intravenous form, secondary prophylaxis with VOR against invasive aspergillosis, primary prophylaxis with POS in high-risk patients, and choosing less L-AmB as being an alternative to other antifungal drugs, may reduce expenditures related to the use of antifungal drugs in the treatment of invasive fungal infections during

  20. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    Science.gov (United States)

    Komoto, Tatiana Takahasi; Bitencourt, Tamires Aparecida; Silva, Gabriel; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

    2015-01-01

    Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.). Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets. PMID:26257814

  1. Effectiveness of Natural Antifungal Compounds in Controlling Infection by Grapevine Trunk Disease Pathogens through Pruning Wounds.

    Science.gov (United States)

    Cobos, Rebeca; Mateos, Rosa María; Álvarez-Pérez, José Manuel; Olego, Miguel Angel; Sevillano, Silvia; González-García, Sandra; Garzón-Jimeno, Enrique; Coque, Juan José R

    2015-09-01

    Grapevine trunk fungal pathogens, such as Diplodia seriata and Phaeomoniella chlamydospora, can infect plants through pruning wounds. They cause grapevine trunk diseases and are involved in grapevine decline. Accordingly, the protection of pruning wounds is crucial for the management of grapevine trunk diseases. The efficacy of different natural antifungals in inhibiting the growth of several fungi causing grapevine trunk diseases was evaluated in vitro. The fungi showing greater in vitro efficacy were tested on autoclaved grape wood assays against D. seriata and P. chlamydospora. Based on results from these assays, chitosan oligosaccharide, vanillin, and garlic extract were selected for further evaluation on pruning wounds inoculated with D. seriata and P. chlamydospora in field trials. A significant decrease in plant mortality was observed after 2 years of growth in the plants treated with the different natural antifungals compared to the mortality rate observed in infected plants that were not treated with antifungals. Also, the infection rate for the inoculated pathogens was significantly reduced in plants treated with the selected natural antifungals. Therefore, natural antifungals represent a promising alternative for disease control and could provide significant economic benefits for the grape-growing industry. PMID:26162882

  2. Antifungal Activity of Lavandula Angustifolia and Quergues Infectoria Extracts in Comparison with Nystatin on Candida Albicans

    Directory of Open Access Journals (Sweden)

    F. Nouri

    2016-07-01

    Full Text Available Introduction & Objective: Nowadays,herbal extracts are used to treat diseases, especially infec-tious ones. Candida albicans is the most common causes of oral opportunistic infections.In this study, antifungal effects of two herbal extracts were evaluated on an oral pathogen i.e. Candida albicans. Materials & Methods: In this descriptive- analytic study, the Department of Prosthodontics, ,Tehran University of Medical Sciences, school of Dentistry the oral samples of 25 patients with denture stomatitis were collected using sterile swabs. Then the isolated candida albicans and standard candida albicans PTCC 5027 were cultured. The antifungal effect was evaluated with disk plate method. Nystatin and methanol were used as positive and negative control groups, respectively. The power of antifungal activity was evaluated with the inhibition zone diameter of each of the extracts. At the end, the data were analyzed by ANOVA and Fried-man statistical tests. Results: Results showed that extracts of Querques infectoria had great antifungal effects. There was not statistically significant difference between nystatine and Querques infectoria extract (P>0.05 however , Querques infectoria was statistically more effective than lavender extract and nystatin showed the highest antifungal activity (P <0.001. Conclusion: This study showed that plant extracts had positive effects on Candida albicans as compared to nystatin. Thus, we hope to find new herbal medicines and compounds to treat candidiasis in the future. (Sci J Hamadan Univ Med Sci 2016; 23 (2:172-178

  3. Antifungal activity of borrelidin produced by a Streptomyces strain isolated from soybean.

    Science.gov (United States)

    Liu, Chong-Xi; Zhang, Ji; Wang, Xiang-Jing; Qian, Ping-Ting; Wang, Ji-Dong; Gao, Ya-Mei; Yan, Yi-Jun; Zhang, Shu-Zhen; Xu, Peng-Fei; Li, Wen-Bin; Xiang, Wen-Sheng

    2012-02-01

    In this study, an endophytic Streptomyces sp. neau-D50 with strong antifungal activity against Phytophthora sojae was isolated from healthy soybean root, using an in vitro screening technique. A bioactivity-guided approach was then employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from strain neau-D50. The structure of the antifungal metabolite was elucidated as borrelidin on the basis of spectral analysis. To our knowledge, this is the first report that borrelidin has strong antifungal activity against dominant race 1 of P. sojae with EC(50) and EC(95) of 0.0056 and 0.026 mg/L, respectively. The values were respectively 62.5- and 262.3-fold lower than those of the commercial fungicide metalaxyl, which has been used to treat soybean seed for the control of P. sojae . The in situ bioassays demonstrated that borrelidin at 10 mg/L reduced P. sojae race 1 lesions on soybean seedlings by 94.72% without affecting root growth. Thus, borrelidin might be a promising candidate for new antifungal agents against P. sojae. PMID:22242825

  4. Assessment of Antifungal Activity of Lactic Acid Bacteria Strains Against Bread Spoilage Fungus Aspergillus ochraceus

    Directory of Open Access Journals (Sweden)

    Adrian Matei

    2015-11-01

    Full Text Available Lactic acid bacteria (LAB are generally recognized as safe and can be used against fungi that contaminate various food commodities. The aim of the research was to select LAB strains with high antifungal activity for the biocontrol of Aspergillus ochraceus. The antifungal activity of eight strains of lactic acid bacteria has been evaluated by overlay assay method against the spoilage fungus, Aspergillus ochraceus isolated from white bread. The antifungal effect was assessed by co-cultivation of lactic acid bacteria strains and Aspergillus ochraceus in liquid media and mycelium growth inhibition was monitored for over 14 days. The LAB strains Lpl, LAB 43 and LAB 13 presented intense antifungal activity with large inhibition zones of fungal growth and sporulation, but smaller for Lpa and LAB 15 strains. Total inhibition of mycelia growth was induced by the strains LAB 43, LAB 13 and Lpa. The strains LAB 15 and LAB 35 had a moderate inhibition activity on the mycelia growth. The results of this study demonstrated the antifungal activity of several LAB strains by overlay assay and by co-cultivation method. Therefore, it was confirmed the inhibitory effect of the strains LAB 43 and LAB 13 against Aspergillus ochraceus. The experiment revealed that these LAB strains could be further used as biocontrol agents.

  5. Comparative Antifungal Effect of Lactic Acid Bacteria Strains on Penicillium digitatum

    Directory of Open Access Journals (Sweden)

    Adrian Matei

    2015-11-01

    Full Text Available Lactic acid bacteria (LAB are natural alternative to chemical preservatives for fruits. The aim of the research was to select LAB strains with high antifungal activity against Penicillium digitatum for the biopreservation of fruits. The antifungal activity of eight lactic acid bacteria strains has been evaluated against Penicilliuum digitatum isolated from orange, by overlay assay method and by optical microscope examination. The reversion of inhibition zone after 96 h was recorded as a fungistatic effect while those with inhibition zone for at least 7 days were recorded as fungicidal. The antifungal effect of efficient LAB strains was assessed by comparing inhibition of fungal biofilm formation in liquid media. The strains Lpl, Lpa, LAB 13, LAB 15, LAB 43 and LAB 58 presented intense antifungal activity with clear inhibition zones diameter over 20 mm. The microscopy evidenced atypical hyphae and delaying of conidial chain formation. The strains Lpa, LAB 13, LAB 15 fully inhibited the mycelia growth, strains LAB 43 and LAB 58 partly with delaying of biofilm formation on the surface of culture medium. The results of comparative antifungal activity of LAB strains evidenced the highest inhibition of fungal biofilm formation and structural damages of hyphae and spores caused by the strains Lpa, LAB 13 and LAB 15. These strains could be efficient biocontrol agents of Penicillium digitatum in fruits.

  6. Antifungal properties of Foeniculum vulgare, Carum carvi and Eucalyptus sp. essential oils against Candida albicans strains

    Directory of Open Access Journals (Sweden)

    Skrobonja Jelica M.

    2013-01-01

    Full Text Available Aromatic plants are among the most important sources of biologically active secondary metabolites, with high antimicrobal potential. This study was carried out to examine in vitro antifungal activity of Foeniculum vulgare (Apiaceae, Carum carvi (Apiaceae and Eucalyptus sp.(Myrtaceae essential oils against three Candida albicans strains of different origin (laboratory-CAL, human pulmonary-CAH and ATCC10231-CAR. The essential oils were screened on C. albicans using disc and well-diffusion and microdilution method, and compared to Nystatine and Fluconazole as standard anti-mycotics. The activity of tested oils was expressed by inhibition zone diameter (mm, minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC (mg/ml. The results indicated that studied essential oils show antifungal activity against all three isolates of C. albicans. It was observed that each oil exhibits different degree of antifungal activity depending on the oil concentration applied as well as on analyzed strain of C. albicans. Carum carvi demonstrated the strongest antifungal effect to all tested strains, showing the lowest MIC values (0.03mg/ml for CAL, 0.06mg/ml for CAH, and 0.11mg/ml for CAR, respectively. Eucalyptus sp. exhibited the lowest antifungal activity, with MIC values ranging from 0.11 mg/ml for CAL to 0.45 mg/ml for both CAH and CAR. [Projekat Ministarstva nauke Republike Srbije, br. 172058

  7. Antifungal Potential of Extracellular Metabolites Produced by Streptomyces hygroscopicus against Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Benjaphorn Prapagdee, Chutima Kuekulvong, Skorn Mongkolsuk

    2008-01-01

    Full Text Available Indigenous actinomycetes isolated from rhizosphere soils were assessed for in vitro antagonism against Colletotrichum gloeosporioides and Sclerotium rolfsii. A potent antagonist against both plant pathogenic fungi, designated SRA14, was selected and identified as Streptomyces hygroscopicus. The strain SRA14 highly produced extracellular chitinase and β-1,3-glucanase during the exponential and late exponential phases, respectively. Culture filtrates collected from the exponential and stationary phases inhibited the growth of both the fungi tested, indicating that growth suppression was due to extracellular antifungal metabolites present in culture filtrates. The percentage of growth inhibition by the stationary culture filtrate was significantly higher than that of exponential culture filtrate. Morphological changes such as hyphal swelling and abnormal shapes were observed in fungi grown on potato dextrose agar that contained the culture filtrates. However, the antifungal activity of exponential culture filtrates against both the experimental fungi was significantly reduced after boiling or treatment with proteinase K. There was no significant decrease in the percentage of fungal growth inhibition by the stationary culture filtrate that was treated as above. These data indicated that the antifungal potential of the exponential culture filtrate was mainly due to the presence of extracellular chitinase enzyme, whereas the antifungal activity of the stationary culture filtrate involved the action of unknown thermostable antifungal compound(s.

  8. Antifungal prophylaxis in lung transplantation--a world-wide survey.

    Science.gov (United States)

    Neoh, C F; Snell, G I; Kotsimbos, T; Levvey, B; Morrissey, C O; Slavin, M A; Stewart, K; Kong, D C M

    2011-02-01

    While variations in antifungal prophylaxis have been previously reported in lung transplant (LTx) recipients, recent clinical practice is unknown. Our aim was to determine current antifungal prophylactic practice in LTx centers world-wide. One nominated LTx clinician from each active center was invited by e-mail to participate in a web-based survey between September 2009 and January 2010. Fifty-seven percent (58/102) responded. The majority of responses were from medical directors of LTx centers (72.4%), and from the United States (44.8%). Within the first 6 months post-LTx, most centers (58.6%) employed universal prophylaxis, with 97.1% targeting Aspergillus species. Voriconazole alone, and in combination with inhaled amphotericin B (AmB), were the preferred first-line agents. Intolerance to side effects of voriconazole (69.2%) was the main reason for switching to alternatives. Beyond 6 months post-LTx, most (51.8%) did not employ antifungal prophylaxis. Fifteen centers (26.0%) conducted routine antifungal therapeutic drug monitoring during prophylactic period. There are differences in strategies employed between U.S. and European centers. Most respondents indicated a need for antifungal prophylactic guidelines. In comparison to earlier findings, there was a major shift toward prophylaxis with voriconazole and an increased use of echinocandins, posaconazole and inhaled lipid formulation AmB. PMID:21272239

  9. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey.

    Science.gov (United States)

    Zhao, Xin; Zhou, Zhi-jiang; Han, Ye; Wang, Zhan-zhong; Fan, Jie; Xiao, Hua-zhi

    2013-11-01

    A bacterial strain BH072 isolated from a honey sample showed antifungal activity against mold. Based on morphological, biochemical, physiological tests, and analysis of 16S rDNA sequence, the strain was identified to be a new subspecies of Bacillus sp. It had a broad spectrum of antifungal activity against various mold, such as Aspergillus niger, Pythium, and Botrytis cinerea. Six pairs of antifungal genes primers were designed and synthesized, and ituA, hag, tasA genes were detected by PCR analysis. The remarkable antifungal activity could be associated with the co-production of these three peptides. One of them was purified by 30-40% ammonium sulfate precipitation, Sephadex G-75 gel filtration and anion exchange chromatography on D201 resin. The purified peptide was estimated to be 35.615 kDa and identified to be flagellin by micrOTOF-Q II. By using methanol extraction, another substance was isolated from fermentation liquor, and determined to be iturin with liquid chromatography-mass spectrometry (LC-MS) method. The third possible peptide encoded by tasA was not isolated in this study. The culture liquor displayed antifungal activity in a wide pH range (5.0-9.0) and at 40-100°C. The result of the present work suggested that Bacillus BH072 might be a bio-control bacterium of research value. PMID:23545354

  10. Epidemiology and antifungal susceptibilities of yeasts causing vulvovaginitis in a teaching hospital.

    Science.gov (United States)

    Gamarra, Soledad; Morano, Susana; Dudiuk, Catiana; Mancilla, Estefanía; Nardin, María Elena; de Los Angeles Méndez, Emilce; Garcia-Effron, Guillermo

    2014-10-01

    Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis. PMID:25005365

  11. Antifungal Activity of Essential Oils from Some Medicinal Plants of Iran against Alternaria alternate

    Directory of Open Access Journals (Sweden)

    I. Hadizadeh

    2009-01-01

    Full Text Available Problem statement: Increasing public concern over the level of pesticide residues in food especially fresh produce has built up adequate pressure for scientists to look for less hazardous and environmentally safer compounds for controlling post harvest diseases. Essential oils as registered food grade materials have the potential to be applied as alternative anti-fungal treatments for fresh fruits and vegetables. Approach: We present in this study, the identification of the essential oils with antifungal activity from some medicinal plants of Iran (nettle (Urtica dioica L., thyme (Thymus vulgaris L., eucalyptus (Eucalyptus spp., Rue (Ruta graveolens L. and common yarrow (Achillea millefolium L., and their potential application as "generally regarded as safe" antifungal compounds against Alternaria alternate on tomato as a model pathosystem. Results: Both the nettle and the thyme oils exhibited antifungal activity against A. alternata. The thyme oil exhibited a lower degree of inhibition 68.5 and 74.8% at 1500 and 2000 ppm, respectively. Spore germination and germ tube elongation of the pathogens in potato dextrose broth was strongly reduced in the presence of 1500 ppm of the nettle oil. The same concentration of this oil reduced the percentage of decayed tomatoes. The experiments on reducing the development of natural tomato rot gave similar results. Conclusions: Application of essential oils for postharvest disease control of fresh produce, as a novel emerging alternative to hazardous anti-fungal treatments will allow a safer and environmentally more acceptable management of postharvest diseases.

  12. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Tatiana Takahasi Komoto

    2015-01-01

    Full Text Available Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.. Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets.

  13. Study of the Cytotoxic and Antifungal Activities of Neolignans 8.O.4´ and Structurally Related Compounds

    Directory of Open Access Journals (Sweden)

    P. Matyus

    2000-03-01

    Full Text Available In the present work we report the antifungal and cytotoxic activities of a neolignan 8.O.4´series. The most active antifungal compounds show a significant cytotoxic effect which might be related.

  14. A Comparative Study of the Anti-Fungal Activity of Zinc Oxide and Titanium Dioxide Nano and Bulk Particles with Anti-Fungals against Fungi Isolated from Infected Skin and Dandruff Flakes

    Directory of Open Access Journals (Sweden)

    Sara A George

    2014-06-01

    Full Text Available The anti-fungal activity of Zinc oxide and Titanium dioxide nano-particles was assessed by treating eight fungal cultures - Aspergillus niger, Trichophyton, Fonsecaea, Aspergillus flavus, Rhizopus oryzae, Fusarium, Ramichloridium schulzeri and Cladosporium, isolated from infected skin and dandruff flakes with the nanoparticles and analysing the extent of growth inhibition on agar and in broth media. The anti-fungal activity of these nano-particles was also compared to that of their respective bulk-particular forms, as well as to two commonly used anti-fungals, namely Amphotericin-B and Miconazole. The nano-particles were found to be more effective than the bulk-particles and almost equally efficient as Amphotericin-B, however Miconazole was found to be a better anti-fungal at an equal concentration. Zinc oxide nano-particles were better anti-fungals than Titanium dioxide, thus its anti-fungal activity at different concentrations was assessed to identify the concentration that shows similar anti-fungal activity as 3μg/ml of Miconazole. The reason for performing this study was to investigate the possibility of replacing presently used anti-fungal drugs with nano-particles in topical applications to treat mycosis.

  15. Mechanism of Action of ME1111, a Novel Antifungal Agent for Topical Treatment of Onychomycosis.

    Science.gov (United States)

    Takahata, Sho; Kubota, Natsuki; Takei-Masuda, Naomi; Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Abe, Shigeru; Tabata, Yuji; Maebashi, Kazunori

    2016-02-01

    Despite the existing treatment options for onychomycosis, there remains a strong demand for potent topical medications. ME1111 is a novel antifungal agent that is active against dermatophytes, has an excellent ability to penetrate human nails, and is being developed as a topical agent for onychomycosis. In the present study, we investigated its mechanism of action. Trichophyton mentagrophytes mutants with reduced susceptibility to ME1111 were selected in our laboratory, and genome sequences were determined for 3 resistant mutants. The inhibitory effect on a candidate target was evaluated by a spectrophotometric enzyme assay using mitochondrial fractions. Point mutations were introduced into candidate genes by a reverse genetics approach. Whole-genome analysis of the 3 selected mutants revealed point mutations in the structural regions of genes encoding subunits of succinate dehydrogenase (complex II). All of the laboratory-generated resistant mutants tested harbored a mutation in one of the subunits of succinate dehydrogenase (SdhB, SdhC, or SdhD). Most of the mutants showed cross-resistance to carboxin and boscalid, which are succinate dehydrogenase inhibitors. ME1111 strongly inhibited the succinate-2,6-dichlorophenolindophenol reductase reaction in Trichophyton rubrum and T. mentagrophytes (50% inhibitory concentrations [IC50s] of 0.029 and 0.025 μg/ml, respectively) but demonstrated only moderate inhibition of the same reaction in human cell lines. Furthermore, the target protein of ME1111 was confirmed by the introduction of point mutations causing the amino acid substitutions in SdhB, SdhC, and SdhD found in the laboratory-generated resistant mutants, which resulted in reduced susceptibility to ME1111. Thus, ME1111 is a novel inhibitor of the succinate dehydrogenase of Trichophyton species, and its mechanism of action indicates its selective profile. PMID:26596944

  16. Lunatin, a novel lectin with antifungal and antiproliferative bioactivities from Phaseolus lunatus billb.

    Science.gov (United States)

    Wu, Jinhong; Wang, Jun; Wang, Shaoyun; Rao, Pingfan

    2016-08-01

    A novel lectin with a molecular mass of 24.3kDa, designated Lunatin, was isolated from edible seeds of Phaseolus lunatus billb. The purification scheme consisted of ammonium sulfate precipitation, affinity chromatography, ion exchange chromatography, and gel filtration chromatography. The lectin is a glycoprotein, as determined by staining with periodic acid-Schiff (PAS), and its N-terminal amino acid sequence was determined to be DAVIYRGPGDLHTGS. Lunatin exhibited hemagglutinating activity towards human blood group A erythrocytes, which was mostly preserved up to 50°C and retained at ambient temperature at pH 2.0-11.0. d-fructose, d-galactose, d-glucose, and mannitol were capable of inhibiting its hemagglutinating activity. Lunatin was found to be a metal-dependent protein, as its activity was inhibited by the metallic compounds K2Cr2O7, SnCl2, and LiCl, though it was unaffected by MgCl2, ZnCl2, BaCl2, CuCl2, FeCl3, or CaCl2. In addition, Lunatin exerted potent antifungal activity toward a variety of fungal species, including Sclerotium rolfsii, Physalospora piricola, Fusarium oxysporum, and Botrytis cinerea. Finally, proliferation of K562 leukemia cells was strongly inhibited by Lunatin, with an IC50 of 13.7μM, whereas HeLa and HepG2 cells were only weakly affected. These findings further the identification and understanding of functional factors in edible plant seeds. PMID:27164500

  17. Formulation and evaluation of Gel containing Fluconazole-Antifungal Agent

    Directory of Open Access Journals (Sweden)

    B. Niyaz Basha

    2011-12-01

    Full Text Available Fluconazole is an imidazole derivative and used for the treatment of local and systemic fungal infection. The oral use of fluconazole is not much recommended as it has many side effects. Commercially fluconazole topical gel preparation are not available in the market, thus this formulation is made for better patient compliance and to reduce the dose of drug and to avoid the side effects like liver damage and kidney damage.. The gel was formulated by changing the polymer ratio. FT-IR study confirmed the purity of drug and revealed no interaction between the drug and excipients. Gel formulations were characterized for drug content, pH determination, viscosity measurement, in vitro diffusion, antifungal activity and skin irritation. Among the five formulations, F1 was selected as the best formulation as its %CDR after 4½ h was 97.846% and release rate of drug from F1 formulation is best fitted to Higuchi model. The viscosity of the F1 formulation was within the limits and F1 formulation did not show any skin irritation. Gel formulation F1 was found to be stable at 30 ±2°C and 65 ± 5 RH. It was found that at 40 ± 2°C and 75 ± 5 RH the gel formulation was not stable and %CDR was decreased. Efficient delivery of drug to skin application was found to be highly beneficial in localizing the drug to desired site in the skin and reduced side effects associated with conventional treatment.

  18. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals.

    Science.gov (United States)

    Bachhav, Y G; Mondon, K; Kalia, Y N; Gurny, R; Möller, M

    2011-07-30

    Efficient topical drug administration for the treatment of superficial fungal infections would deliver the therapeutic agent to the target compartment and reduce the risk of systemic side effects. However, the physicochemical properties of the commonly used azole antifungals make their formulation a considerable challenge. The objective of the present investigation was to develop aqueous micelle solutions of clotrimazole (CLZ), econazole nitrate (ECZ) and fluconazole (FLZ) using novel amphiphilic methoxy-poly(ethylene glycol)-hexyl substituted polylactide (MPEG-hexPLA) block copolymers. The CLZ, ECZ and FLZ formulations were characterized with respect to drug loading and micelle size. The optimal drug formulation was selected for skin transport studies that were performed using full thickness porcine and human skin. Penetration pathways and micellar distribution in the skin were visualized using fluorescein loaded micelles and confocal laser scanning microscopy. The hydrodynamic diameters of the azole loaded micelles were between 70 and 165nm and the corresponding number weighted diameters (d(n)) were 30 to 40nm. Somewhat surprisingly, the lowest loading efficiency (13-fold higher than that from Pevaryl® cream (22.8±3.8 and 1.7±0.6μg/cm(2), respectively). A significant enhancement was also observed with human skin; the amounts of ECZ deposited were 11.3±1.6 and 1.5±0.4μg/cm(2), respectively (i.e., a 7.5-fold improvement in delivery). Confocal laser scanning microscopy images supported the hypothesis that the higher delivery observed in porcine skin was due to a larger contribution of the follicular penetration pathway. In conclusion, the significant increase in ECZ skin deposition achieved using the MPEG-dihexPLA micelles demonstrates their ability to improve cutaneous drug bioavailability; this may translate into improved clinical efficacy in vivo. Moreover, these micelle systems may also enable targeting of the hair follicle and this will be investigated

  19. Biogenic silver nanoparticles: efficient and effective antifungal agents

    Science.gov (United States)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Domdi, Latha; Gaddam, Susmila Aparna; Bobbu, Pushpalatha; Venkata, Sucharitha K.; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-04-01

    Biogenic synthesis of silver nanoparticles (AgNPs) by exploiting various plant materials is an emerging field and considered green nanotechnology as it involves simple, cost effective and ecofriendly procedure. In the present study AgNPs were successfully synthesized using aqueous callus extract of Gymnema sylvestre. The aqueous callus extract treated with 1nM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs showed a peak at 437 nm in the UV Visible spectrum. The synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). FTIR spectra showed the peaks at 3333, 2928, 2361, 1600, 1357 and 1028 cm-1 which revealed the role of different functional groups possibly involved in the synthesis and stabilization of AgNPs. TEM micrograph clearly revealed the size of the AgNPs to be in the range of 3-30 nm with spherical shape and poly-dispersed nature; it is further confirmed by Particle size analysis that the stability of AgNPs is due its high negative Zeta potential (-36.1 mV). XRD pattern revealed the crystal nature of the AgNPs by showing the braggs peaks corresponding to (111), (200), (220) and (311) planes of face-centered cubic crystal phase of silver. Selected area electron diffraction pattern showed diffraction rings and confirmed the crystalline nature of synthesized AgNPs. The synthesized AgNPs exhibited effective antifungal activity against Candida albicans, Candida nonalbicans and Candida tropicalis.

  20. Acyl secoiridoids and antifungal constituents from Gentiana macrophylla.

    Science.gov (United States)

    Tan, R X; Wolfender, J L; Zhang, L X; Ma, W G; Fuzzati, N; Marston, A; Hostettmann, K

    1996-07-01

    LC-UV-mass spectrometry and bioassay co-directed fractionation of an aqueous acetone extract of the roots of Gentiana macrophylla gave three new chromene derivatives and two novel and six known secoiridoids, along with kurarinone, kushenol I, beta-sitosterol, stigmasterol, daucosterol, beta-sitosterol-3-O-gentiobioside, alpha-amyrin, oleanolic acid, isovitexin, gentiobiose and methyl 2-hydroxy-3-(1-beta-D-glucopyranosyl)oxybenzoate. The structures of the new products were established from spectral and chemical evidence as 2-methoxyanofinic acid and macrophyllosides A-D. The six known secoiridoids were gentiopicroside, sweroside, 6'-O-beta-D-glucosylgentiopicroside, 6'-O-beta-D-glucosylsweroside, trifloroside and rindoside. The new acid (2-methoxyanofinic acid), its methyl ester, kurarinone and kushenol I were shown to be active against the plant pathogenic fungus Cladosporium cucumerinum. The methyl ester and kurarinone inhibited also the growth of the human pathogenic yeast Candida albicans. Structure-activity relationships were studied. Thus, addition of a methoxyl group to the benzene nucleus of anofinic acid (2,2-dimethyl-2H-1-benzopyran-6-carboxylic acid) increased the antifungal activity remarkably whereas glycosylation at the carboxylic moiety was found to remove the activity. Esterification of the new acid induced its activity against C. albicans, but decreased its growth inhibition properties against C. cucumerinum. Hydroxylation of kurarinone at the 3 beta-position removed its activity against C. albicans and decreased the inhibition of C. cucumerinum. In addition, the chemotaxonomic significance of the identified constituents is discussed. PMID:9397205

  1. Enhancement of antimicrobial activity of antibiotics and antifungals by the use of natural products from Pityrogramma calomelanos (L.) link

    OpenAIRE

    Souza Teógenes M.; Morais-Braga Maria F.B.; Costa José G.M.; Saraiva Antônio A.F.; Coutinho Henrique D.M.

    2012-01-01

    The ethanol extract and methanol fraction of Pityrogramma calomelanos (L.) link were evaluated for antibacterial, antifungal and modulatory activities against strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, C. krusei and C. tropicalis. The antimicrobial activity of the natural products was evaluated by the microdilution method associated or not with aminoglycosides and antifungals. The ethanol extract and methanol fraction of P. calomelanos ...

  2. Evaluation of topical antifungal products in an in vitro onychomycosis model.

    Science.gov (United States)

    Sleven, Reindert; Lanckacker, Ellen; Delputte, Peter; Maes, Louis; Cos, Paul

    2016-05-01

    Many topical commercial products are currently available for the treatment of onychomycosis. However, limited data are available concerning their antifungal activity. Using an in vitro onychomycosis model, the daily application of seven nail formulations was compared to the antifungal reference drug amorolfine (Loceryl(®) ) and evaluated for inhibitory activity against Trichophyton mentagrophytes using an agar diffusion test. Of all commercial nail formulations, only Excilor(®) and Nailner(®) demonstrated inhibitory activity, which was much lower compared to the daily application of Loceryl(®) . However, Excilor(®) showed similar efficacy compared to the conventional weekly application of Loceryl(®) . These results suggest a role for organic acids in the antifungal effect of Excilor(®) (acetic acid, ethyl lactate) and Nailner(®) (lactic acid, citric acid, ethyl lactate) as all tested formulations without organic acids were inactive. PMID:26857689

  3. Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L.

    Science.gov (United States)

    Romagnoli, C; Bruni, R; Andreotti, E; Rai, M K; Vicentini, C B; Mares, D

    2005-04-01

    The essential oil extracted by steam distillation from the capitula of Indian Tagetes patula, Asteraceae, was evaluated for its antifungal properties and analyzed by gas chromatography and gas chromatography-mass spectrometry. Thirty compounds were identified, representing 89.1% of the total detected. The main components were piperitone (24.74%), piperitenone (22.93%), terpinolene (7.8%), dihydro tagetone (4.91%), cis-tagetone (4.62%), limonene (4.52%), and allo-ocimene (3.66%). The oil exerted a good antifungal activity against two phytopathogenic fungi, Botrytis cinerea and Penicillium digitatum, providing complete growth inhibition at 10 microl/ml and 1.25 microl/ml, respectively. The contribution of the two main compounds, piperitone and piperitenone, to the antifungal efficacy was also evaluated and ultrastructural modifications in mycelia were observed via electron microscopy, evidencing large alterations in hyphal morphology and a multisite mechanism of action. PMID:15868213

  4. Comparison of antifungal and antioxidant activities of Acacia mangium and A. auriculiformis heartwood extracts.

    Science.gov (United States)

    Mihara, Rie; Barry, Karen M; Mohammed, Caroline L; Mitsunaga, Tohru

    2005-04-01

    The effect of heartwood extracts from Acacia mangium (heartrot-susceptible) and A. auriculiformis (heartrot-resistant) was examined on the growth of wood rotting fungi with in vitro assays. A. auriculiformis heartwood extracts had higher antifungal activity than A. mangium. The compounds 3,4',7,8-tetrahydroxyflavanone and teracacidin (the most abundant flavonoids in both species) showed antifungal activity. A. auriculiformis contained higher levels of these flavonoids (3.5- and 43-fold higher, respectively) than A. mangium. This suggests that higher levels of these compounds may contribute to heartrot resistance. Furthermore, both flavonoids had strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and laccase inhibition. This suggests that the antifungal mechanism of these compounds may involve inhibition of fungal growth by quenching of free radicals produced by the extracellular fungal enzyme laccase. PMID:16124251

  5. In vitro antifungal activities of leaf extracts of Lippia alba (Verbenaceae against clinically important yeast species

    Directory of Open Access Journals (Sweden)

    Graziela Teixeira de Oliveira

    2014-04-01

    Full Text Available Introduction There are few studies reporting the antifungal activities of Lippia alba extracts. Methods A broth microdilution assay was used to evaluate the antifungal effects of Lippia alba extracts against seven yeast species of Candida and Cryptococcus. The butanol fraction was investigated by gas chromatography-mass spectrometry. Results The butanol fraction showed the highest activity against Candida glabrata. The fraction also acted synergistically with itraconazole and fluconazole against C. glabrata. The dominant compounds in the butanol fraction were 2,2,5-trimethyl-3,4-hexanedione, 3,5-dimethyl-4-octanone and hexadecane. Conclusions The butanol fraction may be a good candidate in the search for new drugs from natural products with antifungal activity.

  6. Antifungal and antiaflatoxigenic potential of essential oils from an endemic Thymus fontanesii Boiss and Reut.

    Directory of Open Access Journals (Sweden)

    Zohra MOHAMMEDI

    2010-01-01

    Full Text Available Phytotherapy is based on the use of the plant products for the treatment of human, animal or vegetable diseases. With these aims, we studied the antifungal and antiaflatoxigenic effects of some aromatic plants. Essential oils were extracted by hydrodistillation using a Clevenger-type apparatus and tested against Aspergillus flavus. Thymus fontanesii, Ammoides verticillata and Mentha pulegium provided highest yield: 3.09%, 3.85%, and 3.25% respectively. The antifungal screening of these aromatic plants against Aspergillus flavus by direct contact method shows a high antifungal potential at Thymus fontanesii with a low amount of essential oil, which the CMI are 0.75µg/mL. This activity is characterized by a fungistatic action. The significant decrease in the production of aflatoxin B observed on CCM and reducing amount of AFB1 determined experimentally let hope for an antiaflatoxigenic effect linked to the use of Thymus fontanesii essential oil.

  7. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    Directory of Open Access Journals (Sweden)

    Michał Tomczyk

    2008-12-01

    Full Text Available The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+, Klebsiella pneumoniae (ESBL+, Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts, which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  8. Synthesis, In Vitro Biological Evaluation, and Molecular Docking of New Triazoles as Potent Antifungal Agents.

    Science.gov (United States)

    Li, Xiang; Liu, Chao; Tang, Sheng; Wu, Qiuye; Hu, Honggang; Zhao, Qingjie; Zou, Yan

    2016-01-01

    Based on the structure of the active site of CYP51 and the structure-activity relationships of azole antifungal compounds that we designed in a previous study, a series of 1-{1-[2-(substitutedbenzyloxy)ethyl]-1H-1,2,3-triazol-4-yl}-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols (6a-n) were designed and synthesized utilizing copper-catalyzed azide-alkyne cycloaddition. Preliminary antifungal tests against eight human pathogenic fungi in vitro showed that all the title compounds exhibited excellent antifungal activities with a broad spectrum in vitro. Molecular docking results indicated that the interaction between the title compounds and CYP51 comprised π-π interactions, hydrophobic interactions, and the narrow hydrophobic cleft. PMID:26641629

  9. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group

    Directory of Open Access Journals (Sweden)

    Xu K

    2015-03-01

    Full Text Available Kehan Xu,1,* Lei Huang,1,* Zheng Xu,2 Yanwei Wang,1,3 Guojing Bai,1 Qiuye Wu,1 Xiaoyan Wang,1 Shichong Yu,1 Yuanying Jiang1 1School of Pharmacy, Second Military Medical University, Shanghai, 2Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 3Number 422 Hospital of PLA, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: In previous studies undertaken by our group, a series of 1-(1H-1,2,4-triazole-1-yl-2-(2,4-difluorophenyl-3-substituted-2-propanols (1a–r, which were analogs of fluconazole, was designed and synthesized by click chemistry. In the study reported here, the in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Compounds 1a, 1q, and 1r showed the more antifungal activity than the others. Keywords: triazole, synthesis, antifungal activity, CYP51

  10. ANTIFUNGAL PROPERTY OF NARAVELIA ZEYLANICA (L. DC AGAINST STORAGE PATHOGENS OF GINGER (ZINGIBER OFFICINALIS

    Directory of Open Access Journals (Sweden)

    Medhi Sadhana

    2012-09-01

    Full Text Available Presently there has been an increased interest in using herbal extracts and their phytocomponents as an alternative to control plant pathogenic microorganisms. Using agar cup diffusion method, different extracts of Naravelia zeylanica were evaluated for their potential antifungal activity against five phytopathogenic fungi, commonly involved in the post harvest diseases of Ginger. Among all the tested extracts, chloroform extract exhibited promising antifungal activity with maximum inhibition zones of 39.67mm followed by methanol, acetone and petroleum ether extract. Water extract was inactive against all the fungi except Aspergillus niger. Minimum inhibitory concentration (MIC values for the most active extracts determined by broth macro dilution technique found ranging between 1.56-3.12 mg/ml. In an approach towards development of eco-friendly antifungal control strategy, the obtained results hints on an existing potential of N. zeylanica extracts in the control and management of post harvest fungal pathogens of Ginger.

  11. Molecular identification and antifungal susceptibility of 186 Candida isolates from vulvovaginal candidiasis in southern China.

    Science.gov (United States)

    Shi, Xiao-Yu; Yang, Yan-Ping; Zhang, Ying; Li, Wen; Wang, Jie-Di; Huang, Wen-Ming; Fan, Yi-Ming

    2015-04-01

    There is limited information regarding the molecular epidemiology and antifungal susceptibilities of Candida isolates using the Neo-Sensitabs method in patients with vulvovaginal candidiasis (VVC). From August 2012 to March 2013, 301 non-pregnant patients aged 18-50 years with suspected VVC were prospectively screened at a teaching hospital in southern China. The vaginal isolates were identified by DNA sequencing of internal transcribed spacer and the D1/D2 domain. Antifungal susceptibility testing of seven antifungal agents was performed using the Neo-Sensitabs tablet diffusion method. Candida species were isolated from 186 cases (61.79 %). The most common pathogen was Candida albicans (91.4 %), followed by Candida glabrata (4.3 %), Candida tropicalis (3.2 %) and Candida parapsilosis (1.1 %). The susceptibility rates to C. albicans were higher for caspofungin, voriconazole and fluconazole than those for itraconazole, miconazole, ketoconazole and terbinafine (Ptreatment of VVC. PMID:25596116

  12. Antioxidant and antifungal activities of essential oil of Alpinia calcarata Roscoe rhizomes

    Directory of Open Access Journals (Sweden)

    Lakshmi S.R Arambewela

    2010-01-01

    Full Text Available Antioxidant and antifungal activity were determined for the essential oil of Alpinia calcarata Roscoe (Zingiberaceae rhizomes. Its antioxidant properties were investigated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay and thiobarbituric acid reactive substances (TBARS assay. Butylated hydroxy toluene (BHT and vitamin E served as positive controls. Antifungal activities were investigated against crop pathogens Curvularia spp. and Colletorichum spp. using the agar plate method. Fifty percent effective concentration (EC 50 and % antioxidant index of the essential oil were 45 ± 0.4 and 16.1 ± 0.2 for DPPH and TBARS assays, respectively. The degree of, the essential oil′s inhibition of the growth of crop pathogens Curvularia spp. and Colletorichum spp. varied with time period its effects were higher than greater than for the positive control, daconil. In conclusion, the essential oil of A. calcarata rhizomes possess moderate antioxidant property and promising antifungal activity.

  13. Correlation between Plant Secondary Metabolites and Their Antifungal Mechanisms–A Review

    DEFF Research Database (Denmark)

    Freiesleben, Sara; Jäger, Anna

    2014-01-01

    based on their structure or biosynthetic origin. When searching for new antifungal agents it is crucial to search for a mechanism of action for which unwanted side effects can be avoided. This can be done if the mechanism of action only involves fungal cells and not mammalian cells. For that reason it...... literature search for existing knowledge about antifungal mechanisms of different secondary metabolites from plants. The secondary metabolites have been grouped into three major groups according to their biosynthetic origin, and into subgroups according to their structure. There seems to be a correlation......The search for new antifungal drugs often involves secondary metabolites from plants because of their pharmacological activity against foreign pathogens. Among the modern drugs in use today about 40% are of natural origin. To distinguish the secondary metabolites they can be divided into groups...

  14. Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials

    International Nuclear Information System (INIS)

    Graphene oxide loaded silver nanoparticles (GO-Ag) were synthesized using a simple method. Our evidence showed that silver nanoparticles (Ag NPs) were successfully loaded on the surface of graphene oxide sheets. The antifungal property of GO-Ag composites was investigated. The results revealed that the obtained GO-Ag composites exhibit enhanced antifungal property in comparison with that of Ag NPs. The toxicity of GO-Ag and Ag NPs were systematically evaluated. The study of cell viability, lactate dehydrogenase, reactive oxygen species, apoptosis/necrosis and hemolysis revealed that GO-Ag composites have lower cytotoxicity and better blood compatibility than Ag NPs. Therefore, these findings provide nanotoxicological information regarding GO-Ag composites which may be alternative antifungal materials in their application of biomedical fields. (paper)

  15. Preliminary phytochemical analysis, antibacterial, antifungal and anticandidal activities of successive extracts of Crossandra infundibuliformis

    Institute of Scientific and Technical Information of China (English)

    MadhumithaG; SaralAM

    2011-01-01

    Objective:To investigate the phytochemical, antibacterial, antifungal and anticandidal activity of successive extracts of Crossandra infundibuliformis (Acanthaceae) leaves. Methods:Preliminary screening on the presence of alkaloids, saponins, phytosterols, phenolic compounds, flavanoids, tannins, carbohydrates, terpenoids, oils and fats were carried out by phytochemical analysis. The antibacterial, antifungal and anticandidal activities were done by agar well diffusion technique. Results:The successive extracts have an array of chemical constituents and the MIC values of antibacterial activity ranges from 0.007 8 to 0.015 0μg/mL. In case of antifungal and anticandidal activities the MIC values were between 0.125 and 0.250μg/mL. Conclusions:These findings demonstrate that the leaf extracts of C. infundibuliformis presents excellent antimicrobial activities and thus have great potential as a source for natural health care products.

  16. Antifungal Action of Ginkgo biloba Outer Seedcoat on Rice Sheath blight.

    Science.gov (United States)

    Oh, Tae-Seok; Koo, Han-Mo; Yoon, Hei-Ryeo; Jeong, Nam-Su; Kim, Yeong-Jin; Kim, Chang-Ho

    2015-03-01

    From study of antifungal actions on the rice sheath blight by using the extract of Ginkgo biloba outer seedcoats, we found that the extracts of Ginkgo biloba outer seedcoats of all treatment concentrations had inhibited the rice sheath blight. Among them, the most effective concentration was 250 mg/l at which the growth of microbe was 26 mm and even at the packaging test, when sprayed the G. biloba outer seedcoats at the level of 250 mg/l, the damage rate of the rice sheath blight was identified as 13%. As a result investigating the antifungal activity by separating polysaccharides from G. biloba outer seedcoats, it showed that the clear zone of 14 mm or more was formed at the concentration of 250 mg/l or higher. Based on these results, we concluded that the G. biloba outer seedcoat is a natural substance with the antifungal activity on the rice sheath blight. PMID:25774111

  17. A chemometric approach for prediction of antifungal activity of some benzoxazole derivatives against Candida albicans

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2012-01-01

    Full Text Available The purpose of the article is to promote and facilitate prediction of antifungal activity of the investigated series of benzoxazoles against Candida albicans. The clinical importance of this investigation is to simplify design of new antifungal agents against the fungi which can cause serious illnesses in humans. Quantitative structure activity relationship analysis was applied on nineteen benzoxazole derivatives. A multiple linear regression (MLR procedure was used to model the relationships between the molecular descriptors and the antifungal activity of benzoxazole derivatives. Two mathematical models have been developed as a calibration models for predicting the inhibitory activity of this class of compounds against Candida albicans. The quality of the models was validated by the leave-one-out technique, as well as by the calculation of statistical parameters for the established model. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

  18. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites.

    Science.gov (United States)

    De Muynck, Cassandra; Leroy, Annelies I J; De Maeseneire, Sofie; Arnaut, Filip; Soetaert, Wim; Vandamme, Erick J

    2004-01-01

    The aim of this study was to assess the potential of lactic acid bacteria to inhibit the outgrowth of some common food-spoiling fungi. Culture supernatants of 17 Lactic acid bacterial strains as well as of three commercial probiotic cultures were evaluated for antifungal activity using an agar-diffusion method. The method parameters were chosen in order to reveal compounds for potential use in food (bio)preservation. Thirteen strains showed antifungal activity of which five strains were very promising: Lactobacillus acidophilus LMG 9433, L. amylovorus DSM 20532, L. brevis LMG 6906, L. coryniformis subsp. coryniformis LMG 9196 and L. plantarum LMG 6907. Four of these five strains were further examined; it was found that the produced antifungal metabolites were pH-dependent. The exact chemical nature of these substances has not been revealed yet. PMID:15646380

  19. Characterization of Diterpenes from Euphorbia prolifera and Their Antifungal Activities against Phytopathogenic Fungi.

    Science.gov (United States)

    Xu, Jing; Kang, Jing; Cao, Xiangrong; Sun, Xiaocong; Yu, Shujing; Zhang, Xiao; Sun, Hongwei; Guo, Yuanqiang

    2015-07-01

    Euphorbia prolifera is a poisonous plant belonging to the Euphorbiaceae family. In this survey on plant secondary metabolites to obtain bioactive substances for the development of new antifungal agents for agriculture, the chemical constituents of the plant E. prolifera were investigated. This procedure led to the isolation of six new and two known diterpenes. Their structures, including absolute configurations, were elucidated on the basis of extensive NMR spectroscopic data analyses and time-dependent density functional theory ECD calculations. Biological screenings revealed that these diterpenes possessed antifungal activities against three phytopathogenic fungi. The results of the phytochemical investigation further revealed the chemical components of the poisonous plant E. prolifera, and biological screenings implied the extract or bioactive diterpenes from this plant may be regarded as candidate agents of antifungal agrochemicals for crop protection products. PMID:26063581

  20. Antifungal Action of Ginkgo biloba Outer Seedcoat on Rice Sheath blight

    Directory of Open Access Journals (Sweden)

    Tae-Seok Oh

    2015-03-01

    Full Text Available From study of antifungal actions on the rice sheath blight by using the extract of Ginkgo biloba outer seedcoats, we found that the extracts of Ginkgo biloba outer seedcoats of all treatment concentrations had inhibited the rice sheath blight. Among them, the most effective concentration was 250 mg/l at which the growth of microbe was 26 mm and even at the packaging test, when sprayed the G. biloba outer seedcoats at the level of 250 mg/l, the damage rate of the rice sheath blight was identified as 13%. As a result investigating the antifungal activity by separating polysaccharides from G. biloba outer seedcoats, it showed that the clear zone of 14 mm or more was formed at the concentration of 250 mg/l or higher. Based on these results, we concluded that the G. biloba outer seedcoat is a natural substance with the antifungal activity on the rice sheath blight.

  1. Halogenated benzoate derivatives of altholactone with improved anti-fungal activity.

    Science.gov (United States)

    Euanorasetr, Jirayut; Junhom, Mayura; Tantimavanich, Srisurang; Vorasin, Onanong; Munyoo, Bamroong; Tuchinda, Patoomratana; Panbangred, Watanalai

    2016-05-01

    Altholactone exhibited the anti-fungal activity with a high MIC value of 128 μg ml(-1) against Cryptococcus neoformans and Saccharomyces cerevisiae. Fifteen ester derivatives of altholactone 1-15 were modified by esterification and their structures were confirmed by spectroscopic methods. Most of the ester derivatives exhibited stronger anti-fungal activities than that of the precursor altholactone. 3-Bromo- and 2,4-dichlorobenzoates (7 and 15) exhibited the lowest minimal inhibitory concentration (MIC) values against C. neoformans at 16 μg ml(-1), while the 4-bromo-, 4-iodo-, and 1-bromo-3-chlorobenzoates (11-13) displayed potent activity against S. cerevisiae with MIC values of 1 μg ml(-1). In conclusion, this analysis indicates that the anti-fungal activity of altholactone is enhanced by addition of halogenated benzoyl group to the 3-OH group. PMID:26765144

  2. Synthesis and antifungal activity of 2-hydroxy-4,5-methylenedioxyaryl ketones as analogues of kakuol.

    Science.gov (United States)

    Musso, Loana; Dallavalle, Sabrina; Merlini, Lucio; Farina, Gandolfina

    2010-04-01

    In a study aiming to determine the structural elements essential to the antifungal activity of kakuol, we synthesized a series of 2-hydroxy-4,5-methylenedioxyaryl ketones, and we assayed their in vitro antifungal activity. The most sensitive target organisms to the action of these class of compounds were Phytophthora infestans, Phytium ultimum, Cercospora beticola, Cladosporium cucumerinum, and Rhizoctonia solani. Most of the analogs showed a remarkable in vitro activity, and some of them appeared significantly more effective than the natural product. The biological activity was mainly affected by introducing structural modification on the carbonyl moiety of the natural-product molecule. In particular, compound 5a, bearing a C=C bond conjugated to the C=O group, was found active with a MIC value of 10 microg ml(-1) against Cladosporium cucumerinum. The results suggest that 2-hydroxy-4,5-methylenedioxyaryl ketones can be considered promising candidates in the development of new antifungal compounds. PMID:20397224

  3. Photoactive extracts from Thevetia peruviana with antifungal properties against Cladosporium cucumerinum.

    Science.gov (United States)

    Gata-Gonçalves, Lígia; Nogueira, J M F; Matos, Olívia; Bruno de Sousa, Raúl

    2003-04-01

    Seeds of Thevetia peruviana were screened for their antifungal photoactivity. Extracts obtained either with n-hexane or dichloromethane were fractionated by column chromatography and further analysed by thin-layer chromatography. All seed extracts and fractions were tested for inhibition of the fungus Cladosporium cucumerinum for the evaluation of photoactive inhibitory effects. Antifungal light-dependent activity was observed for some of the fractions and both crude extracts. The most photoactive fraction was analysed by capillary gas chromatography with mass spectrometry in order to identify its constituents. Two major groups of compounds were identified, terpenes and fatty acids and derivatives. Pulegone, linoleic acid and palmitic acid were the major compounds. Terpenes seem to be the major substances with antifungal photoactivity. PMID:12745247

  4. Isolation and antifungal activity of kakuol, a propiophenone derivative from Asarum sieboldii rhizome.

    Science.gov (United States)

    Lee, Jung Yeop; Moon, Surk Sik; Hwang, Byung Kook

    2005-08-01

    An antifungal substance active against Colletotrichum orbiculare (Berk & Mont) Arx was isolated from the methanol extracts of Asarum sieboldii (Miq) Maek rhizomes. High-resolution MS, NMR and UV spectral data confirmed that the antifungal substance is kakuol, 2-hydroxy-4,5-methylenedioxypropiophenone. Colletotrichum orbiculare was most sensitive to kakuol, with MIC of 10 microg ml(-1). Kakuol also completely inhibited the mycelial growth of Botrytis cinerea Pers ex Fr and Cladosporium cucumerinum Ellis & Arthur at 50 microg ml(-1) and 30 microg ml(-1), respectively. However, no antimicrobial activity was found against yeast and bacteria even at 100 microg ml(-1). Kakuol exhibited a protective activity against the development of anthracnose disease on cucumber plants. The control efficacy of kakuol against the anthracnose disease was in general somewhat less than that of the commercial fungicide chlorothalonil. This is the first report to demonstrate in vitro and in vivo antifungal activity of kakuol against C. orbiculare infection. PMID:15846774

  5. Pathogenesis-related gene, JcPR-10a from Jatropha curcas exhibit RNase and antifungal activity.

    Science.gov (United States)

    Agarwal, Parinita; Bhatt, Vacha; Singh, Rekha; Das, Mamali; Sopory, Sudhir K; Chikara, Jitendra

    2013-06-01

    The pathogenesis-related proteins have a broad spectrum of roles, ranging from seed germination, development to resistance. The PR-10 is a multigene family differing from other PR proteins in being intracellular, small and acidic with similar 3D structures. We have isolated JcPR-10a cDNA with an ORF of 483 bp from J. curcas, an important biofuel crop grown in the wastelands of India. JcPR-10a gets clustered with dicots in phylogenetic tree. The genomic organisation analysis of JcPR-10a revealed the presence of an intron at conserved 185 bp position. Transcript expression of JcPR-10a was upregulated in response to different stimuli such as NaCl, salicylic acid, methyl jasmonate and M. phaseolina. In response to SA and Macrophomina the transcript was found increased at 48 h, however, in case of NaCl and MeJa a strong induction was observed at 12 h which decreased at 48 h. We first time report the transcript up regulation of PR-10 gene by Macrophomina, a pathogen causing collar rot in Jatropha. The recombinant E. coli cells showed better growth in LB medium supplemented with NaCl, whereas growth of recombinant cells was inhibited in LB medium supplemented with KCl, mannitol, sorbitol, methyl jasmonate and salicylic acid. The JcPR-10a protein was overexpressed in E. coli cells, and was purified to homogeneity, the purified protein exhibited RNase and DNase activity. Furthermore, the protein also showed antifungal activity against Macrophomina, indicating that JcPR-10a can serve as an important candidate to engineer stress tolerance in Jatropha as well as other plants susceptible to collar rot by Macrophomina. PMID:22763562

  6. Evaluation of antifungal potential of selected medicinal plants against human pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Hayat Sakander

    2015-01-01

    Full Text Available Context: Evaluation of medicinal plants used in traditional medicine lead to novel bioactive compounds with antifungal activity that could be exploited as therapeutic agents. Aims: The aim was to screen selected medicinal plants for antifungal activity against three important human pathogenic fungi and to identify the broad group of phytochemicals responsible for the activity. Materials and Methods: A total of 8 medicinal plants were screened for antifungal activity against three human pathogenic fungi. Aqueous and the solvent extracts of the plant materials were prepared by polarity based solvent extraction. Antifungal activity was tested by well and disc diffusion methods. Minimum inhibitory concentration (MIC of the active extract was determined by micro-broth dilution technique. Phytochemical analysis of the active extract was done. Statistical Analysis Used: The results were statistically analysed by One-Way analysis of variance with Post-hoc Tukey′s B test at P < 0.05 using the  Software SPSS version 20 (IBM Corp. Armonk, NY Released 2011. Results: Significant antifungal activity was observed in the aqueous extracts of the fruits of Terminalia chebula (47.75 mm against Microsporum gypseum and the mesocarp of Persea americana (40.5 mm against Microsporum canis. Candida albicans was inhibited by the ethyl acetate (20 mm and aqueous extracts (16 mm of T. chebula fruits and aqueous extract of the seeds of Syzygium jambos (16 mm. The aqueous extract of mesocarp of P. americana showed lowest MIC value (312.5 μg/ml against M. canis and M. gypseum. Phytochemical analysis of the active extracts revealed the presence of phenols, tannins, alkaloids and flavonoids. Conclusions: The study validates the use of the plants in the treatment of fungal infections and has provided important leads for the discovery of new plant-based antifungal agents.

  7. Antifungal agent utilization evaluation in hospitalized neutropenic cancer patients at a large teaching hospital

    Directory of Open Access Journals (Sweden)

    Vazin A

    2015-06-01

    Full Text Available Afsaneh Vazin,1 Mohammad Ali Davarpanah,2 Setareh Ghalesoltani3 1Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; 2HIV Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 3International Branch of Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran Abstract: To evaluate pattern of using of three antifungal drugs: fluconazole, amphotericin B and voriconazole, at the hematology–oncology and bone marrow transplant wards of one large teaching hospital. In a prospective cross-sectional study, we evaluated the appropriateness of using antifungal drugs in patients, using Infectious Disease Society of America (IDSA and National Comprehensive Cancer Network (NCCN guidelines. All the data were recorded daily by a pharmacist in a form designed by a clinical pharmacist and infectious diseases specialist, for antifungals usage, administration, and monitoring. During the study, 116 patients were enrolled. Indications of prescribing amphotericin B, fluconazole, and voriconazole were appropriate according to guidelines in 83.4%, 80.6%, and 76.9% respectively. The duration of treatments were appropriate according to guidelines in 75%, 64.5%, and 71.1% respectively. The dose of voriconazole was appropriate according to guidelines in 46.2% of patients. None of the patients received salt loading before administration of amphotericin B. The most considerable problems with the mentioned antifungals were about the indications and duration of treatment. In addition, prehydration for amphotericin B and dosage of voriconazole were not completely compatible with the mentioned guidelines. A suitable combination of controlling the use of antifungals and educational programs could be essential for improving the general process of using antifungal drugs at our hospital. Keywords: utilization evaluation, fluconazole, amphotericin B, voriconazole, neutropenia

  8. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... metabolites produced. Besides diacetyl and lactic acid, 6 antifungal hydroxy acids were identified. Of these, 3 have previously been reported from antifungal lactic acid bacteria, whereas the other 3 hydroxy acids have not previously been reported produced by antifungal lactic acid bacteria....... for prolonging shelf-life of food without the addition of specific preservatives. Increased interest in the use of these bacteria for biopreservation has led to identification of a range of potent strains, and in addition, isolation and identification of various antifungal metabolites produced by...

  9. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence

    Institute of Scientific and Technical Information of China (English)

    Maghdu Nainamohamed Abubacker; Palaniyappan Kamala Devi

    2014-01-01

    Objective: To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Methods: Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. Results: The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. Conclusions: The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations.

  10. Synthesis and Biological Activity of New 1,3-Dioxolanes as Potential Antibacterial and Antifungal Compounds

    Directory of Open Access Journals (Sweden)

    Hatice Başpınar Küçük

    2011-08-01

    Full Text Available A series of new enantiomerically pure and racemic 1,3-dioxolanes 1-8 was synthesized in good yields and short reaction times by the reaction of salicylaldehyde with commercially available diols using a catalytic amount of Mont K10. Elemental analysis and spectroscopic characterization established the structure of all the newly synthesized compounds. These compounds were tested for their possible antibacterial and antifungal activity. Biological screening showed that all the tested compounds, except 1, show excellent antifungal activity against C. albicans, while most of the compounds have also shown significant antibacterial activity against S. aureus, S. epidermidis, E. faecalis and P. aeruginosa.

  11. Novel, Pseudomonas-derived Antifungal Lipopeptides From A Disease Suppressive Soil In Greenlandic Potato Fields

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Michelsen, Charlotte F.; Glaring, Mikkel A.;

    2015-01-01

    the two non-ribosomal peptides nunapeptin and nunamycin, which are key components of the antifungal activity of In5. Bacterial-fungal interaction studies uncovered a complex interaction whereby nunamycin appears most active against Rhizoctonia solani with no antimicrobial effect against the oomycete...... flanking the peptide biosynthetic genes. Functional analysis by knockout and complementation studies together with liquid chromatography – high resolution mass spectrometry (LC-HRMS) showed loss and gain of both antifungal activity and peptide synthesis. Current studies are aimed at unravelling further the...... complex regulation and mode of action of both peptides in order to develop effective microbial biocontrol agents (mBCAs)....

  12. Synthesis and Antifungal Activity of Novel Triazole Compounds Containing Piperazine Moiety

    Directory of Open Access Journals (Sweden)

    Yanwei Wang

    2014-07-01

    Full Text Available Design and synthesis of triazole library antifungal agents having piperazine side chains, analogues to fluconazole were documented. The synthesis highlighted utilization of the click chemistry on the basis of the active site of the cytochrome P450 14α-demethylase (CYP51. Their structures were characterized by 1H-NMR, 13C-NMR, MS and IR. The influences of piperazine moiety on in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi.

  13. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans.

    Science.gov (United States)

    Wang, Yuan-Hua; Dong, Huai-Huai; Zhao, Fei; Wang, Jie; Yan, Fang; Jiang, Yuan-Ying; Jin, Yong-Sheng

    2016-07-01

    To identify effective and low toxicity synergistic antifungal compounds, 24 derivatives of chalcone were synthesized to restore the effectiveness of fluconazole against fluconazole-resistant Candida albicans. The minimal inhibitory concentration (MIC80) and the fractional inhibitory concentration index (FICI) of the antifungal synergist fluconazole were measured against fluconazole-resistant Candida albicans. This was done via methods established by the clinical and laboratory standards institute (CLSI). Of the synthesized compounds, 2'-hydroxy-4'-methoxychalcone (8) exhibited the most potent in vitro (FICI=0.007) effects. The structure activity relationship of the compounds are then discussed. PMID:27210436

  14. Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass

    International Nuclear Information System (INIS)

    In this study, we have investigated the antifungal activity of ZnO nanorods prepared by the chemical solution method against Candida albicans. In the study, Zinc oxide nanorods have been deposited on glass substrates using the chemical solution method. The as-grown samples are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray diffraction (XRD) showed zinc oxide nanorods grown in (0 0 2) orientation. The antifungal results indicated that ZnO nanorod arrays exhibit stable properties after two months and play an important role in the growth inhibitory of Candida albicans.

  15. Antifungal activity of harmaline, HgCl/sub 2/ and their complex

    International Nuclear Information System (INIS)

    Harmaline and its mercury (ll)-complex were isolated from seeds of Peganum harmala by an already reported method (I) and studied for their antifungal activity against 14 different species of fungus. For comparative studies, pure sample of mercury (1I)-chloride salt was also subjected to antifungal tests with the same species of fungi under similar conditions. Results indicated that harmaline was ineffective towards all the selected species of fungi except Epidermophyton floccosum while mercury (II) chloride was highly effective against all organisms. On contrary, mercury (II)-harmaline complex activity was reduced and even became ineffective against aspergillus solani and penicillium notatum. (author)

  16. The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles

    International Nuclear Information System (INIS)

    The antibacterial and antifungal activity of a low melting point soda-lime glass powder containing silver nanoparticles has been studied. Nano-Ag sepiolite fibres containing monodispersed silver nanoparticles (d50∼11 ± 9 nm) were used as the source of silver. This powder presents a high antibacterial (against gram-positive and gram-negative bacteria) as well as antifungal (against I. orientalis) activity. The observed high activity against yeast has been explained by considering the inhibitory effect of the Ca2+ lixiviated from the glass on the growth of the yeast colonies.

  17. Studies on antifungal activity and elemental composition of the medicinal plant trianthema pentendra linn

    International Nuclear Information System (INIS)

    Antifungal activity of crude solvent and aqueous extracts of the medicinal plant, Trianthema pentendra Linn., against the dermatophytic fungi, Aspergillus niger, Aspergillus flavus, Paecilomyces varioti, Microsporum gypseum and Trichophyton rubrum revealed that ethanol and aqueous extracts were the most effective antifungal agents as compared to methanol, chloroform and ethyl acetate extracts. Some basic elements, Al, Ca, Cu, Fe, Mg, Mn, P, S and Zn were also determined in the medicinal plant, T. pentendra, using atomic absorption spectrophotometry and U.V spectrophotometry. T. pentendra contained considerable amount of elements which have therapeutic effects in skin diseases. (author)

  18. Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari, M., E-mail: msnano1361@yahoo.co [Nanomaterial Research Group, Academic Center for Education, Culture and Research (ACECR) on TMU, Tehran (Iran, Islamic Republic of); Haghighi, N. [Department of physics, Tehran University, Tehran (Iran, Islamic Republic of); Ahmadi, V. [Department of Electrical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Haghighi, F.; Mohammadi, SH.R. [Department of Mycology, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-01-01

    In this study, we have investigated the antifungal activity of ZnO nanorods prepared by the chemical solution method against Candida albicans. In the study, Zinc oxide nanorods have been deposited on glass substrates using the chemical solution method. The as-grown samples are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray diffraction (XRD) showed zinc oxide nanorods grown in (0 0 2) orientation. The antifungal results indicated that ZnO nanorod arrays exhibit stable properties after two months and play an important role in the growth inhibitory of Candida albicans.

  19. Synthesis and Antifungal Evaluation of 1-Aryl-2-dimethyl-aminomethyl-2-propen-1-one Hydrochlorides

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Topaloglu

    2011-06-01

    Full Text Available The development of resistance to current antifungal therapeutics drives the search for new effective agents. The fact that several acetophenone-derived Mannich bases had shown remarkable antifungal activities in our previous studies led us to design and synthesize some acetophenone-derived Mannich bases, 1-8 and 2-acetylthiophene-derived Mannich base 9, 1-aryl-2-dimethylaminomethyl-2-propen-1-one hydrochloride, to evaluate their antifungal activities. The designed chemical structures have α,β-unsaturated ketone moieties, which are responsible for the bioactivities of the Mannich bases. The aryl part was C6H5 (1; 4-CH3C6H4 (2; 4-CH3OC6H4 (3; 4-ClC6H4 (4; 4-FC6H4 (5; 4-BrC6H4 (6; 4-HOC6H4 (7; 4-NO2C6H4 (8; and C4H3S(2-yl (9. In this study the designed compounds were synthesized by the conventional heating method and also by the microwave irradiation method to compare these methods in terms of reaction times and yields to find an optimum synthetic method, which can be applied for the synthesis of Mannich bases in further studies. Since there are limited number of studies reporting the synthesis of Mannich bases by microwave irradiation, this study may also contribute to the general literature on Mannich bases. Compound 7 was reported for the first time. Antifungal activities of all compounds and synthesis of the compounds by microwave irradiation were also reported for the first time by this study. Fungi (15 species were used for antifungal activity test. Amphotericin B was tested as an antifungal reference compound. In conclusion, compounds 1-6, and 9, which had more potent (2–16 times antifungal activity than the reference compound amphotericin B against some fungi, can be model compounds for further studies to develop new antifungal agents. In addition, microwave irradiation can be considered to reduce reaction period, while the conventional method can still be considered to obtain compounds with higher reaction yields in the synthesis of

  20. Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray.

    Science.gov (United States)

    Scher, Jochen M; Speakman, John-Bryan; Zapp, Josef; Becker, Hans

    2004-09-01

    A dichloromethane and a methanol extract of the liverwort Bazzania trilobata showed antifungal activity against the phytopathogenic fungi Botrytis cinerea, Cladosporium cucumerinum, Phythophthora infestans, Pyricularia oryzae and Septoria tritici. Bioautography on thin-layer chromatograms was used to isolate six antifungal sesquiterpenes: 5- and 7-hydroxycalamenene, drimenol, drimenal, viridiflorol, gymnomitrol and three bisbibenzyls: 6 ',8'-dichloroisoplagiochin C, isoplagiochin D and 6'-chloroisoplagiochin D. Furthermore we report the isolation of gymnomitr-8(12)-en-4-one and the new coumarin 7,8-dihydroxycoumarin-7-O-beta-D-glucuronide. Their structures have been elucidated based on extensive NMR spectral evidence. PMID:15451321