WorldWideScience

Sample records for antifungal protein paf

  1. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    Energy Technology Data Exchange (ETDEWEB)

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Miszti-Blasius, Kornél [Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Kollár, Sándor; Kovács, Ilona [Department of Pathology, Kenézy Hospital LTD, Debrecen (Hungary); Emri, Miklós; Márián, Teréz [Department of Nuclear Medicine, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Leiter, Éva; Pócsi, István [Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, Centre of Arts, Humanities and Sciences, University of Debrecen, Debrecen (Hungary); Csősz, Éva; Kalló, Gergő [Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Hegedűs, Csaba; Virág, László [Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Csernoch, László [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Szentesi, Péter, E-mail: szentesi.peter@med.unideb.hu [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2013-05-15

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg{sup −1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.

  2. The antifungal activity of the Penicillium chrysogenum protein PAF disrupts calcium homeostasis in Neurospora crassa.

    Science.gov (United States)

    Binder, Ulrike; Chu, Meiling; Read, Nick D; Marx, Florentine

    2010-09-01

    The antifungal protein PAF from Penicillium chrysogenum exhibits growth-inhibitory activity against a broad range of filamentous fungi. Evidence from this study suggests that disruption of Ca(2+) signaling/homeostasis plays an important role in the mechanistic basis of PAF as a growth inhibitor. Supplementation of the growth medium with high Ca(2+) concentrations counteracted PAF toxicity toward PAF-sensitive molds. By using a transgenic Neurospora crassa strain expressing codon-optimized aequorin, PAF was found to cause a significant increase in the resting level of cytosolic free Ca(2+) ([Ca(2+)](c)). The Ca(2+) signatures in response to stimulation by mechanical perturbation or hypo-osmotic shock were significantly changed in the presence of PAF. BAPTA [bis-(aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid], a Ca(2+) selective chelator, ameliorated the PAF toxicity in growth inhibition assays and counteracted PAF induced perturbation of Ca(2+) homeostasis. These results indicate that extracellular Ca(2+) was the major source of these PAF-induced effects. The L-type Ca(2+) channel blocker diltiazem disrupted Ca(2+) homeostasis in a similar manner to PAF. Diltiazem in combination with PAF acted additively in enhancing growth inhibition and accentuating the change in Ca(2+) signatures in response to external stimuli. Notably, both PAF and diltiazem increased the [Ca(2+)](c) resting level. However, experiments with an aequorin-expressing Deltacch-1 deletion strain of N. crassa indicated that the L-type Ca(2+) channel CCH-1 was not responsible for the observed PAF-induced elevation of the [Ca(2+)](c) resting level. This study is the first demonstration of the perturbation of fungal Ca(2+) homeostasis by an antifungal protein from a filamentous ascomycete and provides important new insights into the mode of action of PAF.

  3. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF).

    Science.gov (United States)

    Palicz, Zoltán; Jenes, Agnes; Gáll, Tamás; Miszti-Blasius, Kornél; Kollár, Sándor; Kovács, Ilona; Emri, Miklós; Márián, Teréz; Leiter, Eva; Pócsi, István; Csősz, Eva; Kalló, Gergő; Hegedűs, Csaba; Virág, László; Csernoch, László; Szentesi, Péter

    2013-05-15

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg⁻¹ daily, for 2 weeks. Even at the highest concentration--a concentration highly toxic in vitro for all affected molds used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans.

    Science.gov (United States)

    Binder, Ulrike; Oberparleiter, Christoph; Meyer, Vera; Marx, Florentine

    2010-01-01

    The Penicillium chrysogenum antifungal protein PAF inhibits polar growth and induces apoptosis in Aspergillus nidulans. We report here that two signalling cascades are implicated in its antifungal activity. PAF activates the cAMP/protein kinase A (Pka) signalling cascade. A pkaA deletion mutant exhibited reduced sensitivity towards PAF. This was substantiated by the use of pharmacological modulators: PAF aggravated the effect of the activator 8-Br-cAMP and partially relieved the repressive activity of caffeine. Furthermore, the Pkc/mitogen-activated protein kinase (Mpk) signalling cascade mediated basal resistance to PAF, which was independent of the small GTPase RhoA. Non-functional mutations of both genes resulted in hypersensitivity towards PAF. PAF did not increase MpkA phosphorylation or induce enzymes involved in the remodelling of the cell wall, which normally occurs in response to activators of the cell wall integrity pathway. Notably, PAF exposure resulted in actin gene repression and a deregulation of the chitin deposition at hyphal tips of A. nidulans, which offers an explanation for the morphological effects evoked by PAF and which could be attributed to the interconnection of the two signalling pathways. Thus, PAF represents an excellent tool to study signalling pathways in this model organism and to define potential fungal targets to develop new antifungals.

  5. Penicillium antifungal protein (PAF) is involved in the apoptotic and autophagic processes of the producer Penicillium chrysogenum.

    Science.gov (United States)

    Kovács, Barbara; Hegedűs, Nikoletta; Bálint, Mihály; Szabó, Zsuzsa; Emri, Tamás; Kiss, Gréta; Antal, Miklós; Pócsi, István; Leiter, Eva

    2014-09-01

    PAF, which is produced by the filamentous fungus Pencicillium chrysogenum, is a small antifungal protein, triggering ROS-mediated apoptotic cell death in Aspergillus nidulans. In this work, we provide information on the function of PAF in the host P. chrysogenum considering that carbon-starving cultures of the Δpaf mutant strain showed significantly reduced apoptosis rates in comparison to the wild-type (wt) strain. Moreover, the addition of PAF to the Δpaf strain resulted in a twofold increase in the apoptosis rate. PAF was also involved in the regulation of the autophagy machinery of this fungus, since several Saccharomyces cerevisiae autophagy-related ortholog genes, e.g. those of atg7, atg22 and tipA, were repressed in the deletion strain. This phenomenon was accompanied by the absence of autophagosomes in the Δpaf strain, even in old hyphae.

  6. Application of a low molecular weight antifungal protein from Penicillium chrysogenum (PAF) to treat pulmonary aspergillosis in mice.

    Science.gov (United States)

    Palicz, Zoltán; Gáll, Tamás; Leiter, Éva; Kollár, Sándor; Kovács, Ilona; Miszti-Blasius, Kornél; Pócsi, István; Csernoch, László; Szentesi, Péter

    2016-11-09

    PAF, a small antifungal protein from Penicillium chrysogenum, inhibits the growth of several pathogenic filamentous fungi, including members of the Aspergillus genus. PAF has been proven to have no toxic effects in vivo in mice by intranasal application. To test its efficacy against invasive pulmonary aspergillosis (IPA), experiments were carried out in mice suffering from IPA. Adult mice were immunosuppressed and then infected with Aspergillus fumigatus. After stable infection, the animals were inoculated with PAF intranasally at a concentration of 2.7 mg/kg twice per day. At this concentration-which is highly toxic in vitro to A. fumigatus-the mortality of the animals was slightly delayed but finally all animals died. Histological examinations revealed massive fungal infections in the lungs of both PAF-treated and untreated animal groups. Because intranasally administered PAF was unable to overcome IPA, modified and combined therapies were introduced. The intraperitoneal application of PAF in animals with IPA prolonged the survival of the animals only 1 day. Similar results were obtained with amphotericin B (AMB), with PAF and AMB being equally effective. Combined therapy with AMB and PAF-which are synergistic in vitro-was found to be more effective than either AMB or PAF treatment alone. As no toxic effects of PAF in mammals have been described thus far, and, moreover, there are so far no A. fumigatus strains with reported inherent or acquired PAF resistance, it is worth carrying out further studies to introduce PAF as a potential antifungal drug in human therapy.

  7. Functional Aspects of the Solution Structure and Dynamics of PAF, a Highly Stable Antifungal Protein from Penicillium chrysogenum

    Science.gov (United States)

    Batta, Gyula; Barna, Teréz; Gáspári, Zoltán; Sándor, Szabolcs; Kövér, Katalin E.; Binder, Ulrike; Sarg, Bettina; Kaiserer, Lydia; Chhillar, Anil Kumar; Eigentler, Andrea; Leiter, Éva; Hegedüs, Nikoletta; Pócsi, István; Lindner, Herbert; Marx, Florentine

    2015-01-01

    Summary PAF is a promising antimycotic without toxic effects on mammalian cells and therefore may be a drug candidate against the often lethal Aspergillus infections in human. The pathogenesis of PAF on sensitive fungi involves G-protein coupled signaling followed by apoptosis. Here, the solution structure of this small, cationic, antifungal protein from Penicillium chrysogenum is determined by solution NMR. We proved that PAF belongs to the SCOP fold class of its closest homologue AFP from Aspergillus giganteus. PAF comprises five β—strands forming two orthogonally packed β—sheets sharing a common interface. The ambiguity in the assignment of two disulfide bonds of three was investigated by NMR dynamics combined with restrained molecular dynamics calculations. The clue could not be resolved: two ensembles with different disulfide patterns and the one with no S-S bond exhibit essentially the same fold. 15N relaxation dispersion and interference experiments did not reveal disulfide bond rearrangements via slow exchange. The measured order parameters and the 3.0 ns correlation time is appropriate for a compact monomeric protein of this size. We demonstrated by site-directed mutagenesis that the highly conserved and positively charged lysine-rich domain region on the surface enhances the toxicity of PAF. However, the efficacy of the OB fold is reduced in PAF compared to AFP, due to less solvent exposed aromatic regions explaining the absence of chitobiose binding. The present work lends further support to the understanding of the documented substantial differences between the mode of action of two highly homologous antifungal proteins. PMID:19459942

  8. D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function.

    Science.gov (United States)

    Sonderegger, Christoph; Fizil, Ádám; Burtscher, Laura; Hajdu, Dorottya; Muñoz, Alberto; Gáspári, Zoltán; Read, Nick D; Batta, Gyula; Marx, Florentine

    2017-01-01

    The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.

  9. Synthesis of PAF, an antifungal protein from P. chrysogenum, by native chemical ligation: native disulfide pattern and fold obtained upon oxidative refolding.

    Science.gov (United States)

    Váradi, Györgyi; Tóth, Gábor K; Kele, Zoltán; Galgóczy, László; Fizil, Ádám; Batta, Gyula

    2013-09-16

    The folding of disulfide proteins is of considerable interest because knowledge of this may influence our present understanding of protein folding. However, sometimes even the disulfide pattern cannot be unequivocally determined by the available experimental techniques. For example, the structures of a few small antifungal proteins (PAF, AFP) have been disclosed recently using NMR spectroscopy but with some ambiguity in the actual disulfide pattern. For this reason, we carried out the chemical synthesis of PAF. Probing different approaches, the oxidative folding of the synthetic linear PAF yielded a folded protein that has identical structure and antifungal activity as the native PAF. In contrast, unfolded linear PAF was inactive, a result that may have implications concerning its redox state in the mode of action.

  10. The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies.

    Science.gov (United States)

    Marx, F; Binder, U; Leiter, E; Pócsi, I

    2008-02-01

    In recent years the interest in antimicrobial proteins and peptides and their mode of action has been rapidly increasing due to their potential to prevent and combat microbial infections in all areas of life. A detailed knowledge about the function of such proteins is the most important requirement to consider them for future application. Our research in recent years has been focused on the low molecular weight, cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum, which inhibits the growth of opportunistic zoo-pathogens including Aspergillus fumigatus, numerous plant-pathogenic fungi and the model organism Aspergillus nidulans. So far, the experimental results indicate that PAF elicits hyperpolarization of the plasma membrane and the activation of ion channels, followed by an increase in reactive oxygen species in the cell and the induction of an apoptosis-like phenotype. Detailed knowledge about the molecular mechanism of action of antifungal proteins such as PAF contributes to the development of new antimicrobial strategies that are urgently needed.

  11. Mapping and Identification of Antifungal Peptides in the Putative Antifungal Protein AfpB from the Filamentous Fungus Penicillium digitatum.

    Science.gov (United States)

    Garrigues, Sandra; Gandía, Mónica; Borics, Attila; Marx, Florentine; Manzanares, Paloma; Marcos, Jose F

    2017-01-01

    Antifungal proteins (AFPs) from Ascomycetes are small cysteine-rich proteins that are abundantly secreted and show antifungal activity against non-producer fungi. A gene coding for a class B AFP (AfpB) was previously identified in the genome of the plant pathogen Penicillium digitatum . However, previous attempts to detect the AfpB protein were not successful despite the high expression of the corresponding afpB gene. In this work, the structure of the putative AfpB was modeled. Based on this model, four synthetic cysteine-containing peptides, PAF109, PAF112, PAF118, and PAF119, were designed and their antimicrobial activity was tested and characterized. PAF109 that corresponds to the γ-core motif present in defensin-like antimicrobial proteins did not show antimicrobial activity. On the contrary, PAF112 and PAF118, which are cationic peptides derived from two surface-exposed loops in AfpB, showed moderate antifungal activity against P. digitatum and other filamentous fungi. It was also confirmed that cyclization through a disulfide bridge prevented peptide degradation. PAF116, which is a peptide analogous to PAF112 but derived from the Penicillium chrysogenum antifungal protein PAF, showed activity against P. digitatum similar to PAF112, but was less active than the native PAF protein. The two AfpB-derived antifungal peptides PAF112 and PAF118 showed positive synergistic interaction when combined against P. digitatum . Furthermore, the synthetic hexapeptide PAF26 previously described in our laboratory also exhibited synergistic interaction with the peptides PAF112, PAF118, and PAF116, as well as with the PAF protein. This study is an important contribution to the mapping of antifungal motifs within the AfpB and other AFPs, and opens up new strategies for the rational design and application of antifungal peptides and proteins.

  12. Studies on the mode of action of the antifungal hexapeptide PAF26.

    Science.gov (United States)

    Muñoz, Alberto; López-García, Belén; Marcos, Jose F

    2006-11-01

    The small antimicrobial peptide PAF26 (Ac-RKKWFW-NH(2)) has been identified by a combinatorial approach and shows preferential activity toward filamentous fungi. In this work, we investigated the mode of action and inhibitory effects of PAF26 on the fungus Penicillium digitatum. The dye Sytox Green was used to demonstrate that PAF26 induced cell permeation. However, microscopic observations showed that sub-MIC concentrations of PAF26 produced both alterations of hyphal morphology (such as altered polar growth and branching) and chitin deposition in areas of no detectable permeation. Analysis of dose-response curves of inhibition and permeation suggested that growth inhibition is not solely a consequence of permeation. In order to shed light on the mode of PAF26 action, its antifungal properties were compared with those of melittin, a well-known pore-forming peptide that kills through cytolysis. While the 50% inhibitory concentrations and MICs of the two peptides against P. digitatum mycelium were comparable, they differed markedly in their fungicidal activities toward conidia and their hemolytic activities toward human red blood cells. Kinetic studies showed that melittin quickly induced Penicillium cell permeation, while PAF26-induced Sytox Green uptake was significantly slower and less efficient. Therefore, the ultimate growth inhibition and morphological alterations induced by PAF26 for P. digitatum are not likely a result of conventional pore formation. Fluorescently labeled PAF26 was used to demonstrate its specific in vivo interaction and translocation inside germ tubes and hyphal cells, at concentrations as low as 0.3 muM (20 times below the MIC), at which no inhibitory, morphological, or permeation effects were observed. Interestingly, internalized PAF26 could bind to cellular RNAs, since in vitro nonspecific RNA binding activity of PAF26 was demonstrated by electrophoretic mobility shift assays. We propose that PAF26 is a short, de novo-designed penetratin

  13. Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger.

    Science.gov (United States)

    Binder, Ulrike; Benčina, Mojca; Fizil, Ádám; Batta, Gyula; Chhillar, Anil K; Marx, Florentine

    2015-05-08

    The Penicillium chrysogenum antifungal protein PAF is toxic against potentially pathogenic Ascomycetes. We used the highly sensitive aequorin-expressing model Aspergillus niger to identify a defined change in cytoplasmic free Ca(2+) dynamics in response to PAF. This Ca(2+) signature depended on an intact positively charged lysine-rich PAF motif. By combining Ca(2+) measurements in A. niger mutants with deregulated cAMP/protein kinase A (PKA) signaling, we proved the interconnection of Ca(2+) perturbation and cAMP/PKA signaling in the mechanistic function of PAF. A deep understanding of the mode of action of PAF is an invaluable prerequisite for its future application as new antifungal drug. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells.

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    Full Text Available The synthetic, cell penetrating hexapeptide PAF26 (RKKWFW is antifungal at low micromolar concentrations and has been proposed as a model for cationic, cell-penetrating antifungal peptides. Its short amino acid sequence facilitates the analysis of its structure-activity relationships using the fungal models Neurospora crassa and Saccharomyces cerevisiae, and human and plant pathogens Aspergillus fumigatus and Penicillium digitatum, respectively. Previously, PAF26 at low fungicidal concentrations was shown to be endocytically internalized, accumulated in vacuoles and then actively transported into the cytoplasm where it exerts its antifungal activity. In the present study, two PAF26 derivatives, PAF95 (AAAWFW and PAF96 (RKKAAA, were designed to characterize the roles of the N-terminal cationic and the C-terminal hydrophobic motifs in PAF26's mode-of-action. PAF95 and PAF96 exhibited substantially reduced antifungal activity against all the fungi analyzed. PAF96 localized to fungal cell envelopes and was not internalized by the fungi. In contrast, PAF95 was taken up into vacuoles of N. crassa, wherein it accumulated and was trapped without toxic effects. Also, the PAF26 resistant Δarg1 strain of S. cerevisiae exhibited increased PAF26 accumulation in vacuoles. Live-cell imaging of GFP-labelled nuclei in A. fumigatus showed that transport of PAF26 from the vacuole to the cytoplasm was followed by nuclear breakdown and dissolution. This work demonstrates that the amphipathic PAF26 possesses two distinct motifs that allow three stages in its antifungal action to be defined: (i its interaction with the cell envelope; (ii its internalization and transport to vacuoles mediated by the aromatic hydrophobic domain; and (iii its transport from vacuoles to the cytoplasm. Significantly, cationic residues in PAF26 are important not only for the electrostatic attraction and interaction with the fungal cell but also for transport from the vacuole to the

  15. Studies on the Mode of Action of the Antifungal Hexapeptide PAF26

    OpenAIRE

    Muñoz, Alberto; López-García, Belén; Marcos, Jose F.

    2006-01-01

    The small antimicrobial peptide PAF26 (Ac-RKKWFW-NH2) has been identified by a combinatorial approach and shows preferential activity toward filamentous fungi. In this work, we investigated the mode of action and inhibitory effects of PAF26 on the fungus Penicillium digitatum. The dye Sytox Green was used to demonstrate that PAF26 induced cell permeation. However, microscopic observations showed that sub-MIC concentrations of PAF26 produced both alterations of hyphal morphology (such as alter...

  16. Stimulation of Leishmania tropica protein kinase CK2 activities by platelet-activating factor (PAF).

    Science.gov (United States)

    Dutra, Patricia M L; Vieira, Danielle P; Meyer-Fernandes, Jose R; Silva-Neto, Mario A C; Lopes, Angela H

    2009-09-01

    Leishmania tropica is one of the causative agents of cutaneous leishmaniasis. Platelet-activating factor (PAF) is a phospholipid mediator in diverse biological and pathophysiological processes. Here we show that PAF promoted a three-fold increase on ecto-protein kinase and a three-fold increase on the secreted kinase activity of L. tropica live promastigotes. When casein was added to the reaction medium, along with PAF, there was a four-fold increase on the ecto-kinase activity. When live L. tropica promastigotes were pre-incubated for 30 min in the presence of PAF-plus casein, a six-fold increase on the secreted kinase activity was observed. Also, a protein released from L. tropica promastigotes reacted with polyclonal antibodies for the mammalian CK2 alpha catalytic subunit. Furthermore, in vitro mouse macrophage infection by L. tropica was doubled when promastigotes were pre-treated for 2 h with PAF. Similar results were obtained when the interaction was performed in the presence of purified CK2 or casein. TBB and DRB, CK2 inhibitors, reversed PAF enhancement of macrophage infection by L. tropica. WEB 2086, a competitive PAF antagonist, reversed all PAF effects here described. This study shows for the first time that PAF promotes the activation of two isoforms of CK2, secreted and membrane-bound, correlating these activities to infection of mouse macrophages.

  17. p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins.

    Science.gov (United States)

    De Biasio, Alfredo; Ibáñez de Opakua, Alain; Cordeiro, Tiago N; Villate, Maider; Merino, Nekane; Sibille, Nathalie; Lelli, Moreno; Diercks, Tammo; Bernadó, Pau; Blanco, Francisco J

    2014-02-18

    We present to our knowledge the first structural characterization of the proliferating-cell-nuclear-antigen-associated factor p15(PAF), showing that it is monomeric and intrinsically disordered in solution but has nonrandom conformational preferences at sites of protein-protein interactions. p15(PAF) is a 12 kDa nuclear protein that acts as a regulator of DNA repair during DNA replication. The p15(PAF) gene is overexpressed in several types of human cancer. The nearly complete NMR backbone assignment of p15(PAF) allowed us to measure 86 N-H(N) residual dipolar couplings. Our residual dipolar coupling analysis reveals nonrandom conformational preferences in distinct regions, including the proliferating-cell-nuclear-antigen-interacting protein motif (PIP-box) and the KEN-box (recognized by the ubiquitin ligase that targets p15(PAF) for degradation). In accordance with these findings, analysis of the (15)N R2 relaxation rates shows a relatively reduced mobility for the residues in these regions. The agreement between the experimental small angle x-ray scattering curve of p15(PAF) and that computed from a statistical coil ensemble corrected for the presence of local secondary structural elements further validates our structural model for p15(PAF). The coincidence of these transiently structured regions with protein-protein interaction and posttranslational modification sites suggests a possible role for these structures as molecular recognition elements for p15(PAF). Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. The paf gene product modulates asexual development in Penicillium chrysogenum.

    Science.gov (United States)

    Hegedüs, Nikoletta; Sigl, Claudia; Zadra, Ivo; Pócsi, Istvan; Marx, Florentine

    2011-06-01

    Penicillium chrysogenum secretes a low molecular weight, cationic and cysteine-rich protein (PAF). It has growth inhibitory activity against the model organism Aspergillus nidulans and numerous zoo- and phytopathogenic fungi but shows only minimal conditional antifungal activity against the producing organism itself. In this study we provide evidence for an additional function of PAF which is distinct from the antifungal activity against putative ecologically concurrent microorganisms. Our data indicate that PAF enhances conidiation in P. chrysogenum by modulating the expression of brlA, the central regulatory gene for mitospore development. A paf deletion strain showed a significant impairment of mitospore formation which sustains our hypothesis that PAF plays an important role in balancing asexual differentiation in P. chrysogenum. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Penicillium chrysogenum-based expression system for the production of small, cysteine-rich antifungal proteins for structural and functional analyses.

    Science.gov (United States)

    Sonderegger, Christoph; Galgóczy, László; Garrigues, Sandra; Fizil, Ádám; Borics, Attila; Manzanares, Paloma; Hegedüs, Nikoletta; Huber, Anna; Marcos, Jose F; Batta, Gyula; Marx, Florentine

    2016-11-11

    Small, cysteine-rich and cationic antifungal proteins (APs) from filamentous ascomycetes, such as NFAP from Neosartorya fischeri and PAF from Penicillium chrysogenum, are promising candidates for novel drug development. A prerequisite for their application is a detailed knowledge about their structure-function relation and mode of action, which would allow protein modelling to enhance their toxicity and specificity. Technologies for structure analyses, such as electronic circular dichroism (ECD) or NMR spectroscopy, require highly purified samples and in case of NMR milligrams of uniformly 15 N-/ 13 C-isotope labelled protein. To meet these requirements, we developed a P. chrysogenum-based expression system that ensures sufficient amount and optimal purity of APs for structural and functional analyses. The APs PAF, PAF mutants and NFAP were expressed in a P. chrysogenum ∆paf mutant strain that served as perfect microbial expression factory. This strain lacks the paf-gene coding for the endogenous antifungal PAF and is resistant towards several APs from other ascomycetes. The expression of the recombinant proteins was under the regulation of the strong paf promoter, and the presence of a paf-specific pre-pro sequence warranted the secretion of processed proteins into the supernatant. The use of defined minimal medium allowed a single-step purification of the recombinant proteins. The expression system could be extended to express PAF in the related fungus Penicillium digitatum, which does not produce detectable amounts of APs, demonstrating the versatility of the approach. The molecular masses, folded structures and antifungal activity of the recombinant proteins were analysed by ESI-MS, ECD and NMR spectroscopy and growth inhibition assays. This study demonstrates the implementation of a paf promoter driven expression cassettes for the production of cysteine-rich, cationic, APs in different Penicillium species. The system is a perfect tool for the generation of

  20. p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression.

    Science.gov (United States)

    Chang, Chih-Ning; Feng, Mow-Jung; Chen, Yu-Ling; Yuan, Ray-Hwang; Jeng, Yung-Ming

    2013-01-01

    The p15(PAF)/KIAA0101 protein is a proliferating cell nuclear antigen (PCNA)-associated protein overexpressed in multiple types of cancer. Attenuation of p15(PAF) expression leads to modifications in the DNA repair process, rendering cells more sensitive to ultraviolet-induced cell death. In this study, we identified that p15(PAF) expression peaks during the S phase of the cell cycle. We observed that p15(PAF) knockdown markedly inhibited cell proliferation, S-phase progression, and DNA synthesis. Depletion of p15(PAF) resulted in p21 upregulation, especially chromatin-bound p21. We further identified that the p15(PAF) promoter contains 3 E2F-binding motifs. Loss of Rb-mediated transcriptional repression resulted in upregulated p15(PAF) expression. Binding of E2F4 and E2F6 to the p15(PAF) promoter caused transcriptional repression. Overall, these results indicate that p15(PAF) is tightly regulated by the Rb/E2F complex. Loss of Rb/E2F-mediated repression during the G1/S transition phase leads to p15(PAF) upregulation, which facilitates DNA synthesis and S-phase progression.

  1. Overview of PAF-Degrading Enzymes.

    Science.gov (United States)

    Karasawa, Ken; Inoue, Keizo

    2015-01-01

    Because the acetyl group of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) is essential for its biological activity, the degradation of PAF is the most important mechanism that regulates the level of PAF. The enzyme that catalyzes the hydrolysis of acetyl group at the sn-2 position of PAF was termed PAF-acetylhydrolase (PAF-AH). Subsequent research revealed that the PAF-AH family includes intracellular forms called PAF-AH I and PAF-AH II as well as an extracellular isoform, plasma PAF-AH. PAF-AH I forms a complex consisting of catalytic subunits α1, α2, and β regulatory subunits. PAF-AH I was identified from the brain, and previous studies focused on the role of PAF-AH I in brain development. However, subsequent studies found that PAF-AH I is involved in diverse functions such as spermatogenesis, amyloid-β generation, cancer pathogenesis, and protein trafficking. Another intracellular enzyme, PAF-AH II, has no homology with PAF-AH I, although this enzyme shares sequence similarity to plasma PAF-AH. Because PAF-AH preferentially hydrolyzes oxidatively modulated or truncated phospholipids, it is considered to play a protective role against oxidative stress. Homologs of this enzyme are widely distributed among evolutionarily diverse organisms. For example, studies of Caenorhabditis elegans PAF-AH II demonstrate its contribution to epidermal morphogenesis. Extracellular plasma PAF-AH associates strongly with plasma lipoproteins. Because PAF-AH is mainly associated with LDL particles, it is considered to play an anti-inflammatory role by removing oxidized phospholipids generated in LDLs exposed to oxidative stress. In this overview, we describe the crucial roles of these three PAF-degrading enzymes in cell function and cell pathology. © 2015 Elsevier Inc. All rights reserved.

  2. Nucleolar targeting of proteins by the tandem array of basic amino acid stretches identified in the RNA polymerase I-associated factor PAF49

    International Nuclear Information System (INIS)

    Ushijima, Ryujiro; Matsuyama, Toshifumi; Nagata, Izumi; Yamamoto, Kazuo

    2008-01-01

    There is accumulating evidence to indicate that the regulation of subnuclear compartmentalization plays important roles in cellular processes. The RNA polymerase I-associated factor PAF49 has been shown to accumulate in the nucleolus in growing cells, but disperse into the nucleoplasm in growth-arrested cells. Serial deletion analysis revealed that amino acids 199-338 were necessary for the nucleolar localization of PAF49. Combinatorial point mutation analysis indicated that the individual basic amino acid stretches (BS) within the central (BS1-4) and the C-terminal (BS5 and 6) regions may cooperatively confer the nucleolar localization of PAF49. Addition of the basic stretches in tandem to a heterologous protein, such as the interferon regulatory factor-3, translocated the tagged protein into the nucleolus, even in the presence of an intrinsic nuclear export sequence. Thus, tandem array of the basic amino acid stretches identified here functions as a dominant nucleolar targeting sequence

  3. PAF-acetylhydrolase expressed during megakaryocyte differentiation inactivates PAF-like lipids.

    Science.gov (United States)

    Foulks, Jason M; Marathe, Gopal K; Michetti, Noemi; Stafforini, Diana M; Zimmerman, Guy A; McIntyre, Thomas M; Weyrich, Andrew S

    2009-06-25

    Platelet activating factor (PAF) and PAF-like lipids induce inflammatory responses in target cells. These lipid mediators are inactivated by PAF-acetylhydrolase (PAF-AH). The PAF signaling system affects the growth of hematopoietic CD34(+) cells, but roles for PAF-AH in this process are unknown. Here, we investigated PAF-AH function during megakaryopoiesis and found that human CD34(+) cells accumulate this enzymatic activity as they differentiate toward megakaryocytes, consistent with the expression of mRNA and protein for the plasma PAF-AH isoform. Inhibition of endogenous PAF-AH activity in differentiated megakaryocytes increased formation of lipid mediators that signaled the PAF receptor (PAFR) in fully differentiated human cells such as neutrophils, as well as megakaryocytes themselves. PAF-AH also controlled megakaryocyte alpha(IIb)beta(3)-dependent adhesion, cell spreading, and mobility that relied on signaling through the PAFR. Together these data suggest that megakaryocytes generate PAF-AH to modulate the accumulation of intracellular phospholipid mediators that may detrimentally affect megakaryocyte development and function.

  4. Intracellular PAF-Acetylhydrolase Type I.

    Science.gov (United States)

    Hattori, Mitsuharu; Arai, Hiroyuki

    2015-01-01

    Platelet-activating factor (PAF) is a phospholipid mediator whose synthesis and degradation depend on specific sets of enzymes. PAF-acetylhydrolase (PAF-AH) hydrolyzes the acetyl moiety of PAF at its sn-2 position and thereby inactivates it. PAF-AH Ib, originally identified in brain, exists in the cytoplasm of many (probably all) types of mammalian cells and tissues. PAF-AH Ib consists of three subunits (α1, α2, and β), in which the α subunits provide the catalytic activity. The finding that the β subunit is the product of the causative gene for Miller-Dieker lissencephaly led to extensive analyses of PAF-AH Ib subunits in the field of cell biology and neurobiology. More than 20 molecules are known to bind to PAF-AH Ib subunits, and PAF-AH Ib has been implicated in neuronal development, neuronal functions, Alzheimer's disease, bipolar disorder, cancer, spermatogenesis, and tolerance to hypoxia. However, in almost all of these cases, how the catalytic activity is involved and the identity of the most important substrate of this enzyme are unclear. In this chapter, the structure and functions of PAF-AH Ib and its subunit proteins are summarized and their contributions to human diseases are discussed. © 2015 Elsevier Inc. All rights reserved.

  5. Plant antifungal proteins and their applications in agriculture.

    Science.gov (United States)

    Yan, Juan; Yuan, Su-Su; Jiang, Luan-Luan; Ye, Xiu-Juan; Ng, Tzi Bun; Wu, Zu-Jian

    2015-06-01

    Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.

  6. Antifungal proteins and peptides of leguminous and non-leguminous origins.

    Science.gov (United States)

    Ng, T B

    2004-07-01

    Antifungal proteins and peptides, as their names imply, serve a protective function against fungal invasion. They are produced by a multitude of organisms including leguminous flowering plants, non-leguminous flowering plants, gymnosperms, fungi, bacteria, insects and mammals. The intent of the present review is to focus on the structural and functional characteristics of leguminous, as well as non-leguminous, antifungal proteins and peptides. A spectacular diversity of amino acid sequences has been reported. Some of the antifungal proteins and peptides are classified, based on their structures and/or functions, into groups including chitinases, glucanases, thaumatin-like proteins, thionins, and cyclophilin-like proteins. Some of the well-known proteins such as lectins, ribosome inactivating proteins, ribonucleases, deoxyribonucleases, peroxidases, and protease inhibitors exhibit antifungal activity. Different antifungal proteins may demonstrate different fungal specificities. The mechanisms of antifungal action of only some antifungal proteins including thaumatin-like proteins and chitinases have been elucidated.

  7. New constitutive latex osmotin-like proteins lacking antifungal activity.

    Science.gov (United States)

    Freitas, Cleverson D T; Silva, Maria Z R; Bruno-Moreno, Frederico; Monteiro-Moreira, Ana C O; Moreira, Renato A; Ramos, Márcio V

    2015-11-01

    Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Patient Assessment File (PAF)

    Data.gov (United States)

    Department of Veterans Affairs — The Patient Assessment File (PAF) database compiles the results of the Patient Assessment Instrument (PAI) questionnaire filled out for intermediate care Veterans...

  9. Mapping and Identification of Antifungal Peptides in the Putative Antifungal Protein AfpB from the Filamentous Fungus Penicillium digitatum

    OpenAIRE

    Garrigues, Sandra; Gandía Gómez, Mónica; Borics, Attila; Marx, Florentine; Manzanares, Paloma; Marcos López, José Francisco

    2017-01-01

    Antifungal proteins (AFPs) from Ascomycetes are small cysteine-rich proteins that are abundantly secreted and show antifungal activity against non-producer fungi. A gene coding for a class B AFP (AfpB) was previously identified in the genome of the plant pathogen Penicillium digitatum. However, previous attempts to detect the AfpB protein were not successful despite the high expression of the corresponding afpB gene. In this work, the structure of the putative AfpB was modeled. Based on this ...

  10. PROOF Analysis Framework (PAF)

    Science.gov (United States)

    Delgado Fernández, J.; Fernández del Castillo, E.; González Caballero, I.; Rodríguez Marrero, A.

    2015-12-01

    The PROOF Analysis Framework (PAF) has been designed to improve the ability of the physicist to develop software for the final stages of an analysis where typically simple ROOT Trees are used and where the amount of data used is in the order of several terabytes. It hides the technicalities of dealing with PROOF leaving the scientist to concentrate on the analysis. PAF is capable of using available non specific resources on, for example, local batch systems, remote grid sites or clouds through the integration of other toolkit like PROOF Cluster or PoD. While it has been successfully used on LHC Run-1 data for some key analysis, including the H →WW dilepton channel, the higher instantaneous and integrated luminosity together with the increase of the center-of-mass energy foreseen for the LHC Run-2, which will increment the total size of the samples by a factor 6 to 20, will demand PAF to improve its scalability and to reduce the latencies as much as possible. In this paper we address the possible problems of processing such big data volumes with PAF and the solutions implemented to overcome them. We will also show the improvements in order to make PAF more modular and accessible to other communities.

  11. Primary purification of two antifungal proteins from leaves of the fig ...

    African Journals Online (AJOL)

    By matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS), the molecular mass of figinI was 21531Da and figinII was 31957Da. This is the first report on isolation of antifungal proteins from F. carica L., and it shows their potential for further investigation. Key word: Fig, antifungal ...

  12. A novel antifungal protein with lysozyme-like activity from seeds of Clitoria ternatea.

    Science.gov (United States)

    K, Ajesh; K, Sreejith

    2014-06-01

    An antifungal protein with a molecular mass of 14.3 kDa was isolated from the seeds of butterfly pea (Clitoria ternatea) and designated as Ct protein. The antifungal protein was purified using different methods including ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration on Sephadex G-50 column. Ct protein formed a single colourless rod-shaped crystal by hanging drop method after 7 days of sample loading. The protein showed lytic activity against Micrococcus luteus and broad-spectrum, fungicidal activity, particularly against the most clinically relevant yeasts, such as Cryptococcus neoformans, Cryptococcus albidus, Cryptococcus laurentii, Candida albicans and Candida parapsilosis. It also exerted an inhibitory activity on mycelial growth in several mould species including Curvularia sp., Alternaria sp., Cladosporium sp., Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhizopus sp., and Sclerotium sp. The present study adds to the literature on novel seed proteins with antifungal activity.

  13. Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response.

    Science.gov (United States)

    Fudrini Olivencia, Begonia; Müller, Andreas U; Roschitzki, Bernd; Burger, Sibylle; Weber-Ban, Eilika; Imkamp, Frank

    2017-10-25

    Two genes, pafB and pafC, are organized in an operon with the Pup-ligase gene pafA, which is part of the Pup-proteasome system (PPS) present in mycobacteria and other actinobacteria. The PPS is crucial for Mycobacterium tuberculosis resistance towards reactive nitrogen intermediates (RNI). However, pafB and pafC apparently play only a minor role in RNI resistance. To characterize their function, we generated a pafBC deletion in Mycobacterium smegmatis (Msm). Proteome analysis of the mutant strain revealed decreased cellular levels of various proteins involved in DNA damage repair, including recombinase A (RecA). In agreement with this finding, Msm ΔpafBC displayed increased sensitivity to DNA damaging agents. In mycobacteria two pathways regulate DNA repair genes: the LexA/RecA-dependent SOS response and a predominant pathway that controls gene expression via a LexA/RecA-independent promoter, termed P1. PafB and PafC feature winged helix-turn-helix DNA binding motifs and we demonstrate that together they form a stable heterodimer in vitro, implying a function as a heterodimeric transcriptional regulator. Indeed, P1-driven transcription of recA was decreased in Msm ΔpafBC under standard conditions and induction of recA expression upon DNA damage was strongly impaired. Taken together, our data indicate an important regulatory function of PafBC in the mycobacterial DNA damage response.

  14. Cloning, Overexpression andin vitroAntifungal Activity ofZea MaysPR10 Protein.

    Science.gov (United States)

    Zandvakili, Niloofar; Zamani, Mohammadreza; Motallebi, Mostafa; Moghaddassi Jahromi, Zahra

    2017-03-01

    Plants have various defense mechanisms such as production of antimicrobial peptides, particularly pathogenesis related proteins (PR proteins). PR10 family is an essential member of this group, with antifungal, antibacterial and antiviral activities. The goal of this study is to assess the antifungal activity of maize PR10 against some of fungal phytopathogens. Zea mays PR10 gene (TN-05-147) was cloned from genomic DNA and cDNA and overexpressed in Escherichia coli . The existence of a 77- bp intron and two exons in PR10 was confi rmed by comparing the genomic and cDNA sequences. The PR10 cDNA was cloned in pET26b (+) expression vector and transformed into E. coli strain Rosetta DE3 in order to express PR10 recombinant protein. Expression of the recombinant protein was checked by western analysis. Recombinant PR10 appeared as insoluble inclusion bodies and thus solubilized and refolded. PR10 was isolated using Ni- NTA column. The activity of the refolded protein was confi rmed by DNA degradation test. The antifungal activity of PR10 was assessed using radial diff usion, disc diff usion and spore germination. The hemolytic assay was performed to investigate the biosafety of recombinant PR10. Recombinant maize PR10 exerted broad spectrum antifungal activity against Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium oxysporum, Verticillium dahlia and Alternaria solani . Hemolysis biosafety test indicated that the protein is not poisonous to mammalian cells. Maize PR10 has the potential to be used as the antifungal agent against diff erent fungal phytopathogens. Therefore, this protein can be used in order to produce antifungal agents and fungi resistance transgenic plants.

  15. Diverse Functions of Plasma PAF-AH in Tumorigenesis.

    Science.gov (United States)

    Stafforini, Diana M

    2015-01-01

    This chapter is focused on the role of the plasma form of platelet-activating factor-acetylhydrolase (PAF-AH), heretofore referred to as PAF-AH, in tumorigenic responses. Biochemical and other properties of this enzyme were discussed in detail in chapter "Plasma PAF-AH (PLA2G7): Biochemical Properties, Association with LDLs and HDLs, and Regulation of Expression" by Stafforini and in other chapters. Although phospholipases tend not to be drivers of tumorigenesis themselves, these enzymes and the lipid mediators whose levels they regulate interact with a variety of oncogenes and tumor suppressors [1]. Like other phospholipases, the functions of PAF-AH in cancer likely are related to its ability to regulate the levels of lipid mediators that participate in cellular processes related to initial tumorigenic events (e.g., proliferation, growth, inflammation) and/or spreading of the disease (e.g., matrix metalloproteinase secretion, actin cytoskeleton reorganization, migration, and angiogenesis) [1]. The importance of substrates and products of PAF-AH on key cellular functions has been evaluated in cell-based analyses which revealed that these metabolites can have pro- and antitumorigenic functions. Studies in genetically engineered mice lacking PAF-AH expression and genetic manipulation of PAF-AH levels in cancer cells demonstrated diverse functions of the protein in models of melanoma, prostate cancer, colon cancer, and others. The following sections highlight lessons learned from studies in cell lines and in mouse models regarding the diversity of functions of PAF-AH in cancer, and the potential of PAFAH transcripts, protein, and/or activity levels to become cancer biomarkers and therapeutic targets. © 2015 Elsevier Inc. All rights reserved.

  16. Inter-individual variability of plasma PAF-acetylhydrolase activity in ARDS patients and PAFAH genotype.

    Science.gov (United States)

    Li, S; Stuart, L; Zhang, Y; Meduri, G U; Umberger, R; Yates, C R

    2009-08-01

    Platelet activating factor (PAF), a pro-inflammatory phospholipid, stimulates cytokine secretion from polymorphonuclear leukocytes expressing the transmembrane G-protein coupled PAF receptor. Elevated PAF levels are associated with acute respiratory distress syndrome (ARDS) and sepsis severity. The pro-inflammatory effects of PAF are terminated by PAF acetylhydrolase (PAF-AH). We sought to determine whether allelic variants in the human PAFAH gene (Arg92His, Ile198Thr, and Ala379Val) contribute to variability in PAF-AH activity in patient plasma obtained within 72 h of ARDS diagnosis. Plasma PAF-AH activity (mean +/- SD) was higher in patients homozygous for the Arg92 allele compared to His92 allele carriers (2.21 +/- 0.77 vs. 1.64 +/- 0.68 U/min; P PAF-AH activity was higher among day 7 survivors vs. day 7 non-survivors (2.05 +/- 0.75 vs. 1.27 +/- 0.63, P = 0.05). These data demonstrate an association between PAF-AH allelic variation, plasma activity, and outcome in ARDS.

  17. Primary purification of two antifungal proteins from leaves of the fig ...

    African Journals Online (AJOL)

    user

    2011-01-17

    Jan 17, 2011 ... Primary purification of two antifungal proteins from leaves of the fig (Ficus carica L.) Wei Yan3, Ming Zhao2, Yan Ma2, Ying-hong Pan1* and Wen-xia Yuan2. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China. 2College of Pu-erh Tea, Yunnan ...

  18. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    Science.gov (United States)

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  19. Antifungal Effect of Arabidopsis SGT1 Proteins via Mitochondrial Reactive Oxygen Species.

    Science.gov (United States)

    Park, Seong-Cheol; Cheong, Mi Sun; Kim, Eun-Ji; Kim, Jin Hyo; Chi, Yong Hun; Jang, Mi-Kyeong

    2017-09-27

    The highly conserved SGT1 (suppressor of the G2 alleles of skp1) proteins from Arabidopsis are known to contribute to plant resistance to pathogens. While SGT1 proteins respond to fungal pathogens, their antifungal activity is not reported and the mechanism for this inhibition is not well understood. Therefore, recombinant Arabidopsis SGT1 proteins were cloned, expressed, and purified to evaluate their antifungal activity, resulting in their potent inhibition of pathogen growth. Dye-labeled proteins are localized to the cytosol of Candida albicans cells without the disruption of the cell membrane. Moreover, we showed that entry of the proteins into C. albicans cells resulted in the accumulation of reactive oxygen species (ROS) and cell death via altered mitochondrial potential. Morphological changes of C. albicans cells in the presence of proteins were visualized by scanning electron microscopy. Our data suggest that AtSGT1 proteins play a critical role in plant resistance to pathogenic fungal infection and they can be classified to a new plant antifungal protein.

  20. Characterization of the Proteasome Accessory Factor (paf) Operon in Mycobacterium tuberculosis▿

    OpenAIRE

    Festa, Richard A.; Pearce, Michael J.; Darwin, K. Heran

    2007-01-01

    In a previous screen for Mycobacterium tuberculosis mutants that are hypersusceptible to reactive nitrogen intermediates (RNI), two genes associated with the M. tuberculosis proteasome were identified. One of these genes, pafA (proteasome accessory factor A), encodes a protein of unknown function. In this work, we determined that pafA is in an operon with two additional genes, pafB and pafC. In order to assess the contribution of these genes to RNI resistance, we isolated mutants with transpo...

  1. Quantitative Analysis of Dynamic Protein Interactions during Transcription Reveals a Role for Casein Kinase II in Polymerase-associated Factor (PAF) Complex Phosphorylation and Regulation of Histone H2B Monoubiquitylation.

    Science.gov (United States)

    Bedard, Lynn Glowczewski; Dronamraju, Raghuvar; Kerschner, Jenny L; Hunter, Gerald O; Axley, Elizabeth DeVlieger; Boyd, Asha K; Strahl, Brian D; Mosley, Amber L

    2016-06-24

    Using affinity purification MS approaches, we have identified a novel role for casein kinase II (CKII) in the modification of the polymerase associated factor complex (PAF-C). Our data indicate that the facilitates chromatin transcription complex (FACT) interacts with CKII and may facilitate PAF complex phosphorylation. Posttranslational modification analysis of affinity-isolated PAF-C shows extensive CKII phosphorylation of all five subunits of PAF-C, although CKII subunits were not detected as interacting partners. Consistent with this, recombinant CKII or FACT-associated CKII isolated from cells can phosphorylate PAF-C in vitro, whereas no intrinsic kinase activity was detected in PAF-C samples. Significantly, PAF-C purifications combined with stable isotope labeling in cells (SILAC) quantitation for PAF-C phosphorylation from wild-type and CKII temperature-sensitive strains (cka1Δ cka2-8) showed that PAF-C phosphorylation at consensus CKII sites is significantly reduced in cka1Δ cka2-8 strains. Consistent with a role of CKII in FACT and PAF-C function, we show that decreased CKII function in vivo results in decreased levels of histone H2B lysine 123 monoubiquitylation, a modification dependent on FACT and PAF-C. Taken together, our results define a coordinated role of CKII and FACT in the regulation of RNA polymerase II transcription through chromatin via phosphorylation of PAF-C. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Purification of a lectin-like antifungal protein from the medicinal herb, Withania somnifera.

    Science.gov (United States)

    Ghosh, Modhumita

    2009-03-01

    A 30 KDa monomeric acidic lectin-like protein was purified from the leaves of an important medicinal herb, Withania somnifera (L.) Dunal (Solanaceae), by a series of gel filtration and affinity chromatography methods. The inhibitory concentration of the protein ranged from 7 microg to 11 microg against major phytopathogens under in vitro conditions. The peptide sequence showed similarity to concanavalin A like lectin from Canavalia ensiformis and caused distinct cell wall adhesion of the protein treated hyphae under SEM. Further, the antifungal activity of the protein was compared with standard lectins like concanavalin A, phytohemagglutinin and wheat germ agglutinin.

  3. Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10.

    Science.gov (United States)

    Wang, Zhixin; Wang, Yunpeng; Zheng, Li; Yang, Xiaona; Liu, Hongxia; Guo, Jianhua

    2014-11-07

    Bacillus licheniformis HS10 is a good biocontrol agent against Pseudoperonospora cubensis which caused cucumber downy disease. To identify and characterize the antifungal proteins produced by B.licheniformis HS10, the proteins from HS10 were isolated by using 30-60% ammonium sulfate precipitation, and purified with column chromatography on DEAE Sepharose Fast Flow, RESOURCE Q and Sephadex G-75. And the SDS-PAGE and MALDI-TOF/TOF-MS analysis results demonstrated that the antifungal protein was a monomer with molecular weight of about 55 kDa, identified as carboxypeptidase. Our experiments also showed that the antifungal protein from B. licheniformis HS10 had significantly inhibition on eight different kinds of plant pathogenic fungi, and it was stable with good biological activity at as high as 100°C for 30 min and in pH value ranged from 6 to 10. The biological activity was negatively affected by protease K and 10mM metal cations except Ca(2+). Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.

    Science.gov (United States)

    Allen, Aron; Islamovic, Emir; Kaur, Jagdeep; Gold, Scott; Shah, Dilip; Smith, Thomas J

    2011-10-01

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  5. Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections.

    Science.gov (United States)

    Virágh, Máté; Vörös, Dóra; Kele, Zoltán; Kovács, Laura; Fizil, Ádám; Lakatos, Gergely; Maróti, Gergely; Batta, Gyula; Vágvölgyi, Csaba; Galgóczy, László

    2014-02-01

    Neosartorya fischeri NRRL 181 isolate secretes a defensin-like antifungal protein (NFAP) which has a remarkable antifungal effect against ascomycetous filamentous fungi. This protein is a promising antifungal agent of biotechnological value; however in spite of the available knowledge of the nature of its 5'-upstream transcriptional regulation elements, the bulk production of NFAP has not been resolved yet. In this study we carried out its heterologous expression in the yeast Pichia pastoris and investigated the growth inhibition effect exerted by the heterologous NFAP (hNFAP) on filamentous fungal isolates from human infections compared with what was caused by the native NFAP. P. pastoris KM71H transformant strain harboring the pPICZαA plasmid with the mature NFAP encoding gene produced the protein. The final yield of the hNFAP was sixfold compared to the NFAP produced by N. fischeri NRRL 181. Based on the signal dispersion of the amide region, it was proven that the hNFAP exists in folded state. The purified hNFAP effectively inhibited the growth of fungal isolates belonging to the Aspergillus and to the Fusarium genus, but all investigated zygomycetous strain proved to be insusceptible. There was no significant difference between the growth inhibition effect exerted by the native and the heterologous NFAP. These data indicated that P. pastoris KM71H can produce the NFAP in an antifungally active folded state. Our results provide a base for further research, e.g., investigation the connection between the protein structure and the antifungal activity using site directed mutagenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Paf-acether synthesis by Helicobacter pylori.

    Science.gov (United States)

    Denizot, Y; Sobhani, I; Rambaud, J C; Lewin, M; Thomas, Y; Benveniste, J

    1990-11-01

    Clinical studies suggest that Helicobacter pylori may play a role in the pathogenesis of gastroduodenal ulcers in man but direct evidence of mucosal injury by this microorganism is still lacking. Paf-acether (paf) causes a number of disorders including ischaemic bowel necrosis and gastroduodenal ulceration. Since paf is produced by Escherichia coli, we investigated whether it could be synthesised by H pylori. Five H pylori isolates were collected from antral biopsy specimens from patients with gastritis and duodenal ulcer and cultured with selective antibiotics. Colonies obtained from both blood agar and brucella broth medium were used. Paf was determined by platelet aggregation assay after ethanolic extraction and subsequent purification by high performance liquid chromatography. Paf was detected in H pylori in blood agar plates (680 (390) pg paf/1 x 10(6) organisms) but not in bacteria cultured on brucella broth medium. Supplementation of the latter medium with lyso paf and acetyl-CoA, two paf precursors present in high amounts in the mammalian intestine, induced paf production in three of five isolates. The platelet aggregating material extracted from H pylori exhibited biological and physiochemical characteristics identical to those of paf released from eukaryotic cells. These findings suggest that H pylori may add to the local production of paf in inflamed gastric mucosa.

  7. Biological role of Trichoderma harzianum-derived platelet-activating factor acetylhydrolase (PAF-AH) on stress response and antagonism.

    Science.gov (United States)

    Yu, Chuanjin; Fan, Lili; Wu, Qiong; Fu, Kehe; Gao, Shigang; Wang, Meng; Gao, Jinxin; Li, Yaqian; Chen, Jie

    2014-01-01

    We investigated the properties of platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum. The enzyme, comprised of 572 amino acids, shares high homology with PAF-AH proteins from T. koningii and other microbial species. The optimum enzymatic activity of PAF-AH occurred at pH 6 in the absence of Ca2+ and it localized in the cytoplasm, and we observed the upregulation of PAF-AH expression in response to carbon starvation and strong heat shock. Furthermore, PAF-AH knockout transformant growth occurred more slowly than wild type cells and over-expression strains grown in SM medium at 37°C and 42°C. In addition, PAF-AH expression significantly increased under a series of maize root induction assay. Eicosanoic acid and ergosterol levels decreased in the PAF-AH knockouts compared to wild type cells, as revealed by GC/MS analysis. We also determined stress responses mediated by PAF-AH were related to proteins HEX1, Cu/Zn superoxide dismutase, and cytochrome c. Finally, PAF-AH exhibited antagonistic activity against Rhizoctonia solani in plate confrontation assays. Our results indicate PAF-AH may play an important role in T. harzianum stress response and antagonism under diverse environmental conditions.

  8. Presence of paf-acether in rheumatic diseases.

    OpenAIRE

    Hilliquin, P; Menkes, C J; Laoussadi, S; Benveniste, J; Arnoux, B

    1992-01-01

    Paf-acether (paf) is a naturally occurring phospholipid involved in inflammatory processes. The presence of paf, its precursor lyso paf, and lipo-paf has been determined in blood and synovial fluid from 13 patients with rheumatoid arthritis (RA), 11 with spondylarthropathies, eight with other inflammatory rheumatisms, 13 with chondrocalcinosis, 15 with osteoarthritis, and also in blood from nine healthy subjects. Paf and lipo-paf were measured by rabbit platelet aggregation after isolation by...

  9. Urease from cotton (Gossypium hirsutum) seeds: isolation, physicochemical characterization, and antifungal properties of the protein.

    Science.gov (United States)

    Menegassi, Angela; Wassermann, German E; Olivera-Severo, Deiber; Becker-Ritt, Arlete B; Martinelli, Anne Helene S; Feder, Vanessa; Carlini, Celia R

    2008-06-25

    Ureases (EC 3.5.1.5) are metalloenzymes that hydrolyze urea to produce ammonia and carbon dioxide These enzymes, which are found in fungi, bacteria, and plants, show very similar structures. Despite an abundance of urease in vegetal tissues, the physiological role of this enzyme in plants is still poorly understood. It has been previously described that ureases from the legumes jackbean ( Canavalia ensiformis) and soybean ( Glycine max) have insecticidal activity and antifungal properties. This work presents the physicochemical purification and characterization of a urease from cotton ( Gossypium hirsutum) seeds, the first description of this enzyme in Malvaceae. The urease content varied among different cotton cultivars. Cotton seed urease (98.3 kDa) displayed low ureolytic activity but exhibited potent antifungal properties at sub-micromolar concentrations against different phytopathogenic fungi. As described for other ureases, the antifungal effect of cotton urease persisted after treatment with an irreversible inhibitor of its enzyme activity. The data suggest an important role of these proteins in plant defense.

  10. Selection of antifungal protein-producing molds from dry-cured meat products.

    Science.gov (United States)

    Acosta, Raquel; Rodríguez-Martín, Andrea; Martín, Alberto; Núñez, Félix; Asensio, Miguel A

    2009-09-30

    To control unwanted molds in dry-cured meats it is necessary to allow the fungal development essential for the desired characteristics of the final product. Molds producing antifungal proteins could be useful to prevent hazards due to the growth of mycotoxigenic molds. The objective has been to select Penicillium spp. that produce antifungal proteins against toxigenic molds. To obtain strains adapted to these products, molds were isolated from dry-cured ham. A first screening with 281 isolates by the radial inhibition assay revealed that 166 were active against some of the toxigenic P. echinulatum, P. commune, and Aspergillusniger used as reference molds. The activity of different extracts from cultured medium was evaluated by a microspectroscopic assay. Molds producing active chloroform extracts were eliminated from further consideration. A total of 16 Penicillium isolates were screened for antifungal activity from both cell-free media and the aqueous residues obtained after chloroform extraction. The cell-free media of 10 isolates that produced a strong inhibition of the three reference molds were fractionated by FPLC on a cationic column. For protein purification, the fractions of the three molds that showed high inhibitory activity were further chromatographed on a gel filtration column, and the subfractions containing the highest absorbance peaks were assayed against the most sensitive reference molds. One subfraction each from strains AS51D and RP42C from Penicilliumchrysogenum confirmed the inhibitory activity against the reference molds. SDS-PAGE revealed a single band from each subfraction, with estimated molecular masses of 37kDa for AS51D and 9kDa for RP42C. Although further characterisation is required, both these proteins and the producing strains can be of interest to control unwanted molds on foods.

  11. PAF receptor structure: a hypothesis.

    Science.gov (United States)

    Godfroid, J J; Dive, G; Lamotte-Brasseur, J; Batt, J P; Heymans, F

    1991-12-01

    Different hypotheses of the structure of platelet-activating factor (PAF) receptor based on structure-activity relationships of agonists and antagonists are reviewed. For an agonistic effect, strong hydrophobic interactions and an ether function are required in position-1 of the glycerol backbone; chain length limitations and steric hindrance demand a small group in position-2. The unusual structural properties of non-PAF-like antagonists required 3-D electrostatic potential calculations. This method applied to seven potent antagonists suggests a strong "Cache-orielles" (ear-muff) effect, i.e., two strong electronegative wells (isocontour at -10 Kcal/mole) are located at 180 degrees to each other and at a relatively constant distance. Initial consideration of the "Cache-oreilles" effect implied the structure of a bipolarized cylinder of 10-12 A diameter for the receptor. However, very recent results on studies with agonists and antagonists structurally similar to PAF suggest that the receptor may in fact be a multi-polarized cylinder.

  12. Structure of p15PAF-PCNA complex and implications for clamp sliding during DNA replication and repair

    DEFF Research Database (Denmark)

    De Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B

    2015-01-01

    The intrinsically disordered protein p15(PAF) regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15(PAF)-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP...

  13. PAF exerts a direct apoptotic effect on the rat H9c2 cardiomyocytes in Ca2+-dependent manner.

    Science.gov (United States)

    Zhao, Dan; Chu, Wen-Feng; Wu, Ling; Li, Jing; Liu, Qing-Mei; Lu, Yan-Jie; Qiao, Guo-Fen; Wang, Zhi-Guo; Zhang, Zhi-Ren; Yang, Bao-Feng

    2010-08-06

    Previous studies suggested that platelet-activating factor (PAF) plays an important role in ischemic diseases. Apoptosis has been implicated in myocardial infarction-related cell death. The present study was designed to determine whether PAF could induce apoptosis in cardiac myocytes and the underlying mechanisms by which PAF causes apoptosis. H9c2 cardiac myocytes were used to investigate the effect of PAF on intracellular calcium concentration, cell viability and cell apoptosis. Signaling pathway of caspase-3, cytochrome c and MAPK (ERK, JNK, p38) was determined during the PAF induced apoptosis. First, our results showed that treatment of H9c2 cardiomyocytes with PAF (0.2 to 20 microM) caused apoptosis in these cells and the apoptotic process was suppressed by either BN52021 (an antagonist of PAF receptor) or BAPTA/AM (an intracellular Ca2+ chelator), suggesting an involvement of PAF and its receptor mediated calcium-dependent signaling. Second, we found that activity of p38-MAPK (mitogen-activated protein kinase) and caspase-3 was elevated in the cells treated with PAF, without altering activity of ERK and JNK, and that PAF-induced enhancement of caspase-3 activity was attenuated by application of either BAPTA/AM or SB203580 (p38 inhibitor). Furthermore, PAF-induced apoptosis and release of cytochrome c from mitochondria was blunted by SB203580, and PAF-induced enhancement of p38 activity was also attenuated by BAPTA/AM. Our data implicate that a PAF and its receptor in triggering apoptosis occurs in cultured H9c2 cardiac myocytes via a calcium-dependent p38 MAPK activated cytochrome c/caspase-3 apoptosis signaling pathway. Crown Copyright (c) 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  14. PAF enhances MMP-2 production in rat aortic VSMCs via a β-arrestin2-dependent ERK signaling pathway.

    Science.gov (United States)

    Kim, Yun H; Lee, Seung J; Seo, Kyo W; Bae, Jin U; Park, So Y; Kim, Eun K; Bae, Sun S; Kim, Jae H; Kim, Chi D

    2013-10-01

    Platelet-activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent phospholipid mediator and has been reported to be localized in atherosclerotic plaque. However, its role in the progression of atherosclerosis remains unclear. In the present study, we investigated the role of PAF in the production of matrix metalloproteinase (MMP) in primary vascular smooth muscle cells (VSMCs). When rat aortic primary VSMCs were stimulated with PAF (1 nmol/l), the expressions of MMP-2 mRNA and protein, but not of MMP-9, were significantly increased, and these upregulations were markedly attenuated by inhibiting extracellular signal-regulated kinases (ERKs) using molecular and pharmacological inhibitors, but not by using inhibitors of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Likewise, ERK phosphorylation was markedly enhanced in PAF-stimulated VSMCs, and this was attenuated by WEB2086, but not by EGF receptor inhibitor, demonstrating the specificity of PAF receptor (PAFR) in PAF-induced ERK phosphorylation. In immunofluorescence studies, β-arrestin2 in PAF-stimulated VSMCs colocalized with PAFR and phosphorylated ERK (P-ERK). Coimmunoprecipitation results suggest that β-arrestin2-bound PAFRs existed as a complex with P-ERK. In addition, PAF-induced ERK phosphorylation and MMP-2 production were significantly attenuated by β-arrestin2 depletion. Taken together, the study shows that PAF enhances MMP-2 production in VSMCs via a β-arrestin2-dependent ERK signaling pathway.

  15. Activity of the Antifungal Protein from Aspergillus giganteus Against Botrytis cinerea.

    Science.gov (United States)

    Moreno, Ana Beatriz; Del Pozo, Alvaro Martínez; Borja, Marisé; Segundo, Blanca San

    2003-11-01

    ABSTRACT Botrytis blight (gray mold), caused by Botrytis cinerea, is one of the most widely distributed diseases of ornamental plants. In geranium plants, gray mold is responsible for important losses in production. The mold Aspergillus giganteus is known to produce and secrete a basic low-molecular-weight protein, the antifungal protein (AFP). Here, the antifungal properties of the Aspergillus AFP against various B. cinerea isolates obtained from naturally infected geranium plants were investigated. AFP strongly inhibited mycelial growth as well as conidial germination of B. cinerea. Microscopic observations of fungal cultures treated with AFP revealed reduced hyphal elongation and swollen hyphal tips. Washout experiments in which B. cinerea was incubated with AFP for different periods of time and then washed away revealed a fungicidal activity of AFP. Application of AFP on geranium plants protected leaves against Botrytis infection. Cecropin A also was active against this pathogen. An additive effect against the fungus was observed when AFP was combined with cecropin A. These results are discussed in relation to the potential of the afp gene to enhance crop protection against B. cinerea diseases.

  16. Increased chitin biosynthesis contributes to the resistance of Penicillium polonicum against the antifungal protein PgAFP.

    Science.gov (United States)

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Asensio, Miguel A; Núñez, Félix

    2016-01-01

    Antifungal proteins from molds have been proposed as a valuable tool against unwanted molds, but the resistance of some fungi limits their use. Resistance to antimicrobial peptides has been suggested to be due to lack of interaction with the mold or to a successful response. The antifungal protein PgAFP produced by Penicillium chrysogenum inhibits the growth of various ascomycetes, but not Penicillium polonicum. To study the basis for resistance to this antifungal protein, localization of PgAFP and metabolic, structural, and morphological changes were investigated in P. polonicum. PgAFP bound the outer layer of P. polonicum but not regenerated chitin, suggesting an interaction with specific molecules. Comparative two-dimensional gel electrophoresis (2D-PAGE) and comparative quantitative proteomics revealed changes in the relative abundance of several proteins from ribosome, spliceosome, metabolic, and biosynthesis of secondary metabolite pathways. The proteome changes and an altered permeability reveal an active reaction of P. polonicum to PgAFP. The successful response of the resistant mold seems to be based on the higher abundance of protein Rho GTPase Rho1 that would lead to the increased chitin deposition via cell wall integrity (CWI) signaling pathway. Thus, combined treatment with chitinases could provide a complementary means to combat resistance to antifungal proteins.

  17. Endothelial progenitor cells express PAF receptor and respond to PAF via Ca(2+)-dependent signaling.

    Science.gov (United States)

    Balestrieri, Maria Luisa; Giovane, Alfonso; Milone, Lara; Servillo, Luigi

    2010-10-01

    Endothelial progenitor cell (EPC) therapy is a promising approach to promote angiogenesis and endothelial repair in patients with cardiovascular diseases (CVD). However, their release of proinflammatory mediators may compromise the therapeutic efficacy. Little is known about the role of Platelet-Activating Factor (PAF) in EPC functional response. Here, we investigated the expression of PAF receptor (PAF-R) in early EPC and the release of PAF under stimulation with factors involved in endothelial dysfunction. Results indicated that early EPC express the PAF-R and respond to PAF signaling via a transient increase of cytoplasmic Ca(2+) concentration. EPC release PAF in a time dependent manner upon stimulation with tumor necrosis factor-alpha (TNF-alpha) or high-glucose concentration with a peak at 30 min and 10 min (pPAF, starting at concentration of 50 ng/ml, exerted a detrimental effect on EPC number with a concomitant increase of p38 activity. Furthermore, both the reduction of early EPC number and the enhanced p38 activity induced by PAF were abolished by CV3988, a PAF receptor antagonist. These novel findings, revealing that early EPC respond to PAF signaling, unveil an inflammatory pathway that may play a crucial role in the outcome of cardiovascular cell therapy with EPC. Copyright @ 2010 Elsevier B.V. All rights reserved.

  18. Determination of phospholipase activity of PAF acetylhydrolase.

    Science.gov (United States)

    Stafforini, Diana M; McIntyre, Thomas M

    2013-06-01

    This article presents a radiometric assay to determine the enzymatic activity of platelet-activating factor (PAF) acetylhydrolase (PAF-AH), also known as lipoprotein-associated phospholipase A2 and phospholipase A2 group 7A. The method is based on the release of radioactively labeled acetate from sn-2-labeled PAF and separation of substrate and product using reversed-phase column chromatography on octadecyl silica gel cartridges. The assay is fast, convenient, reproducible, sensitive, and inexpensive. The instrumentation required includes standard laboratory equipment and a liquid scintillation counter. The assay is also useful to determine the activity of intracellular PAF-AH (PAF-AH II), provided that a few modifications are included. The enzymatic activity determined using PAF as the substrate is a direct indication of the ability of plasma samples, purified preparations, and cellular and tissue lysates to hydrolyze short- and medium-chain phospholipids that may or may not harbor oxidized functionalities. In addition, the assay can be used to test the suitability of other phospholipids, including species containing oxidized, long-chain sn-2 fatty acyl groups, as PAF-AH substrates. This versatile assay can be used to accurately determine PAF-AH activity in biological samples and preliminarily assess affinity and efficiency of the hydrolysis of potential substrates present in complex mixtures. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum.

    Science.gov (United States)

    Rather, Irshad Ahmad; Awasthi, Praveen; Mahajan, Vidushi; Bedi, Yashbir S; Vishwakarma, Ram A; Gandhi, Sumit G

    2015-03-01

    Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective.

    Science.gov (United States)

    Pinto, Clidia E M; Farias, Davi F; Carvalho, Ana F U; Oliveira, José T A; Pereira, Mirella L; Grangeiro, Thalles B; Freire, José E C; Viana, Daniel A; Vasconcelos, Ilka M

    2015-09-01

    Mo-CBP3 is an antifungal protein produced by Moringa oleifera which has been investigated as potential candidate for developing transgenic crops. Before the use of novel proteins, food safety tests must be conducted. This work represents an early food safety assessment of Mo-CBP3, using the two-tiered approach proposed by ILSI. The history of safe use, mode of action and results for amino acid sequence homology using the full-length and short contiguous amino acids sequences indicate low risk associated to this protein. Mo-CBP3 isoforms presented a reasonable number of alignments (>35% identity) with allergens in a window of 80 amino acids. This protein was resistant to pepsin degradation up to 2 h, but it was susceptible to digestion using pancreatin. Many positive attributes were presented for Mo-CBP3. However, this protein showed high sequence homology with allergens and resistance to pepsin digestion that indicates that further hypothesis-based testing on its potential allergenicity must be done. Additionally, animal toxicity evaluations (e.g. acute and repeated dose oral exposure assays) must be performed to meet the mandatory requirements of several regulatory agencies. Finally, the approach adopted here exemplified the importance of performing an early risk assessment of candidate proteins for use in plant transformation programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves

    DEFF Research Database (Denmark)

    Kristensen, A K; Brunstedt, J; Madsen, M T

    2000-01-01

    A novel protein (IWF5) comprising 92 amino acids has been purified from the intercellular washing fluid of sugar beet leaves using cation exchange chromatography and reversed phase high performance liquid chromatography. Based on amino acid sequence homology, including the presence of eight...... cysteines at conserved positions, the protein can be classified as a member of the plant family of non-specific lipid transfer proteins (nsLTPs). The protein is 47% identical to IWF1, an antifungal nsLTP previously isolated from leaves of sugar beet. A potential site for N-linked glycosylation present...... sequence of 26 amino acid residues. The protein shows a strong in vitro antifungal activity against Cercospora beticola (causal agent of leaf spot disease in sugar beet) and inhibits fungal growth at concentrations below 10 µg ml(-1)....

  2. Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity.

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    Full Text Available BACKGROUND: Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic and antidiarrheal, but also as a herbal medicine to treat cholecystitis in people. We have found that the protein extractions from C. komarovii seeds have strong antifungal activity. There is strong interest to develop protein medication and antifungal pesticides from C. komarovii for pharmacological or other uses. METHODOLOGY/PRINCIPAL FINDINGS: An antifungal protein with sequence homology to thaumatin-like proteins (TLPs was isolated from C. komarovii seeds and named CkTLP. The three-dimensional structure prediction of CkTLP indicated the protein has an acid cleft and a hydrophobic patch. The protein showed antifungal activity against fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea and Valsa mali. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed the transcription level of CkTLP had a significant increase under the stress of abscisic acid (ABA, salicylic acid (SA, methyl jasmonate (MeJA, NaCl and drought, which indicates that CkTLP may play an important role in response to abiotic stresses. Histochemical staining showed GUS activity in almost the whole plant, especially in cotyledons, trichomes and vascular tissues of primary root and inflorescences. The CkTLP protein was located in the extracellular space/cell wall by CkTLP::GFP fusion protein in transgenic Arabidopsis. Furthermore, over-expression of CkTLP significantly enhanced the resistance of Arabidopsis against V. dahliae. CONCLUSIONS/SIGNIFICANCE: The results suggest that the CkTLP is a good candidate protein or gene for contributing to the development of disease-resistant crops.

  3. Fish polar lipids retard atherosclerosis in rabbits by down-regulating PAF biosynthesis and up-regulating PAF catabolism.

    Science.gov (United States)

    Nasopoulou, Constantina; Tsoupras, Alexandros B; Karantonis, Haralabos C; Demopoulos, Constantinos A; Zabetakis, Ioannis

    2011-11-16

    Platelet activating factor (PAF) has been proposed as a key factor and initial trigger in atherosclerosis. Recently, a modulation of PAF metabolism by bioactive food constituents has been suggested. In this study we investigated the effect of fish polar lipid consumption on PAF metabolism. The specific activities of four PAF metabolic enzymes; in leukocytes, platelets and plasma, and PAF concentration; either in blood cells or plasma were determined. Samples were acquired at the beginning and at the end of a previously conducted study in male New Zealand white rabbits that were fed for 45 days with atherogenic diet supplemented (group-B, n = 6) or not (group-A, n = 6) with gilthead sea bream (Sparus aurata) polar lipids.The specific activity of PAF-Acetylhydrolase (PAF-AH); a catabolic enzyme of PAF, was decreased in rabbits' platelets of both A and B groups and in rabbits' leukocytes of group A (p PAF in plasma was increased in both A and B groups in both leukocytes and platelets (p PAF-cholinephosphotransferase (PAF-CPT); a biosynthetic enzyme of PAF showed increased specific activity only in rabbits' leukocytes of group A (p PAF-acetyltransferase (Lyso-PAF-AT) specific activity (p > 0.05). Free and bound PAF levels increased in group A while decreased in group B (p PAF metabolism upon atherosclerotic conditions in rabbits leading to lower PAF levels and activity in blood of rabbits with reduced early atherosclerotic lesions compared to control group.

  4. An antifungal protein from Ginkgo biloba binds actin and can trigger cell death.

    Science.gov (United States)

    Gao, Ningning; Wadhwani, Parvesh; Mühlhäuser, Philipp; Liu, Qiong; Riemann, Michael; Ulrich, Anne S; Nick, Peter

    2016-07-01

    Ginkbilobin is a short antifungal protein that had been purified and cloned from the seeds of the living fossil Ginkgo biloba. Homologues of this protein can be detected in all seed plants and the heterosporic fern Selaginella and are conserved with respect to domain structures, peptide motifs, and specific cysteine signatures. To get insight into the cellular functions of these conserved motifs, we expressed green fluorescent protein fusions of full-length and truncated ginkbilobin in tobacco BY-2 cells. We show that the signal peptide confers efficient secretion of ginkbilobin. When this signal peptide is either cleaved or masked, ginkbilobin binds and visualizes the actin cytoskeleton. This actin-binding activity of ginkbilobin is mediated by a specific subdomain just downstream of the signal peptide, and this subdomain can also coassemble with actin in vitro. Upon stable overexpression of this domain, we observe a specific delay in premitotic nuclear positioning indicative of a reduced dynamicity of actin. To elucidate the cellular response to the binding of this subdomain to actin, we use chemical engineering based on synthetic peptides comprising different parts of the actin-binding subdomain conjugated with the cell-penetrating peptide BP100 and with rhodamine B as a fluorescent reporter. Binding of this synthetic construct to actin efficiently induces programmed cell death. We discuss these findings in terms of a working model, where ginkbilobin can activate actin-dependent cell death.

  5. Cis and trans interactions between genes encoding PAF1 complex and ESCRT machinery components in yeast.

    Science.gov (United States)

    Rodrigues, Joana; Lydall, David

    2018-03-22

    Saccharomyces cerevisiae is a commonly used model organism for understanding eukaryotic gene function. However, the close proximity between yeast genes can complicate the interpretation of yeast genetic data, particularly high-throughput data. In this study, we examined the interplay between genes encoding components of the PAF1 complex and VPS36, the gene located next to CDC73 on chromosome XII. The PAF1 complex (Cdc73, Paf1, Ctr9, Leo1, and Rtf1, in yeast) affects RNA levels by affecting transcription, histone modifications, and post-transcriptional RNA processing. The human PAF1 complex is linked to cancer, and in yeast, it has been reported to play a role in telomere biology. Vps36, part of the ESCRT-II complex, is involved in sorting proteins for vacuolar/lysosomal degradation. We document a complex set of genetic interactions, which include an adjacent gene effect between CDC73 and VPS36 and synthetic sickness between vps36Δ and cdc73Δ, paf1Δ, or ctr9Δ. Importantly, paf1Δ and ctr9Δ are synthetically lethal with deletions of other components of the ESCRT-II (SNF8 and VPS25), ESCRT-I (STP22), or ESCRT-III (SNF7) complexes. We found that RNA levels of VPS36, but not other ESCRT components, are positively regulated by all components of the PAF1 complex. Finally, we show that deletion of ESCRT components decreases the telomere length in the S288C yeast genetic background, but not in the W303 background. Together, our results outline complex interactions, in cis and in trans, between genes encoding PAF1 and ESCRT-II complex components that affect telomere function and cell viability in yeast.

  6. PAF-mediated MAPK signaling hyperactivation via LAMTOR3 induces pancreatic tumorigenesis.

    Science.gov (United States)

    Jun, Sohee; Lee, Sunhye; Kim, Han-Cheon; Ng, Christopher; Schneider, Andrea M; Ji, Hong; Ying, Haoqiang; Wang, Huamin; DePinho, Ronald A; Park, Jae-Il

    2013-10-31

    Deregulation of mitogen-activated protein kinase (MAPK) signaling leads to development of pancreatic cancer. Although Ras-mutation-driven pancreatic tumorigenesis is well understood, the underlying mechanism of Ras-independent MAPK hyperactivation remains elusive. Here, we have identified a distinct function of PCNA-associated factor (PAF) in modulating MAPK signaling. PAF is overexpressed in pancreatic cancer and required for pancreatic cancer cell proliferation. In mouse models, PAF expression induced pancreatic intraepithelial neoplasia with expression of pancreatic cancer stem cell markers. PAF-induced ductal epithelial cell hyperproliferation was accompanied by extracellular signal-regulated kinase (ERK) phosphorylation independently of Ras or Raf mutations. Intriguingly, PAF transcriptionally activated the expression of late endosomal/lysosomal adaptor, MAPK and mTOR activator 3 (LAMTOR3), which hyperphosphorylates MEK and ERK and is necessary for pancreatic cancer cell proliferation. Our results reveal an unsuspected mechanism of mitogenic signaling activation via LAMTOR3 and suggest that PAF-induced MAPK hyperactivation contributes to pancreatic tumorigenesis.

  7. PAF-Mediated MAPK Signaling Hyperactivation via LAMTOR3 Induces Pancreatic Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Sohee Jun

    2013-10-01

    Full Text Available Deregulation of mitogen-activated protein kinase (MAPK signaling leads to development of pancreatic cancer. Although Ras-mutation-driven pancreatic tumorigenesis is well understood, the underlying mechanism of Ras-independent MAPK hyperactivation remains elusive. Here, we have identified a distinct function of PCNA-associated factor (PAF in modulating MAPK signaling. PAF is overexpressed in pancreatic cancer and required for pancreatic cancer cell proliferation. In mouse models, PAF expression induced pancreatic intraepithelial neoplasia with expression of pancreatic cancer stem cell markers. PAF-induced ductal epithelial cell hyperproliferation was accompanied by extracellular signal-regulated kinase (ERK phosphorylation independently of Ras or Raf mutations. Intriguingly, PAF transcriptionally activated the expression of late endosomal/lysosomal adaptor, MAPK and mTOR activator 3 (LAMTOR3, which hyperphosphorylates MEK and ERK and is necessary for pancreatic cancer cell proliferation. Our results reveal an unsuspected mechanism of mitogenic signaling activation via LAMTOR3 and suggest that PAF-induced MAPK hyperactivation contributes to pancreatic tumorigenesis.

  8. Proteasome substrate capture and gate opening by the accessory factor PafE fromMycobacterium tuberculosis.

    Science.gov (United States)

    Hu, Kuan; Jastrab, Jordan B; Zhang, Susan; Kovach, Amanda; Zhao, Gongpu; Darwin, K Heran; Li, Huilin

    2018-03-30

    In all domains of life, proteasomes are gated, chambered proteases that require opening by activators to facilitate protein degradation. Twelve proteasome accessory factor E (PafE) monomers assemble into a single dodecameric ring that promotes proteolysis required for the full virulence of the human bacterial pathogen Mycobacterium tuberculosis Whereas the best characterized proteasome activators use ATP to deliver proteins into a proteasome, PafE does not require ATP. Here, to unravel the mechanism of PafE-mediated protein targeting and proteasome activation, we studied the interactions of PafE with native substrates, including a newly identified proteasome substrate, the ParA-like protein, Rv3213c, and with proteasome core particles. We characterized the function of a highly conserved feature in bacterial proteasome activator proteins: a glycine-glutamine-tyrosine-leucine (GQYL) motif at their C termini that is essential for stimulating proteolysis. Using cryo-electron microscopy (cryo-EM), we found that the GQYL motif of PafE interacts with specific residues in the α subunits of the proteasome core particle to trigger gate opening and degradation. Finally, we also found that PafE rings have 40-Å openings lined with hydrophobic residues that form a chamber for capturing substrates before they are degraded, suggesting PafE has a previously unrecognized chaperone activity. In summary, we have identified the interactions between PafE and the proteasome core particle that cause conformational changes leading to the opening of the proteasome gate and have uncovered a mechanism of PafE-mediated substrate degradation. Collectively, our results provide detailed insights into the mechanism of ATP-independent proteasome degradation in bacteria. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1.

    Science.gov (United States)

    Zhang, Xiaoyun; Li, Baoqing; Wang, Ye; Guo, Qinggang; Lu, Xiuyun; Li, Shezeng; Ma, Ping

    2013-11-01

    Bacillus atrophaeus CAB-1 displays a high inhibitory activity against various fungal pathogens and suppresses cucumber powdery mildew and tomato gray mold. We extracted and identified lipopeptides and secreted proteins and volatile compounds produced by strain CAB-1 to investigate the mechanisms involved in its biocontrol performance. In vitro assays indicated all three types of products contributed to the antagonistic activity against the fungal pathogen Botrytis cinerea. Each of these components also effectively prevented the occurrence of the cucumber powdery mildew caused by Sphaerotheca fuliginea under greenhouse conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry revealed that the major bioactive lipopeptide was fengycin A (C15-C17). We isolated the crude-secreted proteins of CAB-1 and purified a fraction with antifungal activity. This protein sequence shared a high identity with a putative phage-related pre-neck appendage protein, which has not been reported as an antifungal factor. The volatile compounds produced by CAB-1 were complex, including a range of alcohols, phenols, amines, and alkane amides. O-anisaldehyde represented one of the most abundant volatiles with the highest inhibition on the mycelial growth of B. cinerea. To our knowledge, this is the first report on profiling three types of antifungal substances in Bacilli and demonstrating their contributions to plant disease control.

  10. Structure of p15PAF-PCNA complex and implications for clamp sliding during DNA replication and repair

    Science.gov (United States)

    de Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B.; Molina, Rafael; Cordeiro, Tiago N.; Castillo, Francisco; Villate, Maider; Merino, Nekane; Delgado, Sandra; Gil-Cartón, David; Luque, Irene; Diercks, Tammo; Bernadó, Pau; Montoya, Guillermo; Blanco, Francisco J.

    2015-03-01

    The intrinsically disordered protein p15PAF regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15PAF-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP-box) of p15PAF tightly bound to the front-face of PCNA. In contrast to other PCNA-interacting proteins, p15PAF also contacts the inside of, and passes through, the PCNA ring. The disordered p15PAF termini emerge at opposite faces of the ring, but remain protected from 20S proteasomal degradation. Both free and PCNA-bound p15PAF binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15PAF acts as a flexible drag that regulates PCNA sliding along the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding.

  11. Structure of p15(PAF)-PCNA complex and implications for clamp sliding during DNA replication and repair.

    Science.gov (United States)

    De Biasio, Alfredo; de Opakua, Alain Ibáñez; Mortuza, Gulnahar B; Molina, Rafael; Cordeiro, Tiago N; Castillo, Francisco; Villate, Maider; Merino, Nekane; Delgado, Sandra; Gil-Cartón, David; Luque, Irene; Diercks, Tammo; Bernadó, Pau; Montoya, Guillermo; Blanco, Francisco J

    2015-03-12

    The intrinsically disordered protein p15(PAF) regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15(PAF)-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP-box) of p15(PAF) tightly bound to the front-face of PCNA. In contrast to other PCNA-interacting proteins, p15(PAF) also contacts the inside of, and passes through, the PCNA ring. The disordered p15(PAF) termini emerge at opposite faces of the ring, but remain protected from 20S proteasomal degradation. Both free and PCNA-bound p15(PAF) binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15(PAF) acts as a flexible drag that regulates PCNA sliding along the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding.

  12. SIRT1 attenuates PAF-induced MMP-2 production via down-regulation of PAF receptor expression in vascular smooth muscle cells.

    Science.gov (United States)

    Kim, Yun H; Bae, Jin U; Lee, Seung J; Park, So Y; Kim, Chi D

    2015-09-01

    Silent mating type information regulation 2 homolog 1 (SIRT1) is known as a key regulator in the protection of various vascular disorders, however, no direct evidences have been reported in the progression of atherosclerosis. Considering the pivotal role of matrix metalloproteinase-2 (MMP-2) in plaque destabilization, this study investigated the role of SIRT1 on MMP-2 production in vascular smooth muscle cells (VSMCs) induced by platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). In VSMCs stimulated with resveratrol, SIRT1 activator, PAF receptor (PAFR) was internalized and then its protein levels were diminished. It was attenuated in cells pretreated with proteasome or lysosome inhibitor. Also, the degradation of PAFR in SIRT1-stimulated cells was significantly attenuated by β-arrestin2 depletion. In cells treated with nicotinamide, SIRT1 deacetylase inhibitor, PAFR internalization by resveratrol or reSIRT1 was inhibited, demonstrating that deacetylation of SIRT1 is an important step in SIRT1-induced PAFR down-regulation. Moreover, PAF-induced MMP-2 production in VSMCs and aorta was attenuated by resveratrol. In the aorta of SIRT1 transgenic mice, the PAF-induced MMP-2 expression was prominently attenuated compared to that in wild type mice. Taken together, it was suggested that SIRT1 down-regulated PAFR in VSMCs via β-arrestin2-mediated internalization and degradation, leading to an inhibition of PAF-induced MMP-2 production. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. [Correlation between blood-stasis tongue figure and platelet activating factor (PAF) and acetyl hydrolase of PAF (PAF-AH) in patients with primary dysmenorrhea].

    Science.gov (United States)

    Yang, Ai-ping; Chen, Qun

    2011-03-01

    To explore the pathologic mechanism of blood-stasis tongue figure (BSTF) formation in patients with primary dysmenorrhea. Blood levels of platelet activating factor (PAF) and acetyl hydrolase of PAF (PAF-AH) in 41 patients with primary dysmenorrhea and 20 healthy subjects were detected by enzyme linked immunosorbent assay (ELISA). The level of PAF in the 22 patients with BSTF was 252. 214 +/- 37. 568 ng/L, which was higher than that in patients without BSTF (19 patients, 212.348 +/- 22.794 ng/L) and healthy subjects (182.126 +/- 18.306 ng/L) respectively, while level of PAF-AH showed an opposite sequence in them, i.e., 3.090 +/- 1.483, 5.382 +/- 1.873, and 5.607 +/- 2.073 ng/L, respectively (P PAF when compared with that in healthy subjects (P PAF or PAF-AH levels was shown among patients with BDTF of different Chinese medical syndrome types (P > 0.05). PAF level obviously increased and PAF-AH level obviously decreased in primary dysmenorrhea patients of BSTF, suggesting that the imbalance of PAF and PAF-AH was correlated with the pathologic mechanism of the BSTF formation in primary dysmenorrhea patients.

  14. Concatemerization increases the inhibitory activity of short, cell-penetrating, cationic and tryptophan-rich antifungal peptides.

    Science.gov (United States)

    López-García, Belén; Harries, Eleonora; Carmona, Lourdes; Campos-Soriano, Lidia; López, José Javier; Manzanares, Paloma; Gandía, Mónica; Coca, María; Marcos, Jose F

    2015-10-01

    There are short cationic and tryptophan-rich antifungal peptides such as the hexapeptide PAF26 (RKKWFW) that have selective toxicity and cell penetration properties against fungal cells. This study demonstrates that concatemeric peptides with tandem repeats of the heptapeptide PAF54 (which is an elongated PAF26 sequence) show increased fungistatic and bacteriostatic activities while maintaining the absence of hemolytic activity of the monomer. The increase in antimicrobial activity of the double-repeated PAF sequences (diPAFs), compared to the nonrepeated PAF, was higher (4-8-fold) than that seen for the triple-repeated sequences (triPAFs) versus the diPAFs (2-fold). However, concatemerization diminished the fungicidal activity against quiescent spores of the filamentous fungus Penicillium digitatum. Peptide solubility and sensitivity to proteolytic degradation were affected by the design of the concatemers: incorporation of the AGPA sequence hinge to separate PAF54 repeats increased solubility while the C-terminal addition of the KDEL sequence decreased in vitro stability. These results led to the design of the triPAF sequence PAF102 of 30 amino acid residues, with increased antimicrobial activity and minimal inhibitory concentration (MIC) value of 1-5 μM depending on the fungus. Further characterization of the mode-of-action of PAF102 demonstrated that it colocalizes first with the fungal cell wall, it is thereafter internalized in an energy dependent manner into hyphal cells of the filamentous fungus Fusarium proliferatum, and finally kills hyphal cells intracellularly. Therefore, PAF102 showed mechanistic properties against fungi similar to the parental PAF26. These observations are of high interest in the future development of PAF-based antimicrobial molecules optimized for their production in biofactories.

  15. Analysis list: PAF1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available PAF1 Blood,Digestive tract + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/PAF...1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/PAF1.5.tsv http://dbarchive.bioscien...cedbc.jp/kyushu-u/hg19/target/PAF1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/PAF1.Blood.ts...v,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/PAF1.Digestive_tract.tsv h

  16. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines.

    Directory of Open Access Journals (Sweden)

    Ireos Filipuzzi

    2016-11-01

    Full Text Available Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.

  17. The implication of platelet activating factor in cancer growth and metastasis: potent beneficial role of PAF-inhibitors and antioxidants.

    Science.gov (United States)

    Tsoupras, A B; Iatrou, C; Frangia, C; Demopoulos, C A

    2009-08-01

    Cancer is one of the leading causes of death in Europe and United States. New blood vessel formation penetrating into solid tumors seems to be required for their growth and metastasis. Several protein growth factors can induce endothelial cell proliferation and angiogenesis, through signal transduction cascades that result in the production of several inflammatory mediators and lipid second messengers such as prostaglandins and Platelet Activating Factor (PAF). PAF is a potent mediator of inflammation that is implicated in several inflammatory pathological conditions such as atherosclerosis, cardiovascular and renal diseases, allergy, AIDS, cancer etc. It exerts its biological activities through G-protein-coupled receptors. The presence of PAF in the microenvironment of tumors may be due to its synthesis from circulating and / or cancer cells. Moreover, cancer cells and activated endothelial cells expose PAF-receptor on their membrane surface. PAF binding on its receptor induces several pathways that result in the onset and development of tumor induced angiogenesis and metastasis. PAF-receptor antagonists have exhibited promising results in vitro and in vivo as anti-angiogenic molecules in several cancer cells and tumors. A dietary profile reach in antioxidants and PAF-inhibitors (such as the Mediterranean Diet) may provide beneficial preventive and protective effects against development, growth and metastatic manifestations of cancer cells, through either their inhibition of PAF activity and / or its biosynthesis. The clarification of factors that may down regulate pathologically increased PAF-levels in a tumor microenvironment may also contribute to the planning of a potent nontoxic preventive and therapeutic approach against cancer.

  18. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass

    DEFF Research Database (Denmark)

    Povlsen, Lou K; Beli, Petra; Wagner, Sebastian A

    2012-01-01

    to mono-ubiquitylated PCNA at stalled replisomes. Our findings demonstrate widespread involvement of ubiquitin signalling in genotoxic-stress responses and identify a critical function for dynamic PAF15 ubiquitylation in safeguarding genome integrity when DNA replication is challenged.......Protein ubiquitylation has emerged as a key regulatory mechanism in DNA-damage signalling and repair pathways. We report a proteome-wide, site-specific survey of ubiquitylation changes after ultraviolet irradiation, identifying numerous upregulated and downregulated ubiquitylation sites on known...... components of DNA-damage signalling, as well as on proteins not previously implicated in this process. Our results uncover a critical role for PCNA-associated factor PAF15 (p15(PAF)/KIAA0101) ubiquitylation during DNA replication. During unperturbed S phase, chromatin-associated PAF15 is modified by double...

  19. Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause.

    Science.gov (United States)

    Fenelon, Jane C; Shaw, Geoff; O'Neill, Chris; Frankenberg, Stephen; Renfree, Marilyn B

    2014-01-01

    The control of reactivation from embryonic diapause in the tammar wallaby (Macropus eugenii) involves sequential activation of the corpus luteum, secretion of progesterone that stimulates endometrial secretion and subsequent changes in the uterine environment that activate the embryo. However, the precise signals between the endometrium and the blastocyst are currently unknown. In eutherians, both the phospholipid Paf and its receptor, platelet-activating factor receptor (PTAFR), are present in the embryo and the endometrium. In the tammar, endometrial Paf release in vitro increases around the time of the early progesterone pulse that occurs around the time of reactivation, but whether Paf can reactivate the blastocyst is unknown. We cloned and characterised the expression of PTAFR in the tammar embryo and endometrium at entry into embryonic diapause, during its maintenance and after reactivation. Tammar PTAFR sequence and protein were highly conserved with mammalian orthologues. In the endometrium, PTAFR was expressed at a constant level in the glandular epithelium across all stages and in the luminal epithelium during both diapause and reactivation. Thus, the presence of the receptor appears not to be a limiting factor for Paf actions in the endometrium. However, the low levels of PTAFR in the embryo during diapause, together with its up-regulation and subsequent internalisation at reactivation, supports earlier results suggesting that endometrial Paf could be involved in reactivation of the tammar blastocyst from embryonic diapause.

  20. Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2

    Directory of Open Access Journals (Sweden)

    Liliána Tóth

    2018-03-01

    Full Text Available The increasing number of life-threatening Candida infections caused by antifungal drug-resistant strains urges the development of new therapeutic strategies. The small, cysteine-rich, and cationic Neosartorya fischeri antifungal protein 2 (NFAP2 effectively inhibits the growth of Candida spp. Limiting factors of its future application, are the low-yield production by the native producer, unavailable information about potential clinical application, and the unsolved relationship between the structure and function. In the present study we adopted a Penicillium chrysogenum-based expression system for bulk production of recombinant NFAP2. Furthermore, solid-phase peptide synthesis and native chemical ligation were applied to produce synthetic NFAP2. The average yield of recombinant and synthetic NFAP2 was 40- and 16-times higher than in the native producer, respectively. Both proteins were correctly processed, folded, and proved to be heat-stable. They showed the same minimal inhibitory concentrations as the native NFAP2 against clinically relevant Candida spp. Minimal inhibitory concentrations were higher in RPMI 1640 mimicking the human inner fluid than in a low ionic strength medium. The recombinant NFAP2 interacted synergistically with fluconazole, the first-line Candida therapeutic agent and significantly decreased its effective in vitro concentrations in RPMI 1640. Functional mapping with synthetic peptide fragments of NFAP2 revealed that not the evolutionary conserved antimicrobial γ-core motif, but the mid-N-terminal part of the protein influences the antifungal activity that does not depend on the primary structure of this region. Preliminary nucleic magnetic resonance measurements signed that the produced recombinant NFAP2 is suitable for further structural investigations.

  1. PAF receptor antagonist Ginkgolide B inhibits tumourigenesis and angiogenesis in colitis-associated cancer.

    Science.gov (United States)

    Sun, Lei; He, Zhen; Ke, Jia; Li, Senmao; Wu, Xianrui; Lian, Lei; He, Xiaowen; He, Xiaosheng; Hu, Jiancong; Zou, Yifeng; Wu, Xiaojian; Lan, Ping

    2015-01-01

    Platelet activating factor (PAF), a potent pro-inflammatory phospholipid, has been found to trigger tumor growth and angiogenesis through its G-protein coupled receptor (PAFR). This study was aimed to investigate the potential role of PAF in azoxymethane (AOM)/dextran sulfate sodium (DSS) induced colitis-associated cancer (CAC), using PAFR antagonist Ginkgolide B (GKB). We found GKB up-regulated serum level of PAF-AH activity. As assessed by disease activity index (DAI), histological injury scores, leukocytes infiltration, and expression of pro-inflammatory cytokines, GKB ameliorated colonic inflammation and decreased tumor number and load in mice. GKB also decreased expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) in tumor. These results suggest that PAFR antagonist might be a potential therapeutic strategy for CAC.

  2. Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves.

    Science.gov (United States)

    Zhang, Beibei; Xie, Chengjian; Wei, Yunming; Li, Jing; Yang, Xingyong

    2015-03-01

    An antifungal protein, designated MCha-Pr, was isolated from the intercellular fluid of bitter gourd (Momordica charantia) leaves during a screen for potent antimicrobial proteins from plants. The isolation procedure involved a combination of extraction, ammonium sulphate precipitation, gel filtration on Bio-Gel P-6, ion exchange chromatography on CM-Sephadex, an additional gel filtration on HiLoad 16/60 Superdex 30, and finally, HPLC on a SOURCE 5RPC column. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry indicated that the protein had a molecular mass of 25733.46Da. Automated Edman degradation was used to determine the N-terminal sequence of MCha-Pr, and the amino acid sequence was identified as V-E-Y-T-I-T-G-N-A-G-N-T-P-G-G. The MCha-Pr protein has some similarity to the pathogenesis-related proteins from Atropa belladonna (deadly nightshade), Solanum tuberosum (potato), Ricinus communis (castor bean), and Nicotiana tabacum (tobacco). Analysis of the circular dichroism spectra indicated that MCha-Pr predominantly contains α-helix and β-sheet structures. MCha-Pr had inhibitory effects towards a variety of fungal species and the 50% inhibition of fungal growth (IC50) for Alternaria brassicae, Cercospora personata, Fusarium oxysporum, Mucor sp., and Rhizoctonia solani are 33 μM, 42 μM, 37 μM, 40 μM, and 48 μM, respectively. In addition, this antifungal protein can inhibit the germination of A. brassicae spores at 12.5 μM. These results suggest that MCha-Pr in bitter gourd leaves plays a protective role against phytopathogens and has a wide antimicrobial spectrum. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins.

    Science.gov (United States)

    Hayes, Brigitte M E; Anderson, Marilyn A; Traven, Ana; van der Weerden, Nicole L; Bleackley, Mark R

    2014-07-01

    Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.

  4. Albumin inhibits platelet-activating factor (PAF)-induced responses in platelets and macrophages: implications for the biologically active form of PAF.

    OpenAIRE

    Grigoriadis, G.; Stewart, A. G.

    1992-01-01

    1. Platelet-activating factor (PAF) binds with high affinity to albumin leading Clay et al. (1990) to suggest that the active form of PAF is the albumin-PAF complex. 2. In the present study the proposal that albumin-bound, rather than monomeric PAF, is the active form of PAF at PAF receptors was critically evaluated by examining the effect of albumin on the potency of PAF in isolated platelets and macrophages. 3. Bovine serum albumin inhibited concentration-dependently PAF-induced responses i...

  5. Selective inhibitors of a PAF biosynthetic enzyme lysophosphatidylcholine acyltransferase 2.

    Science.gov (United States)

    Tarui, Megumi; Shindou, Hideo; Kumagai, Kazuo; Morimoto, Ryo; Harayama, Takeshi; Hashidate, Tomomi; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Nagase, Takahide; Shimizu, Takao

    2014-07-01

    Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator. In response to extracellular stimuli, PAF is rapidly biosynthesized by lyso-PAF acetyltransferase (lyso-PAFAT). Previously, we identified two types of lyso-PAFATs: lysophosphatidylcholine acyltransferase (LPCAT)1, mostly expressed in the lungs where it produces PAF and dipalmitoyl-phosphatidylcholine essential for respiration, and LPCAT2, which biosynthesizes PAF and phosphatidylcholine (PC) in the inflammatory cells. Under inflammatory conditions, LPCAT2, but not LPCAT1, is activated and upregulated to produce PAF. Thus, it is important to develop inhibitors specific for LPCAT2 in order to ameliorate PAF-related inflammatory diseases. Here, we report the first identification of LPCAT2-specific inhibitors, N-phenylmaleimide derivatives, selected from a 174,000-compound library using fluorescence-based high-throughput screening followed by the evaluation of the effects on LPCAT1 and LPCAT2 activities, cell viability, and cellular PAF production. Selected compounds competed with acetyl-CoA for the inhibition of LPCAT2 lyso-PAFAT activity and suppressed PAF biosynthesis in mouse peritoneal macrophages stimulated with a calcium ionophore. These compounds had low inhibitory effects on LPCAT1 activity, indicating that adverse effects on respiratory functions may be avoided. The identified compounds and their derivatives will contribute to the development of novel drugs for PAF-related diseases and facilitate the analysis of LPCAT2 functions in phospholipid metabolism in vivo. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. PAF promotes stemness and radioresistance of glioma stem cells.

    Science.gov (United States)

    Ong, Derrick Sek Tong; Hu, Baoli; Ho, Yan Wing; Sauvé, Charles-Etienne Gabriel; Bristow, Christopher A; Wang, Qianghu; Multani, Asha S; Chen, Peiwen; Nezi, Luigi; Jiang, Shan; Gorman, Claire Elizabeth; Monasterio, Marta Moreno; Koul, Dimpy; Marchesini, Matteo; Colla, Simona; Jin, Eun-Jung; Sulman, Erik P; Spring, Denise J; Yung, Wai-Kwan Alfred; Verhaak, Roel G W; Chin, Lynda; Wang, Y Alan; DePinho, Ronald A

    2017-10-24

    An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor ( PAF ) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM). Published under the PNAS license.

  7. Mouse and human eosinophils degranulate in response to platelet-activating factor (PAF) and lysoPAF via a PAF-receptor-independent mechanism: evidence for a novel receptor.

    Science.gov (United States)

    Dyer, Kimberly D; Percopo, Caroline M; Xie, Zhihui; Yang, Zhao; Kim, John Dongil; Davoine, Francis; Lacy, Paige; Druey, Kirk M; Moqbel, Redwan; Rosenberg, Helene F

    2010-06-01

    Platelet-activating factor (PAF [1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine]) is a phospholipid mediator released from activated macrophages, mast cells, and basophils that promotes pathophysiologic inflammation. Eosinophil responses to PAF are complex and incompletely elucidated. We show in this article that PAF and its 2-deacetylated metabolite (lysoPAF) promote degranulation (release of eosinophil peroxidase) via a mechanism that is independent of the characterized PAFR. Specifically, we demonstrate that receptor antagonists CV-3988 and WEB-2086 and pertussis toxin have no impact on PAF- or lysoPAF-mediated degranulation. Furthermore, cultured mouse eosinophils from PAFR(-/-) bone marrow progenitors degranulate in response to PAF and lysoPAF in a manner indistinguishable from their wild-type counterparts. In addition to PAF and lysoPAF, human eosinophils degranulate in response to lysophosphatidylcholine, but not phosphatidylcholine, lysophosphatidylethanolamine, or phosphatidylethanolamine, demonstrating selective responses to phospholipids with a choline head-group and minimal substitution at the sn-2 hydroxyl. Human eosinophils release preformed cytokines in response to PAF, but not lysoPAF, also via a PAFR-independent mechanism. Mouse eosinophils do not release cytokines in response to PAF or lysoPAF, but they are capable of doing so in response to IL-6. Overall, our work provides the first direct evidence for a role for PAF in activating and inducing degranulation of mouse eosinophils, a crucial feature for the interpretation of mouse models of PAF-mediated asthma and anaphylaxis. Likewise, we document and define PAF and lysoPAF-mediated activities that are not dependent on signaling via PAFR, suggesting the existence of other unexplored molecular signaling pathways mediating responses from PAF, lysoPAF, and closely related phospholipid mediators.

  8. Comparative characteristics of membrane-active single-chained ether phospholipids: PAF and lyso-PAF in Langmuir monolayers.

    Science.gov (United States)

    Flasiński, Michał; Broniatowski, Marcin; Wydro, Paweł; Dynarowicz-Łątka, Patrycja

    2012-03-15

    1-O-Octadecyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) and its deacetylated precursor (lyso-PAF) are membrane-active single-chained ether phospholipids, which play an important signaling role in different physiological processes. There is strong evidence that one of the possible mechanisms of PAF and lyso-PAF activity is connected with their direct influence on biomembranes. Although both lipids have very similar structure, their biological activity is very different and in some cases even antagonistic. Unfortunately, there is a lack of the studies correlating these observations with the molecular structure of both compounds. Therefore, we decided to apply model systems and advanced physicochemical methods to explore this subject and look for the reasons of the observed discrepancies. As a model system, we prepared Langmuir monolayers of PAF and lyso-PAF at the air/water interface. The physicochemical characteristic of the model membranes under different experimental conditions was performed with the application of the Langmuir monolayer technique, Brewster angle microscopy, and the methods based on synchrotron radiation scattering (XR and GIXD). Both compounds form stable Langmuir monolayers, in which the lipid molecules are strongly immersed into the water subphase. The monolayers have expanded character, meaning that the hydrophobic tails are considerably tilted and disordered. Similarly to biochemical studies, also in our model systems, profound differences in the properties of PAF and lyso-PAF were observed. Contrary to PAF, the lyso-PAF molecules express the propensity to form organized, periodical structures in the model membranes. It is manifested in the phase transition observed in the course of the lyso-PAF π-A isotherm which was correlated with the diffraction signal registered with the application of the GIXD method. The formation of 2D domains of hexagonal ordering of the film forming molecules was observed only for the lyso precursor. The observed

  9. Antibody production of wild-type and enzyme V279F variants of PAF-AH as a risk factor for Cardiovascular disease

    Science.gov (United States)

    Ramadhani, Anggia N.; Puspitarini, Sapti; Sari, Anissa N.; Widodo

    2017-11-01

    Coronary artery disease (CAD) has emerged as a leading cause of death in Indonesia nowadays. WHO data in 2012 revealed that 37% of the Indonesian population died from this disease. CAD occurs because of endothelial dysfunction in the arteries. Lipoprotein-associated phospholipase A2 (Lp-PLA2), also known as platelet-activating factor acetylhydrolase (PAF-AH), is a phospholipase A2 enzyme, encoded by the PLA2G7 gene. This protein is predicted to be involved in inflammatory phospholipid metabolism so it can be used as a biomarker of CAD in the early phase. Thus, the purpose of this research is to discover the difference in antibody production between wild-type and mutant V279F. The PAF-AH enzyme was isolated from mice lymphocyte cells in order to develop this enzyme as a biomarker of cardiovascular disease. PAF-AH migrates at 55kDa according to SDS-PAGE analysis. Flow cytometry analysis showed that mutant PAF-AH (V279F) is more antigenic than wild-type PAF-AH. The missense mutation of V279F PAF-AH means this enzyme cannot catabolize the acetyl group at the sn-2 position of PAF.

  10. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds.

    Directory of Open Access Journals (Sweden)

    Adelina B Batista

    Full Text Available Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.

  11. Loss-of-Function Mutations in HspR Rescue the Growth Defect of a Mycobacterium tuberculosis Proteasome Accessory Factor E (pafE) Mutant.

    Science.gov (United States)

    Jastrab, Jordan B; Samanovic, Marie I; Copin, Richard; Shopsin, Bo; Darwin, K Heran

    2017-04-01

    Mycobacterium tuberculosis uses a proteasome to degrade proteins by both ATP-dependent and -independent pathways. While much has been learned about ATP-dependent degradation, relatively little is understood about the ATP-independent pathway, which is controlled by Mycobacterium tuberculosis p roteasome a ccessory f actor E (PafE). Recently, we found that a Mycobacterium tuberculosis pafE mutant has slowed growth in vitro and is sensitive to killing by heat stress. However, we did not know if these phenotypes were caused by an inability to degrade the PafE-proteasome substrate HspR ( h eat s hock p rotein r epressor), an inability to degrade any damaged or misfolded proteins, or a defect in another protein quality control pathway. To address this question, we characterized pafE suppressor mutants that grew similarly to pafE + bacteria under normal culture conditions. All but one suppressor mutant analyzed contained mutations that inactivated HspR function, demonstrating that the slowed growth and heat shock sensitivity of a pafE mutant were caused primarily by the inability of the proteasome to degrade HspR. IMPORTANCE Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required for virulence. We recently discovered a proteasome cofactor, PafE, which is required for the normal growth, heat shock resistance, and full virulence of M. tuberculosis In this study, we demonstrate that PafE influences this phenotype primarily by promoting the expression of protein chaperone genes that are necessary for surviving proteotoxic stress. Copyright © 2017 American Society for Microbiology.

  12. PAF and its metabolic enzymes in healthy volunteers: interrelations and correlations with basic characteristics.

    Science.gov (United States)

    Detopoulou, Paraskevi; Nomikos, Tzortzis; Fragopoulou, Elizabeth; Stamatakis, George; Panagiotakos, Demosthenes B; Antonopoulou, Smaragdi

    2012-01-01

    PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), a potent inflammatory mediator, is synthesized via the remodeling and the de novo route, key enzymes of which are acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAF-AT) and DTT-insensitive CDP-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT), respectively. PAF-acetylhydrolase (PAF-AH) and its extracellular isoform lipoprotein-associated phospholipase-A(2) (Lp-PLA(2)) catabolize PAF. This study evaluated PAF levels together with leukocyte PAF-CPT, lyso-PAF-AT, PAF-AH and Lp-PLA(2) activities in 106 healthy volunteers. Men had lower PAF levels and higher activity of both catabolic enzymes and lyso-PAF-AT than women (P-values PAF levels in men (r=-0.279, P=0.06) and lyso-PAF-AT in women (r=-0.280, P=0.05). In contrast, Lp-PLA(2) was positively correlated with age (r=0.201, P=0.04). Moreover, PAF-CPT was positively correlated with glucose (r=0.430, P=0.002) in women. In addition, Principal Component Analysis revealed three PAF metabolic patterns: (i) increased activities of PAF-CPT and PAF-AH, (ii) increased activities of PAF-CPT and lyso-PAF-AT and (iii) increased activity of Lp-PLA(2). The present study underlines the complexity of PAF's metabolism determinants. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Sensitivity of Candida Albicans Biofilm Cells Grown on Denture Acrylic to Antifungal Proteins and Chlorhexidine

    Science.gov (United States)

    Pusateri, Christopher R.; Monaco, Edward A.; Edgerton, Mira

    2009-01-01

    Objectives Candida albicans cells form biofilms on polymeric surfaces of dentures and other prostheses introduced into the oral cavity. Many biofilm microorganisms exhibit resistance to antimicrobial agents; C. albicans cells may also develop resistance to naturally-occurring antifungal peptides in human saliva including histatins (Hsts) and defensins (hBDs). Therefore, we evaluated Hst 5 activity on C. albicans biofilm cells compared to planktonic cells and measured whether surface treatment of denture acrylic with Hst 5, hBD-3, or chlorhexidine gluconate could inhibit in vitro biofilm development. Methods Acrylic disks were preconditioned with 500 μl saliva for 30 min, and inoculated with C. albicans cells (106 cells/ml) for 1 h, at 37 °C. Non-adherent cells were removed by washing and disks and were incubated in YPD growth medium for 24, 48, and 72 h at 37 °C. Candidacidal assays were performed on 48-hour-biofilms and on planktonically-grown cells using Hst 5 (15.5 μM, 31.25 μM, 62 μM). Cell adhesion was compared on disks pre-coated with 0.12% chlorhexidine gluconate, 50 μM Hst 5, or 0.6 μM hBD-3 after 24 h, 48 h, and 72 h growth. Results No significant difference was observed in sensitivity to Hst 5 of biofilm cells compared to planktonic cells (p > 0.05). Pre-coating disks with hBD-3 did not inhibit biofilm development; however, Hst 5 significantly inhibited biofilm development at 72 h, while 0.12% chlorhexidine significantly inhibited biofilm development at all time intervals (p denture acrylic are sensitive to killing by Hst 5. Surface coating acrylic with chlorhexidine or Hst 5 effectively inhibits biofilm growth and has potential therapeutic application. PMID:19249746

  14. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Norman Paege

    Full Text Available Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.

  15. Platelet-activating factor (PAF)-antagonists of natural origin.

    Science.gov (United States)

    Singh, Preeti; Singh, Ishwari Narayan; Mondal, Sambhu Charan; Singh, Lubhan; Garg, Vipin Kumar

    2013-01-01

    Presently herbal medicines are being used by about 80% of the world population for primary health care as they stood the test of time for their safety, efficacy, cultural acceptability and lesser side effects. The discovery of platelet activating factor antagonists (PAF antagonists) during these decades are going on with different framework, but the researchers led their efficiency in studying in vitro test models. Since it is assumed that PAF play a central role in etiology of many diseases in humans such as asthma, neuronal damage, migraine, cardiac diseases, inflammatory, headache etc. Present days instinctively occurring PAF antagonist exists as a specific grade of therapeutic agents for the humans against these and different diseases either laid hold of immunological or non-immunological types. Ginkgolide, cedrol and many other natural PAF antagonists such as andrographolide, α-bulnesene, cinchonine, piperine, kadsurenone, different Piper species' natural products and marine origin plants extracts or even crude drugs having PAF antagonist properties are being used currently against different inflammatory pathologies. This review is an attempt to summarize the data on PAF and action of natural PAF antagonists on it, which were evaluated by in vivo and in vitro assays. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Platelet-activating factor (PAF) stimulates the PAF-synthesizing enzyme acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase and PAF synthesis in neutrophils.

    OpenAIRE

    Doebber, T W; Wu, M S

    1987-01-01

    Platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine; PAF) induced in isolated rat peritoneal and human peripheral neutrophils a rapid and potent activation of the PAF biosynthetic enzyme acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase (EC 2.3.1.67). The PAF-induced activation of the neutrophil acetyltransferase (8-10 times basal neutrophil activity) was maximal within 30 sec after PAF addition, as was the PAF-stimulated degranulation. After 1 min of PA...

  17. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Tomoya Asano

    Full Text Available Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4 antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.

  18. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum.

    Science.gov (United States)

    Asano, Tomoya; Miwa, Akihiro; Maeda, Kazuyuki; Kimura, Makoto; Nishiuchi, Takumi

    2013-01-01

    Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4) antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST) and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL) of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.

  19. The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: anti-inflammatory effects of human PAF-acetylhydrolase

    NARCIS (Netherlands)

    Kuijpers, T. W.; van den Berg, J. M.; Tool, A. T.; Roos, D.

    2001-01-01

    Platelet-activating factor (PAF) is a proinflammatory agent in infectious and inflammatory diseases, partly due to the activation of infiltrating phagocytes. PAF exerts its actions after binding to a monospecific PAF receptor (PAFR). The potent bioactivity is reflected by its ability to activate

  20. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes.

    Science.gov (United States)

    Robledo, Nancy; Vera, Paola; López, Luis; Yazdani-Pedram, Mehrdad; Tapia, Cristian; Abugoch, Lilian

    2018-04-25

    Thymol nanoemulsions were produced by spontaneous emulsification, ultrasound, and a combination of both methods. The best result in terms of size and polydispersion was spontaneous emulsification where thymol was efficiently encapsulated, the nanoemulsions inhibited Botrytis cinerea at 110 ppm of thymol. A 10% dilution of this nanoemulsion in water was used to prepare quinoa-chitosan films. The film microstructure was porous and heterogeneous. The tensile strength of the film was significantly lower but its mean elongation at break was similar to that of the control film. The water vapour permeability was similar to that of the control film. The effect of nanoemulsion-thymol-quinoa protein/chitosan coating on mould growth in inoculated cherry tomatoes was evaluated. Compared with control samples (tomatoes without coating and those coated with quinoa protein/chitosan), tomatoes with this coating and inoculated with B. cinerea showed a significant decrease in fungal growth after 7 days at 5 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dataset on preparation of the phosphorylated counterparts of a Momordica charantia protein for studying antifungal activities against susceptible dose-dependent C. albicans to antimycotics.

    Science.gov (United States)

    Qiao, Yuanbiao; Song, Li; Zhu, Chenchen; Wang, Qian; Guo, Tianyan; Yan, Yanhua; Li, Qingshan

    2017-12-01

    The data presented here are related to a research article entitled "Development of a phosphorylated Momordica charantia protein system for inhibiting susceptible dose-dependent C. albicans to available antimycotics: An allosteric regulation of protein" (Qiao et al., 2017) [1]. The data set includes three portions: (1) a relationship between reaction velocities of protein phosphorylation as a function of the substrate concentrations, determined in enzymatic reactions in aid of protein kinases; (2) a result of antifungal susceptibility testing of C. albicans after it is selected in antimycotics; and (3) a comparison of protein expression in the susceptible dose-dependent fungus relative to the wild C. albicans . In the first portion, the relationship of reaction velocities and substrate concentrations is expressed as an output from the inverse variation model. All data and analyses are made publicly available and citied in the research article using a style for the Data in Brief.

  2. Control of rhGH Release Profile from PEG-PAF Thermogel.

    Science.gov (United States)

    Shinde, Usha Pramod; Moon, Hyo Jung; Ko, Du Young; Jung, Bo Kyong; Jeong, Byeongmoon

    2015-05-11

    Poly(ethylene glycol)-poly(l-alanine-co-l-phenyl alanine) diblock copolymers (PEG-PAF) of 2000-990 Da (P2K) and 5000-2530 Da (P5K) with the different molecular weights of PEGs, but having a similar molecular weight ratio of hydrophobic block to hydrophilic block were synthesized to compare their solution behavior and corresponding protein drug release profiles from their in situ formed thermogels. The PEG-PAF aqueous solutions underwent heat-induced sol-to-gel transition in a concentration range of 18.0-24.0 wt % and 8.0-12.0 wt % for P2K and P5K, respectively. P5K formed bigger micelles than P2K, of a broad distribution, whereas the PAF blocks of P5K developed richer in α-helix than those of P2K in the core of the micelles. As the temperature increased, the micelles underwent dehydration of the PEG, which led to the aggregation of micelles, while the secondary structure of PAF was slightly affected during the sol-to-gel transition. The P5K exhibited higher tendency to aggregate and formed a tighter gel than P2K. Upon injection into the subcutaneous layer of rats, both polymer aqueous solutions formed a biocompatible gel with typical mild inflammatory tissue responses. Recombinant human growth hormone (rhGH) maintained its stability without forming any aggregates in both sol (4 °C) and gel (37 °C) states of the PEG-PAFs. Even though P2K and P5K have a similar molecular weight ratio of hydrophobic block to hydrophilic block, the P5K system exhibited a reduced initial burst release, improved bioavailability, and prolonged therapeutic duration of the rhGH, compared to the P2K system. The current research suggests that a drug release profile is a complex function of self-assembling carriers and incorporated drugs, and thus, a promising protein delivery system could be designed by adjusting the molecular parameters of a thermogel.

  3. Antifungal activity of the ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) against the green mould Penicillium digitatum.

    Science.gov (United States)

    Citores, Lucía; Iglesias, Rosario; Gay, Carolina; Ferreras, José Miguel

    2016-02-01

    The ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter- and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N-glycosylase activity on the sarcin-ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C-terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α-helix and a β-hairpin, similar to the γ-core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  4. Increased susceptibility to bladder inflammation in smokers: targeting the PAF-PAF receptor interaction to manage inflammatory cell recruitment.

    Science.gov (United States)

    Marentette, John; Kolar, Grant; McHowat, Jane

    2015-12-01

    Chronic bladder inflammation can result in a significant reduction in quality of life. Smoking remains a leading preventable risk factor in many diseases. Despite the large amount of evidence supporting the risks of smoking, roughly 45 million people in the United States remain smokers. The impact of cigarette smoking on inflammation is well established, but how smoking promotes bladder inflammation is currently unknown. The aim of this study was to determine if cigarette smoke exposure impacts inflammatory cell adherence to bladder endothelial cells and if targeting the platelet-activating factor (PAF)-PAF receptor (PAFR) interaction could be beneficial in managing bladder inflammation. In response to cigarette smoke extract (CSE) incubation, bladder endothelial cells from human or mouse displayed increased PAF accumulation, decreased PAF-AH activity, and increased inflammatory cell adherence. Inhibition of endothelial cell calcium-independent phospholipase A2β (iPLA2β) with (S)-BEL, to block PAF production, prevented adherence of inflammatory cells. Pretreatment of inflammatory cells with PAFR antagonists, ginkgolide B or WEB2086 significantly reduced the number of adhered cells to bladder endothelium. Wild-type mice exposed to cigarette smoke displayed increased presence of inflammatory infiltration which was absent in iPLA2β(-/-) mice and those exposed to room air. In conclusion, cigarette smoke exposure increases endothelial cell PAF accumulation and increased inflammatory cell adherence. Inhibition of PAF accumulation or PAFR antagonism markedly attenuated inflammatory cell adherence to bladder endothelial cells. The results detailed in this study highlight to potential therapeutic targets for managing bladder inflammation. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. Signalling mechanisms in PAF-induced intestinal failure.

    Science.gov (United States)

    Lautenschläger, Ingmar; Wong, Yuk Lung; Sarau, Jürgen; Goldmann, Torsten; Zitta, Karina; Albrecht, Martin; Frerichs, Inéz; Weiler, Norbert; Uhlig, Stefan

    2017-10-17

    Capillary leakage syndrome, vasomotor disturbances and gut atony are common clinical problems in intensive care medicine. Various inflammatory mediators and signalling pathways are involved in these pathophysiological alterations among them platelet-activating factor (PAF). The related signalling mechanisms of the PAF-induced dysfunctions are only poorly understood. Here we used the model of the isolated perfused rat small intestine to analyse the role of calcium (using calcium deprivation, IP-receptor blockade (2-APB)), cAMP (PDE-inhibition plus AC activator), myosin light chain kinase (inhibitor ML-7) and Rho-kinase (inhibitor Y27632) in the following PAF-induced malfunctions: vasoconstriction, capillary and mucosal leakage, oedema formation, malabsorption and atony. Among these, the PAF-induced vasoconstriction and hyperpermeability appear to be governed by similar mechanisms that involve IP3 receptors, extracellular calcium and the Rho-kinase. Our findings further suggest that cAMP-elevating treatments - while effective against hypertension and oedema - bear the risk of dysmotility and reduced nutrient uptake. Agents such as 2-APB or Y27632, on the other hand, showed no negative side effects and improved most of the PAF-induced malfunctions suggesting that their therapeutic usefulness should be explored.

  6. Disruption of the F-actin cytoskeleton and monolayer barrier integrity induced by PAF and the protective effect of ITF on intestinal epithelium.

    Science.gov (United States)

    Xu, Ling-fen; Xu, Cheng; Mao, Zhi-Qin; Teng, Xu; Ma, Li; Sun, Mei

    2011-02-01

    To explore whether platelet-activating factor (PAF) can disrupt the intestinal epithelial barrier directly and is associated with structural alterations of the F-actin-based cytoskeleton, and to observe the protective effect of intestinal trefoil factor (ITF), we establish an intestinal epithelia barrier model using Caco-2 cells in vitro. Transepithelial electrical resistance and unidirectional flux of lucifer yellow were measured to evaluate barrier permeability; immunofluorescent staining and flow cytometry were applied to observe morphological alterations and to quantify proteins of the F-actin cytoskeleton: the tight junction marker ZO-1 and Claudin-1 were observed using immunofluorescent staining. PAF significantly increased paracellular permeability, at the same time, F-actin and tight junction proteins were disrupted. It was thought that ITF could reverse the high permeability by restoring normal F-actin, ZO-1 and Claudin-1 structures. These results collectively demonstrated that PAF plays an important role in the regulation of mucosal permeability and the effects of PAF are correlated with structural alterations of the F-actin-based cytoskeleton and of tight junctions. ITF can protect intestinal epithelium against PAF-induced disruption by restricting the rearrangement of the F-actin cytoskeleton and of tight junctions.

  7. H2O2 and PAF mediate Abeta1-42-induced Ca2+ dyshomeostasis that is blocked by EGb761.

    Science.gov (United States)

    Shi, Chun; Wu, Fengming; Xu, Jie

    2010-07-01

    Calcium (Ca2+) dyshomeostasis may be of pivotal importance in mediating the neurotoxic action of amyloid beta peptide (Abeta), but the mechanism whereby Abeta disrupts Ca2+ homeostasis remains unclear. Using hippocampal neuronal cultures, the present study investigated possible mechanisms underlying Ca2+ dyshomeostasis induced by the oligomeric form of Abeta1-42 and two possible mediators of its toxicity, hydrogen peroxide (H2O2) and platelet-activating factor (PAF). It was found that, both H2O2 and PAF were able to reproduce each of the events induced by oligomeric Abeta1-42, including (a) Ca2+ influx via N-methyl-D-aspartic acid (NMDA) receptors, (b) enhancement of Ca2+ response to NMDA via activation of protein kinase C (PKC), (c) the increase of extracellular concentrations of glutamate and (d) the increase in cytosolic free Ca2+ ([Ca2+]i). Moreover, each of these events could be blocked by Ginkgo biloba extract EGb761, a free radical scavenger with PAF antagonism, and by quercetin, a constituent with well-established free radical scavenging property. In contrast, ginkgolide B, another constituent of EGb761 with well-established PAF-antagonizing activity protected the neurons against Ca2+ dyshomeostasis induced by Abeta1-42 and PAF, but not by H2O2. These results suggested the possibility that Abeta1-42-induced Ca2+ dyshomeostasis might be mediated by formation of toxic mediators such as H2O2 and PAF. Therefore, increased production of toxic mediators such as H2O2 and PAF in the brain may be critical in the pathological mechanism of neurodegenerative diseases, particularly Alzheimer's disease (AD), and may serve as major therapeutic targets for these diseases. 2010 Elsevier Ltd. All rights reserved.

  8. Analysis of the Protein Domain and Domain Architecture Content in Fungi and Its Application in the Search of New Antifungal Targets

    Science.gov (United States)

    Barrera, Alejandro; Alastruey-Izquierdo, Ana; Martín, María J.; Cuesta, Isabel; Vizcaíno, Juan Antonio

    2014-01-01

    Over the past several years fungal infections have shown an increasing incidence in the susceptible population, and caused high mortality rates. In parallel, multi-resistant fungi are emerging in human infections. Therefore, the identification of new potential antifungal targets is a priority. The first task of this study was to analyse the protein domain and domain architecture content of the 137 fungal proteomes (corresponding to 111 species) available in UniProtKB (UniProt KnowledgeBase) by January 2013. The resulting list of core and exclusive domain and domain architectures is provided in this paper. It delineates the different levels of fungal taxonomic classification: phylum, subphylum, order, genus and species. The analysis highlighted Aspergillus as the most diverse genus in terms of exclusive domain content. In addition, we also investigated which domains could be considered promiscuous in the different organisms. As an application of this analysis, we explored three different ways to detect potential targets for antifungal drugs. First, we compared the domain and domain architecture content of the human and fungal proteomes, and identified those domains and domain architectures only present in fungi. Secondly, we looked for information regarding fungal pathways in public repositories, where proteins containing promiscuous domains could be involved. Three pathways were identified as a result: lovastatin biosynthesis, xylan degradation and biosynthesis of siroheme. Finally, we classified a subset of the studied fungi in five groups depending on their occurrence in clinical samples. We then looked for exclusive domains in the groups that were more relevant clinically and determined which of them had the potential to bind small molecules. Overall, this study provides a comprehensive analysis of the available fungal proteomes and shows three approaches that can be used as a first step in the detection of new antifungal targets. PMID:25033262

  9. The relation of diet with PAF and its metabolic enzymes in healthy volunteers.

    Science.gov (United States)

    Detopoulou, P; Fragopoulou, E; Nomikos, T; Yannakoulia, M; Stamatakis, G; Panagiotakos, D B; Antonopoulou, S

    2015-02-01

    Platelet-activating factor (PAF), a potent inflammatory mediator, is implicated in atherosclerosis. Its key biosynthetic enzymes are lyso-PAF acetyltransferases (lyso-PAF-AT), responsible for PAF synthesis through the remodeling route and a specific CDP-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT), responsible for its de novo biosynthesis. PAF acetylhydrolase (PAF-AH) and its extracellular isoform lipoprotein-associated phospholipase A₂ catabolize PAF. The impact of diet on PAF metabolism is ill-defined. The aim was to investigate associations between PAF, its enzymes and dietary factors. One-hundred and six (n = 106) healthy volunteers were recruited. Food-frequency questionnaires, dietary recalls, lifestyle and biochemical variables were collected. Food groups, macronutrient intake, a priori (MedDietScore) and a posteriori defined food patterns with PCA analysis, dietary antioxidant capacity (DAC), glycemic index (GI) and glycemic load were assessed. PAF was inversely correlated with antioxidant-rich foods (herbal drinks and coffee), the DAC as well as a dietary pattern characterized by legumes, vegetables, poultry and fish (all Ps PAF was positively correlated to % fat intake. Lyso-PAF-AT was also negatively associated with healthy patterns (fruits, nuts and herbal drinks, and a pattern rich in olive oil and whole-wheat products), as well as the DAC and % monounsaturated fatty acids. PAF-CPT was negatively associated with GI and coffee intake and positively with dietary cholesterol. PAF-AH was negatively associated with coffee and positively associated with alcohol consumption (all Ps PAF or its biosynthetic enzymes, suggesting potential new mechanisms of the diet-disease associations.

  10. File list: Oth.ALL.05.PAF1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.PAF1.AllCell hg19 TFs and others PAF1 All cell types SRX728786,SRX728785...,SRX119636,SRX728762,SRX728768,SRX1078876,SRX119635,SRX728777 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.PAF1.AllCell.bed ...

  11. File list: Oth.ALL.10.PAF1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.PAF1.AllCell hg19 TFs and others PAF1 All cell types SRX728785,SRX728786...,SRX119636,SRX119635,SRX1078876,SRX728777,SRX728768,SRX728762 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.10.PAF1.AllCell.bed ...

  12. File list: Oth.ALL.50.PAF1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.PAF1.AllCell hg19 TFs and others PAF1 All cell types SRX119635,SRX119636...,SRX728762,SRX728777,SRX728768,SRX1078876,SRX728786,SRX728785 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.50.PAF1.AllCell.bed ...

  13. File list: Oth.Bld.20.PAF1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.PAF1.AllCell hg19 TFs and others PAF1 Blood SRX728785,SRX728768,SRX72876...2,SRX728777,SRX728786 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.PAF1.AllCell.bed ...

  14. File list: Oth.Bld.05.PAF1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.PAF1.AllCell hg19 TFs and others PAF1 Blood SRX728786,SRX728785,SRX72876...2,SRX728768,SRX728777 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.PAF1.AllCell.bed ...

  15. 25 CFR 170.221 - What funding is available for distribution using the PAF?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What funding is available for distribution using the PAF... § 170.221 What funding is available for distribution using the PAF? When the annual authorization for... using the PAF. Relative Need Distribution Factor ...

  16. Potentieel Aangetaste Fractie (PAF) als maatlat voor toxische druk op ecosystemen

    NARCIS (Netherlands)

    van de Meent D; ECO

    1999-01-01

    PAF is de fractie van de soorten waarvoor bij de heersende concentraties van toxische stoffen in het milieu een No Observed Effect Concentratie (NOEC) wordt overschreden. PAF wordt geinterpreteerd als een maat voor de toxische druk die stoffen uitoefenen op ecosystemen. PAF wordt berekend uit

  17. Mapping the Potentially Affected Fraction (PAF) of species as an indicator of generic toxic stress

    NARCIS (Netherlands)

    Klepper O; Meent D van de; ECO

    1997-01-01

    The Potentially Affected Fraction (PAF) is the fraction of species exposed above the no-effect concentration (NOEC). The PAF is a measure that allows a comparison in toxic stress between substances and areas. In the report the PAF is calculated for four heavy metals (cadmium, copper, lead and zinc)

  18. Mapping the Potentially Affected Fraction (PAF) of species as an indicator of generic toxic stress

    NARCIS (Netherlands)

    Klepper O; van de Meent D; ECO

    1997-01-01

    De Potentieel Aangetaste Fractie (PAF) is het deel van de soorten blootgesteld boven de geen-effect concentratie (NOEC). De PAF is een maat die het mogelijk maakt toxische stress tussen stoffen en gebieden onderling te vergelijken. In het rapport wordt de PAF uitgerekend voor 4 zware metalen

  19. Potentieel Aangetaste Fractie (PAF) als maatlat voor toxische druk op ecosystemen

    NARCIS (Netherlands)

    Meent D van de; ECO

    1999-01-01

    PAF is the fraction of species for which, at ambiant concentrations in the environment, the No Observed Effect Concentration (NOEC) is exceeded. PAF is interpreted as a measure of toxic stress on exosytems. PAF is calculated from measured concentrations in the environment, using

  20. A platelet-activating factor (PAF) receptor deficiency exacerbates diet-induced obesity but PAF/PAF receptor signaling does not contribute to the development of obesity-induced chronic inflammation.

    Science.gov (United States)

    Yamaguchi, Masahiko; Matsui, Masakazu; Higa, Ryoko; Yamazaki, Yasuhiro; Ikari, Akira; Miyake, Masaki; Miwa, Masao; Ishii, Satoshi; Sugatani, Junko; Shimizu, Takao

    2015-02-15

    Platelet-activating factor (PAF) is a well-known phospholipid that mediates acute inflammatory responses. In the present study, we investigated whether PAF/PAF receptor signaling contributed to chronic inflammation in the white adipose tissue (WAT) of PAF receptor-knockout (PAFR-KO) mice. Body and epididymal WAT weights were higher in PAFR-KO mice fed a high-fat diet (HFD) than in wild-type (WT) mice. TNF-α mRNA expression levels in epididymal WAT and the infiltration of CD11c-positive macrophages into epididymal WAT, which led to chronic inflammation, were also elevated in HFD-fed PAFR-KO mice. HFD-fed PAFR-KO mice had higher levels of fasting serum glucose than HFD-fed WT mice as well as impaired glucose tolerance. Although PAF receptor signaling up-regulated the expression of TNF-α and lipopolysaccharide induced the expression of acyl-CoA:lysophosphatidylcholine acyltransferase 2 (LPCAT2) mRNA in bone marrow-derived macrophages, no significant differences were observed in the expression of LPCAT2 mRNA and PAF levels in epididymal WAT between HFD-fed mice and normal diet-fed mice. In addition to our previous finding in which energy expenditure in PAF receptor (PAFR)-deficient mice was low due to impaired brown adipose tissue function, the present study demonstrated that PAF/PAF receptor signaling up-regulated the expression of Ucp1 mRNA, which is essential for cellular thermogenesis, in 3T3-L1 adipocytes. We concluded that the marked accumulation of abdominal fat due to HFD feeding led to more severe chronic inflammation in WAT, which is associated with glucose metabolism disorders, in PAFR-KO mice than in WT mice, and PAF/PAF receptor signaling may regulate energy expenditure and adiposity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. PAF effects on MCP-1 and IL-6 secretion in U-937 monocytes in comparison with oxLDL and IL-1β effects.

    Science.gov (United States)

    Verouti, Sophia N; Fragopoulou, Elizabeth; Karantonis, Haralabos C; Dimitriou, Andromaxi A; Tselepis, Alexandros D; Antonopoulou, Smaragdi; Nomikos, Tzortzis; Demopoulos, Constantinos A

    2011-12-01

    To study the effects of PAF, in comparison with oxLDL and IL-1β on MCP-1 and IL-6 secretion from U-937 monocytes and to investigate the mechanism of its action. U-937 cell line was cultured in the presence or absence of PAF or oxLDL or IL-1β. Secretion of IL-6 and MCP-1 was measured by ELISA method, mRNA levels of MCP-1 and PAFR was measured using real-time PCR. In order to investigate the mechanism of mediator's action signal transduction appropriate inhibitors was used and oxidant status of cells by measurement the total cellular thiols content and glutathione was determined. None of the tested mediators induced the secretion of IL-6. On the other hand PAF and oxLDL caused a short-term while IL-1β caused a long-term secretion and expression of MCP-1. Reduced total thiol levels and GSH/GSSG ratio indicate that the above mediators induce oxidative stress. The signal transduction of all mediators is mediated through G-proteins, protein kinases (PKC, serine-threonine kinase and tyrosine kinase) and NF-κB activation. In addition, PAF, oxLDL, IL-1β activates monocytes leading to increased PAF receptor mRNA levels. These results indicate that PAF and oxLDL, in a different pattern from that of IL-1β, regulate MCP-1 expression via pathways that involve changes in cell redox status. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Myeloperoxidase formation of PAF receptor ligands induces PAF receptor-dependent kidney injury during ethanol consumption.

    Science.gov (United States)

    Latchoumycandane, Calivarathan; Nagy, Laura E; McIntyre, Thomas M

    2015-09-01

    Cytochrome P450 2E1 (CYP2E1) induction and oxidative metabolism of ethanol in hepatocytes inflame and damage liver. Chronic ethanol ingestion also induces kidney dysfunction, which is associated with mortality from alcoholic hepatitis. Whether the kidney is directly affected by ethanol or is secondary to liver damage is not established. We found that CYP2E1 was induced in kidney tubules of mice chronically ingesting a modified Lieber-deCarli liquid ethanol diet. Phospholipids of kidney tubules were oxidized and fragmented in ethanol-fed mice with accumulation of azelaoyl phosphatidylcholine (Az-PC), a nonbiosynthetic product formed only by oxidative truncation of polyunsaturated phosphatidylcholine. Az-PC stimulates the inflammatory PAF receptor (PTAFR) abundantly expressed by neutrophils and kidney tubules, and inflammatory cells and myeloperoxidase-containing neutrophils accumulated in the kidneys of ethanol-fed mice after significant hysteresis. Decreased kidney filtration and induction of the acute kidney injury biomarker KIM-1 in tubules temporally correlated with leukocyte infiltration. Genetic ablation of PTAFR reduced accumulation of PTAFR ligands and reduced leukocyte infiltration into kidneys. Loss of this receptor in PTAFR(-/-) mice also suppressed oxidative damage and kidney dysfunction without affecting CYP2E1 induction. Neutrophilic inflammation was responsible for ethanol-induced kidney damage, because loss of neutrophil myeloperoxidase in MPO(-/-) mice was similarly protective. We conclude that ethanol catabolism in renal tubules results in a self-perpetuating cycle of CYP2E1 induction, local PTAFR ligand formation, and neutrophil infiltration and activation that leads to myeloperoxidase-dependent oxidation and damage to kidney function. Hepatocytes do not express PTAFR, so this oxidative cycle is a local response to ethanol catabolism in the kidney. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.

  4. Selective inhibitors of a PAF biosynthetic enzyme lysophosphatidylcholine acyltransferase 2[S

    Science.gov (United States)

    Tarui, Megumi; Shindou, Hideo; Kumagai, Kazuo; Morimoto, Ryo; Harayama, Takeshi; Hashidate, Tomomi; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Nagase, Takahide; Shimizu, Takao

    2014-01-01

    Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator. In response to extracellular stimuli, PAF is rapidly biosynthesized by lyso-PAF acetyltransferase (lyso-PAFAT). Previously, we identified two types of lyso-PAFATs: lysophosphatidylcholine acyltransferase (LPCAT)1, mostly expressed in the lungs where it produces PAF and dipalmitoyl-phosphatidylcholine essential for respiration, and LPCAT2, which biosynthesizes PAF and phosphatidylcholine (PC) in the inflammatory cells. Under inflammatory conditions, LPCAT2, but not LPCAT1, is activated and upregulated to produce PAF. Thus, it is important to develop inhibitors specific for LPCAT2 in order to ameliorate PAF-related inflammatory diseases. Here, we report the first identification of LPCAT2-specific inhibitors, N-phenylmaleimide derivatives, selected from a 174,000-compound library using fluorescence-based high-throughput screening followed by the evaluation of the effects on LPCAT1 and LPCAT2 activities, cell viability, and cellular PAF production. Selected compounds competed with acetyl-CoA for the inhibition of LPCAT2 lyso-PAFAT activity and suppressed PAF biosynthesis in mouse peritoneal macrophages stimulated with a calcium ionophore. These compounds had low inhibitory effects on LPCAT1 activity, indicating that adverse effects on respiratory functions may be avoided. The identified compounds and their derivatives will contribute to the development of novel drugs for PAF-related diseases and facilitate the analysis of LPCAT2 functions in phospholipid metabolism in vivo. PMID:24850807

  5. Molecular Model of Plasma PAF Acetylhydrolase-Lipoprotein Association: Insights from the Structure.

    Science.gov (United States)

    Srinivasan, Prabhavathi; Bahnson, Brian J

    2010-03-08

    Plasma platelet-activating factor acetylhydrolase (PAF-AH), also called lipoprotein-associated phospholipase A₂ (Lp-PLA₂), is a group VIIA PLA₂ enzyme that catalyzes the hydrolysis of PAF and certain oxidized phospholipids. Although the role of PAF-AH as a pro- or anti-atherosclerotic enzyme is highly debated, several studies have shown it to be an independent marker of cardiovascular diseases. In humans the majority of plasma PAF-AH is bound to LDL and a smaller portion to HDL; the majority of the enzyme being associated with small dense LDL and VHDL-1 subclasses. Several studies suggest that the anti- or pro-atherosclerotic tendency of PAF-AH might be dependent on the type of lipoprotein it is associated with. Amino acid residues in PAF-AH necessary for binding to LDL and HDL have been identified. However our understanding of the interaction of PAF-AH with LDL and HDL is still incomplete. In this review we present an overview of what is already known about the interaction of PAF-AH with lipoprotein particles, and we pose questions that are yet to be answered. The recently solved crystal structure of PAF-AH, along with functional work done by others is used as a guide to develop a model of interaction of PAF-AH with lipoprotein particles.

  6. Molecular Model of Plasma PAF Acetylhydrolase-Lipoprotein Association: Insights from the Structure

    Directory of Open Access Journals (Sweden)

    Brian J. Bahnson

    2010-03-01

    Full Text Available Plasma platelet-activating factor acetylhydrolase (PAF-AH, also called lipoprotein-associated phospholipase A2 (Lp-PLA2, is a group VIIA PLA2 enzyme that catalyzes the hydrolysis of PAF and certain oxidized phospholipids. Although the role of PAF-AH as a pro- or anti-atherosclerotic enzyme is highly debated, several studies have shown it to be an independent marker of cardiovascular diseases. In humans the majority of plasma PAF-AH is bound to LDL and a smaller portion to HDL; the majority of the enzyme being associated with small dense LDL and VHDL-1 subclasses. Several studies suggest that the anti- or pro-atherosclerotic tendency of PAF-AH might be dependent on the type of lipoprotein it is associated with. Amino acid residues in PAF-AH necessary for binding to LDL and HDL have been identified. However our understanding of the interaction of PAF-AH with LDL and HDL is still incomplete. In this review we present an overview of what is already known about the interaction of PAF-AH with lipoprotein particles, and we pose questions that are yet to be answered. The recently solved crystal structure of PAF-AH, along with functional work done by others is used as a guide to develop a model of interaction of PAF-AH with lipoprotein particles.

  7. Cholesterol as a factor regulating the influence of natural (PAF and lysoPAF) vs synthetic (ED) ether lipids on model lipid membranes.

    Science.gov (United States)

    Flasiński, Michał; Wydro, Paweł; Hąc-Wydro, Katarzyna; Dynarowicz-Łątka, Patrycja

    2013-11-01

    In this work we have performed a comparative study on the effect of antineoplastic ether lipid-edelfosine (ED), its natural analogs - Platelet Activating Factor (PAF) and its precursor (lyso-PAF), both lacking anticancer properties, on cholesterol/phosphatidylcholine (Chol/PC) monolayers, serving as model membranes. Since all the above ether lipids are membrane active, it can be expected that their effect on membranes may differentiate their biological activity. Our investigations were aimed at studying potential relationship of the effect of ED, PAF and lyso-PAF on model membranes, differing in condensation. We have modified molecular packing of Chol/PC model systems either by increasing the level of sterol in the system or changing the structure of PC, while keeping the same sterol content. Additionally, we have performed a detailed comparison of the miscibility of ED, PAF and lyso-PAF with various membrane lipids. The collected data evidenced that all the investigated ether lipids influence Chol/PC films in the same way; however, in a different magnitude. Moreover, the interactions of ED, PAF and lyso-PAF with model membranes were the strongest at the highest level of sterol in the system. A thorough analysis of the obtained results has proved that the effect of the investigated ether lipids on membranes is not dependent on the condensation of the system, but it is strongly determined by the concentration of cholesterol. Since ED was found to interact with model membranes stronger than PAF and lyso-PAF, we have suggested that this fact may contribute to differences in cytotoxicity of these compounds. © 2013.

  8. Mechanisms underlying the nociceptive responses induced by platelet-activating factor (PAF) in the rat paw.

    Science.gov (United States)

    Marotta, Denise M; Costa, Robson; Motta, Emerson M; Fernandes, Elizabeth S; Medeiros, Rodrigo; Quintão, Nara L M; Campos, Maria M; Calixto, João B

    2009-04-01

    Platelet-activating factor (PAF) is an inflammatory mediator widely known to exert relevant pathophysiological functions. However, the relevance of PAF in nociception has received much less attention. Herein, we have investigated the mechanisms underlying PAF-induced spontaneous nociception and mechanical hypersensitivity in the rat paw. PAF injection (1- 30 nmol/paw) resulted in a dose-related overt nociception, whilst only the dose of 10 nmol/ paw produced a significant and time-related mechanical hypersensitivity. Local coinjection of PAF antagonist WEB2086 significantly inhibited both spontaneous nociception and mechanical hypersensitivity. Moreover, the coinjection of the natural IL-1beta receptor antagonist (IRA) notably prevented both PAF-induced nociceptive responses, whilst these responses were not altered by anti-TNFalpha coinjection. Interestingly, pretreatment with the ultrapotent vaniloid agonist resiniferotoxin, coinjection of the TRPV1 receptor antagonist SB366791, or mast cell depletion with compound 48/80 markedly prevented PAF-induced spontaneous nociception. Conversely, PAF-elicited mechanical hypersensitivity was strikingly susceptible to distinct antineutrophil-related strategies, namely the antineutrophil antibody, the selectin blocker fucoidin, the chemokine CXCR2 receptor antagonist SB225002, and the C5a receptor antibody anti-CD88. Notably, the same antineutrophil migration strategies significantly prevented the increase of myeloperoxidase activity induced by PAF. The mechanical hypersensitivity caused by PAF was also prevented by the cyclooxygenase inhibitors indomethacin or celecoxib, and by the selective beta(1) adrenergic receptor antagonist atenolol. Collectively, the present results provide consistent evidence indicating that distinct mechanisms are involved in the spontaneous nociception and mechanical hypersensitivity caused by PAF. They also support the concept that selective PAF receptor antagonists might constitute interesting

  9. Common mechanism in endothelin-3 and PAF receptor function for anti-inflammatory responses.

    Science.gov (United States)

    Sato, Akira; Ebina, Keiichi

    2013-10-15

    Platelet-activating factor (PAF) is a potent lipid mediator that is implicated in numerous inflammatory diseases. Under inflammatory conditions, PAF is biosynthesized through the remodelling pathway and elicits many inflammatory responses through binding to its specific PAF receptor. Endogenous bioactive endothelins (ETs: ET-1, -2, and -3) are also considered potent inflammatory mediators that play a critical role in many inflammatory diseases. In this perspective, we provide a brief overview of possible common mechanisms in ETs and PAF receptor function for inflammatory responses. Accumulating evidence strongly suggests that ET-3, but not ET-1 and ET-2, can attenuate PAF-induced inflammation through direct binding of the Tyr-Lys-Asp (YKD) region in the peptide to PAF and its metabolite/precursor lyso-PAF, followed by inhibition of binding between PAF and its receptor. Additionally, YKD sequence-containing peptides may be useful as a novel type of anti-inflammatory drugs targeting this mechanism. These findings should lead to new treatment strategies for numerous inflammatory diseases by targeting the common mechanism in ET and PAF receptor function. © 2013 Elsevier B.V. All rights reserved.

  10. In vitro Antifungal, Antioxidant and Cytotoxic Activities of a Partially ...

    African Journals Online (AJOL)

    Purpose: To determine the in vitro antifungal and antioxidant activities of the aqueous extract and protein fraction of Atlantia monophylla Linn (Rutaceae) leaf. Methods: Ammonium sulphate (0 – 80 %) precipitation method was used to extract protein from the leaves of A. monophylla Linn (Rutaceae). In vitro antifungal ...

  11. The role of PAF/PAFR signaling in zymosan-induced articular inflammatory hyperalgesia.

    Science.gov (United States)

    Guerrero, Ana T; Zarpelon, Ana C; Zaperlon, Ana C; Vieira, Silvio M; Pinto, Larissa G; Ferreira, Sérgio H; Cunha, Fernando Q; Verri, Waldiceu A; Cunha, Thiago M

    2013-01-01

    Platelet-activating factor (PAF) and its receptor (PAFR) have been shown to be involved in several inflammatory events, including neutrophil chemoattraction and nociception. The present study addressed the role of PAF in the genesis of articular hyperalgesia in a model of joint inflammation. Zymosan-induced articular hyperalgesia, oedema and neutrophil migration were dose-dependently reduced following pretreatment with selective PAFR antagonists, UK74505 (5, 10 and 20 mg/kg) and PCA4248 (3, 10, 30 mg/kg). These parameters were also reduced in PAF receptor-deficient mice (PAFR(-/-)). The hyperalgesic action of PAF was further confirmed by the demonstration that joint injection of PAF induces a dose- (0.3, 1 and 3 μg/joint), time- and PAFR-dependent articular hyperalgesia and oedema. The PAF hyperalgesic mechanisms were dependent on prostaglandins, leukotrienes and neutrophils, as PAF-induced articular hyperalgesia was inhibited by indomethacin (COX inhibitor), MK886 (leukotrienes synthesis inhibitor) or fucoidan (leukocyte rolling inhibitor). Furthermore, PAF-induced hyperalgesia was reduced in 5-lypoxigenase-null mice. In corroboration of these findings, intra-articular injection of PAF promotes the production of LTB(4) as well as the recruitment of neutrophils to the joint. These results suggest that PAF may participate in the cascade of events involved in the genesis of articular inflammatory hyperalgesia via stimulation of prostaglandins, leukotrienes and neutrophil migration. Finally, targeting PAF action (e.g., with a PAFR antagonist) might provide a useful therapeutic approach to inhibit articular inflammatory hyperalgesia.

  12. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness.

    Science.gov (United States)

    Wang, Xin; Jung, Youn-Sang; Jun, Sohee; Lee, Sunhye; Wang, Wenqi; Schneider, Andrea; Sun Oh, Young; Lin, Steven H; Park, Bum-Joon; Chen, Junjie; Keyomarsi, Khandan; Park, Jae-Il

    2016-02-04

    Cancer stem cells (CSCs) contribute to tumour heterogeneity, therapy resistance and metastasis. However, the regulatory mechanisms of cancer cell stemness remain elusive. Here we identify PCNA-associated factor (PAF) as a key molecule that controls cancer cell stemness. PAF is highly expressed in breast cancer cells but not in mammary epithelial cells (MECs). In MECs, ectopic expression of PAF induces anchorage-independent cell growth and breast CSC marker expression. In mouse models, conditional PAF expression induces mammary ductal hyperplasia. Moreover, PAF expression endows MECs with a self-renewing capacity and cell heterogeneity generation via Wnt signalling. Conversely, ablation of endogenous PAF induces the loss of breast cancer cell stemness. Further cancer drug repurposing approaches reveal that NVP-AUY922 downregulates PAF and decreases breast cancer cell stemness. Our results unveil an unsuspected role of the PAF-Wnt signalling axis in modulating cell plasticity, which is required for the maintenance of breast cancer cell stemness.

  13. Clinical significance and expression of PAF and TNF-alpha in seminal plasma of leukocytospermic patients.

    Science.gov (United States)

    Liu, Chaodong; Liu, Hongjian; Wang, Xianzhong; Xinbo, Sun

    2012-01-01

    Discuss the changes and roles of PAF in the reproductive tract infection by observing the expression of platelet activating factor (PAF) and tumor necrosis factor α (TNF-α) in seminal plasma of patients with leukocytospermia. The seminal plasma was obtained from 22 cases of leukocytospermia and 15 cases of normal males; the peroxidase dyeing method was adopted for seminal plasma white blood count; the ELISA was adopted to test PAF and TNF-α concentration in seminal plasma. PAF concentration (2.14 ± 0.43 ng/mL) of leukocytospermia group was significantly lower than the normal group (6.21 ± 1.38 ng/mL, P PAF and TNF-α , (r = -0.68, P PAF and WBC (r = -0.62, P PAF and high expression of TNF-α in leukocytospermia affect the sperm motility, which is one of the reasons that leads to infertility. (2) Lower expression of PAF has its particularity during the reproductive tract infection.

  14. Estimation of population attributable fraction (PAF) for disease occurrence in a cohort study design.

    Science.gov (United States)

    Laaksonen, M A; Härkänen, T; Knekt, P; Virtala, E; Oja, H

    2010-03-30

    The population attributable fraction (PAF) is a useful measure for describing the expected change in an outcome if its risk factors are modified. Cohort studies allow researchers to assess the predictive value of the risk factor modification on the incidence of the outcome during a certain follow-up. Estimation of PAF for both mortality and morbidity in cohort studies with censored survival data has been developed in the recent years. So far, however, censoring due to death in the estimation of PAF for morbidity has been ignored, resulting in estimation of a quantity which is not relevant in practice as some people are likely to die during the follow-up. The risk factors related to the disease incidence may also be related to mortality, and modification of these risk factors is likely to delay the occurrence of both events. Thus, censoring due to death and the impact of risk factor modification must be considered when estimating PAF for disease incidence. We consider both and introduce two measures of disease burden: PAF for the incidence of disease during lifetime and PAF for the prevalence of disease in the population at a certain time. We demonstrate how consideration of censoring due to death changes the estimated PAF for disease incidence and its confidence interval. This underlines the importance of choosing a correct PAF measure depending on the outcome of interest and the risk factors of interest to obtain accurate and interpretable results.

  15. Clinical Significance and Expression of PAF and TNF-alpha in Seminal Plasma of Leukocytospermic Patients

    Directory of Open Access Journals (Sweden)

    Chaodong Liu

    2012-01-01

    Full Text Available Objective. Discuss the changes and roles of PAF in the reproductive tract infection by observing the expression of platelet activating factor (PAF and tumor necrosis factor α (TNF-α in seminal plasma of patients with leukocytospermia. Methods. The seminal plasma was obtained from 22 cases of leukocytospermia and 15 cases of normal males; the peroxidase dyeing method was adopted for seminal plasma white blood count; the ELISA was adopted to test PAF and TNF-α concentration in seminal plasma. Result. PAF concentration ( ng/mL of leukocytospermia group was significantly lower than the normal group ( ng/mL, while TNF-α ( ng/mL was significantly higher than that of normal group ( ng/mL. There was negative correlation between PAF and TNF-α , (, ; the same situation existed in PAF and WBC (, ; but TNF-α was positively correlated to WBC (, . Conclusion. (1 Low expression of PAF and high expression of TNF-α in leukocytospermia affect the sperm motility, which is one of the reasons that leads to infertility. (2 Lower expression of PAF has its particularity during the reproductive tract infection.

  16. Alkylglycerol monooxygenase as a potential modulator for PAF synthesis in macrophages.

    Science.gov (United States)

    Tokuoka, Suzumi M; Kita, Yoshihiro; Shindou, Hideo; Shimizu, Takao

    2013-06-28

    Alkylglycerol monooxygenase (AGMO, glyceryl ether monooxygenase) is an enzyme known to catalyze the cleavage of the O-alkyl bond of glyceryl ether lipids. Identification of the gene encoding AGMO was reported recently, however, the involvement of AGMO in modulating cellular lipids has not been reported until now. In this report, we investigate a possible role for AGMO in macrophage platelet-activating factor (PAF) production. AGMO mRNA expression levels decreased with lipopolysaccharide (LPS) treatments in mouse peritoneal macrophages and RAW264.7 cells. Tetrahydrobiopterin-dependent conversion of lyso-PAF to glycerophosphocholine in the microsomal fraction was also reduced in LPS-treated RAW264.7 cells. In the LPS-treated cells, both lyso-PAF and PAF levels increased. Moreover, exogenously expressed AGMO caused a reduction in cellular lyso-PAF and PAF levels in HEK293 cells. Collectively, our results suggest a possible mechanism for AGMO in modulating macrophage PAF production by regulating cellular lyso-PAF levels. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26.

    Science.gov (United States)

    Muñoz, Alberto; López-García, Belén; Pérez-Payá, Enrique; Marcos, Jose F

    2007-03-02

    Short antimicrobial peptides represent an alternative to fight pathogen infections. PAF26 is a hexapeptide identified previously by a combinatorial approach against the fungus Penicillium digitatum and shows antimicrobial properties towards certain phytopathogenic fungi. In this work, PAF26 was used as lead compound and its properties were compared with two series of derivatives, obtained by either systematic alanine substitution or N-terminal amino acid addition. The alanine scan approach underlined the optimized sequence of PAF26 in terms of potency and permeation capability, and also the higher contribution of the cationic residues to these properties. The N-terminal addition of amino acids resulted in new heptapeptides with variations in their antimicrobial characteristics, and very low cytolysis to human red blood cells. Positive (Arg or Lys) and aromatic (Phe or Trp) residue addition increased broad spectrum activity of PAF26. Noteworthy, addition of selected residues had specific effects on the properties of derivatives of PAF26.

  18. An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi.

    Science.gov (United States)

    Zottich, Umberto; Da Cunha, Maura; Carvalho, André O; Dias, Germana B; Casarin, Nádia; Vasconcelos, Ilka M; Gomes, Valdirene M

    2013-06-01

    The superfamily of glycine-rich proteins (GRPs) corresponds to a large and complex group of plant proteins that may be involved in many developmental and physiological processes such as RNA biogenesis, stress tolerance, pollen hydration and plant-pathogen interactions, showing defensive activity against fungi, bacteria and viruses. In this study, the peptides from Coffea canephora seeds were extracted according to the methods of Egorov et al. (2005). The purified peptide was submitted for amino acid sequencing and antimicrobial activity measurement. The purified peptide with a molecular weight of 7kDa, named Cc-GRP, was observed to display homology to GRPs. The Cc-GRP-fungi interaction led to morphological changes and membrane permeability, including the formation of pseudohyphae, which were visualized with the aid of SYTOX green dye. Additionally, Cc-GRP also prevented colony formation by yeasts. Antifungal assays of Fusarium oxysporum and Colletotrichum lindemuthianum, observed by light microscopy, showed that the two molds exhibited morphological changes after the growth assay. Cc-GRP coupled to FITC and its subsequent treatment with DAPI revealed the presence of the peptide in the cell wall, cell surface and nucleus of F. oxysporum. In this work we purified, characterized and evaluated the in vitro effect on fungi of a new peptide from coffee, named Cc-GRP, which is involved in the plant defense system against pathogens by acting through a membrane permeabilization mechanism and localized in the nuclei of fungal cells. We also showed, for the first time, the intracellular localization of Cc-GRP during antimicrobial assay. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Baseline and 6-Week follow-up levels of PAF and activity of its metabolic enzymes in patients with heart failure and healthy volunteers--a pilot study.

    Science.gov (United States)

    Detopoulou, Paraskevi; Fragopoulou, Elizabeth; Nomikos, Tzortzis; Antonopoulou, Smaragdi; Kotroyiannis, Iason; Vassiliadou, Carmen; Panagiotakos, Demosthenes B; Chrysohoou, Christina; Pitsavos, Christos; Stefanadis, Christodoulos

    2013-10-01

    This study aimed at evaluating the changes in platelet-activating factor (PAF) and its metabolic enzymes over a 6-week follow-up period in patients with newly diagnosed heart failure ([HF] n = 12) compared with age-, sex-, and BMI-matched apparently healthy volunteers (n = 10). The PAF, its key biosynthetic enzymes (lyso-PAF acetyltransferase [lyso-PAF-AT] and dithiothreitol [DTT]-insensitive CDP choline: 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase [PAF-CPT]), and its catabolic isoenzymes (PAF-acetylhydrolase [PAF-AH] and lipoprotein-associated phospholipase A2 [Lp-PLA2]) were measured in serum and leukocytes of participants. At baseline, patients with HF had lower median activities of lyso-PAF-AT (P PAF-CPT (P = .07) in parallel with PAF levels (P = .05) and higher activities of PAF-AH (P = .02) and Lp-PLA2 (P PAF-CPT and PAF levels marginally increased (P = .1), lyso-PAF-AT (P PAF-AH (P = .004) and Lp-PLA2 (P PAF biosynthetic enzymes and especially lyso-PAF-AT.

  20. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco

    DEFF Research Database (Denmark)

    Jach, G; Görnhardt, B; Mundy, J

    1995-01-01

    cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani, which infects a range of plant species including tobacco....... Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack......cDNAs encoding three proteins from barley (Hordeum vulgare), a class-II chitinase (CHI), a class-II beta-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes...

  1. Great Prospects for PAF-1 and its derivatives

    KAUST Repository

    Pei, Cuiying

    2015-01-01

    © The Royal Society of Chemistry 2015. In materials design and preparative chemistry, it is imperative to understand the thought and logic behind synthesizing a particular kind of material. Computational modelling can help in this regard by not only optimizing the materials but also by simulating their properties. Furthermore, the experimental results fill the gap addressing complicated practical conditions that can\\'t be covered using theoretical calculations. In this work, we focus on PAF-1 and its derivatives in order to analyse the correlations between the nature of the material (e.g. pore size, surface area, pore volume, functional groups, metal sites, interpenetrated frameworks) and their properties such as gas sorption capacity, molecular recognition and separation.

  2. PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage.

    Science.gov (United States)

    Xiang, Zhonghua; Wang, Dan; Xue, Yuhua; Dai, Liming; Chen, Jian-Feng; Cao, Dapeng

    2015-06-05

    Owing to the shortage of the traditional fossil fuels caused by fast consumption, it is an urgent task to develop the renewable and clean energy sources. Thus, advanced technologies for both energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) are being studied extensively. In this work, we use porous aromatic framework (PAF) as precursor to produce nitrogen-doped 3D carbon materials, i.e., N-PAF-Carbon, by exposing NH3 media. The "graphitic" and "pyridinic" N species, large surface area, and similar pore size as electrolyte ions endow the nitrogen-doped PAF-Carbon with outstanding electronic performance. Our results suggest the N-doping enhance not only the ORR electronic catalysis but also the supercapacitive performance. Actually, the N-PAF-Carbon obtains ~70 mV half-wave potential enhancement and 80% increase as to the limiting current after N doping. Moreover, the N-PAF-Carbon displays free from the CO and methanol crossover effect and better long-term durability compared with the commercial Pt/C benchmark. Moreover, N-PAF-Carbon also possesses large capacitance (385 F g(-1)) and excellent performance stability without any loss in capacitance after 9000 charge-discharge cycles. These results clearly suggest that PAF-derived N-doped carbon material is promising metal-free ORR catalyst for fuel cells and capacitor electrode materials.

  3. PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation.

    Science.gov (United States)

    Jung, Hae-Yun; Jun, Sohee; Lee, Moonsup; Kim, Han-Cheon; Wang, Xin; Ji, Hong; McCrea, Pierre D; Park, Jae-Il

    2013-10-24

    Fine control of Wnt signaling is essential for various cellular and developmental decision-making processes. However, deregulation of Wnt signaling leads to pathological consequences, one of which is cancer. Here, we identify a function of PAF, a component of translesion DNA synthesis, in modulating Wnt signaling. PAF is specifically overexpressed in colon cancer cells and intestinal stem cells and is required for colon cancer cell proliferation. In Xenopus laevis, ventrovegetal expression of PAF hyperactivates Wnt signaling, developing a secondary axis with β-catenin target gene upregulation. Upon Wnt signaling activation, PAF dissociates from PCNA and binds directly to β-catenin. Then, PAF recruits EZH2 to the β-catenin transcriptional complex and specifically enhances Wnt target gene transactivation, independently of EZH2's methyltransferase activity. In mice, conditional expression of PAF induces intestinal neoplasia via Wnt signaling hyperactivation. Our studies reveal an unexpected role of PAF in regulating Wnt signaling and propose a regulatory mechanism of Wnt signaling during tumorigenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves

    DEFF Research Database (Denmark)

    Kristensen, A K; Brunstedt, J; Madsen, M T

    2000-01-01

    A novel protein (IWF5) comprising 92 amino acids has been purified from the intercellular washing fluid of sugar beet leaves using cation exchange chromatography and reversed phase high performance liquid chromatography. Based on amino acid sequence homology, including the presence of eight...... in IWF5 (Asn-Xxx-Ser/Thr) was found not to be glycosylated. The amino acid sequence data were used to generate a polymerase chain reaction (PCR) clone, employed for the isolation of a corresponding cDNA clone. According to the cDNA clone, IWF5 is expressed as a preprotein with an N-terminal signal...

  5. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca(2+) and Mg(2+) dependent-DNase activity and antifungal action on Moniliophthora perniciosa.

    Science.gov (United States)

    Pereira Menezes, Sara; de Andrade Silva, Edson Mario; Matos Lima, Eline; Oliveira de Sousa, Aurizângela; Silva Andrade, Bruno; Santos Lima Lemos, Livia; Peres Gramacho, Karina; da Silva Gesteira, Abelmon; Pirovani, Carlos Priminho; Micheli, Fabienne

    2014-06-11

    The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b confirmed the importance of the cysteine residues to maintain the protein structure, and of several conserved amino acids for the catalytic activity. In the cacao genome, TcPR-4b belonged to a small multigene family organized mainly on chromosome 5. TcPR-4b RT-qPCR analysis in resistant and susceptible cacao plants infected by M. perniciosa showed an increase of expression at 48 hours after infection (hai) in both cacao genotypes. After the initial stage (24-72 hai), the TcPR-4b expression was observed at all times in the resistant genotypes, while in the susceptible one the expression was concentrated at the final stages of infection (45-90 days after infection). The recombinant TcPR-4b protein showed RNase, and bivalent ions dependent-DNase activity, but no chitinase activity. Moreover, TcPR-4b presented antifungal action against M. perniciosa, and the reduction of M. perniciosa survival was related to ROS production in fungal hyphae. To our knowledge, this is the first report of a PR-4 showing simultaneously RNase, DNase and antifungal properties, but no chitinase activity. Moreover, we showed that the antifungal activity of TcPR-4b is directly related to RNase function. In cacao, TcPR-4b nuclease activities may be related to the establishment and maintenance of resistance, and to the PCD mechanism, in resistant and susceptible cacao genotypes, respectively.

  6. Dietary supplementation with soybean lecithin increases pulmonary PAF bioactivity in asthmatic rats.

    Science.gov (United States)

    Muehlmann, Luis A; Zanatta, Ana L; Farias, Carolina L A; Bieberbach, Eloyse W; Mazzonetto, Ana C; Michellotto, Pedro V; Fernandes, Luiz C; Nishiyama, Anita

    2010-06-01

    The prevalence of asthma has risen over the last few decades, and some studies correlate this with the greater consumption of polyunsaturated fatty acids (PUFAs). Dietary PUFAs are known to increase the susceptibility of biological structures to lipid peroxidation, a process by which platelet-activating factor (PAF)-like lipids can be generated. These lipids functionally mimic the bioactivity of PAF, a potent proinflammatory mediator that exerts several deleterious effects on asthma. Thus, this work aimed to investigate if dietary supplementation with soybean lecithin (SL), a source of PUFAs, increases lipid peroxidation and PAF bioactivity in lungs of asthmatic Wistar rats. Animals were separated into groups: control, supplemented, asthmatic, asthmatic supplemented with SL (2 g/kg body weight), asthmatic supplemented with SL (2 g/kg body weight) and DL-alpha-tocopheryl acetate (100 mg/kg body weight). Asthmatic inflammation increased pulmonary lipid peroxidation, PAF bioactivity, alveolar-capillary barrier permeability and production of nitric oxide. In asthmatics, dietary supplementation with SL promoted an increase in pulmonary lipid peroxidation and PAF bioactivity, and an increase in the permeability of the alveolar-capillary barrier. Moreover, the treatment of asthmatic rats with DL-alpha-tocopheryl acetate inhibited the lipid peroxidation and decreased the PAF bioactivity. Therefore, the increase in pulmonary PAF bioactivity in asthmatic individuals elicited by the dietary supplementation with SL probably involves the generation of PAF-like lipids. This finding suggests that PAF-like lipids may account for the deleterious effects of dietary PUFAs on asthma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Laser ranging network performance and routine orbit determination at D-PAF

    Science.gov (United States)

    Massmann, Franz-Heinrich; Reigber, C.; Li, H.; Koenig, Rolf; Raimondo, J. C.; Rajasenan, C.; Vei, M.

    1993-01-01

    ERS-1 is now about 8 months in orbit and has been tracked by the global laser network from the very beginning of the mission. The German processing and archiving facility for ERS-1 (D-PAF) is coordinating and supporting the network and performing the different routine orbit determination tasks. This paper presents details about the global network status, the communication to D-PAF and the tracking data and orbit processing system at D-PAF. The quality of the preliminary and precise orbits are shown and some problem areas are identified.

  8. Homology modeling of target proteins and identification novel antifungal compounds against Candida tropicalis through structure based virtual screening.

    Science.gov (United States)

    Ravinarayanan, Haribalaganesh; Paul, Bibhash K; Chakraborty, Angshu; Sundar, Krishnan

    2015-08-01

    Candida tropicalis, the etiological agent of candidiasis evades the immune system and survive in the human host for decades. Currently there are not many drugs available in the market to treat these fungal infections. The increasing number of fungal infections necessitates the need for new drug candidates that can be used to treat fungal infections such as candida. Many natural products available in plants, animals and microorganisms exhibit potent anti-microbial activity; but they are not explored to their potential. Virtual screening of anti-microbials against known targets accelerates the process of drug discovery and development. In the present study, a total of 27 compounds of natural origin such as plants, microbes and marine sponges were evaluated for their ability to interact with four of the new targets. The study revealed the effectiveness of 3 compounds with improved binding affinity against the four target proteins; that could be used as lead compounds in designing new drug candidates.

  9. Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens.

    Science.gov (United States)

    López-García, Belén; Veyrat, Ana; Pérez-Payá, Enrique; González-Candelas, Luis; Marcos, Jose F

    2003-12-31

    In this study, we evaluated the activity of short antimicrobial peptides against different fungal isolates that cause postharvest decay of fresh fruits. The previously identified hexapeptides PAF19, PAF26 and LfcinB4-9 inhibited the in vitro growth of isolates from Penicillium digitatum and P. italicum, and from Alternaria and Geotrichum genera, being no active against Rhizopus, Mucor and Aspergillus. The results extend our previous observations on the specific and distinct activity profiles of this class of antifungal peptides. In addition, peptide activities were compared with that of two fungicides used for citrus fruit preservation, thiabendazole (TBZ) and imazalil (IMZ). We observed a lack of correlation between peptide and fungicide sensitivity among different species. Importantly, P. digitatum and P. italicum isolates resistant to fungicides were susceptible to peptides and our data suggest that common multiple drug resistance mechanisms are not active against this class of peptides. The in vitro peptide inhibition was correlated with a retard of the decay caused by Penicillium on citrus fruits, and this effect was comparable for both fungicide-resistant and -sensitive isolates. Comparison of PAF26 and TBZ in vitro minimum inhibitory concentration (MIC) values and their in vivo effect on citrus decay indicated that PAF26 performed in vivo better than TBZ.

  10. Effect of PAF on polyrnorphonuclear leucocyte plasma membrane polarity: a fluorescence study

    Directory of Open Access Journals (Sweden)

    A. Kantar

    1993-01-01

    Full Text Available The effect of PAF on the plasma membrane polarity of polymorphonuclear leukocytes (PMNs was investigated by measuring the steady-state fluorescence emission spectra of 2-dimethylamino(6-1auroyl naphthalene (Laurdan, which is known to be incorporated at the hydrophobic-hydrophilic interface of the bilayer, displaying spectral sensitivity to the polarity of its surrounding. Laurdan shows a marked steady-state emission blue-shift in non-polar solvents, with respect to polar solvents. Our results demonstrate that PAF (10−7 M induces a blue shift of the fluorescence emission spectra of Laurdan. These changes are blocked in the presence of the PAF antagonist, L-659,989. Our data indicate that the interaction between PAF and PMNs is accompanied by a decrease in polarity in the hydrophobic-hydrophilic interface of the plasma membrane.

  11. Antifungal compounds from cyanobacteria.

    Science.gov (United States)

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  12. Inositoylated platelet-activating factor (Ino-C2-PAF) modulates dynamic lymphocyte-endothelial cell interactions and alleviates psoriasis-like skin inflammation in two complementary mouse models.

    Science.gov (United States)

    Forkel, Susann; Schön, Margarete; Hildmann, Annette; Claßen, Anna; John, Swen-Malte; Danker, Kerstin; Schön, Michael P

    2014-10-01

    Psoriasis, a tumor necrosis factor alpha (TNFα)-governed inflammatory disorder with prominent dysregulation of cutaneous vascular functions, has evolved into a model disorder for studying anti-inflammatory therapies. We present experimental in vitro and in vivo data on 1-O-octadecyl-2-O-(2-(myo-inositolyl)-ethyl)-sn-glycero-3-(R/S)-phosphatidyl-choline (Ino-C2-PAF), the lead compound of a class of synthetic glycosylated phospholipids, in anti-inflammatory therapy. Ino-C2-PAF strongly induced apoptosis only in TNFα-stimulated, but not in untreated human vascular endothelial cells. Moreover, TNFα-induced endothelial adhesion molecules that mediated the rolling and firm adhesion of leukocytes (vascular cell adhesion protein-1 (VCAM-1), E-selectin, and ICAM-1) were selectively downregulated by Ino-C2-PAF. Similarly, expression of L-selectin, VCAM-1 receptor α4β1 integrin , and lymphocyte function-associated antigen-1 on human peripheral blood mononuclear cells was reduced without induction of apoptosis. Functionally, these changes were accompanied by significant impairment of rolling and adhesion of human peripheral blood lymphocytes on TNFα-activated endothelial cells in a dynamic flow chamber system. When the therapeutic potential of Ino-C2-PAF was assessed in two complementary mouse models of psoriasis, K5.hTGFβ1 transgenic and JunB/c-Jun-deficient mice, Ino-C2-PAF led to significant alleviation of the clinical symptoms and normalized the pathological cutaneous changes including vascularization. There were no overt adverse effects. These findings suggested that Ino-C2-PAF is a potential candidate in the therapy of inflammatory skin diseases that include abnormal vascular functions.

  13. The induction of an angiogenic response in corneal myofibroblasts by platelet-activating factor (PAF).

    Science.gov (United States)

    He, Jiucheng; Eastlack, Jason P; Bazan, Haydee E P

    2010-12-01

    Although the exact mechanisms underlying corneal neovascularization remain unclear, cytokines and growth factors play an important role in their development. We have shown previously that the inflammatory mediator platelet-activating factor (PAF) is a potent inducer of corneal neovascularization in vivo. In this study, we investigate the role of stromal myofibroblasts in neovascularization and the effect of PAF on this process. Myofibroblasts were obtained from rabbit corneal keratocytes and identified with anti-α-SMA antibody. Cells were treated with PAF (100 nM) for 24 hr. In some experiments, cells were pre-treated with the PAF antagonist LAU-0901 (150 nM). Expression of vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) was examined by immunofluorescence and immunoblotting. To study the effect of myofibroblasts on vessel formation in vitro, Vybrant(®) CM-DiI labeled human umbilical vein endothelial cells (HUVECs) were cultured on myofibroblasts in a thin layer of collagen gel. CD31 was used as the cell marker of HUVEC. VEGF and TSP-1 were not detectable in keratocytes, but they were positively stained in myofibroblasts. PAF induced a significant increase in VEGF expression and a decrease in TSP-1 expression. These changes were inhibited in the presence of LAU-0901. HUVECs co-cultured with corneal myofibroblasts formed a typical structure of vessel-like tubes within 1 week. The addition of PAF to the medium increased HUVEC-induced vessel-like tube formation, which was abolished by LAU-0901. Addition of anti-VEGF antibody to the medium completely prevented the formation of vessel-like tubes. We provide evidence for the role of stromal myofibroblasts in the corneal neovascularization process. By enhancing VEGF production and decreasing TSP-1 production in myofibroblasts, PAF augments the angiogenic response. The PAF antagonist LAU-0901 could represent a new therapeutic venue for inhibiting corneal neovascularization.

  14. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26

    OpenAIRE

    Muñoz, Alberto; López García, Belén; Pérez-Payá, Enrique; Marcos López, José Francisco

    2007-01-01

    Short antimicrobial peptides represent an alternative to fight pathogen infections. PAF26 is a hexapeptide identified previously by a combinatorial approach against the fungus Penicillium digitatum and shows antimicrobial properties towards certain phytopathogenic fungi. In this work, PAF26 was used as lead compound and its properties were compared with two series of derivatives, obtained by either systematic alanine substitution or N-terminal amino acid addition. The alanine scan approach un...

  15. Bacterial clearance is improved in septic mice by platelet-activating factor-acetylhydrolase (PAF-AH) administration.

    Science.gov (United States)

    Teixeira-da-Cunha, Mariana G A; Gomes, Rachel N; Roehrs, Nathassia; Bozza, Fernando A; Prescott, Stephen M; Stafforini, Diana; Zimmerman, Guy A; Bozza, Patricia T; Castro-Faria-Neto, Hugo C

    2013-01-01

    Current evidence indicates that dysregulation of the host inflammatory response to infectious agents is central to the mortality of patients with sepsis. Strategies to block inflammatory mediators such as PAF have been investigated as adjuvant therapies for sepsis. PAF-AH, the enzyme responsible for PAF degradation, showed positive results in pre-clinical studies and phase II clinical trials, but the results of a phase III study were disappointing. In this study, we investigated the potential protective mechanism of PAF-AH in sepsis using the murine model of cecal ligation and puncture (CLP). Treatment with rPAF-AH increased peritoneal fluid levels of the anti-inflammatory mediators MCP-1/CCL2 after CLP. The numbers of bacteria (CFU) in the peritoneal cavity were decreased in the rPAF-AH-treated group, indicating more efficient bacterial clearance after rPAF-AH treatment. Interestingly, we observed increased levels of nitric oxide (NO) after PAF-AH administration, and rPAF-AH treatment did not decrease CFU numbers either in iNOS-deficient mice or in CCR2-deficient mice. We concluded that administration of exogenous rPAF-AH reduced inflammatory injury, altered cytokine levels and favored bacterial clearance with a clear impact on mortality through modulation of MCP-1/CCL2 and NO levels in a clinically relevant sepsis model.

  16. The Paf oncogene is essential for hematopoietic stem cell function and development.

    Science.gov (United States)

    Amrani, Yacine M; Gill, Jonathan; Matevossian, Armine; Alonzo, Eric S; Yang, Chingwen; Shieh, Jae-Hung; Moore, Malcolm A; Park, Christopher Y; Sant'Angelo, Derek B; Denzin, Lisa K

    2011-08-29

    Hematopoietic stem cells (HSCs) self-renew to maintain the lifelong production of all blood populations. Here, we show that the proliferating cell nuclear antigen-associated factor (Paf) is highly expressed in cycling bone marrow HSCs and plays a critical role in hematopoiesis. Mice lacking Paf exhibited reduced bone marrow cellularity; reduced numbers of HSCs and committed progenitors; and leukopenia. These phenotypes are caused by a cell-intrinsic blockage in the development of long-term (LT)-HSCs into multipotent progenitors and preferential loss of lymphoid progenitors caused by markedly increased p53-mediated apoptosis. In addition, LT-HSCs from Paf(-/-) mice had increased levels of reactive oxygen species (ROS), failed to maintain quiescence, and were unable to support LT hematopoiesis. The loss of lymphoid progenitors was likely due the increased levels of ROS in LT-HSCs caused by treatment of Paf(-/-) mice with the anti-oxidant N-acetylcysteine restored lymphoid progenitor numbers to that of Paf(+/+) mice. Collectively, our studies identify Paf as a novel and essential regulator of early hematopoiesis. © 2011 Amrani et al.

  17. Platelet-activating factor (PAF) induces wheal and flare skin reactions independent of mast cell degranulation.

    Science.gov (United States)

    Krause, K; Giménez-Arnau, A; Martinez-Escala, E; Farré-Albadalejo, M; Abajian, M; Church, M K; Maurer, M

    2013-02-01

    Platelet-activating factor (PAF) causes wheal and flare responses which are abrogated by H1-antihistamines giving rise to the hypothesis that PAF-induced wheal development is secondary to histamine release from dermal mast cells. But is this hypothesis correct? Wheal and flare responses were induced by intradermal injection of PAF, codeine and histamine in 14 healthy volunteers. Dermal histamine and PGD2 contractions were measured using microdialysis. PAF, unlike histamine and codeine, did not cause a statistically significant rise in mean histamine levels with ten persons showing negligible histamine release. Codeine caused a significant but variable histamine release, ranging from 29 to 282 ng/ml. Codeine, but not PAF or histamine, caused a small but statistically significant release of PGD2. Wheal and flare reactions in human skin induced by PAF are not associated with histamine release and, therefore, appear to be independent of mast cell degranulation. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  18. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B; Darwin, K Heran; Li, Huilin

    2016-04-05

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.

  19. Circulating platelet-activating factor is primarily cleared by transport, not intravascular hydrolysis by lipoprotein-associated phospholipase A2/ PAF acetylhydrolase.

    Science.gov (United States)

    Liu, Jinbo; Chen, Rui; Marathe, Gopal K; Febbraio, Maria; Zou, Weilin; McIntyre, Thomas M

    2011-02-18

    The phospholipid platelet-activating factor (PAF) stimulates all cells of the innate immune system and numerous cardiovascular cells. A single enzyme (plasma PAF acetylhydrolase [PAF-AH] or lipoprotein-associated phospholipase [Lp-PL]A(2)) in plasma hydrolyzes PAF, but significant controversy exists whether its action is pro- or antiinflammatory and accordingly whether its inhibition will slow cardiovascular disease. We sought to define how PAF and related short-chain oxidized phospholipids turnover in vivo and the role of PAF acetylhydrolase/Lp-PLA(2) in this process. [(3)H-acetyl]PAF was hydrolyzed by murine or human plasma (t(1/2), 3 and 7 minutes, respectively), but injected [(3)H-acetyl]PAF disappeared from murine circulation more quickly (t(1/2), PAF clearance was unchanged in PAF receptor(-/-) animals, or over the first 2 half-lives in PAF-AH(-/-) animals. [(3)H]PAF turnover was reduced by coinjecting excess unlabeled PAF or an oxidatively truncated phospholipid, and [(3)H]PAF clearance was slowed in hyperlipidemic apolipoprotein (apo)E(-/-) mice with excess circulating oxidatively truncated phospholipids. [(3)H]PAF, fluorescent NBD-PAF, or fluorescent oxidatively truncated phospholipid were primarily accumulated by liver and lung, and were transported into endothelium as intact phospholipids through a common mechanism involving TMEM30a. Circulating PAF and oxidized phospholipids are continually and rapidly cleared, and hence continually and rapidly produced. Saturable PAF receptor-independent transport, rather than just intravascular hydrolysis, controls circulating inflammatory and proapoptotic oxidized phospholipid mediators. Intravascular PAF has access to intracellular compartments. Inflammatory and proapoptotic phospholipids may accumulate in the circulation as transport is overwhelmed by substrates in hyperlipidemia.

  20. Experimental Investigation on Operational Performance of PAFS for CIV Opening Stroke

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seok; Bae, Byoung-Uhn; Park, Yusun; Kang, Kyoung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The test facility, ATLAS-PAFS was constructed to experimentally investigate the thermal hydraulic behavior in the primary and secondary systems of the APR+ during a transient when PAFS is actuated. In this study, PAFS-CIV-01 test was performed for validating the cooling rate of the reactor according to the CIV opening stroke at the FLB accident, which was analyzed as the most severe case in the APR+ SSAR (Standard Safety Analysis Report). With an aim of simulating a FLB+CIV accident of the APR+ as realistically as possible, the three-level scaling methodology was taken into account to determine the test conditions of the steady-state and the transient. The main objectives of this test were not only to provide physical insight into the system response of the APR+ during changes of CIV opening stroke but also to produce an integral effect test data to validate a thermal hydraulic safety analysis code. The initial steady-state conditions and the sequence of event in the FLB scenario for the APR+ were successfully simulated with the ATLAS-PAFS facility. The pressure and the temperature gradient of the primary system was reduced as the stroke of the CIV was decreased during the heat removal by PAFS operation. The mean temperature gradient of the core was reduced as the stroke of the CIV was decreased. The cooling rate of the core under 60% stroke (70.4 mm{sup 2}) of the CIV met the criteria. The water in the PCCT was heated up to the saturation condition by the heat transfer from the PCHX tube surface. In PAFS-CIV-01 test, the major sequence of events was ended before the water level decrease in the PCCT. From the present experimental result, it could be concluded that the cooling rate of the core was controlled by the adjustment of the CIV opening stroke when the APR+ PAFS was operating.

  1. Platelet Activating Factor (PAF) biosynthesis is inhibited by phenolic compounds in U-937 cells under inflammatory conditions.

    Science.gov (United States)

    Vlachogianni, Ioanna C; Fragopoulou, Elizabeth; Stamatakis, George M; Kostakis, Ioannis K; Antonopoulou, Smaragdi

    2015-09-01

    Interleukin 1 beta (IL-1β) induced platelet activating factor (PAF) synthesis in U-937 cells through stimulation of acetyl-CoA:lysoPAF-acetyltransferase (lyso PAF-AT) at 3 h and DTT-independentCDP-choline-1-alkyl-2-acetyl-sn-glycerol cholinophosphotransferase (PAF-CPT) at 0.5 h. The aim of this study was to investigate the effect of tyrosol (T), resveratrol (R) and their acetylated derivatives(AcDs) which exhibit enhanced bioavailability, on PAF synthesis in U-937 after IL-1β stimulation. The specific activity of PAF enzymes and intracellular levels were measured in cell homogenates. T and R concentration capable of inducing 50% inhibition in IL-1β effect on lyso PAF-AT was 48 μΜ ± 11 and 157 μΜ ± 77, for PAF-CPT 246 μΜ ± 61 and 294 μΜ ± 102, respectively. The same order of concentration was also observed on inhibiting PAF levels produced by IL-1β. T was more potent inhibitor than R (p<0.05). AcDs of T retain parent compound inhibitory activity, while in the case of R only two AcDs retain the activity. The observed inhibitory effect by T,R and their AcDs, may partly explain their already reported beneficial role. Copyright © 2015. Published by Elsevier Inc.

  2. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa

    Science.gov (United States)

    2014-01-01

    Background The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. Results TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b confirmed the importance of the cysteine residues to maintain the protein structure, and of several conserved amino acids for the catalytic activity. In the cacao genome, TcPR-4b belonged to a small multigene family organized mainly on chromosome 5. TcPR-4b RT-qPCR analysis in resistant and susceptible cacao plants infected by M. perniciosa showed an increase of expression at 48 hours after infection (hai) in both cacao genotypes. After the initial stage (24-72 hai), the TcPR-4b expression was observed at all times in the resistant genotypes, while in the susceptible one the expression was concentrated at the final stages of infection (45-90 days after infection). The recombinant TcPR-4b protein showed RNase, and bivalent ions dependent-DNase activity, but no chitinase activity. Moreover, TcPR-4b presented antifungal action against M. perniciosa, and the reduction of M. perniciosa survival was related to ROS production in fungal hyphae. Conclusion To our knowledge, this is the first report of a PR-4 showing simultaneously RNase, DNase and antifungal properties, but no chitinase activity. Moreover, we showed that the antifungal activity of TcPR-4b is directly related to RNase function. In cacao, TcPR-4b nuclease activities may be related to the establishment and maintenance of resistance, and to the PCD mechanism, in resistant and susceptible cacao genotypes, respectively. PMID:24920373

  3. Associations of platelet-activating factor acetylhydrolase (PAF-AH) gene polymorphisms with circulating PAF-AH levels and risk of coronary heart disease or blood stasis syndrome in the Chinese Han population.

    Science.gov (United States)

    Zheng, Guo-Hua; Xiong, Shang-Quan; Chen, Hai-Ying; Mei, Li-Juan; Wang, Ting

    2014-11-01

    The circulating level of platelet-activating factor acetylhydrolase (PAF-AH) is a novel biomarker to predict the presence of coronary heart disease. PAF-AH gene polymorphisms may be responsible for the variance of circulating PAF-AH levels in individuals. However, the association of PAF-AH gene polymorphisms with circulating PAF-AH levels and the susceptibility to coronary heart disease (CHD) remains unsolved. Blood stasis syndrome (BSS) of CHD is the most common type of TCM syndromes, and a previous study discovered its relationship with the elevated circulating PAF-AH levels. However, the association of gene polymorphisms and CHD with BSS is unclear at present. In this study, four polymorphisms (R92H, I198T, A379V, V279F) of the PAF-AH gene were genotyped in 570 CHD patients, of which 299 had BSS. In addition, 317 unaffected individuals from the same hospitals served as controls. Plasma PAF-AH levels were measured in 155 controls and 271 CHD patients selected randomly, including 139 CHD patients with BSS. In the Chinese Han population, plasma PAF-AH levels in CHD patients with BSS or without BSS were significantly higher (12.9 ± 6.5 and 11.1 ± 5.0 μM, respectively) than in controls (9.3 ± 5.2 μM); this difference still remained significant after adjustment for traditional risk factors or the inflammatory factors. The R92H polymorphism was highly related to the plasma PAF-AH levels and the risk of CHD, especially among patients with BSS, even with the adjustment for the effects of traditional factors. The I198T polymorphism was highly associated with risk of CHD with BSS, but was associated with neither the risk of CHD with no BSS nor with elevated plasma PAF-AH levels.

  4. /sup 3/H-PAF-acether displacement and inhibition of binding in intact human platelets by BN 52021

    Energy Technology Data Exchange (ETDEWEB)

    Korth, R.; Le Couedic, J.P.; Benveniste, J.

    1986-03-05

    Intact washed human platelets incubated at 20/sup 0/C in Tyrode's buffer containing 0.25% (w/v) bovine serum albumin bound /sup 3/H paf-acether in a concentration (0-6.5 nM) and time (0-60 min) dependent manner (n=3). BN 52021 (60 ..mu..M) a chemically defined extract from Ginkgo biloba inhibited the binding of increasing concentrations of /sup 3/H paf-acether. Calculated differences between /sup 3/H paf-acether binding in the presence or absence of BN 52021 (60 ..mu..M) reached nearly a plateau in concentrations higher than 0.65 nM /sup 3/H paf-acether. Increasing concentrations of BN 52021 (0-60 ..mu..M) as well as of unlabelled paf-acether (0-50 nM) prevented within 15 min /sup 3/H paf-acether binding (0.65 nM) to platelets in a concentration-dependent way. Increasing BN 52021 concentrations (0-60 ..mu..M) also displaced platelet-bound /sup 3/H paf-acether (0.65 nM) in a concentration-dependent way. Displacement increased with the time length of platelet incubation with BN 52021 and reached a plateau at 15 min. Platelet-bound /sup 3/H paf-acether displacement of 28.3 +/- 6.3%, 31.1 +/- 4.0% and 26.7 +/- 5.6% was observed using 50 nM unlabelled paf-acether, 60 ..mu..M BN 52021 or both substances together (vs 4.3 +/- 7.2% for vehicle alone). No degradation of /sup 3/H paf-acether occurred as assessed by high pressure liquid chromatography. These results demonstrate that BN 52021 competes directly with paf-acether binding sites on human platelets.

  5. Biosynthesis of platelet activating factor (PAF) via alternate pathways: subcellular distribution of products in HL-60 cells

    International Nuclear Information System (INIS)

    Record, M.; Snyder, F.

    1986-01-01

    Final steps in the biosynthesis of PAF can be catalyzed by two different routes: CDP-choline:1-alkyl-2-acetyl-Gro cholinephosphotransferase [dithiothrietol (DTT)-insensitive] or acetyl-CoA:1-alkyl-2-lyso-GroPCho acetyltransferase. The authors have investigated the conversion of tritium-labeled 1-alkyl-2-acetyl-Gro and 1-alkyl-2-lyso-GroPCho (lyso-PAF) to PAF and other lipid products in HL-60 cells and in subcellular organelles isolated by centrifugation in a Percoll gradient. When cells are incubated with the labeled precursors (2 μM) the total amount of labeled PAF and 1-alkyl-2-acyl-GroPCho formed was similar from both precursors (60 pmol from 1-alkyl-2-acetyl-Gro and 50 pmol from lyso-PAF). However, PAF formed from 1-alkyl-2-acetyl-Gro represented 70% of the total products, whereas with lyso-PAF the major labeled product was 1-alkyl-2-acyl-GroPCho. Formation of PAF from 1-[ 3 H]alkyl-2-acetyl-Gro was linear to at least 30 min at 20 0 C. After a 15-min incubation of this neutral lipid with HL-60 cells, the labeled PAF produced was located exclusively in the plasma membrane fraction as opposed to the label in the 1-alkyl-2-acyl-GroPCho, which was found only in the endoplasmic reticulum; none of the labeled PAF product was released to the media. The authors results suggest PAF might be synthesized by the DTT-insensitive cholinephosphotransferase at the site of the plasma membrane in HL-60 cells

  6. A Lysozyme with Antifungal Activity from Pithecellobium dulce Seeds

    Directory of Open Access Journals (Sweden)

    Ploypat Niyomploy

    2011-01-01

    Full Text Available A protein of an apparent molecular mass of 14.4 kDa with antifungal activity was isolated from the seeds of Pithecellobium dulce using extraction with 100 mM Tris-HCl buffer (pH=8.0, precipitation with 80 % ammonium sulfate, and bioassay purification via Resource Q anion exchange chromatography and Superdex 200 gel filtration chromatography. The purified protein was putatively identified by tandem mass spectrometry with Mascot database searching, with the partial amino acid sequences showing a high degree of similarity to chicken egg white lysozyme. This putative plant lysozyme expressed antifungal activity with a rather high thermal stability of up to 80 °C for 15 min (at pH=8.0. It exerted an antifungal action towards Macrophomina phaseolina but displayed no antifungal activity against two other isolates, Phymatotrichopsis omnivora and Fusarium avenaceum.

  7. Platelet-activating factor (PAF) receptor binding activity of the roots of Enicosanthellum pulchrum.

    Science.gov (United States)

    Nordin, Noraziah; Jalil, Juriyati; Jantan, Ibrahim; Murad, Shahnaz

    2012-03-01

    Enicosanthellum pulchrum (King) Heusden (Annonaceae) is a coniferous tree that is confined to mountain forests. The chemical constituents of this species have been studied previously; however, its biological activity has never been investigated before and is reported here for the first time. The extracts, fractions and compounds from the roots of E. pulchrum were investigated for their inhibitory effects on platelet-activating factor (PAF) receptor binding to rabbit platelets using (3)H-PAF as a ligand. The PAF receptor binding inhibitory effect using rabbit platelets was determined in vitro by measuring the difference between total amount of bound (3)H-PAF in the presence and the absence of excess unlabelled PAF. The compounds were isolated by bioassay-guided fractionation and their structures were elucidated by spectroscopic techniques. Among the extracts tested, the ethyl acetate extract was the most active with 85.6% inhibition, while hexane and methanol extracts showed 40.2 and 42.5% inhibition, respectively. Fractionation of the ethyl acetate extract using vacuum liquid chromatography (VLC) yielded six fractions AEA(I--VI). Chromatography fraction AEA(VI) yielded a new compound, 1-(2',3',4'-trimethoxyphenyl)hexan-1-ol, while fraction AEA(III) afforded three compounds, namely liriodenine, cleistopholine and dehydroanonaine. 1-(2',3',4'-Trimethoxyphenyl)hexan-1-ol, cleistopholine and dehydroanonaine showed relatively strong inhibition with IC(50) values of 26.6, 50.2 and 45.4 µM, respectively. The results suggest that these compounds could be responsible for the PAF antagonistic activity of the ethyl acetate extract of this plant.

  8. Specialization for sound localization in fields A1, DZ, and PAF of cat auditory cortex.

    Science.gov (United States)

    Lee, Chen-Chung; Middlebrooks, John C

    2013-02-01

    Cortical deactivation studies in cats have implicated the primary auditory cortex (A1), the dorsal zone (DZ), and the posterior auditory field (PAF) in sound localization behavior, and physiological studies in anesthetized conditions have demonstrated clear differences in spatial sensitivity among those areas. We trained cats to perform two listening tasks and then we recorded from cortical neurons in off-task and in both on-task conditions during single recording sessions. The results confirmed some of the results from anesthetized conditions and revealed unexpected differences. Neurons in each field showed a variety of firing patterns, including onset-only, complex onset and long latency, and suppression or offset. A substantial minority of units showed sharpening of spatial sensitivity, particularly that of onset responses, during task performance: 44 %, 35 %, and 31 % of units in areas A1, DZ, and PAF, respectively, showed significant spatial sharpening. Field DZ was distinguished by a larger percentage of neurons responding best to near-midline locations, whereas the spatial preferences of PAF neurons were distributed more uniformly throughout the contralateral hemifield. Those directional biases also were evident in measures of the accuracy with which neural spike patterns could signal sound locations. Field DZ provided the greatest accuracy for midline locations. The location dependence of accuracy in PAF was orthogonal to that of DZ, with the greatest accuracy for lateral locations. The results suggest a view of spatial representation in the auditory cortex in which DZ exhibits an overrepresentation of the frontal areas around the midline, whereas PAF provides a more uniform representation of contralateral space, including areas behind the head. Spatial preferences of area A1 neurons were intermediate between those of DZ and PAF, sharpening as needed for localization tasks.

  9. Noninvasive molecular imaging reveals role of PAF in leukocyte-endothelial interaction in LPS-induced ocular vascular injury.

    Science.gov (United States)

    Garland, Rebecca C; Sun, Dawei; Zandi, Souska; Xie, Fang; Faez, Sepideh; Tayyari, Faryan; Frimmel, Sonja A F; Schering, Alexander; Nakao, Shintaro; Hafezi-Moghadam, Ali

    2011-04-01

    Uveitis is a systemic immune disease and a common cause of blindness. The eye is an ideal organ for light-based imaging of molecular events underlying vascular and immune diseases. The phospholipid platelet-activating factor (PAF) is an important mediator of inflammation, the action of which in endothelial and immune cells in vivo is not well understood. The purpose of this study was to investigate the role of PAF in endothelial injury in uveitis. Here, we use our recently introduced in vivo molecular imaging approach in combination with the PAF inhibitors WEB 2086 (WEB) and ginkgolide B (GB). The differential inhibitory effects of WEB and GB in reducing LPS-induced endothelial injury in the choroid indicate an important role for PAF-like lipids, which might not require the PAF receptor for their signaling. P-selectin glycoprotein ligand-1-mediated rolling of mouse leukocytes on immobilized P-selectin in our autoperfused microflow chamber assay revealed a significant reduction in rolling velocity on the cells' contact with PAF. Rolling cells that came in contact with PAF rapidly assumed morphological signs of cell activation, indicating that activation during rolling does not require integrins. Our results show a key role for PAF in mediating endothelial and leukocyte activation in acute ocular inflammation. Our in vivo molecular imaging provides a detailed view of cellular and molecular events in the complex physiological setting.

  10. Antibacterial and anti-PAF activity of lipid extracts from sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Nasopoulou, Constantina; Karantonis, Haralabos C; Andriotis, Michalis; Demopoulos, Constantinos A; Zabetakis, Ioannis

    2008-11-15

    The anti-PAF and the antibacterial activities of lipid extracts obtained from cultured sea bass (Dicentrarchus labrax) and cultured gilthead sea bream (Sparus aurata) were evaluated. Total lipids of sea bass and gilthead sea bream exerted PAF-like activity while, in higher amounts they inhibited this PAF activity. Neutral lipids of both sea bass and gilthead sea bream contained only PAF antagonists while the polar lipid fractions contained both PAF antagonists and agonists. Total lipids of sea bass exhibited stronger PAF-like activity than did those of gilthead sea bream; however, neutral lipids of sea bass contained stronger PAF antagonists than did gilthead sea bream. Total lipids of both sea bass and gilthead sea bream exhibited antibacterial activity only towards Staphylococcus aureus (S. aureus) with those of sea bass being more potent. Subsequently, neutral lipids of both sea bass and gilthead sea bream also showed antibacterial activity against S. aureus and less so towards Escherichia coli (E. coli), while only neutral lipids of sea bass showed antibacterial activity against Enterococcusfaecalis (E. faecalis). Sea bass neutral lipids were more active against S. aureus than were those of gilthead sea bream, while their activity towards E. coli was similar. Polar lipids of both sea bass and gilthead sea bream showed antibacterial activity against all bacteria strains. Sea bass polar lipids were more active towards S. aureus than were those of gilthead sea bream, while their activities against E. faecalis and E. coli were the same. The detected antibacterial activities of the lipid extracts isolated from sea bass and gilthead sea bream were observed in amounts equal to those that exerted either PAF inhibition or PAF-like activity, suggesting that PAF antagonists and agonists of fish lipids may be responsible for the antibacterial activity. Copyright © 2008 Elsevier Ltd. All rights reserved.

  11. Effect of platelet activating factor (PAF) supplementation in semen extender on viability and ATP content of cryopreserved canine spermatozoa.

    Science.gov (United States)

    Kordan, W; Lecewicz, M; Strzezek, R; Dziekońska, A; Fraser, L

    2010-01-01

    The aim of this study was to investigate the effect of platelet activating factor (PAF) on the quality characteristics of cryopreserved canine spermatozoa. Cryopreserved semen of 5 mixed-breed dogs was treated with different concentrations of exogenous PAF (1 x 10(-3) M, 1 x 10(-4) M, 1 x 10(-5) M and 1 x 10(-6) M) and examined at different time intervals (0, 30, 60 and 120 min). Cryopreserved semen treated without PAF was used as the control. Sperm quality was evaluated for motility (computer-assisted semen analysis, CASA), mitochondrial function (JC-1/PI assay) and plasma membrane integrity (SYBR-14/PI assay and Hoechst 33258). Also, ATP content of spermatozoa was determined using a bioluminescence assay. Treatment of cryopreserved semen with 1 x 10(-3) M PAF at 120 min of incubation resulted in significantly higher total sperm motility compared with the control. It was observed that PAF-improved total sperm motility was concurrent with enhanced sperm motility patterns after treatment of cryopreserved semen. Treatment of cryopreserved semen with PAF did not improve either sperm mitochondrial function or plasma membrane integrity, as monitored by different fluorescent membrane markers. Furthermore, ATP content of cryopreserved spermatozoa was significantly higher when PAF was used at a concentration of 1 x 10(-3) M compared with the control and other PAF treatments, regardless of the incubation time. The findings of this study indicated that treatment with 1 x 10(-3) M PAF at 120 min of incubation rendered better quality of cryopreserved canine semen, which was associated with improved sperm motility parameters and ATP content. It can be suggested that exogenous PAF addition is beneficial as a supplement for canine semen extender used for cryopreservation.

  12. Modulation of Tumor-Associated Macrophages (TAM) Phenotype by Platelet-Activating Factor (PAF) Receptor.

    Science.gov (United States)

    da Silva Junior, Ildefonso Alves; Stone, Simone Cardozo; Rossetti, Renata Marques; Jancar, Sonia; Lepique, Ana Paula

    2017-01-01

    Platelet-activating factor (PAF) plays an important role in the pathogenesis of several types of tumors. The biological effects of PAF are mediated by the PAF receptor (PAFR), which can be expressed by tumor cells and host cells that infiltrate the tumor microenvironment. In the present study, we investigated the role of PAFR expressed by leukocytes that infiltrate two types of tumors, one that expresses PAFR (TC-1 carcinoma) and another that does not express the receptor (B16F10 melanoma) implanted in mice that express the receptor or not (PAFR KO). It was found that both tumors grew significantly less in PAFR KO than in wild-type (WT) mice. Analysis of the leukocyte infiltration shown in PAFR KO increased the frequency of neutrophils (Gr1 + ) and of CD8 + lymphocytes in B16F10 tumors and of CD4 + lymphocytes in TC-1 tumors. PAFR KO also had a higher frequency of M1-like (CD11c + ) and lower M2-like (CD206 + ) macrophages infiltrated in both tumors. This was confirmed in macrophages isolated from the tumors that showed higher iNOS, lower arginase activity, and lower IL10 expression in PAFR KO tumors than WT mice. These data suggest that in the tumor microenvironment, endogenous PAF-like activity molecules bind PAFR in macrophages which acquire an M2-like profile and this promotes tumor growth.

  13. Naturally Occurring Missense Mutation in Plasma PAF-AH Among the Japanese Population.

    Science.gov (United States)

    Karasawa, Ken

    2015-01-01

    A single nucleotide polymorphism in the plasma PAF-AH enzyme, i.e., G994T, which causes the substitution of Val at amino acid 279 with Phe (V279F), has been found in the Japanese population. This enzyme preferentially degrades oxidatively modulated or truncated phospholipids; therefore, it has been suggested that this enzyme may prevent the accumulation of proinflammatory and proatherogenic oxidized phospholipids. This hypothesis is supported by the higher prevalence of the V279F mutation in patients with asthmatic and atherosclerotic diseases, as compared with healthy controls. This mutation is rare in the Caucasian population. The plasma PAF-AH mass and enzyme activity are distributed over a wide range in the plasma and they are positively correlated with low-density lipoprotein (LDL) cholesterol. However, several clinical studies in the Caucasian population have suggested that this enzyme has the opposite role. This enzyme plays an active role in the development and progression of atherosclerosis via proinflammatory and proatherogenic lysophosphatidylcholine and oxidized fatty acids produced through the oxidation of LDL by this enzyme. Thus, plasma PAF-AH is a unique enzyme with dual roles in human inflammatory diseases. In this chapter, on the basis of recent findings we describe the association between a naturally occurring missense mutation in plasma PAF-AH and human diseases especially including atherosclerosis and asthma. © 2015 Elsevier Inc. All rights reserved.

  14. The burden of cancer attributable to modifiable risk factors: the Australian cancer-PAF cohort consortium.

    Science.gov (United States)

    Arriaga, Maria E; Vajdic, Claire M; Canfell, Karen; MacInnis, Robert; Hull, Peter; Magliano, Dianna J; Banks, Emily; Giles, Graham G; Cumming, Robert G; Byles, Julie E; Taylor, Anne W; Shaw, Jonathan E; Price, Kay; Hirani, Vasant; Mitchell, Paul; Adelstein, Barbara-Ann; Laaksonen, Maarit A

    2017-06-14

    To estimate the Australian cancer burden attributable to lifestyle-related risk factors and their combinations using a novel population attributable fraction (PAF) method that accounts for competing risk of death, risk factor interdependence and statistical uncertainty. 365 173 adults from seven Australian cohort studies. We linked pooled harmonised individual participant cohort data with population-based cancer and death registries to estimate exposure-cancer and exposure-death associations. Current Australian exposure prevalence was estimated from representative external sources. To illustrate the utility of the new PAF method, we calculated fractions of cancers causally related to body fatness or both tobacco and alcohol consumption avoidable in the next 10 years by risk factor modifications, comparing them with fractions produced by traditional PAF methods. Over 10 years of follow-up, we observed 27 483 incident cancers and 22 078 deaths. Of cancers related to body fatness (n=9258), 13% (95% CI 11% to 16%) could be avoided if those currently overweight or obese had body mass index of 18.5-24.9 kg/m 2 . Of cancers causally related to both tobacco and alcohol (n=4283), current or former smoking explains 13% (11% to 16%) and consuming more than two alcoholic drinks per day explains 6% (5% to 8%). The two factors combined explain 16% (13% to 19%): 26% (21% to 30%) in men and 8% (4% to 11%) in women. Corresponding estimates using the traditional PAF method were 20%, 31% and 10%. Our PAF estimates translate to 74 000 avoidable body fatness-related cancers and 40 000 avoidable tobacco- and alcohol-related cancers in Australia over the next 10 years (2017-2026). Traditional PAF methods not accounting for competing risk of death and interdependence of risk factors may overestimate PAFs and avoidable cancers. We will rank the most important causal factors and their combinations for a spectrum of cancers and inform cancer control activities. © Article

  15. Signaling in TRPV1-induced platelet activating factor (PAF) in human esophageal epithelial cells.

    Science.gov (United States)

    Ma, Jie; Harnett, Karen M; Behar, Jose; Biancani, Piero; Cao, Weibiao

    2010-02-01

    Transient receptor potential channel, vanilloid subfamily member 1 (TRPV1) receptors were identified in human esophageal squamous epithelial cell line HET-1A by RT-PCR and by Western blot. In fura-2 AM-loaded cells, the TRPV1 agonist capsaicin caused a fourfold cytosolic calcium increase, supporting a role of TRPV1 as a capsaicin-activated cation channel. Capsaicin increased production of platelet activating factor (PAF), an important inflammatory mediator that acts as a chemoattractant and activator of immune cells. The increase was reduced by the p38 MAP kinase (p38) inhibitor SB203580, by the cytosolic phospholipase A2 (cPLA(2)) inhibitor AACOCF3, and by the lyso-PAF acetyltransferase inhibitor sanguinarin, indicating that capsaicin-induced PAF production may be mediated by activation of cPLA(2), p38, and lyso-PAF acetyltransferase. To establish a sequential signaling pathway, we examined the phosphorylation of p38 and cPLA(2) by Western blot. Capsaicin induced phosphorylation of p38 and cPLA(2). Capsaicin-induced p38 phosphorylation was not affected by AACOCF3. Conversely, capsaicin-induced cPLA(2) phosphorylation was blocked by SB203580, indicating that capsaicin-induced PAF production depends on sequential activation of p38 and cPLA(2). To investigate how p38 phosphorylation may result from TRPV1-mediated calcium influx, we examined a possible role of calmodulin kinase (CaM-K). p38 phosphorylation was stimulated by the calcium ionophore A23187 and by capsaicin, and the response to both agonists was reduced by a CaM inhibitor and by CaM-KII inhibitors, indicating that calcium induced activation of CaM and CaM-KII results in P38 phosphorylation. Acetyl-CoA transferase activity increased in response to capsaicin and was inhibited by SB203580, indicating that p38 phosphorylation in turn causes activation of acetyl-CoA transferase to produce PAF. Thus epithelial cells produce PAF in response to TRPV1-mediated calcium elevation.

  16. Rupatadine protects against pulmonary fibrosis by attenuating PAF-mediated senescence in rodents.

    Science.gov (United States)

    Lv, Xiao-xi; Wang, Xiao-xing; Li, Ke; Wang, Zi-yan; Li, Zhe; Lv, Qi; Fu, Xiao-ming; Hu, Zhuo-wei

    2013-01-01

    A similar immune response is implicated in the pathogenesis of pulmonary fibrosis and allergic disorders. We investigated the potential therapeutic efficacy and mechanism of rupatadine, a dual antagonist of histamine and platelet-activation factor (PAF), in bleomycin- (BLM-) and silica-induced pulmonary fibrosis. The indicated dosages of rupatadine were administered in rodents with bleomycin or silica-induced pulmonary fibrosis. The tissue injury, fibrosis, inflammatory cells and cytokines, and lung function were examined to evaluate the therapeutic efficacy of rupatadine. The anti-fibrosis effect of rupatadine was compared with an H1 or PAF receptor antagonist, and efforts were made to reveal rupatadine's anti-fibrotic mechanism. Rupatadine promoted the resolution of pulmonary inflammation and fibrosis in a dose-dependent manner, as indicated by the reductions in inflammation score, collagen deposition and epithelial-mesenchymal transformation, and infiltration or expression of inflammatory cells or cytokines in the fibrotic lung tissue. Thus, rupatadine treatment improved the declined lung function and significantly decreased animal death. Moreover, rupatadine was able not only to attenuate silica-induced silicosis but also to produce a superior therapeutic efficacy compared to pirfenidone, histamine H1 antagonist loratadine, or PAF antagonist CV-3988. The anti-fibrotic action of rupatadine might relate to its attenuation of BLM- or PAF-induced premature senescence because rupatadine treatment protected against the in vivo and in vitro activation of the p53/p21-dependent senescence pathway. Our studies indicate that rupatadine promotes the resolution of pulmonary inflammation and fibrosis by attenuating the PAF-mediated senescence response. Rupatadine holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  17. Rupatadine protects against pulmonary fibrosis by attenuating PAF-mediated senescence in rodents.

    Directory of Open Access Journals (Sweden)

    Xiao-xi Lv

    Full Text Available A similar immune response is implicated in the pathogenesis of pulmonary fibrosis and allergic disorders. We investigated the potential therapeutic efficacy and mechanism of rupatadine, a dual antagonist of histamine and platelet-activation factor (PAF, in bleomycin- (BLM- and silica-induced pulmonary fibrosis. The indicated dosages of rupatadine were administered in rodents with bleomycin or silica-induced pulmonary fibrosis. The tissue injury, fibrosis, inflammatory cells and cytokines, and lung function were examined to evaluate the therapeutic efficacy of rupatadine. The anti-fibrosis effect of rupatadine was compared with an H1 or PAF receptor antagonist, and efforts were made to reveal rupatadine's anti-fibrotic mechanism. Rupatadine promoted the resolution of pulmonary inflammation and fibrosis in a dose-dependent manner, as indicated by the reductions in inflammation score, collagen deposition and epithelial-mesenchymal transformation, and infiltration or expression of inflammatory cells or cytokines in the fibrotic lung tissue. Thus, rupatadine treatment improved the declined lung function and significantly decreased animal death. Moreover, rupatadine was able not only to attenuate silica-induced silicosis but also to produce a superior therapeutic efficacy compared to pirfenidone, histamine H1 antagonist loratadine, or PAF antagonist CV-3988. The anti-fibrotic action of rupatadine might relate to its attenuation of BLM- or PAF-induced premature senescence because rupatadine treatment protected against the in vivo and in vitro activation of the p53/p21-dependent senescence pathway. Our studies indicate that rupatadine promotes the resolution of pulmonary inflammation and fibrosis by attenuating the PAF-mediated senescence response. Rupatadine holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  18. Thrombin and PAF stimulate formation of inositol triphosphate from similar pools of phosphatidylinositol-4,5-bisphosphate in platelets

    International Nuclear Information System (INIS)

    Shukla, S.D.; Franklin, C.C.

    1986-01-01

    During platelet activation phospholipase C cleaves phosphatidylinositol-4,5-bisphosphate (PIP 2 ) to generate diacylglycerol and inositol triphosphate (IP 3 ). Production of IP 3 was therefore used as a probe to differentiate between thrombin and platelet activating factor (PAF) sensitive pools of PIP 2 . Stimulation of [ 3 H]inositol labelled rabbit platelets (0.5 x 10 9 cells/ml containing 0.1 mM EGTA and 2 mM LiCl) with thrombin (1 U/ml) caused a maximum 3 to 10 fold increase in [ 3 H]IP 3 in 5 min. Treatment with PAF (1 x 10 -9 M) led to a maximum 3 to 5 fold increase in [ 3 H]IP 3 in 5 s followed by a decrease to basal level in 30 s. Addition of thrombin for 5 min followed by PAF for 5 s showed no further increase in [ 3 H]IP 3 over that obtained with thrombin alone. Various other sequential treatments with thrombin and PAF showed negligible cumulative effect. Simultaneous addition of thrombin and PAF showed a partial additive production of [ 3 H]IP 3 at short time periods but these levels never significantly exceeded those obtained by thrombin at 5 min or PAF at 5 s. It is concluded that in platelets thrombin and PAF (a) differentially activate PIP 2 -phosphodiesterase and (b) stimulate production of IP 3 from similar pools of PIP 2

  19. In vitro Antifungal, Antioxidant and Cytotoxic Activities of a Partially ...

    African Journals Online (AJOL)

    higher antifungal activity on Candida albicans than on Aspergillus fumigatus. AMP III fraction showed greater in vitro antioxidant activity than the aqueous extract. SDS-PAGE analyses revealed the presence of two protein bands with molecular weight approximately of 16 and 67 KDa in AMP III. Protein concentration was 240 ...

  20. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    Energy Technology Data Exchange (ETDEWEB)

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi [Department of Applied Biochemical Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan); Hatano, Ken-ichi [Department of Chemistry and Chemical Biology, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biochemical Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2007-09-01

    Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P2{sub 1}3, with unit-cell parameters a = b = c = 143.2 Å.

  1. Participation of PAF-R in the phagocytosis of apoptotic cells, in macrophage phenotype and in the immunosuppression caused by photodynamic therapy.

    OpenAIRE

    Matheus Ferracini

    2014-01-01

    Macrófagos (Mf) produzem PAF e PAF-R e eliminam partículas alteradas via CD36. Uptake de oxLDL requer associação CD36/PAF-R. Avaliamos isto na eferocitose. Bloqueio do PAF-R e de lipid rafts (LR) inibiu eferocitose. Esta induziu associação PAF-R/CD36 e destes com flotilina-1 (marca LR). Eferocitose induziu IL-10 e IL-12p40. Bloqueio do PAF-R inibiu mais IL-10 e inibição da COX-2 teve efeito similar, sugerindo que eferocitose depende da interação PAF-R/CD36 em LR e que isto induz prostanoides ...

  2. Human conjunctival epithelial cell responses to platelet-activating factor (PAF): signal transduction and release of proinflammatory cytokines.

    Science.gov (United States)

    Sharif, Najam A; Xu, Shouxi; Hellberg, Peggy E; Pang, Iok-Hou; Gamache, Daniel A; Yanni, John M

    2009-06-06

    The aims of the study were to characterize the signal transduction responses to platelet-activating factor (PAF) and to monitor the downstream effects of PAF on the production of proinflammatory cytokines in human conjunctival epithelial cells (HCECs). The generation of inositol phosphates ([(3)H]IPs) from [(3)H]phosphoinositide (PI) hydrolysis and the mobilization of intracellular calcium ([Ca(2+)](i)) were evaluated using ion exchange chromatography and Fura-2 fluorescence techniques, respectively. The production of the cytokines (interleukin-6 [IL-6], interleukin-8 [IL-8], and granulocyte macrophage colony-stimulating factor [GM-CSF]) from PAF-stimulated HCECs was quantified using specific ELISA assays. Specific PAF antagonists were used to study the pharmacological aspects of PAF actions in HCECs. PAF (100 nM) maximally stimulated PI turnover in HCECs by 2.3+/-0.02 fold (n=21) above basal levels and with a potency (EC(50)) of 5.9+/-1.7 nM (n=4). PAF or its stabilized analog, methyl carbamyl (mc)PAF (EC(50)=0.8 nM), rapidly mobilized [Ca(2+)](i), which peaked within 30-60 s and remained elevated for 3 min. PAF (10 nM-1 microM) stimulated the release of the proinflammatory cytokines, IL-6, IL-8, and GM-CSF, 1.4-3.5 fold above basal levels. The effects of PAF (100 nM) on PI turnover and [Ca(2+)](i) were potently antagonized by the PAF antagonists, 1-o-hexadecyl-2-o-acetyl-sn-glycero-3-phospho (N,N,N-trimethyl) hexanolamine (IC(50)=0.69 microM; K(i)=38 nM), methyl 2-(phenylthio)ethyl-1,4-dihydro-2,4,6-trimethyl-pyridine-3,5-dicsrboxylate (PCA-42481; IC(50)=0.89 microM; K(i)=50 nM), rac-3-(N-octadecylcarbomoyl)-2-methoxy) propyl-(2-thiazolioethyl) phosphate (CV-3988; IC(50)=13 microM; K(i)=771 nM), and (+/-)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one HCl (SM-10661; IC(50)=14 microM; K(i)=789 nM [n=3 for each antagonist]). PAF-induced production of IL-6, IL-8, and GM-CSF from HCECs was also blocked by these PAF antagonists (IC(50)=4.6- 8.6 microM). HCECs respond

  3. Antifungal therapy in European hospitals

    DEFF Research Database (Denmark)

    Zarb, P; Amadeo, B; Muller, A

    2012-01-01

    The study aimed to identify targets for quality improvement in antifungal use in European hospitals and determine the variability of such prescribing. Hospitals that participated in the European Surveillance of Antimicrobial Consumption Point Prevalence Surveys (ESAC-PPS) were included. The WHO...... of 40,878 (3.7%) antimicrobials. Antifungals were mainly (54.2%) administered orally. Hospital-acquired infections represented 44.5% of indications for antifungals followed by medical prophylaxis at 31.2%. The site of infection was not defined in 36.0% of cases but the most commonly targeted sites were...... respiratory (19.2%) and gastrointestinal (18.8%). The most used antifungal was fluconazole (60.5%) followed by caspofungin (10.5%). Antifungal-antibacterial combinations were frequently used (77.5%). The predominance of fluconazole use in participating hospitals could result in an increase in prevalence...

  4. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2015-01-01

    Full Text Available Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent.

  5. Effects of the platelet-activating factor (PAF) supplementation on ATP content of cryopreserved bull spermatozoa (AI).

    Science.gov (United States)

    Lecewicz, M; Kordan, W; Kamiński, S; Majewska, A M; Strzeżek, R

    2017-03-01

    The aim of this study was to investigate the effect of PAF supplementation in semen extender on ATP content in cryopreserved bull spermatozoa used for artificial insemination at different time intervals. Cryopreserved semen was treated with different concentrations of PAF: 1×10-5M, 1×10-6M, 1×10-7M, 1×10-8M and 1×10-9M at 37°C. In the present work we showed that content of ATP in cryopreserved semen supplemented with 1×10-9M PAF was statistically significantly higher at 90 and 120 minutes of incubation in comparison to the control group (p≤0.05). Present study indicates the potential influence of PAF on ATP content in male spermatozoa via it's protective role towards mitochondria metabolic activity.

  6. Enhanced breast cancer cell adherence to the lung endothelium via PAF acetylhydrolase inhibition: a potential mechanism for enhanced metastasis in smokers.

    Science.gov (United States)

    Kispert, Shannon E; Marentette, John O; McHowat, Jane

    2014-11-15

    Cancer deaths are primarily caused by distant metastases, rather than by primary tumor growth; however, the role of smoking in metastasis remains unclear. We demonstrated previously that endothelial cell platelet-activating factor (PAF) production results in enhanced inflammatory cell recruitment to the lung. We propose that endothelial cell PAF accumulation plays a role in cancer cell migration to distal locations. We used cigarette smoke extract (CSE) to inhibit the activity of endothelial cell PAF acetylhydrolase (PAF-AH), which hydrolyzes and inactivates PAF, and determined whether this results in increased endothelial cell PAF accumulation and breast cancer adherence. Incubation of human lung microvascular endothelial cells (HMVEC-L) with CSE resulted in a significant inhibition of PAF-AH activity that was accompanied by increased PAF production and adherence of highly invasive MDA-MB-231 breast cancer cells. Pretreatment of HMVEC-L with (S)-bromoenol lactone to inhibit calcium-independent phospholipase A2β (iPLA2β, which initiates endothelial cell PAF production) prior to CSE exposure resulted in complete inhibition of MDA-MB-231 cell adherence. Similarly, pretreatment of MDA-MB-231 cells with the PAF receptor antagonist Ginkgo biloba resulted in inhibition of adherence to the endothelium. Immunoblot analysis indicated an increase in MDA-MB-231 cell PAF receptor expression with CSE exposure. Taken together, our data indicate that CSE exposure increases endothelial cell PAF production, resulting in enhanced adherence of tumor cells to the endothelium. Our in vitro data indicate that increased tumor cell adherence would lead to enhanced metastasis formation in smokers. Potential therapeutic targets include endothelial cell iPLA2β or the tumor cell PAF receptor. Copyright © 2014 the American Physiological Society.

  7. Pain-releasing action of platelet-activating factor (PAF) antagonists in neuropathic pain animal models and the mechanisms of action.

    Science.gov (United States)

    Motoyama, N; Morita, K; Kitayama, T; Shiraishi, S; Uezono, Y; Nishimura, F; Kanematsu, T; Dohi, T

    2013-09-01

    Platelet-activating factor (PAF) has been implicated in the pathology of neuropathic pain. Previous studies reported that PAF receptor (PAF-R) antagonists have varied anti-allodynia effects by route of administration and nerve injury models in rats. The present study elucidated the effectiveness of PAF antagonists against neuropathic pain in four different models of peripheral nerve injury and provided insights into the mode of anti-allodynia action. PAF antagonists, TCV-309, BN 50739 and WEB 2086 by intravenous (i.v.) and oral administration have potent and long-lasting anti-allodynia action in mice neuropathic pain models. Treatment with PAF antagonists before surgery delayed the initiation of allodynia until the effects of these treatments were abolished. Intrathecal (i.t.) injection of the PAF antagonists and siRNA against PAF receptor ameliorated allodynia. I.t. injection of the glycine receptor (GlyR)α3 siRNA reduced the anti-allodynia effect of PAF antagonists. This evidence suggests that the anti-allodynia effect of PAF antagonists is at least in part mediated by spinal relief of PAF-induced dysfunction of GlyRα3. An analysis of the mode of anti-allodynia action of TCV-309 in vivo revealed a competitive action against PAF shortly after the injection of TCV-309, converting to a non-competitive action later. The present results revealed the effectiveness in anti-allodynia of PAF antagonists in different nerve injury models, and the unique mode of action; long-lasting anti-allodynia effects mediated by spinal GlyRα3 with a competitive manner at the initial stage and the following non-competitive manner of inhibition. © 2013 European Federation of International Association for the Study of Pain Chapters.

  8. Plasma PAF-AH (PLA2G7): Biochemical Properties, Association with LDLs and HDLs, and Regulation of Expression.

    Science.gov (United States)

    Stafforini, Diana M

    2015-01-01

    This chapter is focused on the plasma form of PAF-acetylhydrolase (PAF-AH), a lipoprotein-bound, calcium-independent phospholipase A2 activity also referred to as lipoprotein-associated phospholipase A2 and PLA2G7. PAF-AH catalyzes the removal of the acyl group at the sn-2 position of PAF and truncated phospholipids generated in settings of inflammation and oxidant stress. Here, I discuss current knowledge related to the structural features of this enzyme, including the molecular basis for association with lipoproteins and susceptibility to oxidative inactivation. The circulating form of PAF-AH is constitutively active and its expression is upregulated by mediators of inflammation at the transcriptional level. Several new mechanisms of regulation have been identified in recent years, including effects mediated by PPARs, VEGFR, and the state of cellular differentiation. Moreover, I discuss recent studies describing significant variations in the structure and regulation of PAF-AH from diverse species, which is likely to have important implications for the function of this enzyme in vivo. © 2015 Elsevier Inc. All rights reserved.

  9. Absence of PAF receptor alters cellular infiltrate but not rolling and adhesion of leukocytes in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Rodrigues, David Henrique; Lacerda-Queiroz, Norinne; de Miranda, Aline Silva; Fagundes, Caio Tavares; Campos, Roberta Dayrell de Lima; Arantes, Rosa Esteves; Vilela, Márcia de Carvalho; Rachid, Milene Alvarenga; Teixeira, Mauro Martins; Teixeira, Antônio Lúcio

    2011-04-18

    Experimental autoimmune encephalomyelitis (EAE) is a condition induced in some susceptible species to the study of multiple sclerosis (MS). The platelet activating factor (PAF) is an important mediator of immune responses and seems to be involved in MS. However, the participation of PAF in EAE and MS remains controversial. Thus, in this study, we aimed to evaluate the role of PAF receptor in the pathogenesis of EAE. EAE was induced using an emulsion containing MOG(35-55). EAE-induced PAF receptor knock out (PAFR(-/-)) mice presented milder disease when compared to C57BL/6 wild type (WT) animals. PAFR(-/-) animals had lower inflammatory infiltrates in central nervous system (CNS) tissue when compared to WT mice. However, intravital microscopy in cerebral microvasculature revealed similar levels of rolling and adhering leukocytes in both WT and PAFR(-/-) mice. Interleukine (IL)-17 and chemokines C-C motif legends (CCL)2 and CCL5 were significantly lower in PAFR(-/-) mice when compared to WT mice. Brain infiltrating cluster of differentiation (CD)4(+) leukocytes and IL-17(+) leukocytes was diminished in PAFR(-/-) when compared to WT mice. Taken together, our results suggest that PAF receptor is important in the induction and development of EAE, although it has no influence in rolling and adhesion steps of cell recruitment. The absence of PAF receptor results in milder disease by altering the type of inflammatory mediators and cells that are present in CNS tissue. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The activity of platelet activating factor-acetyl hydrolase (PAF-AH) in the salivary glands of Rhodnius prolixus.

    Science.gov (United States)

    Côrte-Real, Rozana; Gomes, Raquel N; Castro-Faria-Neto, Hugo C; Azambuja, Patricia; Garcia, Eloi S

    2011-06-01

    In this work, we investigated the activity of the platelet activating factor acetyl hydrolase (PAF-AH) in the salivary gland homogenates and saliva of Rhodnius prolixus. PAF-AH activity in the salivary gland homogenates was lower than in the saliva. Preliminary characterization of the enzyme demonstrated that it hydrolyzed the substrate 2-thio-PAF, was detectable just in 1 pair of salivary gland homogenates in 0.5 ml buffer, and was stable under different conditions. PMSF, TPCK, TLCK, pepstatin A and p-BPB all inhibited the PAF-AH activity. Enzyme specific activity in salivary gland homogenates diminished immediately after feeding of 5th-instar larvae, and increased before feeding by adult insects. 2-Thio-PAF induced platelet-aggregation that was inhibited by previous incubation of the substrate with salivary gland homogenates or saliva. The relevance of PAF-AH for providing Rhodnius with a feeding mechanism for facilitating the sucking of a high volume of blood meal in a short period is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. LysoPC and PAF Trigger Arachidonic Acid Release by Divergent Signaling Mechanisms in Monocytes

    Directory of Open Access Journals (Sweden)

    Janne Oestvang

    2011-01-01

    Full Text Available Oxidized low-density lipoproteins (LDLs play an important role during the development of atherosclerosis characterized by intimal inflammation and macrophage accumulation. A key component of LDL is lysophosphatidylcholine (lysoPC. LysoPC is a strong proinflammatory mediator, and its mechanism is uncertain, but it has been suggested to be mediated via the platelet activating factor (PAF receptor. Here, we report that PAF triggers a pertussis toxin- (PTX- sensitive intracellular signaling pathway leading to sequential activation of sPLA2, PLD, cPLA2, and AA release in human-derived monocytes. In contrast, lysoPC initiates two signaling pathways, one sequentially activating PLD and cPLA2, and a second parallel PTX-sensitive pathway activating cPLA2 with concomitant activation of sPLA2, all leading to AA release. In conclusion, lysoPC and PAF stimulate AA release by divergent pathways suggesting involvement of independent receptors. Elucidation of monocyte lysoPC-specific signaling mechanisms will aid in the development of novel strategies for atherosclerosis prevention, diagnosis, and therapy.

  12. Antifungal pharmacodynamics: Latin America's perspective.

    Science.gov (United States)

    Gonzalez, Javier M; Rodriguez, Carlos A; Agudelo, Maria; Zuluaga, Andres F; Vesga, Omar

    The current increment of invasive fungal infections and the availability of new broad-spectrum antifungal agents has increased the use of these agents by non-expert practitioners, without an impact on mortality. To improve efficacy while minimizing prescription errors and to reduce the high monetary cost to the health systems, the principles of pharmacokinetics (PK) and pharmacodynamics (PD) are necessary. A systematic review of the PD of antifungals agents was performed aiming at the practicing physician without expertise in this field. The initial section of this review focuses on the general concepts of antimicrobial PD. In vitro studies, fungal susceptibility and antifungal serum concentrations are related with different doses and dosing schedules, determining the PD indices and the magnitude required to obtain a specific outcome. Herein the PD of the most used antifungal drug classes in Latin America (polyenes, azoles, and echinocandins) is discussed. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Antifungal pharmacodynamics: Latin America's perspective

    Directory of Open Access Journals (Sweden)

    Javier M. Gonzalez

    2017-01-01

    Full Text Available The current increment of invasive fungal infections and the availability of new broad-spectrum antifungal agents has increased the use of these agents by non-expert practitioners, without an impact on mortality. To improve efficacy while minimizing prescription errors and to reduce the high monetary cost to the health systems, the principles of pharmacokinetics (PK and pharmacodynamics (PD are necessary. A systematic review of the PD of antifungals agents was performed aiming at the practicing physician without expertise in this field. The initial section of this review focuses on the general concepts of antimicrobial PD. In vitro studies, fungal susceptibility and antifungal serum concentrations are related with different doses and dosing schedules, determining the PD indices and the magnitude required to obtain a specific outcome. Herein the PD of the most used antifungal drug classes in Latin America (polyenes, azoles, and echinocandins is discussed.

  14. Acetylsalicylic acid inhibits the growth of melanoma tumors via SOX2-dependent-PAF-R-independent signaling pathway.

    Science.gov (United States)

    Thyagarajan, Anita; Saylae, Jeremiah; Sahu, Ravi P

    2017-07-25

    Acquired resistance to standard therapies remains a serious challenge, requiring novel therapeutic approaches that incorporate potential factors involved in tumor resistance. As cancers including melanoma express inflammatory cyclooxygenases generating prostaglandins implicated in tumor growth, we investigated mechanism of anti-inflammatory drug, acetylsalicylic acid (ASA) which has been shown to inhibit various tumor types, however, its effects against highly aggressive melanoma model are unclear. Given our reports that an activation of platelet-activating factor-receptor (PAF-R) augments the growth and impede efficacies of therapeutic agents in experimental melanoma, we also sought to determine if PAF-R mediates anti-melanoma activity of ASA. The current studies using stably PAF-R-positive (B16-PAFR) and negative (B16-MSCV) murine melanoma cells and PAF-R-expressing and deficient mice, demonstrate that ASA inhibits the in-vitro and in-vivo growth of highly aggressive B16F10 melanoma via bypassing tumoral or stromal PAF-R signaling. Similar ASA-induced effects in-vitro were seen in human melanoma and nasopharyngeal carcinoma cells positive or negative in PAF-R. Mechanistically, the ASA-induced decrease in cell survival and increase in apoptosis were significantly blocked by prostaglandin F2 alpha (PGF2α) agonists. Importantly, PCR array and qRT-PCR analysis of B16-tumors revealed significant downregulation of sry-related high-mobility-box-2 (SOX2) oncogene by ASA treatment. Interestingly, modulation of SOX2 expression by PGF2α agonists and upregulation by fibroblast growth factor 1 (FGF-1) rescued melanoma cells from ASA-induced decreased survival and increased apoptosis. Moreover, PGF2α-receptor antagonist, AL8810 mimics ASA-induced decreased melanoma cells survival which was significantly blocked by PGF2α and FGF-1. These findings indicate that ASA inhibits the growth of aggressive melanoma via SOX2-dependent-PAF-R-indepedent pathway.

  15. Detection of paroxysmal atrial fibrillation by 30-day event monitoring in cryptogenic ischemic stroke: the Stroke and Monitoring for PAF in Real Time (SMART) Registry.

    Science.gov (United States)

    Flint, Alexander C; Banki, Nader M; Ren, Xiushui; Rao, Vivek A; Go, Alan S

    2012-10-01

    Patients with cryptogenic ischemic stroke may have undetected paroxysmal atrial fibrillation (PAF). We established the Stroke and Monitoring for PAF in Real Time (SMART) Registry to determine the yield of 30-day outpatient PAF monitoring in cryptogenic ischemic stroke. The SMART Registry was a 3-year, prospective multicenter registry of 239 patients with cryptogenic ischemic stroke undergoing 30-day outpatient autotriggered PAF detection in Kaiser Permanente Northern California. In intention-to-monitor analysis, PAF was detected in 29 of 239 patients (12.1%; 95% CI, 8.6%-16.9%). After retrospective chart review was performed, a new diagnosis of PAF was confirmed in 26 of 236 patients (11.0%; 95% CI, 7.6%-15.7%). The majority of detected PAF events were asymptomatic; only 6 of 98 recorded PAF events (6.1%) were patient-triggered or associated with symptoms. -Approximately 1 in every 9 patients with cryptogenic ischemic stroke was found to have new PAF within 30 days. Routine monitoring in this population should be strongly considered.

  16. Tenebrio molitor Gram-negative-binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF-007.

    Science.gov (United States)

    Yang, Yi-Ting; Lee, Mi Rong; Lee, Se Jin; Kim, Sihyeon; Nai, Yu-Shin; Kim, Jae Su

    2017-05-23

    The Toll signaling pathway is responsible for defense against both Gram-positive bacteria and fungi. Gram-negative binding protein 3 (GNBP3) has a strong affinity for the fungal cell wall component, β-1,3-glucan, which can activate the prophenoloxidase (proPO) cascade and induce the Toll signaling pathway. Myeloid differentiation factor 88 (MyD88) is an intracellular adaptor protein involved in the Toll signaling pathway. In this study, we monitored the response of 5 key genes (TmGNBP3, TmMyD88, and Tenecin 1, 2, and 3) in the Toll pathway of the mealworm Tenebrio molitor immune system against the fungus Beauveria bassiana JEF-007 using RT-PCR. TmGNBP3, Tenecin 1, and Tenecin 2 were significantly upregulated after fungal infection. To better understand the roles of the Toll signaling pathway in the mealworm immune system, TmGNBP3 and TmMyD88 were knocked down by RNAi silencing. Target gene expression levels decreased at 2 d postknockdown and were dramatically reduced at 6 d post-dsRNA injection. Therefore, mealworms were compromised by B. bassiana JEF-007 at 6 d post-dsRNA injection. Silencing of TmMyD88 and TmGNBP3 resulted in reduced resistance of the host to fungal infection. Particularly, reducing TmGNBP3 levels obviously downregulated Tenecin 1 and Tenecin 2 expression levels, whereas silencing TmMyD88 expression resulted in decreased Tenecin 2 expression. These results indicate that TmGNBP3 is essential to induce downstream antifungal peptide Tenecin 1 expression against B. bassiana JEF-007. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  17. Effect of BN 52021, a specific antagonist of platelet activating factor (PAF-acether), on calcium movements and phosphatidic acid production induced by PAF-acether in human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.F.; Chap, H.; Braquet, P.; Douste-Blazy, L.

    1987-02-15

    /sup 32/P-labelled human platelets loaded with quin 2 and pretreated with aspirin were stimulated with 1-100 nM platelet activating factor (PAF-acether or 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in a medium containing the ADP-scavenging system creatine phosphate/creatine phosphokinase. Under these conditions, PAF-acether evoked a characteristic fluorescence change allowing to quantify elevations in cytoplasmic free Ca/sup 2 +/ from internal stores (Ca/sup 2 +/ mobilization) or from external medium (Ca/sup 2 +/ influx), as well as an increased production of phosphatidic acid, reflecting phospholipase C activation. These effects, which can be attributed to PAF-acether only and not to released products such as ADP or thromboxane A2, were strongly inhibited in a dose-dependent manner by BN 52021, a specific antagonist of PAF-acether isolated from Ginkgo biloba. As the drug remained inactive against the same effects elicited by thrombin, it is concluded that BN 52021 does not interfere directly with the mechanism of transmembrane signalling involving inositol-phospholipids or (and) some putative receptor-operated channels, but rather acts on the binding of PAF-acether to its presumed membrane receptor.

  18. Armillaria mellea induces a set of defense genes in grapevine roots and one of them codifies a protein with antifungal activity.

    Science.gov (United States)

    Perazzolli, Michele; Bampi, Federica; Faccin, Silvia; Moser, Mirko; De Luca, Federica; Ciccotti, Anna Maria; Velasco, Riccardo; Gessler, Cesare; Pertot, Ilaria; Moser, Claudio

    2010-04-01

    Grapevine root rot, caused by Armillaria mellea, is a serious disease in some grape-growing regions. Young grapevines start to show symptoms of Armillaria root rot from the second year after inoculation, suggesting a certain degree of resistance in young roots. We used a suppression subtractive hybridization approach to study grapevine's reactions to the first stages of A. mellea infection. We identified 24 genes that were upregulated in the roots of the rootstock Kober 5BB 24 h after A. mellea challenge. Real-time reverse-transcriptase polymerase chain reaction analysis confirmed the induction of genes encoding protease inhibitors, thaumatins, glutathione S-transferase, and aminocyclopropane carboxylate oxidase, as well as phase-change related, tumor-related, and proline-rich proteins, and gene markers of the ethylene and jasmonate signaling pathway. Gene modulation was generally stronger in Kober 5BB than in Pinot Noir plants, and in vitro inoculation induced higher modulation than in greenhouse Armillaria spp. treatments. The full-length coding sequences of seven of these genes were obtained and expressed as recombinant proteins. The grapevine homologue of the Quercus spp. phase-change-related protein inhibited the growth of A. mellea mycelia in vitro, suggesting that this protein may play an important role in the defense response against A. mellea.

  19. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast.

    Science.gov (United States)

    Mbogning, Jean; Nagy, Stephen; Pagé, Viviane; Schwer, Beate; Shuman, Stewart; Fisher, Robert P; Tanny, Jason C

    2013-01-01

    Cyclin-dependent kinase 9 (Cdk9) promotes elongation by RNA polymerase II (RNAPII), mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF) complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.

  20. The PAF complex and Prf1/Rtf1 delineate distinct Cdk9-dependent pathways regulating transcription elongation in fission yeast.

    Directory of Open Access Journals (Sweden)

    Jean Mbogning

    Full Text Available Cyclin-dependent kinase 9 (Cdk9 promotes elongation by RNA polymerase II (RNAPII, mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.

  1. Candida Species Biofilms’ Antifungal Resistance

    Science.gov (United States)

    Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana

    2017-01-01

    Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527

  2. Penetratin and derivatives acting as antifungal agents

    NARCIS (Netherlands)

    Masman, Marcelo F.; Rodriguez, Ana M.; Raimondi, Marcela; Zacchino, Susana A.; Luiten, Paul G. M.; Somlai, Csaba; Kortvelyesi, Tamas; Penke, Botond; Enriz, Ricardo D.

    The synthesis, in vitro evaluation, and conformational study of RQIKTWFQNRRMKWKK-NH(2) (penetratin) and related derivatives acting as antifungal agents are reported. Penetratin and some of its derivatives displayed antifungal activity against the human opportunistic pathogenic standardized ATCC

  3. SHORT COMMUNICATION EVALUATION OF ANTIFUNGAL AND ...

    African Journals Online (AJOL)

    Preferred Customer

    Pakistan) and chloramphenicol from Sigma St. Louis. (USA) was used as standard. Antifungal activity of monoesters. The antifungal activities of the monoesters (1-29) were determined by employing hanging drop method considering ketoconazole ...

  4. Integral effect test and code analysis on the cooling performance of the PAFS (passive auxiliary feedwater system) during an FLB (feedwater line break) accident

    International Nuclear Information System (INIS)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyoung-Ho

    2014-01-01

    Highlights: • This study focuses on the experimental validation of the operational performance of the PAFS (passive auxiliary feedwater system). • A transient simulation of the FLB (feedwater line break) in the integral effect test facility, ATLAS-PAFS, was performed to investigate thermal hydraulic behavior during the PAFS actuation. • The test result confirmed that the APR+ has the capability of coping with the FLB scenario by adopting the PAFS and proper set-points for its operation. • The experimental result was utilized to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. - Abstract: APR+ (Advanced Power Reactor Plus), which is a GEN-III+ nuclear power plant developed in Korea, adopts PAFS (passive auxiliary feedwater system) as an advanced safety feature. The PAFS can completely replace an active auxiliary feedwater system by cooling down the secondary side of steam generators with a natural convection mechanism. This study focuses on experimental and analytical investigation for cooling and operational performance of the PAFS during an FLB (feedwater line break) transient with an integral effect test facility, ATLAS-PAFS. To realistically simulate the FLB accident of the APR+, the three-level scaling methodology was taken into account to design the test facility and determine the test condition. From the test result, the PAFS was actuated to successfully cool down the decay heat of the reactor core by the condensation heat transfer at the PCHX (passive condensation heat exchanger), and thus it could be confirmed that the APR+ has the capability of coping with a FLB scenario by adopting the PAFS and proper set-points for its operation. This integral effect test data were used to evaluate the prediction capability of a thermal hydraulic system analysis code, MARS-KS. The code analysis result proved that it could reasonably predict the FLB transient including the actuation of the PAFS and the natural convection

  5. Special Issue: Novel Antifungal Drug Discovery

    Directory of Open Access Journals (Sweden)

    Maurizio Del Poeta

    2016-12-01

    Full Text Available This Special Issue is designed to highlight the latest research and development on new antifungal compounds with mechanisms of action different from the ones of polyenes, azoles, and echinocandins. The papers presented here highlight new pathways and targets that could be exploited for the future development of new antifungal agents to be used alone or in combination with existing antifungals. A computational model for better predicting antifungal drug resistance is also presented.

  6. Magnone A and B, novel anti-PAF tetrahydrofuran lignans from the flower buds of Magnolia fargesii.

    Science.gov (United States)

    Jung, K Y; Kim, D S; Oh, S R; Park, S H; Lee, I S; Lee, J J; Shin, D H; Lee, H K

    1998-06-26

    In a search for platelet-activating-factor (PAF) antagonists, two new lignan compounds were isolated from the Chinese crude drug shin-i, the flower buds of Magnolia fargesii. Their structures were elucidated as (2S,3R,4R)-tetrahydro-2-(3,4-dimethoxyphenyl)-4-(3, 4-dimethoxybenzoyl)-3-(hydroxymethyl)furan (magnone A, 1) and (2S,3R, 4R)-tetrahydro-2-(3,4,5-trimethoxyphenyl)-4-(3, 4-dimethoxybenzoyl)-3-(hydroxymethyl)furan (magnone B, 2). Magnones A and B showed antagonistic activity against PAF in the [3H]PAF receptor binding assay with the IC50 values of 3.8 x 10(-5) M and 2.7 x 10(-5) M, respectively.

  7. Partial retrotransposon-like DNA sequence in the genomic clone of Aspergillus flavus, pAF28.

    Science.gov (United States)

    Okubara, Patricia A; Tibbot, Brian K; Tarun, Alice S; McAlpin, Cesaria E; Hua, Sui-Sheng T

    2003-07-01

    A genomic clone of the aflatoxin-producing fungus Aspergillus flavus, designated pAF28, has been used as a probe for Southern blot fingerprinting of fungal strains. A large number of A. flavus strains isolated from corn fields and tree-nut orchards can be distinguished because the DNA fingerprint patterns are highly polymorphic. We have completed the sequencing of a 6355 bp insert in pAF28. The sequence features motifs and open reading frames characteristic of transposable elements of the gypsy class. We have named this new element AfRTL-1, for A. flavus retrotransposon-like DNA.

  8. Sensitivity of Neurospora crassa to a Marine-Derived Aspergillus tubingensis Anhydride Exhibiting Antifungal Activity That Is Mediated by the MAS1 Protein

    Directory of Open Access Journals (Sweden)

    Liat Koch

    2014-09-01

    Full Text Available The fungus Aspergillus tubingensis (strain OY907 was isolated from the Mediterranean marine sponge Ircinia variabilis. Extracellular extracts produced by this strain were found to inhibit the growth of several fungi. Among the secreted extract components, a novel anhydride metabolite, tubingenoic anhydride A (1 as well as the known 2-carboxymethyl-3-hexylmaleic acid anhydride, asperic acid, and campyrone A and C were purified and their structure elucidated. Compound 1 and 2-carboxymethyl-3-hexylmaleic acid anhydride inhibited Neurospora crassa growth (MIC = 330 and 207 μM, respectively and affected hyphal morphology. We produced a N. crassa mutant exhibiting tolerance to 1 and found that a yet-uncharacterized gene, designated mas-1, whose product is a cytosolic protein, confers sensitivity to this compound. The ∆mas-1 strain showed increased tolerance to sublethal concentrations of the chitin synthase inhibitor polyoxin D, when compared to the wild type. In addition, the expression of chitin synthase genes was highly elevated in the ∆mas-1 strain, suggesting the gene product is involved in cell wall biosynthesis and the novel anhydride interferes with its function.

  9. PAFS METAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is a routine scheduled observation and is the primary observation code used in the United States to satisfy requirements for reporting surface meteorological...

  10. Antifungal Treatment for Pityriasis Versicolor.

    Science.gov (United States)

    Gupta, Aditya K; Foley, Kelly A

    2015-03-12

    Pityriasis versicolor (PV), also known as tinea versicolor, is caused by Malassezia species. This condition is one of the most common superficial fungal infections worldwide, particularly in tropical climates. PV is difficult to cure and the chances for relapse or recurrent infections are high due to the presence of Malassezia in the normal skin flora. This review focuses on the clinical evidence supporting the efficacy of antifungal treatment for PV. A systematic review of literature from the PubMed database was conducted up to 30 September 2014. The search criteria were "(pityriasis versicolor OR tinea versicolor) AND treatment", with full text available and English language required. Topical antifungal medications are the first-line treatment for PV, including zinc pyrithione, ketoconazole, and terbinafine. In cases of severe or recalcitrant PV, the oral antifungal medications itraconazole and fluconazole may be more appropriate, with pramiconazole a possible future option. Oral terbinafine is not effective in treating PV and oral ketoconazole should no longer be prescribed. Maintenance, or prophylactic, therapy may be useful in preventing recurrent infection; however, at this time, there is limited research evaluating the efficacy of prophylactic antifungal treatment.

  11. SIRT1 prevents pulmonary thrombus formation induced by arachidonic acid via downregulation of PAF receptor expression in platelets.

    Science.gov (United States)

    Kim, Yun Hak; Bae, Jin Ung; Kim, In Suk; Chang, Chulhun L; Oh, Sae Ock; Kim, Chi Dae

    2016-12-01

    SIRT1, a class III histone deacetylase, is critically involved in cellular response to stress and modulates cardiovascular risk factors. However, its role in thrombus formation is largely unknown. Thus, this study investigated the effect of SIRT1 on pulmonary thrombus formation, and then identified its role in the modulation of platelet aggregation. In isolated human platelets, cell aggregation was increased by various platelet activators, such as platelet activating factor (PAF), arachidonic acid (AA), ADP, and thrombin. AA- and PAF-mediated platelet aggregations were suppressed by WEB2086, a PAF receptor (PAFR) antagonist. Pulmonary thrombus formation induced by PAF or AA was also attenuated by WEB2086, suggesting that PAFR plays a key role in AA-induced platelet aggregation. In platelets isolated from SIRT1-TG mice as well as in platelets treated with resveratrol or reSIRT1, PAFR expression was decreased, whereas this expressional downregulation by SIRT1 activators was inhibited in platelets treated with MG132 (a proteasome inhibitor) or NH 4 Cl (a lysosome inhibitor). Furthermore, platelet aggregation induced by AA was markedly attenuated by resveratrol and reSIRT1. Likewise, the increased pulmonary thrombus formation in mice treated with AA was also attenuated by SIRT1 activators. In line with these results, pulmonary thrombus formation was markedly attenuated in SIRT1-TG mice. Taken together, this study showed that SIRT1 downregulates PAFR expression on platelets via proteasomal and lysosomal pathways, and that this downregulation inhibits platelet aggregation in vitro and pulmonary thrombus formation in vivo.

  12. Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy.

    Science.gov (United States)

    de Oliveira, Soraya I; Andrade, Luciana N S; Onuchic, Ana C; Nonogaki, Sueli; Fernandes, Patrícia D; Pinheiro, Mônica C; Rohde, Ciro B S; Chammas, Roger; Jancar, Sonia

    2010-05-13

    Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside the tumour, but not the

  13. Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy

    International Nuclear Information System (INIS)

    Oliveira, Soraya I de; Andrade, Luciana NS; Onuchic, Ana C; Nonogaki, Sueli; Fernandes, Patrícia D; Pinheiro, Mônica C; Rohde, Ciro BS; Chammas, Roger; Jancar, Sonia

    2010-01-01

    Phagocytosis of apoptotic cells by macrophages induces a suppressor phenotype. Previous data from our group suggested that this occurs via Platelet-activating factor receptor (PAF-R)-mediated pathways. In the present study, we investigated the impact of apoptotic cell inoculation or induction by a chemotherapeutic agent (dacarbazine, DTIC) on tumour growth, microenvironmental parameters and survival, and the effect of treatment with a PAF-R antagonist (WEB2170). These studies were performed in murine tumours: Ehrlich Ascitis Tumour (EAT) and B16F10 melanoma. Tumour growth was assessed by direct counting of EAT cells in the ascitis or by measuring the volume of the solid tumour. Parameters of the tumour microenvironment, such as the frequency of cells expressing cyclo-oxygenase-2 (COX-2), caspase-3 and galectin-3, and microvascular density, were determined by immunohistochemistry. Levels of vascular endothelium growth factor (VEGF) and prostaglandin E2 (PGE2) were determined by ELISA, and levels of nitric oxide (NO) by Griess reaction. PAF-R expression was analysed by immunohistochemistry and flow cytometry. Inoculation of apoptotic cells before EAT implantation stimulated tumour growth. This effect was reversed by in vivo pre-treatment with WEB2170. This treatment also reduced tumour growth and modified the microenvironment by reducing PGE2, VEGF and NO production. In B16F10 melanoma, WEB2170 alone or in association with DTIC significantly reduced tumour volume. Survival of the tumour-bearing mice was not affected by WEB2170 treatment but was significantly improved by the combination of DTIC with WEB2170. Tumour microenvironment elements were among the targets of the combination therapy since the relative frequency of COX-2 and galectin-3 positive cells and the microvascular density within the tumour mass were significantly reduced by treatment with WEB2170 or DTIC alone or in combination. Antibodies to PAF-R stained the cells from inside the tumour, but not the

  14. Investigation possibility of PCC overvoltage transients in power electric system with PAF

    Energy Technology Data Exchange (ETDEWEB)

    Dobrucky, B.; Pavlanin, R.; Benova, M. [Zilina Univ. (Slovakia). Faculty of Electrical Engineering; Abdamula, M.A.R. [Univ. of 7th April, Zawia (Libyan Arab Jamahiriya)

    2009-07-01

    Overvoltages can damage power systems and create potential hazards to system workers. This paper discussed over-voltages that occurred during transient states in a power system comprised of a power active filter connected to a common coupling point. The study investigated the dynamic states of load step changes, source voltage step changes and load failures related to power active filters at the point of connection (PCC). Computerized simulations were developed to model the switching on and switching off of the power active filter at a maximum supply voltage for a linear R-L load. Laboratory experiments conducted to obtain data for the study were also presented. Results of the study demonstrated an overcurrent that corresponded to the charging of the PAF capacitor. It was concluded that the power active filter did not supply energy to the PCC point during overvoltage switch-offs. 10 refs., 10 figs.

  15. Effects of the platelet-activating factor (PAF) on selected quality parameters of cryopreserved bull semen (AI) with reduced sperm motility.

    Science.gov (United States)

    Lecewicz, M; Kordan, W; Majewska, A; Kamiński, S; Dziekońska, A; Mietelska, K

    2016-01-01

    The aim of the study was to determine the effects of platelet-activating factor (PAF) on selected quality parameters of cryopreserved bull semen with reduced sperm motility used for artificial insemination. The aim of experiment 1 was to identify the optimal concentration of the phospholipid able to preserve sperm viability. Cryopreserved semen was treated with different PAF concentrations: 1×10(-5) M, 1×10(-6) M, 1×10(-7) M, 1×10(-8) M and 1×10(-9) M. The experiment demonstrated that PAF at concentration 1×10(-9) M increased most the sperm viability parameters (motility parameters, plasma membrane integrity and mitochondrial function) after 120 min of incubation of thawed semen at 37°C. Cryopreserved bull semen with reduced sperm motility (below 70%) was supplemented with PAF in a concentration of 1×10(-9) M. A statistically significant increase in sperm motility, percentage of linear motile spermatozoa and VSL value was observed after 120 min incubation of sperm with 1×10(-9) M PAF. Sperm supplementation with PAF also had positive effects on plasma membrane integrity and percentage of spermatozoa with preserved mitochondrial transmembrane potential, but the differences were not statistically significant. The results indicated positive effects of PAF supplementation at a concentration of 1×10(-9) M on the selected sperm quality parameters in cryopreserved bull semen with reduced motility.

  16. Development of a seaweed derived platelet activating factor acetylhydrolase (PAF-AH) inhibitory hydrolysate, synthesis of inhibitory peptides and assessment of their toxicity using the Zebrafish larvae assay.

    Science.gov (United States)

    Fitzgerald, Ciarán; Gallagher, Eimear; O'Connor, Paula; Prieto, José; Mora-Soler, Leticia; Grealy, Maura; Hayes, Maria

    2013-12-01

    The vascular inflammatory role of platelet activating factor acetylhydrolase (PAF-AH) is thought to be due to the formation of lysophosphatidyl choline and oxidized non-esterified fatty acids. This enzyme is considered a promising therapeutic target for the prevention of atherosclerosis and there is a need to expand the available chemical templates of PAF-AH inhibitors. This study demonstrated how natural PAF-AH inhibitory peptides were isolated and characterized from the red macroalga Palmaria palmata. The dried powdered alga was hydrolyzed using the food grade enzyme papain, and the resultant peptide containing fraction generated using RP-HPLC. Several oligopeptides were identified as potential PAF-AH inhibitors following bio-guided fractionation, and the amino acid sequences of these oligopeptides were confirmed by Q-TOF-MS and microwave-assisted solid phase de novo synthesis. The most promising PAF-AH inhibitory peptide had the amino acid sequence NIGK and a PAF-AH IC50 value of 2.32 mM. This peptide may constitute a valid drug template for PAF-AH inhibitors. Furthermore the P. palmata hydrolysate was nontoxic when assayed using the Zebrafish toxicity model at a concentration of 1mg/ml. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. De novo biosynthesis of alkylacetylglycerols, a precursor of platelet activating factor (PAF)

    International Nuclear Information System (INIS)

    Malone, B.; Lee, T.C.; Snyder, F.

    1986-01-01

    Alkylacetylglycerols are synthesized from 1-alkyl-2-lyso-sn-Gro-3-P via an acetyltransferase (I) and a phosphohydrolase (II). The final step that forms PAF in this pathway is catalyzed by a dithiothreitol-insensitive cholinephosphotransferase. This report describes properties of the acetyltransferase (I) and the phosphohydrolase (II). Results indicate the two activities are distinctly different from acetyl-CoA:1-alkyl-2-lyso-GroPCho acetyltransferase (III) and phosphatidic acid phosphohydrolase (IV), respectively. For example, 12.5 or 25 μM alkyl-lysoGroPCho did not affect the quantity of alkylacetylGroP and alkylacetylGro produced. The pH optimum for (I) was 8.4 as opposed to 6.9 for (III); also (I) and (III) had different sensitivities when microsomes were preincubated at various temperatures. Phosphatidic acid had no effect on the hydrolysis of the phosphate from alkylacetylGroP (II) and the pH optimum of the phosphohydrolase (II) was 6.6. Based on the distribution of marker enzymes, both acetyltransferases (I and III) and the alkylacetylGroP phosphohydrolase (II) are of microsomal origin. The phosphohydrolase (II) activity can be maximally inhibited by adding Na 3 VO 4 and NaF to the assays and further decreased by incubating samples at a reduced temperature (23 0 C); under these conditions the amounts of alkylacethlGroP is maximum. The newly identified enzyme activities (I and II) are relatively high in a variety of rat tissues, which suggests this de novo route is responsible for maintaining physiological levels of PAF

  18. Antifungal activity of some tetranortriterpenoids.

    Science.gov (United States)

    Govindachari, T R; Suresh, G; Gopalakrishnan, G; Masilamani, S; Banumathi, B

    2000-06-01

    Natural tetranortriterpenoids such as cedrelone from Toona ciliata, azadiradione from Azadirachta indica, limonin, limonol and nomilinic acid from Citrus medica, along with some cedrelone derivatives were tested for their antifungal activity against Puccinia arachidis, a groundnut rust pathogen. Results show that cedrelone was the most effective in reducing rust pustule emergence. Replacement of functional groups or modification of the A or the B ring in cedrelone reduced the effectiveness indicating the importance of specific structural features for activity.

  19. Atividade da enzima acetil-hidrolase do fator ativador de plaquetas (PAF-AH em pacientes com diabete melito tipo 1 Platelet-activating factor acetylhydrolase (PAF-AH activity in patients with type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Simone Henriques de Castro

    2007-02-01

    Full Text Available OBJETIVO: Avaliar a atividade da acetil-hidrolase do fator ativador de plaquetas (PAF-AH e sua relação com variáveis clinicodemográficas, com o controle metabólico, os níveis de apolipoproteínas A e B e a suscetibilidade da lipoproteína de baixa densidade (LDL à oxidação in vitro em pacientes com DM tipo 1 (DM 1. MÉTODOS: Foram avaliados 42 pacientes com DM1 (27 mulheres e 48 não-diabéticos (16 mulheres, pareados por sexo, idade e índice de massa corporal (IMC. Os exames realizados foram: glicemia de jejum (GJ e pós-prandial (GPP, lipidograma, ácido úrico (AU, hemoglobina glicosilada (HbA1c e coeficiente de oxidação da lipoproteína de baixa densidade (LDL por espectrofotometria. A análise da atividade da PAF-AH foi realizada por espectrofotometria (Cayman Chemical. RESULTADOS: A análise da atividade da PAF-AH mostrou haver maior atividade enzimática nos pacientes com DM 1 do que nos não-diabéticos (0,0150 ± 0,0051 versus 0,0116 ± 0,0041; p OBJECTIVE: To evaluate platelet-activating factor acetylhydrolase (PAF-AH activity and its relationship with clinical and demographic variables, metabolic control, apolipoprotein A and B levels and the susceptibility of low-density lipoprotein (LDL to in vitro oxidation in patients with type 1 diabetes mellitus (DM 1. METHODS: Forty two patients with DM 1 (27 females and 48 control subjects (16 females matched for gender, age and body mass index (BMI were evaluated. The following tests were performed: fast plasma glucose (FG and postprandial plasma glucose (PPG, lipid profile, uric acid (UA, glycosylated hemoglobin (HbA1c, and low-density lipoprotein (LDL oxidation rate using colorimetric assay. The PAF-AH activity was analyzed using colorimetric assay (Cayman Chemical. RESULTS: The analysis of PAF-AH activity showed a higher enzyme activity in patients with DM 1 than in control subjects (0.0150 ± 0.0051 vs. 0.0116 ± 0.0041; p < 0.001. In patients with DM 1, a direct correlation

  20. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  1. Antifungal potential of marine natural products

    OpenAIRE

    El-Hossary, Ebaa M.; Cheng, Cheng; Hamed, Mostafa M.; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2017-01-01

    Highlights: • Fungal infections represent an increasing threat to human health. • Fungal infections in plants are a worldwide problem to the agricultural industry. • Diverse antifungal compounds were isolated from different marine organisms. • The number of new antifungal marine natural products is rapidly developing. • Marine sponges and bacteria are the predominant sources for antifungal compounds. Abstract: Fungal diseases represent an increasing threat to human healt...

  2. Study on Mutagenic Breeding of Bacillus Subtilis and Properties of Its Antifungal Substances

    Science.gov (United States)

    Liu, Jing; Yao, Jianming

    2004-08-01

    Bacillus subtitles JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our studay. After B. subtitles JA was implanted by N+ ions, a strain designated as B. subtitles JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate-enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein.

  3. Exploiting mitochondria as targets for the development of new antifungals.

    Science.gov (United States)

    Li, Dongmei; Calderone, Richard

    2017-02-17

    Mitochondria are essential for cell growth and survival of most fungal pathogens. Energy (ATP) produced during oxidation/reduction reactions of the electron transport chain (ETC) Complexes I, III and IV (CI, CIII, CIV) fuel cell synthesis. The mitochondria of fungal pathogens are understudied even though more recent published data suggest critical functional assignments to fungal-specific proteins. Proteins of mammalian mitochondria are grouped into 16 functional categories. In this review, we focus upon 11 proteins from 5 of these categories in fungal pathogens, OXPHOS, protein import, stress response, carbon source metabolism, and fission/fusion morphology. As these proteins also are fungal-specific, we hypothesize that they may be exploited as targets in antifungal drug discovery. We also discuss published transcriptional profiling data of mitochondrial CI subunit protein mutants, in which we advance a novel concept those CI subunit proteins have both shared as well as specific responsibilities for providing ATP to cell processes.

  4. Antifungal stewardship in a tertiary hospital.

    Science.gov (United States)

    Ramos, Antonio; Pérez-Velilla, Claudia; Asensio, Angel; Ruiz-Antorán, Belén; Folguera, Carlos; Cantero, Mireia; Orden, Beatriz; Muñez, Elena

    2015-01-01

    The inappropriate use of antifungals is an important health problem related to increasing adverse effects, unnecessary cost and promotion of resistant and emerging fungal infections. Despite its relevance, many health institutions assign few resources to improve prescribing practices. To evaluate the efficiency of an antifungal stewardship programme (ASP) centered on restricted antifungal agents. The main activity during the eight-month study was to perform a programmed review of restricted antifungals (lipid formulations of amphotericin B, echinocandins and voriconazole) prescribed in hospitalized patients. In the case of amendable antifungal treatment, a recommendation was included in the electronic medical record. A total of 280 antifungal prescriptions for 262 patients were revised during the study period. The indications were prophylactic in 85 cases (30.4%), pre-emptive in 10 cases (3.5%), empiric in 122 cases (43.6%), and directed in 63 cases (22.5%). A total of 70 prescriptions (25%) in 61 patients were considered to be amendable. In most of these cases, treatment could have been reduced considering the patient's clinical improvement and microbiological results. The most common advice was antifungals change (70%), antifungal withdrawal (21%), removal of one antifungal drug in cases of combined therapy (7%), and switching to oral route (1%). Proposed recommendations were addressed in 28 cases (40%). There was no significant difference in adherence with respect to the type of recommendation (p=0.554). There was a 42% lower use of antifungals during the period of the study compared to that observed during a similar previous period. Mortality among patients who were treated according to the recommendations of the ASP was 17% and in whom treatment was not modified it was 30% (p=0.393). ASPs centered on hospitalized patients may be an efficient strategy to ameliorate antifungal use in hospitals. Copyright © 2014 Revista Iberoamericana de Micología. Published by

  5. Platelet-Activating Factor (PAF Antagonistic Activity of a New Biflavonoid from Garcinia nervosa var. pubescens King

    Directory of Open Access Journals (Sweden)

    Azura Abdul Ghani

    2012-09-01

    Full Text Available The methanol extract of the leaves of Garcinia nervosa var. pubescens King, which showed strong inhibitory effects on platelet-activating factor (PAF receptor binding, was subjected to bioassay-guided isolation to obtain a new biflavonoid, II-3,I-5, II-5,II-7,I-4',II-4'-hexahydroxy-(I-3,II-8-flavonylflavanonol together with two known flavonoids, 6-methyl-4'-methoxyflavone and acacetin. The structures of the compounds were elucidated by spectroscopic methods. The compounds were evaluated for their ability to inhibit PAF receptor binding to rabbit platelets using 3H-PAF as a ligand. The biflavonoid and acacetin showed strong inhibition with IC50 values of 28.0 and 20.4 µM, respectively. The results suggest that these compounds could be responsible for the strong PAF antagonistic activity of the plant.

  6. A regulatory role of LPCAT1 in the synthesis of inflammatory lipids, PAF and LPC, in the retina of diabetic mice.

    Science.gov (United States)

    Cheng, Long; Han, Xiao; Shi, Yuguang

    2009-12-01

    Platelet-activating factor (PAF) and lysophosphatidylcholine (LPC) are potent inflammatory lipids. Elevated levels of PAF and LPC are associated with the onset of diabetic retinopathy and neurodegeneration. However, the molecular mechanisms underlying such defects remain elusive. LPCAT1 is a newly reported lysophospholipid acyltransferase implicated in the anti-inflammatory response by its role in conversion of LPC to PC. Intriguingly, the LPCAT1 enzyme also catalyzes the synthesis of PAF from lyso-PAF with use of acetyl-CoA as a substrate. The present studies investigated regulatory roles of LPCAT1 in the synthesis of inflammatory lipids during the onset of diabetes. Our work shows that LPCAT1 plays an important role in the inactivation of PAF by catalyzing the synthesis of alkyl-PC, an inactivated form of PAF with use of acyl-CoA and lyso-PAF as substrates. In support of a role of LPCAT1 in anti-inflammatory responses in diabetic retinopathy, LPCAT1 is most abundantly expressed in the retina. Moreover, LPCAT1 mRNA levels and acyltransferase activity toward lyso-PAF and LPC were significantly downregulated in retina and brain tissues in response to the onset of diabetes in Ins2(Akita) and db/db mice, mouse models of type 1 and type 2 diabetes, respectively. Conversely, treatment of db/db mice with rosiglitazone, an antidiabetes compound, significantly upregulated LPCAT1 mRNA levels concurrently with increased acyltransferase activity in the retina and brain. Collectively, these findings identified a novel regulatory role of LPCAT1 in catalyzing the inactivation of inflammatory lipids in the retina of diabetic mice.

  7. Parasiticidal, antifungal and antibacterial activities of Onosma ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... neubauer counting chamber and IC50 values of compounds pos- sessing antileishmanial activity were calculated by Software Ezfit. 5.03 Perella Scientific. IC50 values of different fractions against the test pathogen are mentioned in Table 1. Antifungal activity. Similarly antifungal activity was evaluated by ...

  8. INVESTIGATION OF ANTIFUNGAL ACTIVITY OF QUINOLINIUM DERIVATIVES

    Directory of Open Access Journals (Sweden)

    G. A. Alexandrova

    2013-01-01

    Full Text Available Abstract. Antifungal activity (Candida albicans, Candida krusei of some substituted quinolinium derivatives has been investigated. It was established that the most perspective compound for detail investigation of antifungal activity by labeled biomarkers method was N-phenylbenzoquinaldinium tetrafluoroborate.

  9. Isolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency.

    Science.gov (United States)

    Wang, Shaoyun; Rao, Pingfan; Ye, Xiuyun

    2009-02-01

    Leguminous plants have formed a popular subject of research owing to the abundance of proteins and peptides with important biological activities that they produce. The antifungal proteins and peptides have been purified from a number of leguminous species. However, research continues to discover novel antifungal plant-produced peptides and proteins are being needed, specially those novel ones with both antifungal activity and other significant bioactivities. The objective of this study was to isolate a novel peptide from Phaseolus limensis. A 6.8 kDa peptide designated Limyin, with both antifungal and antiproliferative activity, was isolated from the large lima bean (P. limensis) legumes. The isolation procedure consisted of extraction, precipitation, affinity chromatography on Affi-gel blue gel, ion chromatography on SP-Toyopearl, and gel filtration on Superdex 75. Its N-terminal sequence was determined to be KTCENLATYYRGPCF, showing high homology to defensin and defensin precursors from plants. It potently suppressed mycelial growth in Alternaria alternata, Fusarium solani, and Botrytis cinerea. Its antifungal activity was stable up to 80 degrees C. It showed antiproliferative activity towards tumor cells including human liver hepatoma cells Bel-7402 and neuroblastoma cells SHSY5Y. However, it had no effect on bacteria Staphylococcus aureus and Salmonella. The present findings make a significant addition of the research on leguminous plants.

  10. Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy

    Science.gov (United States)

    da Silva-Jr, I A; Chammas, R; Lepique, A P; Jancar, S

    2017-01-01

    A major drawback of radiotherapy is the accelerated growth of the surviving tumor cells. Radiotherapy generates a variety of lipids that bind to the receptor for platelet-activating factor, expressed by cells in the tumor microenvironment. In the present study, using the TC-1 tumor cell line, we found that irradiation induced a twofold increase in receptor expression and generated agonists of receptor. Irradiated cells induced a 20-fold increase in live TC-1 proliferation in vitro. Furthermore, subcutaneous co-injection of irradiated TC-1 cells with TC-1 expressing luciferase (TC-1 fluc+) markedly increased TC-1 fluc+ proliferation in a receptor-dependent way. Moreover we used a human carcinoma cell line not expressing the PAF receptor (KBM) and the same cell transfected with the receptor gene (KBP). Following co-injection of live KBP cells with irradiated KBM in RAG mice, the tumor growth was significantly increased compared with tumor formed following co-injection of live KBM with irradiated KBM. This tumor cell repopulation correlated with increased infiltration of tumor-promoting macrophages (CD206+). We propose that receptor represents a possible target for improving the efficacy of radiotherapy through inhibition of tumor repopulation. PMID:28134937

  11. Essential oil of Psidium cattleianum leaves: antioxidant and antifungal activity.

    Science.gov (United States)

    Castro, Micheli R; Victoria, Francine N; Oliveira, Daniela H; Jacob, Raquel G; Savegnago, Lucielli; Alves, Diego

    2015-02-01

    Psidium cattleianum Sabine (Myrtacea) is rich in vitamin C and phenolic compounds, including epicatechin and gallic acid as the main components. To evaluate the antifungal and antioxidant capacity in vitro of the essential oil of araçá (EOA). The acute toxicity of the EOA also was evaluated in mice. The leaves of the P. cattleianum were extracted by steam distillation. The antioxidant capacity was evaluated by in vitro tests [1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), ferric ion reducing antioxidant power (FRAP), linoleic acid oxidation, thiobarbituric acid reactive species (TBARS)], and ex vivo analysis [TBARS, δ-aminulevunilate dehydratase (δ-Ala-D) and catalase activity, non-protein thiols (NPSH), and ascorbic acid levels]. The toxicity was studied in mice by a single oral administration of EOA; and the antifungal activity was performed with five strains of fungi. The EOA exhibited antioxidant activity in the FRAP assay and reduced lipid peroxidation in the cortex (Imax = 32.90 ± 2.62%), hippocampus (IC50 = 48.00 ± 3.00 µg/ml and Imax = 32.90 ± 2.62%), and cerebellum (Imax = 45.40 ± 14.04%) of mice. Acute administration of the EOA by the oral route did not cause toxicological effects in mice (LD50 > 500 µg/ml). The EOA also showed antifungal activity through of the determination minimum inhibitory concentration (MIC) values ranging from 41.67 ± 18.04 to 166.70 ± 72.17 µg/ml for tested strains. The results of present study indicate that EOA possess antioxidant properties, antifungal and not cause toxicity at tested doses.

  12. Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity.

    Science.gov (United States)

    Thevissen, K; Osborn, R W; Acland, D P; Broekaert, W F

    2000-01-01

    Dm-AMP1, an antifungal plant defensin from seeds of dahlia (Dahlia merckii), was radioactively labeled with t-butoxycarbonyl-[35S]-L-methionine N-hydroxy-succinimi-dylester. This procedure yielded a 35S-labeled peptide with unaltered antifungal activity. [35S]Dm-AMP1 was used to assess binding on living cells of the filamentous fungus Neurospora crassa and the unicellular fungus Saccharomyces cerevisiae. Binding of [35S]Dm-AMP1 to fungal cells was saturable and could be competed for by preincubation with excess, unlabeled Dm-AMP1 as well as with Ah-AMP1 and Ct-AMP1, two plant defensins that are highly homologous to Dm-AMP1. In contrast, binding could not be competed for by more distantly related plant defensins or structurally unrelated antimicrobial peptides. Binding of [35S]Dm-AMP1 to either N. crassa or S. cerevisiae cells was apparently irreversible. In addition, whole cells and microsomal membrane fractions from two independently obtained S. cerevisiae mutants selected for resistance to Dm-AMP1 exhibited severely reduced binding affinity for [35S]Dm-AMP1, compared with wild-type yeast. This finding suggests that binding of Dm-AMP1 to S. cerevisiae plasma membranes is required for antifungal activity of this protein.

  13. The Elements of Antifungal Drug Discovery

    DEFF Research Database (Denmark)

    Kjellerup, Lasse

    compounds (ZACs). Zinc is an important micronutrient and the immune system is known to operate with a similar mechanism to the ZACs by scavenging zinc from the site of infection, thus preventing the growth of pathogens through zinc starvation. In addition to the observations made about the ZAC compounds......In this PhD thesis I will explore the development of antifungal drugs. Fungal infections are estimated to cause the death of 1.5 million patients each year. There is currently a need for new antifungal drugs as the existing drugs are hampered by lack of broad-spectrum antifungal activity...

  14. Antifungal isopimaranes from Hypoestes serpens.

    Science.gov (United States)

    Rasoamiaranjanahary, L; Guilet, D; Marston, A; Randimbivololona, F; Hostettmann, K

    2003-09-01

    Five isopimarane diterpenes (7beta-hydroxyisopimara-8,15-dien-14-one, 14alpha-hydroxyisopimara-7,15-dien-1-one, 1beta,14alpha-dihydroxyisopimara-7,15-diene, 7beta-hydroxyisopimara-8(14),15-dien-1-one and 7beta-acetoxyisopimara-8(14),15-dien-1-one) have been isolated from the leaves of Hypoestes serpens (Acanthaceae). All compounds exhibited antifungal activity against both the plant pathogenic fungus Cladosporium cucumerinum and the yeast Candida albicans; two of them also displayed an acetylcholinesterase inhibition. The structures of the compounds were determined by means of spectrometric methods, including 1D and 2D NMR experiments and MS analysis.

  15. Production, optimization, characterization and antifungal activity of ...

    African Journals Online (AJOL)

    SAM

    2014-04-02

    Apr 2, 2014 ... the present study, the antifungal activity of crude A. terrus chitinase was investigated against Apergillus niger, Aspergillus oryzae .... Chitinase activity was determined spectrophotometrically by estimating the amount of ..... characterization of two. Bifunctional chitinases lysozyme extracellularly produced by.

  16. Vascular endothelial (VEGF) and epithelial growth factor (EGF) as well as platelet-activating factor (PAF) and receptors are expressed in the early pregnant canine uterus.

    Science.gov (United States)

    Schäfer-Somi, S; Sabitzer, S; Klein, D; Reinbacher, E; Kanca, H; Beceriklisoy, H B; Aksoy, O A; Kucukaslan, I; Macun, H C; Aslan, S

    2013-02-01

    The aim of this study was to investigate the course of expression of platelet-activating factor (PAF), PAF-receptor (PAF-R), epidermal growth factor (EGF), EGF-R, vascular endothelial growth factor (VEGF), VEGF-R1 and VEGF-R2 in uterine tissue during canine pregnancy. For this purpose, 20 bitches were ovariohysterectomized at days 10-12 (n = 10), 18-25 (n = 5) and 28-45 (n = 5) days after mating, respectively. The pre-implantation group was proven pregnant by embryo flushing of the uterus after the operation, the others by sonography. Five embryo negative, that is, non-pregnant, bitches in diestrus (day 10-12) served as controls. Tissue samples from the uterus (placentation sites and horn width, respectively) were excised and snap-frozen in liquid nitrogen after embedding in Tissue Tec(®). Extraction of mRNA for RT-PCR was performed with Tri-Reagent. In the embryos, mRNA from all factors except VEGF was detected. In the course of pregnancy, significantly higher expression of PAF and PAFR as well as VEGF and VEGFR2 during the pre-implantation stage than in all other stages and a strong upregulation of EGF during implantation were characteristic. The course of EGF was in diametrical opposition to the course of the receptor. These results point towards an increased demand for VEGF, EGF and PAF during the earliest stages of canine pregnancy. © 2012 Blackwell Verlag GmbH.

  17. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies.

    Science.gov (United States)

    Gamaletsou, Maria N; Walsh, Thomas J; Sipsas, Nikolaos V

    2018-03-01

    Invasive fungal infections caused by drug-resistant organisms are an emerging threat to heavily immunosuppressed patients with hematological malignancies. Modern early antifungal treatment strategies, such as prophylaxis and empirical and preemptive therapy, result in long-term exposure to antifungal agents, which is a major driving force for the development of resistance. The extended use of central venous catheters, the nonlinear pharmacokinetics of certain antifungal agents, neutropenia, other forms of intense immunosuppression, and drug toxicities are other contributing factors. The widespread use of agricultural and industrial fungicides with similar chemical structures and mechanisms of action has resulted in the development of environmental reservoirs for some drug-resistant fungi, especially azole-resistant Aspergillus species, which have been reported from four continents. The majority of resistant strains have the mutation TR34/L98H, a finding suggesting that the source of resistance is the environment. The global emergence of new fungal pathogens with inherent resistance, such as Candida auris, is a new public health threat. The most common mechanism of antifungal drug resistance is the induction of efflux pumps, which decrease intracellular drug concentrations. Overexpression, depletion, and alteration of the drug target are other mechanisms of resistance. Mutations in the ERG11 gene alter the protein structure of C-demethylase, reducing the efficacy of antifungal triazoles. Candida species become echinocandin-resistant by mutations in FKS genes. A shift in the epidemiology of Candida towards resistant non-albicans Candida spp. has emerged among patients with hematological malignancies. There is no definite association between antifungal resistance, as defined by elevated minimum inhibitory concentrations, and clinical outcomes in this population. Detection of genes or mutations conferring resistance with the use of molecular methods may offer better

  18. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies

    Directory of Open Access Journals (Sweden)

    Maria N. Gamaletsou

    2018-02-01

    Full Text Available Invasive fungal infections caused by drug-resistant organisms are an emerging threat to heavily immunosuppressed patients with hematological malignancies. Modern early antifungal treatment strategies, such as prophylaxis and empirical and preemptive therapy, result in long-term exposure to antifungal agents, which is a major driving force for the development of resistance. The extended use of central venous catheters, the nonlinear pharmacokinetics of certain antifungal agents, neutropenia, other forms of intense immunosuppression, and drug toxicities are other contributing factors. The widespread use of agricultural and industrial fungicides with similar chemical structures and mechanisms of action has resulted in the development of environmental reservoirs for some drug-resistant fungi, especially azole-resistant Aspergillus species, which have been reported from four continents. The majority of resistant strains have the mutation TR34/L98H, a finding suggesting that the source of resistance is the environment. The global emergence of new fungal pathogens with inherent resistance, such as Candida auris, is a new public health threat. The most common mechanism of antifungal drug resistance is the induction of efflux pumps, which decrease intracellular drug concentrations. Overexpression, depletion, and alteration of the drug target are other mechanisms of resistance. Mutations in the ERG11 gene alter the protein structure of C-demethylase, reducing the efficacy of antifungal triazoles. Candida species become echinocandin-resistant by mutations in FKS genes. A shift in the epidemiology of Candida towards resistant non-albicans Candida spp. has emerged among patients with hematological malignancies. There is no definite association between antifungal resistance, as defined by elevated minimum inhibitory concentrations, and clinical outcomes in this population. Detection of genes or mutations conferring resistance with the use of molecular methods

  19. Itraconazol, an Antifungal and a Hedgehog Pathway Inhibitor for Treatment of Prostate Cancer

    Science.gov (United States)

    2016-10-01

    PCa cells implanted orthotopically and subcutaneously in male athymic nude mice. PC-3 cells labeled with luciferase and green fluorescent protein ...combination on the progression of PCa in the PTEN knockout mouse model that recapitulates features of advanced human PCa. The data obtained will be...trials. 2. KEYWORDS: Prostate cancer, itraconazole, cyclopamine, combination, hedgehog, signaling, antifungal, PTEN , metastasis, cell growth

  20. Enzymatic methods for choline-containing water soluble phospholipids based on fluorescence of choline oxidase: Application to lyso-PAF.

    Science.gov (United States)

    Sanz-Vicente, Isabel; Domínguez, Andrés; Ferrández, Carlos; Galbán, Javier

    2017-02-15

    In this paper we present methods to determine water soluble phospholipids containing choline (wCh-PL). The analytes were hydrolyzed by the enzyme phospholipase D and the choline formed was oxidized by the enzyme Choline Oxidase (ChOx); the fluorescence changes of the ChOx are followed during the enzymatic reaction, avoiding the necessity of an indicating step. Both reactions (hydrolysis and oxidation) can be combined in two different ways: 1) a two-step process (TSP) in which the hydrolysis reaction takes place during an incubation time and then the oxidation reaction is carried out, the analytical signal being provided by the intrinsic fluorescence of ChOx due to tryptophan; 2) a one-step process (OSP) in which both enzymatic reactions are carried out simultaneously in the same test; in this case the analytical signal is provided by the ChOx extrinsic fluorescence due to a fluorescent probe (Ru (II) chelate) linked to the enzyme (ChOx-RuC). The analytical capabilities of these methods were studied using 1,2-dioctanoyl-sn-glycero-3-phosphocholine (C 8 PC), a water soluble short alkyl chain Ch-PL as a substrate, and 1-O-hexadecyl-sn-glyceryl-3-phosphorylcholine (lyso-PAF). The analytical features of merit for both analytes using both methods were obtained. The TSP gave a 10-fold sensitivity and lower quantification limit (1.0*10 -5  M for lyso-PAF), but OSP reduced the determination time and permitted to use the same enzyme aliquot for several measurements. Both methods gave similar precision (RSD 7%, n = 5). The TSP was applied to the determination of C 8 PC and lyso-PAF in spiked synthetic serum matrix using the standard addition method. The application of this methodology to PLD activity determination is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Estudio del efecto de los antagonistas del factor activador de las plaquetas (PAF) en varios modelos de shock experimental

    OpenAIRE

    Giral Pérez, Marta

    2001-01-01

    Estudio del efecto de los antagonistas del factor activador de las plaquetas (paf) en varios modelos de shock experimental. El shock es una situación clínica que se ha venido observando durante cientos de años y cuya presencia ha ido asociada con procesos que culminaban casi siempre con la muerte. El estudio de estos procesos ha permitido llegar a la conclusión de que el shock tiene un componente multifactorial y multietiológico. La cascada de eventos que tienen lugar en un estado de shock pa...

  2. Inositol-C2-PAF down-regulates components of the antigen presentation machinery in a 2D-model of epidermal inflammation.

    Science.gov (United States)

    Semini, Geo; Hildmann, Annette; Klein, Andreas; Lucka, Lothar; Schön, Margarete; Schön, Michael P; Shmanai, Vadim; Danker, Kerstin

    2014-02-01

    In cutaneous inflammatory diseases, such as psoriasis, atopic dermatitis and allergic contact dermatitis, skin-infiltrating T lymphocytes and dendritic cells modulate keratinocyte function via the secretion of pro-inflammatory cytokines. Keratinocytes then produce mediators that recruit and activate immune cells and amplify the inflammatory response. These pathophysiological tissue changes are caused by altered gene expression and the proliferation and maturation of dermal and epidermal cells. We recently demonstrated that the glycosidated phospholipid Ino-C2-PAF down-regulates a plethora of gene products associated with innate and acquired immune responses and inflammation in the HaCaT keratinocyte cell line. To further evaluate the influence of Ino-C2-PAF we established an in vitro 2D-model of epidermal inflammation. The induction of inflammation and the impact of Ino-C2-PAF were assessed in this system using a genome-wide microarray analysis. In addition, the expression of selected genes was validated using qRT-PCR and flow cytometry. Treatment of the keratinocytes with a mix of proinflammatory cytokines resulted in transcriptional effects on a variety of genes involved in cutaneous inflammation and immunity, while additional treatment with Ino-C2-PAF counteracted the induction of many of these genes. Remarkably, Ino-C2-PAF suppressed the expression of a group of targets that are implicated in antigen processing and presentation, including MHC molecules. Thus, it is conceivable that Ino-C2-PAF possess therapeutic potential for inflammatory skin disorders, such as psoriasis and allergic contact dermatitis. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The novel synthetic ether lipid inositol-C2-PAF inhibits phosphorylation of the tyrosine kinases Src and FAK independent of integrin activation in transformed skin cells.

    Science.gov (United States)

    Semini, Geo; Hildmann, Annette; Reissig, Hans-Ulrich; Reutter, Werner; Danker, Kerstin

    2011-04-15

    New alkyl-phospholipids that are structurally derived from platelet-activating factor are promising candidates for anticancer treatment. The mechanism of action of derivatives of the platelet-activating factor is distinctly different from that of known DNA- or tubulin-targeting anticancer agents because they are incorporated into cell membranes, where they accumulate and interfere with a wide variety of key enzymes. We recently presented evidence of a novel group of alkyl-phospholipids, glycosidated phospholipids that efficiently inhibit cell proliferation. One member of this group, inositol-C2-PAF (Ino-C2-PAF), displays high efficacy and low cytotoxicity in HaCaT-cells, an immortalized non-tumorigenic skin keratinocyte cell line. Here, we show that Ino-C2-PAF also inhibits the motility of the skin-derived transformed cell lines HaCaT and squamous cell carcinoma (SCC)-25. This decrease in motility is accompanied by an altered F-actin cytoskeleton, increased clustering of integrins, and increased cell-matrix adhesion. Despite enhanced integrin clustering and matrix adhesion, we observed less phosphorylation of the cytoplasmic tyrosine kinases focal adhesion kinase (FAK) and Src, key regulators of cellular motility, at focal adhesion sites. Transient transfection of constitutively active variants of FAK and Src could at least in part bybass this inhibitory effect of Ino-C2-PAF. This fact indicates that Ino-C2-PAF interferes with the fine-tuned balance between adhesion and migration. Ino-C2-PAF at least partially uncouples integrin-mediated attachment from subsequent integrin-dependent signaling steps, which inhibits migration in transformed keratinocyte cell lines. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effect of selected natural products, thioproline and pegasys on hepatic platelet activating factor (PAF) in CCL4-induced hepatic fibrosis in rats

    International Nuclear Information System (INIS)

    Badria, Farid A.

    2007-01-01

    This study aimed to estimate hepatic levels of platelet activating factor (PAF) in liver fibrosis induced by CCl4 in rats. A group of selected natural products; boswellic acids, curcumin and glycrrhizin (preparation named OMNI; a drug under clinical trials for treatment of hepatitis C virus), Mirazid (a commercially available schistomicidal drug), Thioproline (a commercially available hepatoprotective agent) and Pegasys (peg interferon alpha-2a; a commercially available therapy for treatment of Hepatitis C virus) were examined for their effect on hepatic PAF groups each comprised 9 rats. Group 1 was treated only with CCl4, group 2 to 5 were treated with OMNI, Mirazid, Thioproline and Pegasys, respectively whereas the 6th group was the normal control group (with no treatment, except an injection of the vehicle). Liver damage was induced in all groups except normal control group (groups 1 to 5) by i.p. injection of 40% CCl4 in corn oil (0.375 ml/kg) 3 times a week for 3 weeks. One week after CCl4 intoxication, all tested drugs were injected i.p. daily for 3 weeks. Hepatic PAF concentration was estimated by HPTLC (high performance thin layer chromatography), while levels of serum transminases (ALT, AST), hepatic hydroxyproline (as marker of liver fibrosis), serum malondialdehyde and catalase (as markers of oxidative stress) were estimated sepctrophotometrically. The hepatic PAF levels were significantly higher in CCl4 group (24.24+-2.01 pmol equiv. /mg) (p<0.001). Treatment with OMNI, Mirazid, Thioproline and Pegasys reduced hepatic PAF significantly to be 11.84+-0.22, 14.5+-1.00, 13.17+-0, 54 and 14.26+-1.09pmol equiv. /mg respectively. This study may add further rational to the anti-fibrotic activity of the tested drugs via reduction of hepatic PAF. (author)

  5. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum

    Science.gov (United States)

    Zhang, Fusheng; Chen, Qin; Chen, Cheng; Yu, Xiaorui; Liu, Qingya; Bao, Jinku

    2018-01-01

    Curcuma longa possesses powerful antifungal activity, as demonstrated in many studies. In this study, the antifungal spectrum of Curcuma longa alcohol extract was determined, and the resulting EC50 values (mg/mL) of its extract on eleven fungi, including Fusarium graminearum, Fusarium chlamydosporum, Alternaria alternate, Fusarium tricinctum, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium culmorum, Rhizopus oryzae, Cladosporium cladosporioides, Fusarium oxysporum and Colletotrichum higginsianum, were 0.1088, 0.1742, 0.1888, 0.2547, 0.3135, 0.3825, 0.4229, 1.2086, 4.5176, 3.8833 and 5.0183, respectively. Among them, F. graminearum was selected to determine the inhibitory effects of the compounds (including curdione, isocurcumenol, curcumenol, curzerene, β-elemene, curcumin, germacrone and curcumol) derived from Curcuma longa. In addition, the antifungal activities of curdione, curcumenol, curzerene, curcumol and isocurcumenol and the synergies of the complexes of curdione and seven other chemicals were investigated. Differential proteomics of F. graminearum was also compared, and at least 2021 reproducible protein spots were identified. Among these spots, 46 were classified as differentially expressed proteins, and these proteins are involved in energy metabolism, tRNA synthesis and glucose metabolism. Furthermore, several fungal physiological differences were also analysed. The antifungal effect included fungal cell membrane disruption and inhibition of ergosterol synthesis, respiration, succinate dehydrogenase (SDH) and NADH oxidase. PMID:29543859

  6. Antifungal activity of lectins against yeast of vaginal secretion

    Science.gov (United States)

    Gomes, Bruno Severo; Siqueira, Ana Beatriz Sotero; de Cássia Carvalho Maia, Rita; Giampaoli, Viviana; Teixeira, Edson Holanda; Arruda, Francisco Vassiliepe Sousa; do Nascimento, Kyria Santiago; de Lima, Adriana Nunes; Souza-Motta, Cristina Maria; Cavada, Benildo Sousa; Porto, Ana Lúcia Figueiredo

    2012-01-01

    Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256μg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health. PMID:24031889

  7. The Medical ANtiarrhythmic Treatment or Radiofrequency Ablation in Paroxysmal Atrial Fibrillation (MANTRA-PAF) trial: clinical rationale, study design, and implementation

    DEFF Research Database (Denmark)

    Jons, Christian; Hansen, Peter Steen; Johannessen, Arne

    2009-01-01

    (MANTRA-PAF) trial is a randomized, controlled, parallel group, multicentre study designed to test whether catheter-based RFA is superior to optimized AAD therapy in suppressing relapse within 24 months of symptomatic and/or asymptomatic AF in patients with paroxysmal AF without prior AAD therapy...... centres in Scandinavia and Germany are participating in the study. Enrolment was started in 2005 and as of November 2008, 260 patients have been enrolled into the study. It is expected that enrolment will end by March 2009, when 300 patients have been included. CONCLUSION: The MANTRA-PAF trial...

  8. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  9. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    OpenAIRE

    Hanna Yolanda; Ingrid M. Makahinda; Maureen Aprilia; Nikki Sanjaya; Harry Gunawan; Rita Dewi

    2015-01-01

    BACKGROUND To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL) from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. METHODS Collected pitcher liquids were of 3 types: non-induced l...

  10. Antibacterial and antifungal properties of guanylhydrazones

    Directory of Open Access Journals (Sweden)

    Ajdačić Vladimir

    2017-01-01

    Full Text Available A series of novel guanylhydrazones were designed, synthesized and characterized. All the compounds were screened for their antibacterial and antifungal activity. Compounds 26 and 27 showed excellent antibacterial activities against Staphylococcus aureus ATCC 25923 and Micrococcus luteus ATCC 379 with minimal inhibitory concentrations of 4 μg mL-1, and good antifungal activity against Candida parapsilosis ATCC 22019. These results suggested that the selected guanylhydrazones could serve as promising leads for improved antimicrobial development. [Project of the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 172008 and Grant No. 173048

  11. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants.

    Science.gov (United States)

    Schmourlo, Gracilene; Mendonça-Filho, Ricardo R; Alviano, Celuta Sales; Costa, Sônia S

    2005-01-15

    In the search for bioactive compounds, bioautography and ethanol precipitation of macromolecules (proteins, polysaccharides, etc.) of plant aqueous extracts were associated in an antifungal screening. Thus, the supernatants, precipitates (obtained by ethanol precipitation) and aqueous extracts were investigated of medicinal and fruit bearing plants used against skin diseases by the Brazilian population. The agar diffusion and broth dilution methods were used to assess the activity against three fungi: Candida albicans, Trichophyton rubrum and Cryptococcus neoformans. The results, evaluated by the diameter of the inhibition zone of fungal growth, indicate that six plant species, among the 16 investigated, showed significant antifungal activity. The minimal inhibitory concentration (MIC) was determined on plant extracts that showed high efficacy against the tested microorganisms. The most susceptible yeast was Trichophyton rubrum and the best antifungal activity was shown by Xanthosoma sagittifolium supernatant. The bioautography was performed only for the aqueous extracts and supernatants of those plants that showed antifungal activity against Candida albicans and Cryptococcus neoformans, using n-butanol/acetic acid/water (BAW) 8:1:1 to develop silica gel TLC plates. Clear inhibition zones were observed for aqueous extracts of Schinus molle (R(f) 0.89) and Schinus terebinthifolius (R(f) 0.80) against Candida albicans, as for supernatant of Anacardium occidentale (R(f) 0.31) against Cryptococcus neoformans. The separation of macromolecules from metabolites, as in the case of Anacardium occidentale, Solanum sp. and Xanthosoma sagittifolium, enhances antifungal activity. In other cases, the antifungal activity is destroyed, as observed for Momordica charantia, Schinus molle and Schinus terebinthifolius.

  12. Assessing the Multi-faceted Nature of Test Anxiety Among Secondary School Students: An English Version of the German Test Anxiety Questionnaire: PAF-E.

    Science.gov (United States)

    Hoferichter, Frances; Raufelder, Diana; Ringeisen, Tobias; Rohrmann, Sonja; Bukowski, William M

    2016-01-01

    The current study concerns the validation of an English version of the German Test Anxiety Inventory, namely the PAF-E. This questionnaire is a multi-faceted measure of test anxiety designed to detect normative test anxiety levels and in consequence meet the need of consultancy. Construct and criterion validity of (PAF-E) were examined with a sample of 96 secondary students (Mage = 12.8, SD = 0.67; 55% girls) from an international school in Berlin (Germany) and 399 secondary students (Mage = 13.4, SD = 0.80; 56% girls) from Montréal (Canada). Both samples completed the PAF-E and related constructs, such as school-related self-efficacy, inhibitory test anxiety, achievement motivation, and the Big Five. Exploratory and confirmatory factor analyses confirmed the four-factor-structure (worry, emotionality, interfering thoughts, lack of confidence) of the original German Test Anxiety Inventory (PAF). Each subscale consists of five items with a total of 20 questions. Cronbach's alpha, ranging from.71 to.82 among Germans and.77 to.87 among Canadians as well as the re-test reliability (from.80 to.85 among Canadians) were sufficient. The differential patterns of correlations between other constructs and the indices of test anxiety indicate good construct validity.

  13. Omics for Investigating Chitosan as an Antifungal and Gene Modulator

    Directory of Open Access Journals (Sweden)

    Federico Lopez-Moya

    2016-03-01

    Full Text Available Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.

  14. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review

    Directory of Open Access Journals (Sweden)

    Lluís Palou

    2015-12-01

    Full Text Available According to their origin, major postharvest losses of citrus fruit are caused by weight loss, fungal diseases, physiological disorders, and quarantine pests. Cold storage and postharvest treatments with conventional chemical fungicides, synthetic waxes, or combinations of them are commonly used to minimize postharvest losses. However, the repeated application of these treatments has led to important problems such as health and environmental issues associated with fungicide residues or waxes containing ammoniacal compounds, or the proliferation of resistant pathogenic fungal strains. There is, therefore, an increasing need to find non-polluting alternatives to be used as part of integrated disease management (IDM programs for preservation of fresh citrus fruit. Among them, the development of novel natural edible films and coatings with antimicrobial properties is a technological challenge for the industry and a very active research field worldwide. Chitosan and other edible coatings formulated by adding antifungal agents to composite emulsions based on polysaccharides or proteins and lipids are reviewed in this article. The most important antifungal ingredients are selected for their ability to control major citrus postharvest diseases like green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively, and include low-toxicity or natural chemicals such as food additives, generally recognized as safe (GRAS compounds, plant extracts, or essential oils, and biological control agents such as some antagonistic strains of yeasts or bacteria.

  15. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    Energy Technology Data Exchange (ETDEWEB)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

  16. Synthetic multivalent antifungal peptides effective against fungi.

    Directory of Open Access Journals (Sweden)

    Rajamani Lakshminarayanan

    Full Text Available Taking advantage of the cluster effect observed in multivalent peptides, this work describes antifungal activity and possible mechanism of action of tetravalent peptide (B4010 which carries 4 copies of the sequence RGRKVVRR through a branched lysine core. B4010 displayed better antifungal properties than natamycin and amphotericin B. The peptide retained significant activity in the presence of monovalent/divalent cations, trypsin and serum and tear fluid. Moreover, B4010 is non-haemolytic and non-toxic to mice by intraperitoneal (200 mg/kg or intravenous (100 mg/kg routes. S. cerevisiae mutant strains with altered membrane sterol structures and composition showed hyper senstivity to B4010. The peptide had no affinity for cell wall polysaccharides and caused rapid dissipation of membrane potential and release of vital ions and ATP when treated with C. albicans. We demonstrate that additives which alter the membrane potential or membrane rigidity protect C. albicans from B4010-induced lethality. Calcein release assay and molecular dynamics simulations showed that the peptide preferentially binds to mixed bilayer containing ergosterol over phophotidylcholine-cholesterol bilayers. The studies further suggested that the first arginine is important for mediating peptide-bilayer interactions. Replacing the first arginine led to a 2-4 fold decrease in antifungal activities and reduced membrane disruption properties. The combined in silico and in vitro approach should facilitate rational design of new tetravalent antifungal peptides.

  17. Prevalence and Antifungal Susceptibility of Candida Species ...

    African Journals Online (AJOL)

    Candidal vulvovaginitis causes extreme discomfort and affects the well being of women. The aim of this study was to determine the prevalence of Candida infections among women attending gynaecological clinic at the Komfo Anokye Teaching Hospital (KATH) in Kumasi and the antifungal susceptibility patterns of the ...

  18. Interactions between antifungal and antiretroviral agents.

    Science.gov (United States)

    Hughes, Christine A; Foisy, Michelle; Tseng, Alice

    2010-09-01

    Since the advent of combination antiretroviral therapy, the incidence of opportunistic infections has declined and the life expectancy of HIV-infected people has significantly increased. However, opportunistic infections, including fungal diseases, remain a leading cause of hospitalizations and mortality in HIV-infected people. With the availability of several new antiretroviral and antifungal agents, drug-drug interactions emerge as a potential safety concern. Relevant literature was identified using a Medline search of articles published up to March 2010 and a review of conference abstracts. Search terms included HIV, antifungal agents and drug interactions. Original papers and relevant citations were considered for this review. Readers will gain an understanding of the pharmacokinetic properties of antiretroviral and antifungal agents, and insight into significant drug-drug interactions which may require dosage adjustments or a change in therapy. Azole antifungal drugs, with the exception of fluconazole, pose the greatest risk of two-way interactions with antiretroviral drugs through CYP450 enzymes effects. Limited studies suggest the risk of interactions between antiretroviral drugs and echinocandins is much lower. The combination of tenofovir and amphotericin B should be used with caution and close monitoring of renal function is required.

  19. Antifungal diterpenes from Hypoestes serpens (Acanthaceae).

    Science.gov (United States)

    Rasoamiaranjanahary, Lalao; Marston, Andrew; Guilet, David; Schenk, Kurt; Randimbivololona, Fanantenanirainy; Hostettmann, Kurt

    2003-02-01

    Two new diterpenes, fusicoserpenol A and dolabeserpenoic acid A, with antifungal activity, were isolated from leaves of Hypoestes serpens (Acanthaceae). Their structures were elucidated by means of spectrometric methods including 1D and 2D NMR experiments and MS analysis. X-ray crystallographic analysis confirmed the structure of fusicoserpenol A and established the relative configuration.

  20. Species identification and antifungal susceptibility pattern of ...

    African Journals Online (AJOL)

    Dalia Saad ElFeky

    2015-10-23

    Oct 23, 2015 ... Abstract Vulvovaginal candidiasis (VVC) remains one of the most common infections of the female genital tract. Correct identification of the isolated Candida species is essential to direct the empirical antifungal therapy. Objectives: This local study was conducted to identify the spectrum of Candida species ...

  1. Antimycotoxigenic and antifungal activities of Citrullus colocynthis ...

    African Journals Online (AJOL)

    user

    2013-10-23

    Oct 23, 2013 ... 2Laboratory of Technology and Animal Production, University of Abdelhamid Ibn Badis, Mostaganem (27000), Algeria. 3Laboratory of ... results suggest that the extracts showed a very good antifungal activity against A. ochraceus, but for A. ..... activity of essential oil and its constituents from Calocedrus.

  2. Chemical constituents, antibacterial, antifungal and antioxidant ...

    African Journals Online (AJOL)

    ... penicillium notatum and Rhizopus stolonifer) at different concentrations, except ethyl acetate extract which showed no antifungal property on Rhizopus stolonifer. Ethyl acetate and methanol extracts exhibited significant antioxidant activities by scavenging DPPH free radicals with IC of 12.14 and 93.85 μg/ml respectively.

  3. Antifungal potentials of Azardirachta indica and Ocimum ...

    African Journals Online (AJOL)

    Antifungal potentials of Azardirachta indica and Ocimum grattissimum leaf extracts in the control of yam rot. ... Fusarium oxysporium, Botryodiplodia theobromae, Rhizopus stolonifer, Penicilluim notatum and Aspergillus niger were isolated from the rotted yams. Both fresh and dry extracts of the leaves had significant effects ...

  4. Studies on Buddleja asiatica antibacterial, antifungal, antispasmodic ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... Crude extract of Buddleja asiatica Lour and its fractions, chloroform (F1), ethyl acetate (F2) and n- butanol (F3) were evaluated for antibacterial, antifungal, antispasmodic and Ca++ antagonist activities. The antibacterial activity was performed against 11 types of bacteria. The crude extract and fractions F2.

  5. Species identification and antifungal susceptibility pattern of ...

    African Journals Online (AJOL)

    Species identification of Candida isolates was done using phenotypic methods including germ tube test, Rice Tween-80 agar, Chrom ID (CAN2) agar and API 20C AUX, while PCR-RFLP was used as the gold standard method. Antifungal susceptibility testing was done using the disk diffusion method. Results: Vaginal swab ...

  6. Antifungal evaluation and phytochemical screening of methanolic ...

    African Journals Online (AJOL)

    The objective of the study was to further examine the medicinal value of Boswellia dalzielii plant by evaluating the antifungal activity and carrying out phytochemical screening of methanolic extract, hexane, ethyl acetate, aqueous fractions and the sub-fractions of the stem bark of the plant. Standard methods were used for ...

  7. Comparison of serum acetyl hydrolase (PAF-AH) and paraoxonase 1 (PON1) values between prostate cancer patients and a control group.

    Science.gov (United States)

    Benli, Erdal; Bayrak, Ahmet; Cirakoglu, Abdullah; Bayrak, Tulin; Noyan, Tevfik

    2017-11-01

    The aim of the study was to measure platelet-activating factor acetyl hydrolase (PAF-AH) and paraoxonase (PON1) enzyme activity levels in patients with high Psa values to compare with healthy peers and also to determine the efficacy of these parameters in predicting pathologic results of patients with high Psa values. This study included 66 patients with Psa value > 4 ng/dl (Group 1) and 44 patients with Psa PAF-AH, and MDA were compared between the groups. Additionally the same parameters were compared between patients with prostate biopsy performed due to high Psa and diagnosed with cancer and the control group with normal Psa values. The PAF-AH activity in Group 1 was 125.17 ± 8.64 and in Group 2 was 120.08 ± 9.23 U/ml (p = 0.003). The PON1 activity was 63.12 ± 6.74 and 65.91 ± 7.77 U/ml in the groups, respectively (p = 0.04). Additionally, there were significant differences identified between the control group and PCa diagnosis group in terms of PAF-AH and PON1 activities (p = 0.004 and p = 0.02, respectively). The enzyme activity of PAF-AH and PON1 measured in serum of patients with high Psa value and patients with diagnosis of prostate cancer (PCa) were identified to have changed by a significant amount compared to healthy peers with normal Psa value. It was concluded that these parameters may be beneficial markers for use in assessment of patients with high Psa value. Copyright © 2017. Published by Elsevier Taiwan.

  8. Pemetaan Perkembangan Moral Mahasiswa Binus ditinjau dari Perspektif Kohlberg (Studi Kasus Terhadap 10 Mahasiswa di Kelas 04 Paf

    Directory of Open Access Journals (Sweden)

    Esther Christiana

    2013-10-01

    Full Text Available Learning means changing. Conditions of learning rely on a person's organizational thought against the learning process. One’s organizational thought is categorized into three major categories, each of which is divided into two phases: pre-conventional, conventional, and post-conventional. The teaching world, not least Bina Nusantara university, should play a role in developing the organizational thought /moral development of every person whom becomes the believer. This moral mapping may be information underlying the learning model. This mapping is generated through qualitative research of 10 Bina Nusantara university students, grade 04, PAF. Data collection technique used observational-partisipative method with the instrument of three moral dilemmas and Kohlberg’s moral stage development indicators. The results in the form of mapping of moral development is reported in the form of pie charts moral The study also resulted in the proposal of moral learning model that can be tested in subsequent research. 

  9. Anti-Candida albicans natural products, sources of new antifungal drugs: A review.

    Science.gov (United States)

    Zida, A; Bamba, S; Yacouba, A; Ouedraogo-Traore, R; Guiguemdé, R T

    2017-03-01

    Candida albicans is the most prevalent fungal pathogen in humans. Due to the development of drug resistance, there is today a need for new antifungal agents for the efficient management of C. albicans infections. Therefore, we reviewed antifungal activity, mechanisms of action, possible synergism with antifungal drugs of all natural substances experimented to be efficient against C. albicans for future. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A total of 111 documents were published and highlighted 142 anti-C. albicans natural products. These products are mostly are reported in Asia (44.37%) and America (28.17%). According to in vitro model criteria, from the 142 natural substances, antifungal activity can be considered as important for 40 (28.20%) and moderate for 24 (16.90%). Sixteen products have their antifungal activity confirmed by in vivo gold standard experimentation. Microbial natural products, source of antifungals, have their antifungal mechanism well described in the literature: interaction with ergosterol (polyenes), inhibition 1,3-β-d-glucan synthase (Echinocandins), inhibition of the synthesis of cell wall components (chitin and mannoproteins), inhibition of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase) and inhibition of protein synthesis (sordarins). Natural products from plants mostly exert their antifungal effects by membrane-active mechanism. Some substances from arthropods are also explored to act on the fungal membrane. Interestingly, synergistic effects were found between different classes of natural products as well as between natural products and azoles. Search for anti-C. albicans new drugs is promising since the list of natural substances, which disclose activity against this yeast is today long. Investigations must be pursued not only to found more new anti

  10. Structural and Functional Elucidation of Yeast Lanosterol 14?-Demethylase in Complex with Agrochemical Antifungals

    OpenAIRE

    Tyndall, Joel D. A.; Sabherwal, Manya; Sagatova, Alia A.; Keniya, Mikhail V.; Negroni, Jacopo; Wilson, Rajni K.; Woods, Matthew A.; Tietjen, Klaus; Monk, Brian C.

    2016-01-01

    Azole antifungals, known as demethylase inhibitors (DMIs), target sterol 14α-demethylase (CYP51) in the ergosterol biosynthetic pathway of fungal pathogens of both plants and humans. DMIs remain the treatment of choice in crop protection against a wide range of fungal phytopathogens that have the potential to reduce crop yields and threaten food security. We used a yeast membrane protein expression system to overexpress recombinant hexahistidine-tagged S. cerevisiae lanosterol 14α-demethylase...

  11. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.

    Science.gov (United States)

    Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo

    2013-09-01

    The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen. © 2013 Blackwell Verlag GmbH.

  12. Antifungal activity of 10 Guadeloupean plants.

    Science.gov (United States)

    Biabiany, Murielle; Roumy, Vincent; Hennebelle, Thierry; François, Nadine; Sendid, Boualem; Pottier, Muriel; Aliouat, El Moukhtar; Rouaud, Isabelle; Lohézic-Le Dévéhat, Françoise; Joseph, Henry; Bourgeois, Paul; Sahpaz, Sevser; Bailleul, François

    2013-11-01

    Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Tolerability and safety of antifungal drugs

    Directory of Open Access Journals (Sweden)

    Francesco Scaglione

    2013-08-01

    Full Text Available When treating critically ill patients, as those with fungal infections, attention should be focused on the appropriate use of drugs, especially in terms of dose, safety, and tolerability. The fungal infection itself and the concomitant physiological disorders concur to increase the risk of mortality in these patients, therefore the use of any antifungal agent should be carefully evaluated, considering both the direct action on the target fungus and the adverse effects eventually caused. Among antifungal drugs, echinocandins have the greatest tolerability. In fact, unlike amphotericin B, showing nephrotoxicity, and azoles, which are hepatotoxic, the use of echinocandins doesn’t result in major adverse events.http://dx.doi.org/10.7175/rhc.v4i2s.873

  14. Antifungal Activity of Homoaconitate and Homoisocitrate Analogs

    Directory of Open Access Journals (Sweden)

    Sławomir Milewski

    2012-11-01

    Full Text Available Thirteen structural analogs of two initial intermediates of the L-a-aminoadipate pathway of L-lysine biosynthesis in fungi have been designed and synthesized, including fluoro- and epoxy-derivatives of homoaconitate and homoisocitrate. Some of the obtained compounds exhibited at milimolar range moderate enzyme inhibitory properties against homoaconitase and/or homoisocitrate dehydrogenase of Candida albicans. The structural basis for homoisocitrate dehydrogenase inhibition was revealed by molecular modeling of the enzyme-inhibitor complex. On the other hand, the trimethyl ester forms of some of the novel compounds exhibited antifungal effects. The highest antifungal activity was found for trimethyl trans-homoaconitate, which inhibited growth of some human pathogenic yeasts with minimal inhibitory concentration (MIC values of 16–32 mg/mL.

  15. Antibacterial and Antifungal Activities of Spices.

    Science.gov (United States)

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-06-16

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices-such as clove, oregano, thyme, cinnamon, and cumin-possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens , pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives.

  16. Antifungal activity of streptomycetes isolated bentonite clay

    Directory of Open Access Journals (Sweden)

    V. P. Shirobokov

    2016-12-01

    Full Text Available Aim. To investigate the biological activity of streptomycetes, isolated from Ukrainian bentonite clay. Methods. For identification of the investigated microorganisms there were used generally accepted methods for study of morpho-cultural and biochemical properties and sequencing of 16Ѕ rRNA producer. Antagonistic activity of the strain was determined by agar diffusion and agar block method using gram-positive, gram-negative microorganisms and fungi. Results. Research of autochthonous flora from bentonite clay of Ukrainian various deposits proved the existence of stable politaxonomic prokaryotic-eukaryotic consortia there. It was particularly interesting that the isolated microorganisms had demonstrated clearly expressed antagonistic properties against fungi. During bacteriological investigation this bacterial culture was identified like representative of the genus Streptomyces. Bentonite streptomycetes, named as Streptomyces SVP-71, inagar mediums (agar block method inhibited the growth of fungi (yeast and mold; zones of growth retardation constituted of 11-36 mm, and did not affect the growth of bacteria. There were investigated the inhibitory effects of supernatant culture fluid, ethanol and butanol extracts of biomass streptomycetes on museum and clinical strains of fungi that are pathogenic for humans (Candida albicans, C. krusei, C. utilis, C. parapsilosis, C. tropicalis, C. kefir, S. glabrata, C. lusitaniae, Aspergillus niger, Mucor pusillus, Fusarium sporotrichioides. It has been shown that research antifungal factor had 100% of inhibitory effect against all fungi used in experiments in vitro. In parallel, it was found that alcohol extracts hadn’t influence to the growth of gram-positive and gram-negative bacteria absolutely. It was shown that the cultural fluid supernatant and alcoholic extracts of biomass had the same antagonistic effect, but with different manifestation. This evidenced about identity of antifungal substances

  17. Combination Antifungal Therapy for Cryptococcal Meningitis

    OpenAIRE

    Day, Jeremy N.; Chau, Tran T.H.; Wolbers, Marcel; Mai, Pham P.; Dung, Nguyen T.; Mai, Nguyen H.; Phu, Nguyen H.; Nghia, Ho D.; Phong, Nguyen D.; Thai, Cao Q.; Thai, Le H.; Chuong, Ly V.; Sinh, Dinh X.; Duong, Van A.; Hoang, Thu N.

    2013-01-01

    Background\\ud Combination antifungal therapy (amphotericin B deoxycholate and flucytosine) is the recommended treatment for cryptococcal meningitis but has not been shown to reduce mortality, as compared with amphotericin B alone. We performed a randomized, controlled trial to determine whether combining flucytosine or high-dose fluconazole with high-dose amphotericin B improved survival at 14 and 70 days.\\ud Methods\\ud We conducted a randomized, three-group, open-label trial of induction the...

  18. Antifungal Efficacy of Myrtus communis Linn

    OpenAIRE

    Sadeghi Nejad; Erfani Nejad; Yusef Naanaie; Zarrin

    2014-01-01

    Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae) is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro) of the ethanolic extracts of Myrtus communis leaves as a g...

  19. Chitinolytic and antifungal activity of a Bacillus pumilus chitinase expressed in Arabidopsis.

    Science.gov (United States)

    Dehestani, Ali; Kazemitabar, Kamal; Ahmadian, Gholamreza; Jelodar, Nadali Babaeian; Salmanian, Ali Hatef; Seyedi, Mehdi; Rahimian, Heshmat; Ghasemi, Seyedhadi

    2010-04-01

    The Bacillus pumilus SG2 chitinase gene (ChiS) and its truncated form lacking chitin binding (ChBD) and fibronectin type III (FnIII) domains were transformed to Arabidopsis plants and the expression, functionality and antifungal activity of the recombinant proteins were investigated. Results showed that while the two enzyme forms showed almost equal hydrolytic activity toward colloidal chitin, they exhibited a significant difference in antifungal activity. Recombinant ChiS in plant protein extracts displayed a high inhibitory effect on spore germination and radial growth of hyphae in Alternaria brassicicola, Fusarium graminearum and Botrytis cinerea, while the activity of the truncated enzyme was strongly abolished. These findings demonstrate that ChBD and FnIII domains are not necessary for hydrolysis of colloidal chitin but play an important role in hydrolysis of chitin-glucan complex of fungal cell walls. Twenty microgram aliquots of protein extracts from ChiS transgenic lines displayed strong antifungal activity causing up to 80% decrease in fungal spore germination. This is the first report of a Bacillus pumilus chitinase expressed in plant system.

  20. Antifungal Activity of Maytenin and Pristimerin

    Science.gov (United States)

    Gullo, Fernanda P.; Sardi, Janaina C. O.; Santos, Vânia A. F. F. M.; Sangalli-Leite, Fernanda; Pitangui, Nayla S.; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Soares, Luciana A.; Silva, Julhiany F.; Oliveira, Haroldo C.; Furlan, Maysa; Silva, Dulce H. S.; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José S.; Fusco-Almeida, Ana Marisa

    2012-01-01

    Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae) are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa). It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents. PMID:22675379

  1. Antifungal Activity of Maytenin and Pristimerin

    Directory of Open Access Journals (Sweden)

    Fernanda P. Gullo

    2012-01-01

    Full Text Available Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa. It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents.

  2. Antifungal Efficacy of Myrtus communis Linn

    Directory of Open Access Journals (Sweden)

    Sadeghi Nejad

    2014-08-01

    Full Text Available Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro of the ethanolic extracts of Myrtus communis leaves as a growth inhibitor against 24 clinical isolates of Candida, including C. albicans, C. glabrata, and C. tropicalis also three species of Aspergillus, including A. niger, A. flavus, and A. terreus. Materials and Methods The ethanolic extract of myrtle leaves was prepared by maceration method and minimal inhibitory concentration (MIC of Myrtus communis leaves extract was determined by agar-well diffusion technique. Amphotericin B and clotrimazole were used as the positive control in this assay. Results The minimal inhibitory concentration (MICs values of Myrtus communis leaves extract ranged 0.625-5.0 µg/µL and 5-40 µg/µL against tested Candida spp. and Aspergillus spp., respectively. Conclusions Results revealed that the ethanolic extract of Myrtus communis leaves have antifungal potency against both pathogenic tested fungi, and it can be used as a natural antifungal agent.

  3. Econazole imprinted textiles with antifungal activity.

    Science.gov (United States)

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Antifungal immunity in selected fungal infections

    Directory of Open Access Journals (Sweden)

    Alicja Trzeciak-Ryczek

    2015-04-01

    Full Text Available Fungi are omnipresent in the environment; hence they are frequent factors causing infections in humans and animals even if their immune system works correctly. These facts stimulated interest in and the will to understand the antifungal immunity mechanisms. It has been, however, evidenced that the immunological response to mycotic pathogens is related to the species and morphological form of the fungus. Nevertheless, it is assumed that always in the antifungal response, there are mechanisms of innate and adaptive immunity that cooperate with one another to eliminate such pathogens. It has been evidenced that the main elements of antifungal immunity are physical barriers of the organism, phagocytosis, cytotoxicity, and possibly trogocytosis of PMN and MN cells, as well as T-cells, and to a smaller extent B-cells, the proportion of which is principally related to their products activating the processes of PMN and MN cells. An important role in this immunity also belongs to PRR, which activate the main processes of phagocytosis and cytotoxicity of PMN, MN, NK and DC cells.

  5. Antifungal effect of gamma irradiation and sodium dichloroisocyanurate against Penicillium expansum on pears.

    Science.gov (United States)

    Jeong, R-D; Chu, E-H; Shin, E-J; Lee, E-S; Kwak, Y-S; Park, H-J

    2015-11-01

    Gamma irradiation (GI) was evaluated for its in vitro and in vivo antifungal activity against Penicillium expansum on pear fruits. GI showed a complete inhibition of spore germination, germ tube elongation and mycelial of P. expansum, especially 1·8 kGy. GI affected the membrane integrity and cellular leakage of conidia in a dose-dependent manner. Furthermore, the leakage of protein and sugar from mycelia increased along with the dose. GI was evaluated at lower doses in combination with a chlorine donor, sodium dichloro-s-triazinetrione (NaDCC), to examine the inhibition of P. expansum. Interestingly, only a combined treatment with 0·2 kGy of GI and 70 ppm of NaDCC exhibited significant synergistic antifungal activity. The mechanisms by which the combined treatment decreased the blue mould decay of pear fruits could directly associated with the disruption of the cell membrane of the fungal pathogen, resulting in a loss of cytoplasmic materials from the hyphae. Gamma irradiation (GI) is used as an effective nonchemical approach to inactive pathogens. This study investigated the antifungal effect of gamma irradiation and its combined treatment with a chlorine donor on this fungal pathogen, both in vitro and in vivo. This study emphasized that the integration of low-dose GI and a chlorine donor, NaDCC, exhibited a significant antifungal effect, and that its mechanisms are directly associated with membrane integrity of fungal spores, promising that GI has the potential to be an antifungal approach. © 2015 The Society for Applied Microbiology.

  6. Real-time pure shift 15N HSQC of proteins: a real improvement in resolution and sensitivity

    International Nuclear Information System (INIS)

    Kiraly, Peter; Adams, Ralph W.; Paudel, Liladhar; Foroozandeh, Mohammadali; Aguilar, Juan A.; Timári, István; Cliff, Matthew J.; Nilsson, Mathias; Sándor, Péter; Batta, Gyula; Waltho, Jonathan P.; Kövér, Katalin E.; Morris, Gareth A.

    2015-01-01

    Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t 2 ) broadband homodecoupling, suppressing the multiplet structure caused by proton–proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to 15 N, while the former selects a region of the 1 H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments

  7. Real-time pure shift {sup 15}N HSQC of proteins: a real improvement in resolution and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, Peter; Adams, Ralph W.; Paudel, Liladhar; Foroozandeh, Mohammadali [University of Manchester, School of Chemistry (United Kingdom); Aguilar, Juan A. [Durham University, Department of Chemistry (United Kingdom); Timári, István [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Cliff, Matthew J. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Nilsson, Mathias [University of Manchester, School of Chemistry (United Kingdom); Sándor, Péter [Agilent Technologies R& D and Marketing GmbH & Co. KG (Germany); Batta, Gyula [University of Debrecen, Department of Organic Chemistry (Hungary); Waltho, Jonathan P. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Morris, Gareth A., E-mail: g.a.morris@manchester.ac.uk [University of Manchester, School of Chemistry (United Kingdom)

    2015-05-15

    Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t{sub 2}) broadband homodecoupling, suppressing the multiplet structure caused by proton–proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to {sup 15}N, while the former selects a region of the {sup 1}H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments.

  8. Catalytic Synthesis and Antifungal Activity of New Polychlorinated Natural Terpenes

    Directory of Open Access Journals (Sweden)

    Hana Ighachane

    2017-01-01

    Full Text Available Various unsaturated natural terpenes were selectively converted to the corresponding polychlorinated products in good yields using iron acetylacetonate in combination with nucleophilic cocatalyst. The synthesized compounds were evaluated for their in vitro antifungal activity. The antifungal bioassays showed that 2c and 2d possessed significant antifungal activity against Fusarium oxysporum f. sp. albedinis (Foa, Fusarium oxysporum f. sp. canariensis (Foc, and Verticillium dahliae (Vd.

  9. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents.

    Science.gov (United States)

    Kim, Jong H; Campbell, Bruce C; Mahoney, Noreen; Chan, Kathleen L; Molyneux, Russell J; Balajee, Arunmozhi

    2010-10-01

    A number of benzoic acid analogues showed antifungal activity against strains of Aspergillus flavus, Aspergillus fumigatus and Aspergillus terreus, causative agents of human aspergillosis, in in vitro bioassays. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased by addition of a methyl, methoxyl or chloro group at position 4 of the aromatic ring, or by esterification of the carboxylic acid with an alkyl group, respectively. Thymol, a natural phenolic compound, was a potent chemosensitizing agent when co-applied with the antifungal azole drugs fluconazole and ketoconazole. The thymol-azole drug combination demonstrated complete inhibition of fungal growth at dosages far lower than the drugs alone. Co-application of thymol with amphotericin B had an additive effect on all strains of aspergilli tested with the exception of two of three strains of A. terreus, where there was an antagonistic effect. Use of two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus, sakAΔ and mpkCΔ, having gene deletions in the oxidative stress response pathway, indicated antifungal and/or chemosensitization activity of the benzo analogues was by disruption of the oxidative stress response system. Results showed that both these genes play overlapping roles in the MAPK system in this fungus. The potential of safe, natural compounds or analogues to serve as chemosensitizing agents to enhance efficacy of commercial antifungal agents is discussed. Published by Elsevier Ltd.

  10. Molecular basis of antifungal drug resistance in yeasts

    DEFF Research Database (Denmark)

    Morio, Florent; Jensen, Rasmus Hare; Le Pape, Patrice

    2017-01-01

    Besides inherent differences in in vitro susceptibilities, clinically-relevant yeast species may acquire resistance upon exposure to most antifungal drugs used in the clinic. In recent years, major fundamental research studies have been conducted to improve our understanding of the molecular basis......., in the context of antifungal drug resistance. Also included are the methods currently available for in vitro antifungal susceptibility testing and for molecular detection of mutations associated with resistance. Finally, the genetic drivers of antifungal resistance are discussed in light of the spectra...

  11. Antifungal activity and molecular identification of endophytic fungi ...

    African Journals Online (AJOL)

    Antifungal activity and molecular identification of endophytic fungi from the angiosperm Rhodomyrtus tomentosa. Juthatip Jeenkeawpieam, Souwalak Phongpaichit, Vatcharin Rukachaisirikul, Jariya Sakayaroj ...

  12. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation: results on health-related quality of life and symptom burden. The MANTRA-PAF trial.

    Science.gov (United States)

    Walfridsson, H; Walfridsson, U; Nielsen, J Cosedis; Johannessen, A; Raatikainen, P; Janzon, M; Levin, L A; Aronsson, M; Hindricks, G; Kongstad, O; Pehrson, S; Englund, A; Hartikainen, J; Mortensen, L S; Hansen, P S

    2015-02-01

    The Medical ANtiarrhythmic Treatment or Radiofrequency Ablation in Paroxysmal Atrial Fibrillation (MANTRA-PAF) trial assessed the long-term efficacy of an initial strategy of radiofrequency ablation (RFA) vs. antiarrhythmic drug therapy (AAD) as first-line treatment for patients with PAF. In this substudy, we evaluated the effect of these treatment modalities on the Health-Related Quality of Life (HRQoL) and symptom burden of patients at 12 and 24 months. During the study period, 294 patients were enrolled in the MANTRA-PAF trial and randomized to receive AAD (N = 148) or RFA (N = 146). Two generic questionnaires were used to assess the HRQoL [Short Form-36 (SF-36) and EuroQol-five dimensions (EQ-5D)], and the Arrhythmia-Specific questionnaire in Tachycardia and Arrhythmia (ASTA) was used to evaluate the symptoms appearing during the trial. All comparisons were made on an intention-to-treat basis. Both randomization groups showed significant improvements in assessments with both SF-36 and EQ-5D, at 24 months. Patients randomized to RFA showed significantly greater improvement in four physically related scales of the SF-36. The three most frequently reported symptoms were breathlessness during activity, pronounced tiredness, and worry/anxiety. In both groups, there was a significant reduction in ASTA symptom index and in the severity of seven of the eight symptoms over time. Both AAD and RFA as first-line treatment resulted in substantial improvement of HRQoL and symptom burden in patients with PAF. Patients randomized to RFA showed greater improvement in physical scales (SF-36) and the EQ-visual analogue scale. URL http://www.clinicaltrials.gov. Unique identifier: NCT00133211. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  13. Hypoxia and hyperoxia potentiate PAF receptor-mediated effects in newborn ovine pulmonary arterial smooth muscle cells: significance in oxygen therapy of PPHN.

    Science.gov (United States)

    Hanouni, Mona; Bernal, Gilberto; McBride, Shaemion; Narvaez, Vincent Reginald F; Ibe, Basil O

    2016-06-01

    Platelet-activating factor (PAF) acting via its receptor (PAFR) is implicated in the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN). Effects of long-term oxygen therapy on newborn lung are not well understood; therefore, we studied the effect of oxygen tension on ovine newborn pulmonary artery smooth muscle cells (NBPASMC). Our global hypothesis is that PPHN results from failure of newborn lamb pulmonary system to downregulate PAFR activity or to upregulate vasodilatory cyclic nucleotides (Cnucs) activity. NBPASMC from newborns 6-12 days old were studied in vitro at three different oxygen tensions (pO2, [Torr]: hypoxia, 100 Torr often clinically imposed upon newborns with PPHN) PAFR- and Cnucs mediated effects were determined. PAFR and PKA Cα mRNA expression as well as prostacyclin, thromboxane, cAMP production, and DNA synthesis was studied to assess PAFR-mediated hypertrophy and/or hyperplasia. Hypoxia and hyperoxia increased specific PAFR binding. PAF treatment during hyperoxia increased PAFR gene, but decreased PKA-Cα gene expression. Hypoxia and hyperoxia increased NBPASMC proliferation via PAFR signaling. Baseline prostacyclin level was ninefold greater than in fetal PASMC, whereas baseline thromboxane was sevenfold less suggesting greater postnatal cyclooxygenase activity in NBPASMC PAF decreased, while forskolin and 8-Br-cAMP increased cAMP production. Decrease of PAFR effects by Cnucs indicates that normal newborn PA physiology favors vasodilator pathways to minimize PAF-induced hypertrophy or hyperplasia. We speculate that failure of newborn lung to anchor downregulation of vasoconstrictors with upregulation of vasodilators leads to PPHN. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Role of PAF receptor in proinflammatory cytokine expression in the dorsal root ganglion and tactile allodynia in a rodent model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Shigeo Hasegawa

    Full Text Available BACKGROUND: Neuropathic pain is a highly debilitating chronic pain following damage to peripheral sensory neurons and is often resistant to all treatments currently available, including opioids. We have previously shown that peripheral nerve injury induces activation of cytosolic phospholipase A(2 (cPLA(2 in injured dorsal root ganglion (DRG neurons that contribute to tactile allodynia, a hallmark of neuropathic pain. However, lipid mediators downstream of cPLA(2 activation to produce tactile allodynia remain to be determined. PRINCIPAL FINDINGS: Here we provide evidence that platelet-activating factor (PAF is a potential candidate. Pharmacological blockade of PAF receptors (PAFRs reduced the development and expression of tactile allodynia following nerve injury. The expression of PAFR mRNA was increased in the DRG ipsilateral to nerve injury, which was seen mainly in macrophages. Furthermore, mice lacking PAFRs showed a reduction of nerve injury-induced tactile allodynia and, interestingly, a marked suppression of upregulation of tumor necrosis factor alpha (TNFalpha and interleukin-1beta (IL-1beta expression in the injured DRG, crucial proinflammatory cytokines involved in pain hypersensitivity. Conversely, a single injection of PAF near the DRG of naïve rats caused a decrease in the paw withdrawal threshold to mechanical stimulation in a dose-dependent manner and an increase in the expression of mRNAs for TNFalpha and IL-1beta, both of which were inhibited by pretreatment with a PAFR antagonist. CONCLUSIONS: Our results indicate that the PAF/PAFR system has an important role in production of TNFalpha and IL-1beta in the DRG and tactile allodynia following peripheral nerve injury and suggest that blocking PAFRs may be a viable therapeutic strategy for treating neuropathic pain.

  15. A PAF receptor antagonist inhibits acute airway inflammation and late-phase responses but not chronic airway inflammation and hyperresponsiveness in a primate model of asthma

    Directory of Open Access Journals (Sweden)

    R. H. Gundel

    1992-01-01

    Full Text Available We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C4 (LTC4 and prostaglandin D2 (PGD2 recovered and quantified in bronchoalveolar lavage (BAL fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days failed to reduce the chronic airway inflammation (eosinophilic and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.

  16. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  17. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2016-12-01

    Full Text Available Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene. Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  18. Clinicomycological Profile and Antifungal Sensitivity Pattern of Commonly Used Azoles in Dermatophytosis

    Directory of Open Access Journals (Sweden)

    Mahesh Mathur

    2015-06-01

    Conclusions: This study highlighted the increasing resistance of the antifungals, which is responsible for the treatment failure in dermatophye infections. Keywords: antifungal resistance; dermatophyte; epidemiology.

  19. Drug-drug interactions of antifungal agents and implications for patient care.

    Science.gov (United States)

    Gubbins, Paul O; Amsden, Jarrett R

    2005-10-01

    Drug interactions in the gastrointestinal tract, liver and kidneys result from alterations in pH, ionic complexation, and interference with membrane transport proteins and enzymatic processes involved in intestinal absorption, enteric and hepatic metabolism, renal filtration and excretion. Azole antifungals can be involved in drug interactions at all the sites, by one or more of the above mechanisms. Consequently, azoles interact with a vast array of compounds. Drug-drug interactions associated with amphotericin B formulations are predictable and result from the renal toxicity and electrolyte disturbances associated with these compounds. The echinocandins are unknown cytochrome P450 substrates and to date are relatively devoid of significant drug-drug interactions. This article reviews drug interactions involving antifungal agents that affect other agents and implications for patient care are highlighted.

  20. PAF-degrading acetylhydrolase is preferentially associated with dense LDL and VHDL-1 in human plasma. Catalytic characteristics and relation to the monocyte-derived enzyme.

    Science.gov (United States)

    Tselepis, A D; Dentan, C; Karabina, S A; Chapman, M J; Ninio, E

    1995-10-01

    In human plasma, platelet activating factor (PAF)-degrading acetylhydrolase (acetylhydrolase) is principally transported in association with LDLs and HDLs; this enzyme hydrolyzes PAF and short-chain forms of oxidized phosphatidylcholine, transforming them into lyso-PAF and lysophosphatidylcholine, respectively. We have examined the distribution, catalytic characteristics, and transfer of acetylhydrolase activity among plasma lipoprotein subspecies separated by isopycnic density gradient ultracentrifugation; the possibility that the plasma enzyme may be partially derived from adherent monocytes has also been evaluated. In normolipidemic subjects with Lp(a) levels VHDL-1; d = 1.156 to 1.179 g/mL), representing 23.9 +/- 1.7% and 20.6 +/- 3.2%, respectively, of total plasma activity. The apparent Km values for PAF of the enzyme associated with such lipoproteins were 89.7 +/- 23.4 and 34.8 +/- 4.5 mumol/L for LDL-5 and VHDL-1, respectively: indeed, the Km value for LDL-5 was some 10-fold higher than that of the light LDL-1, LDL-2, and LDL-3 subspecies, whereas the Km of VHDL-1 was some twofold greater than those of the HDL-2 and HDL-3 subspecies. Furthermore, when expressed on the basis of unit plasma volume, the Vmax of the acetylhydrolase associated with LDL-5 was some 150-fold greater than that in LDL-1 (d = 1.019 to 1.023 g/mL). No significant differences in the pH dependence of enzyme activity or in sensitivity to protease inactivation, sulfydryl reagents, the serine protease inhibitor Pefabloc, or the PAF antagonist CV 3988 could be detected between apo B-containing and apo A-I-containing lipoprotein particle subspecies. Incubation of LDL-1 (Km = 8.4 +/- 2.6 mumol/L) and LDL-2 (d = 1.023 to 1.029 g/mL; Km = 8.4 +/- 3.3 mumol/L) subspecies with LDL-5, in which acetylhydrolase had been inactivated by pretreatment with Pefabloc, demonstrated preferential transfer of acetylhydrolase to LDL-5. Acetylhydrolase transferred to LDL-5 from the light LDL subspecies exhibited

  1. Chemical modification of antifungal polyene macrolide antibiotics

    International Nuclear Information System (INIS)

    Solovieva, S E; Olsufyeva, E N; Preobrazhenskaya, M N

    2011-01-01

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  2. Nylon-3 polymers with selective antifungal activity.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Hayouka, Zvi; Chakraborty, Saswata; Falk, Shaun P; Weisblum, Bernard; Masters, Kristyn S; Gellman, Samuel H

    2013-04-10

    Host-defense peptides inhibit bacterial growth but show little toxicity toward mammalian cells. A variety of synthetic polymers have been reported to mimic this antibacterial selectivity; however, achieving comparable selectivity for fungi is more difficult because these pathogens are eukaryotes. Here we report nylon-3 polymers based on a novel subunit that display potent antifungal activity (MIC = 3.1 μg/mL for Candida albicans ) and favorable selectivity (IC10 > 400 μg/mL for 3T3 fibroblast toxicity; HC10 > 400 μg/mL for hemolysis).

  3. Antifungal activity of different extracts of Ageratum conyzoides for the ...

    African Journals Online (AJOL)

    Antifungal activity of different extracts of Ageratum conyzoides for the management of Fusarium solani. Sidra Javed, Uzma Bashir. Abstract. Ageratum conyzoides L. is potential allelopathic weed very useful for its antifungal and antimicrobial activity. Being environmentally safe and friendly, it has the potential to substitute ...

  4. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    Science.gov (United States)

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Cuticular antifungals in spiders: density- and condition dependence.

    Directory of Open Access Journals (Sweden)

    Daniel González-Tokman

    Full Text Available Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities. For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  6. In vitro antifungal activity of Dorstenia mannii leaf extracts (Moraceae)

    African Journals Online (AJOL)

    Owner

    The active ingredients of this plant could be an addition to the antifungal arsenal to opportunistic fungal yeast pathogens. Key words: Antifungal activity, Dorstenia mannii, yeasts, opportunistic candidiasis. INTRODUCTION. Nowadays, fungal diseases have emerged and are being increasingly recognized as important public ...

  7. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... (naringin, rutin, luteolin and kaempferol). The results of present study provide scientific basis for the use of the plant extract in the future development as antifungal, antibacterial, antioxidant and anti- inflammatory agent. Key words: Barringtonia racemosa, antifungal, HPLC, phenolic acids, flavonoids.

  8. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani

    Science.gov (United States)

    Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...

  9. In vitro control of Alternaria citri using antifungal potentials of ...

    African Journals Online (AJOL)

    In vitro control of Alternaria citri using antifungal potentials of Trichoderma species. Asma Murtaza, Shazia Shafique, Tehmina Anjum, Sobiya Shafique. Abstract. The antifungal potential of five species of Trichoderma viz., Trichoderma viride, Trichoderma aureoviride, Trichoderma reesei, Trichoderma koningii and ...

  10. [Derivatives of 4-nitroso-aminopyrazole as antifungal agents].

    Science.gov (United States)

    Giori, P; Mazzotta, D; Vertuani, G; Guarneri, M; Pancaldi, D; Brunelli, A

    1981-12-01

    The synthesis of 4-nitroso-5-amminopyrazoles and of 4-nitroso-5-pyrazolylurethans and -ureas is described. The chemicals were tested for antifungal activity against Erysiphe graminis, Erysiphe cichoracearum, Puccinia recondita, Septoria apii and Rhizoctonia solani. A number of the described compounds showed some antifungal activity.

  11. The role of the multidisciplinary team in antifungal stewardship

    NARCIS (Netherlands)

    Agrawal, S.; Barnes, R.; Bruggemann, R.J.; Rautemaa-Richardson, R.; Warris, A.

    2016-01-01

    There are a variety of challenges faced in the management of invasive fungal diseases (IFD), including high case-fatality rates, high cost of antifungal drugs and development of antifungal resistance. The diagnostic challenges and poor outcomes associated with IFD have resulted in excessive

  12. Antifungal Activity of Endemic Salvia tigrina in Turkey | Dulger ...

    African Journals Online (AJOL)

    Ketoconazole was used as a positive reference standard to determine the sensitivity of the strains. Results: The minimum inhibitory concentration (MIC) ranged from 3.12 to 25 mg/mL. All the extracts exhibited a strong antifungal effect against the fungal cultures. The extracts exhibited greater antifungal effect against C.

  13. IIn vitro antifungal evaluation of various plant extracts against early ...

    African Journals Online (AJOL)

    Antifungal activities of 27 plant extracts were tested against Alternaria solani (E. & M.) Jones and Grout using radial growth technique. While all tested plant extracts produced some antifungal activities, the results revealed that Circium arvense, Humulus lupulus, Lauris nobilis and Salvia officinalis showed significant ...

  14. Identification and antifungal activity of Streptomyces sp. S72 isolated ...

    African Journals Online (AJOL)

    The test of antifungal activity for several pathogens fungi causing invasive aspergillosis and systemic candidiasis revealed that the Streptomyces sp. S72 was a good moderate antifungal compound producer against Aspergillus fumigatus and Candida albicans, and had no activity against Aspergillus flavus, Aspergillus ...

  15. Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus

    NARCIS (Netherlands)

    Meletiadis, J.; Mortensen, K.L.; Verweij, P.E.; Mouton, J.W.; Arendrup, M.C.

    2017-01-01

    OBJECTIVES: Given the increasing number of antifungal drugs and the emergence of resistant Aspergillus isolates, objective, automated and high-throughput antifungal susceptibility testing is important. The EUCAST E.Def 9.3 reference method for MIC determination of Aspergillus species relies on

  16. Antifungal activity of crude extracts of Gladiolus dalenii van Geel ...

    African Journals Online (AJOL)

    Bulb extracts of Gladiolus dalenii reportedly used in the treatment of fungal infections in HIV/AIDS patients in the Lake Victoria region were tested for antifungal activity using the disc diffusion assay technique. Commercially used antifungal drugs, Ketaconazole and Griseofulvin (Cosmos Pharmaceuticals) were used as ...

  17. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava; Rajagopalan, NandhaKishore; Tulpan, Dan; Loewen, Michele C

    2016-09-30

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum , is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum , such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  18. Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites

    Directory of Open Access Journals (Sweden)

    Miroslava Cuperlovic-Culf

    2016-09-01

    Full Text Available Fusarium head blight (FHB, primarily caused by Fusarium graminearum, is a devastating disease of wheat. Partial resistance to FHB of several wheat cultivars includes specific metabolic responses to inoculation. Previously published studies have determined major metabolic changes induced by pathogens in resistant and susceptible plants. Functionality of the majority of these metabolites in resistance remains unknown. In this work we have made a compilation of all metabolites determined as selectively accumulated following FHB inoculation in resistant plants. Characteristics, as well as possible functions and targets of these metabolites, are investigated using cheminformatics approaches with focus on the likelihood of these metabolites acting as drug-like molecules against fungal pathogens. Results of computational analyses of binding properties of several representative metabolites to homology models of fungal proteins are presented. Theoretical analysis highlights the possibility for strong inhibitory activity of several metabolites against some major proteins in Fusarium graminearum, such as carbonic anhydrases and cytochrome P450s. Activity of several of these compounds has been experimentally confirmed in fungal growth inhibition assays. Analysis of anti-fungal properties of plant metabolites can lead to the development of more resistant wheat varieties while showing novel application of cheminformatics approaches in the analysis of plant/pathogen interactions.

  19. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    Yongqiang eZhang

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  20. Oxylipin studies expose aspirin as antifungal.

    Science.gov (United States)

    Kock, Johan L F; Sebolai, Olihile M; Pohl, Carolina H; van Wyk, Pieter W J; Lodolo, Elizabeth J

    2007-12-01

    The presence of aspirin-sensitive 3-hydroxy fatty acids (i.e. 3-OH oxylipins) in yeasts was first reported in the early 1990s. Since then, these oxidized fatty acids have been found to be widely distributed in yeasts. 3-OH oxylipins may: (1) have potent biological activity in mammalian cells; (2) act as antifungals; and (3) assist during forced spore release from enclosed sexual cells (asci). A link between 3-OH oxylipin production, mitochondria and aspirin sensitivity exists. Research suggests that: (1) 3-OH oxylipins in some yeasts are probably also produced by mitochondria through incomplete beta-oxidation; (2) aspirin inhibits mitochondrial beta-oxidation and 3-OH oxylipin production; (3) yeast sexual stages, which are probably more dependent on mitochondrial activity, are also characterized by higher 3-OH oxylipin levels as compared to asexual stages; (4) yeast sexual developmental stages as well as cell adherence/flocculation are more sensitive to aspirin than corresponding asexual growth stages; and (5) mitochondrion-dependent asexual yeast cells with a strict aerobic metabolism are more sensitive to aspirin than those that can also produce energy through an alternative anaerobic glycolytic fermentative pathway in which mitochondria are not involved. This review interprets a wide network of studies that reveal aspirin to be a novel antifungal.

  1. Antifungal Quinoline Alkaloids from Waltheria indica.

    Science.gov (United States)

    Cretton, Sylvian; Dorsaz, Stéphane; Azzollini, Antonio; Favre-Godal, Quentin; Marcourt, Laurence; Ebrahimi, Samad Nejad; Voinesco, Francine; Michellod, Emilie; Sanglard, Dominique; Gindro, Katia; Wolfender, Jean-Luc; Cuendet, Muriel; Christen, Philippe

    2016-02-26

    Chemical investigation of a dichloromethane extract of the aerial parts of Waltheria indica led to the isolation and characterization of five polyhydroxymethoxyflavonoids, namely, oxyanin A (1), vitexicarpin (3), chrysosplenol E (4), flindulatin (5), 5-hydroxy-3,7,4'-trimethoxyflavone (6), and six quinolone alkaloids, waltheriones M-Q (2, 7, 8, 10, 11) and 5(R)-vanessine (9). Among these, compounds 2, 7, 8, 10, and 11 have not yet been described in the literature. Their chemical structures were established by means of spectroscopic data interpretation including (1)H and (13)C, HSQC, HMBC, COSY, and NOESY NMR experiments and UV, IR, and HRESIMS. The absolute configurations of the compounds were established by ECD. The isolated constituents and 10 additional quinoline alkaloids previously isolated from the roots of the plant were evaluated for their in vitro antifungal activity against the human fungal pathogen Candida albicans, and 10 compounds (7, 9, 11-16, 18, 21) showed growth inhibitory activity on both planktonic cells and biofilms (MIC ≤ 32 μg/mL). Their spectrum of activity against other pathogenic Candida species and their cytotoxicity against human HeLa cells were also determined. In addition, the cytological effect of the antifungal isolated compounds on the ultrastructure of C. albicans was evaluated by transmission electron microscopy.

  2. Microbial biotransformation to obtain new antifungals

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Bianchini

    2015-12-01

    Full Text Available Antifungal drugs belong to few chemical groups and such low diversity limits the therapeutic choices. The urgent need of innovative options has pushed researchers to search new bioactive molecules. Literature regarding the last 15 years reveals that different research groups have used different approaches to achieve such goal. However, the discovery of molecules with different mechanisms of action still demands considerable time and efforts. This review was conceived to present how Pharmaceutical Biotechnology might contribute to the discovery of molecules with antifungal properties by microbial biotransformation procedures. Authors present some aspects of (1 microbial biotransformation of herbal medicines and food; (2 possibility of major and minor molecular amendments in existing molecules by biocatalysis; (3 methodological improvements in processes involving whole cells and immobilized enzymes; (4 potential of endophytic fungi to produce antimicrobials by bioconversions; and (5 in silico research driving to the improvement of molecules. All these issues belong to a new conception of transformation procedures, so-called green chemistry, which aims the highest possible efficiency with reduced production of waste and the smallest environmental impact.

  3. Microbial Biotransformation to Obtain New Antifungals

    Science.gov (United States)

    Bianchini, Luiz F.; Arruda, Maria F. C.; Vieira, Sergio R.; Campelo, Patrícia M. S.; Grégio, Ana M. T.; Rosa, Edvaldo A. R.

    2015-01-01

    Antifungal drugs belong to few chemical groups and such low diversity limits the therapeutic choices. The urgent need of innovative options has pushed researchers to search new bioactive molecules. Literature regarding the last 15 years reveals that different research groups have used different approaches to achieve such goal. However, the discovery of molecules with different mechanisms of action still demands considerable time and efforts. This review was conceived to present how Pharmaceutical Biotechnology might contribute to the discovery of molecules with antifungal properties by microbial biotransformation procedures. Authors present some aspects of (1) microbial biotransformation of herbal medicines and food; (2) possibility of major and minor molecular amendments in existing molecules by biocatalysis; (3) methodological improvements in processes involving whole cells and immobilized enzymes; (4) potential of endophytic fungi to produce antimicrobials by bioconversions; and (5) in silico research driving to the improvement of molecules. All these issues belong to a new conception of transformation procedures, so-called “green chemistry,” which aims the highest possible efficiency with reduced production of waste and the smallest environmental impact. PMID:26733974

  4. Antifungal agents in non-neonatologic pediatrics

    Directory of Open Access Journals (Sweden)

    Elio Castagnola

    2013-07-01

    Full Text Available The spectrum of action of antifungal agents helps driving the choice of the treatment, basing on the activity against the fungus of interest. Pharmacokinetics should also be taken into account, considering the time-dependent and the concentration-dependent drugs. Triazoles belong to the first group, while amphotericin B and echinocandins belong to the second one. The effectiveness of time-dependent drugs hangs on the time spent above the Minimal Inhibitory Concentration (MIC, whereas that of concentration-dependent drugs is related to the peak of concentration achieved. Thetissue penetration is another important factor that should be taken into account while prescribing an antifungal agent. Interactions with other drugs, above all with those used to treat underlying pathologies, should also be considered. Fungicidal drugs are generally preferred to fungistatic agents, therefore echinocandins and amphotericin B are more prescribed than azoles. Combination therapies are not recommended.http://dx.doi.org/10.7175/rhc.v4i1S.860

  5. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread.

    Science.gov (United States)

    Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

    2016-12-19

    The use of sourdough fermented with specific strains of antifungal lactic acid bacteria can reduce chemical preservatives in bakery products. The main objective of this study was to investigate the production of antifungal carboxylic acids after sourdough fermentation of quinoa and rice flour using the antifungal strains Lactobacillus reuteri R29 and Lactobacillus brevis R2Δ as bioprotective cultures and the non-antifungal L. brevis L1105 as a negative control strain. The impact of the fermentation substrate was evaluated in terms of metabolic activity, acidification pattern and quantity of antifungal carboxylic acids. These in situ produced compounds (n=20) were extracted from the sourdough using a QuEChERS method and detected by a new UHPLC-MS/MS chromatography. Furthermore, the sourdough was applied in situ using durability tests against environmental moulds to investigate the biopreservative potential to prolong the shelf life of bread. Organic acid production and TTA values were lowest in rice sourdough. The sourdough fermentation of the different flour substrates generated a complex and significantly different profile of carboxylic acids. Extracted quinoa sourdough detected the greatest number of carboxylic acids (n=11) at a much higher concentration than what was detected from rice sourdough (n=9). Comparing the lactic acid bacteria strains, L. reuteri R29 fermented sourdoughs contained generally higher concentrations of acetic and lactic acid but also the carboxylic acids. Among them, 3-phenyllactic acid and 2-hydroxyisocaproic acid were present at a significant concentration. This was correlated with the superior protein content of quinoa flour and its high protease activity. With the addition of L. reuteri R29 inoculated sourdough, the shelf life was extended by 2 days for quinoa (+100%) and rice bread (+67%) when compared to the non-acidified controls. The L. brevis R2Δ fermented sourdough bread reached a shelf life of 4 days for quinoa (+100%) and

  6. DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae.

    Science.gov (United States)

    Thevissen, Karin; François, Isabelle E J A; Takemoto, Jon Y; Ferket, Kathelijne K A; Meert, Els M K; Cammue, Bruno P A

    2003-09-12

    DmAMP1, an antifungal plant defensin from Dahlia merckii, was shown previously to require the presence of sphingolipids for fungicidal action against Saccharomyces cerevisiae. Sphingolipids may stabilize glycosylphosphatidylinositol (GPI)-anchored proteins, which interact with DmAMP1, or they may directly serve as DmAMP1 binding sites. In the present study, we demonstrate that S. cerevisiae disruptants in GPI-anchored proteins showed small or no increased resistance towards DmAMP1 indicating no involvement of these proteins in DmAMP1 action. Further, studies using an enzyme-linked immunosorbent assay (ELISA)-based binding assay revealed that DmAMP1 interacts directly with sphingolipids isolated from S. cerevisiae and that this interaction is enhanced in the presence of equimolar concentrations of ergosterol. Therefore, DmAMP1 antifungal action involving membrane interaction with sphingolipids and ergosterol is proposed.

  7. Synthesis and antifungal activity of nicotinamide derivatives as succinate dehydrogenase inhibitors.

    Science.gov (United States)

    Ye, Yong-Hao; Ma, Liang; Dai, Zhi-Cheng; Xiao, Yu; Zhang, Ying-Ying; Li, Dong-Dong; Wang, Jian-Xin; Zhu, Hai-Liang

    2014-05-07

    Thirty-eight nicotinamide derivatives were designed and synthesized as potential succinate dehydrogenase inhibitors (SDHI) and precisely characterized by (1)H NMR, ESI-MS, and elemental analysis. The compounds were evaluated against two phytopathogenic fungi, Rhizoctonia solani and Sclerotinia sclerotiorum, by mycelia growth inhibition assay in vitro. Most of the compounds displayed moderate activity, in which, 3a-17 exhibited the most potent antifungal activity against R. solani and S. sclerotiorum with IC50 values of 15.8 and 20.3 μM, respectively, comparable to those of the commonly used fungicides boscalid and carbendazim. The structure-activity relationship (SAR) of nicotinamide derivatives demonstrated that the meta-position of aniline was a key position contributing to the antifungal activity. Inhibition activities against two fungal SDHs were tested and achieved the same tendency with the data acquired from in vitro antifungal assay. Significantly, 3a-17 was demonstrated to successfully suppress disease development in S. sclerotiorum infected cole in vivo. In the molecular docking simulation, sulfur and chlorine of 3a-17 were bound with PHE291 and PRO150 of the SDH homology model, respectively, which could explain the probable mechanism of action between the inhibitory and target protein.

  8. Antifungal activity of alkanols against Zygosaccharomyces bailii and their effects on fungal plasma membrane.

    Science.gov (United States)

    Fujita, Ken-Ichi; Fujita, Tomoko; Kubo, Isao

    2008-10-01

    A series of aliphatic primary alkanols from C(6) to C(13) were tested for antifungal activity against a food spoilage fungus Zygosaccharomyces bailii using a broth dilution method and were compared for their effects against Saccharomyces cerevisiae and Z. rouxii. Decanol (C(10)) was found to be the most potent fungicide against Z. bailii at a minimum fungicidal concentration of 50 microg/ml (0.31 mM), whereas undecanol (C(11)) was found to be the most potent fungistatic at a minimum inhibitory concentration of 25 microg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. Octanol (C(8)) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The primary antifungal action of alkanols comes from their ability to disrupt the native membrane-associated function of integral proteins nonspecifically as nonionic surface-active agents (surfactants). The antifungal activity of decanol against Z. bailii was slightly enhanced in combination with anethole. (c) 2008 John Wiley & Sons, Ltd.

  9. Extracellular DNA Release Acts as an Antifungal Resistance Mechanism in Mature Aspergillus fumigatus Biofilms

    Science.gov (United States)

    Rajendran, Ranjith; Williams, Craig; Lappin, David F.; Millington, Owain; Martins, Margarida

    2013-01-01

    Aspergillus fumigatus has been shown to form biofilms that are associated with adaptive antifungal resistance mechanisms. These include multidrug efflux pumps, heat shock proteins, and extracellular matrix (ECM). ECM is a key structural and protective component of microbial biofilms and in bacteria has been shown to contain extracellular DNA (eDNA). We therefore hypothesized that A. fumigatus biofilms also possess eDNA as part of the ECM, conferring a functional role. Fluorescence microscopy and quantitative PCR analyses demonstrated the presence of eDNA, which was released phase dependently (8 autolysis, were significantly upregulated as the biofilm matured and that inhibition of chitinases affected biofilm growth and stability, indicating mechanistically that autolysis was possibly involved. Finally, using checkerboard assays, it was shown that combinational treatment of biofilms with DNase plus amphotericin B and caspofungin significantly improved antifungal susceptibility. Collectively, these data show that eDNA is an important structural component of A. fumigatus ECM that is released through autolysis, which is important for protection from environmental stresses, including antifungal therapy. PMID:23314962

  10. Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf.

    Science.gov (United States)

    Taira, Toki; Toma, Noriko; Ishihara, Masanobu

    2005-01-01

    Three chitinases, designated pineapple leaf chitinase (PL Chi)-A, -B, and -C were purified from the leaves of pineapple (Ananas comosus) using chitin affinity column chromatography followed by several column chromatographies. PL Chi-A is a class III chitinase having a molecular mass of 25 kDa and an isoelectric point of 4.4. PL Chi-B and -C are class I chitinases having molecular masses of 33 kDa and 39 kDa and isoelectric points of 7.9 and 4.6 respectively. PL Chi-C is a glycoprotein and the others are simple proteins. The optimum pHs of PL Chi-A, -B, and -C toward glycolchitin are pH 3, 4, and 9 respectively. The chitin-binding ability of PL Chi-C is higher than that of PL Chi-B, and PL Chi-A has lower chitin-binding ability than the others. At low ionic strength, PL Chi-B exhibits strong antifungal activity toward Trichoderma viride but the others do not. At high ionic strength, PL Chi-B and -C exhibit strong and weak antifungal activity respectively. PL Chi-A does not have antifungal activity.

  11. The relationship between cytosolic Ca2+, sn-1,2-diacylglycerol and inositol 1,4,5-trisphosphate elevation in platelet-activating-factor-stimulated rabbit platelets. Influence of protein kinase C on production of signal molecules.

    OpenAIRE

    Murphy, C T; Elmore, M; Kellie, S; Westwick, J

    1991-01-01

    The temporal and dose-response relationships of platelet-activating-factor (PAF)-induced changes in the concentrations of cytosolic Ca2+ ([Ca2+]i), Ins(1,4,5)P3 and 1,2-diacylglycerol (DAG) were examined. In addition, phosphorylation of protein kinase C (PKC) substrate (40-47 kDa protein) was determined. In high-dose PAF-activated platelets, all three signal molecules increased rapidly and transiently, with the peak Ins(1,4,5)P3 concentration preceding maximal elevation of [Ca2+]i by 5 s. In ...

  12. Tioconazole, a new imidazole-antifungal agent for the treatment of dermatomycoses. Antifungal and pharmacologic properties.

    Science.gov (United States)

    Marriott, M S; Baird, J R; Brammer, K W; Faulkner, J K; Halliwell, G; Jevons, S; Tarbit, M H

    1983-01-01

    Tioconazole is a new imidazole antifungal agent with broad-spectrum activity. Its in vitro activity against common dermal pathogens is generally better than miconazole by a factor of 2-8. This activity is paralleled by good topical efficacy in a guinea pig dermatomycosis model. Pharmacokinetic studies in animals have demonstrated minimal systemic exposure following dermal application. Acute general pharmacology studies have shown that the compound is well tolerated in animals and unlikely to produce side-effects in man.

  13. The paraoxonase 1 (PON1), platelet-activating factor acetylohydrolase (PAF-AH) and dimethylarginine dimethylaminohydrolase (DDAH) activity in the metformin treated normal and diabetic rats.

    Science.gov (United States)

    Wójcicka, Grażyna; Jamroz-Wiśniewska, Anna; Czechowska, Grażyna; Korolczuk, Agnieszka; Marciniak, Sebastian; Bełtowski, Jerzy

    2016-10-15

    Antidiabetic agents per se, apart from their glucose-lowering effect, can have an important impact on modifying the cardiovascular risk. The present study was undertaken to determine whether the known cardio-protective effects of metformin are linked to its potential ability to affect activities of HDL's paraoxonase (PON1) and platelet activating factor acetylohydrolase (PAF-AH) or via its interaction with the asymmetric dimethylarginine (ADMA)- dimethylarginine dimethylaminohydrolase (DDAH) axis. Normal and streptozotocin (STZ)-induced diabetic rats were treated with metformin (300mg/kg; 4 weeks). The activity of PON1, PAF-AH and DDAH were measured spectrophotometrically. The plasma ADMA level was determined by ELISA method. In STZ-induced diabetic rats the long-term administration of metformin normalized reduced PON1 activity assayed toward paraoxon (+42.5%, P<0.05), phenyl acetate (+22.35%, P<0.05) and γ-decanolactone (+108.0%, P<0.01), without affecting elevated PAF-AH activity in the plasma. Moreover, metformin increased DDAH activity in the renal cortex (+38.24%, P<0.01). Additionally metformin administration caused the increase in PON1 activity in the liver (+29.2%, P<0.01) accompanied by the reduction in the lipid peroxidation (-59.8%, P<0.001). Similarly, in non-diabetic treated rats the increase in liver PON1 activity was observed toward both paraoxon (+80.19%, P<0.001) and phenyl acetate (+29.3%, P<0.05), respectively. The present study has demonstrated that insulin-sensitizer metformin is important for preserving antioxidant HDL function in diabetes. Metformin might also exert its effect against diabetic complications by improving DDAH activity in the kidney and increasing PON1 activity in the liver. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Antibacterial and antifungal activities of andrachne cordifolia muell.

    Science.gov (United States)

    Ahmad, Bashir; Hassan Shah, S M; Bashir, Shumaila; Nisar, Muhammad; Chaudry, M Iqbal

    2007-12-01

    The crude methanolic extract of Andrachne cordifolia Muell. (Euphorbiaceae) and its various fractions in different solvent systems (chloroform, ethyl acetate and n-butanol) were screened for antibacterial and antifungal activities. Crude extract and subsequent fractions demonstrated moderate to excellent antibacterial activities against the tested pathogens. Highest antibacterial activity was displayed by both chloroform and ethyl acetate fractions (100%) followed by the crude extract (68%) against Salmonella typhi. Similarly, crude extract and its subsequent fractions showed mild to excellent activities in antifungal bioassay with maximum (76%) antifungal activity against Microsporum canis by the chloroform fraction followed by the crude extract (65%).

  15. In vitro Antifungal Activity of Limonene against Trichophyton rubrum

    OpenAIRE

    Chee, Hee Youn; Kim, Hoon; Lee, Min Hee

    2009-01-01

    In this study, the antifungal activities of limonene against Trichophyton rubrum were evaluated via broth microdilution and vapor contact assays. In both assays, limonene was shown to exert a potent antifungal effect against T. rubrum. The volatile vapor of limonene at concentrations above 1 ?l/800 ml air space strongly inhibited the growth of T. rubrum. The MIC value was 0.5% v/v in the broth microdilution assay. The antifungal activity of limonene against T. rubrum was characterized as a fu...

  16. Design, synthesis, and in vitro evaluation of novel antifungal triazoles.

    Science.gov (United States)

    Xie, Fei; Ni, Tingjunhong; Zhao, Jing; Pang, Lei; Li, Ran; Cai, Zhan; Ding, Zichao; Wang, Ting; Yu, Shichong; Jin, Yongsheng; Zhang, Dazhi; Jiang, Yuanying

    2017-05-15

    Twenty-nine novel triazole analogues of ravuconazole and isavuconazole were designed and synthesized. Most of the compounds exhibited potent in vitro antifungal activities against 8 fungal isolates. Especially, compounds a10, a13, and a14 exhibited superior or comparable antifungal activity to ravuconazole against all the tested fungi. Structure-activity relationship study indicated that replacing 4-cyanophenylthioazole moiety of ravuconazole with fluorophenylisoxazole resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Anti-fungal activity of irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pham ThiLe Ha; Tran Thi Thuy; Nguyen Quoc Hien [Nuclear Research Inst., No.1 Nguyen Tu Luc, Dalat (Viet Nam); Nagasawa, Naotsugu; Kume, Tamikazu [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Gunma (Japan)

    1999-09-01

    Anti-fungal activity of chitosan induced by irradiation has been investigated. Commercial chitosan samples of 8B (80% deacetylation) and l0B (99% deacetylation) were irradiated by {gamma}-ray in dry condition. Highly deacethylated chitosan (10B) at low dose irradiation (75 kGy) was effective for inhibition of fungal growth. The sensitivities of Exobasidium vexans, Septoria chrysanthemum and Gibberella fujikuroi for the irradiated chitosan were different and the necessary concentrations of chitosan were 550, 350 and 250 {mu}g/ml, respectively. For the plant growth, low deacethylation (chitosan 8B) and high dose (500 kGy) was effective and the growth of chrysanthemum was promoted by spraying the irradiated chitosan. (author)

  18. Antifungal potential of Indian medicinal plants.

    Science.gov (United States)

    Dabur, Rajesh; Singh, H; Chhillar, A K; Ali, M; Sharma, G L

    2004-06-01

    Fourteen Indian plants, selected based on their use in respiratory and other disorders in traditional systems of medicine, were analyzed for their potential activity against fungi. The antifungal activity was investigated by disc diffusion, microbroth dilution and percent spore germination inhibition tests against pathogenic Aspergilli. Methanolic extracts of Solanum xanthocarpum and Datura metel inhibited the growth of Aspergillus fumigatus, A. flavus and A. niger and their in vitro MICs were found to be 1.25-2.50 mg/ml by both microbroth dilution and percent spore germination assays. In disc diffusion assay, a concentration of 0.062 mg/disc of methanol extract of D. metel showed significant activity against Aspergilli. S. xanthocarpum exhibited similar activity at 0.125 mg/disc. Copyright 2004 Elsevier B.V.

  19. Naturally occurring antifungal aromatic esters and amides

    International Nuclear Information System (INIS)

    Ali, M.S.; Shahnaz; Tabassum, S.; Ogunwande, I.A.; Pervez, M.K.

    2010-01-01

    During the search of antifungal natural products from terrestrial plants, a new long chained aromatic ester named grandiflorate along with spatazoate from Portulaca grandiflora and N-[2-methoxy-2-(4-methoxyphenyl) ethyl]-trans-cinnamide and aegeline from Solanum erianthum of Nigeria were isolated and tested against six fungal species. The known constituents have not been reported so far from mentioned investigated plants. Structures of the isolated compounds were elucidated with the aid of spectroscopic techniques including two dimensional NMR experiments. Among the compounds, the esters found more potent than amides against Candida albicans and Aspergillus flavus. The new compound grandiflorate gave response against all tested fungal species while aegeline was found to give lowest inhibition during this study. (author)

  20. Pretreatment with rh-GMCSF, but not rh-IL3, enhances PAF-induced eosinophil accumulation in guinea-pig airways.

    OpenAIRE

    Sanjar, S.; Smith, D.; Kings, M. A.; Morley, J.

    1990-01-01

    Intraperitoneal injections of recombinant human granulocyte-macrophage colony stimulating factor (rh-GMCSF, 50 micrograms/kg-1 daily) or interleukin-3 (rh-IL3, 50 micrograms kg-1 daily) for two days, induced an increase in the percentage of bone marrow and pulmonary airway eosinophils in the guinea-pig. In addition, rh-IL3-treated animals exhibited an increase (21%) in blood neutrophils. Exposure of guinea-pigs to an aerosol of platelet activating factor (PAF) gives rise to a selective pulmon...

  1. Muerte por proyectil de arma de fuego (PAF): procesamiento de la escena y hallazgos de necropsia. Morgue Central de Lima 2011

    OpenAIRE

    Astuhuamán, Denisse; Aronés, Shérmany; Carrera, Rosa; Tejada, César; Velásquez, Róger

    2013-01-01

    Introducción: La información del levantamiento de cadáver constituye la primera fase de la necropsia requerida para contrastarla con información obtenida, por lo que es primordial su estudio. Objetivos: Revisión del procesamiento de escena y hallazgos de necropsia en casos de muerte por proyectil de arma de fuego (PAF). Diseño: Descriptivo, retrospectivo, transversal. Institución: Instituto de Medicina Legal, Ministerio Público, e Instituto de Patología, UNMSM. Material de estudio: Informes d...

  2. Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models.

    Science.gov (United States)

    Rämö, Robert A; van den Brink, Paul J; Ruepert, Clemens; Castillo, Luisa E; Gunnarsson, Jonas S

    2016-09-12

    This study assesses the ecological risks (ERA) of pesticides to aquatic organisms in the River Madre de Dios (RMD), which receives surface runoff water from banana, pineapple, and rice plantations on the Caribbean coast of Costa Rica. Water samples collected over 2 years at five sites in the RMD revealed a total of 26 pesticides. Their toxicity risk to aquatic organisms was assessed using three recent ERA models. (1) The PERPEST model showed a high probability (>50 %) of clear toxic effects of pesticide mixtures on algae, macrophytes, zooplankton, macroinvertebrates, and community metabolism and a low probability (<50 %) of clear effects on fish. (2) Species sensitivity distributions (SSD) showed a moderate to high risk of three herbicides: ametryn, bromacil, diuron and four insecticides: carbaryl, diazinon, ethoprophos, terbufos. (3) The multi-substance potentially affected fraction (msPAF) model showed results consistent with PERPEST: high risk to algae (maximum msPAF: 73 %), aquatic plants (61 %), and arthropods (25 %) and low risk to fish (0.2 %) from pesticide mixtures. The pesticides posing the highest risks according to msPAF and that should be substituted with less toxic substances were the herbicides ametryn, diuron, the insecticides carbaryl, chlorpyrifos, diazinon, ethoprophos, and the fungicide difenoconazole. Ecological risks were highest near the plantations and decreased progressively further downstream. The risk to fish was found to be relatively low in these models, but water samples were not collected during fish kill events and some highly toxic pesticides known to be used were not analyzed for in this study. Further sampling and analysis of water samples is needed to determine toxicity risks to fish during peaks of pesticide mixture concentrations. The msPAF model, which estimates the ecological risks of mixtures based on their toxic modes of action, was found to be the most suitable model to assess toxicity risks to aquatic organisms in

  3. The Hsp90 co-chaperones Sti1, Aha1, and P23 regulate adaptive responses to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Xiaokui Gu

    2016-10-01

    Full Text Available Heat Shock Protein 90 (Hsp90 is essential for tumor progression in humans and drug resistance in fungi. However, the roles of its many co-chaperones in antifungal resistance are unknown. In this study, by susceptibility test of Neurospora crassa mutants lacking each of 18 Hsp90/Calcineurin system member genes (including 8 Hsp90 co-chaperone genes to antifungal drugs and other stresses, we demonstrate that the Hsp90 co-chaperones Sti1 (Hop1 in yeast, Aha1, and P23 (Sba1 in yeast were required for the basal resistance to antifungal azoles and heat stress. Deletion of any of them resulted in hypersensitivity to azoles and heat. Liquid chromatography–mass spectrometry (LC-MS analysis showed that the toxic sterols eburicol and 14α-methyl-3,6-diol were significantly accumulated in the sti1 and p23 deletion mutants after ketoconazole treatment, which has been shown before to led to cell membrane stress. At the transcriptional level, Aha1, Sti1, and P23 positively regulate responses to ketoconazole stress by erg11 and erg6, key genes in the ergosterol biosynthetic pathway. Aha1, Sti1, and P23 are highly conserved in fungi, and sti1 and p23 deletion also increased the susceptibility to azoles in Fusarium verticillioides. These results indicate that Hsp90-cochaperones Aha1, Sti1, and P23 are critical for the basal azole resistance and could be potential targets for developing new antifungal agents.

  4. Selective Antifungal Action of Crude Extracts of Cassia fistula L.: A Preliminary Study on Candida and Aspergillus species

    Directory of Open Access Journals (Sweden)

    Panda, S. K.

    2010-01-01

    Full Text Available Preliminary studies on the phytochemicals and extracts of petroleum ether, chloroform, ethanol, methanol and aqueous of Cassia fistula leaves were examined for antifungal activity using agar cup and broth dilution methods. Although all five extracts showed promising antifungal activity against Candida albicans (12.6 mm, C. krusei (13.3 mm, C. parapsilosis (14.0 mm, and C. tropicalis (14.3 mm, yet maximum activity was observed in methanol extract followed by ethanol and aqueous extracts. Petroleum ether and ethanol extracts, showed zone of inhibition against all the three species of Aspergillus with highest zone of inhibition for A. fumigatus (12.0 mm. MIC values for most of the extracts ranged from 0.75 to 3.0 mg/mL; while the least MFC value was observed at 6.0 mg/mL. Result of MFC showed that at concentration 6.0 mg/mL, 75% of the test Candida species were killed while rests 25% were inhibited at same concentration. Phytochemical analysis exhibited the presence of alkaloids, flavonoids, carbohydrates, glycosides, protein and amino acids, saponins and triterpenoids in different extracts. These results reveal the antifungal activity of C. fistula leaves extracts which may be useful in treatment of candidiasis and aspergillosis. However, further studies with purified fractions or bioactive compounds responsible for antifungal activity need to be evaluated.

  5. Antifungal activity of storage 2S albumins from seeds of the invasive weed dandelion Taraxacum officinale Wigg.

    Science.gov (United States)

    Odintsova, T I; Rogozhin, E A; Sklyar, I V; Musolyamov, A K; Kudryavtsev, A M; Pukhalsky, V A; Smirnov, A N; Grishin, E V; Egorov, T A

    2010-04-01

    In this work, we isolated and characterized novel antifungal proteins from seeds of dandelion (Taraxacum officinale Wigg.). We showed that they are represented by five isoforms, each consisting of two disulphide-bonded large and small subunits. One of them, To-A1 was studied in detail, including N-terminal amino acid sequencing of both subunits, and shown to display sequence homology with the sunflower 2S albumin. Using different assays we demonstrated that dandelion 2S albumins possess inhibitory activity against phytopathogenic fungi and the oomycete Phytophtora infestans at micromolar concentrations with various isoforms differing in their antifungal activity. Thus, 2S albumins of dandelion seeds represent a novel example of storage proteins with defense functions.

  6. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    Science.gov (United States)

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    Antifungal activity of extracts and phenolic compounds from Barringtonia racemosa L. (Lecythidaceae). NM Hussin, R Muse, S Ahmad, J Ramli, M Mahmood, MR Sulaiman, MYA Shukor, MFA Rahman, KNK Aziz ...

  8. In vitro antifungal and cytotoxicity activities of selected Tanzanian ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antifungal and cytotoxic activities of four medicinal plants from Tanzania, namely, Mystroxylon aethiopicum, Lonchocarpus capassa, Albizia anthelmentica and Myrica salicifolia. Methods: The plant materials were subjected to extraction using dichloromethane, ethyl acetate and distilled water.

  9. Design, Synthesis, DFT Study and Antifungal Activity of Pyrazolecarboxamide Derivatives

    Directory of Open Access Journals (Sweden)

    Jin-Xia Mu

    2016-01-01

    Full Text Available A series of novel pyrazole amide derivatives were designed and synthesized by multi-step reactions from phenylhydrazine and ethyl 3-oxobutanoate as starting materials, and their structures were characterized by NMR, MS and elemental analysis. The antifungal activity of the title compounds was determined. The results indicated that some of title compounds exhibited moderate antifungal activity. Furthermore, DFT calculations were used to study the structure-activity relationships (SAR.

  10. [Amides of amino acids and peptides as antifungal agents].

    Science.gov (United States)

    Giori, P; Vertuani, G; Mazzotta, D; Guarneri, M; Pancaldi, D; Brunelli, A

    1982-07-01

    The synthesis of pyrazolyl-amides of aminoacids and peptides is described. The chemicals were tested for antifungal activity against wheat powdery mildew (Erysiphe graminis DC.), cucumber powdery mildew (Erysiphe cichoracearum DC.), wheat brown rust (Puccinia recondita Rob. ex Desm. f. sp. tritici Erikss et Henn.), celery leaf spot (Septoria Apii Briosi ed Cav. Chest.) and collar rot (Rhizoctonia solani Kuhn). Some of these compounds showed antifungal activity.

  11. Characterization of anticancer, DNase and antifungal activity of pumpkin 2S albumin.

    Science.gov (United States)

    Tomar, Prabhat Pratap Singh; Nikhil, Kumar; Singh, Anamika; Selvakumar, Purushotham; Roy, Partha; Sharma, Ashwani Kumar

    2014-06-13

    The plant 2S albumins exhibit a spectrum of biotechnologically exploitable functions. Among them, pumpkin 2S albumin has been shown to possess RNase and cell-free translational inhibitory activities. The present study investigated the anticancer, DNase and antifungal activities of pumpkin 2S albumin. The protein exhibited a strong anticancer activity toward breast cancer (MCF-7), ovarian teratocarcinoma (PA-1), prostate cancer (PC-3 and DU-145) and hepatocellular carcinoma (HepG2) cell lines. Acridine orange staining and DNA fragmentation studies indicated that cytotoxic effect of pumpkin 2S albumin is mediated through induction of apoptosis. Pumpkin 2S albumin showed DNase activity against both supercoiled and linear DNA and exerted antifungal activity against Fusarium oxysporum. Secondary structure analysis by CD showed that protein is highly stable up to 90°C and retains its alpha helical structure. These results demonstrated that pumpkin 2S albumin is a multifunctional protein with host of potential biotechnology applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Radiofrequency catheter ablation maintains its efficacy better than antiarrhythmic medication in patients with paroxysmal atrial fibrillation: On-treatment analysis of the randomized controlled MANTRA-PAF trial.

    Science.gov (United States)

    Raatikainen, M J Pekka; Hakalahti, Antti; Uusimaa, Paavo; Nielsen, Jens Cosedis; Johannessen, Arne; Hindricks, Gerhard; Walfridsson, Håkan; Pehrson, Steen; Englund, Anders; Hartikainen, Juha; Kongstad, Ole; Mortensen, Leif Spange; Hansen, Peter Steen

    2015-11-01

    The Medical ANtiarrhythmic Treatment or Radiofrequency Ablation in Paroxysmal Atrial Fibrillation (MANTRA-PAF) is a randomized trial comparing radiofrequency catheter ablation (RFA) to antiarrhythmic drugs (AADs) as first-line treatment of paroxysmal atrial fibrillation (PAF). In order to eliminate the clouding effect of crossover we performed an on-treatment analysis of the data. Patients (n=294) were divided into three groups: those receiving only the assigned therapy (RFA and AAD groups) and those receiving both therapies (crossover group). The primary end points were AF burden in 7-day Holter recordings at 3, 6, 12, 18, and 24 months and cumulative AF burden in all recordings. At 24 months, AF burden was significantly lower in the RFA (n=110) than in the AAD (n=92) and the crossover (n=84) groups (90th percentile 1% vs. 10% vs. 16%, P=0.007), and more patients were free from any AF (89% vs. 73% vs. 74%, P=0.006). In the RFA, AAD and the crossover groups 63%, 59% and 21% (PPAF long-term efficacy of RFA was superior to AAD therapy. Thus, it is reasonable to offer RFA as first-line treatment for highly symptomatic patients who accept the risks of the procedure and are aware of frequent need for reablation(s). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole.

    Science.gov (United States)

    Amarsaikhan, Nansalmaa; Albrecht-Eckardt, Daniela; Sasse, Christoph; Braus, Gerhard H; Ogel, Zumrut B; Kniemeyer, Olaf

    2017-10-01

    Antifungal resistance is an emerging problem and one of the reasons for treatment failure of invasive aspergillosis (IA). Voriconazole has become a standard therapeutic for the treatment of this often fatal infection. We studied the differentially expressed proteins as a response of Aspergillus fumigatus to voriconazole by employing the two-dimensional difference gel electrophoresis (DIGE) technique. Due to addition of drug, a total of 135 differentially synthesized proteins were identified by MALDI-TOF/TOF-mass spectrometry. In particular, the level of proteins involved in the general stress response and cell detoxification increased prominently. In contrast, cell metabolism and energy proteins were down-regulated, which suggests the cellular effort to maintain balance in energy utilization while trying to combat the cellular stress exerted by the drug. We detected several so-far uncharacterized proteins which may play a role in stress response and drug metabolism and which could be future targets for antifungal treatment. A mutant strain, which is deleted in the cross-pathway control gene cpcA, was treated with voriconazole to investigate the contribution of the general control of amino acid biosynthesis to drug resistance. We compared the mutant strain's protein expression profile with the wild-type strain. The absence of CpcA led to an increased resistance to voriconazole and a reduced activation of some general stress response proteins, while the transcript level of the triazole target gene erg11A (cyp51A) remained unchanged. In contrast, the sensitivity of strain ΔcpcA to terbinafine and amphotericin B was slightly increased. These findings imply a role of CpcA in the cellular stress response to azole drugs at the post transcriptional level. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Nationwide Study of Candidemia, Antifungal Use, and Antifungal Drug Resistance in Iceland, 2000 to 2011

    Science.gov (United States)

    Asmundsdottir, Lena Ros; Erlendsdottir, Helga

    2013-01-01

    Candidemia is often a life-threatening infection, with highly variable incidence among countries. We conducted a nationwide study of candidemia in Iceland from 2000 to 2011, in order to determine recent trends in incidence rates, fungal species distribution, antifungal susceptibility patterns, and concurrent antifungal consumption. A total of 208 infection episodes in 199 patients were identified. The average incidence during the 12 years was 5.7 cases/100,000 population/year, which was significantly higher than that from 1990 to 1999 (4.3/100,000/year; P = 0.02). A significant reduction in the use of blood cultures was noted in the last 3 years of the study, coinciding with the economic crisis in the country (P 60 years, and varied by gender. Age-specific incidence among males >80 years old was 28.6/100,000/year, and it was 8.3/100,000/year for females in this age group (P = 0.028). The 30-day survival rate among adult patients remained unchanged compared to that from 1990 to 1999 (70.4% versus 69.5%, P = 0.97). Candida albicans was the predominant species (56%), followed by C. glabrata (16%) and C. tropicalis (13%). The species distribution remained stable compared to that from previous decades. Fluconazole use increased 2.4-fold from 2000 to 2011, with no increase in resistance. In summary, the incidence of candidemia in Iceland has continued to increase but may have reached a steady state, and no increase in antifungal drug resistance has been noted. Decreased use of blood cultures toward the end of the study may have influenced detection rates. PMID:23269738

  15. Probiotics as Antifungals in Mucosal Candidiasis.

    Science.gov (United States)

    Matsubara, Victor H; Bandara, H M H N; Mayer, Marcia P A; Samaranayake, Lakshman P

    2016-05-01

    Candidais an opportunistic pathogen that causes mucosal and deep systemic candidiasis. The emergence of drug resistance and the side effects of currently available antifungals have restricted their use as long-term prophylactic agents for candidal infections. Given this scenario, probiotics have been suggested as a useful alternative for the management of candidiasis. We analyzed the available data on the efficacy of probiotics in candidal colonization of host surfaces. A number of well-controlled studies indicate that probiotics, particularly lactobacilli, suppressCandidagrowth and biofilm development in vitro.A few clinical trials have also shown the beneficial effects of probiotics in reducing oral, vaginal, and enteric colonization byCandida; alleviation of clinical signs and symptoms; and, in some cases, reducing the incidence of invasive fungal infection in critically ill patients. Probiotics may serve in the future as a worthy ally in the battle against chronic mucosal candidal infections. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Clinico-mycological study of dermatophytic infections and their sensitivity to antifungal drugs in a tertiary care center

    Directory of Open Access Journals (Sweden)

    Soniya Mahajan

    2017-01-01

    Conclusion: Inadequate and irregular use of antifungal drugs has led to the emergence of resistant strains, which cause poor treatment outcomes. Thus, it is very important to test for antifungal sensitivity to check for resistance to antifungals.

  17. Characterisation of general proteolytic, milk clotting and antifungal activity of Ficus carica latex during fruit ripening.

    Science.gov (United States)

    Raskovic, Brankica; Lazic, Jelena; Polovic, Natalija

    2016-01-30

    The physiological role of fig latex is to protect the plant from pathogens. Latex is a rich source of proteases, predominantly ficin. Fig latex also contains collagenolytic protease and chitinolytic enzymes. Our aim was to investigate changes in protein composition, enzyme and antifungal activities of fig latex during fruit ripening. Comparison of latex samples in different time periods showed a uniform increase of protein concentration in chronological order. The content of collagenolytic protease did not differ significantly in the latex samples, while the content of ficin decreased. Ficin-specific activity towards casein was the highest at the beginning of fruit development (about 80 U mg(-1)). Specific milk clotting activity increased as well as the abundance of casein band in the clots. Specific chitinolytic activity at the beginning of flowering was 6.5 times higher than the activity in the period when fruits are ripe. Antifungal activity is the most extensive in spring. Ficin forms with different casein specificities are present in different proportions during fruit ripening, which is of importance for applications in the dairy industry. The protection mechanism against insects and fungi, which relies on chitinolytic activity, is the most important in the early phases of flowering and is replaced with other strategies over time. © 2015 Society of Chemical Industry.

  18. Phytochemical analysis and antifungal activity of selected seaweeds from Okha coast, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Isaiah Nirmal Kumar

    2015-07-01

    Full Text Available Objective: To deal with the assessment of the chemical composition of carbohydrate, protein, phenol, flavanoid, chlorophyll, and carotenoid and antifungal activity of various marine seaweeds collected from Okha coast, Gujarat during September, 2013. Methods: Biochemical compounds of selected seaweeds were quantified and antifungal activity of these species belonging to red, green, and brown seaweeds was explored and the seaweeds were extracted in acetone, ethanol and chloroform. Results: The carbohydrate content was highest in Cystoseira indica Mairh, protein was highest in Gracilaria corticata J. Agardh and phenol content was highest in Padina boergesenii; flavanoid content was found greater in Cystoseira indica, chlorophyll content was found greater in Monostroma latissimum Wittrock and carotenoid content was more in Dictyopteris acrostichoides Bornet. The highest inhibiting effect was noted for Sargassum tenerrimum J. Agardh and Turbinaria ornata J. Agardh belonging to brown algae, against Aspergillus niger and Penicillium janthinellum in chloroform extracts and ethanolic extracts, which caused opportunistic infection of HIV-infected person, lung disease, aspergillosis, and otomycosis (fungal ear infections. Conclusions: The study reveals that the seaweeds contain high amount of biochemical constituents. Besides, the crude extracts of the seaweeds showed promising activity against the tested fungal pathogens. Therefore, seaweeds collected from Okha coast, Gujarat region are biochemical compounds with potential capacity which make them useful for screening natural products for pharmaceutical industry.

  19. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis.

    Science.gov (United States)

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-02-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

    Science.gov (United States)

    Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2015-01-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333

  1. Antifungal Activity against Filamentous Fungi of Ts1, a Multifunctional Toxin from Tityus serrulatus Scorpion Venom

    Directory of Open Access Journals (Sweden)

    Welligton M. Santussi

    2017-06-01

    Full Text Available Antimicrobial peptides (AMPs are ubiquitous and multipotent components of the innate immune defense arsenal used by both prokaryotic and eukaryotic organisms. The search for new AMPs has increased in recent years, due to the growing development of microbial resistance to therapeutical drugs. In this work, we evaluate the effects of Tityus serrulatus venom (Tsv, its fractions and its major toxin Ts1, a beta-neurotoxin, on fungi growth. The fractions were obtained by ion-exchange chromatography of Tsv. The growth inhibition of 11 pathogenic and non-pathogenic filamentous fungi (Aspergillus fumigatus, A. nidulans, A. niger, A. terreus, Neurospora crassa, Penicillium corylophilum, P. ochrochloron, P. verrucosum, P. viridicatum, P. waksmanii, and Talaromyces flavus was evaluated by quantitative microplate reader assay. Tsv (100 and 500 μg/well, which correspond to 1 and 5 mg/mL, respectively, of total soluble protein was active in inhibiting growth of A. nidulans, A. terreus, P. corylophilum, and P. verrucosum, especially in the higher concentration used and at the first 30 h. After this period, fungi might have used Tsv components as alternative sources of nutrients, and therefore, increased their growth tax. Only fractions IX, X, XI, XIIA, XIIB (3 and 7.5 μg/well, which correspond to 30 and 75 μg/mL, respectively, of total soluble protein and Ts1 (1.5, 3, and 6 μg/well, which correspond to 2.18, 4.36, and 8.72 μM, respectively showed antifungal activity. Ts1 showed to be a non-morphogenic toxin with dose-dependent activity against A. nidulans, inhibiting 100% of fungal growth from 3 μg/well (4.36 μM. The inhibitory effect of Ts1 against A. nidulans growth was accompanied by fungistatic effects and was not amended by 1 mM CaCl2 or tetrodotoxin (46.98 and 93.96 μM. The structural differences between Ts1 and drosomycin, a potent cysteine-rich antifungal peptide, are discussed here. Our results highlight the antifungal potential of the first

  2. Dynamics of Mixed- Candida Species Biofilms in Response to Antifungals.

    Science.gov (United States)

    Vipulanandan, G; Herrera, M; Wiederhold, N P; Li, X; Mintz, J; Wickes, B L; Kadosh, D

    2018-01-01

    Oral infections caused by Candida species, the most commonly isolated human fungal pathogen, are frequently associated with biofilms. Although Candida albicans is the predominant organism found in patients with oral thrush, a biofilm infection, there is an increasing incidence of oral colonization and infections caused by non- albicans Candida species, including C. glabrata, C. dubliniensis, and C. tropicalis, which are frequently more resistant to antifungal treatment. While single-species Candida biofilms have been well studied, considerably less is known about the dynamics of mixed- Candida species biofilms and how these dynamics are altered by antifungal treatment. To address these questions, we developed a quantitative polymerase chain reaction-based approach to determine the precise species composition of mixed- Candida species biofilms formed by clinical isolates and laboratory strains in the presence and absence of clinically relevant concentrations of 3 commonly used antifungals: fluconazole, caspofungin, and amphotericin B. In monospecies biofilms, fluconazole exposure favored growth of C. glabrata and C. tropicalis, while caspofungin generally favored significant growth of all species to a varying degree. Fluconazole was not effective against preformed mixed- Candida species biofilms while amphotericin B was potent. As a general trend, in mixed- Candida species biofilms, C. albicans lost dominance in the presence of antifungals. Interestingly, presence in mixed versus monospecies biofilms reduced susceptibility to amphotericin B for C. tropicalis and C. glabrata. Overall, our data suggest that antifungal treatment favors the growth of specific non- albicans Candida species in mixed- Candida species biofilms.

  3. Antifungal activity of essential oils against selected terverticillate penicillia.

    Science.gov (United States)

    Felšöciová, Soňa; Kačániová, Miroslava; Horská, Elena; Vukovič, Nenad; Hleba, Lukáš; Petrová, Jana; Rovná, Katarina; Stričík, Michal; Hajduová, Zuzana

    2015-01-01

    The aim of this study was to screen 15 essential oils of selected plant species, viz. Lavandula angustifolia, Carum carvi, Pinus mungo var. pulmilio, Mentha piperita, Chamomilla recutita L., Pinus sylvestris, Satureia hortensis L., Origanum vulgare L., Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita L. Rausch, Thymus vulgaris L., Origanum vulgare L. for antifungal activity against five Penicillium species: Penicillium brevicompactum, Penicillium citrinum, Penicillium crustosum, Penicillium expansum and Penicillium griseofulvum. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against Penicillium fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: Pimpinella anisum, Chamomilla recutita L., Thymus vulgaris, Origanum vulgare L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be Origanum vulgare L. and Pimpinella anisum. The lowest level of antifungal activity was demonstrated by the oils Pinus mungo var. pulmilio, Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita L. Rausch, Rosmarinus officinalis.

  4. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. Lavandula angustifolia, Carum carvi, Pinus mungo var. pulmilio, Mentha piperita, Chamomilla recutita L., Pinus sylvestris, Satureia hortensis L., Origanum vulgare L., Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita, L. Rausch, Thymus vulgaris L., Origanum vulgare L. for antifungal activity against five Penicillium species: Penicillium brevicompactum, Penicillium citrinum, Penicillium crustosum, Penicillium expansum and Penicillium griseofulvum. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against Penicillium fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: Pimpinella anisum, Chamomilla recutita L., Thymus vulgaris, Origanum vulgare L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be Origanum vulgare L. and Pimpinella anisum. The lowest level of antifungal activity was demonstrated by the oils Pinus mungo var. pulmilio, Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita L. Rausch, Rosmarinus officinalis.

  5. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Ravikumar Bapurao Shinde

    Full Text Available Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05 in presence of 250 µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.

  6. Potential antifungal activity of Cladonia aff. rappii A. Evans

    Directory of Open Access Journals (Sweden)

    Claudia M. Plaza

    2017-10-01

    Full Text Available Context: Lichen is a self-supporting symbiotic organism composed of a fungus and an algal partner. They have manifold biological activities like antiviral, antibiotic, antioxidant, antitumor, allergenic and inhibition of plant growth. Species of Cladonia, have been studied by its antifungal activity. Aims: To evaluate the antifungal activity determination of Cladonia aff. rappii against five yeasts, four of genus Candida and one Cryptococcus, using water, ethanol and dichloromethane extracts. Methods: The evaluation of the antifungal activity was developed by three diffusion methods such as spot-on-a-lawn, disc diffusion and well diffusion. Additionally, the values of minimal inhibitory concentration (MIC and the minimum fungicidal concentration (MFC were determined. Results: Based on the experimental results obtained, the best antifungal activity was using ethanol extract at 20 mg/mL against Candida albicans, applying the three diffusion methods above mentioned. With ethanol extract, the lower MIC was against Candida glabrata and the lower MFC were with Candida glabrata, C. krusei, C. parapsilosis and C. tropicalis. The dichloromethane extract presented the lowest MIC and MFC against C. neoformans. Not activity was observed with aqueous extract. Conclusions: The present study revealed antifungal and fungicidal activity in the extract of lichen Cladonia aff. rappii.

  7. Antifungal compounds from cultures of dairy propionibacteria type strains.

    Science.gov (United States)

    Lind, Helena; Sjögren, Jörgen; Gohil, Suresh; Kenne, Lennart; Schnürer, Johan; Broberg, Anders

    2007-06-01

    Antifungal compounds from cultures of five type strains of dairy propionibacteria, as well as from the cultivation medium, were studied. Cell-free supernatants and medium were fractionated by C(18) solid phase extraction. The aqueous 95% acetonitrile fractions were analyzed by GC-MS or subjected to reversed-phase HPLC, to identify, quantify or isolate antifungal substances. The resulting HPLC fractions were screened for antifungal activity against the mold Aspergillus fumigatus and the yeast Rhodotorula mucilaginosa. Active fractions were further separated by HPLC and the structures of the compounds were determined by spectroscopic and chromatographic methods. All five strains produced 3-phenyllactic acid, at concentrations ranging from 1.0 microg mL(-1) (Propionibacterium freudenreichii ssp. shermanii) to 15.1 microg mL(-1) (Propionibacterium thoenii), and at L/D -ratios ranging from 2 : 3 (Propionibacterium acidipropionici) to 9 : 1 (Propionibacterium freudenreichii). A number of active compounds found in cultures of propionibacteria were also present in noninoculated growth medium: two antifungal diketopiperazines, cyclo(L-Phe-L-Pro) and cyclo(L-Ile-L-Pro), and seven antifungal linear peptides. Three of the linear peptides corresponded to sequences found in the medium component casein, suggesting their origin from this component, whereas the diketopiperazines were suggested to be formed from medium peptides by heat treatment.

  8. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    Science.gov (United States)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  9. Molecular modelling, dynamics simulation and characterization of antifungal chitinase from Sechium edule.

    Science.gov (United States)

    Bhattacharjee, Bipasha; Pathaw, Neeta; Chrungoo, Nikhil K; Bhattacharjee, Atanu

    2017-03-30

    Chitinases are varied sized proteins which have the ability to degrade chitin and are present in a huge range of organisms like fungi, yeasts, arthropods, humans etc. and have been getting increased attention due to their biocontrol properties. In silico analysis sheds light on the extensive properties of this plant protein. In this paper, a particular antifungal protein Chitinase sourced from Sechium edule from East Khasi Hills, Meghalaya was characterized using an array of bioinformatics tools. The modelled protein showed conserved domains characteristic to glycosyl hydrolase, family 18 superfamily. Likewise, a part of the conserved domain area fits in with xylanase inhibitor Xip-1 and the class ΙΙΙ plant chitinases, for example, concanavalin B, hevamine, which have a GH18 area. The modelled wild type protein exhibited secondary characteristics comprising of 48.8% helix, 62.2% sheets and 13.8% turns, displaying an aliphatic index of 80.53 and instability index of 48.88 inferring upon the fact that the protein is relatively unstable without its appropriate environment. The paper functions as the first attempt to portray molecular dynamics simulation of Chitinase from Sechium edule reinforced by modelling and thorough characteristic analysis of the protein by employing parameters like Ramachandran Plot, Chou and Fasman Secondary Structure prediction, ProtParam etc. Further approaches like protein engineering and activity analysis suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Antagonistic changes in sensitivity to antifungal drugs by mutations of an important ABC transporter gene in a fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Wenjun Guan

    2010-06-01

    Full Text Available Fungal pathogens can be lethal, especially among immunocompromised populations, such as patients with AIDS and recipients of tissue transplantation or chemotherapy. Prolonged usage of antifungal reagents can lead to drug resistance and treatment failure. Understanding mechanisms that underlie drug resistance by pathogenic microorganisms is thus vital for dealing with this emerging issue. In this study, we show that dramatic sequence changes in PDR5, an ABC (ATP-binding cassette efflux transporter protein gene in an opportunistic fungal pathogen, caused the organism to become hypersensitive to azole, a widely used antifungal drug. Surprisingly, the same mutations conferred growth advantages to the organism on polyenes, which are also commonly used antimycotics. Our results indicate that Pdr5p might be important for ergosterol homeostasis. The observed remarkable sequence divergence in the PDR5 gene in yeast strain YJM789 may represent an interesting case of adaptive loss of gene function with significant clinical implications.

  11. Comparison of the Antifungal effect of Licorice Root, Althoca Officinalis Extracts and Ketoconazole on Malassezia Furfur

    Directory of Open Access Journals (Sweden)

    Y Motaharinia

    2011-12-01

    Conclusion: The present study showed that Althoca officinalis flower extract compared with the Althoca officinalis root and licorice root extracts have a higher antifungal effect. Also ketoconazole, compared with these extracts, have a high antifungal effect on Malassezia furfur.

  12. Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta).

    Science.gov (United States)

    Wang, Ke-Ming; Kumar, Senthil; Cheng, Yi-Sheng; Venkatagiri, Shripathi; Yang, Ai-Hwa; Yeh, Kai-Wun

    2008-10-01

    Tarocystatin from Colocasia esculenta, a group-2 phytocystatin, is a defense protein against phytopathogenic nematodes and fungi. It is composed of a highly conserved N-terminal region, which is homological to group-1 cystatin, and a repetitive peptide at the C-terminus. The purified recombinant proteins of tarocystatin, such as full-length (FL), N-terminus (Nt) and C-terminus (Ct) peptides, were produced and their inhibitory activities against papain as well as their antifungal effects were investigated. Kinetic analysis revealed that FL peptide exhibited mixed type inhibition (K(ia) = 0.098 microM and K(ib) = 0.252 microM) and Nt peptide showed competitive inhibition (K(i) = 0.057 microM), whereas Ct peptide possessed weak papain activation properties. A shift in the inhibitory pattern from competitive inhibition of Nt peptide alone to mixed type inhibition of FL peptide implied that the Ct peptide has an regulatory effect on the function of FL peptide. Based on the inhibitory kinetics of FL (group-2) and Nt (group-1) peptides on papain activity, an inhibitory mechanism of group-2 phytocystatins and a regulatory mechanism of extended Ct peptide have each been proposed. By contrast, the antifungal activity of Nt peptide appeared to be greater than that of FL peptide, and the Ct peptide showed no effect on antifungal activity, indicating that the antifungal effect is not related to proteinase inhibitory activity. The results are valid for most phytocystatins with respect to the inhibitory mechanism against cysteine proteinase.

  13. Antifungal activity of nicotine and its cobalt complex

    International Nuclear Information System (INIS)

    Zaidi, M.I.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Co(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activity against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cobalt(II) chloride was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine had antifungal activity against all species of fungi studied except Candida albicans, Microsporum canis, Epidermophyton floccosum, Candida tropicalis, and Alternaria infectoria. Cobalt(II) nicotine was found to be effective against all selected species of fungi but ineffective against Candida solani, Penicillium notalum, Microsporum canis, Fusarium solani and Fusarium moniliforme. (author)

  14. Antifungal Applications of Ag-Decorated Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    C. A. Zamperini

    2013-01-01

    Full Text Available Pure hydroxyapatite (HA and hydroxyapatite decorated with silver (HA@Ag nanoparticles were synthesized and characterized. The antifungal effect of HA@Ag nanoparticles in a distilled water solution was evaluated against Candida albicans. The origin of the antifungal activity of the HA@Ag is also discussed. The results obtained showed that the HA nanorod morphology remained the same with Ag ions decorations on the HA structure which were deposited in the form of nanospheres. Interaction where occurred between the structure and its defect density variation in the interfacial HA@Ag and intrafacial HA region with the fungal medium resulted in antifungal activity. The reaction mechanisms involved oxygen and water adsorption which formed an active complex cluster. The decomposition and desorption of the final products as well as the electron/hole recombination process have an important role in fungicidal effects.

  15. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  16. Taxonomy and antifungal susceptibility of clinically important Rasamsonia species

    DEFF Research Database (Denmark)

    Houbraken, J.; Giraud, S.; Meijer, M.

    2013-01-01

    In recent years, Geosmithia argillacea has been increasingly reported in humans and animals and can be considered an emerging pathogen. The taxonomy of Geosmithia was recently studied, and Geosmithia argillacea and related species were transferred to the new genus Rasamsonia. The diversity among...... the presence of four species in the Rasamsonia argillacea complex, two of which are newly described here: R. piperina sp. nov. and R. aegroticola sp. nov. In contrast to other related genera, all Rasamsonia species can be identified with ITS sequences. A retrospective identification was performed on recently...... was the least active of the antifungals tested. The phenotypically similar species R. brevistipitata and R. cylindrospora had different antifungal susceptibility profiles, and this indicates that correct species identification is important to help guide appropriate antifungal therapy....

  17. Design of amphotericin B oral formulation for antifungal therapy.

    Science.gov (United States)

    Liu, Min; Chen, Meiwan; Yang, Zhiwen

    2017-11-01

    Amphotericin B (AmB) remains the "gold standard" for systemic antifungal therapy, even though new drugs are emerging as the attractive antifungal agents. Since AmB has negligible oral absorption as a consequence of its unfavorable physicochemical characterizations, its use is restricted to parenteral administration which is accompanied by severe side effects. As greater understanding of the gastrointestinal tract has developed, the advanced drug delivery systems are emerging with the potential to overcome the barriers of AmB oral delivery. Much research has demonstrated that oral AmB formulations such as lipid formulations may have beneficial therapeutic efficacy with reduced adverse effects and suitable for clinical application. Here we reviewed the different formulation strategies to enhance oral drug efficacy, and discussed the current trends and future perspectives for AmB oral administration in the treatment of antifungal infections.

  18. Antifungal effect of TONS504-photodynamic therapy on Malassezia furfur.

    Science.gov (United States)

    Takahashi, Hidetoshi; Nakajima, Susumu; Sakata, Isao; Iizuka, Hajime

    2014-10-01

    Numerous reports indicate therapeutic efficacy of photodynamic therapy (PDT) against skin tumors, acne and for skin rejuvenation. However, few reports exist regarding its efficacy for fungal skin diseases. In order to determine the antifungal effect, PDT was applied on Malassezia furfur. M. furfur was cultured in the presence of a novel cationic photosensitizer, TONS504, and was irradiated with a 670-nm diode laser. TONS504-PDT showed a significant antifungal effect against M. furfur. The effect was irradiation dose- and TONS504 concentration-dependent and the maximal effect was observed at 100 J/cm2 and 1 μg/mL, respectively. In conclusion, TONS504-PDT showed antifungal effect against M. furfur in vitro, and may be a new therapeutic modality for M. furfur-related skin disorders. © 2014 Japanese Dermatological Association.

  19. Isolation and antifungal screening of endophytic fungi from Erigeron canadensis

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2017-07-01

    Full Text Available Sixteen fungal strains isolated from the Erigeron canadensis, one of traditional Chinese medicines used to treat the pathogenic infection and dysentery, were evaluated for their antifungal activities against one human pathogen Candida albicans, and two phytopathogens, Colletotrichum fructicola and Rhizoctonia cerealis. The bioassay results indicated that the ethyl acetate extract of the fermentation broth of these fungal endophytes had stronger antimicrobial activities. Among these endophytic strains, the ethyl acetate extracts of strains NPR003 and NPR005 showed the strongest inhibitory effects and has potential application in the discovery of new antifungal agents. This was the first report on the isolation of endophytic fungi from E. canadensis and evaluation of their antifungal activities.

  20. Antifungal Activity of Bacillus coagulans TQ33, Isolated from Skimmed Milk Powder, against Botrytis cinerea

    OpenAIRE

    Wang, Hai Kuan; Xiao, Rui Feng; Qi†, Wei

    2013-01-01

    Bacillus coagulans TQ33 is isolated from the skimmed milk powder and has a broad antifungal activity against pathogens such as Botrytis cinerea, Alternaria solani, Phytophthora drechsleri Tucker, Fusarium oxysporum and Glomerella cingulata. The characteristics of active antifungal substances produced by B. coagulans TQ33 and its antifungal effects against the growth of plant pathogenic fungi has been evaluated. The effect of pH, temperature and protease on the antifungal activity of B. coagul...

  1. Synergistic combinations of antifungals and antivirulence agents to fight against Candida albicans

    DEFF Research Database (Denmark)

    Cui, Jinhui; Ren, Biao; Tong, Yaojun

    2015-01-01

    -drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of drug resistant and potentially repurpose known antifungals, which bypass the costly and time......-consuming pipeline of new drug development. Anti-virulence and synergistic combination provide new options for antifungal drug discovery by counteracting the difficulty or failure of traditional therapy for fungal infections....

  2. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Hanna Yolanda

    2014-08-01

    Full Text Available Background To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. Methods Collected pitcher liquids were of 3 types: non-induced liquid (NIL, prey-induced liquid (PIL, and chitin-induced liquid (CIL. Non-induced liquid (NIL was collected from fresh naturally opened pitchers, PIL from opened pitchers after 3 hours of induction with Zophobas morio larvae, and CIL from closed pitchers after 5 days of chitin solution injection. The antifungal activity of the liquids against C. albicans, C. glabrata, C. krusei, and C. tropicalis were detected by disc diffusion and macrodilution methods. Results Inhibition zone diameters of NIL, PIL, and CIL against C. albicans were 35.00 (35.00 – 39.33 mm, 26.33 (23.00 – 40.00 mm, and 30.00 ( 28.00 – 32.00 mm, respectively, while for C. glabrata the zone diameters were 22.22 ± 3.66 mm, 29.89 ± 2.79 mm, and 28.89 ± 1.17 mm, respectively. No inhibition zones were found for NIL, PIL, and CIL against C. krusei and C. tropicalis. At concentrations of 80%, almost all samples showed visually apparent inhibition of fungal growth. Conclusion The pitcher liquid of N. rafflesiana has antifungal properties, presumably due to the presence of many potentially active substances, such as naphthoquinones, as has been proven in other studies.

  3. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Hanna Yolanda

    2015-12-01

    Full Text Available BACKGROUND To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. METHODS Collected pitcher liquids were of 3 types: non-induced liquid (NIL, prey-induced liquid (PIL, and chitin-induced liquid (CIL. Non-induced liquid (NIL was collected from fresh naturally opened pitchers, PIL from opened pitchers after 3 hours of induction with Zophobas morio larvae, and CIL from closed pitchers after 5 days of chitin solution injection. The antifungal activity of the liquids against C. albicans, C. glabrata, C. krusei, and C. tropicalis were detected by disc diffusion and macrodilution methods. RESULTS Inhibition zone diameters of NIL, PIL, and CIL against C. albicans were 35.00 (35.00 – 39.33 mm, 26.33 (23.00 – 40.00 mm, and 30.00 ( 28.00 – 32.00 mm, respectively, while for C. glabrata the zone diameters were 22.22 ± 3.66 mm, 29.89 ± 2.79 mm, and 28.89 ± 1.17 mm, respectively. No inhibition zones were found for NIL, PIL, and CIL against C. krusei and C. tropicalis. At concentrations of 80%, almost all samples showed visually apparent inhibition of fungal growth. CONCLUSION The pitcher liquid of N. rafflesiana has antifungal properties, presumably due to the presence of many potentially active substances, such as naphthoquinones, as has been proven in other studies.

  4. Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Elzbieta Tryniszewska

    2012-04-01

    Full Text Available Ketoconazole (KET, an imidazole derivative with well-known antifungal properties, is lipophilic and practically insoluble in water, therefore its clinical use has some practical disadvantages. The aim of the present study was to investigate the influence of PAMAM-NH2 and PAMAM-OH dendrimers generation 2 and generation 3 on the solubility and antifungal activity of KET and to design and evaluate KET hydrogel with PAMAM dendrimers. It was shown that the surface charge of PAMAM dendrimers strongly affects their influence on the improvement of solubility and antifungal activity of KET. The MIC and MFC values obtained by broth dilution method indicate that PAMAM-NH2 dendrimers significantly (up to 16-fold increased the antifungal activity of KET against Candida strains (e.g., in culture Candida albicans 1103059/11 MIC value was 0.008 μg/mL and 0.064 μg/mL, and MFC was 2 μg/mL and 32 μg/mL for KET in 10 mg/mL solution of PAMAM-NH2 G2 and pure KET, respectively. Antifungal activity of designed KET hydrogel with PAMAM-NH2 dendrimers measured by the plate diffusion method was definitely higher than pure KET hydrogel and than commercial available product. It was shown that the improvement of solubility and in the consequence the higher KET release from hydrogels seems to be a very significant factor affecting antifungal activity of KET in hydrogels containing PAMAM dendrimers.

  5. Potent In Vitro Antifungal Activities of Naturally Occurring Acetylenic Acids▿

    Science.gov (United States)

    Li, Xing-Cong; Jacob, Melissa R.; Khan, Shabana I.; Ashfaq, M. Khalid; Babu, K. Suresh; Agarwal, Ameeta K.; ElSohly, Hala N.; Manly, Susan P.; Clark, Alice M.

    2008-01-01

    Our continuing effort in antifungal natural product discovery has led to the identification of five 6-acetylenic acids with chain lengths from C16 to C20: 6-hexadecynoic acid (compound 1), 6-heptadecynoic acid (compound 2), 6-octadecynoic acid (compound 3), 6-nonadecynoic acid (compound 4), and 6-icosynoic acid (compound 5) from the plant Sommera sabiceoides. Compounds 2 and 5 represent newly isolated fatty acids. The five acetylenic acids were evaluated for their in vitro antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes, and Trichophyton rubrum by comparison with the positive control drugs amphotericin B, fluconazole, ketoconazole, caspofungin, terbinafine, and undecylenic acid. The compounds showed various degrees of antifungal activity against the 21 tested strains. Compound 4 was the most active, in particular against the dermatophytes T. mentagrophytes and T. rubrum and the opportunistic pathogens C. albicans and A. fumigatus, with MICs comparable to several control drugs. Inclusion of two commercially available acetylenic acids, 9-octadecynoic acid (compound 6) and 5,8,11,14-eicosatetraynoic acid (compound 7), in the in vitro antifungal testing further demonstrated that the antifungal activities of the acetylenic acids were associated with their chain lengths and positional triple bonds. In vitro toxicity testing against mammalian cell lines indicated that compounds 1 to 5 were not toxic at concentrations up to 32 μM. Furthermore, compounds 3 and 4 did not produce obvious toxic effects in mice at a dose of 34 μmol/kg of body weight when administered intraperitoneally. Taking into account the low in vitro and in vivo toxicities and significant antifungal potencies, these 6-acetylenic acids may be excellent leads for further preclinical studies. PMID:18458131

  6. Potent in vitro antifungal activities of naturally occurring acetylenic acids.

    Science.gov (United States)

    Li, Xing-Cong; Jacob, Melissa R; Khan, Shabana I; Ashfaq, M Khalid; Babu, K Suresh; Agarwal, Ameeta K; Elsohly, Hala N; Manly, Susan P; Clark, Alice M

    2008-07-01

    Our continuing effort in antifungal natural product discovery has led to the identification of five 6-acetylenic acids with chain lengths from C(16) to C(20): 6-hexadecynoic acid (compound 1), 6-heptadecynoic acid (compound 2), 6-octadecynoic acid (compound 3), 6-nonadecynoic acid (compound 4), and 6-icosynoic acid (compound 5) from the plant Sommera sabiceoides. Compounds 2 and 5 represent newly isolated fatty acids. The five acetylenic acids were evaluated for their in vitro antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes, and Trichophyton rubrum by comparison with the positive control drugs amphotericin B, fluconazole, ketoconazole, caspofungin, terbinafine, and undecylenic acid. The compounds showed various degrees of antifungal activity against the 21 tested strains. Compound 4 was the most active, in particular against the dermatophytes T. mentagrophytes and T. rubrum and the opportunistic pathogens C. albicans and A. fumigatus, with MICs comparable to several control drugs. Inclusion of two commercially available acetylenic acids, 9-octadecynoic acid (compound 6) and 5,8,11,14-eicosatetraynoic acid (compound 7), in the in vitro antifungal testing further demonstrated that the antifungal activities of the acetylenic acids were associated with their chain lengths and positional triple bonds. In vitro toxicity testing against mammalian cell lines indicated that compounds 1 to 5 were not toxic at concentrations up to 32 muM. Furthermore, compounds 3 and 4 did not produce obvious toxic effects in mice at a dose of 34 mumol/kg of body weight when administered intraperitoneally. Taking into account the low in vitro and in vivo toxicities and significant antifungal potencies, these 6-acetylenic acids may be excellent leads for further preclinical studies.

  7. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  8. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  9. Epidemiology and antifungal susceptibility of Candida species in a tertiary care hospital, Kolkata, India

    Directory of Open Access Journals (Sweden)

    Partha Bhattacharjee

    2016-06-01

    Conclusion: Species-level identification of Candida and their antifungal sensitivity testing should to be performed to achieve better clinical result and to select an appropriate and effective antifungal therapy. High resistance to antifungal agents is an alarming sign to the healthcare professionals.

  10. In vitro antifungal activities of 26 plant extracts on mycelial growth of ...

    African Journals Online (AJOL)

    Antifungal activities of 26 plant extracts were tested against Phytophthora infestans using radial growth technique. While all tested plant extracts produced some antifungal activities Xanthium strumarium, Lauris nobilis, Salvia officinalis and Styrax officinalis were the most active plants that showed potent antifungal activity.

  11. Isolation, partial purification and characterization of antifungal ...

    African Journals Online (AJOL)

    Two bands were obtained from SDS-PAGE electrophoresis and they were identified by ESI/MS using in gel tryptic digestion. The seed protein from B. Sapida consists of two single polypeptide chains each with mass of about 24 to 27 KDa as established by a combination of SDS-PAGE and ESI/MS. Proteins exhibited ...

  12. Animal Models and Antifungal Agents in Paracoccidioidomycosis: An Overview.

    Science.gov (United States)

    Goldani, Luciano Z; Wirth, Fernanda

    2017-08-01

    Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The morbidity and mortality associated with paracoccidioidomycosis necessitate our understanding of fungal pathogenesis and discovering of new agents to treat this infection. Animal models have contributed much to the knowledge of fungal infections and their corresponding therapeutic treatments. This is true for animal models of the primary fungal pathogens such as P. brasiliensis. This review describes the development, details and utility of animal models of paracoccidioidomycosis for studying and developing the current antifungal agents used for therapy of this fungal disease and novel agents with antifungal properties against P. brasiliensis.

  13. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    Sun Peng; Wu Haiyan; Sun Yi; Liu Wei; Li Ruoyu; Zhu Weidong; Lopez, Jose L.; Zhang Jue; Fang Jing

    2011-01-01

    A microhollow cathode based, direct-current, atmospheric pressure, He/O 2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  14. Comparison of Quantitative Antifungal Testing Methods for Textile Fabrics.

    Science.gov (United States)

    Imoto, Yasuo; Seino, Satoshi; Nakagawa, Takashi; Yamamoto, Takao A

    2017-01-01

     Quantitative antifungal testing methods for textile fabrics under growth-supportive conditions were studied. Fungal growth activities on unfinished textile fabrics and textile fabrics modified with Ag nanoparticles were investigated using the colony counting method and the luminescence method. Morphological changes of the fungi during incubation were investigated by microscopic observation. Comparison of the results indicated that the fungal growth activity values obtained with the colony counting method depended on the morphological state of the fungi on textile fabrics, whereas those obtained with the luminescence method did not. Our findings indicated that unique characteristics of each testing method must be taken into account for the proper evaluation of antifungal activity.

  15. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Erick A.; Durango, Diego L.; Garcia, Carlos M. [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Ciencias. Escuela de Quimica], e-mail: cmgarcia@unal.edu.co

    2009-07-01

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  16. Combination antifungal therapy for cryptococcal meningitis.

    Science.gov (United States)

    Day, Jeremy N; Chau, Tran T H; Wolbers, Marcel; Mai, Pham P; Dung, Nguyen T; Mai, Nguyen H; Phu, Nguyen H; Nghia, Ho D; Phong, Nguyen D; Thai, Cao Q; Thai, Le H; Chuong, Ly V; Sinh, Dinh X; Duong, Van A; Hoang, Thu N; Diep, Pham T; Campbell, James I; Sieu, Tran P M; Baker, Stephen G; Chau, Nguyen V V; Hien, Tran T; Lalloo, David G; Farrar, Jeremy J

    2013-04-04

    Combination antifungal therapy (amphotericin B deoxycholate and flucytosine) is the recommended treatment for cryptococcal meningitis but has not been shown to reduce mortality, as compared with amphotericin B alone. We performed a randomized, controlled trial to determine whether combining flucytosine or high-dose fluconazole with high-dose amphotericin B improved survival at 14 and 70 days. We conducted a randomized, three-group, open-label trial of induction therapy for cryptococcal meningitis in patients with human immunodeficiency virus infection. All patients received amphotericin B at a dose of 1 mg per kilogram of body weight per day; patients in group 1 were treated for 4 weeks, and those in groups 2 and 3 for 2 weeks. Patients in group 2 concurrently received flucytosine at a dose of 100 mg per kilogram per day for 2 weeks, and those in group 3 concurrently received fluconazole at a dose of 400 mg twice daily for 2 weeks. A total of 299 patients were enrolled. Fewer deaths occurred by days 14 and 70 among patients receiving amphotericin B and flucytosine than among those receiving amphotericin B alone (15 vs. 25 deaths by day 14; hazard ratio, 0.57; 95% confidence interval [CI], 0.30 to 1.08; unadjusted P=0.08; and 30 vs. 44 deaths by day 70; hazard ratio, 0.61; 95% CI, 0.39 to 0.97; unadjusted P=0.04). Combination therapy with fluconazole had no significant effect on survival, as compared with monotherapy (hazard ratio for death by 14 days, 0.78; 95% CI, 0.44 to 1.41; P=0.42; hazard ratio for death by 70 days, 0.71; 95% CI, 0.45 to 1.11; P=0.13). Amphotericin B plus flucytosine was associated with significantly increased rates of yeast clearance from cerebrospinal fluid (-0.42 log10 colony-forming units [CFU] per milliliter per day vs. -0.31 and -0.32 log10 CFU per milliliter per day in groups 1 and 3, respectively; P<0.001 for both comparisons). Rates of adverse events were similar in all groups, although neutropenia was more frequent in patients

  17. Isoform localization of Dectin-1 regulates the signaling quality of anti-fungal immunity.

    Science.gov (United States)

    Fischer, Mike; Müller, Jörg P; Spies-Weisshart, Bärbel; Gräfe, Christine; Kurzai, Oliver; Hünniger, Kerstin; Hochhaus, Andreas; Scholl, Sebastian; Schnetzke, Ulf

    2017-05-01

    Dectin-1 is recognized as a major receptor for fungal ß-glucans and contributes to anti-fungal immunity. Human monocyte populations express Dectin-1 isoforms A and B, which differ by the presence of a stalk region and its N-linked glycosylation site. Here, we analyzed the expression of both isoforms in human monocyte-derived cells. The cellular localization on cell lines stably expressing either Dectin-1 isoform A or B was studied by flow cytometry and confocal laser scanning microscopy. Intracellular protein signaling and cytokine production were analyzed by immunoblotting and cytometric bead array, respectively. Monocyte-derived cells showed cell type-specific expression of the two isoforms. Glycosylated Dectin-1 isoform A was predominantly localized at the cell surface, non-glycosylated isoform B was retained intracellularly. Inhibition of glycosylation resulted in efficient abrogation of cell surface expression of isoform A. Signaling quality following Dectin-1 stimulation was reduced in isoform B cells. Differential isoform specific cytokine secretion was observed by cytometric bead array. We show here that n-glycosylation of Dectin-1 is crucial for its cell surface expression and consequently signal transduction. Taken together, unique cytokine secretion and varying expression levels of human Dectin-1 isoforms on monocyte-derived cells may indicate distinct isoform usage as a cell type-specific mechanism of regulating anti-fungal immunity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Neural network modelling of antifungal activity of a series of oxazole derivatives based on in silico pharmacokinetic parameters

    Directory of Open Access Journals (Sweden)

    Kovačević Strahinja Z.

    2013-01-01

    Full Text Available In the present paper, the antifungal activity of a series of benzoxazole and oxazolo[ 4,5-b]pyridine derivatives was evaluated against Candida albicans by using quantitative structure-activity relationships chemometric methodology with artificial neural network (ANN regression approach. In vitro antifungal activity of the tested compounds was presented by minimum inhibitory concentration expressed as log(1/cMIC. In silico pharmacokinetic parameters related to absorption, distribution, metabolism and excretion (ADME were calculated for all studied compounds by using PreADMET software. A feedforward back-propagation ANN with gradient descent learning algorithm was applied for modelling of the relationship between ADME descriptors (blood-brain barrier penetration, plasma protein binding, Madin-Darby cell permeability and Caco-2 cell permeability and experimental log(1/cMIC values. A 4-6-1 ANN was developed with the optimum momentum and learning rates of 0.3 and 0.05, respectively. An excellent correlation between experimental antifungal activity and values predicted by the ANN was obtained with a correlation coefficient of 0.9536. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

  19. Genetic determinants of antifungal resistance in Candida species ...

    African Journals Online (AJOL)

    In the previous decades, it has been an increase in cases of resistance to antifungal agents used in the prophylaxis and treatment of infections caused by Candida species. The emergence of resistance to drug classes, it is usually explained by genome alterations ranging from point mutations to gain or loss of whole ...

  20. Antifungal effect of Polar and non polar extracts of Aframomum ...

    African Journals Online (AJOL)

    The phytochemical screening revealed the presence of the following phytochemicals in different quantities; Alkaloids, Terpenoids, Anthraquinones, Flavonoids Tanins, Saponins. Results obtained showed that all the extracts had a significantly higher antifungal effect (p< 0.05) than the broad spectrum fungicide, Mancozeb at ...

  1. Antifungal Activity of Hypericum havvae Against Some Medical ...

    African Journals Online (AJOL)

    ... potency against Candida albicans and Cryptococcus laurentii, with the same MIC value of 1.56 mg/ml. Conclusion: Our findings support the use of Hypericum havvae in traditional medicine for the treatment of fungal infections, especially Candidiasis. Keywords: Antifungal activity, Candida, Hypericum havvae, Candidiasis ...

  2. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    The aim of this study was to determine the chemical composition of the essential oils of Algerian citrus. They were extracted by hydrodistillation from the leaves of citrus species (orange, Bigaradier, mandarin and lemon), using gas chromatography/mass spectrometry (GC/MS). Their chemical composition and antifungal ...

  3. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    of this thesis has been to explore the tolerance mechanisms of yeast biofilms to systemic antifungal agents and to identify the molecular target of a novel peptidomimetic with anti-biofilm activity. The genetic tractable S. cerevisiae was used as biofilm model system for the pathogenic Candida species...

  4. Evaluation of antibacterial, antifungal and modulatory activity of ...

    African Journals Online (AJOL)

    Methods: The tests for the minimum inhibitory concentration and modulation of microbial resistance, with the use of ethanolic and methanolic extracts of Padina Sanctae-cruces combined with drugs of the class of aminoglycosides and antifungal were used to evaluate the activity against the cited microorganisms. Results: ...

  5. In vitro antifungal and cytotoxicity activities of selected Tanzanian ...

    African Journals Online (AJOL)

    Abstract. Purpose: To evaluate the antifungal and cytotoxic activities of four medicinal plants from Tanzania, namely, Mystroxylon aethiopicum ... The importance of medicinal plants in solving the healthcare problems of the world is gaining ... often with indefinite biological effects [3]. Medicinal plants therefore, have been ...

  6. Trypanocide, cytotoxic, and antifungal activities of Momordica charantia.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Sobral-Souza, Celestina E; Tintino, Saulo R; Morais-Braga, Maria F B; Guedes, Glaucia M M; Santos, Francisco A V; Sousa, Ana Carla A; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M

    2012-02-01

    Chagas disease, caused by Trypanosoma cruzi, is a public health problem. Currently, chemotherapy is the only available treatment for this disease, and the drugs used, nifurtimox and benzonidazol, present high toxicity levels. An alternative for replacing these drugs are natural extracts from Momordica charantia L. (Cucurbitaceae) used in traditional medicine because of their antimicrobial and biological activities. In this study, we evaluated the extract of M. charantia for its antiepimastigote, antifungal, and cytotoxic activities. An ethanol extract of leaves from M. charantia was prepared. To research in vitro antiepimastigote activity, T. cruzi CL-B5 clone was used. Epimastigotes were inoculated at a concentration of 1 × 10(5) cells/mL in 200 µl tryptose-liver infusion. For the cytotoxicity assay, J774 macrophages were used. The antifungal activity was evaluated by microdilution using strains of Candida albicans, Candida tropicalis, and Candida krusei. The effective concentration capable of killing 50% of parasites (IC(50)) was 46.06 µg/mL. The minimum inhibitory concentration (MIC) was ≤ 1024 µg/mL. Metronidazole showed a potentiation of its antifungal effect when combined with an extract of M. charantia. Our results indicate that M. charantia could be a source of plant-derived natural products with antiepimastigote and antifungal-modifying activity with moderate toxicity.

  7. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity.

    Science.gov (United States)

    Tolba, H; Moghrani, H; Benelmouffok, A; Kellou, D; Maachi, R

    2015-12-01

    Essential oil of Eucalyptus citriodora is a natural product which has been attributed for various medicinal uses. In the present investigation, E. citriodora essential oil was used to evaluate its antifungal effect against medically important dermatophytes. Essential oil from the Algerian E. citriodora leaves was analyzed by GC and GC/MS. The antifungal effect of E. citriodora essential oil was evaluated against four dermatophytes: Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum using disc diffusion method, disc volatilization method, and agar dilution method. The chemical composition of the oil revealed the presence of 22 compounds accounting for 95.27% of the oil. The dominant compounds were citronellal (69.77%), citronellol (10.63%) and isopulegol (4.66%). The disc diffusion method, MIC and MFC determination, indicated that E. citriodora essential oil had a higher antifungal potential against the tested strains with inhibition zone diameter which varied from (12 to 90mm) and MIC and MFC values ranged from (0.6 to 5μL/mL and 1.25 to 5μL/mL) respectively. The M. gypseum was the most resistant to the oil. The results of the present study indicated that E. citriodora essential oil may be used as a new antifungal agent recommended by the pharmaceutical industries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. SHORT COMMUNICATION ANTI-FUNGAL ACTIVITIES OF m ...

    African Journals Online (AJOL)

    a

    of these metals complexes as food preservatives may only be fungi-static and not fungi-toxic, their use in bread preparation might extend the shelf life of bread from 24 hours to 96 hours. KEY WORDS: Anti-fungal activities, Alkali metal iodobenzoates, Alkaline earth metal iodobenzoates, m-Iodobenzoic acid, Bread mucor.

  9. Insecticidal, brine shrimp cytotoxicity, antifungal and nitric oxide free ...

    African Journals Online (AJOL)

    The crude methanolic extract and various fractions derived from the aerial parts of Myrsine africana were screened in vitro for possible insecticidal, antifungal, brine shrimp lethality and nitric oxide free radical scavenging activities. Low insecticidal activity (20 %) was shown by chloroform (CHCl3) and aqueous fractions ...

  10. Antiradical potential and antifungal activities of essential oils of the ...

    African Journals Online (AJOL)

    Investigations were conducted to determine the chemical composition, antiradical and antifungal activities of the essential oil extracted from the fresh leaves of Citrus latifolia var. Tahiti from Cameroon against Phaeoramularia angolensis. The essential oil obtained by hydrodistillation was analysed by GC and GC/MS.

  11. Evaluation of the antifungal properties of nystatin-salicylic acid ...

    African Journals Online (AJOL)

    The in vitro antifungal activity of nystatin-salicylic acid combinations against clinical isolates of Candida albicans was investigated separately using the overlay inoculum susceptibility disc, the decimal assay for additively (DDA) and the rate of time kill methods. The minimum inhibitory concentrations (MIC) of the individual ...

  12. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    user

    2012-09-04

    Sep 4, 2012 ... Key words: Rice straw, allelochemicals, antifungal, Aspergillus flavus, Alternaria alternata, Botrytis cinerea, amylase, protease ..... Identification and quantification of compounds in a series of allelopathic and non- allelopathic rice root exudates. J. Chem. Ecol. 30:1647-1662. Timmer LW, Peever TL, Solel Z, ...

  13. Antifungal activity of steroidal glycosides from Yucca gloriosa L.

    Science.gov (United States)

    Favel, A; Kemertelidze, E; Benidze, M; Fallague, K; Regli, P

    2005-02-01

    The antifungal activity of a crude steroidal glycoside extract from Yucca gloriosa flowers, named alexin, was investigated in vitro against a panel of human pathogenic fungi, yeasts as well as dermatophytes and filamentous species. The minimal inhibitory concentration (MIC) was determined by an agar dilution method. Alexin had a broad spectrum of antifungal activity, found to reside entirely in the spirostanoid fraction. The major tigogenyl glycosides, yuccaloeside B and yuccaloeside C, exhibited MICs between 0.39 and 6.25 microg[sol ]mL for all the tested yeast strains except for two (C. lusitaniae and C. kefyr). They were also active against several clinical Candida isolates known to be resistant to the usual antifungal agents. The MICs for the dermatophytes were between 0.78 and 12.5 microg[sol ]mL. The most sensitive filamentous species was A. fumigatus (MIC = 1.56 microg[sol ]mL). For most of the strains, the MICs of both glycosides were similar to those of the reference antifungal agent. Copyright 2005 John Wiley & Sons, Ltd.

  14. In vitro Antifungal Activity of Baccharis trimera Less (DC) Essential ...

    African Journals Online (AJOL)

    Purpose: To identify the main components of the essential oil (EO) of Baccharis trimera Less and investigate their in vitro antifungal activity against seven fungal strains that cause onychomycosis. Methods: The chemical composition of EO was determined using gas chromatography, and its minimum inhibitory concentration ...

  15. Antifungal activity of epithelial secretions from selected frog species ...

    African Journals Online (AJOL)

    This study aimed to investigate the antifungal activity of skin secretions from selected frogs (Amietia fuscigula, Strongylopus grayi and Xenopus laevis) and one toad (Amietophrynus pantherinus) of the south Western Cape Province of South Africa. Initially, different extraction techniques for the collection of skin secretions ...

  16. In vitro investigation on antifungal activity of some plant extracts ...

    African Journals Online (AJOL)

    Prof. Ogunji

    In vitro investigation on antifungal activity of some plant extracts against Pyricularia oryzae. Olufolaji, D. B.1, Adeosun, B.O.1 and Onasanya, R. O.2. 1. Department of Crop, Soil and Pest Management, The Federal University of Technology, PMB 704. Akure, Ondo state, Nigeria. 2. Department of Agriculture, Federal College ...

  17. Antifungal and anti-inflammatory effects of Coptidis rhizome extract ...

    African Journals Online (AJOL)

    Background: Coptidis rhizoma has been used as antibiotics in traditional Chinese medicine practice for many years. Here, we examined the effect of rhizoma Coptidis extract on the growth of C. albicans. Materials and Methods: The antifungal effects of Coptidis rhizoma extract was examined by time-kill assay, transmission ...

  18. Antifungal drug susceptibility of Candida albicans | Bii | East African ...

    African Journals Online (AJOL)

    Objective: To determine the susceptibility of clinical isolates of Candida albicans and to establish the minimum inhibitory concentrations (MIC) to commonly used antifungal drugs. Design: Laboratory based experiment. Setting: Mbagathi District Hospital, Nairobi, Kenya. Subjects: Candida albicans isolated between 1998 ...

  19. in-vitro antifungal effect of garcinia kola and garlic

    African Journals Online (AJOL)

    boaz

    IN-VITRO ANTIFUNGAL EFFECT OF GARCINIA KOLA AND GARLIC (ALLIUMS. SATIVUM) ON VAGINAL ISOLATES OF CANDIDA. Adejare O. Y.1, Oduyebo O. O.2, Oladele R. O.2 , Nwaokorie F. O.3, Ogunsola F. T.2. 1Department of Medical Microbiology & Parasitology, Lagos State University Teaching Hospital. Lagos ...

  20. Antifungal activity of Parmotrema tinctorum (Delise ex Nyl.) hale and ...

    African Journals Online (AJOL)

    Lichens are composite organisms comprising of a photobiont and a mycobiont. Studies have shown that extracts and secondary metabolites from lichens exhibit various bioactivities. The present study evaluates antifungal potential of crude methanolic extract of two corticolous Parmotrema species viz. Parmotrema tinctorum ...

  1. Composition and antioxidant and antifungal activities of the ...

    African Journals Online (AJOL)

    In this study, the oil constituents of Lippia gracilis were identified by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antioxidant and antifungal activities were also evaluated. The leaf oil showed a yield of 3.7% and its main constituents were thymol (70.3%), p-cymene (9.2%), thymol ...

  2. Antifungal metabolites from fungal endophytes of Pinus strobus

    DEFF Research Database (Denmark)

    Sumarah, Mark W; Kesting, Julie R; Sørensen, Dan

    2011-01-01

    The extracts of five foliar fungal endophytes isolated from Pinus strobus (eastern white pine) that showed antifungal activity in disc diffusion assays were selected for further study. From these strains, the aliphatic polyketide compound 1 and three related sesquiterpenes 2-4 were isolated and c...

  3. prevalence and antifungal susceptibility of candida species isolated ...

    African Journals Online (AJOL)

    User

    Nucleo, E., Zara, F. and Pagani, L. (2009). "Trends in frequency and in vitro antifungal susceptibility patterns of Candida isolates from women attending the STD outpatients clinic of a tertiary care hospital in Northern. Italy during the years 2002-2007." New. Mi- crobiol., 32(2): 199-204. Araj, G. F., Daher, N. K. and Tabborah, ...

  4. The antifungal activity and cytotoxicity of silver containing denture ...

    African Journals Online (AJOL)

    The antifungal activity and cytotoxicity of silver containing denture base material. A Kurt, G Erkose-Genc, M Uzun, Z Emrence, D Ustek, G Isik-Ozkol. Abstract. Objective: Denture base materials are susceptible to fungal adhesion, which is an important etiological issue in the pathogenesis of denture stomatitis. The purpose of ...

  5. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    The antifungal activity of allelochemicals extracted from rice straw on the radial growth rate and the activity of some hydrolyzing enzymes of Aspergillus flavus, Alternaria alternata and Botrytis cinerea were studied in vitro. Five different concentrations (2, 4, 6, 8 and 10%, w/v) of water, methanol and acetone extracts of rice ...

  6. Antifungal evaluation of shell pyrolysates of oil palm ( Elaeis ...

    African Journals Online (AJOL)

    The medicinal values of oil palm and coconut shells are not much known in herbal medicine and the two mostly constitute waste products. The antifungal effects of steam-distilled pyrolysates obtained from the two shells and the respective organic solvent fractions were evaluated against human pathogenic fungi ...

  7. Antifungal activity of methanolic root extract of Withania somnifera

    African Journals Online (AJOL)

    Proff.Adewunmi

    Background: Basal rot of onion (Allium cepa L.) caused by Fusarium oxysporum f. sp. cepae is a common soil-borne disease that causes significant yield losses. Generally, synthetic fungicides are used to combat the menace which causes environmental pollution. The present study was carried out to assess the antifungal ...

  8. Anti-fungal properties of chitinolytic dune soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Klein Gunnewiek, P.J.A.; Lafeber, P.; Janse, J.H.; Spit, B.E.; Woldendorp, J.W.

    1998-01-01

    Anti-fungal properties of chitinolytic soil bacteria may enable them to compete successfully for chitin with fungi. Additionally, the production of chitinase may be part of a lytic system that enables the bacteria to use living hyphae rather than chitin as the actual growth substrate, since chitin

  9. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    user

    2011-06-08

    Jun 8, 2011 ... This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was.

  10. New small-size peptides possessing antifungal activity

    NARCIS (Netherlands)

    Garibotto, Francisco M.; Garro, Adriana D.; Masman, Marcelo F.; Rodriguez, Ana M.; Luiten, Paul G. M.; Raimondi, Marcela; Zacchino, Susana A.; Somlai, Csaba; Penke, Botond; Enriz, Ricardo D.

    2010-01-01

    The synthesis, in vitro evaluation, and conformational study of a new series of small-size peptides acting as antifungal agents are reported. In a first step of our study we performed a conformational analysis using Molecular Mechanics calculations. The electronic study was carried out using

  11. Evaluation of the antifungal activity of the Iranian thyme essential ...

    African Journals Online (AJOL)

    Postharvest diseases cause considerable losses to harvested fruits and vegetables during transportation and storage. The aim of this study was to evaluate the antifungal potential of Thymus danensis and Thymus carmanicus against four postharvest pathogenic fungi (Rhizopus stolonifer, Penicillium digitatum, Aspergillus ...

  12. Cinnamic acid analogs as intervention catalysts for overcoming antifungal tolerance

    Science.gov (United States)

    Antifungal potency of thirty-three cinnamic acid derivatives was investigated. The efficacy of caspofungin (CAS) or octyl gallate (OG), the cell wall disrupting agents, was augmented by 4-chloro-a-methyl- or 4-methylcinnamic acid screened. Synergistic chemosensitization by 4-chloro-a-methyl- or 4-me...

  13. Chemical Composition and Antifungal Properties of Essential Oil of ...

    African Journals Online (AJOL)

    Celular e Proteômica do Instituto de Biologia. Roberto Alcântara Gomes da Universidade. Estadual do Rio de Janeiro (UERJ), Brazil. Microbiological screening. Preliminary antifungal assays were performed. For this, fungal fragment (2 mm) was inoculated on potato dextrose agar previously incorporated with essential oil ...

  14. Antifungal and antibacterial activities of an alcoholic extract of ...

    African Journals Online (AJOL)

    Methanolic, ethanolic and petroleum ether extracts of Senna alata leaves were screened for phytochemicals, antibacterial and antifungal activities. Out of the three crude extracts, the methanolic extract showed the highest activity than the ethanolic and petroleum ether extracts. The unidentified active components purified ...

  15. Antifungal potential of leaf extracts of leguminous trees against ...

    African Journals Online (AJOL)

    In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii ...

  16. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a ...

  17. In vitro assay of potential antifungal and antibacterial activities of ...

    African Journals Online (AJOL)

    ... the dermatophytes strains Trichophyton rubrum, Trichophyton interdigitale, Trichophyton soudanense, Microsporum langeronii, and Epidermophyton floccosum were used. The E2F2 extract showed strong inhibitory activity on four of the five fungal species used against ketoconazole, a standard antifungal drug. However ...

  18. Antifungal susceptibility profiles and risk factors of vaginal ...

    African Journals Online (AJOL)

    Antifungal susceptibility results showed a high resistance to fluconazole (82.0%), nystatin (80.0%) and ketoconazole (72.0%), while clotrimazole (50.0%) was the most activeantifungal drug. There was a high prevalence of VC in this study population with previous vaginal infectionbeing important risk factor for reoccurrence.

  19. Therapeutic potential of antifungal plant and insect defensins

    NARCIS (Netherlands)

    Thevissen, K.; Kristensen, H.H.; Thomma, B.P.H.J.; Cammue, B.P.A.; François, I.E.J.A.

    2007-01-01

    To defend themselves against invading fungal pathogens, plants and insects largely depend on the production of a wide array of antifungal molecules, including antimicrobial peptides such as defensins. Interestingly, plant and insect defensins display antimicrobial activity not only against plant and

  20. A non-polyene antifungal antibiotic from Streptomyces albidoflavus ...

    Indian Academy of Sciences (India)

    Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by ...

  1. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    by 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) free radical scavenging activity, reducing power and in vitro lipid peroxidation (LPO). Antifungal activity was evaluated by agar-well diffusion method while mineral content was evaluated by atomic absorption spectrophotometry (AAS). Results: Significant ...

  2. Antifungal Activities of a Pasture Honey and Ginger ( Ziginber ...

    African Journals Online (AJOL)

    ... saponin and cardiac glycoside, while in the ginger sample, saponin, phlobatannin, alkaloids, flavonoids and cardiac glycoside were present. Summarily, honey and ginger extracts displayed the highest inhibitory activity on all the tested fungal isolates compared to the employed positive control antifungal (Griseofulvin and ...

  3. Fixed Drug Eruptions To Two Chemically Unrelated Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Khandpur Sujay

    2001-01-01

    Full Text Available An interesting episode of fixed drug eruption to two chemically unrelated antifungal agents (griseofulvin and fluconazole prescribed for onychomycosis in a 66- year â€" old male is being presented. The lesions developed at different sites. Oral challenge led to recurrence with both the drugs. However patch test with 10% fluconazole in petrolatum was negative.

  4. Antifungal activity of leaf extract of Crassocephalum repidiodes on ...

    African Journals Online (AJOL)

    The susceptibility profile of the dermatophytes tested was T. mentagrophytes. > T. rubrum > M. audouinii. The phytochemical studies of the extracts revealed that the aqueous extract lacked terpenes and anthraquinone while terpenes were absent in ethanolic extract. KEY WORDS: Antifungal, Dermatophytes, Extract, ...

  5. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins.

    Science.gov (United States)

    Kfoury, Miriana; Lounès-Hadj Sahraoui, Anissa; Bourdon, Natacha; Laruelle, Frédéric; Fontaine, Joël; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2016-04-01

    Effects of the encapsulation in cyclodextrins (CDs) on the solubility, photostability and antifungal activities of some phenylpropanoids (PPs) were investigated. Solubility experiments were carried out to evaluate the effect of CDs on PPs aqueous solubility. Loading capacities and encapsulation efficiencies of freeze-dried inclusion complexes were determined. Moreover, photostability assays for both inclusion complexes in solution and solid state were performed. Finally, two of the most widespread phytopathogenic fungi, Fusarium oxysporum and Botrytis cinerea, were chosen to examine the antifungal activity of free and encapsulated PPs. Results showed that encapsulation in CDs significantly increased the solubility and photostability of studied PPs (by 2 to 17-fold and 2 to 44-fold, respectively). Free PPs revealed remarkable antifungal properties with isoeugenol showing the lowest half-maximal inhibitory concentration (IC50) values of mycelium growth and spore germination inhibition. Encapsulated PPs, despite their reduced antifungal activity, could be helpful to solve drawbacks such as solubility and stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Antifungal and Antihepatotoxic Effects of Sepia Ink Extract against ...

    African Journals Online (AJOL)

    Background: There is a great need for novel strategies to overcome the high mortality associated with invasive pulmonary aspergillosis (IPA) in immunocompromised patients. To evaluate the antifungal and antihepatotoxic potentials of Sepia ink extract, its effect on liver oxidative stress levels was analyzed against IPA in ...

  7. In vitro antifungal activity of Argemone ochroleuca Sweet latex ...

    African Journals Online (AJOL)

    The in vitro antifungal activities of crude latex of Argemone ochroleuca Sweet against four clinical isolates of Candida (Candida albicans, Candida glabrata, Candida krusei and Candida tropicalis) and six isolates of plant pathogenic fungi (Alternaria alternate, Drechslera halodes, Fusarium oxysporum, Macrophomina ...

  8. Antifungal Capacity of Lactic Acid Bacteria Isolated From Salad ...

    African Journals Online (AJOL)

    This study explores the use of lactic acid bacteria from fresh salad vegetables to inhibit fungal growth. The antifungal assay was done using the agar well diffusion method as reported by Schillinger and Lucke (1989). The largest zone of inhibition (25mm) was recorded by the antagonistic activity of the isolate identified to ...

  9. In vitro antifungal activity of methanol extracts of some Indian ...

    African Journals Online (AJOL)

    The methanol extract of 9 Indian medicinal plants belonging to 9 different families were evaluated for in vitro antifungal activity against some yeasts including Candida albicans (1) ATCC2091, C. albicans (2) ATCC18804, Candida glabrata NCIM3448, Candida tropicalis ATCC4563, Cryptococcus luteolus ATCC32044, ...

  10. Comparative study of the antifungal activity of some essential oils ...

    African Journals Online (AJOL)

    This study aimed to evaluate the antimould activity of oregano, thyme, rosemary and clove essential oils and some of their main constituents: eugenol, carvacrol and thymol against Aspergillus niger. This antifungal activity was assessed using broth dilution, disc diffusion and micro atmosphere methods. In both agar diffusion ...

  11. Antifungal and antibacterial activities of the ethanolic and aqueous ...

    African Journals Online (AJOL)

    SERVER

    2007-07-18

    Jul 18, 2007 ... psoriasis and eczema, through to the more serious disease like leprosy, syphilis and skin cancer (Burkill,. 1985). Previous studies of the fruits of K. africana showed some antibacterial activity (Grace et al., 2002). However there is no report on the antibacterial and antifungal properties of the stem bark of this ...

  12. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antioxidant and antifungal activities of polyphenol-rich extracts of the dried fruit pulp of Garcinia pedunculata (GP) and Garcinia morella (GM) to determine their traditional claims of therapeutic activity against certain diseases. Methods: Analysis of total phenolic (TP) and flavonoid (TF) contents of the ...

  13. Synthesis and Antifungal Activities of Some Novel Pyrimidine Derivatives

    Directory of Open Access Journals (Sweden)

    Dequn Sun

    2011-06-01

    Full Text Available Three series of new pyrimidine derivatives were synthesized and their antifungal activities were evaluated in vitro against fourteen phytopathogenic fungi. The results indicated that most of the synthesized compounds possessed fungicidal activities and some of them are more potent than the control fungicides. Preliminary SAR was also discussed.

  14. Antifungal activity of methanolic extracts of four Algerian marine ...

    African Journals Online (AJOL)

    cmi

    2012-05-15

    May 15, 2012 ... and antifungal activities of the extracts of marine algae from southern coast of India. Botanica marina. 40: 507-515. Patra JK, Patra AP, Mahapatra NK, Thatoi HN, Das S, Sahu, RK, Swain. GC (2009). Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa, India.

  15. The Antifungal Activity and Cytotoxicity of Silver Containing Denture ...

    African Journals Online (AJOL)

    2015-10-30

    Oct 30, 2015 ... cytotoxicity of denture base material containing silver microparticles. Materials and Methods: The polymethyl methacrylate (PMMA) denture base material was used, and silver microparticles were added to the polymer ... The antifungal properties of these. A Kurt, G Erkose-Genc1, M Uzun1, Z Emrence2, ...

  16. Antifungal activity of methanolic root extract of Withania sommnifera ...

    African Journals Online (AJOL)

    The present study was carried out to assess the antifungal activity of Withania somnifera (L.), Dunal, a Solanaceous medicinal plant, against the pathogen of this disease. Materials and Methods: Different concentrations (from 0.5 to 4%) of methanolic extract of root stem and fruit of the test plant species were prepared and ...

  17. Evaluation of antifungal activity from Bacillus strains against ...

    African Journals Online (AJOL)

    In this study, 30 bacterial strains isolated from marine biofilms were screened for their antifungal activity against Rhizoctonia solani by dual culture assay. Two bacterial strains, Bacillus subtilis and Bacillus cereus, showed a clear antagonism against R. solani on potato dextrose agar (PDA) medium. The antagonistic activity ...

  18. Investigation on the antifungal properties of freshly pressed garlic ...

    African Journals Online (AJOL)

    Background : Modern science is tending to confirm many of the beliefs of ancient cultures regarding efficacy of garlic. In this paper we report the antifungal effects of freshly pressed juice of garlic on the major pathogenic fungi. Methods: Freshly pressed juice of varying concentrations of garlic were assessed for their ...

  19. Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters.

    Science.gov (United States)

    Li, Peng; Seneviratne, Chaminda J; Alpi, Emanuele; Vizcaino, Juan A; Jin, Lijian

    2015-10-01

    Candida infection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics of Candida biofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains of Candida albicans, Candida glabrata, and Candida tropicalis but failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles of C. albicans biofilm persister fractions by liquid chromatography-tandem mass spectrometry. The C. albicans biofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible for Candida growth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance of Candida biofilm persisters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    Science.gov (United States)

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  1. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. [i]Lavandula angustifolia[/i], [i]Carum carvi[/i], [i]Pinus mungo var. pulmilio[/i], [i]Mentha piperita[/i], [i]Chamomilla recutita[/i] L.,[i] Pinus sylvestris[/i], [i]Satureia hortensis[/i] L., [i]Origanum vulgare[/i] L., [i]Pimpinella anisum[/i], [i]Rosmarinus officinali[/i]s L., [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L. [i]Rausch[/i], [i]Thymus vulgaris[/i] L., [i]Origanum vulgare[/i] L. for antifungal activity against five [i]Penicillium[/i] species: [i]Penicillium brevicompactum[/i], [i]Penicillium citrinum[/i], [i]Penicillium crustosum[/i], [i]Penicillium expansum[/i] and [i]Penicillium griseofulvum[/i]. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against [i]Penicillium[/i] fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: [i]Pimpinella anisum[/i], [i]Chamomilla recutita[/i] L., [i]Thymus vulgaris[/i], [i]Origanum vulgare[/i] L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be [i]Origanum vulgare[/i] L. and [i]Pimpinella anisum[/i]. The lowest level of antifungal activity was demonstrated by the oils [i]Pinus mungo var. pulmilio[/i], [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L.[i] Rausch[/i], [i]Rosmarinus officinalis[/i].

  2. Sporothrix schenckii complex in Iran: Molecular identification and antifungal susceptibility.

    Science.gov (United States)

    Mahmoudi, Shahram; Zaini, Farideh; Kordbacheh, Parivash; Safara, Mahin; Heidari, Mansour

    2016-08-01

    Sporotrichosis is a global subcutaneous fungal infection caused by the Sporothrix schenckii complex. Sporotrichosis is an uncommon infection in Iran, and there have been no phenotypic, molecular typing or antifungal susceptibility studies of Sporothrix species. This study aimed to identify nine Iranian isolates of the S. schenckii complex to the species level using colony morphology, carbohydrate assimilation tests, and PCR-sequencing of the calmodulin gene. The antifungal susceptibilities of these Sporothrix isolates to five antifungal agents (amphotericin B (AMB), voriconazole (VRC), itraconazole (ITC), fluconazole (FLC), and terbinafine (TRB)) were also evaluated according to the M27-A3 and M38-A2 protocols of the Clinical and Laboratory Standards Institute for yeast and mycelial phases, respectively. Five of seven clinical isolates were identified as S. schenckii, and two clinical and two environmental isolates were identified as S. globosa. This is the first report of S. globosa in Iran. There was significant agreement (73%) between the results of the phenotypic and genotypic identification methods. TRB and ITC were the most effective antifungals against the Sporothrix isolates. The minimum inhibitory concentration (MIC) values of TRB for the yeast and mycelial phases of S. schenckii differed significantly. There was also a significant difference in the minimum fungicidal concentration (MFC) values of AMB and TRB for the two phases. Considering the low efficacy of VRC and FLC and the wide MIC ranges of AMB (1-16 μg/ml and 1-8 μg/ml for yeast and mycelial forms, respectively) observed in the present study, in vitro antifungal susceptibility testing should be performed to determine appropriate therapeutic regimens. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans.

    Science.gov (United States)

    Vandeputte, Patrick; Pradervand, Sylvain; Ischer, Françoise; Coste, Alix T; Ferrari, Sélène; Harshman, Keith; Sanglard, Dominique

    2012-07-01

    The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.

  4. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available The yeast-to-hypha transition plays a crucial role in the pathogenesis of C. albicans. Farnesol, a quorum sensing molecule (QSM secreted by the fungal itself, could prevent the formation of hyphae and subsequently lead to the defect of biofilm formation. The DPP3, encoding phosphatase, is a key gene in regulating farnesol synthesis. In this study, we screened 24 bisbibenzyls and 2 bibenzyls that were isolated from bryophytes or chemically synthesized by using CLSI method for antifungal effect. Seven bisbibenzyls were found to have antifungal effects with IC(80 less than 32 µg/ml, and among them, plagiochin F, isoriccardin C and BS-34 were found to inhibit the hyphae and biofilm formation of C. albicans in a dose-dependent manner. To uncover the underlying relationship between morphogenesis switch and QSM formation, we measured the farnesol production by HPLC-MS and quantified Dpp3 expression by detecting the fluorescent intensity of green fluorescent protein tagged strain using Confocal Laser Scanning microscopy and Multifunction Microplate Reader. The DPP3 transcripts were determined by real-time PCR. The data indicated that the bisbibenzyls exerted antifungal effects through stimulating the synthesis of farnesol via upregulation of Dpp3, suggesting a potential antifungal application of bisbibenzyls. In addition, our assay provides a novel, visual and convenient method to measure active compounds against morphogenesis switch.

  5. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    OpenAIRE

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2008-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an i...

  6. Novel Antifungal Compounds Discovered in Medicines for Malaria Venture's Malaria Box.

    Science.gov (United States)

    Jung, Eric H; Meyers, David J; Bosch, Jürgen; Casadevall, Arturo

    2018-01-01

    Similarities in fungal and animal cells make antifungal discovery efforts more difficult than those for other classes of antimicrobial drugs. Currently, there are only three major classes of antifungal drugs used for the treatment of systemic fungal diseases: polyenes, azoles, and echinocandins. Even in situations where the offending fungal organism is susceptible to the available drugs, treatment courses can be lengthy and unsatisfactory, since eradication of infection is often very difficult, especially in individuals with impaired immunity. Consequently, there is a need for new and more effective antifungal drugs. We have identified compounds with significant antifungal activity in the Malaria Box (Medicines for Malaria Ventures, Geneva, Switzerland) that have higher efficacy than some of the currently used antifungal drugs. Our best candidate, MMV665943 (IUPAC name 4-[6-[[2-(4-aminophenyl)-3H-benzimidazol-5-yl]methyl]-1H-benzimidazol-2-yl]aniline), here referred to as DM262, showed 16- to 32-fold-higher activity than fluconazole against Cryptococcus neoformans . There was also significant antifungal activity in other fungal species with known antifungal resistance, such as Lomentospora prolificans and Cryptococcus gattii . Antifungal activity was also observed against a common fungus, Candida albicans . These results are important because they offer a potentially new class of antifungal drugs and the repurposing of currently available therapeutics. IMPORTANCE Much like the recent increase in drug-resistant bacteria, there is a rise in antifungal-resistant strains of pathogenic fungi. There is a need for novel and more potent antifungal therapeutics. Consequently, we investigated a mixed library of drug-like and probe-like compounds with activity in Plasmodium spp. for activity against two common fungal pathogens, Cryptococcus neoformans and Candida albicans , along with two less common pathogenic species, Lomentospora prolificans and Cryptococcus gattii . We

  7. Oat (Avena sativa) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase.

    Science.gov (United States)

    Sørensen, Hans Peter; Madsen, Lone Søvad; Petersen, Jørgen; Andersen, Jesper Tapdrup; Hansen, Anne Maria; Beck, Hans Christian

    2010-03-01

    Extracts from different higher plants were screened for the ability to inhibit the growth of Penicillium roqueforti, a major contaminating species in industrial food processing. Oat (Avena sativa) seed extracts exhibited a high degree of antifungal activity and could be used directly on rye bread to prevent the formation of P. roqueforti colonies. Proteins in the oat seed extracts were fractionated by column chromatography and proteins in fractions containing antifungal activity were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database searches. Identified antifungal candidates included thaumatin-like proteins, 1,3-beta-glucanase, permatin precursor, pathogenesis-related protein type 1, and chitinases of class I and II. Class I chitinase could be specifically removed from the extracts and was found to be indispensable for 50% of the P. roqueforti inhibiting activity. The purified class I chitinase has a molecular weight of approximately 34 kDa, optimal chitinase activity at pH 7, and exists as at least two basic isoforms (pI values of 7.6 and 8.0). Partial sequencing of the class I chitinase isoforms by LC-MS/MS revealed a primary structure with high similarity to class I chitinases of wheat (Triticum aestivum), barley (Hordeum vulgare), and rye (Secale cereale). Oat, wheat, barley, and rye seed extracts were compared with respect to the abundance of the class I chitinase and decrease in antifungal activity when class I chitinase is removed. We found that the oat seed class I chitinase is at least ten times more abundant than the wheat, barley, and rye homologs and that oat seed extracts are highly active toward P. roqueforti as opposed to extracts of other cereal seeds.

  8. The Aspergillus fumigatus farnesyltransferase β-subunit, RamA, mediates growth, virulence, and antifungal susceptibility

    Science.gov (United States)

    Norton, Tiffany S.; Al Abdallah, Qusai; Hill, Amy M.; Lovingood, Rachel V.; Fortwendel, Jarrod R.

    2017-01-01

    ABSTRACT Post-translational prenylation mechanisms, including farnesylation and geranylgeranylation, mediate both subcellular localization and protein-protein interaction in eukaryotes. The prenyltransferase complex is an αβ heterodimer in which the essential α-subunit is common to both the farnesyltransferase and the geranylgeranyltransferase type-I enzymes. The β-subunit is unique to each enzyme. Farnesyltransferase activity is an important mediator of protein localization and subsequent signaling for multiple proteins, including Ras GTPases. Here, we examined the importance of protein farnesylation in the opportunistic fungal pathogen Aspergillus fumigatus through generation of a mutant lacking the farnesyltransferase β-subunit, ramA. Although farnesyltransferase activity was found to be non-essential in A. fumigatus, diminished hyphal outgrowth, delayed polarization kinetics, decreased conidial viability, and irregular distribution of nuclei during polarized growth were noted upon ramA deletion (ΔramA). Although predicted to be a target of the farnesyltransferase enzyme complex, we found that localization of the major A. fumigatus Ras GTPase protein, RasA, was only partially regulated by farnesyltransferase activity. Furthermore, the farnesyltransferase-deficient mutant exhibited attenuated virulence in a murine model of invasive aspergillosis, characterized by decreased tissue invasion and development of large, swollen hyphae in vivo. However, loss of ramA also led to a Cyp51A/B-independent increase in resistance to triazole antifungal drugs. Our findings indicate that protein farnesylation underpins multiple cellular processes in A. fumigatus, likely due to the large body of proteins affected by ramA deletion. PMID:28489963

  9. Rupatadine: a new selective histamine H1 receptor and platelet-activating factor (PAF) antagonist. A review of pharmacological profile and clinical management of allergic rhinitis.

    Science.gov (United States)

    Izquierdo, Iñaki; Merlos, Manuel; García-Rafanell, Julián

    2003-06-01

    Rupatadine is a new agent for the management of diseases with allergic inflammatory conditions, such as seasonal and perennial rhinitis. The pharmacological profile of rupatadine offers particular benefits in terms of a strong antagonist activity towards both histamine H1 receptors and platelet-activating factor (PAF) receptors. Rupatadine has a rapid onset of action, and its long-lasting effect (>24 h) permits once-daily dosing. Rupatadine should not be used in combination with the cytochrome P450 inhibitors, such as erythromycin or ketoconazole, due to an increase in AUC and Cmax for rupatadine, although no clinically relevant adverse events have been reported. In addition, rupatadine, at the recommended dose of 10 mg, has been shown to be free of sedative effects and not to cause significant changes in the corrected QT interval in special populations, including the elderly, nor when coadministered with erythromycin or ketoconazole. Preclinical data have also shown that rupatadine and its main active metabolites did not interfere with cloned human HERG channel and did not affect in vitro isolated dog Purkinje fibers at concentrations at least 2000 times greater than those obtained with therapeutic doses in humans. Rupatadine is clinically effective in relieving symptoms in patients with seasonal and perennial allergic rhinitis. Newly published data on its efficacy and safety suggest that this compound may improve the nasal and non-nasal symptoms in comparison to other currently available second generation H1 receptor antihistamines. 2003 Prous Science. All rights reserved.

  10. Antibacterial, antifungal, insecticidal, cytotoxicity and phytotoxicity studies on Indigofera gerardiana.

    Science.gov (United States)

    Nisar, Muhammad; Tariq, Shafiq Ahmad; Marwat, Inamullah Khan; Shah, Muhammad Raza; Khan, Ihsan Ali

    2009-02-01

    The antibacterial, antifungal, acute cytotoxicity, phytotoxicity and insecticidal profile of the crude extract and various fractions of Indigofera gerardiana have been studied. Six bacterial and fungal strains were used, of which Samonella typhi and Microsporum canis were the most susceptible strains with MICs 0.37 mg/mL and 0.09 mg/mL, respectively. The crude extract and the fractions showed low insecticidal activity against Sitophilus oryzae, Rhyzopertha dominica and Callosbruchus analis but no activity against Tribolium castaneum. The brine shrimp lethality assay showed absence of any measurable cytotoxicity of the crude extract and fractions, showing a good safety profile at a preliminary level. All the fractions except crude extract revealed profound and highly significant herbicidal activity against Lemna minor at the concentration of 1000 microg/mL. Indigofera gerardiana was shown by in-vitro assays to be a potential source for natural antifungal, antibacterial and herbicidal agents.

  11. Synthesis of heterocycle-attached methylidenebenzenesulfonohydrazones as antifungal agents.

    Science.gov (United States)

    Gao, Zhinan; Lv, Min; Li, Qin; Xu, Hui

    2015-11-15

    A series of heterocycle-attached methylidenebenzenesulfonohydrazone derivatives were synthesized and evaluated for their antifungal activities against seven phytopathogenic fungi such as Fusarium graminearum, Alternaria solani, Valsa mali, Phytophthora capsici, Fusarium solani, Botrytis cinerea, and Glomerella cingulata. Compounds 7b, 8d, 9a, 9b and 9d exhibited a good and broad-spectrum of antifungal activities against at least five phytopathogenic fungi at the concentration of 100 μg/mL. It demonstrated that addition of one double bond between the phenylsulfonylhydrazone fragment and the furan ring of 6a,b,d could afford more active compounds 9a,b,d; however, introduction of the nitro group on the phenyl ring of 6a-9a gave less potent compounds 6e-9e. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Chemical Constituents and Antifungal Activity of Ficus hirta Vahl. Fruits

    Directory of Open Access Journals (Sweden)

    Chunpeng Wan

    2017-09-01

    Full Text Available Phytochemical investigation of Ficus hirta Vahl. (Moraceae fruits led to isolate two carboline alkaloids (1 and 2, five sesquiterpenoids/norsesquiterpenoids (3–7, three flavonoids (8–10, and one phenylpropane-1,2-diol (11. Their structures were elucidated by the analysis of their 1D and 2D NMR, and HR-ESI-MS data. All of the isolates were isolated from this species for the first time, while compounds 2, 4–6, and 8–11 were firstly reported from the genus Ficus. Antifungal assay revealed that compound 8 (namely pinocembrin-7-O-β-d-glucoside, a major flavonoid compound present in the ethanol extract of F. hirta fruits, showed good antifungal activity against Penicillium italicum, the phytopathogen of citrus blue mold caused the majority rotten of citrus fruits.

  13. Antifungal activity of nicotine and its cadmium complex

    International Nuclear Information System (INIS)

    Zaidi, I.M.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Cd(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activities against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cadmium(II) iodide was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine is quite effective against the rare pathogenic and Non pathogenic fungi but comparatively less effective against Pathogenic fungi. Nicotine was found to be completely ineffective against the selected species of Occasional pathogenic fungi. Cadmium(II) iodide effectively inhibited Pathogenic and Non pathogenic fungi whereas relatively ineffective against the Occasional pathogenic and Rare pathogenic fungi. On the other hand, Cadmium(II) nicotine complex inhibited all the selected species of fungi except Fusarium solani. (author)

  14. Synthesis and antifungal evaluation of PCA amide analogues.

    Science.gov (United States)

    Qin, Chuan; Yu, Di-Ya; Zhou, Xu-Dong; Zhang, Min; Wu, Qing-Lai; Li, Jun-Kai

    2018-04-18

    To improve the physical and chemical properties of phenazine-1-carboxylic acid (PCA) and find higher antifungal compounds, a series of PCA amide analogues were designed and synthesized and their structures were confirmed by 1 H NMR, HRMS, and X-ray. Most compounds showed some antifungal activities in vitro. Particularly, compound 3d exhibited inhibition effect against Pyriculariaoryzac Cavgra with EC 50 value of 28.7 μM and compound 3q exhibited effect against Rhizoctonia solani with EC 50 value of 24.5 μM, more potently active than that of the positive control PCA with its EC 50 values of 37.3 μM (Pyriculariaoryzac Cavgra) and 33.2 μM (Rhizoctonia solani), respectively.

  15. Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds.

    Science.gov (United States)

    Momin, R A; Nair, M G

    2001-01-01

    The methanolic extract of Apium graveolens seeds was investigated for bioactive compounds and resulted in the isolation and characterization of mosquitocidal, nematicidal, and antifungal compounds sedanolide (1), senkyunolide-N (2), and senkyunolide-J (3). Their structures were determined by 1H and 13C NMR spectral methods. Compounds 1-3 gave 100% mortality at 25, 100, and 100 microg mL(-1), respectively, on the nematode, Panagrellus redivivus. Compound 1 showed 100% mortality at 50 microg mL(-1) on nematode, Caenorhabditis elegans, and fourth-instar mosquito larvae, Aedes aegyptii. Also, it inhibited the growth of Candida albicans and Candida parapsilasis at 100 microg mL(-1). Compounds 2 and 3 were isolated for the first time from A. graveolens. This is the first report of the mosquitocidal, nematicidal, and antifungal activities of compounds 1-3.

  16. [Zygomycetes and zygomycosis in the new era of antifungal therapies].

    Science.gov (United States)

    Torres-Narbona, M; Guinea, J; Muñoz, P; Bouza, E

    2007-12-01

    Zygomycosis or mucormycosis is the third most invasive fungal infection after candidiasis and aspergillosis. Traditionally, it has been considered a community-acquired disease, but it is becoming a frequent nosocomial-acquired disease. Recently, several publications from different institutions have reported an increase in the number of cases of invasive zygomycosis as a result of the new antifungal and immunosuppresive therapies and the emerging immunocompromised population. In addition, the diagnosis of zygomycosis is elusive, mainly in pulmonary and disseminated forms. One of the main limitations in isolating Zygomycetes from clinical samples is the interpretation of results. The increasing number of invasive fungal infections caused by multiresistant fungi has led to the development of new antifungal drugs with variable activity against Zygomycetes.

  17. Methodological Issues in Antifungal Susceptibility Testing of Malassezia pachydermatis

    Science.gov (United States)

    Peano, Andrea; Pasquetti, Mario; Tizzani, Paolo; Chiavassa, Elisa; Guillot, Jacques; Johnson, Elizabeth

    2017-01-01

    Reference methods for antifungal susceptibility testing of yeasts have been developed by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antibiotic Susceptibility Testing (EUCAST). These methods are intended to test the main pathogenic yeasts that cause invasive infections, namely Candida spp. and Cryptococcus neoformans, while testing other yeast species introduces several additional problems in standardization not addressed by these reference procedures. As a consequence, a number of procedures have been employed in the literature to test the antifungal susceptibility of Malassezia pachydermatis. This has resulted in conflicting results. The aim of the present study is to review the procedures and the technical parameters (growth media, inoculum preparation, temperature and length of incubation, method of reading) employed for susceptibility testing of M. pachydermatis, and when possible, to propose recommendations for or against their use. Such information may be useful for the future development of a reference assay. PMID:29371554

  18. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  19. Antifungal Activity from Leaves of Acacia Nilotica against Pythium Aphanidermatum

    Directory of Open Access Journals (Sweden)

    A. J. Khan

    1996-01-01

    Full Text Available Gallic acid and methyl ester of gallic acid has been identified as antifungal compounds against the mycelial growth of Pythium aphanidermatum from acetone-water extracts of Acacia nilotica leaves. The growth of fungus was completely ceased by gallic acid and its methyl ester at 1000 ppm and 750 ppm, respectively. Antifungal properties of both compounds were found to be higher in combination than alone. The minimum inhibitory concentration for both compounds was 1000 ppm. No phytotoxic effect of the compounds was observed on watermelon seed germination. The growth of roots and shoots of watermelon seedlings was promoted by gallic acid but decreased with methyl ester of gallic acid. Nitrate reductase activity of the fungus was significantly inhibited by both compounds.

  20. The Effectiveness of Antifungal Controlling Aspergillus Niger Growth on Plasterboard

    Directory of Open Access Journals (Sweden)

    Parjo Umi Kalthsom

    2017-01-01

    Full Text Available Good indoor environmental quality is desired for a healthy indoor environment. The microbial growth under indoor environments contribute to the poor indoor environmental quality that can cause various of health problems. In this study, the applications of three types of antifungals to prevent microbial migration, subsequent growth and bio-deterioration of the substrates. The aim of this research was to evaluate the coating-bio resistance in remediation of indoor fungal using three types of antifungals with different types of wall finishing materials. The treatment was exposed to optimum temperature and relative humidity at 30°C and 90% respectively. The potassium sorbate, zinc salicylate and calcium benzoate are tested against Aspergillus niger which is collected from indoor rooms. This study has revealed the growth of A. niger are more affected by the potassium sorbate on thick wallpaper, which is the percentage growth are 47%.

  1. The Antifungal Effect of Endocyn Against Candida albicans Biofilm

    Science.gov (United States)

    2016-05-13

    quantitatively by microbiological plate count and qualitatively by confocal microscopy using Live/Dead staining. XTT data was analyzed by two-way analysis...wells of a 24-well plate containing 2 ml of sterile RPMI media . In order to achieve mature fungal biofilm formation, the plate was placed in a...exhibits rapid antifungal efficacy in vitro. C. albicans biofilms were cultivated on polystyrene, washed, and treated with Endocyn (white bar) over a

  2. An antifungal coating for dental silicones composed of chlorhexidine nanoparticles.

    Science.gov (United States)

    Garner, Sarah J; Nobbs, Angela H; McNally, Lisa M; Barbour, Michele E

    2015-03-01

    The aims of this study were to synthesise a range of chlorhexidine-containing nanoparticles (CHX-NPs), and investigate the feasibility of using these as an antifungal coating for dental silicones. CHX-NPs were precipitated in aqueous reaction by mixing solutions of CHX digluconate with solutions of sodium triphosphate (TP), trimetaphosphate (TMP) or hexametaphosphate (HMP). CHX-NPs were deposited on commercial dental silicones by immersion coating, and these were characterised for hydrophilicity (contact angle) and water uptake (mass change). Soluble CHX elution into artificial saliva was measured using ultraviolet spectrophotometry. Antifungal efficacy against Candida albicans was investigated using a cell proliferation assay. Coating silicones with CHX-NPs did not significantly affect hydrophilicity, as assessed using water contact angle, or water uptake as assessed by mass change following 16 weeks' immersion in artificial saliva. CHX-NP-coated silicone specimens released soluble CHX into artificial saliva. The salt of CHX and the immersion time affected the rate, concentration and duration of CHX release, with CHX-HMP exhibiting a slow, sustained release and CHX-TP and CHX-TMP exhibiting a faster, more concentrated release. C. albicans metabolic activity was inhibited by presence of CHX-HMP-NPs in suspension. CHX-NPs provided a localised, controlled dose of soluble CHX at the surface of dental silicones without adversely affecting hydrophilicity or water uptake. CHX-HMP NPs provided effective antifungal control of C. albicans in a cell proliferation assay. Coating materials with these nanoparticles could be an effective way of delivering low, but clinically relevant, concentrations of chlorhexidine in the oral environment. Denture stomatitis is a common oral infection and is associated with fungal infestation of denture soft lining and obturator materials, which are often silicones such as those used here. Our study suggests that CHX-NPs may be a useful

  3. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  4. Antifungal activity of aloe vera gel against plant pathogenic fungi

    International Nuclear Information System (INIS)

    Sitara, U.; Hassan, N.; Naseem, J.

    2011-01-01

    Aloe vera gel extracted from the Aloe vera leaves was evaluated for their antifungal activity at the rate of 0.15%, 0.25% and 0.35% concentration against five plants pathogenic fungi viz., Aspergillus niger, Aspergillus flavus, Alternaria alternata, Drechslera hawaiensis and Penicillum digitatum 0.35% concentration Aloe vera gel completely inhibited the growth of Drechslera hawaiensis and Alternaria alternata. (author)

  5. Persistence of histoplasma in adrenals 7 years after antifungal therapy

    Directory of Open Access Journals (Sweden)

    Deepak Kothari

    2013-01-01

    Full Text Available Adrenal histoplasmosis is an uncommon cause for adrenal insufficiency. The duration of treatment for adrenal histoplasmosis is not clear. Existing treatment regimens advocate antifungals given for periods ranging from 6 months to 2 years. We report here a rare case who showed persistence of histoplasma in adrenal biopsy 7 years after being initially treated with itraconazole for 9 months. This calls for a prolonged therapy with regular review of adrenal morphology and histology in these patients.

  6. Antifungal activity of polycyclic aromatic hydrocarbons against Ligninolytic fungi

    Directory of Open Access Journals (Sweden)

    Memić Mustafa

    2011-01-01

    Full Text Available Environmental contamination by polycyclic aromatic hydrocarbons (PAHs has caused increasing concern because of their known, or suspected, carcinogenic and mutagenic effects. Polycyclic aromatic hydrocarbons occurring in the environment are usually the result of the incomplete combustion of carbon containing materials. The main sources of severe PAHs contamination in soil come from fossil fuels, i.e. production or use of fossil fuels or their products, such as coal tar and creosote. Creosote is used as a wood preservation for railway ties, bridge timbers, pilling and large-sized lumber. It consists mainly of PAHs, phenol and cresol compounds that cause harmful health effects. Research on biodegradation has shown that a special group of microorganisms, the white-rot fungi and brown-rot fungi, has a remarkable potential to degrade PAHs. This paper presents a study of the antifungal activity of 12 selected PAHs against two ligninolytic fungi Hypoxylon fragiforme (white rot and Coniophora puteana (brown rot. The antifungal activity of PAHs was determined by the disc-diffusion method by measuring the diameter of the zone of inhibition. The results showed that the antifungal activity of the tested PAHs (concentration of 2.5 mmol/L depends on the their properties such as molar mass, solubility in water, values of log Kow, ionization potential and Henry’s Law constant as well as number of aromatic rings, molecule topology or pattern of ring linkage. Among the 12 investigated PAHs, benzo(k fluoranthene with five rings, and pyrene with four cyclic condensed benzene rings showed the highest antifungal activity.

  7. Antifungal effect of topically administered neem(Azadirachta indica ...

    African Journals Online (AJOL)

    The study was carried out to evaluate the antifungal effect of Neem seed oil cream against Pytiriasis versicolour infection of the skin. Fifteen samples of 20 g each i.e. three samples each of concentrations, 2.5% w/w, 5.0% w/w,7.5% w/w/ and10.0% w/w neem seed oil cream and a commercial preparation (Whitfield Ointment) ...

  8. The antifungal effect of light emitting diode on Malassezia yeasts.

    Science.gov (United States)

    Wi, Hyun Seung; Na, Eui Young; Yun, Sook Jung; Lee, Jee-Bum

    2012-07-01

    Malassezia (M.) species are members of the normal part of the skin flora, but they might induce or be involved with various cutaneous diseases. Although the role of Malassezia in the pathogenesis of cutaneous diseases is not fully understood, recent studies have shown that decreased density of Malassezia led to improvement of these diseases. To identify the antifungal effect of light emitting diode (LED) against Malassezia, its antifungal mechanisms and the impact on the keratinocytes. LED with various wavelengths (370-630nm) on Malassezia furfur, Malassezia sympodialis and Malassezia globosa was irradiated according to dose and then the antifungal effects were thereafter assessed. After irradiating LED with 392.5±1nm of wavelength according to dose on Malassezia species, reactive oxygen species (ROS) and lipid hydroperoxide production assay were measured. In addition, cell viability and inflammatory cytokines (IL-1α, IL-1β, TNF-α, TGF-β, TLR-2 and COX-2) expressions in normal human epidermal keratinocytes (NHEKs) by LED irradiation were evaluated. The growth of Malassezia species was dose-dependently suppressed by both LED with 380±2 and 392.5±1nm wavelengths. The increases of intracellular and extracellular ROS by LED irradiation with 392.5±1nm wavelengths were significantly observed compared to control group. The cell viability and cytokines in NHEKs were not significantly affected by LED irradiation under 5J/cm(2)in vitro. LED irradiation with 380±2 and 392.5±1nm wavelengths proved to have antifungal effect against Malassezia species and no impact on NHEKs under 5J/cm(2). The findings suggest that LED might be an adjunctive therapeutic light tool against Malassezia yeasts related cutaneous diseases. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Antifungal defensins and their role in plant defense

    Directory of Open Access Journals (Sweden)

    Ariane eLacerda

    2014-04-01

    Full Text Available Since the beginning of the 90’s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP have been studied. However, Broekaert only coined the term plant defensin in 1995, after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity towards microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM. Its low effective concentration towards fungi, ranging from 0.1 to 10 µM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90’s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i the most studied plant defensins and their fungal targets; (ii the molecular features of plant defensins and their relation with antifungal activity; (iii the possibility of using plant defensin(s genes to generate fungi resistant GM crops and biofungicides; and (iv a brief discussion about the absence of products in the market containing plant antifungal defensins.

  10. Antifungal activity of topical microemulsion containing a thiophene derivative

    Directory of Open Access Journals (Sweden)

    Geovani Pereira Guimarães

    2014-06-01

    Full Text Available Fungal infections have become a major problem of worldwide concern. Yeasts belonging to the Candida genus and the pathogenic fungus Cryptococcus neoformans are responsible for different clinical manifestations, especially in immunocompromised patients. Antifungal therapies are currently based on a few chemotherapeutic agents that have problems related to effectiveness and resistance profiles. Microemulsions are isotropic, thermodynamically stable transparent systems of oil, water and surfactant that can improve the solubilization of lipophilic drugs. Taking into account the need for more effective and less toxic drugs along with the potential of thiophene derivatives as inhibitors of pathogenic fungi growth, this study aimed to evaluate the antifungal activity of a thiophene derivative (5CN05 embedded in a microemulsion (ME. The minimum inhibitory concentration (MIC was determined using the microdilution method using amphotericin B as a control. The formulations tested (ME- blank and ME-5CN05 showed physico-chemical properties that would allow their use by the topical route. 5CN05 as such exhibited moderate or weak antifungal activity against Candida species (MIC = 270-540 µg.mL-1 and good activity against C. neoformans (MIC = 17 µg.mL-1. Candida species were susceptible to ME-5CN05 (70-140 µg.mL-1, but C. neoformans was much more, presenting a MIC value of 2.2 µg.mL-1. The results of this work proved promising for the pharmaceutical industry, because they suggest an alternative therapy against C. neoformans.

  11. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    Science.gov (United States)

    Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

    2012-01-01

    Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297

  12. Antifungal and Antibacterial Metabolites from a French Poplar Type Propolis

    Directory of Open Access Journals (Sweden)

    Séverine Boisard

    2015-01-01

    Full Text Available During this study, the in vitro antifungal and antibacterial activities of different extracts (aqueous and organic obtained from a French propolis batch were evaluated. Antifungal activity was evaluated by broth microdilution on three pathogenic strains: Candida albicans, C. glabrata, and Aspergillus fumigatus. Antibacterial activity was assayed using agar dilution method on 36 Gram-negative and Gram-positive strains including Staphylococcus aureus. Organic extracts showed a significant antifungal activity against C. albicans and C. glabrata (MIC80 between 16 and 31 µg/mL but only a weak activity towards A. fumigatus (MIC80 = 250 µg/mL. DCM based extracts exhibited a selective Gram-positive antibacterial activity, especially against S. aureus (SA and several of its methicillin-resistant (MRSA and methicillin-susceptible (MSSA strains (MIC100 30–97 µg/mL. A new and active derivative of catechin was also identified whereas a synergistic antimicrobial effect was noticed during this study.

  13. Antifungal Microbial Agents for Food Biopreservation-A Review.

    Science.gov (United States)

    Leyva Salas, Marcia; Mounier, Jérôme; Valence, Florence; Coton, Monika; Thierry, Anne; Coton, Emmanuel

    2017-07-08

    Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments-including fungicides and chemical preservatives-are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for 'clean label' food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation.

  14. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures.

    Science.gov (United States)

    Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

    2012-01-01

    Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-Cryl™, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. The present work has developed a new biocompatible antifungal PMMA denture base material.

  15. Design, Synthesis, and Antifungal Activity of New α-Aminophosphonates

    Directory of Open Access Journals (Sweden)

    Zahra Rezaei

    2011-01-01

    Full Text Available α-Aminophosphonates are bioisosteres of amino acids and have several pharmacological activities. These compounds have been synthesized by various routes from reaction between amine, aldehyde, and phosphite compounds. In order to synthesize α-aminophosphonates, catalytic effect of CuCl2 was compared with FeCl3. Also all designed structures as well as griseofulvin were docked into the active site of microtubule (1JFF, using Autodock program. The results showed that the reactions were carried out in the presence of CuCl2 in lower yields, and also the time of reaction was longer in comparison with FeCl3. The chemical structures of the new compounds were confirmed by spectral analyses. The compounds were investigated for antifungal activity against several fungi in comparison with griseofulvin. An indole-derived bis(α-aminophosphonates with the best negative ΔG in docking study showed maximum antifungal activity against Microsporum canis, and other investigated compounds did not have a good antifungal activity.

  16. Antifungal defensins and their role in plant defense.

    Science.gov (United States)

    Lacerda, Ariane F; Vasconcelos, Erico A R; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term "plant defensin," after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins.

  17. Antifungal Effect of Silver Nanoparticles in Acrylic Resins

    Directory of Open Access Journals (Sweden)

    Ahmad Ghahremanloo

    Full Text Available Introduction: In patients using dental prosthesis, growth of various microorganisms under the prosthesis base which leads to inflammation and infections such as candidiasis is common. The aim of this study was to assess the antifungal effects of acrylic resins containing silver nanoparticles on candida Albicans.Materials & Methods: To accomplish this in vitro study inorder to prepare acrylic samples, metallic cylindricals with a diameter of 10mm and thickness of 4mm were used. Forty samples as standard control group and 40 samples containing silver nanoparticles in four different concentrations were used. Immersion of samples in fungal suspension (standard and hospitally isolated were carried out to accomplish antifungal tests. After 0,1,6 and 24 hours the fungal colonies were counted. To describe the data and to compare groups, student-t test was used.Results: In the silver nanoparticles with 2.5% concentration, the highest mean difference for standard candida Albicans after 24 hours of exposure time was 501.0±23.1 and for 5% concentration after 6 hours of exposure time was 953±87 and for 10% concentration after 6 hours of exposure time was 1000±24.9.Conclusion: In acrylic resins, increasing both the silver nanoparticles concentration and the exposure time will increase the antifungal effect.

  18. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi.

    Science.gov (United States)

    Cheng, Sen-Sung; Liu, Ju-Yun; Chang, Ed-Haun; Chang, Shang-Tzen

    2008-07-01

    In this study, the antifungal activities of cinnamaldehyde and eugenol congeners against white-rot fungus Lenzites betulina and brown-rot fungus Laetiporus sulphureus were evaluated and the relationships between the antifungal activity and the chemical structures were also examined. Results from antifungal tests revealed that cinnamaldehyde, alpha-methyl cinnamaldehyde, (E)-2-methylcinnamic acid, eugenol and isoeugenol exhibited strong antifungal activity against all fungi tested. Results derived from the chemical structure-antifungal activity relationship study suggested that compounds with an aldehyde group or an acid group, a conjugated double bond and a length of CH chain outside the ring affect their antifungal properties. Furthermore, the presence of the methyl moiety in the ortho position may have a considerable influence on the inhibitory action against L. betulina and L. sulphureus. In addition, the lipophilicity may play, in part, a crucial role in determining the toxicity of phenylpropenes.

  19. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms

    OpenAIRE

    Seleem, Dalia; Chen, Emily; Benso, Bruna; Pardi, Vanessa; Murata, Ramiro M.

    2016-01-01

    Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent, The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expressio...

  20. Haliscosamine: a new antifungal sphingosine derivative from the Moroccan marine sponge Haliclona viscosa

    OpenAIRE

    El-Amraoui, Belkassem; Biard, Jean-Fan?ois; Fassouane, Aziz

    2013-01-01

    In the aim of searching for new antifungal products from marine origin, we have isolated a sphingosine derivative, (9Z)-2-amino-docos-9-ene-1,3,13,14-tetraol (Haliscosamine) from the Moroccan sea sponge Haliclona viscosa using bio-guided (antifungal) HPLC methods. The molecular structure of this compound was elucidated by spectrometric techniques IR, UV, MS and NMR. The isolated metabolite showed a significant antifungal activity against Cryptococcus and Candida species and a weak general tox...