WorldWideScience

Sample records for antifungal drug resistance

  1. Antifungal drug resistance to azoles and polyenes.

    Science.gov (United States)

    Masiá Canuto, Mar; Gutiérrez Rodero, Félix

    2002-09-01

    There is an increased awareness of the morbidity and mortality associated with fungal infections caused by resistant fungi in various groups of patients. Epidemiological studies have identified risk factors associated with antifungal drug resistance. Selection pressure due to the continuous exposure to azoles seems to have an essential role in developing resistance to fluconazole in Candida species. Haematological malignancies, especially acute leukaemia with severe and prolonged neutropenia, seem to be the main risk factors for acquiring deep-seated mycosis caused by resistant filamentous fungi, such us Fusarium species, Scedosporium prolificans, and Aspergillus terreus. The still unacceptably high mortality rate associated with some resistant mycosis indicates that alternatives to existing therapeutic options are needed. Potential measures to overcome antifungal resistance ranges from the development of new drugs with better antifungal activity to improving current therapeutic strategies with the present antifungal agents. Among the new antifungal drugs, inhibitors of beta glucan synthesis and second-generation azole and triazole derivatives have characteristics that render them potentially suitable agents against some resistant fungi. Other strategies including the use of high doses of lipid formulations of amphotericin B, combination therapy, and adjunctive immune therapy with cytokines are under investigation. In addition, antifungal control programmes to prevent extensive and inappropriate use of antifungals may be needed.

  2. Antifungal Drug Resistance - Concerns for Veterinarians

    Directory of Open Access Journals (Sweden)

    Bharat B. Bhanderi

    2009-10-01

    Full Text Available In the 1990s, there were increased incidences of fungal infectious diseases in human population which might be due to increase in immunosuppressive diseases. But the major concern was increase in prevalence of resistance to antifungal drugs which were reported both in the fungal isolates of human beings and that of animal origin. In both animals and human beings, resistance to antimicrobial agents has important implications for morbidity, mortality and health care costs, because resistant strains are responsible for bulk of infection in animals and human beings, and large number of antimicrobial classes offers more diverse range of resistance mechanisms to study and resistance determinants move into standard well-characterized strains that facilitates the detailed study of molecular mechanisms of resistance in microorganisms. Studies on resistance to antifungal agents has been lagging behind that of antibacterial resistance for several reasons, the foremost reason might be fungal agents were not recognized as important animal and human pathogens, until relatively in recent past. But the initial studies of antifungal drug resistance in the early 1980s, have accumulated a wealth of knowledge concerning the clinical, biochemical, and genetic aspects of this phenomenon. Presently, exploration of the molecular aspects for antifungal drug resistance has been undertaken. Recently, the focus was on several points like developing a more detailed understanding of the mechanisms of antimicrobial resistance, improved methods to detect resistance when it occurs, methods to prevent the emergence and spread of resistance and new antimicrobial options for the treatment of infections caused by resistant organisms. [Vet. World 2009; 2(5.000: 204-207

  3. Targeting efflux pumps to overcome antifungal drug resistance.

    Science.gov (United States)

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.

  4. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  5. Nationwide study of candidemia, antifungal use, and antifungal drug resistance in Iceland, 2000 to 2011.

    Science.gov (United States)

    Asmundsdottir, Lena Ros; Erlendsdottir, Helga; Gottfredsson, Magnus

    2013-03-01

    Candidemia is often a life-threatening infection, with highly variable incidence among countries. We conducted a nationwide study of candidemia in Iceland from 2000 to 2011, in order to determine recent trends in incidence rates, fungal species distribution, antifungal susceptibility patterns, and concurrent antifungal consumption. A total of 208 infection episodes in 199 patients were identified. The average incidence during the 12 years was 5.7 cases/100,000 population/year, which was significantly higher than that from 1990 to 1999 (4.3/100,000/year; P = 0.02). A significant reduction in the use of blood cultures was noted in the last 3 years of the study, coinciding with the economic crisis in the country (P 60 years, and varied by gender. Age-specific incidence among males >80 years old was 28.6/100,000/year, and it was 8.3/100,000/year for females in this age group (P = 0.028). The 30-day survival rate among adult patients remained unchanged compared to that from 1990 to 1999 (70.4% versus 69.5%, P = 0.97). Candida albicans was the predominant species (56%), followed by C. glabrata (16%) and C. tropicalis (13%). The species distribution remained stable compared to that from previous decades. Fluconazole use increased 2.4-fold from 2000 to 2011, with no increase in resistance. In summary, the incidence of candidemia in Iceland has continued to increase but may have reached a steady state, and no increase in antifungal drug resistance has been noted. Decreased use of blood cultures toward the end of the study may have influenced detection rates.

  6. Candida antifungal drug resistance in sub-Saharan African populations: A systematic review

    Science.gov (United States)

    Africa, Charlene Wilma Joyce; Abrantes, Pedro Miguel dos Santos

    2017-01-01

    Background: Candida infections are responsible for increased morbidity and mortality rates in at-risk patients, especially in developing countries where there is limited access to antifungal drugs and a high burden of HIV co-infection.  Objectives: This study aimed to identify antifungal drug resistance patterns within the subcontinent of Africa.  Methods: A literature search was conducted on published studies that employed antifungal susceptibility testing on clinical Candida isolates from sub-Saharan African countries using Pubmed and Google Scholar.  Results: A total of 21 studies from 8 countries constituted this review. Only studies conducted in sub-Saharan Africa and employing antifungal drug susceptibility testing were included. Regional differences in Candida species prevalence and resistance patterns were identified.  Discussion: The outcomes of this review highlight the need for a revision of antifungal therapy guidelines in regions most affected by Candida drug resistance.  Better controls in antimicrobial drug distribution and the implementation of regional antimicrobial susceptibility surveillance programmes are required in order to reduce the high Candida drug resistance levels seen to be emerging in sub-Saharan Africa. PMID:28154753

  7. Cryptococcus laurentii biofilms: structure, development and antifungal drug resistance.

    Science.gov (United States)

    Ajesh, K; Sreejith, K

    2012-12-01

    A great number of fungal infections are related to biofilm formation on inert or biological surfaces, which are recalcitrant to most treatments and cause human mortality. Cryptococcus laurentii has been diagnosed as the aetiological pathogen able to cause human infections mainly in immunosuppressed patients and the spectrum of clinical manifestations ranges from skin lesions to fungaemia. The effect of temperature, pH and surface preconditioning on C. laurentii biofilm formation was determined by 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay. Scanning electron microscopic (SEM) analysis of C. laurentii biofilms demonstrated surface topographies of profuse growth and dense colonization with extensive polymeric substances around the cells. In this study, we determined the activity of amphotericin B, itraconazole and fluconazole against C. laurentii free-living cells and biofilms. The activity of antifungals tested was greater against free-living cells, but sessile cells fell into the resistant range for these antifungal agents. Extracellular polymeric substances (EPS), comprising the matrix of C. laurentii biofilms, were isolated by ultrasonication. Fourier transform infrared spectroscopy (FT-IR) was performed with ethanol-precipitated and dried samples. Also, the multielement analysis of the EPS was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES).

  8. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms

    NARCIS (Netherlands)

    Chowdhary, A.; Sharma, C.; Hagen, F.; Meis, J.F.G.M.

    2014-01-01

    Aspergillus fumigatus, a ubiquitously distributed opportunistic pathogen, is the global leading cause of aspergillosis. Azole antifungals play an important role in the management of aspergillosis. However, over a decade, azole resistance in A. fumigatus isolates has been increasingly reported with v

  9. Effectiveness of Posaconazole in Recalcitrant Fungal Keratitis Resistant to Conventional Antifungal Drugs

    Directory of Open Access Journals (Sweden)

    A. Altun

    2014-01-01

    Full Text Available Purpose. To present the success of posaconazole in two cases with recalcitrant fugal keratitis that were resistant to conventional antifungal drugs. Method. We presented two cases that were treated with posaconazole after the failure of fluconazole or voriconazole, amphotericin B, and natamycin therapy. Case 1 was a 62-year-old man with a history of ocular trauma. He had been using topical fluorometholone and tobramycin. His best corrected visual acuity (BCVA was hand motion. He had 5.0 × 4.5 mm area of deep corneal ulcer with stromal infiltration. Case 2 was a 14-year-old contact lens user. He had been using topical moxifloxacin, tobramycin, and cyclopentolate. His BCVA was 20/200. He had a 4.0 × 3.0 mm area of pericentral corneal ulcer with deep corneal stromal infiltration and 2 mm hypopyon. Results. Both patients initially received systemic and topical fluconazole or voriconazole and amphotericin B and topical natamycin that were all ineffective. But the response of posaconazole was significant. After posaconazole, progressive improvement was seen in clinical appearance. BCVA improved to 20/100 in case 1 and 20/40 in case 2. Conclusion. Posaconazole might be an effective treatment option for recalcitrant fusarium keratitis and/or endophthalmitis resistant to conventional antifungal drugs.

  10. Effectiveness of posaconazole in recalcitrant fungal keratitis resistant to conventional antifungal drugs.

    Science.gov (United States)

    Altun, A; Kurna, S A; Sengor, T; Altun, G; Olcaysu, O O; Aki, S F; Simsek, M H

    2014-01-01

    Purpose. To present the success of posaconazole in two cases with recalcitrant fugal keratitis that were resistant to conventional antifungal drugs. Method. We presented two cases that were treated with posaconazole after the failure of fluconazole or voriconazole, amphotericin B, and natamycin therapy. Case 1 was a 62-year-old man with a history of ocular trauma. He had been using topical fluorometholone and tobramycin. His best corrected visual acuity (BCVA) was hand motion. He had 5.0 × 4.5 mm area of deep corneal ulcer with stromal infiltration. Case 2 was a 14-year-old contact lens user. He had been using topical moxifloxacin, tobramycin, and cyclopentolate. His BCVA was 20/200. He had a 4.0 × 3.0 mm area of pericentral corneal ulcer with deep corneal stromal infiltration and 2 mm hypopyon. Results. Both patients initially received systemic and topical fluconazole or voriconazole and amphotericin B and topical natamycin that were all ineffective. But the response of posaconazole was significant. After posaconazole, progressive improvement was seen in clinical appearance. BCVA improved to 20/100 in case 1 and 20/40 in case 2. Conclusion. Posaconazole might be an effective treatment option for recalcitrant fusarium keratitis and/or endophthalmitis resistant to conventional antifungal drugs.

  11. Special Issue: Novel Antifungal Drug Discovery

    Directory of Open Access Journals (Sweden)

    Maurizio Del Poeta

    2016-12-01

    Full Text Available This Special Issue is designed to highlight the latest research and development on new antifungal compounds with mechanisms of action different from the ones of polyenes, azoles, and echinocandins. The papers presented here highlight new pathways and targets that could be exploited for the future development of new antifungal agents to be used alone or in combination with existing antifungals. A computational model for better predicting antifungal drug resistance is also presented.

  12. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  13. Time to overcome fluconazole resistant Candida isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system.

    Science.gov (United States)

    Moazeni, Maryam; Kelidari, Hamid Reza; Saeedi, Majid; Morteza-Semnani, Ketayoun; Nabili, Mojtaba; Gohar, Atefeh Abdollahi; Akbari, Jafar; Lotfali, Ensieh; Nokhodchi, Ali

    2016-06-01

    Antifungal therapy results in complications in management due to changes in the patterns of epidemiology and drug susceptibility of invasive fungal infections. In this study, we prepared fluconazole-loaded solid lipid nanoparticles (FLZ-SLNs) and investigated the efficacy of the optimal formulation on fluconazole (FLZ)-resistant strains of several Candida species. FLZ-SLN was produced using probe ultrasonication techniques. The morphology of the obtained SLNs was characterized by field emission scanning electron microscopy. The minimum inhibitory concentrations for the new formulations against fluconazole-resistant strains of Candida were investigated using CLSI document M27-A3. The FLZ-SLNs presented a spherical shape with a mean diameter, zeta potential and entrapment efficiency of 84.8nm, -25mV and 89.6%, respectively. The drug release from FLZ-SLNs exhibited burst release behaviour at the initial stage (the first 30min) followed by a sustained release over 24h FLZ-resistant yeast strains behaved as susceptible strains after treatment with FLZ-SLNs (≤8μg/ml). The MIC50 drug concentrations were 2μg/ml, 1μg/ml and 2μg/ml for FLZ-resistant strains of Candida albicans, Candida parapsilosis and Candida glabrata, respectively. In this study, we evaluated novel delivery systems for combating Candida strains that exhibit low susceptibility against the conventional formulation of FLZ as a first-line treatment.

  14. The dual role of Candida glabrata Drug:H+ Antiporter CgAqr1 (ORF CAGL0J09944g in antifungal drug and acetic acid resistance

    Directory of Open Access Journals (Sweden)

    Catarina eCosta

    2013-06-01

    Full Text Available Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms.In this study, the Drug:H+ Antiporter CgAqr1 (ORF CAGL0J09944g, from Candida glabrata, was identified as a determinant of resistance to acetic acid, and also to the antifungal agents flucytosine and, less significantly, clotrimazole. These antifungals were found to act synergistically with acetic acid against this pathogen. The action of CgAqr1 in this phenomenon was analyzed. Using a GFP fusion, CgAqr1 was found to localize to the plasma membrane and to membrane vesicles when expressed in C. glabrata or, heterologously, in Saccharomyces cerevisiae. Given its ability to complement the susceptibility phenotype of its S. cerevisiae homolog, ScAqr1, CgAqr1 was proposed to play a similar role in mediating the extrusion of chemical compounds. Significantly, the expression of this gene was found to reduce the intracellular accumulation of 3H-flucytosine and, to a moderate extent, of 3H-clotrimazole, consistent with a direct role in antifungal drug efflux. Interestingly, no effect of CgAQR1 deletion could be found on the intracellular accumulation of 14C-acetic acid, suggesting that its role in acetic acid resistance may be indirect, presumably through the transport of a still unidentified physiological substrate. Although neither of the tested chemicals induces changes in CgAQR1 expression, pre-exposure to flucytosine or clotrimazole was found to make C. glabrata cells more sensitive to acetic acid stress. Results from this study show that CgAqr1 is an antifungal drug resistance determinant and raise the hypothesis that it may play a role in C. glabrata persistent colonization and

  15. The dual role of candida glabrata drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g) in antifungal drug and acetic acid resistance.

    Science.gov (United States)

    Costa, Catarina; Henriques, André; Pires, Carla; Nunes, Joana; Ohno, Michiyo; Chibana, Hiroji; Sá-Correia, Isabel; Teixeira, Miguel C

    2013-01-01

    Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms. In this study, the drug:H(+) antiporter CgAqr1 (ORF CAGL0J09944g), from Candida glabrata, was identified as a determinant of resistance to acetic acid, and also to the antifungal agents flucytosine and, less significantly, clotrimazole. These antifungals were found to act synergistically with acetic acid against this pathogen. The action of CgAqr1 in this phenomenon was analyzed. Using a green fluorescent protein fusion, CgAqr1 was found to localize to the plasma membrane and to membrane vesicles when expressed in C. glabrata or, heterologously, in Saccharomyces cerevisiae. Given its ability to complement the susceptibility phenotype of its S. cerevisiae homolog, ScAqr1, CgAqr1 was proposed to play a similar role in mediating the extrusion of chemical compounds. Significantly, the expression of this gene was found to reduce the intracellular accumulation of (3)H-flucytosine and, to a moderate extent, of (3)H-clotrimazole, consistent with a direct role in antifungal drug efflux. Interestingly, no effect of CgAQR1 deletion could be found on the intracellular accumulation of (14)C-acetic acid, suggesting that its role in acetic acid resistance may be indirect, presumably through the transport of a still unidentified physiological substrate. Although neither of the tested chemicals induces changes in CgAQR1 expression, pre-exposure to flucytosine or clotrimazole was found to make C. glabrata cells more sensitive to acetic acid stress. Results from this study show that CgAqr1 is an antifungal drug resistance determinant and raise the hypothesis that it may play a role in C. glabrata persistent colonization

  16. Antibacterial and antifungal activity of Terminalia arjuna Wight & Arn. bark against multi-drug resistant clinical isolates

    Institute of Scientific and Technical Information of China (English)

    Sukalyani Debnath; Diganta Dey; Sudipta Hazra; Subhalakshmi Ghosh; Ratnamala Ray; Banasri Hazra

    2013-01-01

    Objective: To evaluate antimicrobial activity of Terminalia arjuna (T. arjuna) bark against clinical strains of multi-drug resistant bacteria, and Candida spp. isolated from patients, as well as the corresponding reference strains.Methods:were evaluated by agar-well diffusion method, followed by determination of minimum inhibitory concentration (MIC) by broth micro-dilution method. The clinical isolates were studied for antibacterial susceptibility by Kirby and Bauer disk diffusion technique. The antimicrobial activity of water, methanol and chloroform extracts of T. arjuna bark Results: The water and methanolic extracts of T. arjuna bark produced significant zones of inhibition against twenty-two tested bacteria including eight uropathogens. MIC values against the bacteria were found in the range of 0.16 to 2.56 mg/mL. The chloroform extract did not exhibit antibacterial activity. The polar extracts of T. arjuna also demonstrated strong antifungal effect against eight species of Candida, with MIC between 0.16 and 0.64 mg/mL. The antimicrobial efficacy of the polar extracts was found to be commensurate with high polyphenol content in contrast to the non-polar (chloroform fraction). Conclusions: This study has revealed the therapeutic prospect of T. arjuna bark for the treatment of microbial diseases. The polar fraction of the bark could be used for development of novel antimicrobial agents, particularly against urinary tract infections, and candidiasis/candidaemia.

  17. Structure-activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Falk, Shaun P; Mowery, Brendan P; Karlsson, Amy J; Weisblum, Bernard; Palecek, Sean P; Masters, Kristyn S; Gellman, Samuel H

    2014-03-19

    Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-β-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure-activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic-hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus.

  18. Fluconazole and Echinocandin Resistance of Candida glabrata Correlates Better with Antifungal Drug Exposure Rather than with MSH2 Mutator Genotype in a French Cohort of Patients Harboring Low Rates of Resistance

    Science.gov (United States)

    Dellière, Sarah; Healey, Kelley; Gits-Muselli, Maud; Carrara, Bastien; Barbaro, Alessandro; Guigue, Nicolas; Lecefel, Christophe; Touratier, Sophie; Desnos-Ollivier, Marie; Perlin, David S.; Bretagne, Stéphane; Alanio, Alexandre

    2016-01-01

    Candida glabrata is a major pathogenic yeast in humans that is known to rapidly acquire resistance to triazole and echinocandin antifungal drugs. A mutator genotype (MSH2 polymorphism) inducing a mismatch repair defect has been recently proposed to be responsible for resistance acquisition in C. glabrata clinical isolates. Our objectives were to evaluate the prevalence of antifungal resistance in a large cohort of patients in Saint-Louis hospital, Paris, France, some of whom were pre-exposed to antifungal drugs, as well as to determine whether MSH2 polymorphisms are associated with an increased rate of fluconazole or echinocandin resistance. We collected 268 isolates from 147 patients along with clinical data and previous antifungal exposure. Fluconazole and micafungin minimal inhibition concentrations (MICs) were tested, short tandem repeat genotyping was performed, and the MSH2 gene was sequenced. According to the European Committee on Antimicrobial Susceptibility breakpoints, 15.7% of isolates were resistant to fluconazole (MIC > 32 mg/L) and 0.7% were resistant to micafungin (MIC > 0.03 mg/L). A non-synonymous mutation within MSH2 occurred in 44% of the isolates, and 17% were fluconazole resistant. In comparison, fluconazole resistant isolates with no MSH2 mutation represented 15% (P = 0.65). MSH2 polymorphisms were associated with the short tandem repeat genotype. The rate of echinocandin resistance is low and correlates with prior exposure to echinocandin. The mutator genotype was not associated with enrichment in fluconazole resistance but instead corresponded to rare and specific genotypes. PMID:28066361

  19. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance.

    Science.gov (United States)

    Ghannoum, M A; Rice, L B

    1999-10-01

    The increased use of antibacterial and antifungal agents in recent years has resulted in the development of resistance to these drugs. The significant clinical implication of resistance has led to heightened interest in the study of antimicrobial resistance from different angles. Areas addressed include mechanisms underlying this resistance, improved methods to detect resistance when it occurs, alternate options for the treatment of infections caused by resistant organisms, and strategies to prevent and control the emergence and spread of resistance. In this review, the mode of action of antifungals and their mechanisms of resistance are discussed. Additionally, an attempt is made to discuss the correlation between fungal and bacterial resistance. Antifungals can be grouped into three classes based on their site of action: azoles, which inhibit the synthesis of ergosterol (the main fungal sterol); polyenes, which interact with fungal membrane sterols physicochemically; and 5-fluorocytosine, which inhibits macromolecular synthesis. Many different types of mechanisms contribute to the development of resistance to antifungals. These mechanisms include alteration in drug target, alteration in sterol biosynthesis, reduction in the intercellular concentration of target enzyme, and overexpression of the antifungal drug target. Although the comparison between the mechanisms of resistance to antifungals and antibacterials is necessarily limited by several factors defined in the review, a correlation between the two exists. For example, modification of enzymes which serve as targets for antimicrobial action and the involvement of membrane pumps in the extrusion of drugs are well characterized in both the eukaryotic and prokaryotic cells.

  20. Drug Resistance

    Science.gov (United States)

    HIV Treatment Drug Resistance (Last updated 3/2/2017; last reviewed 3/2/2017) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  1. Echinocandins: A ray of hope in antifungal drug therapy

    Directory of Open Access Journals (Sweden)

    Grover Neeta

    2010-01-01

    Full Text Available Invasive fungal infections are on the rise. Amphotericin B and azole antifungals have been the mainstay of antifungal therapy so far. The high incidence of infusion related toxicity and nephrotoxicity with amphotericin B and the emergence of fluconazole resistant strains of Candida glabrata egged on the search for alternatives. Echinocandins are a new class of antifungal drugs that act by inhibition of β (1, 3-D- glucan synthase, a key enzyme necessary for integrity of the fungal cell wall. Caspofungin was the first drug in this class to be approved. It is indicated for esophageal candidiasis, candidemia, invasive candidiasis, empirical therapy in febrile neutropenia and invasive aspergillosis. Response rates are comparable to those of amphotericin B and fluconazole. Micafungin is presently approved for esophageal candidiasis, for prophylaxis of candida infections in patients undergoing hematopoietic stem cell transplant (HSCT and in disseminated candidiasis and candidemia. The currently approved indications for anidulafungin are esophageal candidiasis, candidemia and invasive candidiasis. The incidence of infusion related adverse effects and nephrotoxicity is much lower than with amphotericin B. The main adverse effect is hepatotoxicity and derangement of serum transaminases. Liver function may need to be monitored. They are, however, safer in renal impairment. Even though a better pharmacoeconomical choice than amphotericin B, the higher cost of these drugs in comparison to azole antifungals is likely to limit their use to azole resistant cases of candidial infections and as salvage therapy in invasive aspergillosis rather than as first line drugs.

  2. Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance

    OpenAIRE

    Ghannoum, Mahmoud A.; Rice, Louis B

    1999-01-01

    The increased use of antibacterial and antifungal agents in recent years has resulted in the development of resistance to these drugs. The significant clinical implication of resistance has led to heightened interest in the study of antimicrobial resistance from different angles. Areas addressed include mechanisms underlying this resistance, improved methods to detect resistance when it occurs, alternate options for the treatment of infections caused by resistant organisms, and strategies to ...

  3. Epidemiology and antifungal resistance in invasive candidiasis

    Directory of Open Access Journals (Sweden)

    Rodloff AC

    2011-04-01

    Full Text Available Abstract The epidemiology of Candida infections has changed over the last two decades: The number of patients suffering from such infections has increased dramatically and the Candida species involved have become more numerous as Candida albicans is replaced as an infecting agent by various non-C. albicans species (NAC. At the same time, additional antifungal agents have become available. The different Candida species may vary in their susceptibility for these various antifungals. This draws more attention to in vitro susceptibility testing. Unfortunately, several different test methods exist that may deliver different results. Moreover, clinical breakpoints (CBP that classify test results into susceptible, intermediate and resistant are controver- sial between CLSI and EUCAST. Therefore, clinicians should be aware that interpretations may vary with the test system being followed by the microbiological laboratory. Thus, knowledge of actual MIC values and pharmacokinetic properties of individual antifungal agents is important in delivering appropriate therapy to patients

  4. The application of phenotypic microarray analysis to anti-fungal drug development.

    Science.gov (United States)

    Greetham, Darren; Lappin, David F; Rajendran, Ranjith; O'Donnell, Lindsay; Sherry, Leighann; Ramage, Gordon; Nile, Christopher

    2017-03-01

    Candida albicans metabolic activity in the presence and absence of acetylcholine was measured using phenotypic microarray analysis. Acetylcholine inhibited C. albicans biofilm formation by slowing metabolism independent of biofilm forming capabilities. Phenotypic microarray analysis can therefore be used for screening compound libraries for novel anti-fungal drugs and measuring antifungal resistance.

  5. Tolerability and safety of antifungal drugs

    Directory of Open Access Journals (Sweden)

    Francesco Scaglione

    2013-08-01

    Full Text Available When treating critically ill patients, as those with fungal infections, attention should be focused on the appropriate use of drugs, especially in terms of dose, safety, and tolerability. The fungal infection itself and the concomitant physiological disorders concur to increase the risk of mortality in these patients, therefore the use of any antifungal agent should be carefully evaluated, considering both the direct action on the target fungus and the adverse effects eventually caused. Among antifungal drugs, echinocandins have the greatest tolerability. In fact, unlike amphotericin B, showing nephrotoxicity, and azoles, which are hepatotoxic, the use of echinocandins doesn’t result in major adverse events.http://dx.doi.org/10.7175/rhc.v4i2s.873

  6. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

    Directory of Open Access Journals (Sweden)

    SAHADEO PATIL

    2015-05-01

    Full Text Available Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obtained from cumin seeds using hydrodistillation technique and was later evaluated for the presence of major chemical constituents present in it using gas chromatography and mass spectrometry (GC-MS assay. The GC-MS assay revealed the abundance of γ-terpinene (35.42% followed by p-cymene (30.72%. The agar disc diffusion assay demonstrated highly potent antifungal effect against Candida species. Moreover, the combination of cumin essential oil (CEO with conventional antifungal drugs was found to reduce the individual MIC of antifungal drug suggesting the occurrence of synergistic interactions. Therefore, the therapy involving combinations of CEO and conventional antifungal drugs can be used for reducing the toxicity induced by antifungal drugs and at the same time enhancing their antifungal efficacy in controlling the infections caused due to Candida species.

  7. SUSCEPTIBILITY OF CANDIDA SPECIES TO ANTIFUNGAL DRUGS IN WESTERN INDIA

    Directory of Open Access Journals (Sweden)

    Geeta M Vaghela

    2015-06-01

    Full Text Available Introduction: The increase in candidaemia is associated with high mortality. A shift has been observed in the relative frequency of each Candida spp. isolated from blood. Options of the antifungal drugs available for treatment of systemic and invasive candidiasis are restricted to polyenes, allylamines, azoles and recently developed echinocandin class of molecules. A rise in the incidence of antifungal resistance to Candida spp. has also been reported over the past decade. Studies on prevalence of infections and antifungal susceptibility testing are useful in deciding clinical strategies. Aims: To do species level identification and detect resistance, if any, among Indian clinical isolates of C. albicans. Methodology: From total 135 patients from a tertiary care hospital of Gujarat, Candida species were isolated from different clinical specimens. The growth of Candida on Sabouraud's dextrose agar was confirmed by Gram staining in which gram positive budding fungal cells were observed. Then its growth was examined for colony morphology on Sabouraud's dextrose agar and chlamydospore production on Corn meal tween 80 agar. Germ tube tests and other biochemical tests like sugar fermentation, sugar assimilation and urease test were performed to identify the species of Candida. Antifungal susceptibility testing was performed by NCCLS M44-A Disc diffusion method. Results: Out of total 135 samples, C. Albicans were isolated from 52 (38.5%. Among Non Albican Candid (NAC, Candida glabrata was 36 (26.7% followed by Candida tropicalis 25(18.5%. C. albicans was found resistant to Fluconazole, Itraconazole and Amphotericine B in 3.8%, 3.8% and 1.9% cases respectively. For NAC, resistance of Fluconazole, Itraconazole and Amphotericine B was found in 4.8%, 3.6% and 2.4% cases respectively. [Natl J Med Res 2015; 5(2.000: 122-126

  8. Drug resistance

    NARCIS (Netherlands)

    Gorter, J.A.; Potschka, H.; Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Delgado-Escueta, A.V.

    2012-01-01

    Drug resistance remains to be one of the major challenges in epilepsy therapy. Identification of factors that contribute to therapeutic failure is crucial for future development of novel therapeutic strategies for difficult-to-treat epilepsies. Several clinical studies have shown that high seizure f

  9. Isavuconazole, micafungin, and 8 comparator antifungal agents' susceptibility profiles for common and uncommon opportunistic fungi collected in 2013: temporal analysis of antifungal drug resistance using CLSI species-specific clinical breakpoints and proposed epidemiological cutoff values.

    Science.gov (United States)

    Pfaller, M A; Rhomberg, P R; Messer, S A; Jones, R N; Castanheira, M

    2015-08-01

    The in vitro activities of isavuconazole, micafungin, and 8 comparator antifungal agents were determined for 1613 clinical isolates of fungi (1320 isolates of Candida spp., 155 of Aspergillus spp., 103 of non-Candida yeasts, and 35 non-Aspergillus molds) collected during a global survey conducted in 2013. The vast majority of the isolates of the 21 different species of Candida, with the exception of Candida glabrata (MIC90, 2 μg/mL), Candida krusei (MIC90, 1 μg/mL), and Candida guilliermondii (MIC90, 8 μg/mL), were inhibited by ≤0.25 μg/mL of isavuconazole. C. glabrata and C. krusei were largely inhibited by ≤1 μg/mL of isavuconazole. Resistance to fluconazole was seen in 0.5% of Candida albicans isolates, 11.1% of C. glabrata isolates, 2.5% of Candida parapsilosis isolates, 4.5% of Candida tropicalis isolates, and 20.0% of C. guilliermondii isolates. Resistance to the echinocandins was restricted to C. glabrata (1.3-2.1%) and C. tropicalis (0.9-1.8%). All agents except for the echinocandins were active against 69 Cryptococcus neoformans isolates, and the triazoles, including isavuconazole, were active against the other yeasts. Both the mold active triazoles as well as the echinocandins were active against 155 Aspergillus spp. isolates belonging to 10 species/species complex. In general, there was low resistance levels to the available systemically active antifungal agents in a large, contemporary (2013), global collection of molecularly characterized yeasts and molds. Resistance to azoles and echinocandins was most prominent among isolates of C. glabrata, C. tropicalis, and C. guilliermondii.

  10. Can agricultural fungicides accelerate the discovery of human antifungal drugs?

    Science.gov (United States)

    Myung, Kyung; Klittich, Carla J R

    2015-01-01

    Twelve drugs from four chemical classes are currently available for treatment of systemic fungal infections in humans. By contrast, more than 100 structurally distinct compounds from over 30 chemical classes have been developed as agricultural fungicides, and these fungicides target many modes of action not represented among human antifungal drugs. In this article we introduce the diverse aspects of agricultural fungicides and compare them with human antifungal drugs. We propose that the information gained from the development of agricultural fungicides can be applied to the discovery of new mechanisms of action and new antifungal agents for the management of human fungal infections.

  11. Survey on drug resistance of Candida to common antifungal drugs%念珠菌对临床常用抗真菌药物的耐药性分析

    Institute of Scientific and Technical Information of China (English)

    张丽君; 王博

    2012-01-01

    Objective To study the drug resistance of Candida to commonly used antifungal drugs and to survey the distribution of Candida infection in this area. Methods By using Candida color culture medium for cultivation and identification of Candida, and K - B method was used for drug sensitivity testing. Results The specimens from respiratory tract of 267 cases of Candida infection accounted for 70. 8% , urine specimens accounted for 16.9% , pus specimens for 6. 4% , pleural effusion and ascites for 3. 4% , cerebrospinal fluid for 0.7% and blood samples for 1.9%. Among species distribution, Candida albicans accounted for 61. 4% , Candida tropicalis accounted for 10. 9% , Candida krusei accounted for 6.4%, Candida glabrata accounted for 8. 6% , and other species of Candida accounted for 12.7% . The rate of resistance was 1. 1 % to ampho-tericinB, 13.1% to 5 - fluorocytosine, 46. 4% to itraconazole, 48. 3% to fluconazole and 34. 8% to ketoconazole. Conclusion The incidence of infection with Candida is in rising tendency, distribution of species and manifestations in drug resistance are different, hence clinical medication should be based on drug sensitivity test for rational application of antifungal drugs.%目的 研究本地区念珠菌感染构成及对临床常用抗真菌药物的耐药情况.方法 使用念珠菌显色培养基对念珠菌进行培养鉴定,并用现行纸片扩散法(K-B法)进行药敏实验.结果 267例念珠菌感染中呼吸道标本占70.8%、尿液占16.9%,脓液6.4%,胸腹水3.4%,脑脊液0.7%,血液1.9%;菌种分布分别为白色念珠菌占61.4%,热带念珠菌占10.9%,克柔念珠菌占6.4%,光滑念珠菌占8.6%,其他念珠菌占12.7%;耐药情况分别为两性霉素B耐药性1.1%,5-氟胞嘧啶13.1%,依曲康唑46.4%,氟康唑48.3%,酮康唑34.8%.结论 念珠菌的感染呈上升态势,菌种分布及耐药性表现均不同,临床上应根据药敏实验合理使用抗真菌药物.

  12. Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus

    Science.gov (United States)

    Candidiasis and cryptococcosis are diseases of widening global incidence as a result of increasing immunosuppressive disorders, such as AIDS. An enduring problem for treatment of these mycoses is recurrent development of resistance to introduced antifungal drugs. We examined the potential for enhan...

  13. Candida Infections: An Update on Host Immune Defenses and Anti-Fungal Drugs

    Directory of Open Access Journals (Sweden)

    Ning Gao

    2016-04-01

    Full Text Available Infections by fungal pathogens such as Candida albicans and non-albicans Candida species are becoming increasing prevalent in the human population. Such pathogens cause life-threatening diseases with high mortality, particularly in immunocompromised patients. Host defenses against fungal infections are provided by an exquisite interplay between innate and adaptive immune responses. However, effective anti-fungal agents for Candida infections are limited, and fungal drug resistance is a significant treatment challenge. In this review, we summarize the current understanding of host–fungal interactions, discuss the modes action of anti-fungal drugs, explore host defense mechanisms, and define the new challenges for treating Candida infections.

  14. Identification of antifungal natural products via Saccharomyces cerevisiae bioassay: insights into macrotetrolide drug spectrum, potency and mode of action.

    Science.gov (United States)

    Tebbets, Brad; Yu, Zhiguo; Stewart, Douglas; Zhao, Li-Xing; Jiang, Yi; Xu, Li-Hua; Andes, David; Shen, Ben; Klein, Bruce

    2013-04-01

    Since current antifungal drugs have not kept pace with the escalating medical demands of fungal infections, new, effective medications are required. However, antifungal drug discovery is hindered by the evolutionary similarity of mammalian and fungal cells, which results in fungal drug targets having human homologs and drug non-selectivity. The group III hybrid histidine kinases (HHKs) are an attractive drug target since they are conserved in fungi and absent in mammals. We used a Saccharomyces cerevisiae reporter strain that conditionally expresses HHK to establish a high-throughput bioassay to screen microbial extracts natural products for antifungals. We identified macrotetrolides, a group of related ionophores thought to exhibit restricted antifungal activity. In addition to confirming the use of this bioassay for the discovery of antifungal natural products, we demonstrated broader, more potent fungistatic activity of the macrotetrolides against multiple Candida spp., Cryptococcus spp., and Candida albicans in biofilms. Macrotetrolides were also active in an animal model of C. albicans biofilm, but were found to have inconsistent activity against fluconazole-resistant C. albicans, with most isolates resistant to this natural product. The macrotetrolides do not directly target HHKs, but their selective activity against S. cerevisiae grown in galactose (regardless of Drk1 expression) revealed potential new insight into the role of ion transport in the mode of action of these promising antifungal compounds. Thus, this simple, high-throughput bioassay permitted us to screen microbial extracts, identify natural products as antifungal drugs, and expand our understanding of the activity of macrotetrolides.

  15. Antifungal peptides: a potential new class of antifungals for treating vulvovaginal candidiasis caused by fluconazole-resistant Candida albicans.

    Science.gov (United States)

    Ng, Siew Mei Samantha; Yap, Yi Yong Alvin; Cheong, Jin Wei Darryl; Ng, Fui Mee; Lau, Qiu Ying; Barkham, Timothy; Teo, Jeanette Woon Pei; Hill, Jeffrey; Chia, Cheng San Brian

    2017-03-01

    Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole-resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane-disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head-to-head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole-resistant C. albicans. The 11-residue peptide, P11-6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time-kill assay to gauge its potential for further drug development. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  16. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Claudia Spampinato

    2013-01-01

    Full Text Available The genus Candida includes about 200 different species, but only a few species are human opportunistic pathogens and cause infections when the host becomes debilitated or immunocompromised. Candida infections can be superficial or invasive. Superficial infections often affect the skin or mucous membranes and can be treated successfully with topical antifungal drugs. However, invasive fungal infections are often life-threatening, probably due to inefficient diagnostic methods and inappropriate initial antifungal therapies. Here, we briefly review our current knowledge of pathogenic species of the genus Candida and yeast infection causes and then focus on current antifungal drugs and resistance mechanisms. An overview of new therapeutic alternatives for the treatment of Candida infections is also provided.

  17. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs.

    Science.gov (United States)

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M A; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E; Casadevall, Arturo; Gonçalves, Teresa

    2015-12-28

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis.

  18. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  19. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A

    Directory of Open Access Journals (Sweden)

    Shinde Ravikumar B

    2012-10-01

    Full Text Available Abstract Background Biofilms formed by Candida albicans are resistant towards most of the available antifungal drugs. Therefore, infections associated with Candida biofilms are considered as a threat to immunocompromised patients. Combinatorial drug therapy may be a good strategy to combat C. albicans biofilms. Methods Combinations of five antifungal drugs- fluconazole (FLC, voriconazole (VOR, caspofungin (CSP, amphotericin B (AmB and nystatin (NYT with cyclosporine A (CSA were tested in vitro against planktonic and biofilm growth of C. albicans. Standard broth micro dilution method was used to study planktonic growth, while biofilms were studied in an in vitro biofilm model. A chequerboard format was used to determine fractional inhibitory concentration indices (FICI of combination effects. Biofilm growth was analyzed using XTT-metabolic assay. Results MICs of various antifungal drugs for planktonic growth of C. albicans were lowered in combination with CSA by 2 to 16 fold. Activity against biofilm development with FIC indices of 0.26, 0.28, 0.31 and 0.25 indicated synergistic interactions between FLC-CSA, VOR-CSA, CSP-CSA and AmB-CSA, respectively. Increase in efficacy of the drugs FLC, VOR and CSP against mature biofilms after addition of 62.5 μg/ml of CSA was evident with FIC indices 0.06, 0.14 and 0.37, respectively. Conclusions The combinations with CSA resulted in increased susceptibility of biofilms to antifungal drugs. Combination of antifungal drugs with CSA would be an effective prophylactic and therapeutic strategy against biofilm associated C. albicans infections.

  20. Antifungal activity of antifungal drugs, as well as drug combinations against Exophiala dermatitidis.

    Science.gov (United States)

    Sun, Yi; Liu, Wei; Wan, Zhe; Wang, Xiaohong; Li, Ruoyu

    2011-02-01

    To evaluate the in vitro efficacy of common antifungal drugs, as well as the interactions of caspofungin with voriconazole, amphotericin B, or itraconazole against the pathogenic black yeast Exophiala dermatitidis from China, the minimal inhibitory concentrations (MICs) of terbinafine, voriconazole, itraconazole, amphotericin B, fluconazole, and caspofungin against 16 strains of E. dermatitidis were determined by using CLSI broth microdilution method (M38-A2). The minimal fungicidal concentrations (MFCs) were also determined. Additionally, the interactions of caspofungin with voriconazole, amphotericin B, itraconazole or fluconazole, that of terbinafine with itraconazole, or that of fluconazole with amphotericin B were assessed by using the checkerboard technique. The fractional inhibitory concentration index (FICI) was used to categorize drug interactions as following, synergy, FICI ≤ 0.5; indifference, FICI > 0.5 and ≤4.0; or antagonism, FICI > 4.0. The MIC ranges of terbinafine, voriconazole, itraconazole, amphotericin B, fluconazole, and caspofungin against E. dermatitidis were 0.06-0.125 mg/l, 0.25-1.0 mg/l, 1.0-2.0 mg/l, 1.0-2.0 mg/l, 16-64 mg/l, and 32-64 mg/l, respectively. The in vitro interactions of caspofungin with voriconazole, amphotericin B, and itraconazole showed synergic effect against 10/16(62.5%), 15/16(93.75%), and 16/16(100%) isolates, while that of caspofungin with fluconazole showed indifference. Besides, the interaction of terbinafine with itraconazole as well as that of fluconazole with amphotericin B showed indifference. Terbinafine, voriconazole, itraconazole, and amphotericin B have good activity against E. dermatitidis. The combinations of caspofungin with voriconazole, amphotericin B or itraconazole present synergic activity against E. dermatitidis. These results provide the basis for novel options in treating various E. dermatitidis infections.

  1. Bibliometric analysis of literature on antifungal triazole resistance: 1980 – 2015

    Science.gov (United States)

    Sweileh, Waleed M.; Sawalha, Ansam F.; Al-Jabi, Samah; Zyoud, Sa’ed H.

    2017-01-01

    Background Triazole antifungal agents play an important role in the treatment of a wide range of fungal infections. Little is known about antifungal triazole drug resistance when compared to antibiotic resistance. Therefore, this study was carried out to give a bibliometric overview of literature on triazole antifungal drug resistance. Methods Keywords related to triazole drug class and resistance were used in a search query in the Scopus search engine. The time span was set from 1980 to 2015. Data pertaining to growth of publications, the most active countries and institutions, the most cited articles, and mapping of molecular mechanisms of resistance were analyzed. Results A total of 1648 journal articles were retrieved with an average of 20.46 citations per article. Annual growth of triazole resistance showed an increasing pattern during the study period. The United States of America (n=446; 27.06%) ranked first in productivity followed by the United Kingdom (UK) (n=176; 10.68%), and China (n=133; 8.07%). Radboud University Nijmegen Medical Centre (n=69, 4.19%) in the Netherlands ranked first in productivity, while the journal Antimicrobial Agents and Chemotherapy ranked first (n=255; 15.47%) in publishing articles on triazole resistance. Mapping mechanisms of resistance showed that efflux pump and mutations in target enzyme are major mechanisms described in resistance to triazoles. Conclusion There was a growth of publications on triazole resistance in the past two decades with the bulk of publications on triazole resistance in Candida species. The data presented here will serve as baseline information for future comparative purposes. PMID:28331838

  2. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli.

    Science.gov (United States)

    Liu, Fei-fei; Pu, Li; Zheng, Qing-qing; Zhang, Yuan-wei; Gao, Rong-sui; Xu, Xu-shi; Zhang, Shi-zhu; Lu, Ling

    2015-08-01

    Azoles are widely applied and largely effective as antifungals; however, the increasing prevalence of clinically resistant isolates has yet to be matched by approaches to improve the efficacy of antimicrobial therapy. In this study, using the model fungus Aspergillus nidulans and one of the most common human pathogen Aspergillus fumigatus as research materials, we present the evidence that calcium signaling is involved in the azole-antifungals-induced stress-response reactions. In normal media, antifungal-itraconazole (ITZ) is able to induce the [Ca(2+)]c increased sharply but the addition of calcium chelator-EGTA or BAPTA almost blocks the calcium influx responses, resulted in the dramatically decreasing of [Ca(2+)]c transient. Real-time PCR analysis verified that six-tested Ca(2+)-inducible genes-two calcium channels (cchA/midA), a calmodulin-dependent phosphatase-calcineurin (cnaA), a transcription factor-crzA, and two calcium transporters (pmrA/pmcA)-could be transiently up-regulated by adding ITZ, indicating these components are involved in the azole stress-response reaction. Defect of cnaA or crzA caused more susceptibility to azole antifungals than did single mutants or double deletions of midA and cchA. Notably, EGTA may influence Rh123 accumulation as an azole-mimicking substrate through the process of the drug absorption. In vivo studies of a Galleria mellonella model identified that the calcium chelator works as an adjunct antifungal agent with azoles for invasive aspergillosis. Most importantly, combination of ITZ and EGTA or ITZ with calcium signaling inhibitor-FK506 greatly enhances the ITZ efficacy. Thus, our study provides potential clues that specific inhibitors of calcium signaling could be clinically useful adjuncts to conventional azole antifungals in the Aspergilli.

  3. In vitro susceptibility of environmental isolates of Exophiala dermatitidis to five antifungal drugs.

    Science.gov (United States)

    Duarte, Ana Paula Miranda; Pagnocca, Fernando Carlos; Baron, Noemi Carla; Melhem, Marcia de Souza Carvalho; Palmeira, Gislene Aparecida; de Angelis, Dejanira de Franceschi; Attili-Angelis, Derlene

    2013-06-01

    Several dematiaceous fungi frequently isolated from nature are involved in cases of superficial lesions to lethal cerebral infections. Antifungal susceptibility data on environmental and clinical isolates are still sparse despite the advances in testing methods. The objective of this study was to examine the activities of 5-flucytosine, amphotericin B, itraconazole, voriconazole and terbinafine against environmental isolates of Exophiala strains by minimum inhibition concentration (MIC) determination. The strains were obtained from hydrocarbon-contaminated soil, ant cuticle and fungal pellets from the infrabuccal pocket of attine gynes. Broth microdilution assay using M38-A2 reference methodology for the five antifungal drugs and DNA sequencing for fungal identification were applied. Terbinafine was the most active drug against the tested strains. It was observed that amphotericin B was less effective, notably against Exophiala spinifera, also studied. High MICs of 5-flucytosine against Exophiala dermatitidis occurred. This finding highlights the relevance of studies on the antifungal resistance of these potential opportunistic species. Our results also contribute to a future improvement of the standard methods to access the drug efficacy currently applied to black fungi.

  4. Antifungal activity of Rubus chingii extract combined with fluconazole against fluconazole-resistant Candida albicans.

    Science.gov (United States)

    Han, Bing; Chen, Jia; Yu, Yi-qun; Cao, Yong-bing; Jiang, Yuan-ying

    2016-02-01

    This study aimed to investigate the antifungal activity of Rubus chingii extract in combination with fluconazole (FLC) against FLC-resistant Candida albicans 100 in vitro. A R. chingii extract and FLC-resistant C. albicans fungus suspension were prepared. The minimum inhibitory concentration and fractional inhibitory concentration index of R. chingii extract combined with FLC against C. albicans were determined, after which growth curves for C. albicans treated with R. chingii extract, FLC alone and a combination of these preparations were constructed. Additionally, the mechanisms of drug combination against C. albicans were explored by flow cytometry, gas chromatographic mass spectrometry and drug efflux pump function detection. R. chingii extract combined with FLC showed significant synergy. Flow cytometry suggested that C. albicans cells mainly arrest in G1 and S phases when they have been treated with the drug combination. The drug combination resulted in a marked decrease in the ergosterol content of the cell membrane. Additionally, efflux of Rhodamine 6G decreased with increasing concentrations of R. chingii extract. R. chingii extract combined with FLC has antifungal activity against FLC-resistant C. albicans.

  5. Candida albicans biofilm chip (CaBChip) for high-throughput antifungal drug screening.

    Science.gov (United States)

    Srinivasan, Anand; Lopez-Ribot, Jose L; Ramasubramanian, Anand K

    2012-07-18

    Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating treatment is the fact that a majority of manifestations of candidiasis are associated with the formation of biofilms, and cells within these biofilms show increased levels of resistance to most clinically-used antifungal agents. Here we describe the development of a high-density microarray that consists of C. albicans nano-biofilms, which we have named CaBChip. Briefly, a robotic microarrayer is used to print yeast cells of C. albicans onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional matrix using a volume as low as 50 nL and immobilized on a glass substrate with a suitable coating. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully developed "nano-biofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, three dimensional architecture and drug resistance). Overall, the CaBChip is composed of ~750 equivalent and spatially distinct biofilms; with the additional advantage that multiple chips can be printed and processed simultaneously. Cell viability is estimated by measuring the fluorescent intensity of FUN1 metabolic stain using a microarray scanner. This fungal chip is ideally suited for use in true high-throughput screening for antifungal drug discovery. Compared to current standards (i.e. the 96-well microtiter plate model of biofilm formation

  6. Antifungal activity of ibuprofen against aspergillus species and its interaction with common antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    LI Li-juan; CHEN Wei; XU Hui; WAN Zhe; LI Ruo-yu; LIU Wei

    2010-01-01

    Background The incidence of invasive aspergillosis (IA) has increased in frequency in immunocompromised patients with a variety of diseases. The poor prognosis might be due to limited treatment option. This study aimed to evaluate antifungal activity of ibuprofen against clinical isolates of aspergillus species, as well as its interaction with azoles or with amphotericin B or with micafungin.Methods Antifungal activity of ibuprofen against 10 strains of Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus were tested with both disk diffusion assay and standard broth microdilution method. To determine whether ibuprofen combined with itraconazole, voriconazole, amphotericin B, or micafungin had interactive effects on aspergillus spp., we used both disk diffusion assay and Chequerboard method.Results As for disk diffusion method, ibuprofen produced a zone of growth inhibition with diameters of (20.1±3.9) mm at 48 hours of incubation. As for broth microdilution method, the minimal inhibitory concentration (MIC) ranges of ibuprofen against aspergillus spp. were 1000-2000 μg/ml, and the minimal fungicidal concentration (MFC) ranges of that was 2000-8000 μg/ml. For 2 of 5 isolates, when ibuprofen combined with itraconazole or voriconazole, the zones of growth inhibition were larger than those of the individual drug. The results of Chequerboard method showed that fractional inhibitory concentration index (FICI) ranges were 1.125-2.500.Conclusions Ibuprofen is active against aspergillus spp.. And ibuprofen does not affect the in vitro activity of itraconazole, voriconazole, amphotericin B or micafungin against aspergillus spp..

  7. Antagonistic changes in sensitivity to antifungal drugs by mutations of an important ABC transporter gene in a fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Wenjun Guan

    Full Text Available Fungal pathogens can be lethal, especially among immunocompromised populations, such as patients with AIDS and recipients of tissue transplantation or chemotherapy. Prolonged usage of antifungal reagents can lead to drug resistance and treatment failure. Understanding mechanisms that underlie drug resistance by pathogenic microorganisms is thus vital for dealing with this emerging issue. In this study, we show that dramatic sequence changes in PDR5, an ABC (ATP-binding cassette efflux transporter protein gene in an opportunistic fungal pathogen, caused the organism to become hypersensitive to azole, a widely used antifungal drug. Surprisingly, the same mutations conferred growth advantages to the organism on polyenes, which are also commonly used antimycotics. Our results indicate that Pdr5p might be important for ergosterol homeostasis. The observed remarkable sequence divergence in the PDR5 gene in yeast strain YJM789 may represent an interesting case of adaptive loss of gene function with significant clinical implications.

  8. Mycotoxins and Antifungal Drug Interactions: Implications in the Treatment of Illnesses Due to Indoor Chronic Toxigenic Mold Exposures

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2004-01-01

    Full Text Available Chronic exposure to toxigenic molds in water-damaged buildings is an indoor environmental health problem to which escalating health and property insurance costs are raising a statewide concern in recent times. This paper reviews the structural and functional properties of mycotoxins produced by toxigenic molds and their interactive health implications with antifungal drugs. Fundamental bases of pathophysiological, neurodevelopmental, and cellular mechanisms of mycotoxic effects are evaluated. It is most likely that the interactions of mycotoxins with antifungal drugs may, at least in part, contribute to the observable persistent illnesses, antifungal drug resistance, and allergic reactions in patients exposed to chronic toxigenic molds. Safe dose level of mycotoxin in humans is not clear. Hence, the safety regulations in place at the moment remain inconclusive, precautionary, and arbitrary. Since some of the antifungal drugs are derived from molds, and since they have structural and functional groups similar to those of mycotoxins, the knowledge of their interactions are important in enhancing preventive measures.

  9. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  10. Environmental isolation, biochemical identification, and antifungal drug susceptibility of Cryptococcus species

    Directory of Open Access Journals (Sweden)

    Valter Luis Iost Teodoro

    2013-12-01

    Full Text Available Introduction The incidence of opportunistic fungal infections has increased in recent years and is considered an important public health problem. Among systemic and opportunistic mycoses, cryptococcosis is distinguished by its clinical importance due to the increased risk of infection in individuals infected by human immunodeficiency virus. Methods To determine the occurrence of pathogenic Cryptococcus in pigeon excrement in the City of Araraquara, samples were collected from nine environments, including state and municipal schools, abandoned buildings, parks, and a hospital. The isolates were identified using classical tests, and susceptibility testing for the antifungal drugs (fluconazole, itraconazole, voriconazole, and amphotericin B independently was also performed. After collection, the excrement samples were plated on Niger agar and incubated at room temperature. Results A total of 87 bird dropping samples were collected, and 66.6% were positive for the genus Cryptococcus. The following species were identified: Cryptococcus neoformans (17.2%, Cryptococcus gattii (5.2%, Cryptococcus ater (3.5%, Cryptococcus laurentti (1.7%, and Cryptococcus luteolus (1.7%. A total of 70.7% of the isolates were not identified to the species level and are referred to as Cryptococcus spp. throughout the manuscript. Conclusions Although none of the isolates demonstrated resistance to antifungal drugs, the identification of infested areas, the proper control of birds, and the disinfection of these environments are essential for the epidemiological control of cryptococcosis.

  11. Drug resistance and antiretroviral drug development

    OpenAIRE

    Shafer, Robert W.; Jonathan M Schapiro

    2005-01-01

    As more drugs for treating HIV have become available, drug resistance profiles within antiretroviral drug classes have become increasingly important for researchers developing new drugs and for clinicians integrating new drugs into their clinical practice. In vitro passage experiments and comprehensive phenotypic susceptibility testing are used for the pre-clinical evaluation of drug resistance. Clinical studies are required, however, to delineate the full spectrum of mutations responsible fo...

  12. Drug resistance in malaria

    Directory of Open Access Journals (Sweden)

    S C Parija

    2011-01-01

    Full Text Available Antimalarial chemotherapy is an important component of all malaria control programmes throughout the world. This is especially so in light of the fact that there are no antimalarial vaccines which are available for clinical use at present. Emergence and spread of malaria parasites which are resistant to many of the available antimalarials today is, therefore, a major cause for concern. Till date, resistance to all groups of antimalarials excluding artemisinin has been reported. In recent years, in vitro resistance to even artemisinin has been described. While resistance to antibacterial agents has come to prominence as a clinical problem in recent years, antiparasitic resistance in general and antimalarial resistance in particular has not received much attention, especially in the Indian scenario. The present review deals with commonly used antimalarial drugs and the mechanisms of resistance to them. Various methods of detecting antimalarial resistance and avoiding the same have also been dealt with. Newer parasite targets which can be used in developing newer antimalarial agents and antimalarials obtained from plants have also been mentioned.

  13. Relationship between antifungal resistance of fluconazole resistant Candida albicans and mutations in ERG11 gene

    Institute of Scientific and Technical Information of China (English)

    FENG Li-juan; WAN Zhe; WANG Xiao-hong; LI Ruo-yu; LIU Wei

    2010-01-01

    Background The cytochrome P450 lanosterol 14α-demethylase(Erg11p) encoded by ERG11 gene is the primary target for azole antifungals.Changes in azole affinity of this enzyme caused by amino acid substitutions have been reported as a mechanism of azole antifungal resistance. This study aimed to investigate the relationship between amino acid substitutions in Erg11p from fluconazole resistant Candida albicans (C.albicans)isolates and their cross-resistance to azoles.Methods Mutations in ERG11 gene were screened in 10 clinical isolates of fluconazole resistant C.albicans strains.DNA sequence of ERG11 was determined by PCR based DNA sequencing.Results In the 10 isolates,19 types of amino acid substitutions were found,of which 10 substitutions (F72S, F103L, F145I, F198L, G206D, G227D, N349S, F416S, F422L and T482A) have not been reported previously. Mutations in ERG11 gene were detected in 9 isolates of fluconazole resistant C. albicans, but were not detected in 1 isolate. Conclusions Although no definite correlation was found between the type of amino acid substitutions in Erg11p and the phenotype of cross-resistance to azoles, the substitutions F72S, F145I and G227D in our study may be highly associated with resistance to azoles because of their special location in Erg11p.

  14. Flow cytometry susceptibility testing for conventional antifungal drugs and Comparison with the NCCLS Broth Macrodilution Test

    Directory of Open Access Journals (Sweden)

    M.J. Najafzadeh

    2009-08-01

    Full Text Available Introduction: During the last decade, the incidence of fungal infection has been increased in many countries. Because of the advent of resistant to antifungal agents, determination of an efficient strategic plan for treatment of fungal disease is an important issue in clinical mycology. Many methods have been introduced and developed for determination of invitro susceptibility tests. During the recent years, flow cytometry has developed to solving the problem and many papers have documented the usefulness of this technique. Materials and methods: As the first step, the invitro susceptibility of standard PTCC (Persian Type of Culture Collection strain and some clinical isolates of Candida consisting of Candida albicans, C. dubliniensis, C. glabrata, C. kefyer and C. parapsilosis were evaluated by macrodilution broth method according to NCCLS (National Committee for Clinical Laboratory Standards guidelines and flow cytometry susceptibility test. Results:  The data indicated that macro dilution broth methods and flow cytometry have the same results in determination of MIC (Minimum Inhibitory Concentration for amphotericin B, clotrimazole, fluconazole, ketoconazole and miconazole in C. albicans PTCC 5027 as well as clinical Candida isolates, such as C.albicans, C.dubliniensis, C.glabrata C.kefyr, and C.parapsilosis. Discussion: Comparing the results obtained by macrodilution broth and flow cytometry methods revealed that flow cytometry was faster. It is suggested that flow cytometry susceptibility test can be used as a powerful tool for determination of MIC and administration of the best antifungal drug in treatment of patients with Candida infections.

  15. Antifungal adjuvants: Preserving and extending the antifungal arsenal.

    Science.gov (United States)

    Butts, Arielle; Palmer, Glen E; Rogers, P David

    2017-02-17

    As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance.

  16. Aspergillus nidulans galactofuranose biosynthesis affects antifungal drug sensitivity.

    Science.gov (United States)

    Alam, Md Kausar; El-Ganiny, Amira M; Afroz, Sharmin; Sanders, David A R; Liu, Juxin; Kaminskyj, Susan G W

    2012-12-01

    The cell wall is essential for fungal survival in natural environments. Many fungal wall carbohydrates are absent from humans, so they are a promising source of antifungal drug targets. Galactofuranose (Galf) is a sugar that decorates certain carbohydrates and lipids. It comprises about 5% of the Aspergillus fumigatus cell wall, and may play a role in systemic aspergillosis. We are studying Aspergillus wall formation in the tractable model system, A. nidulans. Previously we showed single-gene deletions of three sequential A. nidulans Galf biosynthesis proteins each caused similar hyphal morphogenesis defects and 500-fold reduced colony growth and sporulation. Here, we generated ugeA, ugmA and ugtA strains controlled by the alcA(p) or niiA(p) regulatable promoters. For repression and expression, alcA(p)-regulated strains were grown on complete medium with glucose or threonine, whereas niiA(p)-regulated strains were grown on minimal medium with ammonium or nitrate. Expression was assessed by qPCR and colony phenotype. The alcA(p) and niiA(p) strains produced similar effects: colonies resembling wild type for gene expression, and resembling deletion strains for gene repression. Galf immunolocalization using the L10 monoclonal antibody showed that ugmA deletion and repression phenotypes correlated with loss of hyphal wall Galf. None of the gene manipulations affected itraconazole sensitivity, as expected. Deletion of any of ugmA, ugeA, ugtA, their repression by alcA(p) or niiA(p), OR, ugmA overexpression by alcA(p), increased sensitivity to Caspofungin. Strains with alcA(p)-mediated overexpression of ugeA and ugtA had lower caspofungin sensitivity. Galf appears to play an important role in A. nidulans growth and vigor.

  17. In Vitro Antifungal Activity of Sertraline and Synergistic Effects in Combination with Antifungal Drugs against Planktonic Forms and Biofilms of Clinical Trichosporon asahii Isolates

    Science.gov (United States)

    Cong, Lin; Liao, Yong; Yang, Suteng

    2016-01-01

    Trichosporon asahii (T. asahii) is the major pathogen of invasive trichosporonosis which occurred mostly in immunocompromised patients. The biofilms formation ability of T. asahii may account for resistance to antifungal drugs and results a high mortality rate. Sertraline, a commonly prescribed antidepressant, has been demonstrated to show in vitro and in vivo antifungal activities against many kinds of pathogenic fungi, especially Cryptococcus species. In the present study, the in vitro activities of sertraline alone or combined with fluconazole, voriconazole, itraconazole, caspofungin and amphotericin B against planktonic forms and biofilms of 21 clinical T. asahii isolates were evaluated using broth microdilution checkerboard method and XTT reduction assay, respectively. The fractional inhibitory concentration index (FICI) was used to interpret drug interactions. Sertraline alone exhibited antifungal activities against both T. asahii planktonic cells (MICs, 4–8 μg/ml) and T. asahii biofilms (SMICs, 16–32 μg/ml). Furthermore, SRT exhibited synergistic effects against T. asahii planktonic cells in combination with amphotericin B, caspofungin or fluconazole (FICI≤0.5) and exhibited synergistic effects against T. asahii biofilms in combination with amphotericin B (FICI≤0.5). SRT exhibited mostly indifferent interactions against T. asahii biofilms in combination with three azoles in this study. Sertraline-amphotericin B combination showed the highest percentage of synergistic effects against both T. asahii planktonic cells (90.5%) and T. asahii biofilms (81.0%). No antagonistic interaction was observed. Our study suggests the therapeutic potential of sertraline against invasive T. asahii infection, especially catheter-related T. asahii infection. Further in vivo studies are needed to validate our findings. PMID:27930704

  18. An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2015-11-01

    Full Text Available There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl, and cyprodinil with ∼3,600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM. Follow-up susceptibility testing against a fluconazole-resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode of action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Additional tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens.

  19. IPC synthase as a useful target for antifungal drugs.

    Science.gov (United States)

    Sugimoto, Yuichi; Sakoh, Hiroki; Yamada, Koji

    2004-12-01

    Inositol phosphorylceramide (IPC) synthase is a common and essential enzyme in fungi and plants, which catalyzes the transfer of phosphoinositol to the C-1 hydroxy of ceramide to produce IPC. This reaction is a key step in fungal sphingolipid biosynthesis, therefore the enzyme is a potential target for the development of nontoxic therapeutic antifungal agents. Natural products with a desired biological activity, aureobasidin A (AbA), khafrefungin, and galbonolide A, have been reported. AbA, a cyclic depsipeptide containing 8 amino acids and a hydroxyl acid, is a broad spectrum antifungal with strong activity against many pathogenic fungi such as Candida spp., Cryptococcus neoformans, and some Aspergillus spp. Khafrefungin, an aldonic acid ester with a C22 long alkyl chain, has antifungal activity against C. albicans, Cr. Neoformans, and Saccharomyces cerevisiae. Galbonolide A is a 14-membered macrolide with fungicidal activity against clinically important strains, and is especially potent against Cr. neoformans. These classes of natural products are potent and specific antifungal agents. We review current progress in the development of IPC synthase inhibitors with antifungal activities, and present structure-activity relationships (SAR), physicochemical and structural properties, and synthetic methodology for chemical modification.

  20. Cyanobacteria, Lyngbya aestuarii and Aphanothece bullosa as antifungal and antileishmanial drug resources

    Institute of Scientific and Technical Information of China (English)

    Maheep Kumar; Manoj Kumar Tripathi; Akanksha Srivastava; Jalaj Kumar Gour; Rakesh Kumar Singh; Ragini Tilak; Ravi Kumar Asthana

    2013-01-01

    To investigate two cyanobacteria isolated from different origins i.e. Lyngbya aestuarii(L. aestuarii) from brackish water and Aphanothece bullosa (A. bullosa) from fresh water paddy fields for antifungal and antileishmanila activity taking Candida albicans and Leishmaniadonovain as targets. Methods: Biomass of L. aestuarii and A. bullosa were harvested after 40 and 60 d respectively and lyophilized twice in methanol (100%) and redissolved in methanol (5%) for bioassay. Antifungal bioassay was done by agar well diffusion method while antileishmanial, by counting cell numbers and flageller motility observation of promastigotes and amastigotes fromL. donovani . Fluconazole and 5% methanol were used as control. Results: Both the cyanobacteria were found to be potent source of antifungal activity keeping fluconazole as positive control, however, methanolic crude extract (15 mg/mL) of A. bullosa was found more potent (larger inhibition zone) over that of methanolic crude extract of L. aestuarii. Similarly antileishmanial activity of crude extract (24.0 mg/mL) of A. bullosa was superior over that of methanolic crude extract of L. aestuarii (25.6 mg/mL). Conclusions: Antifungal and antileishmanial drugs are still limited in the market. Screening of microbes possessing antifungal and antileishmanial activity drug is of prime importance. Cyanobacteria are little explored in this context because most of the drugs in human therapy are derived from microorganisms, mainly bacterial, fungal and actinomycetes. Thus in the present study two cyanobacterial strains from different origins showed potent source of antifungal and antileishmanial biomolecules.

  1. Triazole antifungals: a review.

    Science.gov (United States)

    Peyton, L R; Gallagher, S; Hashemzadeh, M

    2015-12-01

    Invasive fungal infections and systemic mycosis, whether from nosocomial infection or immunodeficiency, have been on an upward trend for numerous years. Despite advancements in antifungal medication, treatment in certain patients can still be difficult for reasons such as impaired organ function, limited administration routes or poor safety profiles of the available antifungal medications. The growing number of invasive fungal species becoming resistant to current antifungal medications is of appreciable concern. Triazole compounds containing one or more 1,2,4-triazole rings have been shown to contain some of the most potent antifungal properties. Itracon-azole and fluconazole were some of the first triazoles synthesized, but had limitations associated with their use. Second-generation triazoles such as voriconazole, posa-conazole, albaconazole, efinaconazole, ravuconazole and isavuconazole are all derivatives of either itraconazole or fluconazole, and designed to overcome the deficiencies of their parent drugs. The goal of this manuscript is to review antifungal agents derived from triazole.

  2. Adverse events of modern antifungal drugs during treatment of invasive fungal infections

    Directory of Open Access Journals (Sweden)

    N. V. Dmitrieva

    2013-01-01

    Full Text Available Characteristics of adverse events of modern antimycotics by organ systems and comparative frequency between different medicines and their groups are presented. The examples of incompatibility of antifungal drugs with other pharmacological groups are discussed. Records of adverse events and drug compatibility will allow the practitioner to prevent and timely cure possible complications, should they arise.

  3. [In vitro activities of antifungal drugs against clinical isolates of Trichophyton tonsurans].

    Science.gov (United States)

    Koga, Hiroyasu; Nanjoh, Yasuko; Inoue, Kazuyoshi; Makimura, Koichi; Tsuboi, Ryoji

    2006-01-01

    To determine drug susceptibility of Trichophyton tonsurans endemic in Japan, in vitro MICs of antifungal drugs against a total of 10 clinical isolates of T. tonsurans collected from dermatophytosis patients were measured by the agar dilution method and the broth microdilution method. The agar dilution method was not appropriate as the growth of T. tonsurans on the agar medium was too slow to determine drug activity, while the broth microdilution method was thought to be an appropriate method for this study. The MIC90 values determined by the broth microdilution method for terbinafine, itraconazole, miconazole and ketoconazole were 0.013, 0.1, 0.8 and 0.4 microg/ml, respectively. Meanwhile, the MIC90 values of lanoconazole and luliconazole, known to be antifungal drugs potent against dermatomycosis, were 0.00078 and 0.00039 microg/ ml, respectively. The drug susceptibility of these T. tonsurans isolates to the aforementioned antifungal drugs was found to be on a similar level with that of T. mentagrophytes and T. rubrum, major causative agents of dermatomycosis. The results also demonstrated the strong antifungal activity of lanoconazole and luliconazole against T. tonsurans.

  4. Drug-resistant tuberculous meningitis.

    Science.gov (United States)

    Garg, Ravindra K; Jain, Amita; Malhotra, Hardeep S; Agrawal, Avinash; Garg, Rajiv

    2013-06-01

    Drug-resistant tuberculosis, including drug-resistant tuberculous meningitis, is an emerging health problem in many countries. An association with Beijing strains and drug resistance-related mutations, such as mutations in katG and rpoB genes, has been found. The pathology, clinical features and neuroimaging characteristics of drug-resistant tuberculous meningitis are similar to drug-responsive tuberculous meningitis. Detection of mycobacteria in cerebrospinal fluid (CSF) by conventional methods (smear examination or culture) is often difficult. Nucleic acid amplification assays are better methods owing to their rapidity and high sensitivity. The Xpert MTB/RIF assay (Cepheid, CA, USA) is a fully-automated test that has also been found to be effective for CSF samples. Treatment of multidrug-resistant tuberculous meningitis depends on the drug susceptibility pattern of the isolate and/or the previous treatment history of the patient. Second-line drugs with good penetration of the CSF should be preferred. Isoniazid monoresistant disease requires addition of another drug with better CSF penetration. Drug-resistant tuberculous meningitis is associated with a high mortality. HIV infected patients with drug-resistant tuberculous meningitis have severe clinical manifestations with exceptionally high mortality. Prevention of tuberculosis is the key to reduce drug-resistant tuberculous meningitis.

  5. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole.

    Directory of Open Access Journals (Sweden)

    Chiung-Kuang Chen

    Full Text Available BACKGROUND: Chagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14alpha-demethylase (CYP51, which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding. METHODOLOGY/PRINCIPAL FINDINGS: We have determined the crystal structures for CYP51 from T. cruzi (resolutions of 2.35 A and 2.27 A, and from the related pathogen T. brucei (resolutions of 2.7 A and 2.6 A, co-crystallized with the antifungal drugs fluconazole and posaconazole. Remarkably, both drugs adopt multiple conformations when binding the target. The fluconazole 2,4-difluorophenyl ring flips 180 degrees depending on the H-bonding interactions with the BC-loop. The terminus of the long functional tail group of posaconazole is bound loosely in the mouth of the hydrophobic substrate binding tunnel, suggesting that the major contribution of the tail to drug efficacy is for pharmacokinetics rather than in interactions with the target. CONCLUSIONS/SIGNIFICANCE: The structures provide new insights into binding of azoles to CYP51 and mechanisms of potential drug resistance. Our studies define in structural detail the CYP51 therapeutic target in T. cruzi, and

  6. Mechanisms of drug resistance: quinolone resistance.

    Science.gov (United States)

    Hooper, David C; Jacoby, George A

    2015-09-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large.

  7. Molecular and biochemical mechanisms of drug resistance in fungi.

    Science.gov (United States)

    Yamaguchi, H

    1999-01-01

    This paper reviews the current status of our understanding of resistance mechanisms of three major classes of antifungal drugs for systemic use, amphotericin B (AMPH), flucytosine (5-FC) and several azole antifungals, in particular fluconazole (FLCZ), at the molecular and cellular levels. Although the number of reports of AMPH- or 5-FC-resistant fungal species and strains is limited, several mechanisms of resistance have been described. AMPH-resistant Candida have a marked decrease in ergosterol content compared with AMPH-susceptible control isolates. A lesion in the UMP-pyrophosphorylase is the most frequent determinant of 5-FC resistance in C. albicans. Recently resistance of C. albicans to azoles has become an increasing problem. Extensive biochemical studies have highlighted a significant diversity in mechanisms conferring resistance to FLCZ and other azoles, which include alterations in sterol biosynthesis, target site, uptake and efflux. Among them, the most important mechanism clinically is reduced access of the drug to the intracellular P450 14 DM target, probably because of the action of a multidrug resistance efflux pump, and overproduction of that target. However, other possible resistance mechanisms for azoles remain to be identified.

  8. Grafting β-Cyclodextrins to Silicone, Formulation of Emulsions and Encapsulation of Antifungal Drug

    Science.gov (United States)

    Noomen, Ahlem; Penciu, Alexandra; Hbaieb, Souhaira; Parrot-Lopez, Hélène; Amdouni, Noureddine; Chevalier, Yves; Kalfat, Rafik

    Emulsions of silicone polymers having β-cyclodextrin units as lateral chains have been prepared and used for the encapsulation of the antifungal drug griseofulvin. Such technology enables the formulation of active substances that are not soluble in water as dosage forms for topical administration.

  9. Type I methionine aminopeptidase from Saccharomyces cerevisiae is a potential target for antifungal drug screening

    Institute of Scientific and Technical Information of China (English)

    Ling-ling CHEN; Jia LI; Jing-ya LI; Qun-li LUO; Wei-feng MAO; Qiang SHEN; Fa-jun NAN; Qi-zhuang YE

    2004-01-01

    AIM: To screen antifungal drug candidates using in vitro and in vivo assays based on type I methionine aminopeptidase from Saccharomyces cerevisiae (ScMetAP1). METHODS: A colorimetric assay suitable for high throughput screening (HTS) using recombinant ScMetAP1 protein expressed in Escherichia coli was established for antifungal lead discovery. A series of pyridine-2-carboxylic acid derivatives were characterized and a chemical library of 12 800 pure organic compounds was screened with the in vitro ScMetAP1 assay. Active compounds from the in vitro assay were further evaluated by a growth inhibition assay on yeast strain with deletion of ScMetAP1 gene mapl in comparison with the wild-type yeast strain and the yeast strain with deletion of type II enzyme (ScMetAP2)gene map2. RESULTS: Active ScMetAP1 inhibitors were identified from HTS. Some of the pyridine-2-carboxylic acid derivatives (compound 2 and 3) had selective inhibition of the growth of map2 deletion yeast and weak inhibition on wild-type yeast growth, while no inhibition on mapl deletion yeast. CONCLUSION: ScMetAP1 is a novel potential target for developing antifungal drugs. The in vitro and in vivo ScMetAP1 assays can serve as tools in discovering antifungal drug candidates.

  10. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  11. Rapid identification of antifungal compounds against Exserohilum rostratum using high throughput drug repurposing screens.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available A recent large outbreak of fungal infections by Exserohilum rostratum from contaminated compounding solutions has highlighted the need to rapidly screen available pharmaceuticals that could be useful in therapy. The present study utilized two newly-developed high throughput assays to screen approved drugs and pharmaceutically active compounds for identification of potential antifungal agents. Several known drugs were found that have potent effects against E. rostratum including the triazole antifungal posaconazole. Posaconazole is likely to be effective against infections involving septic joints and may provide an alternative for refractory central nervous system infections. The anti-E. rostratum activities of several other drugs including bithionol (an anti-parasitic drug, tacrolimus (an immunosuppressive agent and floxuridine (an antimetabolite were also identified from the drug repurposing screens. In addition, activities of other potential antifungal agents against E. rostratum were excluded, which may avoid unnecessary therapeutic trials and reveals the limited therapeutic alternatives for this outbreak. In summary, this study has demonstrated that drug repurposing screens can be quickly conducted within a useful time-frame. This would allow clinical implementation of identified alternative therapeutics and should be considered as part of the initial public health response to new outbreaks or rapidly-emerging microbial pathogens.

  12. Hsp90 governs dispersion and drug resistance of fungal biofilms.

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2011-09-01

    Full Text Available Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving

  13. High Virulence and Antifungal Resistance in Clinical Strains of Candida albicans

    OpenAIRE

    Monroy-Pérez, Eric; Paniagua-Contreras, Gloria Luz; Rodríguez-Purata, Pamela; Vaca-Paniagua, Felipe; Vázquez-Villaseñor, Marco; Díaz-Velásquez, Clara; Uribe-García, Alina; Vaca, Sergio

    2016-01-01

    Antifungal resistance and virulence properties of Candida albicans are a growing health problem worldwide. To study the expression of virulence and azole resistance genes in 39 clinical strains of C. albicans, we used a model of infection of human vaginal epithelial cells with C. albicans strains isolated from Mexican women with vulvovaginal candidiasis (VVC). The strains were identified by PCR amplification of the ITS1 and ITS2 regions of rRNA. The detection and expression of virulence genes...

  14. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.

    Science.gov (United States)

    Allen, Aron; Islamovic, Emir; Kaur, Jagdeep; Gold, Scott; Shah, Dilip; Smith, Thomas J

    2011-10-01

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins.

  15. Separation of antifungal chiral drugs by SFC and HPLC: a comparative study.

    Science.gov (United States)

    Bernal, J L; Toribio, L; del Nozal, M J; Nieto, E M; Montequi, M I

    2002-12-31

    The enantiomeric separation of several compounds, including an antifungal drug and several of its precursors, using HPLC and SFC is described in this work. The columns employed were based on polysaccharide derivatives and the results show that most of the separations obtained by SFC are better, in terms of high resolution and short analysis time, than those obtained by HPLC. Only one compound could not be resolved using SFC but, in this case, HPLC provided baseline resolution.

  16. [Derivatization of berberine based on its synergistic antifungal activity with fluconazole against fluconazole-resistant Candida albicans].

    Science.gov (United States)

    Tian, Shu-Juan; Gao, Yue; Zang, Cheng-Xu; Cai, Zhan; Ni, Ting-jun-hong; Tan, Shan-Lun; Cao, Yong-Bing; Jiang, Yuan-Ying; Zhang, Da-Zhi

    2014-11-01

    Abstract: Our previous work revealed berberine can significantly enhance the susceptibility of fluconazole against fluconazole-resistant Candida albicans, which suggested that berberine has synergistic antifungal activity with fluconazole. Preliminary SAR of berberine needs to be studied for the possibility of investigating its target and SAR, improving its drug-likeness, and exploring new scaffold. In this work, 13-substitutited benzyl berberine derivatives and N-benzyl isoquinoline analogues were synthesized and characterized by 1H NMR and MS. Their synergetic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The 13-substitutited benzyl berberine derivatives 1a-1e exhibited comparable activity to berberine, which suggested that the introduction of functional groups to C-13 can maintain its activity. The N-benzyl isoquinolines, which were designed as analogues of berberine with its D ring opened, exhibited lower activity than berberine. However, compound 2b, 2c, and 4b showed moderate activity, which indicated that berberine may be deconstructed to new scaffold with synergistic antifungal activity with fluconazole. The results of our research may be helpful to the SAR studies on its other biological activities.

  17. Lamisil, a potent alternative antifungal drug for otomycosis

    Directory of Open Access Journals (Sweden)

    Ali Zarei Mahmoudabadi

    2015-01-01

    Results: Out of 23 isolates of Aspergillus, Candida 4(17.4% and 1(4.4% were resistant to nystatin and miconazole, respectively. In addition, all tested organisms were sensitive to clotrimazole and terbinafine. Statistical analysis has shown that there are no significant differences on the effects of clotrimazole, miconazole and, terbinafine on saprophytic (environmental and pathogenic isolates of A. niger, A. flavus, and A. terreus (P value= 0.85. In addition, all tested organisms were found to be highly susceptible to terbinafine (P< 0.04. Conclusion: This is a new approach for the possible use of Lamisil for the treatment of otomycosis.

  18. Posttreatment Antifungal Resistance among Colonizing Candida Isolates in Candidemia Patients

    DEFF Research Database (Denmark)

    Jensen, R H; Johansen, H K; Søes, L M

    2015-01-01

    The prevalence of intrinsic and acquired resistance among colonizing Candida isolates from patients after candidemia was investigated systematically in a 1-year nationwide study. Patients were treated at the discretion of the treating physician. Oral swabs were obtained after treatment. Species...... analysis demonstrated a genetic relationship for 90% of all paired blood and oral isolates. Patients exposed to azoles for ≥ 7 days (n = 93) had a significantly larger proportion of species intrinsically less susceptible to azoles (particularly Candida glabrata) among oral isolates than among initial blood...... isolates (36.6% versus 12.9%; P 0.5). Acquired resistance in Candida albicans was rare (

  19. Development and characterization of spray dried microparticles for pulmonary delivery of antifungal drug.

    Science.gov (United States)

    Mathpal, Divita; Garg, Tarun; Rath, Goutam; Goyal, Amit Kumar

    2015-01-01

    Invasive pulmonary aspergillosis is a life threatening fungal infection mainly caused by Aspergillus species. Available treatment strategy against pulmonary aspergillosis is having very limited applicability, due to its toxicity and low circulation half-life. Pulmonary drug delivery is one of the strategies that can minimize these pitfalls. In the present study, polymeric and lipidic nanoparticles of amphotericin B were prepared by spray drying technique using hydroxypropylmethylcellulose (HPMC) and stearylamine with oleic acid respectively. Formulations were characterized for particle size, zeta potential, entrapment efficiency, in-vitro release studies, uptake analysis and in-vivo bio distribution studies. Developed polymeric and nanostructured lipid carriers (NLCs) were found in submicron size (600-700nm) and spherical in shape. Studies suggested that NLCs have better entrapment efficiency (77.1±5.5 %) as compared to HPMC carrier (71.28±5.22 %). Both formulations provided sustained drug release (HPMC, 82.05% releases up to 32 hrs and NLC, 88.2 % up to 40 hrs) and reduced dose dumping that may be helpful to reduce the toxicity and improve patient compliance. In-vitro antifungal studies suggested that stearylamine formulations exhibited better antifungal activity over control and HPMC formulations. Pharmacokinetic and organ distribution studies also support our hypothesis i.e. localized drug delivery for prolong period, improving the therapeutic effectiveness of the encapsulated drug against pulmonary aspergillosis. Studies suggested that drug delivery by pulmonary route is beneficial for local action in lungs.

  20. Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins

    OpenAIRE

    Kuhn, D M; T. George; CHANDRA, J; P. K. Mukherjee; Ghannoum, M A

    2002-01-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have ac...

  1. Emergence of non-albicans Candida species and antifungal resistance in intensive care unit patients

    Institute of Scientific and Technical Information of China (English)

    Ravinder Kaur; Megh Singh Dhakad; Ritu Goyal; Rakesh Kumar

    2016-01-01

    Objective: To evaluate the epidemiology of candidiasis and the antifungal susceptibility profile of Candida species isolated from the intensive care unit (ICU) patients. Methods: The study used a qualitative descriptive design. Relevant samples depending on organ system involvement from 100 ICU patients were collected and processed. Identification and speciation of the isolates was conducted by the biochemical tests. Antifungal susceptibility testing was carried out as per CLSI-M27-A3 document. Results: Ninety Candida isolates were isolated from the different clinical samples:urine (43.3%), tracheal aspirate (31.1%), urinary catheter (12.2%), endotracheal tube (7.8%), abdominal drains (3.3%), sputum (2.2%). The incidence of candidiasis caused by non-albicans Candida (NAC) species (63.3%) was higher than Candida albicans (36.7%). The various NAC species were isolated as: Candida tropicalis (41.1%), Candida glab-rata (10%), Candida parapsilosis (6.7%), Candida krusei (3.3%) and Candida kefyr (2.2%). The overall isolation rate of Candida species from samples was 53.3%. Anti-fungal susceptibility indicated that 37.8%and 7.8%of the Candida isolates were resistant to fluconazole and amphotericin B, respectively. Conclusions: Predominance of NAC species in ICU patients along with the increasing resistance being recorded to fluconazole which has a major bearing on the morbidity and management of these patients and needs to be further worked upon.

  2. Emergence of non-albicans Candida species and antifungal resistance in intensive care unit patients

    Institute of Scientific and Technical Information of China (English)

    Ravinder Kaur; Megh Singh Dhakad; Ritu Goyal; Rakesh Kumar

    2016-01-01

    Objective: To evaluate the epidemiology of candidiasis and the antifungal susceptibility profile of Candida species isolated from the intensive care unit(ICU) patients.Methods: The study used a qualitative descriptive design. Relevant samples depending on organ system involvement from 100 ICU patients were collected and processed.Identification and speciation of the isolates was conducted by the biochemical tests.Antifungal susceptibility testing was carried out as per CLSI-M27-A3 document.Results: Ninety Candida isolates were isolated from the different clinical samples: urine(43.3%), tracheal aspirate(31.1%), urinary catheter(12.2%), endotracheal tube(7.8%),abdominal drains(3.3%), sputum(2.2%). The incidence of candidiasis caused by nonalbicans Candida(NAC) species(63.3%) was higher than Candida albicans(36.7%).The various NAC species were isolated as: Candida tropicalis(41.1%), Candida glabrata(10%), Candida parapsilosis(6.7%), Candida krusei(3.3%) and Candida kefyr(2.2%). The overall isolation rate of Candida species from samples was 53.3%. Antifungal susceptibility indicated that 37.8% and 7.8% of the Candida isolates were resistant to fluconazole and amphotericin B, respectively.Conclusions: Predominance of NAC species in ICU patients along with the increasing resistance being recorded to fluconazole which has a major bearing on the morbidity and management of these patients and needs to be further worked upon.

  3. Fluconazole exposure rather than clonal spreading is correlated with the emergence of Candida glabrata with cross-resistance to triazole antifungal agents.

    Science.gov (United States)

    Chen, Tun-Chieh; Chen, Yen-Hsu; Chen, Yee-Chun; Lu, Po-Liang

    2012-06-01

    The emergence of antifungal resistance in Candida species has raised concern in recent years, especially resistance toward triazole. Several newer triazole antifungal agents have been introduced which have a broader spectrum for fungal infections, such as voriconazole. However, cross-resistance among triazoles is a major concern with regard to their clinical application. Antifungal susceptibility was performed using E-test for 166 clinical isolates (29 blood and 137 nonblood isolates) in 2003 and 2004. We applied pulsed-field gel electrophoresis for genotyping. Ninety isolates of C. albicans, 47 isolates of C. tropicalis, 27 isolates of C. glabrata, and two isolates of C. krusei were included. All isolates were susceptible to amphotericin B. Eleven (40.7%) of the 27 C. glabrata had intermediate resistance to caspofungin. Forty-seven (28.3%) of the 166 isolates were not susceptible to fluconazole, including two C. albicans, 16 C. tropicalis, 27 C. glabrata, and two C. krusei isolates. All except seven of the C. glabrata isolates were susceptible to voriconazole. All the triazole drugs had a positive correlation among their minimum inhibitory concentrations (MICs). Fluconazole MIC was a good predictor for susceptibility to voriconazole, as determined using a receiver operating characteristic curve. Furthermore, a high diversity of pulsotypes for the 27 clinical isolates of C. glabrata was observed. Previous fluconazole exposure within 3 months was associated with reduced triazole susceptibility for C. glabrata. We demonstrated a significant positive correlation of MIC values among the four tested triazole drugs. No amphotericin B and caspofungin resistant isolates were found in this study. The cross-resistance to triazole among C. glabrata isolates was associated with previous fluconazole exposure as opposed to clonal spreading. Selection pressure due to fluconazole use may play a major role in triazole cross-resistance.

  4. A case of Candida famata sepsis in a very low birth weight infant successfully treated with fluconazole following antifungal susceptibility testing

    Directory of Open Access Journals (Sweden)

    Shilpee Raturi

    2015-01-01

    This case report highlights the growing number of cases arising due to nonalbicans Candida infections in the neonatal intensive care units and the usefulness of antifungal susceptibility testing in deciding optimal antifungal therapy and preventing the emergence of drug resistance.

  5. Enhancing disease resistances of Super Hybrid Rice with four antifungal genes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A plant expression vector harboring four antifungal genes was delivered into the embryogenic calli of ‘9311’, an indica restorer line of Super Hybrid Rice, via modified biolistic particle bombardment. Southern blot analysis indicated that in the regenerated hygromycin-resistant plants, all the four anti-fungal genes, including RCH10, RAC22, β-Glu and B-RIP, were integrated into the genome of ‘9311’, co-transmitted altogether with the marker gene hpt in a Mendelian pattern. Some transgenic R1 and R2 progenies, with all transgenes displaying a normal expression level in the Northern blot analysis, showed high resistance to Magnaporthe grisea when tested in the typical blast nurseries located in Yanxi and Sanya respectively. Furthermore, transgenic F1 plants, resulting from a cross of R2 homo-zygous lines with high resistance to rice blast with the non-transgenic male sterile line Peiai 64S, showed not only high resistance to M. grisea but also enhanced resistance to rice false smut (a disease caused by Ustilaginoidea virens) and rice kernel smut (another disease caused by Tilletia barclayana).

  6. Extensively Drug-Resistant TB

    Centers for Disease Control (CDC) Podcasts

    2016-12-16

    Dr. Charlotte Kvasnovsky, a surgery resident and Ph.D. candidate in biostatistics, discusses various types of drug resistance in TB patients in South Africa.  Created: 12/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/16/2016.

  7. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    Science.gov (United States)

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles.

  8. In vitro activities of eight antifungal drugs against 106 waterborne and cutaneous exophiala species.

    Science.gov (United States)

    Najafzadeh, M J; Saradeghi Keisari, M; Vicente, V A; Feng, P; Shamsian, S A A; Rezaei-Matehkolaei, A; de Hoog, G S; Curfs-Breuker, I; Meis, J F

    2013-12-01

    The in vitro activities of eight antifungal drugs against 106 clinical and environmental isolates of waterborne and cutaneous Exophiala species were tested. The MICs and minimum effective concentrations for 90% of the strains tested (n = 106) were, in increasing order, as follows: posaconazole, 0.063 μg/ml; itraconazole, 0.25 μg/ml; micafungin, 1 μg/ml; voriconazole, 2 μg/ml; isavuconazole, 4 μg/ml; caspofungin, 8 μg/ml; amphotericin B, 16 μg/ml; fluconazole, 64 μg/ml.

  9. Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases.

    Science.gov (United States)

    Bhalaria, M K; Naik, Sachin; Misra, A N

    2009-05-01

    Aim of this work was to prepare and characterize fluconazole (FLZ) encapsulated ethosomes, incorporate it in suitable dermatological base, and asses its comparative clinical efficacy in the treatment of Candidiasis patients against liposomal gel, marketed product and hydroethanolic solution of the drug. Drug encapsulated ethosomes and liposomes were prepared and optimized by "Hot" method technique and lipid film hydration technique. Vesicular carriers were characterized for % entrapment efficiency, particle size and shape, in vitro drug diffusion study, mean % reduction in dimension of Candidiasis lesion and stability study by using suitable analytical technique. Vesicle size and drug entrapment efficiency of the optimized ethosomes and liposomes were found to be 144 +/- 6.8 nm and 82.68% and 216 +/- 9.2 nm and 68.22% respectively. Microscopic examinations suggest ethosomes to be multilamellar spherical vesicles with a smooth surface. The differential scanning calorimetry results suggest high fluidity of the ethosomes than liposomes. In vitro drug diffusion studies demonstrated that % drug diffused from ethosomes was nearly twice than liposomes and three times higher than the hydroethanolic solution across rat skin. From the clinical evaluation, the developed novel delivery system demonstrated enhanced antifungal activity compared to liposomal formulation, marketed formulation and hydroethanolic solution of the drug.

  10. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    OpenAIRE

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of d...

  11. Early State Research on Antifungal Natural Products

    Directory of Open Access Journals (Sweden)

    Melyssa Negri

    2014-03-01

    Full Text Available Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.

  12. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.

    Science.gov (United States)

    Islam, Md Mahmudul; Hameed, H M Adnan; Mugweru, Julius; Chhotaray, Chiranjibi; Wang, Changwei; Tan, Yaoju; Liu, Jianxiong; Li, Xinjie; Tan, Shouyong; Ojima, Iwao; Yew, Wing Wai; Nuermberger, Eric; Lamichhane, Gyanu; Zhang, Tianyu

    2017-01-20

    Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.

  13. Antifungal susceptibility of clinical and environmental isolates of Cryptococcus neoformans to four antifungal drugs determined by two techniques.

    Science.gov (United States)

    Moraes, E M P; Prímola, N S; Hamdan, Júnia Soares

    2003-06-01

    A total of 64 Cryptococcus neoformans strains, including clinical and environmental Brazilian isolates var. neoformans and var. gattii, were tested for susceptibility to amphotericin B, 5-flucytosine, fluconazole and itraconazole. The tests were performed according to the recommendations of National Committee of Clinical Laboratory Standards and the method of macrodilution in liquid medium of Shadomy et al. [Manual de Microbiologia Clínica, 4th ed. Buenos Aires: Editorial Medica Panamericana, 1987: 1229-38]. For most drugs there was a significant difference between the readings taken at 24 and 48 h with both methods. When the minimum inhibitory concentrations obtained by the two techniques were compared, significant differences were observed for amphotericin B and fluconazole. Overall, differences in drug susceptibility with respect to the origin of the isolates or the variety of the fungus were not observed. As an exception, the gattii variety exhibited a high resistance rate to amphotericin B when the technique of Shadomy et al. was applied, a fact possibly related to the greater difficulty for treatment of the disease caused by this fungal variety.

  14. Increased chitin biosynthesis contributes to the resistance of Penicillium polonicum against the antifungal protein PgAFP.

    Science.gov (United States)

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Asensio, Miguel A; Núñez, Félix

    2016-01-01

    Antifungal proteins from molds have been proposed as a valuable tool against unwanted molds, but the resistance of some fungi limits their use. Resistance to antimicrobial peptides has been suggested to be due to lack of interaction with the mold or to a successful response. The antifungal protein PgAFP produced by Penicillium chrysogenum inhibits the growth of various ascomycetes, but not Penicillium polonicum. To study the basis for resistance to this antifungal protein, localization of PgAFP and metabolic, structural, and morphological changes were investigated in P. polonicum. PgAFP bound the outer layer of P. polonicum but not regenerated chitin, suggesting an interaction with specific molecules. Comparative two-dimensional gel electrophoresis (2D-PAGE) and comparative quantitative proteomics revealed changes in the relative abundance of several proteins from ribosome, spliceosome, metabolic, and biosynthesis of secondary metabolite pathways. The proteome changes and an altered permeability reveal an active reaction of P. polonicum to PgAFP. The successful response of the resistant mold seems to be based on the higher abundance of protein Rho GTPase Rho1 that would lead to the increased chitin deposition via cell wall integrity (CWI) signaling pathway. Thus, combined treatment with chitinases could provide a complementary means to combat resistance to antifungal proteins.

  15. Antifungal Drug Susceptibility of Candida Species Isolated from HIV-Positive Patients Recruited at a Public Hospital in São Luís, Maranhão, Brazil

    Science.gov (United States)

    Terças, Ana L. G.; Marques, Sirlei G.; Moffa, Eduardo B.; Alves, Márcia B.; de Azevedo, Conceição M. P. S.; Siqueira, Walter L.; Monteiro, Cristina A.

    2017-01-01

    Oropharyngeal candidiasis is the most common fungal infection in hospitalized patients with acquired immune deficiency syndrome (AIDS). Its progression results in invasive infections, which are a significant cause of morbidity and mortality. This study aimed to quickly and accurately identify Candida spp. from oral mucosa of AIDS patients recruited at Presidente Vargas Hospital, in São Luís city, Brazil and to evaluate the sensitivity profile of these fungi to antifungals by using an automated system. Isolates were collected from oropharyngeal mucosa of 52 hospitalized AIDS patients, under anti-viral and antifungal therapies. Patients were included in research if they were HIV-positive, above 18 years of age and after obtaining their written consent. CHROMagar®Candida and the automated ViteK-2®system were used to isolate and identify Candida spp., respectively. Antifungal susceptibility testing was performed using the ViteK-2®system, complemented with the Etest®, using the drugs amphotericin B, fluconazole, flucytosine, and voriconazole. Oropharyngeal candidiasis had a high prevalence in these hospitalized AIDS patients (83%), and the most prevalent species was Candida albicans (56%). Antifungal susceptibility test showed that 64.7% of the Candida spp. were susceptible, 11.8% were dose-dependent sensitive, and 23.5% were resistant. All the Candida krusei and Candida famata isolates and two of Candida glabrata were resistant to fluconazole. Most of AIDS patients presented oropharyngeal candidiasis and C. albicans was the most frequently isolated species. The results showed high variability in resistance among isolated species and indicates the need to identify the Candida spp. involved in the infection and the need to test antifungal susceptibility as a guide in drug therapy in patients hospitalized with AIDS. This is the first relate about AIDS patients monitoring in a public hospital in São Luís concerning the precise identification and establishing of

  16. Adiaspiromicose pulmonar tratada sem antifúngicos Pulmonary adiaspiromycosis treated without antifungal drugs

    Directory of Open Access Journals (Sweden)

    Rodolfo Moraes Silva

    2010-02-01

    Full Text Available Relata-se caso de lavrador de 40 anos acometido por adiaspiromicose pulmonar, com diagnóstico etiológico estabelecido mediante biópsia por toracoscopia. Optou-se por tratamento com corticosteróide, sem antifúngicos, tendo o paciente respondido bem, com melhora clínico-radiológica após três semanas do início dos sintomas.The case of a 40-year-old agricultural worker affected by pulmonary adiaspiromycosis is reported. An etiological diagnosis had been established by means of a biopsy via thoracoscopy. Treatment with corticosteroids without antifungal drugs was chosen, and the patient responded well to this, with improvements in clinical and radiological conditions three weeks after the beginning of the symptoms.

  17. AN OVERVIEW OF AZOLE ANTIFUNGALS

    Directory of Open Access Journals (Sweden)

    Pratibha Shivaji Gavarkar*, Rahul Shivaji Adnaik, and Shrinivas Krishna Mohite

    2013-11-01

    Full Text Available Fungal infections in critically ill or immunosuppressed patients were increasing in incidence in the human population over the last 1-2 decades. There were few advances in antifungal therapy and, until recently, there were few choices from which to select a treatment for systemic mycoses. However, in the past decade, there have been several developments in this area. Antifungal agents are sufficiently diverse in activity, toxicity, and drug interaction potential. Azoles are synthetic and semi-synthetic compounds. They have a broad spectrum of activity. Triazole antifungals are active to treat an array of fungal pathogens, whereas imidazoles are used almost exclusively in the treatment of superficial mycoses and vaginal candidiasis. Despite the advances, serious fungal infections remain difficult to treat, and resistance to the available drugs is emerging. Use of the currently available azoles in combination with other antifungal agents with different mechanisms of action is likely to provide enhanced efficacy. The present review aims to explore the pharmacology, pharmacokinetics, spectrum of activity, safety, toxicity and potential for drug–drug interactions of the azole antifungal agents.

  18. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens

    Science.gov (United States)

    Fernandes, Kenya E.; Carter, Dee A.

    2017-01-01

    Lactoferrin is a multifunctional iron-binding glycoprotein belonging to the transferrin family. It is found abundantly in milk and is present as a major protein in human exocrine secretions where it plays a role in the innate immune response. Various antifungal functions of lactoferrin have been reported including a wide spectrum of activity across yeasts and molds and synergy with other antifungal drugs in combination therapy, and various modes of action have been proposed. Bioactive peptides derived from lactoferrin can also exhibit strong antifungal activity, with some surpassing the potency of the whole protein. This paper reviews current knowledge of the spectrum of activity, proposed mechanisms of action, and capacity for synergy of lactoferrin and its peptides, including the three most studied derivatives: lactoferricin, lactoferrampin, and Lf(1–11), as well as some lactoferrin-derived variants and modified peptides. PMID:28149293

  19. Understanding drug resistance in human intestinal protozoa.

    Science.gov (United States)

    El-Taweel, Hend Aly

    2015-05-01

    Infections with intestinal protozoa continue to be a major health problem in many areas of the world. The widespread use of a limited number of therapeutic agents for their management and control raises concerns about development of drug resistance. Generally, the use of any antimicrobial agent should be accompanied by meticulous monitoring of its efficacy and measures to minimize resistance formation. Evidence for the occurrence of drug resistance in different intestinal protozoa comes from case studies and clinical trials, sometimes with a limited number of patients. Large-scale field-based assessment of drug resistance and drug sensitivity testing of clinical isolates are needed. Furthermore, the association of drug resistance with certain geographic isolates or genotypes deserves consideration. Drug resistance has been triggered in vitro and has been linked to modification of pyruvate:ferredoxin oxidoreductase, nitroreductases, antioxidant defense, or cytoskeletal system. Further mechanistic studies will have important implications in the development of second generation therapeutic agents.

  20. In Vitro Interactions between Non-Steroidal Anti-Inflammatory Drugs and Antifungal Agents against Planktonic and Biofilm Forms of Trichosporon asahii.

    Directory of Open Access Journals (Sweden)

    Suteng Yang

    Full Text Available Increasing drug resistance has brought enormous challenges to the management of Trichosporon spp. infections. The in vitro antifungal activities of non-steroidal anti-inflammatory drugs (NSAIDs against Candida spp. and Cryptococcus spp. were recently discovered. In the present study, the in vitro interactions between three NSAIDs (aspirin, ibuprofen and diclofenac sodium and commonly used antifungal agents (fluconazole, itraconazole, voriconazole, caspofungin and amphotericin B against planktonic and biofilm cells of T. asahii were evaluated using the checkerboard microdilution method. The spectrophotometric method and the XTT reduction assay were used to generate data on biofilm cells. The fractional inhibitory concentration index (FICI and the ΔE model were compared to interpret drug interactions. Using the FICI, the highest percentages of synergistic effects against planktonic cells (86.67% and biofilm cells (73.33% were found for amphotericin B/ibuprofen, and caspofungin/ibuprofen showed appreciable percentages (73.33% for planktonic form and 60.00% for biofilm as well. We did not observe antagonism. The ΔE model gave consistent results with FICI (86.67%. Our findings suggest that amphotericin B/ibuprofen and caspofungin/ibuprofen combinations have potential effects against T. asahii. Further in vivo and animal studies to investigate associated mechanisms need to be conducted.

  1. A Quantitative Model to Estimate Drug Resistance in Pathogens

    Directory of Open Access Journals (Sweden)

    Frazier N. Baker

    2016-12-01

    Full Text Available Pneumocystis pneumonia (PCP is an opportunistic infection that occurs in humans and other mammals with debilitated immune systems. These infections are caused by fungi in the genus Pneumocystis, which are not susceptible to standard antifungal agents. Despite decades of research and drug development, the primary treatment and prophylaxis for PCP remains a combination of trimethoprim (TMP and sulfamethoxazole (SMX that targets two enzymes in folic acid biosynthesis, dihydrofolate reductase (DHFR and dihydropteroate synthase (DHPS, respectively. There is growing evidence of emerging resistance by Pneumocystis jirovecii (the species that infects humans to TMP-SMX associated with mutations in the targeted enzymes. In the present study, we report the development of an accurate quantitative model to predict changes in the binding affinity of inhibitors (Ki, IC50 to the mutated proteins. The model is based on evolutionary information and amino acid covariance analysis. Predicted changes in binding affinity upon mutations highly correlate with the experimentally measured data. While trained on Pneumocystis jirovecii DHFR/TMP data, the model shows similar or better performance when evaluated on the resistance data for a different inhibitor of PjDFHR, another drug/target pair (PjDHPS/SMX and another organism (Staphylococcus aureus DHFR/TMP. Therefore, we anticipate that the developed prediction model will be useful in the evaluation of possible resistance of the newly sequenced variants of the pathogen and can be extended to other drug targets and organisms.

  2. Antifungal drug discovery and development--fourth international summit. 10-11 March 1999, Princeton, New Jersey, USA.

    Science.gov (United States)

    Ryder, N

    1999-05-01

    Genetic and genomic approaches to discovery, selection and evaluation of antifungal targets were extensively discussed by several speakers at this meeting. Experimental targets with early lead compounds available from screening programs include translation (Ribogene Inc), transcription (SCRIPTGEN Pharmaceuticals Inc), and protein geranylgeranylation (Mitotix Inc). Classes of compounds which are more advanced in preclinical evaluation include the sordarins, inhibitors of fungal elongation factor 2 under development by Glaxo Wellcome plc and Merck and Co Inc, and a series of fungicidal peptides originally derived from a domain of the human neutrophil bactericidal permeability-increasing protein (BPI, Xoma Ltd). Preclinical and early clinical data were presented for two compounds: caspofungin (MK-0991, Merck and Co Inc), an echinocandin with a broad-spectrum of activity for parenteral application, and Sch-56592 (Schering-Plough Corp), an orally active triazole. The oral antimycotic, terbinafine (Novartis AG), primarily used in dermatological infections, shows potent synergy with azoles and has potential applications against several serious and drug-resistant fungal pathogens. Amphotericin B, which has long been the gold standard for therapy of life-threatening infections, is now available in several liposomal formulations, including AmBisome (Fujisawa Pharmaceutical Co Ltd) and Abelcet (The Liposome Company Inc) which show a reduced incidence of adverse events.

  3. Lemon grass (Cymbopogon citratus essential oil as a potent anti-inflammatory and antifungal drugs

    Directory of Open Access Journals (Sweden)

    Mohamed Nadjib Boukhatem

    2014-09-01

    Full Text Available Background: Volatile oils obtained from lemon grass [Cymbopogon citratus (DC. Stapf, Poaceae family] are used in traditional medicine as remedies for the treatment of various diseases. Aims: In the present study, lemon grass essential oil (LGEO was evaluated for its in vivo topical and oral anti-inflammatory effects, and for its in vitro antifungal activity using both liquid and vapor phases. Methods: The chemical profile of LGEO as determined by gas chromatography–mass spectrometry analysis revealed two major components: geranial (42.2%, and neral (31.5%. The antifungal activity of LGEO was evaluated against several pathogenic yeasts and filamentous fungi using disc diffusion and vapor diffusion methods. Results: LGEO exhibited promising antifungal effect against Candida albicans, C. tropicalis, and Aspergillus niger, with different inhibition zone diameters (IZDs (35–90 mm. IZD increased with increasing oil volume. Significantly, higher anti-Candida activity was observed in the vapor phase. For the evaluation of the anti-inflammatory effect, LGEO (10 mg/kg, administered orally significantly reduced carrageenan-induced paw edema with a similar effect to that observed for oral diclofenac (50 mg/kg, which was used as the positive control. Oral administration of LGEO showed dose-dependent anti-inflammatory activity. In addition, topical application of LGEO in vivo resulted in a potent anti-inflammatory effect, as demonstrated by using the mouse model of croton oil-induced ear edema. To our knowledge, this is the first such report to be published. The topical application of LGEO at doses of 5 and 10 µL/ear significantly reduced acute ear edema induced by croton oil in 62.5 and 75% of the mice, respectively. In addition, histological analysis clearly confirmed that LGEO inhibits the skin inflammatory response in animal models. Conclusion: Results of the present study indicate that LGEO has a noteworthy potential for the development of drugs for

  4. Triazole derivatives with improved in vitro antifungal activity over azole drugs

    Directory of Open Access Journals (Sweden)

    Yu S

    2014-04-01

    Full Text Available Shichong Yu,1,* Xiaoyun Chai,1,* Yanwei Wang,1 Yongbing Cao,2 Jun Zhang,3 Qiuye Wu,1 Dazhi Zhang,1 Yuanying Jiang,2 Tianhua Yan,4 Qingyan Sun11Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; 2Drug Research Center, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; 3Overseas Education Faculty of the Second Military Medical University, Shanghai, People's Republic of China; 4Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China*These authors contributed equally to this workAbstract: A series of triazole antifungal agents with piperidine side chains was designed and synthesized. The results of antifungal tests against eight human pathogenic fungi in vitro showed that all the compounds exhibited moderate-to-excellent activities. Molecular docking between 8d and the active site of Candida albicans CYP51 was provided based on the computational docking results. The triazole interacts with the iron of the heme group. The difluorophenyl group is located in the S3 subsite and its fluorine atom (2-F can form H-bonds with Gly307. The side chain is oriented into the S4 subsite and formed hydrophobic and van der Waals interactions with the amino residues. Moreover, the phenyl group in the side chain interacts with the phenol group of Phe380 through the formation of π–π face-to-edge interactions.Keywords: synthesis, CYP51, molecular docking, azole agents

  5. New Drugs and Drug Resistance in Malaria: Molecular Genetic Analysis.

    Science.gov (United States)

    1996-06-26

    heterologous expressions system in yeast for potential drug target enzymes. The yeast expression system should allow rapid screening of new drugs , greatly...medication yet the world faces a crisis-drug resistance is emerging and spreading faster than drugs are being developed and the flow in the pipeline of new ... drugs has all but stopped. This represents a particular threat to the US Military. In a short time there may be parts of the world where no effective

  6. Total Protein Profile and Drug Resistance in Candida albicans Isolated from Clinical Samples

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2016-01-01

    Full Text Available This study was done to assess the antifungal susceptibility of clinical isolates of Candida albicans and to evaluate its total protein profile based on morphological difference on drug resistance. Hundred and twenty clinical isolates of C. albicans from various clinical specimens were tested for susceptibility against four antifungal agents, namely, fluconazole, itraconazole, amphotericin B, and ketoconazole. A significant increase of drug resistance in clinical isolates of C. albicans was observed. The study showed 50% fluconazole and itraconazole resistance at 32 μg mL−1 with a MIC50 and MIC90 values at 34 and 47 and 36 and 49 μg mL−1, respectively. All isolates were sensitive to amphotericin B and ketoconazole. The SDS-PAGE protein profile showed a prevalent band of ~52.5 kDa, indicating overexpression of gene in 72% strains with fluconazole resistance. Since the opportunistic infections of Candida spp. are increasing along with drug resistance, the total protein profile will help in understanding the evolutionary changes in drug resistance and also to characterize them.

  7. Antifungal drug susceptibility and phylogenetic diversity among Cryptococcus isolates from dogs and cats in North America.

    Science.gov (United States)

    Singer, Lisa M; Meyer, Wieland; Firacative, Carolina; Thompson, George R; Samitz, Eileen; Sykes, Jane E

    2014-06-01

    Molecular types of the Cryptococcus neoformans/Cryptococcus gattii species complex that infect dogs and cats differ regionally and with host species. Antifungal drug susceptibility can vary with molecular type, but the susceptibility of Cryptococcus isolates from dogs and cats is largely unknown. Cryptococcus isolates from 15 dogs and 27 cats were typed using URA5 restriction fragment length polymorphism analysis (RFLP), PCR fingerprinting, and multilocus sequence typing (MLST). Susceptibility was determined using a microdilution assay (Sensititre YeastOne; Trek Diagnostic Systems). MICs were compared among groups. The 42 isolates studied comprised molecular types VGI (7%), VGIIa (7%), VGIIb (5%), VGIIc (5%), VGIII (38%), VGIV (2%), VNI (33%), and VNII (2%), as determined by URA5 RFLP. The VGIV isolate was more closely related to VGIII according to MLST. All VGIII isolates were from cats. All sequence types identified from veterinary isolates clustered with isolates from humans. VGIII isolates showed considerable genetic diversity compared with other Cryptococcus molecular types and could be divided into two major subgroups. Compared with C. neoformans MICs, C. gattii MICs were lower for flucytosine, and VGIII MICs were lower for flucytosine and itraconazole. For all drugs except itraconazole, C. gattii isolates exhibited a wider range of MICs than C. neoformans. MICs varied with Cryptococcus species and molecular type in dogs and cats, and MICs of VGIII isolates were most variable and may reflect phylogenetic diversity in this group. Because sequence types of dogs and cats reflect those infecting humans, these observations may also have implications for treatment of human cryptococcosis.

  8. High Virulence and Antifungal Resistance in Clinical Strains of Candida albicans

    Science.gov (United States)

    Monroy-Pérez, Eric; Paniagua-Contreras, Gloria Luz; Rodríguez-Purata, Pamela; Vaca-Paniagua, Felipe; Vázquez-Villaseñor, Marco; Díaz-Velásquez, Clara; Uribe-García, Alina

    2016-01-01

    Antifungal resistance and virulence properties of Candida albicans are a growing health problem worldwide. To study the expression of virulence and azole resistance genes in 39 clinical strains of C. albicans, we used a model of infection of human vaginal epithelial cells with C. albicans strains isolated from Mexican women with vulvovaginal candidiasis (VVC). The strains were identified by PCR amplification of the ITS1 and ITS2 regions of rRNA. The detection and expression of virulence genes and azole resistance genes MDR1 and CDR1 were performed using PCR and RT-PCR, respectively. All strains were sensitive to nystatin and 38 (97.4%) and 37 (94.9%) were resistant to ketoconazole and fluconazole, respectively. ALS1, SAP4–SAP6, LIP1, LIP2, LIP4, LIP6, LIP7, LIP9, LIP10, and PLB1-PLB2 were present in all strains; SAP1 was identified in 37 (94.8%) isolates, HWP1 in 35 (89.7%), ALS3 in 14 (35.8%), and CDR1 in 26 (66.6%). In nearly all of the strains, ALS1, HWP1, SAP4–SAP6, LIP1–LIP10, PLB1, and PLB2 were expressed, whereas CDR1 was expressed in 20 (51.3%) and ALS3 in 14 (35.8%). In our in vitro model of infection with C. albicans, the clinical strains showed different expression profiles of virulence genes in association with the azole resistance gene CDR1. The results indicate that the strains that infect Mexican patients suffering from VVC are highly virulent and virtually all are insensitive to azoles. PMID:28058052

  9. High Virulence and Antifungal Resistance in Clinical Strains of Candida albicans

    Directory of Open Access Journals (Sweden)

    Eric Monroy-Pérez

    2016-01-01

    Full Text Available Antifungal resistance and virulence properties of Candida albicans are a growing health problem worldwide. To study the expression of virulence and azole resistance genes in 39 clinical strains of C. albicans, we used a model of infection of human vaginal epithelial cells with C. albicans strains isolated from Mexican women with vulvovaginal candidiasis (VVC. The strains were identified by PCR amplification of the ITS1 and ITS2 regions of rRNA. The detection and expression of virulence genes and azole resistance genes MDR1 and CDR1 were performed using PCR and RT-PCR, respectively. All strains were sensitive to nystatin and 38 (97.4% and 37 (94.9% were resistant to ketoconazole and fluconazole, respectively. ALS1, SAP4–SAP6, LIP1, LIP2, LIP4, LIP6, LIP7, LIP9, LIP10, and PLB1-PLB2 were present in all strains; SAP1 was identified in 37 (94.8% isolates, HWP1 in 35 (89.7%, ALS3 in 14 (35.8%, and CDR1 in 26 (66.6%. In nearly all of the strains, ALS1, HWP1, SAP4–SAP6, LIP1–LIP10, PLB1, and PLB2 were expressed, whereas CDR1 was expressed in 20 (51.3% and ALS3 in 14 (35.8%. In our in vitro model of infection with C. albicans, the clinical strains showed different expression profiles of virulence genes in association with the azole resistance gene CDR1. The results indicate that the strains that infect Mexican patients suffering from VVC are highly virulent and virtually all are insensitive to azoles.

  10. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    Science.gov (United States)

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis.

  11. Mechanisms of Anticancer Drugs Resistance: An Overview

    Directory of Open Access Journals (Sweden)

    M. R. Chorawala

    2012-01-01

    Full Text Available The management of cancer involves surgery, radiotherapy and chemotherapy. Development of chemoresistance is a persistent problem during the chemotherapy treatment. Cytotoxic drugs that selectively, but not exclusively, target actively proliferating cells include such diverse groups as DNA-alkylating agents, anti-metabolites, intercalating agents and mitotic inhibitors. Resistance constitutes a lack of response to drug-induced tumour growth inhibition; it may be inherent in a subpopulation of heterogeneous cancer cells or be acquired as a cellular response to drug exposure. Principle mechanisms may include altered membrane transport involving the p-glycoprotein product of the multidrug resistance (MDR gene as well as other associated proteins, altered target enzyme, decreased drug activation, increased drug degradation due to altered expression of drug metabolising enzymes, drug inactivation due to conjugation with increased glutathione, subcellular redistribution, drug interaction, enhanced DNA repair and failure to apoptosis as a result of mutated cell cycle proteins such as p53. Attempts to overcome resistance involves the use of combination drug therapy using different classes of drugs with minimally overlapping toxicities to allow maximal dosages, necessary for bone marrow recovery. Adjuvant therapy with p-glycoprotein inhibitors and in specific instances, the use of growth factor and protein kinase C inhibitors are newer experimental approaches that may also prove effective in delaying onset of resistance. Gene knockout using antisense molecules may be effective way of blocking drug resistance.

  12. Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl

    Energy Technology Data Exchange (ETDEWEB)

    Obot, I.B. [Department of Chemistry, Faculty of Science, University of Uyo, Uyo (Nigeria)], E-mail: proffoime@yahoo.com; Obi-Egbedi, N.O. [Department of Chemistry, University of Ibadan, Ibadan (Nigeria); Umoren, S.A. [Department of Chemistry, Faculty of Science, University of Uyo, Uyo (Nigeria)

    2009-08-15

    The inhibitive capabilities of Clotrimazole (CTM) and Fluconazole (FLC), two antifungal drugs, on the electrochemical corrosion of aluminium in 0.1 M HCl solution has been studied using weight loss measurements at 30 and 50 deg. C. The results indicate that both compound act as inhibitors in the acidic corrodent. At constant acid concentration, the inhibition efficiency (%I) increased with increase in the concentration of the inhibitors. Increase in temperature increased the corrosion rate in the absence and presence of the inhibitors but decreased the inhibition efficiency. CTM and FLC adsorbed on the surface of aluminium according to the Langmuir adsorption isotherm model at all the concentrations and temperatures studied. Phenomenon of physical adsorption is proposed from the activation parameter obtained. Thermodynamic parameters reveal that the adsorption process is spontaneous. The reactivity of these compounds was analyzed through theoretical calculations based on AM1 semi-empirical method to explain the different efficiencies of these compounds as corrosion inhibitors. CTM was found to be a better inhibitor than FLC.

  13. Impurities contained in antifungal drug ketoconazole are potent activators of human aryl hydrocarbon receptor.

    Science.gov (United States)

    Grycová, Aneta; Dořičáková, Aneta; Dvořák, Zdeněk

    2015-12-03

    Antifungal drug ketoconazole is a mixture of (+)/(-) cis-enantiomers, which also contains several impurities. Ketoconazole was identified as an activator of aryl hydrocarbon receptor AhR by three independent research teams. In the current paper we demonstrate that impurities contained in ketoconazole preparations are strong activators of human AhR and inducers of CYP1A1. Impurity IMP-C had similar potency (EC50), but 10-15 times higher efficacy (magnitude of induction) towards AhR, comparing to (+)-ketoconazole, as revealed by gene reporter assay in AZ-AHR stably transfected cells. Impurities IMP-B and IMP-C, and in lesser extent IMP-E, induced a formation of AhR-DNA complex, as demonstrated by electromobility shift assay EMSA. Impurities IMP-C and IMP-E dose-dependently induced CYP1A1 mRNA after 24 h, and their effects were comparable to those by (+)-ketoconazole. The level of CYP1A1 protein in HepG2 cells was strongly increased by IMP-C after 48h. In conclusion, our data further elucidated molecular effects of ketoconazole towards AhR signaling pathway, with possible implications in ketoconazole role in skin chemoprevention and/or damage, involving AhR.

  14. Plasmodium falciparum drug resistance in Angola.

    Science.gov (United States)

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-02-09

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.

  15. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    Science.gov (United States)

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  16. Multidrug resistant to extensively drug resistant tuberculosis: What is next?

    Indian Academy of Sciences (India)

    Amita Jain; Pratima Dixit

    2008-11-01

    Drug resistant tuberculosis is a man made problem. While tuberculosis is hundred percent curable, multidrug resistant tuberculosis (MDR-TB) is difficult to treat. Inadequate and incomplete treatment and poor treatment adherence has led to a newer form of drug resistance known as extensively drug resistant tuberculosis (XDR-TB). XDR-TB is defined as tuberculosis caused by Mycobacterium tuberculosis strain, which is resistant to at least rifampicin and isoniazid among the first line anti tubercular drugs (MDR-TB) in addition to resistance to any fluroquinolones and at least one of three injectable second line anti tubercular drugs i.e. amikacin, kanamycin and/or capreomycin. Mismanagement of tuberculosis paves the way to drug resistant tuberculosis. Emergence of XDR-TB is reported world wide. Reported prevalence rates of XDR-TB of total MDR cases are; 6.6% overall worldwide, 6.5% in industrialized countries, 13.6% in Russia and Eastern Europe, 1.5% in Asia, 0.6% in Africa and Middle East and 15.4% in Republic of Korea. Better management and control of tuberculosis specially drug resistant TB by experienced and qualified doctors, access to standard microbiology laboratory, co-morbitidy of HIV and tuberculosis, new anti-TB drug regimens, better diagnostic tests, international standards for second line drugs (SLD)-susceptibility testing, invention of newer anti-tubercular molecules and vaccines and knowing the real magnitude of XDR-TB are some of the important issues to be addressed for effective prevention and management of XDR-TB.

  17. Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi

    OpenAIRE

    Shahi, Puja; Moye-Rowley, W. Scott

    2008-01-01

    Pathogenic fungi present a special problem in the clinic as the range of drugs that can be used to treat these types of infections is limited. This situation is further complicated by the presence of robust inducible gene networks encoding different proteins that confer tolerance to many available antifungal drugs. The transcriptional control of these multidrug resistance systems in several key fungi will be discussed. Experiments in the non-pathogenic Saccharomyces cerevisiae have provided m...

  18. Mechanisms of drug resistance: daptomycin resistance.

    Science.gov (United States)

    Tran, Truc T; Munita, Jose M; Arias, Cesar A

    2015-09-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP resistance (DAP-R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP-R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria.

  19. 武汉地区三年来抗真菌药物应用分析%Utilization Analysis of Antifungal Drugs in 3 Consecutive Years in Wuhan

    Institute of Scientific and Technical Information of China (English)

    汪震; 刘东; 杜光

    2011-01-01

    目的:了解抗真菌类药物的临床使用情况及应用趋势.方法:对长江流域药品监测网提供的武汉地区抗真菌类药物的有关数据进行汇总,分析其药品销售金额、用药频度及排序情况.结果:抗真菌类药物的销售金额逐年增长,但以进口药品注射剂的增长为主;其中氟康唑注射液的销售金额最高,而环肽类抗真菌药物的销售金额增长最快.结论:需加强国产抗真菌类药品的研发工作,以提供更有效经济的临床选择;同时,应加强抗真菌药物的利用评价工作,进一步促进药品合理使用.%Objective: To investigate the application trend of antifungal drugs in clinics. Method; The data of antifungal drugs in Wuhan provided by Hospital Purchase of Drug Information System were collected. Then the consumption sum, frequency and order of drug use were analyzed. Result; The expenditure of antifungal drugs increased year by year and the imported injections increased more quickly than the others. The expenditure of fluconazole injections was the highest among' all the antifungal drugs. The consumption sum of echinocandins increased most quickly in antifungal drugs. Conclusion: The research on the domestic antifungal drugs should be strengthened to provide more effective and economical products. And the utilization analysis of antifungal drugs should be emphasized to promote the rational use of the medicines.

  20. Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae.

    Science.gov (United States)

    Zhang, Jing; Silao, Fitz Gerald S; Bigol, Ursela G; Bungay, Alice Alma C; Nicolas, Marilou G; Heitman, Joseph; Chen, Ying-Lien

    2012-01-01

    Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of C. lusitaniae including pseudohyphal growth, serum survival, and growth at 37°C. We found that calcineurin and Crz1, a C. albicans Crz1 homolog acting as a downstream target of calcineurin, are required for C. lusitaniae pseudohyphal growth, a process for which the underlying mechanism remains largely unknown in C. lusitaniae but hyphal growth is fundamental to C. albicans virulence. We demonstrate that calcineurin is required for cell wall integrity, ER stress response, optimal growth in serum, virulence in a murine systemic infection model, and antifungal drug tolerance in C. lusitaniae. To further examine the potential of targeting the calcineurin signaling cascade for antifungal drug development, we examined the activity of a calcineurin inhibitor FK506 in combination with caspofungin against echinocandin resistant C. lusitaniae clinical isolates. Broth microdilution and drug disk diffusion assays demonstrate that FK506 has synergistic fungicidal activity with caspofungin against echinocandin resistant isolates. Our findings reveal that pseudohyphal growth is controlled by the calcineurin signaling cascade, and highlight the potential use of calcineurin inhibitors and caspofungin for emerging drug-resistant C. lusitaniae infections.

  1. Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of C. lusitaniae including pseudohyphal growth, serum survival, and growth at 37°C. We found that calcineurin and Crz1, a C. albicans Crz1 homolog acting as a downstream target of calcineurin, are required for C. lusitaniae pseudohyphal growth, a process for which the underlying mechanism remains largely unknown in C. lusitaniae but hyphal growth is fundamental to C. albicans virulence. We demonstrate that calcineurin is required for cell wall integrity, ER stress response, optimal growth in serum, virulence in a murine systemic infection model, and antifungal drug tolerance in C. lusitaniae. To further examine the potential of targeting the calcineurin signaling cascade for antifungal drug development, we examined the activity of a calcineurin inhibitor FK506 in combination with caspofungin against echinocandin resistant C. lusitaniae clinical isolates. Broth microdilution and drug disk diffusion assays demonstrate that FK506 has synergistic fungicidal activity with caspofungin against echinocandin resistant isolates. Our findings reveal that pseudohyphal growth is controlled by the calcineurin signaling cascade, and highlight the potential use of calcineurin inhibitors and caspofungin for emerging drug-resistant C. lusitaniae infections.

  2. Emerging pathogens: Dynamics, mutation and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, A.S.; Goldstein, B.; Korber, B.T. [and others

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  3. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis.

    Science.gov (United States)

    Berkow, Elizabeth L; Manigaba, Kayihura; Parker, Josie E; Barker, Katherine S; Kelly, Stephen L; Rogers, P David

    2015-10-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis.

  4. A database of antimalarial drug resistance

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2006-06-01

    Full Text Available Abstract A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria.

  5. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2007-03-01

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.  Created: 3/1/2007 by Emerging Infectious Diseases.   Date Released: 3/26/2007.

  6. Plasmodium falciparum drug resistance in Angola

    OpenAIRE

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-01-01

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information ...

  7. Correlation between in vitro and in vivo antifungal activities in experimental fluconazole-resistant oropharyngeal and esophageal candidiasis.

    Science.gov (United States)

    Walsh, T J; Gonzalez, C E; Piscitelli, S; Bacher, J D; Peter, J; Torres, R; Shetti, D; Katsov, V; Kligys, K; Lyman, C A

    2000-06-01

    Oropharyngeal and esophageal candidiasis (OPEC) is a frequent opportunistic mycosis in immunocompromised patients. Azole-resistant OPEC is a refractory form of this infection occurring particularly in human immunodeficiency virus (HIV)-infected patients. The procedures developed by the Antifungal Subcommittee of the National Committee for Clinical Laboratory Standards (NCCLS) are an important advance in standardization of in vitro antifungal susceptibility methodology. In order to further understand the relationship between NCCLS methodology and antifungal therapeutic response, we studied the potential correlation between in vitro susceptibility to fluconazole and in vivo response in a rabbit model of fluconazole-resistant OPEC. MICs of fluconazole were determined by NCCLS methods. Three fluconazole-susceptible (FS) (MIC, /=64 microgram/ml) isolates of Candida albicans from prospectively monitored HIV-infected children with OPEC were studied. FR isolates were recovered from children with severe OPEC refractory to fluconazole, and FS isolates were recovered from those with mucosal candidiasis responsive to fluconazole. Fluconazole at 2 mg/kg of body weight/day was administered to infected animals for 7 days. The concentrations of fluconazole in plasma were maintained above the MICs for FS isolates throughout the dosing interval. Fluconazole concentrations in the esophagus were greater than or equal to those in plasma. Rabbits infected with FS isolates and treated with fluconazole had significant reductions in oral mucosal quantitative cultures (P OPEC due to C. albicans.

  8. Cunninghamella bertholletiae exhibits increased resistance to human neutrophils with or without antifungal agents as compared to Rhizopus spp.

    Science.gov (United States)

    Simitsopoulou, Maria; Georgiadou, Elpiniki; Walsh, Thomas J; Roilides, Emmanuel

    2010-08-01

    Among Zygomycetes, Cunninghamella bertholletiae occurs less frequently as the etiologic agent of human disease but causes more aggressive, refractory, and fatal infections despite antifungal therapy. Little is known about the differential innate host response against Cunninghamella and other Zygomycetes in the presence of antifungal agents. We therefore studied the activity of human neutrophils (PMNs) alone or in combination with caspofungin, posaconazole (PSC), and voriconazole (VRC) against hyphae of Rhizopus oryzae, Rhizopus microsporus and C. bertholletiae. Hyphal damage was measured by XTT metabolic assay and release of IL-6, IL-8 and TNF-alpha from PMNs by ELISA. Cunninghamella bertholletiae was more resistant to PMN-induced hyphal damage than either Rhizopus spp. at effector:target (E:T) ratios of 1:1, 5:1 and 10:1 (P Rhizopus spp. (P < 0.01). No IL-6 was released from PMNs exposed to the three Zygomycetes. In comparison to R. oryzae and R. microsporus, C. bertholletiae is more resistant to PMN-induced hyphal damage with or without antifungal therapy and is more capable of suppressing release of IL-8.

  9. Drug resistance in Schistosomiasis: a review

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    1987-01-01

    Full Text Available Drug resistance associated with the treatment of human schistosomiasis appears to be an emerging problem requiring more attention from the scientific community than the subject currently receives. Drug-resistant strains of Schistosoma mansoni have been isolated by various investigators as a result of laboratory experimentation or from a combination of field and laboratory studies. Review of this data appears to indicate that the lack of susceptibility observed for some of the isolated strains cannot be ascribed solely to previous administration of antischistosome drugs and thus further studies are required to elucidate this phenomena. Strains of S. mansoni have now been identified from Brazil which are resistant to oxamniquine, hycanthone and niridazole; from Puerto Rico which are resistant to hycanthone and oxamniquine; and from Kenya which are resistant to niridazole and probably oxamniquine. Strains derived by in vitro selection and resistant to oxamniquine and possibly to oltipraz are also available. All of these strains are currently maintained in the laboratory in snails and mice, thus providing for the first time an opportunity for indepth comparative studies. Preliminary data indicates that S. haematobium strains resistant to metrifonate may be occurring in Kenya. This problem could poise great difficulty in the eventual development of antischistosomal agents. Biomphalaria glabrata from Puerto Rico and Brazil were found to be susceptible to drug-resistant S. mansoni from each country.

  10. Malaria Epidemic and Drug Resistance, Djibouti

    OpenAIRE

    Rogier, Christophe; Pradines, Bruno; Bogreau, H.; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-01-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  11. Multiple drug resistance and bacterial infection

    Institute of Scientific and Technical Information of China (English)

    Asad U Khan

    2008-01-01

    Drug resistance is becoming a great problem in developing countries due to excessive use and misuse of antibi-otics.The emergence of new pathogenic strains with resistance developed against most of the antibiotics which may cause,difficult to treat infection.To understand the current scenario in different mode of infection is most important for the clinicians and medical practitioners.This article summarized some common infections and an-tibiotic resistance pattern found among these pathogens.

  12. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design

    OpenAIRE

    Mabanglo, Mark F.; Hast, Michael A.; Lubock, Nathan B; Hellinga, Homme W.; Beese, Lorena S.

    2014-01-01

    Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide ...

  13. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    Science.gov (United States)

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases.

  14. Transporter protein and drug resistance of Trypanosoma.

    Science.gov (United States)

    Medina, Noraine P; Mingala, Claro N

    2016-01-01

    Trypanosoma infection is one of the most important infections in livestock and humans. One of the main problems of its therapeutic control and treatment is the resurgence of drug resistance. One of the most studied causes of such resistance is the function of its adenosine transporter gene. A trypanosomal gene TbAT1 from Trypanosoma brucei has been cloned in yeast to demonstrate its function in the transport of adenosine and trypanocidal agents. Drug resistant trypanosomes showed a defective TbAT1 variant; furthermore, deletion of the gene and set point mutations in the transporter gene has been demonstrated from isolates from relapse patients. The molecular understanding of the mechanism of action trypanocidal agents and function of transporter gene can lead to control of drug resistance of Trypanosomes.

  15. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  16. Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals.

    Science.gov (United States)

    de Aguiar Cordeiro, Rossana; Serpa, Rosana; Flávia Uchoa Alexandre, Camila; de Farias Marques, Francisca Jakelyne; Vladia Silva de Melo, Charlline; da Silva Franco, Jônatas; José de Jesus Evangelista, Antonio; Pires de Camargo, Zoilo; Samia Nogueira Brilhante, Raimunda; Fabio Gadelha Rocha, Marcos; Luciano Bezerra Moreira, José; de Jesus Pinheiro Gomes Bandeira, Tereza; Júlio Costa Sidrim, José

    2015-11-01

    The aim of this study was to determine experimental conditions for in vitro biofilm formation of clinical isolates of Trichosporon inkin, an important opportunistic pathogen in immunocompromised patients. Biofilms were formed in microtitre plates in three different media (RPMI, Sabouraud and CLED), with inocula of 104, 105 or 106 cells ml- 1, at pH 5.5 and 7.0, and at 35 and 28 °C, under static and shaking conditions for 72 h. Growth kinetics of biofilms were evaluated at 6, 24, 48 and 72 h. Biofilm milieu analysis were assessed by counting viable cells and quantification of nucleic acids released into biofilm supernatants. Biofilms were also analysed for proteolytic activity and antifungal resistance against amphotericin B, caspofungin, fluconazole, itraconazole and voriconazole. Finally, ultrastructural characterization of biofilms formed in microtitre plates and catheter disks was performed by scanning electron microscopy. Greater biofilm formation was observed with a starter inoculum of 106 cells ml- 1, at pH 7.0 at 35 °C and 80 r.p.m., in both RPMI and Sabouraud media. Growth kinetics showed an increase in both viable cells and biomass with increasing incubation time, with maximum production at 48 h. Biofilms were able to disperse viable cells and nucleic acids into the supernatant throughout the developmental cycle. T. inkin biofilms produced more protease than planktonic cells and showed high tolerance to amphotericin B, caspofungin and azole derivatives. Mature biofilms were formed by different morphotypes, such as blastoconidia, arthroconidia and hyphae, in a strain-specific manner. The present article details the multicellular lifestyle of T. inkin and provides perspectives for further research.

  17. Antifungal Resistance and Virulence Among Candida spp. from Captive Amazonian manatees and West Indian Manatees: Potential Impacts on Animal and Environmental Health.

    Science.gov (United States)

    Sidrim, José Júlio Costa; Carvalho, Vitor Luz; de Souza Collares Maia Castelo-Branco, Débora; Brilhante, Raimunda Sâmia Nogueira; de Melo Guedes, Gláucia Morgana; Barbosa, Giovanna Riello; Lazzarini, Stella Maris; Oliveira, Daniella Carvalho Ribeiro; de Meirelles, Ana Carolina Oliveira; Attademo, Fernanda Löffler Niemeyer; da Bôaviagem Freire, Augusto Carlos; de Aquino Pereira-Neto, Waldemiro; de Aguiar Cordeiro, Rossana; Moreira, José Luciano Bezerra; Rocha, Marcos Fábio Gadelha

    2016-06-01

    This work aimed at evaluating the antifungal susceptibility and production of virulence factors by Candida spp. isolated from sirenians in Brazil. The isolates (n = 105) were recovered from the natural cavities of Amazonian and West Indian manatees and were tested for the susceptibility to amphotericin B, itraconazole, and fluconazole and for the production of phospholipases, proteases, and biofilm. The minimum inhibitory concentrations (MICs) for amphotericin B ranged from 0.03 to 1 µg/mL, and no resistant isolates were detected. Itraconazole and fluconazole MICs ranged from 0.03 to 16 µg/mL and from 0.125 to 64 µg/mL, respectively, and 35.2% (37/105) of the isolates were resistant to at least one of these azole drugs. Concerning the production of virulence factors, phospholipase activity was observed in 67.6% (71/105) of the isolates, while protease activity and biofilm production were detected in 50.5% (53/105) and 32.4% (34/105) of the isolates, respectively. Since the natural cavities of manatees are colonized by resistant and virulent strains of Candida spp., these animals can act as sources of resistance and virulence genes for the environment, conspecifics and other animal species, demonstrating the potential environmental impacts associated with their release back into their natural habitat.

  18. What is Multidrug and Extensively Drug Resistant TB?

    Science.gov (United States)

    ... and Extensively Drug Resistant TB? Multidrug-resistant tuberculosis ( MDR TB ) is a very dangerous form of tuberculosis. Some ... TB medicine so that you will not develop MDR TB. Extensively drug-resistant TB ( XDR TB ) is an ...

  19. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Ravikumar Bapurao Shinde

    2013-08-01

    Full Text Available Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C. albicans. Activity of various concentrations of chloroquine in combination with a particular antifungal drug was analyzed in a checkerboard format. Growth of biofilm in presence of drugs was analyzed by XTT-assay, in terms of relative metabolic activity compared to that of drug free control. Results obtained by XTT-metabolic assay were confirmed by scanning electron microscopy. The interactions between chloroquine and four antifungal drugs were determined by calculating fractional inhibitory concentration indices. Azole resistance in biofilms was reverted significantly (p < 0.05 in presence of 250 µg/mL of chloroquine, which resulted in inhibition of biofilms at very low concentrations of antifungal drugs. No significant alteration in the sensitivity of biofilms to caspofungin and amphotericin B was evident in combination with chloroquine. This study for the first time indicates that chloroquine potentiates anti-biofilm activity of fluconazole and voriconazole.

  20. Communicating trends in resistance using a drug resistance index.

    Science.gov (United States)

    Laxminarayan, Ramanan; Klugman, Keith P

    2011-01-01

    Background Antibiotic resistance is a growing problem worldwide, but communicating this challenge to policymakers and non-experts is complicated by the multiplicity of bacterial pathogens and the distinct classes of antibiotics used to treat them. It is difficult, even for experts aware of the pharmacodynamics of antibiotics, to infer the seriousness of resistance without information on how commonly the antibiotic is being used and whether alternative antibiotics are available. Difficulty in aggregating resistance to multiple drugs to assess trends poses a further challenge to quantifying and communicating changes in resistance over time and across locations. Methods We developed a method for aggregating bacterial resistance to multiple antibiotics, creating an index comparable to the composite economic indices that measure consumer prices and stock market values. The resulting drug resistance index (DRI) and various subindices show antibiotic resistance and consumption trends in the USA but can be applied at any geographical level. Findings The DRI based on use patterns in 1999 for Escherichia coli rose from 0.25 (95% CI 0.23 to 0.26) to 0.30 (95% CI 0.29 to 0.32) between 1999 and 2006. However, the adaptive DRI, which includes treatment of baseline resistant strains with alternative agents, climbed from 0.25 to 0.27 (95% CI 0.25 to 0.28) during that period. In contrast, both the static-use and the adaptive DRIs for Acinetobacter spp. rose from 0.41 (95% CI 0.4 to 0.42) to 0.48 (95% CI 0.46 to 0.49) between 1999 and 2006. Interpretation Divergence between the static-use and the adaptive-use DRIs for E coli reflects the ability of physicians to adapt to increasing resistance. However, antibiotic use patterns did not change much in response to growing resistance to Acinetobacter spp. because physicians were unable to adapt; new drugs for Acinetobacter spp. are therefore needed. Composite indices that aggregate resistance to various drugs can be useful for assessing

  1. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans

    Science.gov (United States)

    Sharifzadeh, Aghil; Shokri, Hojjatollah

    2016-01-01

    Objective: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU)-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC). Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis), Zingiber officinale roscoe (Z. officinale roscoe), Matricaria chamomilla (Ma. chamomilla), Trachyspermum ammi (T. ammi) and Origanum vulgare (O. vulgare). The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS). Results: In GC-MS analysis, thymol (63.40%), linalool (42%), α-pinene (27.87%), α-pinene (22.10%), and zingiberene (31.79%) were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (P<0.05). The main finding was that the susceptibilities of FLU-resistant C. albicans to essential oils were higher than those of the FLU-susceptible yeasts. Conclusion: Results of this study indicated that the oils from medicinal plants could be used as potential anti FLU-resistant C. albicans agents. PMID:27222835

  2. [Biofilm caused by fungi--structure, quorum sensing, morphogenetic changes, resistance to drugs].

    Science.gov (United States)

    Nowak, Magdalena; Kurnatowski, Piotr

    2009-01-01

    Formation of fungal biofilms in patients with implanted biomedical prosthesis constitutes very serious clinical problems. The biofilm can lead to dysfunction of implanted material and can be a reservoir for chronic and systemic infections. Numerous investigations demonstrated differences in quantity and structure of biofilms that had been formed by various species of fungi belonged to Candida genus. Stages of biofilm formations had been examined carefully in in vitro conditions. Biofilm formation begin with adhesion of fungi to the surface, microcolonies are formed subsequently. At the end of the process, extracellular material is excreted, and its formula, that is various in different fungi Candida species, contribute to its resistance to antifungal drugs. Farnesol and tyrosol are two quorum-sensing molecules. They are acting inversely, regulating formation of "germ tubes" and influencing morphogenetic conversion between yeast and filamentous forms, which plays a very important role in pathogenicity and formation of biofilm. Drug resistance of fungi from Candida has been shown to create a very important clinical problem. Many experiments in vitro confirm significantly lower activity of antifungal drugs toward Candida biofilm than toward Candida, in the form of planctonic cells. Surprisingly, some non-steroidal anti-inflammatory drugs can inhibit biofilm formation.

  3. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates

    Directory of Open Access Journals (Sweden)

    Laura Bedin Denardi

    2015-03-01

    Full Text Available In vitro interaction between tacrolimus (FK506 and four azoles (fluconazole, ketoconazole, itraconazole and voriconazole against thirty clinical isolates of both fluconazole susceptible and -resistant Candida glabrata were evaluated by the checkerboard microdilution method. Synergistic, indifferent or antagonism interactions were found for combinations of the antifungal agents and FK506. A larger synergistic effect was observed for the combinations of FK506 with itraconazole and voriconazole (43%, followed by that of the combination with ketoconazole (37%, against fluconazole-susceptible isolates. For fluconazole-resistant C. glabrata, a higher synergistic effect was obtained from FK506 combined with ketoconazole (77%, itraconazole (73%, voriconazole (63% and fluconazole (60%. The synergisms that we observed in vitro, notably against fluconazole-resistant C. glabrata isolates, are promising and warrant further analysis of their applications in experimental in vivo studies.

  4. Antifungal susceptibility of oral Candida species among drug abusers%吸毒人群口腔假丝酵母药物敏感性分析

    Institute of Scientific and Technical Information of China (English)

    袁有华; 白丽; 武有聪; 钱金栿; 刘奇; 郭利军

    2011-01-01

    目的 了解吸毒人群口腔假丝酵母对常用抗真菌药物的敏感性,为临床治疗假丝酵母病提供参考资料.方法 采用美国临床标准化实验委员会推荐的微量稀释法测定75株假丝酵母对4种常用抗真菌药物两性霉素B(Amb)、5-氟胞嘧啶(5-FC)、氟康唑(FCZ)和酮康唑(KETO)的药物敏感性.结果 75株吸毒人群口腔假丝酵母对Amb、5-FC、FCZ和KETO的耐药率分别为0、4%、8%和13.3%;对FCZ和KETO的交叉耐药率为8%;非白色假丝酵母对FCZ的耐药率为23.5%,对KETO的耐药率为43.2%,高于白色假丝酵母的3.45%和5.2%,差异有统计学意义(P<0.05),2种假丝酵母对5-FC和Amb的耐药率差异无统计学意义.结论 吸毒人群口腔假丝酵母对Amb和5-FC的敏感性高于对FCZ和KETO;口腔假丝酵母对FCZ、KETO和5-FC有天然耐药株和对唑类药物的天然交叉耐药株,且非白色假丝酵母对FCZ和KETO的耐药率及交叉耐药率高于白色假丝酵母.%Objective To examine the antifungal susceptibility of oral Candida species among drug abusers and to provide reference for treatment of candidasis in clinic. Methods Totally 75 oral Candida species were tested for susceptibility of amphotericine B( Amb) ,5-flurocytosine(5-FC) ,fluconazole( FCZ) ,and ketonazole( KETO) with microdilution antifungal susceptibility test recommended by National Committee for Clinical Laboratory Standards ( NCCLS). Results The resistant rate of 75 oral Candida species from drug abusers for Amb,5-FC,FCZ,and KETO was 0,4% ,8% ,and 13.3% , respectively. The crosswise resistant rate of the strains for FCZ and KETO was 8%. The resistant rates of nan-Candida albicans to FCZ(23.5% ) and KETO(43. 2% ) were higher than those of Candida albicans with a significant difference. But the resistant rates to 5-FC and Amb were not significantly different for the two Candidas groups. Conclusion The susceptibility of oral Candida species from drug abusers for Amb and 5-FC is higher

  5. [Antifungal susceptibility profiles of Candida species to triazole: application of new CLSI species-specific clinical breakpoints and epidemiological cutoff values for characterization of antifungal resistance].

    Science.gov (United States)

    Karabıçak, Nilgün; Alem, Nihal

    2016-01-01

    The Clinical and Laboratory Standards Institute (CLSI) Subcommittee on Antifungal Susceptibility Testing has newly introduced species-specific clinical breakpoints (CBPs) for fluconazole and voriconazole. When CBPs can not be determined, wild-type minimal inhibitory concentration (MIC) distributions are detected and epidemiological cutoff values (ECVs) provide valuable means for the detection of emerging resistance. The aim of this study is to determine triazole resistance patterns in Candida species by the recently revised CLSI CBPs. A total of 140 Candida strains isolated from blood cultures of patients with invasive candidiasis hospitalized in various intensive care units in Turkey and sent to our reference laboratory between 2011-2012, were included in the study. The isolates were identified by conventional methods, and susceptibility testing was performed against fluconazole, itraconazole and voriconazole, by the 24-h CLSI broth microdilution (BMD) method. Azole resistance rates for all Candida species were determined using the new species-specific CLSI CBPs and ECVs criteria, when appropriate. The species distribution of the isolates were as follows; C.parapsilosis (n= 31 ), C.tropicalis (n= 26 ), C.glabrata (n= 21), C.albicans (n= 18), C.lusitaniae (n= 16), C.krusei (n= 16), C.kefyr (n= 9), C.guilliermondii (n= 2), and C.dubliniensis (n= 1). According to the newly determined CLSI CBPs for fluconazole and C.albicans, C.parapsilosis, C.tropicalis [susceptible (S), ≤ 2 µg/ml; dose-dependent susceptible (SDD), 4 µg/ml; resistant (R), ≥ 8 µg/ml], and C.glabrata (SDD, ≤ 32 µg/ml; R≥ 64 µg/ml) and for voriconazole and C.albicans, C.parapsilosis, C.tropicalis (S, ≤ 0.12 µg/ml; SDD, 0.25-0.5 µg/ml; R, ≥ 1 µg/ml), and C.krusei (S, ≤ 0.5 µg/ml; SDD, 1 µg/ml; R, ≥ 2 µg/ml), it was found that three of C.albicans, one of C.parapsilosis and one of C.glabrata isolates were resistant to fluconazole, while two of C.albicans and two of C

  6. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco.

    Science.gov (United States)

    Yevtushenko, Dmytro P; Romero, Rafael; Forward, Benjamin S; Hancock, Robert E; Kay, William W; Misra, Santosh

    2005-06-01

    Expression of defensive genes from a promoter that is specifically activated in response to pathogen invasion is highly desirable for engineering disease-resistant plants. A plant transformation vector was constructed with transcriptional fusion between the pathogen-responsive win3.12T promoter from poplar and the gene encoding the novel cecropin A-melittin hybrid peptide (CEMA) with strong antimicrobial activity. This promoter-transgene combination was evaluated in transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) for enhanced plant resistance against a highly virulent pathogenic fungus Fusarium solani. Transgene expression in leaves was strongly increased after fungal infection or mechanical wounding, and the accumulation of CEMA transcripts was found to be systemic and positively correlated with the number of transgene insertions. A simple and efficient in vitro regeneration bioassay for preliminary screening of transgenic lines against pathogenic fungi was developed. CEMA had strong antifungal activity in vitro, inhibiting conidia germination at concentrations that were non-toxic to tobacco protoplasts. Most importantly, the expression level of the CEMA peptide in vivo, regulated by the win3.12T promoter, was sufficient to confer resistance against F. solani in transgenic tobacco. The antifungal resistance of plants with high CEMA expression was strong and reproducible. In addition, leaf tissue extracts from transgenic plants significantly reduced the number of fungal colonies arising from germinated conidia. Accumulation of CEMA peptide in transgenic tobacco had no deleterious effect on plant growth and development. This is the first report showing the application of a heterologous pathogen-inducible promoter to direct the expression of an antimicrobial peptide in plants, and the feasibility of this approach to provide disease resistance in tobacco and, possibly, other crops.

  7. Death receptor ligands, in particular TRAIL, to overcome drug resistance

    NARCIS (Netherlands)

    de Jong, S; Timmer, T; Heijenbrok, FJ; de Vries, EGE

    2001-01-01

    The efficacy of chemotherapeutic drugs is hampered by the occurrence of intrinsic and acquired drug resistance. A variety of mechanisms cause drug-resistance. A final common factor, however, is the reduced capacity of drug resistant cells to go into apoptosis following treatment with DNA damaging ag

  8. [Estimation of Probiotic Lactobacilli Drug Resistance].

    Science.gov (United States)

    Bruslik, N L; Akhatova, D R; Toimentseva, A A; Abdulkhakov, S R; Ilyinskaya, O N; Yarullina, D R

    2015-01-01

    An actual problem of analysis of probiotic lactobacilli resistance to antibiotics and other drugs used in the treatment of gastro-intestinal disturbances has been for the first time solved. The levels of resistance of 19 strains of Lactobacillus (14 strains of L. fermentum, 4 strains of L.plantarum and 1 strain of L.rhamnosus) isolated from commercial probiotics and sour milk products to 14 antibiotics of various nature, i.e. β-lactams, aminoglycosides, macrolides, clindamycin, vancomycin, rifampicin, ciprofloxacin, tetracycline and chloramphenicol were determined. All the isolates were practically susceptible to the drugs of the first line antihelicobacterial therapy, i.e. amoxicillin and clarithromycin, that makes inexpedient the parallel use of the probiotics containing the above lactobacilli in the treatment of gastritis and gastric ulcer, despite the lactobacilli antagonism with respect to Helicobacter pylory. Lactobacilli are as well resistant to mesalazin and can be used for correction of dysbiosis in inflammatory affections of the intestine.

  9. [Travellers and multi-drug resistance bacteria].

    Science.gov (United States)

    Takeshita, Nozomi

    2012-02-01

    The number of international travellers has increased. There is enormous diversity in medical backgrounds, purposes of travel, and travelling styles among travellers. Travellers are hospitalized abroad because of exotic and common diseases via medical tourism. This is one way of transporting and importing human bacteria between countries, including multi-drug resistant organisms. In developing countries, the antimicrobial resistance in Shigella sp. and Salmonella sp. have been a problem, because of this trend, the first choice of antibiotics has changed in some countries. Community acquired infections as well as hospital acquired infections with MRSA, multi-drug resistance (MDR) Pseudomonas aeruginosa, and ESBL have been a problem. This review will discuss the risk of MDR bacterial infectious diseases for travellers.

  10. Cancer Exosomes as Mediators of Drug Resistance.

    Science.gov (United States)

    André, Maria do Rosário; Pedro, Ana; Lyden, David

    2016-01-01

    In the last decades, several studies demonstrated that the tumor microenvironment is a critical determinant not only of tumor progression and metastasis, but also of resistance to therapy. Exosomes are small membrane vesicles of endocytic origin, which contain mRNAs, DNA fragments, and proteins, and are released by many different cell types, including cancer cells. Mounting evidence has shown that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with the tumor microenvironment. Understanding how exosomes and the tumor microenvironment impact drug resistance will allow novel and better strategies to overcome drug resistance and treat cancer. Here, we describe a technique for exosome purification from cell culture, and fresh and frozen plasma, and further analysis by electron microscopy, NanoSight microscope, and Western blot.

  11. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis

    Science.gov (United States)

    Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; de Melo, Wanessa C. M. A.; de Oliveira, Haroldo C.; Costa-Orlandi, Caroline B.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  12. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis.

    Science.gov (United States)

    Scorzoni, Liliana; de Paula E Silva, Ana C A; Marcos, Caroline M; Assato, Patrícia A; de Melo, Wanessa C M A; de Oliveira, Haroldo C; Costa-Orlandi, Caroline B; Mendes-Giannini, Maria J S; Fusco-Almeida, Ana M

    2017-01-01

    The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the

  13. Paradoxical antifungal activity and structural observations in biofilms formed by echinocandin-resistant Candida albicans clinical isolates.

    Science.gov (United States)

    Walraven, Carla J; Bernardo, Stella M; Wiederhold, Nathan P; Lee, Samuel A

    2014-02-01

    Echinocandin-resistant clinical isolates of Candida albicans have been reported, and key-hot spot mutations in the FKS1 gene, which encodes a major glucan synthase subunit, have been identified in these (caspofungin-resistant [CAS-R]) strains. Although these mutations result in phenotypic resistance to echinocandins in planktonic cells, there is little data on antifungal susceptibilities of CAS-R C. albicans strains within biofilms. Thus, we analyzed biofilms formed by 12 C. albicans CAS-R clinical strains in which we previously identified FKS1 hot-spot mutations and compared the sessile antifungal and paradoxical activity of anidulafungin (ANID), caspofungin (CAS), and micafungin (MICA). Biofilms were formed in a 96-well static microplate model and assayed using both tetrazolium-salt reduction and crystal violet assays, as well as examination by scanning electron microscopy. We first sought to assess biofilm formation and structure in these fks1 mutants and found that the biofilm mass and metabolic activities were reduced in most of the fks1 mutants as compared with reference strain SC5314. Structural analyses revealed that the fks1 mutant biofilms were generally less dense and had a clear predominance of yeast and pseudohyphae, with unusual "pit"-like cell surface structures. We also noted that sessile minimum inhibitory concentrations (MICs) to ANID, CAS, and MICA were higher than planktonic MICs of all but one strain. The majority of strains demonstrated a paradoxical effect (PE) to particular echinocandins, in either planktonic or sessile forms. Overall, biofilms formed by echinocandin-resistant clinical isolates demonstrated varied PEs to echinocandins and were structurally characterized by a preponderance of yeast, pseudohyphae, and pit-like structures.

  14. Evaluation of the efficacy of antifungal drugs against Paracoccidioides brasiliensis and Paracoccidioides lutzii in a Galleria mellonella model.

    Science.gov (United States)

    de Lacorte Singulani, Junya; Scorzoni, Liliana; de Paula E Silva, Ana Carolina Alves; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares

    2016-09-01

    Paracoccidioides brasiliensis and P. lutzii belong to a group of thermodimorphic fungi and cause paracoccidioidomycosis (PCM), which is a human systemic mycosis endemic in South and Central America. Patients with this mycosis are commonly treated with amphotericin B (AmB) and azoles. The study of fungal virulence and the efficacy and toxicity of antifungal drugs has been successfully performed in a Galleria mellonella infection model. In this work, G. mellonella larvae were infected with two Paracoccidioides spp. and the efficacy and toxicity of AmB and itraconazole were evaluated in this model for the first time. AmB and itraconazole treatments were effective in increasing larval survival and reducing the fungal burden. The fungicidal and fungistatic effects of AmB and itraconazole, respectively, were observed in the model. Furthermore, these effects were independent of changes in haemocyte number. G. mellonella can serve as a rapid model for the screening of new antifungal compounds against Paracoccidioides and can contribute to a reduction in experimental animal numbers in the study of PCM.

  15. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  16. The role of the multidisciplinary team in antifungal stewardship.

    Science.gov (United States)

    Agrawal, Samir; Barnes, Rosemary; Brüggemann, Roger J; Rautemaa-Richardson, Riina; Warris, Adilia

    2016-11-01

    There are a variety of challenges faced in the management of invasive fungal diseases (IFD), including high case-fatality rates, high cost of antifungal drugs and development of antifungal resistance. The diagnostic challenges and poor outcomes associated with IFD have resulted in excessive empirical use of antifungals in various hospital settings, exposing many patients without IFD to potential drug toxicities as well as causing spiralling antifungal drug costs. Further complexity arises as different patient groups show marked variation in their risk for IFD, fungal epidemiology, sensitivity and specificity of diagnostic tests and the pharmacokinetics and pharmacodynamics of antifungal drugs. To address these issues and to ensure optimal management of IFD, specialist knowledge and experience from a range of backgrounds is required, which extends beyond the remit of most antibiotic stewardship programmes. The first step in the development of any antifungal stewardship (AFS) programme is to build a multidisciplinary team encompassing the necessary expertise in the management of IFD to develop and implement the AFS programme. The specific roles of the key individuals within the AFS team and the importance of collaboration are discussed in this article.

  17. In Vitro Screening of 10 Edible Thai Plants for Potential Antifungal Properties

    Directory of Open Access Journals (Sweden)

    Supattra Suwanmanee

    2014-01-01

    Full Text Available Growing rates of fungal infections and increasing resistance against standard antifungal drugs can cause serious health problems. There is, therefore, increasing interest in the potential use of medicinal plants as novel antifungal agents. This study investigates the antifungal properties of crude plant extracts from ten medicinal plant species. Crude samples were extracted using the hot water extraction process. The minimum inhibitory concentrations (MIC and diameter zone of inhibition were determined in each extract against ten fungal strains, and fluconazole was used as a positive control. The cytotoxicity of crude extracts on in vitro human skin fibroblast (HSF cell models was determined by MTT assay. Of the ten crude extracts, Psidium guajava L. exhibited the highest antifungal activity, diameter zone of inhibition, and percentage HSF cell viability. Although all extracts exhibited antifungal activity, Psidium guajava L. had the greatest potential for developing antifungal treatments.

  18. Analysis of Pathogen Distribution and Drug Resistance of Nosocomial Infections Accompanied in Patients with Malignant Tumor

    Institute of Scientific and Technical Information of China (English)

    YAO Dong-mei; CAO Wei; QING Zhi-ju

    2008-01-01

    Objective:To investigate the pathogen distribution and drug resistance of nosocomial infections accompanied in patients with malignant tumor.Methods:The pathogen culture and drug-sensitivity data of 107 specimens isolated from malignant tumor patients accompanied with nosocomial infection were retrospectively analyzed.Results:Among 118 strains of pathogens isolated from 107 specimens,77 were gram-negative bacillus(65.3%),26 were gram-positive coccus(65.3%),and 15 were fungus(12.7%).Eleven specimens were revealed to have combined infection of bacterium and fungus.Gram-negative bacillus showed high sensitivity to amikacin,ciprofloxacin,and tienam.Gram-positive cocci were highly sensitive to tienam and vancomycin.The bacteria were resistant to other antibiotics in different degrees.Vancomycin-resistant staphylococcus was not detected.Candida was sensitive to antifungals.Conclusion:Conditional pathogenic bacteria were mainly responsible for nosocomial infections in malignant tumor patients with considerable drug resistance.This shows that bacterial tests and the rational use of antibiotics should be emphasized in clinical practice to prevent the formation of drug resistant strains and further endogenous infections.

  19. Antifungal pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    Lepak, Alexander J; Andes, David R

    2014-11-10

    Successful treatment of infectious diseases requires choice of the most suitable antimicrobial agent, comprising consideration of drug pharmacokinetics (PK), including penetration into infection site, pathogen susceptibility, optimal route of drug administration, drug dose, frequency of administration, duration of therapy, and drug toxicity. Antimicrobial pharmacokinetic/pharmacodynamic (PK/PD) studies consider these variables and have been useful in drug development, optimizing dosing regimens, determining susceptibility breakpoints, and limiting toxicity of antifungal therapy. Here the concepts of antifungal PK/PD studies are reviewed, with emphasis on methodology and application. The initial sections of this review focus on principles and methodology. Then the pharmacodynamics of each major antifungal drug class (polyenes, flucytosine, azoles, and echinocandins) is discussed. Finally, the review discusses novel areas of pharmacodynamic investigation in the study and application of combination therapy.

  20. Peptide-based Antifungal Therapies against Emerging Infections

    OpenAIRE

    Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S-T; Mixson, A. J.

    2010-01-01

    Acquired drug resistance to mycotic infections is rapidly emerging as a major medical problem. Opportunistic fungal infections create therapeutic challenges, particularly in high risk immunocompromised patients with AIDS, cancer, and those undergoing transplantation. Higher mortality and/or morbidity rates due to invasive mycosis have been increasing over the last 20 years, and in light of growing resistance to commonly used antibiotics, novel antifungal drugs and approaches are required. Cur...

  1. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans

    Directory of Open Access Journals (Sweden)

    Aghil Sharifzadeh

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC. Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis, Zingiber officinale roscoe (Z. officinale roscoe, Matricaria chamomilla (Ma. chamomilla, Trachyspermum ammi (T. ammi and Origanum vulgare (O. vulgare. The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS. Results: In GC-MS analysis, thymol (63.40%, linalool (42%, α-pinene (27.87%, α-pinene (22.10%, and zingiberene (31.79% were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (P

  2. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs.

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Zhang

    Full Text Available Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H(+-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma(- phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca(2+ and H(+ surges triggered by the antimicrobial agent amiodarone, and impaired Ca(2+ sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.

  3. In vitro susceptibility of antifungal drugs against Sporothrix brasiliensis recovered from cats with sporotrichosis in Brazil.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Rodrigues, Anderson Messias; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha; Pereira, Sandro Antonio; Gremião, Isabella Dib Ferreira; Schubach, Tânia Maria Pacheco; de Camargo, Zoilo Pires

    2016-03-01

    Sporotrichosis is an important subcutaneous mycosis of humans and animals. Classically, the disease is acquired upon traumatic inoculation of Sporothrix propagules from contaminated soil and plant debris. In addition, the direct horizontal transmission of Sporothrix among animals and the resulting zoonotic infection in humans highlight an alternative and efficient rout of transmission through biting and scratching. Sporothrix brasiliensis is the most virulent species of the Sporothrix schenckii complex and is responsible for the long-lasting outbreak of feline sporotrichosis in Brazil. However, antifungal susceptibility data of animal-borne isolates is scarce. Therefore, this study evaluated the in vitro activity of amphotericin B, caspofungin, itraconazole, voriconazole, fluconazole, and ketoconazole against animal-borne isolates of S. brasiliensis. The susceptibility tests were performed through broth microdilution (M38-A2). The results show the relevant activity of itraconazole, amphotericin B, and ketoconazole against S. brasiliensis, with the following MIC ranges: 0.125-2, 0.125-4 and 0.0312-2 μg/ml, respectively. Caspofungin was moderately effective, displaying higher variation in MIC values (0.25-64 μg/ml). Voriconazole (2-64 μg/ml) and fluconazole (62.5-500 μg/ml) showed low activity against S. brasiliensis strains. This study contributed to the characterization of the in vitro antifungal susceptibility of strains of S. brasiliensis recovered from cats with sporotrichosis, which have recently been considered the main source of human infections.

  4. Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for determination of three antifungal drugs in water and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Shojaie, Mehran; Abdi, Khosrou; Karimi, Mohammad Ali

    2017-03-01

    A novel ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet (UAAD-LLM-SFO) followed by HPLC-UV detection was developed for the analysis of three antifungal drugs in water and biological samples. In this method, 1-dodecanol was used as the extraction solvent. The emulsion was rapidly formed by pulling in and pushing out the mixture of sample solution and extraction solvent for 5 times repeatedly using a 10-mL glass syringe while sonication was performed. Therefore, an organic dispersive solvent required in common microextraction methods was not used in the proposed method. After dispersing, an aliquot of acetonitrile was introduced as a demulsifier solvent into the sample solution to separate two phases. Therefore, some additional steps, such as the centrifugation, ultrasonication, or agitation of the sample solution, are not needed. Parameters influencing the extraction recovery were investigated. The proposed method showed a good linearity for the three antifungal drugs studied with the correlation coefficients (R (2) > 0.9995). The limits of detection (LODs) and the limits of the quantification (LOQs) were between 0.01-0.03 μg L(-1) and 0.03-0.08 μg L(-1), respectively. The preconcentration factors (PFs) were in the range of 107-116, respectively. The precisions, as the relative standard deviations (RSDs) (n = 5), for inter-day and intra-day analysis were in the range of 2.1-4.5% and 6.5-8.5%, respectively. This method was successfully applied to determine the three antifungal drugs in tap water and biological samples. The recoveries of antifungal drugs in these samples were 92.4-98.5%. Graphical abstract Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for the analysis of three antifungal drugs prior HPLC-UV.

  5. In vitro resistance of clinical Fusarium species to amphotericin B and voriconazole using the EUCAST antifungal susceptibility method.

    Science.gov (United States)

    Taj-Aldeen, Saad J; Salah, Husam; Al-Hatmi, Abdullah M S; Hamed, Manal; Theelen, Bart; van Diepeningen, Anne D; Boekhout, Teun; Lass-Flörl, Cornelia

    2016-08-01

    Susceptibility testing using the EUCAST-AFST method against 39 clinical Fusarium strains consecutively collected from local and invasive infections during the last 10years assessed the in vitro activities of amphotericin B (AmB) and triazole antifungal agents. In addition, the susceptibility pattern of 12 reference strains from the CBS-KNAW Fungal Biodiversity Centre (CBS) was evaluated. In particular Fusarium petroliphilum and F. solani sensu lato were involved in disseminated infections and known for treatment failure. AmB displayed the lowest MICs followed by voriconazole VRC, posaconazole (POC). Itraconazole (ITC) showed high MIC values, displaying in vitro resistance. Clinical isolates were significantly (P Fusarium and that susceptibility testing is important and may improve the prognosis of these infections.

  6. Antiproliferation of Berberine in Combination with Fluconazole from the Perspectives of Reactive Oxygen Species, Ergosterol and Drug Efflux in a Fluconazole-Resistant Candida tropicalis Isolate

    Science.gov (United States)

    Shao, Jing; Shi, GaoXiang; Wang, TianMing; Wu, DaQiang; Wang, ChangZhong

    2016-01-01

    Candida tropicalis has emerged as an important pathogenic fungus in nosocomial infections due to its recalcitrant resistance to conventional antifungal agents, especially to fluconazole (FLC). Berberine (BBR) is a bioactive herbal-originated alkaloids and has been reported to possess antifungal functions against C. albicans. In this paper, we tried to figure out the antifungal mechanisms of BBR and/or FLC in a clinical C. tropicalis isolate 2006. In the microdilution test, the minimum inhibitory concentration (MIC) of BBR was found 16 μg/mL with fractional inhibitory concentration index (FICI) 0.13 in C. tropicalis 2006. The synergism of BBR and FLC was also confirmed microscopically. After the treatments of BBR and/or FLC, the studies revealed that (i) FLC facilitated BBR to increase reactive oxygen species (ROS), (ii) FLC enhanced the intranuclear accumulation of BBR, (iii) BBR decreased the extracellular rhodamine 123 (Rh123) via inhibiting efflux transporters, (iv) FLC assisted BBR to reduce ergosterol content, and (v) BBR in combined with FLC largely downregulated the expressions of Candida drug resistance 1 (CDR1) and CDR2 but impact slightly multidrug resistance 1 (MDR1), and upregulate the expression of ergosterol 11 (ERG11). These results suggested that BBR could become a potent antifungal drug to strengthen FLC efficacy in FLC-resistant C. tropicalis via ROS increase, intracellular BBR accumulation, ergosterol decrease and efflux inhibition. PMID:27721812

  7. Candida albicans autophagy, no longer a bystander: Its role in tolerance to ER stress-related antifungal drugs.

    Science.gov (United States)

    Yu, Qilin; Jia, Chang; Dong, Yijie; Zhang, Bing; Xiao, Chenpeng; Chen, Yulu; Wang, Yuzhou; Li, Xiaoling; Wang, Lei; Zhang, Biao; Li, Mingchun

    2015-08-01

    Autophagy is a degradation process involved in pathogenicity of many pathogenic fungi. However, its roles in Candida albicans, the leading fungal pathogen in human beings, remain to be detailed. Most recently, we found that endoplasmic reticulum (ER) stress-inducing conditions led to transcriptional up-regulation of C. albicans autophagy-related (ATG) genes, implying a possible link between autophagy and ER stress response in this pathogen. Using a series of C. albicans ATG mutants and autophagy reporting systems, we found that both treatment of ER stress-related drugs and loss of the ER calcium pump Spf1 promoted autophagic flux of Atg8 and Lap41 (a homologue of Saccharomyces cerevisiae Ape1), indicating that these conditions induce autophagy. Moreover, deletion of ATG genes in the spf1Δ/Δ mutant rendered cells hypersensitive to these drugs and caused activation of UPR, revealing a role of autophagy in alleviating ER stress. In addition, only treatment of tunicamycin and loss of Spf1 in combination increased autophagic flux of the ER component Sec63, suggesting that most of the ER stress-related conditions cause non-selective autophagy rather than selective ER phagy. This study uncovers the important role of C. albicans autophagy in ER stress response and tolerance to antifungal drugs.

  8. The biology and chemistry of antifungal agents: a review.

    Science.gov (United States)

    Kathiravan, Muthu K; Salake, Amol B; Chothe, Aparna S; Dudhe, Prashik B; Watode, Rahul P; Mukta, Maheshwar S; Gadhwe, Sandeep

    2012-10-01

    In recent years their has been an increased use of antifungal agents and has resulted in the development of resistance to drugs. Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates. Different types of mechanisms contribute to the development of resistance to antifungals. This has given raise to search for a new heterocycle with distinct action or multitargeted combination therapy. This review addresses the areas such as the underlying mechanisms, eight different targets such as ergosterol synthesis, chitin synthesis, ergosterol disruptors, glucan synthesis, squalene epoxidase, nucleic acid synthesis, protein synthesis, microtubules synthesis. The clinically employed drugs along with the current research work going on worldwide on different heterocycles are discussed. In recent advances various heterocycles including imidazole, benzimidazole etc., twenty three scaffolds and their lead identification are discussed.

  9. [New developments in antifungal therapy: fluconazole, itraconazole, voriconazole, caspofungin

    NARCIS (Netherlands)

    Wout, J.W. van 't; Kuijper, E.J.; Verweij, P.E.; Kullberg, B.J.

    2004-01-01

    The azole antifungal voriconazole and the echinocandin caspofungin have recently become available for the treatment of invasive mycoses. Fluconazole remains the drug of choice for candidemia, except for infections with one of the resistent species such as Candida krusei and some strains of Candida g

  10. Clinicomycological Profile and Antifungal Sensitivity Pattern of Commonly Used Azoles in Dermatophytosis

    Directory of Open Access Journals (Sweden)

    Mahesh Mathur

    2015-06-01

    Conclusions: This study highlighted the increasing resistance of the antifungals, which is responsible for the treatment failure in dermatophye infections. Keywords: antifungal resistance; dermatophyte; epidemiology.

  11. Management of multiple drug-resistant tuberculosis.

    Science.gov (United States)

    Hutchison, D C S; Drobniewski, F A; Milburn, H J

    2003-01-01

    There has been a worldwide increase in multiple drug-resistant tuberculosis (MDR-TB) which has in the past been associated with a poor prognosis. In the U.K., about half of the cases live in the London area and we have set out to obtain further information on their treatment and outcome. We examined the risk factors, drug resistance, drug treatment, sputum conversion, and outcome in patients with MDR-TB at three hospitals in South London and diagnosed during the period June 1995-January 1999. Human Immunodeficiency Virus (HIV)-positive patients were excluded. There were 760 patients resident in Lambeth, Southwark and Lewisham Health Authority (LSLHA) who were notified as tuberculosis (TB) during the time period and who were of negative or unknown HIV status. (The population of LSLHA is approx.750,000.) There was a total of 13 patients with MDR-TB, known or presumed to be HlV negative. Their median age was 28 years (range 15-53); nine (69%) were born outside the U.K. and 11 had pulmonary disease; they had organisms resistant to a median of two first-line drugs (range 2-4) and to a median of four of all drugs tested (range 2-10). They received treatment with a median of six drugs (range 3-9). Eight were followed up for at least 3 years (range 3-6) after the completion of treatment; at their last assessment none had features of active TB and all were sputum negative (smear and culture). Two returned to their countries of origin during treatment; they were sputum negative at that time. Two patients are well and continue on treatment in the U.K. One patient (known HIV negative) died following treatment failure. In conclusion, we obtained disease-free survival in eight cases of MDR-TB, known or presumed to be HIV negative and followed up for 3 years or more. The prognosis for patients treated at specialised centres is good (and better than is generally believed). We describe a new protocol for the detection and management of MDR-TB.

  12. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers: II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations

    Science.gov (United States)

    Das, Surajit; Kiong Ng, Wai; Tan, Reginald B. H.

    2014-03-01

    This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.

  13. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations.

    Science.gov (United States)

    Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H

    2014-03-14

    This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.

  14. Poor compliance with antifungal drug use guidelines by transplant physicians: a framework for educational guidelines and an international consensus on patient safety.

    Science.gov (United States)

    Muñoz, Patricia; Rojas, Loreto; Cervera, Carlos; Garrido, Gregorio; Fariñas, Maria Carmen; Valerio, Maricela; Giannella, Maddalena; Bouza, Emilio

    2012-01-01

    The rate of compliance with antifungal drug use guidelines by transplant physicians is mostly unknown. We performed a nationwide electronic survey to assess antifungal use by different types of transplant physicians. Sixty-one percent (53/87) of the transplant programs responded (accounting for 85% of heart transplant procedures, 65% of kidney transplantations, and 71.5% of liver transplantations). Antifungal prophylaxis was used in 41.5% programs (liver 93.3%, heart 30.8%, and kidney 16%). Prophylaxis was universal in 32% of the programs and targeted only to selected patients in 68%, mainly indicated after re-transplantation (73.3%), re-intervention (66.7%) and hemodialysis (60%). Main drugs for universal prophylaxis were fluconazole and itraconazole (42.9% each), while fluconazole (60%), L-amphotericin B (AMB), and caspofungin (13.4% each) were preferred for targeted prophylaxis. Overall, 84.9% of the programs used galactomannan for the diagnosis of invasive aspergillosis (only 34% in BAL) and 66.6% used voriconazole as first-line monotherapy. Combination first-line therapy for invasive aspergillosis was used by 31.3%, mainly with voriconazole with caspofungin (40%) or anidulafungin (26.7%) or L-AMB-caspofungin (26.7%). Adherence of transplant physicians to current recommendations on antifungal treatment and prophylaxis is poor. An international consensus that responds to differences in patients and centers and emphasizes patient safety is clearly needed.

  15. Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design.

    Science.gov (United States)

    Wojciechowski, Marek; Milewski, Sławomir; Mazerski, Jan; Borowski, Edward

    2005-01-01

    Fungal infections are a growing problem in contemporary medicine, yet only a few antifungal agents are used in clinical practice. In our laboratory we proposed the enzyme L-glutamine: D-fructose-6-phosphate amidotransferase (EC 2.6.1.16) as a new target for antifungals. The structure of this enzyme consists of two domains, N-terminal and C-terminal ones, catalysing glutamine hydrolysis and sugar-phosphate isomerisation, respectively. In our laboratory a series of potent selective inhibitors of GlcN-6-P synthase have been designed and synthesised. One group of these compounds, including the most studied N3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid (FMDP), behave like glutamine analogs acting as active-site-directed inactivators, blocking the N-terminal, glutamine-binding domain of the enzyme. The second group of GlcN-6-P synthase inhibitors mimic the transition state of the reaction taking place in the C-terminal sugar isomerising domain. Surprisingly, in spite of the fact that glutamine is the source of nitrogen for a number of enzymes it turned out that the glutamine analogue FMDP and its derivatives are selective against GlcN-6-P synthase and they do not block other enzymes, even belonging to the same family of glutamine amidotransferases. Our molecular modelling studies of this phenomenon revealed that even within the family of related enzymes substantial differences may exist in the geometry of the active site. In the case of the glutamine amidotransferase family the glutamine binding site of GlcN-6-P synthase fits a different region of the glutamine conformational space than other amidotransferases. Detailed analysis of the interaction pattern for the best known, so far, inhibitor of the sugar isomerising domain, namely 2-amino-2-deoxy-D-glucitol-6-phosphate (ADGP), allowed us to suggest changes in the structure of the inhibitor that should improve the interaction pattern. The novel ligand was designed and synthesised. Biological experiments confirmed

  16. 抗真菌药肝毒性的文献计量学分析%Bibliometric analysis on hepatotoxicity due to antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    白艳; 李悦; 刘斌; 王昆; 梅和坤; 张颖; 王瑾; 王睿

    2014-01-01

    目的了解抗真菌药肝毒性的研究情况及其临床特征,为安全使用抗真菌药提供参考。方法以“antifungal drugs”和“hepatotoxicity”“、抗真菌药”和“肝毒性”为检索词,检索PubMed、Embase、Web of Science、中国知网中国期刊全文数据库和中国生物医学文献数据库收录的抗真菌药肝毒性文献,用Excel表对最终纳入的文献建立评价数据库,录入文献的发表年代、发文量排序前5位的国家及研究机构、文献类型、载文量前5位的期刊、被引频次前10位的文献等。分析有关文献的研究内容和热点,总结抗真菌药肝毒性的临床表现、发生机制及预防措施。结果共纳入文献221篇,其中英文文献193篇,中文文献28篇;论著116篇,综述49篇,病例报告56篇。首次发表抗真菌药肝毒性文献的时间是1976年,载文量最高的期刊是Mycoses,单篇文章的最高被引频次为531次。抗真菌药致肝损伤的临床表现为乏力、右上腹疼痛、腹泻、黄疸、胆汁淤积和发热等,严重者可致肝衰竭。实验室检查可见血清转氨酶、胆红素、碱性磷酸酶升高。唑类抗真菌药致肝损伤发生率较高,两性霉素B致肝损伤发生率较低。肝功能不全者应慎用抗真菌药。长期应用抗真菌药者应注意定期监测肝功能,出现肝损伤后立即停药并采取对症与保肝治疗,部分患者的肝功能可恢复至用药前水平。抗真菌药肝毒性的机制尚不完全清楚,可能与细胞质膜结构完整性受损或抑制细胞色素P4502D6酶代谢有关。结论国内对抗真菌药肝毒性的研究逊于国外;部分抗真菌药所致肝毒性呈可逆性。%Objective To investigate the research progress of hepatotoxicity due to antifungal drugs, in order to provide a reference for clinical safety use of antifungal drugs. Methods "Antifungal drugs" and"hepatotoxicity" were selected as the keywords

  17. Comparative study on the effects of two antifungal drugs against Candida albicans by microcalorimetry and transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qing-Lian [Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Zhang, Juan [Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Department of Stomatology, Hubei Provincial Maternal and Child Health Hospital, Wuhan 430070 (China); Xu, Zi-Qiang; Li, Ran [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Jiang, Feng-Lei, E-mail: fljiang@whu.edu.cn [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Xiao, Qi, E-mail: qi.xiao@whu.edu.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Liu, Yi [State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Microcalorimetry is a fast, simple method to study the antibiotic property of drugs. Black-Right-Pointing-Pointer We noticed that the antibiotic effect of ITZ was slightly better than that of KTZ. Black-Right-Pointing-Pointer We perform the TEM to study the morphology changes of C. albicans cells. - Abstract: In this work, a multi-channel thermal activity monitor (TAM 2277) was applied to study the growth metabolism of Candida albicans (C. albicans) in vitro in the absence and presence of different concentrations of ketoconazole (KTZ) and itraconazole (ITZ). The results showed that the half inhibiting concentrations (IC{sub 50}) of C. albicans by KTZ and ITZ are 73.5 and 66.3 {mu}mol L{sup -1}, respectively. So the antibiotic effect of ITZ was slightly better than that of KTZ. The morphology of C. albicans cells both in the absence and presence of antifungal agents was examined by transmission electron microscopy (TEM). Our research also suggests that microcalorimetry is a fast, simple, non-invasive, non-destructive and more sensitive method, and can be easily performed to study the antibiotic property of different species of drugs on microorganism compared to other biological and clinical methods.

  18. Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs

    Directory of Open Access Journals (Sweden)

    Şenyiğit Zeynep Ay

    2014-06-01

    Full Text Available The aim of the present study was to evaluate chitosan as a vaginal mucoadhesive gel base for econazole nitrate and miconazole nitrate. To this aim, different types of chitosan with different molecular masses and viscosity properties [low molecular mass chitosan (viscosity: 20,000 mPa s, medium molecular mass chitosan (viscosity: 200,000 mPa s, high molecular mass chitosan (viscosity: 800,000 mPa s] have been used. First, rheological studies were conducted on chitosan gels. Mechanical, syringeability and mucoadhesive properties of chitosan gels were determined. Release profiles of econazole nitrate and miconazole nitrate from chitosan gels were obtained and evaluated kinetically. In addition, anticandidal activities of formulations were determined. Finally, vaginal retention of chitosan gels in rats was evaluated by in vivo distribution studies. Based on the results, it can be concluded that gels prepared with medium molecular mass chitosan might be effectively used for different antifungal agents in the treatment of vaginal candidiosis, since it has high mucoadhesiveness, suitable mechanical and release properties with good vaginal retention

  19. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance.

    Science.gov (United States)

    Pfaller, Michael A; Messer, Shawn A; Woosley, Leah N; Jones, Ronald N; Castanheira, Mariana

    2013-08-01

    The SENTRY Antimicrobial Surveillance Program monitors global susceptibility and resistance rates of newer and established antifungal agents. We report the echinocandin and triazole antifungal susceptibility patterns for 3,418 contemporary clinical isolates of yeasts and molds. The isolates were obtained from 98 laboratories in 34 countries during 2010 and 2011. Yeasts not presumptively identified by CHROMagar, the trehalose test, or growth at 42°C and all molds were sequence identified using internal transcribed spacer (ITS) and 28S (yeasts) or ITS, translation elongation factor (TEF), and 28S (molds) genes. Susceptibility testing was performed against 7 antifungals (anidulafungin, caspofungin, micafungin, fluconazole, itraconazole, posaconazole, and voriconazole) using CLSI methods. Rates of resistance to all agents were determined using the new CLSI clinical breakpoints and epidemiological cutoff value criteria, as appropriate. Sequencing of fks hot spots was performed for echinocandin non-wild-type (WT) strains. Isolates included 3,107 from 21 Candida spp., 146 from 9 Aspergillus spp., 84 from Cryptococcus neoformans, 40 from 23 other mold species, and 41 from 9 other yeast species. Among Candida spp., resistance to the echinocandins was low (0.0 to 1.7%). Candida albicans and Candida glabrata that were resistant to anidulafungin, caspofungin, or micafungin were shown to have fks mutations. Resistance to fluconazole was low among the isolates of C. albicans (0.4%), Candida tropicalis (1.3%), and Candida parapsilosis (2.1%); however, 8.8% of C. glabrata isolates were resistant to fluconazole. Among echinocandin-resistant C. glabrata isolates from 2011, 38% were fluconazole resistant. Voriconazole was active against all Candida spp. except C. glabrata (10.5% non-WT), whereas posaconazole showed decreased activity against C. albicans (4.4%) and Candida krusei (15.2% non-WT). All agents except for the echinocandins were active against C. neoformans, and the

  20. Drug resistance in Indian visceral leishmaniasis.

    Science.gov (United States)

    Sundar, S

    2001-11-01

    Throughout the world, pentavalent antimonial compounds (Sb(v)) have been the mainstay of antileishmanial therapy for more than 50 years. Sb(v) has been highly effective in the treatment of Indian visceral leishmaniasis (VL: kala-azar) at a low dose (10 mg/kg) for short durations (6-10 days). But in the early 1980s reports of its ineffectiveness emerged, and the dose of Sb(v) was eventually raised to 20 mg/kg for 30-40 days. This regimen cures most patients with VL except in India, where the proportion of patients unresponsive to Sb(v) has steadily increased. In hyperendemic districts of north Bihar, 50-65% patients fail treatment with Sb(v). Important reasons are rampant use of subtherapeutic doses, incomplete duration of treatment and substandard drugs. In vitro experiments have established emergence of Sb(v) resistant strains of Leishmania donovani, as isolates from unresponsive patients require 3-5 times more Sb(v) to reach similarly effectiveness against the parasite as in Sb(v) responders. Anthroponotic transmission in India has been an important factor in rapid increase in the Sb(v) refractoriness. Pentamidine was the first drug to be used and cured 99% of these refractory patients, but over time even with double the amount of initial doses, it cures only 69-78% patients now and its use has largely been abandoned in India. Despite several disadvantages, amphotericin B is the only drug available for use in these areas and should be used as first-line drug instead of Sb(v). The new oral antileishmanial drug miltefosine is likely to be the first-line drug in future. Unfortunately, development of newer antileishmanial drugs is rare; two promising drugs, aminosidine and sitamaquine, may be developed for use in the treatment of VL. Lipid associated amphotericin B has an excellent safety and efficacy profile, but remains out of reach for most patients because of its high cost.

  1. [Evaluation of a new method for antifungal drugs susceptibility testing to yeasts].

    Science.gov (United States)

    Ishigaki, S; Kawakami, S; Ono, Y; Miyazawa, Y

    2000-03-01

    We compared the Etest with a broth microdilution method (FP panel), performed according to the National Committee for modified Clinical Laboratory Standards (NCCLS) document M27-P guidelines, for determining the MICs of 81 clinical isolates of yeasts (7 Candida albicans, 8 Candida glabrata, 10 Candida parapsilosis, 6 Pichia anomala, 10 Candida tropicalis, 4 Candida guilliermondii, 4 Candida krusei, 6 Trichosporon cutaneum, 5 Candida ciferrii, 3 Candida famata, 4 Candida norvegensis, 2 Rhodotorula rubra, 3 Candida lusitaniae, 2 Candida curvata, 1 Candida inconspicua, 1 Candida intermedia, 1 Candida colliculosa, 1 Cryptococcus spp, 1 Tricosporon capitatum, 1 Pichia ohmeri, 1 Saccharomyces cerevisiae). The Etest results for 6 ATCC standard strains correlated well with reference MICs except those of flucytosine (5-FC) for C. krusei, which tended to be 1 to 2 log2 dilution higher than the MIC range determined by NCCLS guidelines. However, the best agreement between the results for clinical isolates was seen with 5-FC (100% agreement [Within +/- 2 log2 dilutions] between the results of the two methods). There was a 91.4% agreement between the results of the two methods with amphotericin B (Etest MICs tended to be 1 to 2 log2 dilution lower than those of the FP panel). The Etest results with litraconazole for clinical isolates except C. tropicalis were similar to MICs of the FP panel (Etest for C. tropicalis showed 1 to 2 log2 dilution lower than FP panel). Also, the Etest results with fluconazole for clinical isolates except C. tropicalis were similar of 1 log2 dilution higher than MICs of the FP panel (Etest for C. tropicalis showed more than 2 log2 dilution lower than FP panel). These results showed a good level of overall agreement between the Etest method and the broth microdilution test (FP panel). Since the Etest is a less laborintensive and much simpler method, it appears to be a useful procedure for testing the susceptibility of yeasts to antifungal agents.

  2. Predicted levels of HIV drug resistance

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R

    2014-01-01

    -term effects. METHODS: The previously validated HIV Synthesis model was calibrated to South Africa. Resistance was modeled at the level of single mutations, transmission potential, persistence, and effect on drug activity. RESULTS: We estimate 652 000 people (90% uncertainty range: 543 000-744 000) are living...... are maintained, in 20 years' time HIV incidence is projected to have declined by 22% (95% confidence interval, CI -23 to -21%), and the number of people carrying NNRTI resistance to be 2.9-fold higher. If enhancements in diagnosis and retention in care occur, and ART is initiated at CD4 cell count less than 500......  cells/μl, HIV incidence is projected to decline by 36% (95% CI: -37 to -36%) and the number of people with NNRTI resistance to be 4.1-fold higher than currently. Prevalence of people with viral load more than 500  copies/ml carrying NRMV is not projected to differ markedly according to future ART...

  3. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species.

    Science.gov (United States)

    Zeng, Hong; Chen, Xinping; Liang, Jingnan

    2015-01-01

    Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent.

  4. Drug resistance reversal--are we getting closer?

    Science.gov (United States)

    Baird, R D; Kaye, S B

    2003-11-01

    Clinical drug resistance is a major barrier to overcome before chemotherapy can become curative for most patients presenting with metastatic cancer. Rational attempts to tackle clinical drug resistance need to be based on an understanding of the mechanisms involved; these are likely to be complex and multifactorial, and may be due to inadequate drug exposure or alterations in the cancer cell itself. This article reviews a number of strategies used to tackle drug resistance, focussing on work in our institution related to the treatment of ovarian cancer and resistance to platinum and taxane-based chemotherapy. Further progress towards drug resistance reversal will require a three-pronged approach, namely: the development of novel cytotoxics which exploit selectively expressed targets; modulation of resistance to conventional agents and, most importantly, a serious attempt to understand resistance mechanisms in tumour samples taken both pre- and post-chemotherapy.

  5. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.

    Directory of Open Access Journals (Sweden)

    Shantelle L LaFayette

    Full Text Available Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC, which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which

  6. Emergence of non-albicans Candida species and antifungal resistance in intensive care unit patients

    Directory of Open Access Journals (Sweden)

    Ravinder Kaur

    2016-05-01

    Conclusions: Predominance of NAC species in ICU patients along with the increasing resistance being recorded to fluconazole which has a major bearing on the morbidity and management of these patients and needs to be further worked upon.

  7. Proteomic insights into Acinetobacter baumannii drug resistance and pathogenesis.

    Science.gov (United States)

    Long, Quanxin; Huang, Changwu; Liao, Pu; Xie, Jianping

    2013-01-01

    Acinetobacter baumannii is an important opportunist pathogen, due to severe antibiotic resistance and nosocomial infection. The epidemiology and antibiotic resistance of A.baumannii have been extensively reviewed, but the pathogenesis and virulence remain unclear. Proteomics analysis has been applied to study the mechanism of drug resistance, biofilm, micronutrient acquisition, and the extracellular compartment. This review summarizes applications of proteomics in A. baumannii, aiming to summarize novel insights into the mechanism of A. baumannii pathogenesis and drug resistance.

  8. Drug resistance in Leishmania: similarities and differences to other organisms.

    Science.gov (United States)

    Papadopoulou, B; Kündig, C; Singh, A; Ouellette, M

    1998-01-01

    The main line of defense available against parasitic protozoa is chemotherapy. Drug resistance has emerged however, as a primary obstacle to the successful treatment and control of parasitic diseases. Leishmania spp., the causative agents of leishmaniasis, have served as a useful model for studying mechanisms of drug resistance in vitro. Antimonials and amphotericin B are the first line drugs to treat Leishmania followed by pentamidine and a number of other drugs. Parasites resistant against all these classes of drugs have been selected under laboratory conditions. A multiplicity of resistance mechanisms has been detected, the most prevalent being gene amplification and transport mutations. With the tools now available, it should be possible to elucidate the mechanisms that govern drug resistance in field isolates and develop more effective chemotherapeutic agents.

  9. DNA topoisomerases from pathogenic fungi: targets for the discovery of antifungal drugs.

    OpenAIRE

    Shen, L L; Baranowski, J; Fostel, J.; Montgomery, D A; Lartey, P A

    1992-01-01

    DNA topoisomerases, a class of enzymes that change the topological structure of DNA, have been shown to be the target of many therapeutic agents, including antibacterial agents (quinolones) and anticancer agents. These drugs inhibit the enzyme in a unique way so that the enzyme is converted into a cellular poison. Candida albicans and Aspergillus niger are two major opportunistic fungal pathogens. Our results show that these fungi have high levels of both type I and type II topoisomerases (wi...

  10. In vitro antifungal activity of 2-(2'-hydroxy-5'-aminophenyl)benzoxazole in Candida spp. strains.

    Science.gov (United States)

    Daboit, Tatiane Caroline; Stopiglia, Cheila Denise Ottonelli; Carissimi, Mariana; Corbellini, Valeriano Antonio; Stefani, Valter; Scroferneker, Maria Lúcia

    2009-11-01

    The development of azole antifungals has allowed for the treatment of several fungal infections. However, the use of these compounds is restricted because of their hepatotoxicity or because they need to be administered together with other drugs in order to prevent resistance to monotherapy. Benzoxazole derivatives are among the most thriving molecular prototypes for the development of antifungal agents. 2-(2'-hydroxyphenyl) benzoxazoles are versatile molecules that emit fluorescence and have antibacterial, antiviral and antifungal properties. 2-(2'-hydroxy-5'-aminophenyl) benzoxazole (HAMBO) was tested against Candida yeast. The inhibition provided by HAMBO was lower than that of fluconazole, showing low antifungal activity against Candida spp., but equivalent to that of benzoxazoles tested in similar studies. HAMBO showed fungistatic activity against all analysed strains. This class of novel benzoxazole compounds may be used as template to produce better antifungal drugs.

  11. Study the interactions between human serum albumin and two antifungal drugs: fluconazole and its analogue DTP.

    Science.gov (United States)

    Zhang, Shao-Lin; Yao, Huankai; Wang, Chenyin; Tam, Kin Y

    2014-11-01

    Binding affinities of fluconazole and its analogue 2-(2,4-dichlorophenyl)-1,3-di(1H-1,2,4-triazol-yl)-2-propanol (DTP) to human serum albumin (HSA) were investigated under approximately human physiological conditions. The obtained result indicated that HSA could generate fluorescent quenching by fluconazole and DTP because of the formation of non-fluorescent ground-state complexes. Binding parameters calculated from the Stern-Volmer and the Scatchard equations showed that fluconazole and DTP bind to HSA with binding affinities of the order 10(4)L/mol. The thermodynamic parameters revealed that the binding was characterized by negative enthalpy and positive entropy changes, suggesting that the binding reaction was exothermic. Hydrogen bonds and hydrophobic interaction were found to be the predominant intermolecular forces stabilizing the drug-protein. The effect of metal ions on the binding constants of fluconazole-HSA complex suggested that the presence of Mg(2+) and Zn(2+) ions could decrease the free drug level and extend the half-life in the systematic circulation. Docking experiments revealed that fluconazole and DTP binds in HSA mainly by hydrophobic interaction with the possibility of hydrogen bonds formation between the drugs and the residues Arg 222, Lys 199 and Lys 195 in HSA.

  12. Treatment of falciparum malaria in the age of drug resistance

    Directory of Open Access Journals (Sweden)

    Shanks G

    2006-01-01

    Full Text Available The growing problem of drug resistance has greatly complicated the treatment for falciparum malaria. Whereaschloroquine and sulfadoxine/pyrimethamine could once cure most infections, this is no longer true and requiresexamination of alternative regimens. Not all treatment failures are drug resistant and other issues such asexpired antimalarials and patient compliance need to be considered. Continuation of a failing treatment policyafter drug resistance is established suppresses infections rather than curing them, leading to increasedtransmission of malaria, promotion of epidemics and loss of public confidence in malaria control programs.Antifolate drug resistance (i.e. pyrimethamine means that new combinations are urgently needed particularlybecause addition of a single drug to an already failing regimen is rarely effective for very long. Atovaquone/proguanil and mefloquine have been used against multiple drug resistant falciparum malaria with resistance toeach having been documented soon after drug introduction. Drug combinations delay further transmission ofresistant parasites by increasing cure rates and inhibiting formation of gametocytes. Most currentlyrecommended drug combinations for falciparum malaria are variants of artemisinin combination therapy wherea rapidly acting artemisinin compound is combined with a longer half-life drug of a different class. Artemisininsused include dihydroartemisinin, artesunate, artemether and companion drugs include mefloquine, amodiaquine,sulfadoxine/pyrimethamine, lumefantrine, piperaquine, pyronaridine, chlorproguanil/dapsone. The standard ofcare must be to cure malaria by killing the last parasite. Combination antimalarial treatment is vital not only tothe successful treatment of individual patients but also for public health control of malaria.

  13. Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp.

    Science.gov (United States)

    da Silva, Anderson Ramos; de Andrade Neto, João Batista; da Silva, Cecília Rocha; Campos, Rosana de Sousa; Costa Silva, Rose Anny; Freitas, Daniel Domingues; do Nascimento, Francisca Bruna Stefany Aires; de Andrade, Larissa Nara Dantas; Sampaio, Letícia Serpa; Grangeiro, Thalles Barbosa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Nobre Júnior, Hélio Vitoriano

    2016-06-01

    The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001).

  14. Prediction of resistance development against drug combinations by collateral responses to component drugs

    DEFF Research Database (Denmark)

    Munck, Christian; Gumpert, Heidi; Nilsson Wallin, Annika;

    2014-01-01

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability...

  15. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut

    Science.gov (United States)

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a tran...

  16. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Bergval, I.L.

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive mech

  17. DRUG-RESISTANCE, SUPPORTIVE CARE AND DOSE INTENSITY

    NARCIS (Netherlands)

    DEVRIES, EGE; HAMILTON, TC; LIND, M; DAUPLAT, J; NEIJT, JP; OZOLS, RF

    1993-01-01

    Background: Both intrinsic and acquired drug resistance occur in ovarian cancer. Much work on in vivo or in vitro, obtained drug resistance has been done and this knowledge is presently being converted into clinical studies. Materials and methods: The review focuses on the detoxifying system, MDR (m

  18. Epidemiological control of drug resistance and compensatory mutation under resistance testing and second-line therapy.

    Science.gov (United States)

    Saddler, Clare A; Wu, Yue; Valckenborgh, Frank; Tanaka, Mark M

    2013-12-01

    The fitness cost of antibiotic resistance in the absence of treatment raises the possibility that prudent use of drugs may slow or reverse the rise of resistance. Unfortunately, compensatory mutations that lower this cost may lead to entrenched resistance. Here, we develop a mathematical model of resistance evolution and compensatory mutation to determine whether reversion to sensitivity can occur, and how disease control might be facilitated by a second-line therapy. When only a single antibiotic is available, sensitive bacteria reach fixation only under treatment rates so low that hardly any cases are treated. We model a scenario in which drug sensitivity can be accurately tested so that a second-line therapy is administered to resistant cases. Before the rise of resistance to the second drug, disease eradication is possible if resistance testing and second-line treatment are conducted at a high enough rate. However, if double drug resistance arises, the possibility of disease eradication is greatly reduced and compensated resistance prevails in most of the parameter space. The boundary separating eradication from fixation of compensated resistance is strongly influenced by the underlying basic reproductive number of the pathogen and drug efficacy in sensitive cases, but depends less on the resistance cost and compensation. When double resistance is possible, the boundary is affected by the relative strengths of resistance against the two drugs in the double-resistant-compensated strain.

  19. AN OVERVIEW ON ANTIFUNGAL THERAPY

    OpenAIRE

    Karki, Nirmal K.; Ahmed, Azhar; Charde, Rita; Charde, Manoj; Gandhare, Bhushan

    2011-01-01

    The number of fungi causing systemic disease is growing and the number of systemic diseases caused by fungi is increasing. The currently available antifungal agents for the treatment of systemic mycoses include polyene antibiotics (Amphotericin B), fluoropyrimidine (Flu cytosine), and Nystatin andazole group of drugs (Ketoconazole, Fluconazole, and Itraconazole). Novel drug delivery systems for antifungal therapy, based on the type of formulation are classified as Liposomes Nanocochleates, Na...

  20. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers...... to provide insight into the empiric treatment of TBM. METHODS: Mycobacterium tuberculosis was cultured from the cerebrospinal fluid (CSF) of 142 patients and was tested for susceptibility to first-line antituberculosis drugs, streptomycin (SM), isoniazid (INH), rifampicin (RIF) and ethambutol (EMB). RESULTS...

  1. Fitness cost of chromosomal drug resistance-conferring mutations.

    Science.gov (United States)

    Sander, Peter; Springer, Burkhard; Prammananan, Therdsak; Sturmfels, Antje; Kappler, Martin; Pletschette, Michel; Böttger, Erik C

    2002-05-01

    To study the cost of chromosomal drug resistance mutations to bacteria, we investigated the fitness cost of mutations that confer resistance to different classes of antibiotics affecting bacterial protein synthesis (aminocyclitols, 2-deoxystreptamines, macrolides). We used a model system based on an in vitro competition assay with defined Mycobacterium smegmatis laboratory mutants; selected mutations were introduced by genetic techniques to address the possibility that compensatory mutations ameliorate the resistance cost. We found that the chromosomal drug resistance mutations studied often had only a small fitness cost; compensatory mutations were not involved in low-cost or no-cost resistance mutations. When drug resistance mutations found in clinical isolates were considered, selection of those mutations that have little or no fitness cost in the in vitro competition assay seems to occur. These results argue against expectations that link decreased levels of antibiotic consumption with the decline in the level of resistance.

  2. Antifungal susceptibility testing of Aspergillus species complex in the Clinical Laboratory: how to do it, when to do it, and how to interpret it

    Directory of Open Access Journals (Sweden)

    Esther Manso

    2014-12-01

    Full Text Available The emergence of drug resistance in fungal pathogens has a profound impact on human health given limited number of antifungal drugs. Antifungal resistance in Aspergillus spp. infection can be encountered in the antifungal drug-exposed patient due to selection of intrinsically resistant species or isolates with acquired resistance belonging to species that are normally susceptible. Resistance to triazoles is not common in Aspergillus spp., however, triazole resistance in A. fumigatus appears to be increasing in several European countries in recent years and can be clinically relevant. The Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing have developed breakpoints and epidemiological cutoff values that are now established for Aspergillus spp. Clinical microbiology laboratories will be employed commercial susceptibility assays, rather than reference broth microdilution methods and comparative studies are particularly important.

  3. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    Science.gov (United States)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  4. The evolution of drug-resistant malaria: the role of drug elimination half-life.

    OpenAIRE

    Hastings, Ian M.; Watkins, William M; White, Nicholas J

    2002-01-01

    This paper seeks to define and quantify the influence of drug elimination half-life on the evolution of antimalarial drug resistance. There are assumed to be three general classes of susceptibility of the malaria parasite Plasmodium falciparum to a drug: Res0, the original, susceptible wildtype; Res1, a group of intermediate levels of susceptibility that are more tolerant of the drug but still cleared by treatment; and Res2, which is completely resistant to the drug. Res1 and Res2 resistance ...

  5. A Hybrid Drug Limits Resistance by Evading the Action of the Multiple Antibiotic Resistance Pathway.

    Science.gov (United States)

    Wang, Kathy K; Stone, Laura K; Lieberman, Tami D; Shavit, Michal; Baasov, Timor; Kishony, Roy

    2016-02-01

    Hybrid drugs are a promising strategy to address the growing problem of drug resistance, but the mechanism by which they modulate the evolution of resistance is poorly understood. Integrating high-throughput resistance measurements and genomic sequencing, we compared Escherichia coli populations evolved in a hybrid antibiotic that links ciprofloxacin and neomycin B with populations evolved in combinations of the component drugs. We find that populations evolved in the hybrid gain less resistance than those evolved in an equimolar mixture of the hybrid's components, in part because the hybrid evades resistance mediated by the multiple antibiotic resistance (mar) operon. Furthermore, we find that the ciprofloxacin moiety of the hybrid inhibits bacterial growth whereas the neomycin B moiety diminishes the effectiveness of mar activation. More generally, comparing the phenotypic and genotypic paths to resistance across different drug treatments can pinpoint unique properties of new compounds that limit the emergence of resistance.

  6. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans.

    Science.gov (United States)

    Tamiya, Hiroyuki; Ochiai, Eri; Kikuchi, Kazuyo; Yahiro, Maki; Toyotome, Takahito; Watanabe, Akira; Yaguchi, Takashi; Kamei, Katsuhiko

    2015-05-01

    The incidence of Aspergillus infection has been increasing in the past few years. Also, new Aspergillus fumigatus-related species, namely Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, were shown to infect humans. These fungi exhibit marked morphological similarities to A. fumigatus, albeit with different clinical courses and antifungal drug susceptibilities. The present study used liquid chromatography/time-of-flight mass spectrometry to identify the secondary metabolites secreted as virulence factors by these Aspergillus species and compared their antifungal susceptibility. The metabolite profiles varied widely among A. fumigatus, A. lentulus, A. udagawae, and A. viridinutans, producing 27, 13, 8, and 11 substances, respectively. Among the mycotoxins, fumifungin, fumiquinazoline A/B and D, fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and verruculogen were only found in A. fumigatus, whereas auranthine was only found in A. lentulus. The amount of gliotoxin, one of the most abundant mycotoxins in A. fumigatus, was negligible in these related species. In addition, they had decreased susceptibility to antifungal agents such as itraconazole and voriconazole, even though metabolites that were shared in the isolates showing higher minimum inhibitory concentrations than epidemiological cutoff values were not detected. These strikingly different secondary metabolite profiles may lead to the development of more discriminative identification protocols for such closely related Aspergillus species as well as improved treatment outcomes.

  7. The identification of Candida species isolated from clinical specimens of immunocompromised patients with PCR and determination of antifungal resistance genes with RFLP and sequencing analysis

    Directory of Open Access Journals (Sweden)

    Yıldız Yeğenoğlu

    2012-06-01

    Full Text Available Objectives: The aim of this study is to investigate PCRtechnique and antifungal resistance genes with RFLP andsequencing analysis in Candida species isolated fromclinical specimens of immune-compromised patients.Materials and methods: Clinical samples (96 bronchoalveolarlavages, 56 biopsy-abscess, 8 blood specimens,15 peritoneal fluid specimens, 15 pleural fluid, 5 cerebrospinalfluid and 5 pericard fluid specimens from 200 immunosuppressedpatients were studied by conventionaland molecular methods. Antifungal susceptibility testingwas performed by the E-test method. Firstly, fungal DNAwas isolated from specimens, and then the resultantproducts are defined with multiplex PCR. Antifungal resistanceand resistance genes were established by E-testand RFLP analysis.Results: Thirty of 200 samples (15% were culture positive[20 Candida albicans (67%, five Candida parapsilosis(17%, five Candida tropicalis (17%], and 170 ofsamples were found culture negative (85%. PCR with theuniversal primers detected fungal DNA in all 30 culturepositive samples. One strain was determined as resistant;2 strains were dose dependent susceptible and 27 strainswere sensitive to fluconazole by E-test. The resistancegene (ERG11 was detected by BamHI and SalI enzymesrevealed fluconazole resistance in one of C.albicansstrains. The identification was successful in Candida dubliniensis(950 bp and Candida krusei (360 bp with multiplexPCR. D132E and E216D mutations were detected insequencing of ERG 11 gene of this isolate and comparedwith reference gene in GenBank by clustal analysis.Conclusion: The molecular test methods supplies correcttherapy rather early in immunosuppressive patientstherefore it is important for the survival.

  8. Drug-resistance mechanisms and prevalence of Enterobacter cloacae resistant to multi-antibiotics

    Institute of Scientific and Technical Information of China (English)

    张杰; 顾怡明; 俞云松; 周志慧; 杜小玲

    2004-01-01

    @@The main drug-resistance mechanism of gram-negative bacteria is producing β-lactamases. Two kinds of enzymes cause drug resistance by hydrolyzing oxyimino-cephalosporins and aztreonam: one is chromosomally encoded AmpC β-lactamases, the other is plasmid-mediated extended-spectrum β-lactamases (ESBLs). Enterobacter cloacae can produce both of them, so that these strains are seriously resistance to many antibiotics. In order to study the main drug-resistant mechanism in Enterobacter cloacae, PCR and nucleotide sequencing were performed on 58 multidrug resistant strains.

  9. Exploiting bacterial drug resistance: a single construct for the diagnosis and treatment of drug resistant infections

    Science.gov (United States)

    Sallum, Ulysses W.; Zheng, Xiang; Verma, Sarika; Hasan, Tayyaba

    2009-06-01

    β-lactamase enzyme-activated photosensitizer (β-LEAP). We aim to exploit drug resistance mechanisms to selectively release photosensitizers (PSs) for a specific photodynamic antimicrobial effect and reduced host tissue damage. Consequently, the fluorescence emission intensity of the PSs increases and allows for the detection of enzyme activity. In this work we sought to evaluate β-LEAP for use as a sensitive molecular probe. We have reported the enzyme specific antibacterial action of β-LEAP. Here we report the use of β-LEAP for the rapid functional definition of a β-lactamase.

  10. Current Status of Methods to Assess Cancer Drug Resistance

    Directory of Open Access Journals (Sweden)

    Theodor H. Lippert, Hans-Jörg Ruoff, Manfred Volm

    2011-01-01

    Full Text Available Drug resistance is the main cause of the failure of chemotherapy of malignant tumors, resistance being either preexisting (intrinsic resistance or induced by the drugs (acquired resistance. At present, resistance is usually diagnosed during treatment after a long period of drug administration.In the present paper, methods for a rapid assessment of drug resistance are described. Three main classes of test procedures can be found in the literature, i.e. fresh tumor cell culture tests, cancer biomarker tests and positron emission tomography (PET tests. The methods are based on the evaluation of molecular processes, i.e. metabolic activities of cancer cells. Drug resistance can be diagnosed before treatment in-vitro with fresh tumor cell culture tests, and after a short time of treatment in-vivo with PET tests. Cancer biomarker tests, for which great potential has been predicted, are largely still in the development stage. Individual resistance surveillance with tests delivering rapid results signifies progress in cancer therapy management, by providing the possibility to avoid drug therapies that are ineffective and only harmful.

  11. Antifungal activity of multifunctional Fe{sub 3}O{sub 4}-Ag nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@thapar.ed [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Vala, Anjana K.; Andhariya, Nidhi [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India); Upadhyay, R.V. [P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388421 (India); Mehta, R.V. [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India)

    2011-05-15

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe{sub 3}O{sub 4}-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe{sub 3}O{sub 4}) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 {mu}g/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: Synthesis of Fe{sub 3}O{sub 4}-Ag core-shell nanocolloids. Antifungal activity of Fe{sub 3}O{sub 4}-Ag nanocolloids against Aspergillus glaucus isolates. The MIC value for A. glaucus is 2000 {mu}g/mL. Antifungal activity is better or comparable with most prominent antibiotics.

  12. Defeating pathogen drug resistance: guidance from evolutionary theory.

    Science.gov (United States)

    Pepper, John W

    2008-12-01

    Many of the greatest challenges in medicine and public health involve the evolution of drug resistance by pathogens. Recent advances in the theory of natural selection suggest that there are two broad classes of pathogen traits that can be targeted by drugs or vaccines. The first class, consisting of traits that benefit the individual organisms bearing them, causes a strong evolutionary response and the rapid emergence of drug resistance. The second class, consisting of traits that benefit groups of pathogen organisms including the individual provider, causes a weaker evolutionary response and less drug resistance. Although most previous drug development has targeted the first class, it would be advantageous to focus on the second class as targets for drug and vaccine development. Specific examples and test cases are discussed.

  13. Delamanid: A new armor in combating drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Alphienes Stanley Xavier

    2014-01-01

    Full Text Available Intense search has been made in the discovery of newer anti-TB drugs to tackle the issues such as drug resistance, HIV co-infection and risk of drug-drug interactions in the management of TB. Delamanid, a newer mycobacterial cell wall synthesis inhibitor, received a conditional approval from European medicines agency (EMA for the treatment of MDR-TB. Preclinical and clinical studies have shown that delamanid has high potency, least risk for drug-drug interactions and better tolerability.

  14. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma.

    Science.gov (United States)

    Issa, Mark E; Takhsha, Farnaz Sedigheh; Chirumamilla, Chandra Sekhar; Perez-Novo, Claudina; Vanden Berghe, Wim; Cuendet, Muriel

    2017-01-01

    Multiple myeloma (MM) is a hematological malignancy, which remains incurable because most patients eventually relapse or become refractory to current treatments. Due to heterogeneity within the cancer cell microenvironment, cancer cell populations employ a dynamic survival strategy to chemotherapeutic treatments, which frequently results in a rapid acquisition of therapy resistance. Besides resistance-conferring genetic alterations within a tumor cell population selected during drug treatment, recent findings also reveal non-mutational mechanisms of drug resistance, involving a small population of "cancer stem cells" (CSCs) which are intrinsically more refractory to the effects of a variety of anticancer drugs. Other studies have implicated epigenetic mechanisms in reversible drug tolerance to protect the population from eradication by potentially lethal exposures, suggesting that acquired drug resistance does not necessarily require a stable heritable genetic alteration. Clonal evolution of MM cells and the bone marrow microenvironment changes contribute to drug resistance. MM-CSCs may not be a static population and survive as phenotypically and functionally different cell types via the transition between stem-like and non-stem-like states in local microenvironments, as observed in other types of cancers. Targeting MM-CSCs is clinically relevant, and different approaches have been suggested to target molecular, metabolic and epigenetic signatures, and the self-renewal signaling characteristic of MM CSC-like cells. Here, we summarize epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma.

  15. Mechanisms of Resistance to Antibody-Drug Conjugates.

    Science.gov (United States)

    Loganzo, Frank; Sung, Matthew; Gerber, Hans-Peter

    2016-12-01

    Drug resistance limits the effectiveness of cancer therapies. Despite attempts to develop curative anticancer treatments, tumors evolve evasive mechanisms limiting durable responses. Hence, diverse therapies are used to attack cancer, including cytotoxic and targeted agents. Antibody-drug conjugates (ADC) are biotherapeutics designed to deliver potent cytotoxins to cancer cells via tumor-specific antigens. Little is known about the clinical manifestations of drug resistance to this class of therapy; however, recent preclinical studies reveal potential mechanisms of resistance. Because ADCs are a combination of antibody and small molecule cytotoxin, multifactorial modes of resistance are emerging that are inherent to the structure and function of the ADC. Decreased cell-surface antigen reduces antibody binding, whereas elevated drug transporters such as MDR1 and MRP1 reduce effectiveness of the payload. Inherent to the uniqueness of the ADC, other novel resistance mechanisms are emerging, including altered antibody trafficking, ADC processing, and intracellular drug release. Most importantly, the modular nature of the ADC allows components to be switched and replaced, enabling development of second-generation ADCs that overcome acquired resistance. This review is intended to highlight recent progress in our understanding of ADC resistance, including approaches to create preclinical ADC-refractory models and to characterize their emerging mechanisms of resistance. Mol Cancer Ther; 15(12); 2825-34. ©2016 AACR.

  16. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  17. The evolution of drug-resistant malaria

    OpenAIRE

    Plowe, Christopher V.

    2008-01-01

    Molecular epidemiological investigations have uncovered the patterns of emergence and global spread of Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine. Malaria parasites highly resistant to chloroquine and pyrimethamine spread from Asian origins to Africa, at great cost to human health and life. If artemisinin-resistant falciparum malaria follows the same pattern, renewed efforts to eliminate and eradicate malaria will be gravely threatened. This paper, adapted f...

  18. 75 FR 33317 - Antibacterial Resistance and Diagnostic Device and Drug Development Research for Bacterial...

    Science.gov (United States)

    2010-06-11

    ... Development Research for Bacterial Diseases; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION.... The workshop will address antibacterial drug resistance, mechanisms of resistance, epidemiology of... Drug Evaluation and Research, Food and Drug Administration, Office of Antimicrobial Products, 10903...

  19. Structure-based drug design to overcome drug resistance: challenges and opportunities.

    Science.gov (United States)

    Ferreira, Rafaela S; Andricopulo, Adriano D

    2014-01-01

    Drug resistance is a common concern for the development of novel antiviral, antimicrobial and anticancer therapies. To overcome this problem, several strategies have been developed, many of which involving the theme of this review, the use of structure-based drug design (SBDD) approaches. These include the successful design of new compounds that target resistant mutant proteins, as well as the development of drugs that target multiple proteins involved in specific biochemical pathways. Finally, drug resistance can also be considered in the early stages of drug discovery, through the use of strategies to delay the development of resistance. The purpose of this brief review is to underline the usefulness of SBDD approaches based on case studies, highlighting present challenges and opportunities in drug design.

  20. Progress in antibacterial and antifungal chemotherapy.

    Science.gov (United States)

    Fromtling, R A

    2000-08-01

    The European Society of Clinical Microbiology and Infectious Diseases sponsored the 10th European Congress on Clinical Microbiology and Infectious Diseases in Stockholm, Sweden, May 28-31, 2000. At the ECMID, well-attended sessions were held which focused on the pathogenesis and therapy of viral, bacterial and fungal diseases. This report focuses on new information on resistance to antibacterial agents, including data from recent surveillance studies, and the in vitro and investigational clinical activity of new antibacterial (moxifloxacin, telithromycin) and antifungal (fluconazole, itraconazole, voriconazole, amphotericin B, liposomal formulations of amphotericin B, terbinafine and the candins) drugs.

  1. Emerging Infections Program as Surveillance for Antimicrobial Drug Resistance.

    Science.gov (United States)

    Fridkin, Scott K; Cleveland, Angela A; See, Isaac; Lynfield, Ruth

    2015-09-01

    Across the United States, antimicrobial drug-resistant infections affect a diverse population, and effective interventions require concerted efforts across various public health and clinical programs. Since its onset in 1994, the Centers for Disease Control and Prevention Emerging Infections Program has provided robust and timely data on antimicrobial drug-resistant infections that have been used to inform public health action across a spectrum of partners with regard to many highly visible antimicrobial drug-resistance threats. These data span several activities within the Program, including respiratory bacterial infections, health care-associated infections, and some aspects of foodborne diseases. These data have contributed to estimates of national burden, identified populations at risk, and determined microbiological causes of infection and their outcomes, all of which have been used to inform national policy and guidelines to prevent antimicrobial drug-resistant infections.

  2. Drug resistance in cancer: molecular evolution and compensatory proliferation.

    Science.gov (United States)

    Friedman, Ran

    2016-03-15

    Targeted therapies have revolutionized cancer treatment. Unfortunately, their success is limited due to the development of drug resistance within the tumor, which is an evolutionary process. Understanding how drug resistance evolves is a prerequisite to a better success of targeted therapies. Resistance is usually explained as a response to evolutionary pressure imposed by treatment. Thus, evolutionary understanding can and should be used in the design and treatment of cancer. In this article, drug-resistance to targeted therapies is reviewed from an evolutionary standpoint. The concept of apoptosis-induced compensatory proliferation (AICP) is developed. It is shown that AICP helps to explain some of the phenomena that are observed experimentally in cancers. Finally, potential drug targets are suggested in light of AICP.

  3. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story.

    Science.gov (United States)

    Baker, Nicola; de Koning, Harry P; Mäser, Pascal; Horn, David

    2013-03-01

    Melarsoprol and pentamidine represent the two main classes of drugs, the arsenicals and diamidines, historically used to treat the diseases caused by African trypanosomes: sleeping sickness in humans and Nagana in livestock. Cross-resistance to these drugs was first observed over 60 years ago and remains the only example of cross-resistance among sleeping sickness therapies. A Trypanosoma brucei adenosine transporter is well known for its role in the uptake of both drugs. More recently, aquaglyceroporin 2 (AQP2) loss of function was linked to melarsoprol-pentamidine cross-resistance. AQP2, a channel that appears to facilitate drug accumulation, may also be linked to clinical cases of resistance. Here, we review these findings and consider some new questions as well as future prospects for tackling the devastating diseases caused by these parasites.

  4. Highly active ozonides selected against drug resistant malaria

    Directory of Open Access Journals (Sweden)

    Lis Lobo

    2016-01-01

    Full Text Available Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART, artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites.

  5. Highly active ozonides selected against drug resistant malaria

    Science.gov (United States)

    Lobo, Lis; de Sousa, Bruno; Cabral, Lília; Cristiano, Maria LS; Nogueira, Fátima

    2016-01-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  6. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design.

    Science.gov (United States)

    Mabanglo, Mark F; Hast, Michael A; Lubock, Nathan B; Hellinga, Homme W; Beese, Lorena S

    2014-03-01

    Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high-resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide substrate, corresponding to successive steps in ordered substrate binding, revealed that the second substrate-binding step is accompanied by motions of a loop in the catalytic site. Re-examination of other FTase structures showed that this motion is conserved. The substrate- and product-binding clefts in the AfFTase active site are wider than in human FTase (hFTase). Widening is a consequence of small shifts in the α-helices that comprise the majority of the FTase structure, which in turn arise from sequence variation in the hydrophobic core of the protein. These structural effects are key features that distinguish fungal FTases from hFTase. Their variation results in differences in steady-state enzyme kinetics and inhibitor interactions and presents opportunities for developing selective anti-fungal drugs by exploiting size differences in the active sites. We illustrate the latter by comparing the interaction of ED5 and Tipifarnib with hFTase and AfFTase. In AfFTase, the wider groove enables ED5 to bind in the presence of FPP, whereas in hFTase it binds only in the absence of substrate. Tipifarnib binds similarly to both enzymes but makes less extensive contacts in AfFTase with consequently weaker binding.

  7. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis

    Institute of Scientific and Technical Information of China (English)

    REBECCA L DUNNE; LINDA A DUNN; PETER UPCROFT; PETER J O'DONOGHUE; JACQUELINE A UPCROFT

    2003-01-01

    Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved,effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and crossresistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.

  8. Drug-resistant tuberculosis: time for visionary political leadership

    OpenAIRE

    Abubakar, I; Zignol, M; Falzon, D; Raviglione, M.; Ditiu, L; Masham, S; Adetifa, I; Ford, N.; Cox, H.; Lawn, SD; Marais, BJ; McHugh, TD; Mwaba, P.; Bates, M; M. Lipman

    2013-01-01

    Two decades ago, WHO declared tuberculosis a global emergency, and invested in the highly cost-effective directly observed treatment short-course programme to control the epidemic. At that time, most strains of Mycobacterium tuberculosis were susceptible to first-line tuberculosis drugs, and drug resistance was not a major issue. However, in 2013, tuberculosis remains a major public health concern worldwide, with prevalence of multidrug-resistant (MDR) tuberculosis rising. WHO estimates rough...

  9. 抗真菌药物的TDM文献计量分析%Bibliometric analysis of research papers in the subject of TDM of antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    曹江; 白艳; 王冬; 江学维; 王瑾; 王睿; 王昆

    2015-01-01

    目的:全面了解抗真菌药物治疗药物监测的研究进展,为临床合理应用抗真菌药物提供参考,确保患者用药安全。方法:英文检索PubMed、Embase、Web of Science数据库;中文检索SinoMed关于抗真菌药物的治疗药物监测的文献,检索时间为1985年–2014年。利用EndNote X5及人工双重进行分类整理,用Excel表对最终纳入的文献建立评价数据库。分析文献发表的年代、作者、期刊、影响因子、研究机构、被引频次和研究方法,归纳文献涉及抗真菌药物与处理措施。结果:共检索出英文文献359篇,中文29篇。英文数据库检出文献:PubMed 76篇,Embase 224篇,SCI 59篇;中文数据库检出文献:SinoMed 29篇。经EndNote X5和双人手工去除重复文献,按入排标准,最终得到226篇文献。其中,英文文献220篇,中文文献6篇。2004–2014年文献量增加较快,近年来随着抗真菌药物的广泛应用,抗真菌药物的治疗药物监测也逐渐引起重视。纳入研究的文献类型有论著、综述、回顾性分析、病例分析、会议等。结论:由于抗真菌药物在临床应用过程中存在个体差异大和联合用药时易出现不良反应等情况,国内外已对抗真菌药监测加大了关注度。%Objective:To comprehensively understand the research progress of therapeutic drug monitoring (TDM) of antifungal drugs, provide references for clinical rational use of antifungal drugs, and ensure the medication safety of the patients. Methods:PubMed, Embase and Web of Science databases were used for searching English literature; SinoMed was searched for Chinese literature. TDM literature on antifungal drugs were searched from 1985 up to 2014. Endnote X5 and artiifcial double sorting were used, evaluation database based on enrolled literature was established with the Excel. The time of publication, authors, journals, inlfuence factors of published literature

  10. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  11. The challenges of multi-drug-resistance in hepatology.

    Science.gov (United States)

    Fernández, Javier; Bert, Frédéric; Nicolas-Chanoine, Marie-Hélène

    2016-11-01

    Antimicrobial resistance has become a major global public health security problem that needs coordinated approaches at regional, national and international levels. Antibiotic overuse and the failure of control measures to prevent the spread of resistant bacteria in the healthcare environment have led to an alarming increase in the number of infections caused by resistant bacteria, organisms that resist many (multi-drug and extensively drug-resistant strains), if not all (pan-drug-resistant bacteria) currently available antibiotics. While Gram-positive cocci resistance (methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci) shows a heterogeneous geographical distribution, extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenem-resistant Enterobacteriaceae have become pandemic worldwide and endemic in some parts of the world, respectively. Moreover, currently available therapeutic options for resistant bacteria are very limited, with very few new agents in development. Antimicrobial resistance is especially relevant in decompensated cirrhosis. Firstly, cirrhotic patients are highly susceptible to develop infections caused by resistant bacteria as risk factors of multiresistance concentrate in this population (mainly repeated hospitalizations and antibiotic exposure). Secondly, inappropriate empirical antibiotic schedules easily translate into increased morbidity (acute kidney injury, acute-on-chronic liver failure, septic shock) and hospital mortality in advanced cirrhosis. Therefore, hepatologists must face nowadays a complex clinical scenario that requires new empirical antibiotic strategies that may further spread resistance. Global, regional and local preventive measures should therefore be implemented to combat antimicrobial resistance in cirrhosis including the restriction of antibiotic prophylaxis to high-risk populations, investigation on non-antibiotic prophylaxis, stewardship programs on adequate antibiotic

  12. Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections

    Science.gov (United States)

    2012-10-01

    COVERED 26 September 2011 25 September 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Identification of New Drug Targets in Multi-Drug Resistant...will be necessary for the fragment based screening and subsequent design of new drug lead compounds. To accompany and validate the structural studies

  13. Drug efflux pump deficiency and drug target resistance masking in growing bacteria

    Science.gov (United States)

    Fange, David; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2009-01-01

    Recent experiments have shown that drug efflux pump deficiency not only increases the susceptibility of pathogens to antibiotics, but also seems to “mask” the effects of mutations, that decrease the affinities of drugs to their intracellular targets, on the growth rates of drug-exposed bacteria. That is, in the presence of drugs, the growth rates of drug-exposed WT and target mutated strains are the same in a drug efflux pump deficient background, but the mutants grow faster than WT in a drug efflux pump proficient background. Here, we explain the mechanism of target resistance masking and show that it occurs in response to drug efflux pump inhibition among pathogens with high-affinity drug binding targets, low cell-membrane drug-permeability and insignificant intracellular drug degradation. We demonstrate that target resistance masking is fundamentally linked to growth-bistability, i.e., the existence of 2 different steady state growth rates for one and the same drug concentration in the growth medium. We speculate that target resistance masking provides a hitherto unknown mechanism for slowing down the evolution of target resistance among pathogens. PMID:19416855

  14. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco

    DEFF Research Database (Denmark)

    Jach, G; Görnhardt, B; Mundy, J;

    1995-01-01

    . To create a situation similar to 'multi-gene' tolerance, which traditional breeding experience has shown to provide crops with a longer-lasting protection, several of these antifungal genes were combined and protection against fungal attack resulting from their co-expression in planta was evaluated...

  15. In vitro resistance of clinical Fusarium species to amphotericin B and voriconazole using the EUCAST antifungal susceptibility method

    NARCIS (Netherlands)

    Taj-Aldeen, Saad J; Salah, Husam; Al-Hatmi, Abdullah M S; Hamed, Manal; Theelen, Bart; van Diepeningen, Anne D; Boekhout, Teun; Lass-Flörl, Cornelia

    2016-01-01

    Susceptibility testing using the EUCAST-AFST method against 39 clinical Fusarium strains consecutively collected from local and invasive infections during the last 10years assessed the in vitro activities of amphotericin B (AmB) and triazole antifungal agents. In addition, the susceptibility pattern

  16. Bacteremic pneumonia caused by extensively drug-resistant Streptococcus pneumoniae.

    Science.gov (United States)

    Kang, Cheol-In; Baek, Jin Yang; Jeon, Kyeongman; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2012-12-01

    The emergence of antimicrobial resistance threatens the successful treatment of pneumococcal infections. Here we report a case of bacteremic pneumonia caused by an extremely drug-resistant strain of Streptococcus pneumoniae, nonsusceptible to at least one agent in all classes but vancomycin and linezolid, posing an important new public health threat in our region.

  17. Design, synthesis and molecular docking studies of novel triazole antifungal compounds

    Institute of Scientific and Technical Information of China (English)

    Qiu Qin He; Ke Li; Yong Bing Cao; Huan Wen Dong; Li Hua Zhao; Chao Mei Liu; Chun Quan Sheng

    2007-01-01

    Based on the active site of Candida albicans lanosterol 14α-demethylase (CACYP51), novel triazole compounds structurally different from the current triazole drugs were designed and synthesized.In vitro antifungal activities showed that compounds 10,11,16 and 20 exhibited strong activities.In addition, compounds 10,11 and 16 also displayed certain activities against fluconazole-resistant fungi.

  18. World Health Organization/HIVResNet drug resistance laboratory strategy

    NARCIS (Netherlands)

    Bertognolio, Silvio; Derdelinckx, Inge; Parker, Monica; Fitzgibbon, Joseph; Fleury, Herve; Peeters, Martin; Schuurman, Rob; Pillay, Deenan; Morris, Lynn; Tanuri, Amilcar; Gershy-Damet, Guy-Michel; Nkengasong, John; Gilks, Charles F.; Sutherland, Donald; Sandstrom, Paul

    2008-01-01

    With rapidly increasing access to antiretroviral drugs globally, HIV drug resistance (HIVDR) has become a significant public health issue, This requires a coordinated and collaborative response from country level to international level to assess the extent of HIVDR and the establishment of efficient

  19. World Antimalarial Resistance Network I: Clinical efficacy of antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Olliaro Piero

    2007-09-01

    Full Text Available Abstract The proliferation of antimalarial drug trials in the last ten years provides the opportunity to launch a concerted global surveillance effort to monitor antimalarial drug efficacy. The diversity of clinical study designs and analytical methods undermines the current ability to achieve this. The proposed World Antimalarial Resistance Network (WARN aims to establish a comprehensive clinical database from which standardised estimates of antimalarial efficacy can be derived and monitored over time from diverse geographical and endemic regions. The emphasis of this initiative is on five key variables which define the therapeutic response. Ensuring that these data are collected at the individual patient level in a consistent format will facilitate better data management and analytical practices, and ensure that clinical data can be readily collated and made amenable for pooled analyses. Such an approach, if widely adopted will permit accurate and timely recognition of trends in drug efficacy. This will guide not only appropriate interventions to deal with established multidrug resistant strains of malaria, but also facilitate prompt action when new strains of drug resistant plasmodia first emerge. A comprehensive global database incorporating the key determinants of the clinical response with in vitro, molecular and pharmacokinetic parameters will bring together relevant data on host, drug and parasite factors that are fundamental contributors to treatment efficacy. This resource will help guide rational drug policies that optimize antimalarial drug use, in the hope that the emergence and spread of resistance to new drugs can be, if not prevented, at least delayed.

  20. Sphingolipids in neuroblastoma : Their role in drug resistance mechanisms

    NARCIS (Netherlands)

    Sietsma, H; Dijkhuis, AJ; Kamps, W; Kok, JW

    2002-01-01

    Disseminated neuroblastoma usually calls for chemotherapy as the primary approach for treatment. Treatment failure is often attributable to drug resistance. This involves a variety of cellular mechanisms, including increased drug efflux through expression of ATP-binding cassette transporters (e.g.,

  1. Quercetin Assists Fluconazole to Inhibit Biofilm Formations of Fluconazole-Resistant Candida Albicans in In Vitro and In Vivo Antifungal Managements of Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Mei Gao

    2016-11-01

    Full Text Available Background: Vulvovaginal candidiasis (VVC is a common gynecological disease. Candida albicans is believed to be mainly implicated in VVC occurrence, the biofilm of which is one of the virulence factors responsible for resistance to traditional antifungal agents especially to fluconazole (FCZ. Quercetin (QCT is a dietary flavonoid and has been demonstrated to be antifungal against C. albicans biofilm. Methods: 17 C. albicans isolates including 15 clinical ones isolated from VVC patients were employed to investigate the effects of QCT and/or FCZ on the inhibition of C. albicans biofilm. Results: We observed that 64 µg/mL QCT and/or 128 µg/mL FCZ could (i be synergistic against 10 FCZ-resistant planktonic and 17 biofilm cells of C. albicans, (ii inhibit fungal adherence, cell surface hydrophobicity (CSH, flocculation, yeast-to-hypha transition, metabolism, thickness and dispersion of biofilms; (iii down-regulate the expressions of ALS1, ALS3, HWP1, SUN41, UME6 and ECE1 and up-regulate the expressions of PDE2, NRG1 and HSP90, and we also found that (iv the fungal burden was reduced in vaginal mucosa and the symptoms were alleviated in a murine VVC model after the treatments of 5 mg/kg QCT and/or 20 mg/kg FCZ. Conclusion: Together with these results, it could be demonstrated that QCT could be a favorable antifungal agent and a promising synergist with FCZ in the clinical management of VVC caused by C. albicans biofilm.

  2. DISTRIBUTION OF PHAGE TYPES AND TRANSFERABLE DRUG RESISTANCE IN SHIGELLAE

    Directory of Open Access Journals (Sweden)

    K.Badalian

    1981-08-01

    Full Text Available A total of 610 strains of Shigellae isolated from cases of diarrhea in Iran during 1962-73 were studied with respect to their phage type, as well as antibiotic resistance and transferable drug resistance along with serotyping. It was shown that there was some relation between serotypes and phage types but no association could be found between phage types and resistance pattern.

  3. Study on Drug Resistance and Relative Mechanisms of Chlamydia Trachomatis

    Institute of Scientific and Technical Information of China (English)

    侯淑萍; 刘全忠

    2004-01-01

    Abstract: Chlamydia Trachomatis (C.T.) is one of the most common pathogens of human sexually transmitted diseases. Treatment of C.T. infection primarily depends on Tetracyclines, Macrolides and Quinolones, but with the wide use of antibiotics an increasing number of drug-resistant Chlamydia trachomatis cases have been reported. This review summarizes the resistant conditions and the possible resistance mechanisms of C.T..

  4. Acquisition of drug resistance and dependence by prions.

    Science.gov (United States)

    Oelschlegel, Anja M; Weissmann, Charles

    2013-02-01

    We have reported that properties of prion strains may change when propagated in different environments. For example, when swainsonine-sensitive 22L prions were propagated in PK1 cells in the presence of swainsonine, drug-resistant variants emerged. We proposed that prions constitute quasi- populations comprising a range of variants with different properties, from which the fittest are selected in a particular environment. Prion populations developed heterogeneity even after biological cloning, indicating that during propagation mutation-like processes occur at the conformational level. Because brain-derived 22L prions are naturally swainsonine resistant, it was not too surprising that prions which had become swa sensitive after propagation in cells could revert to drug resistance. Because RML prions, both after propagation in brain or in PK1 cells, are swainsonine sensitive, we investigated whether it was nonetheless possible to select swainsonine-resistant variants by propagation in the presence of the drug. Interestingly, this was not possible with the standard line of PK1 cells, but in certain PK1 sublines not only swainsonine-resistant, but even swainsonine-dependent populations (i.e. that propagated more rapidly in the presence of the drug) could be isolated. Once established, they could be passaged indefinitely in PK1 cells, even in the absence of the drug, without losing swainsonine dependence. The misfolded prion protein (PrP(Sc)) associated with a swainsonine-dependent variant was less rapidly cleared in PK1 cells than that associated with its drug-sensitive counterpart, indicating that likely structural differences of the misfolded PrP underlie the properties of the prions. In summary, propagation of prions in the presence of an inhibitory drug may not only cause the selection of drug-resistant prions but even of stable variants that propagate more efficiently in the presence of the drug. These adaptations are most likely due to conformational changes of

  5. INDUCTION OF DRUG RESISTANCE IN PLASMODIUM FALCIPARUM: AN INTERMITTENT DRUG EXPOSURE METHOD

    Directory of Open Access Journals (Sweden)

    M.Nateghpour

    1998-03-01

    Full Text Available The production of experimentally induced drug resistance in the laboratory provides valuable opportunities for investigators to study the nature and genetics of drug resistance mechanisms to a given agent, patterns of cross resistance and the mode of action of drugs. At the beginning the continuous drug exposure was chosen as a standard procedure to produce drug— resistant strains of P. falciparum,.but later on some other methods were also applied. An intermittent drug exposure method as a novel procedure has been introduced in this study. Intermittent exposure of chloroquine resistant Kl and chloroquine sensitive T9.96 strains of P. falciparum to halofantrine culminated in a relatively rapid reduction in sensitivity to the drug. The response of halofantrifle - resistnat K1HF and T9.96 strains and parent parasites to halofantrifle, inefloquine, quinine and chloroquine was determined. The results indicated that the effectiveness of halofantrine to K1HF and T9.96HF strains decreased 9 and 3 folds respectively, compared to the parent parasites. Cross -resistance occurred among halofantrine. mefloquine and quinine. Halofantrine resistance was associated with enhanced chloroquine sensitivity in the strain derived from chloroquine - resistant K1 strain, hut not in the strain derived from chloroquine - sensitive T9.96 parasites.

  6. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2015-01-01

    Full Text Available Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent.

  7. Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria.

    Science.gov (United States)

    McKie, J H; Douglas, K T; Chan, C; Roser, S A; Yates, R; Read, M; Hyde, J E; Dascombe, M J; Yuthavong, Y; Sirawaraporn, W

    1998-04-23

    Pyrimethamine acts by selectively inhibiting malarial dihydrofolate reductase-thymidylate synthase (DHFR-TS). Resistance in the most important human parasite, Plasmodium falciparum, initially results from an S108N mutation in the DHFR domain, with additional mutation (most commonly C59R or N51I or both) imparting much greater resistance. From a homology model of the 3-D structure of DHFR-TS, rational drug design techniques have been used to design and subsequently synthesize inhibitors able to overcome malarial pyrimethamine resistance. Compared to pyrimethamine (Ki 1.5 nM) with purified recombinant DHFR fromP. falciparum, the Ki value of the m-methoxy analogue of pyrimethamine was 1.07 nM, but against the DHFR bearing the double mutation (C59R + S108N), the Ki values for pyrimethamine and the m-methoxy analogue were 71.7 and 14.0 nM, respectively. The m-chloro analogue of pyrimethamine was a stronger inhibitor of both wild-type DHFR (with Ki 0.30 nM) and the doubly mutant (C59R +S108N) purified enzyme (with Ki 2.40 nM). Growth of parasite cultures of P. falciparum in vitro was also strongly inhibited by these compounds with 50% inhibition of growth occurring at 3.7 microM for the m-methoxy and 0.6 microM for the m-chloro compounds with the K1 parasite line bearing the double mutation (S108N + C59R), compared to 10.2 microM for pyrimethamine. These inhibitors were also found in preliminary studies to retain antimalarial activity in vivo in P. berghei-infected mice.

  8. Challenges of drug resistance in the management of pancreatic cancer.

    LENUS (Irish Health Repository)

    Sheikh, Rizwan

    2012-02-01

    The current treatment of choice for metastatic pancreatic cancer involves single-agent gemcitabine or a combination of gemcitabine with capecitabine or erlotinib (a tyrosine kinase inhibitor). Only 25–30% of patients respond to this treatment and patients who do respond initially ultimately exhibit disease progression. Median survival for pancreatic cancer patients has reached a plateau due to inherent and acquired resistance to these agents. Key molecular factors implicated in this resistance include: deficiencies in drug uptake, alteration of drug targets, activation of DNA repair pathways, resistance to apoptosis and the contribution of the tumor microenvironment. Moreover, for newer agents including tyrosine kinase inhibitors, overexpression of signaling proteins, mutations in kinase domains, activation of alternative pathways, mutations of genes downstream of the target and\\/or amplification of the target represent key challenges for treatment efficacy. Here we will review the contribution of known mechanisms and markers of resistance to key pancreatic cancer drug treatments.

  9. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Macedo, Ramila de Brito; Teixeira, Carlos Eduardo Cordeiro; Marques, Francisca Jakelyne de Farias; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2014-07-01

    Candida parapsilosis complex comprises three closely related species, C. parapsilosis sensu stricto, Candida metapsilosis and Candida orthopsilosis. In the last decade, antifungal resistance to azoles and caspofungin among C. parapsilosis sensu lato strains has been considered a matter of concern worldwide. In the present study, we evaluated the synergistic potential of antifungals and the calcineurin inhibitor cyclosporin A (Cys) against planktonic and biofilms of C. parapsilosis complex from clinical sources. Susceptibility assays with amphotericin, fluconazole, voriconazole, caspofungin and Cys were performed by microdilution in accordance with Clinical and Laboratory Standards Institute guidelines. Synergy testing against planktonic cells of C. parapsilosis sensu lato strains was assessed by the chequerboard method. Combinations formed by antifungals with Cys were evaluated against mature biofilms in microtitre plates. No differences in the antifungal susceptibility pattern among species were observed, but C. parapsilosis sensu stricto strains were more susceptible to Cys than C. orthopsilosis and C. metapsilosis. Synergism between antifungals and Cys was observed in C. parapsilosis sensu lato strains. Combinations formed by antifungals and Cys were able to prevent biofilm formation and showed an inhibitory effect against mature biofilms of C. parapsilosis sensu stricto, C. metapsilosis and C. orthopsilosis. These results strengthen the potential of calcineurin inhibition as a promising approach to enhance the efficiency of antifungal drugs.

  10. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  11. HIV resistance testing and detected drug resistance in Europe

    DEFF Research Database (Denmark)

    Schultze, Anna; Phillips, Andrew N; Paredes, Roger

    2015-01-01

    calculated using logistic regression with generalized estimating equations. RESULTS: Compared to 74.2% of ART-experienced individuals in 1997, only 5.1% showed evidence of virological failure in 2012. The odds of resistance testing declined after 2004 (global P 

  12. The action of Pseudomonas aeruginosa biofilms in intrinsic drug resistance

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; JIA Wen-xiang; ZENG Wei; YANG Wei-qing; CHENG Xi; LI Xue-ru; WANG Lan-lan; KANG Mei; ZHANG Zai-rong

    2005-01-01

    Background There is a growing interest in studying the relationship between intrinsic resistance and biofilms resistance to drugs. However, the relationship still remains unclear in the macroscopic bacterial growth. Our study is to illuminate the change of bacterial drug resistance of gyrA mutant and active efflux pump during the development of Pseudomonas aeruginosa (P. aeruginosa) biofilms. Methods The strains of type Ⅱ topoisomerase gene mutant (gyrA mutant) and multidrug resistance (MDR) efflux pump were clinical isolates and detected by polymerase chain reaction (PCR). The process of bacterial biofilms development was observed by scanning electron microscope. Triparental mating experiments were performed to transfer report gene of green fluorescent protein (GFP) into P. aeruginosa biofilms strains and followed by analysis of bacterial survival rate between intrinsic resistance and biofilms resistance.Results The fluorescent strains with pGFPuv could develop mature biofilms on Teflon surface. Before a period of 72 hours, the survival rate of biofilms bacteria and intrinsic resistance strains in ciprofloxacin solution was significantly different (P0.05). The carbonyl cyanide m-chlorophenylhydrazone and azithromycin could significantly reduce the drug resistance of biofilm strains and efflux pump strains.Conclusions In the development of P. aeruginosa biofilms, the strains of gyrA mutation and MDR efflux could be conferred with new level of drug resistance. When co-cultured mutated strains with biofilm strains, biofilms may play a major role in bacterial resistance. But after 72 hours incubation (a mature biofilms had been developed), there was no clearly difference between the number of mutant strains and biofilm strains.

  13. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    1997-01-01

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  14. Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

    Science.gov (United States)

    2013-08-01

    peptides that bind to and inactivate small molecules such as cisplatin; (3) upregulate DNA repair enzymes that reverse therapy-induced DNA lesions; and...but multidrug-resistant tumor cells still possess clonal potential and after a short period of remission expand further and acquire metastatic

  15. Potential risk for drug resistance globalization at the Hajj.

    Science.gov (United States)

    Al-Tawfiq, J A; Memish, Z A

    2015-02-01

    Antibiotics were once considered the miracle cure for infectious diseases. The tragedy would be the loss of these miracles as we witness increased antibiotic resistance throughout the world. One of the concerns during mass gatherings is the transmission of antibiotic resistance. Hajj is one of the most common recurring mass gatherings, attracting millions of people from around the world. The transmission of drug-resistant organisms during the Hajj is not well described. In the current review, we summarize the available literature on the transmission and acquisition of antibiotic resistance during the Hajj and present possible solutions.

  16. Drugs resistance and penicillinase activity in skin isolated Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Bhat K

    1990-01-01

    Full Text Available A study was carried out to evaluate the drug resistance pattern and penicillinase production in skin isolated Staphylococcus aurpus. The disk diffusion method showed prevalence of: multidrug resistance among S. aureus, strains, isolated from locafised skin abscesses. method for detection of penicilfinase could detect this enzyme m 98.60/o of the isolates all fo which were resistant to penicillin and ampicillin. C16xacillin resistance as detected by the agar dilution method was found in 1.4% of the isolates. On the whole cloxacillin and gentamy′cin were found to be the most effective ′antistaphylococcal antibotics.

  17. Will Drug Resistance against Dolutegravir in Initial Therapy Ever Occur?

    Directory of Open Access Journals (Sweden)

    Mark eWainberg

    2015-04-01

    Full Text Available Dolutegravir (DTG is a second-generation integrase strand transfer inhibitor (INSTI and INSTIs are the latest class of potent anti-HIV drugs. Compared to the first generation INSTIs, raltegravir (RAL and elvitegravir (EVG, DTG shows a limited cross-resistance profile. More interestingly, clinical resistance mutations to DTG in treatment-naive patents have not been observed to this date. This review summarizes recent studies on resistance mutations to DTG and on our understanding of the mechanisms of resistance to DTG as well as future directions for research.

  18. In Vitro Antifungal Susceptibility of Oral Candida Species from Iranian HIV Infected Patients

    Directory of Open Access Journals (Sweden)

    A A Khaksar

    2012-05-01

    Full Text Available Background: Oropharyngeal candidiasis and antifungal drug resistance are major problems in HIV positive patients. The increased reports of antifungal resistance and expanding therapeutic options prompted the determination of antifungal susceptibility profile of Candida species isolates in Iranian patients living with HIV/AIDS (PLWHA in the present study. Methods: One hundred fifty oral samples from Iranian HIV positive patients were obtained and cultured on CHROMagar and Sabourauds dextrose agar. All isolates were identified according to assimilation profile, germ tube, colony color and other conventional methods. Disk diffusion testing and Broth Microdilution of six antifungal agents were performed according to the methods described in CLSI. Results: Candida albicans (50.2% was the most frequent isolated yeast, followed by C. glabrata (22%. Non-Candida albicans species were isolated from 71 (61% positive cultures. 25.7% of Candida albicans isolates were resistant to fluconazole (MIC≥64 µg/ml as were 21.9% and 16.4% to ketoconazole and clotrimazole (MIC>0.125 µg/ml, respectively. Resistance to polyene antifungals including amphotericin B and nystatin, and caspofungin were scarce. 57.7% of candida glabrata isolates were resistant to fluconazole, 31% to ketoconazole and 35% to clotrimazole. Conclusion: Screening for antifungal resistant candida isolates by disk diffusion or broth dilution methods in clinical laboratories is an ideal surveillance measure in the management of oral thrush in patients with HIV/AIDS. Although nystatin is widely used in clinical practice for HIV positive patients, there was no evidence of enhanced resistance to it. Regarding no resistance to caspofungin, its administration is suggested.

  19. Rewired Metabolism in Drug-resistant Leukemia Cells

    Science.gov (United States)

    Stäubert, Claudia; Bhuiyan, Hasanuzzaman; Lindahl, Anna; Broom, Oliver Jay; Zhu, Yafeng; Islam, Saiful; Linnarsson, Sten; Lehtiö, Janne; Nordström, Anders

    2015-01-01

    Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies. PMID:25697355

  20. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

    Directory of Open Access Journals (Sweden)

    Gudepalya Renukaiah Rudramurthy

    2016-06-01

    Full Text Available Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals. Antimicrobials are considered “miracle drugs” and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.

  1. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    Science.gov (United States)

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed.

  2. Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand

    Directory of Open Access Journals (Sweden)

    Gil José

    2002-10-01

    Full Text Available Abstract Background The increasing levels of Plasmodium falciparum resistance to chloroquine (CQ in Thailand have led to the use of alternative antimalarials, which are at present also becoming ineffective. In this context, any strategies that help improve the surveillance of drug resistance, become crucial in overcoming the problem. Methods In the present study, we have established the in vitro sensitivity to CQ, mefloquine (MF, quinine (QUIN and amodiaquine (AMQ of 52 P. falciparum isolates collected in Thailand, and assessed the prevalence of four putative genetic polymorphisms of drug resistance, pfcrt K76T, pfmdr1 N86Y, pfmdr1 D1042N and pfmdr1 Y1246D, by PCR-RFLP. Results The percentage of isolates resistant to CQ, MF, and AMQ was 96% (50/52, 62% (32/52, and 58% (18/31, respectively, while all parasites were found to be sensitive to QUIN. In addition, 41 (79% of the isolates assayed were resistant simultaneously to more than one drug; 25 to CQ and MF, 9 to CQ and AMQ, and 7 to all three drugs, CQ, MF and AMQ. There were two significant associations between drug sensitivity and presence of particular molecular markers, i CQ resistance / pfcrt 76T (P = 0.001, and ii MF resistance / pfmdr1 86N (P Conclusions i In Thailand, the high levels of CQ pressure have led to strong selection of the pfcrt 76T polymorphism and ii pfmdr1 86N appears to be a good predictor of in vitro MF resistance.

  3. Sunitinib treatment enhances metastasis of innately drug resistant breast tumors

    Science.gov (United States)

    Wragg, Joseph W; Heath, Victoria L; Bicknell, Roy

    2017-01-01

    Anti-angiogenic therapies have failed to confer survival benefits in patients with metastatic breast cancer (mBC). However, to date there has not been an inquiry into roles for acquired versus innate drug resistance in this setting. In this study, we report roles for these distinct phenotypes in determining therapeutic response in a murine model of mBC resistance to the anti-angiogenic tyrosine kinase inhibitor sunitinib. Using tumor measurement and vascular patterning approaches, we differentiated tumors displaying innate versus acquired resistance. Bioluminescent imaging of tumor metastases to the liver, lungs and spleen revealed that sunitinib administration enhances metastasis, but only in tumors displaying innate resistance to therapy. Transcriptomic analysis of tumors displaying acquired versus innate resistance allowed the identification of specific biomarkers, many of which have a role in angiogenesis. In particular, aquaporin-1 upregulation occurred in acquired resistance, mTOR in innate resistance, and pleiotrophin in both settings, suggesting their utility as candidate diagnostics to predict drug response or to design tactics to circumvent resistance. Our results unravel specific features of antiangiogenic resistance, with potential therapeutic implications. PMID:28011623

  4. Novel approaches to antifungal prophylaxis.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis

    2004-06-01

    Antifungal prophylaxis represents a significant advance in the management of patients at risk from fungal infections in a variety of settings. Identification of patients at the highest risk and the utilisation of safe and effective drugs maximises the benefits of prophylaxis. Situations in which antifungal prophylaxis has been shown to be useful are bone marrow transplantation, liver and lung transplantation, surgical and neonatal intensive care units, secondary prophylaxis of fungal infections associated with HIV and neutropenia associated haematological malignancies and their treatment. New antifungal agents, such as the echinocandins and the new azoles, are available and have a potential role in antifungal prophylaxis. Future studies should evaluate which strategy is more useful; prophylaxis or pre-emptive therapy.

  5. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients

    Directory of Open Access Journals (Sweden)

    Katharina Göhring

    2015-01-01

    Full Text Available In pediatric and adult patients after stem cell transplantation (SCT disseminated infections caused by human cytomegalovirus (HCMV can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV, foscarnet (PFA and cidofovir (CDV are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97 and the polymerase-gene (UL54. Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood.

  6. Two small molecule lead compounds as new antifungal agents effective against Candida albicans and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yones Pilehvar-Soltanahmadi

    2014-06-01

    Full Text Available  Background: Antifungal drug resistance and few numbers of available drugs limit therapeutic options against fungal infections. The present study was designed to discover new antifungal drugs. Materials and Methods: This study was carried out in two separate steps, that is, in silico lead identification and in vitro assaying of antifungal potential. A structural data file of a ternary complex of fusicuccin (legend, C terminus of H+-ATPase and 14-3-3 regulatory protein (1o9F.pdb file was used as a model. Computational screening of a virtual 3D database of drug-like molecules was performed and selected small molecules, resembling the functional part of the ligand performing ligand docking, were tested using ArgusLab (4.0.1. Two lead compounds, 3-Cyclohexan propionic acid (CXP and 4-phenyl butyric acid (PBA were selected according to their ligation scores. Standard Strains of Candida albicans and Saccharomyces cerevisiae were used to measure the antifungal potential of the two identified lead compounds against the fungi using micro-well plate dilution assay. Results: Ligation scores for CXP and PBA were -9.33744 and -10.7259 kcal/mol, respectively, and MIC and MFC of CXP and PBA against the two yeasts were promising. Conclusion: The evidence from the present study suggests that CXP and PBA possess potentially antifungals properties. 

  7. Treating chromoblastomycosis with systemic antifungals.

    Science.gov (United States)

    Bonifaz, Alexandro; Paredes-Solís, Vanessa; Saúl, Amado

    2004-02-01

    Chromoblastomycosis is a subcutaneous mycosis for which there is no treatment of choice but rather, several treatment options, with low cure rates and many relapses. The choice of treatment should consider several conditions, such as the causal agent (the most common one being Fonsecaea pedrosoi ), extension of the lesions, clinical topography and health status of the patient. Most oral and systemic antifungals have been used; the best results have been obtained with itraconazole and terbinafine at high doses, for a mean of 6 - 12 months. In extensive and refractory cases, chemotherapy with oral antifungals may be associated with thermotherapy (local heat and/or cryosurgery). Limited or early cases may be managed with surgical methods, always associated with oral antifungal agents. It is important to determine the in vitro sensitivity of the major causal agents to the various drugs, by estimating the minimum inhibitory concentration, as well as drug tolerability and drug interactions.

  8. Histone modification as a drug resistance driver in brain tumors

    Institute of Scientific and Technical Information of China (English)

    Guifa Xi; Barbara Mania-Farnell; Ting Lei; Tadanori Tomita

    2016-01-01

    Patients with brain tumors, specificaly, malignant forms such as glioblastoma, meduloblas-toma and ependymoma, exhibit dismal survival rates despite advances in treatment strategies. Chemotherapeutics, the primary adjuvant treatment for human brain tumors folowing surgery, commonly lack eficacy due to either intrinsic or acquired drug resistance. New treatments tar-geting epigenetic factors are being explored. Post-translational histone modification provides a critical regulatory platform for processes such as chromosome condensation and segregation, apoptosis, gene transcription, and DNA replication and repair. This work reviews how aberrant histone modifications and alterations in histone-modifying enzymes can drive the acquisition of drug resistance in brain tumors. Elucidating these mechanisms should lead to new treatments for overcoming drug resistance.

  9. New strategies against drug resistance to herpes simplex virus

    Institute of Scientific and Technical Information of China (English)

    Yu-Chen Jiang; Hui Feng; Yu-Chun Lin; Xiu-Rong Guo

    2016-01-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV.

  10. HIV Drug-resistant Strains as Epidemiologic Sentinels

    Science.gov (United States)

    Grant, Robert M.; Porco, Travis C.; Getz, Wayne M.

    2006-01-01

    Observed declines in drug resistance to nucleoside reverse transcriptase inhibitors among persons recently infected with HIV-1 in monitored subpopulations can be interpreted as a positive sign and lead public health officials to decrease efforts towards HIV prevention. By means of a mathematical model, we identified 3 processes that can account for the observed decline: increase in high-risk behavior, decrease in proportion of acutely infected persons whose conditions are treated, and change in treatment efficacy. These processes, singly or in combination, can lead to increases or decreases in disease and drug-resistance prevalence in the general population. We discuss the most appropriate public health response under each scenario and emphasize how further data collection and analyses are required to more reliably evaluate the observed time trends and the relative importance of forces shaping the epidemic. Our study highlights how drug resistance markers can be used as epidemiologic sentinels to devise public health solutions. PMID:16494741

  11. New strategies against drug resistance to herpes simplex virus

    Science.gov (United States)

    Jiang, Yu-Chen; Feng, Hui; Lin, Yu-Chun; Guo, Xiu-Rong

    2016-01-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV. PMID:27025259

  12. Drugs that target pathogen public goods are robust against evolved drug resistance.

    Science.gov (United States)

    Pepper, John W

    2012-11-01

    Pathogen drug resistance is a central problem in medicine and public health. It arises through somatic evolution, by mutation and selection among pathogen cells within a host. Here, we examine the hypothesis that evolution of drug resistance could be reduced by developing drugs that target the secreted metabolites produced by pathogen cells instead of directly targeting the cells themselves. Using an agent-based computational model of an evolving population of pathogen cells, we test this hypothesis and find support for it. We also use our model to explain this effect within the framework of standard evolutionary theory. We find that in our model, the drugs most robust against evolved drug resistance are those that target the most widely shared external products, or 'public goods', of pathogen cells. We also show that these drugs exert a weak selective pressure for resistance because they create only a weak correlation between drug resistance and cell fitness. The same principles apply to design of vaccines that are robust against vaccine escape. Because our theoretical results have crucial practical implications, they should be tested by empirical experiments.

  13. Antimicrobial drug resistance ofStaphylococcus aureus in dairy products

    Institute of Scientific and Technical Information of China (English)

    Sasidharan S; Prema B; Yoga Latha L

    2011-01-01

    Objective:To evaluate the prevalence of multidrug resistantStaphylococcus aureus(S. aureus) in dairy products.Methods:Isolation and identification ofS. aureus were performed in3 dairy-based food products. The isolates were tested for their susceptibility to5 different common antimicrobial drugs.Results:Of50 samples examined,5 (10%) were contaminated with S. aureus. Subsequently, the5 isolates were subjected to antimicrobial resistance pattern using five antibiotic discs (methicillin, vancomycin, kanamycin, chloramphenicol and tetracycline). Sample 29 showed resistance to methicillin and vancomycin. Sample18 showed intermediate response to tetracycline. The other samples were susceptible to all the antibiotics tested.Conclusions:The results provide preliminary data on sources of food contamination which may act as vehicles for the transmission of antimicrobial-resistantStaphylococcus.Therefore, it enables us to develop preventive strategies to avoid the emergence of new strains of resistantS. aureus.

  14. Antifungal susceptibility testing of Candida in the Clinical Laboratory: how to do it, when to do it, and how to interpret it

    Directory of Open Access Journals (Sweden)

    Esther Manso

    2014-06-01

    Full Text Available Significant changes in the management of fungaemia have occurred in the last decade with increased use of fluconazole prophylaxis, of empirical treatment and of echinocandins as first-line agents for documented disease. The emergence of drug resistance in fungal pathogens has a profound impact on human health given limited number of antifungal drugs. Antifungal resistance in Candida may be either intrinsic or acquired and may be encountered in the antifungal drug exposed but also the antifungal drug naïve patient The variation in resistance rates between centers emphasizes that it is essential to have knowledge of the local Candida species distribution and antifungal resistance rates to guide initial therapy for Candida BSI. Moreover, all Candida isolates from blood and normally sterile sites should be identified to the species level. The Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing have developed breakpoints and epidemiological cutoff values that are now established for Candida spp. Clinical microbiology laboratories will be employed commercial susceptibility assays, rather than reference broth microdilution methods and comparative studies are particularly important. Vitek 2®, Etest® and Sensititre YeastOne® provided a high degree of essential agreement and comparable sensitivity and specificity to BMD-RPMI for identifying resistance to azole and echinocandins in Candida spp.

  15. Multidrug resistance in oncology and beyond : from imaging of drug efflux pumps to cellular drug targets

    NARCIS (Netherlands)

    Nagengast, Wouter B; Oude Munnink, Thijs H; Dijkers, Eli; Hospers, Geesiena; Brouwers, Adrienne H; Schröder, Carolien P; Lub-de Hooge, Marjolijn; de Vries, Elisabeth G E

    2010-01-01

    Resistance of tumor cells to several structurally unrelated classes of natural products, including anthracyclines, taxanes, and epipodophyllotoxines, is often referred as multidrug resistance (MDR). This is associated with ATP-binding cassette transporters, which function as drug efflux pumps such a

  16. Selected Essential Oils as Antifungal Agents Against Antibiotic-Resistant Candida spp.: In Vitro Study on Clinical and Food-Borne Isolates.

    Science.gov (United States)

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta

    2017-01-01

    Candida spp. cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. As a result of the increasing antibiotic resistance among pathogenic yeasts, the interest in alternative agents of antifungal activity is growing. This study evaluated the antimicrobial activity of selected essential oils (EOs) against Candida clinical and food-borne strains, including antibiotic-resistant isolates, in relation to yeast cell surface hydrophobicity (CSH). Candida strains showed different range of susceptibility to tea tree, thyme, peppermint, and clove oils, and peppermint oil demonstrated the lowest anticandidal activity with minimal inhibitory concentrations (MICs) of 0.03-8.0% v/v. MIC values for thyme and clove oils ranged from 0.03% to 0.25% v/v, and for tea tree oil-from 0.12% to 2.0% v/v. The exception was Candida tropicalis food-borne strain, the growth of which was inhibited after application of EOs at concentration of 8% v/v. Due to diverse yeast susceptibility to EOs, isolates were divided into five clusters in a principal component analysis model, each containing both clinical and food-borne strains. Hydrophobic properties of yeast were also diversified, and 37% of clinical and 50% of food-borne strains exhibited high hydrophobicity. The study indicates high homology of clinical and food-borne Candida isolates in relation to their susceptibility to anticandidal agents and hydrophobic properties. The susceptibility of yeasts to EOs could be partially related to their CSH. High antifungal activity of examined EOs, also against antibiotic-resistant isolates, indicates their usefulness as agents preventing the development of Candida strains of different origin.

  17. A new antihypertensive drug ameliorates insulin resistance

    Institute of Scientific and Technical Information of China (English)

    Yan-xia LIU

    2012-01-01

    Insulin resistance (IR)is defined as decreased sensitivity and/or responsiveness to insulin that promote glucose disposal.A growing body of clinical and epidemiologic evidence indicates that essential hypertension and IR often coexist[1].Approximately 50 percent of patients with hypertension can be considered to have IR and hyperinsulinemia[1].This inextricable linkage between hypertension and IR has been identified to increase the prevalence of cardiovascular disease (CVD)and new onset of type Ⅱ diabetes that is the major cause of morbidity and mortality in this clinical syndrome[2].However,the driving force linking IR and hypertension remains to be fully elucidated.

  18. Environment-Mediated Drug Resistance in Neuroblastoma

    Science.gov (United States)

    2013-10-01

    cells, including not only monocytes but also regulatory T cells ( Treg ) and non-myeloid stromal cells. Task 2. Role of S1P on STAT3 activation and drug...presence of reciprocal activation of STAT3 between tumor cells and bonemarrow stromal cells including not only monocytes but also regulatory T cells ( Treg ...CD45/GD2 nonmyeloid, nontumor cells, CD45/GD2þ tumor cells, CD45þ/CD14þ monocytes, and CD45þ/CD3þ/ CD4þ/CD25þ/FoxP3þ regulatory T cells ( Treg

  19. RESISTANCE TO ANTIPLATELET DRUGS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    D. H. Aynetdinova

    2007-01-01

    Full Text Available The clinical, cell and genetic factors are distinguished among reasons for resistance to antiplatelet drugs. There are many methods to detect sensitivity to antiplatelet drugs, but they all have disadvantages. Moreover, there is no unified approach for interpretation of received results, and no recommendations for their practical use. It is necessary to work out unified procedure to assess platelet function, to define indications for its usage and to work out unified criteria of resistance. Individualized approach and each patient’s peculiarities consideration are essential when prescribing antiplatelet therapy.

  20. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    OpenAIRE

    A Sobhani; H. Shodjai S. Javanbakht

    2004-01-01

    Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 pos...

  1. Controlled nail delivery of a novel lipophilic antifungal agent using various modern drug carrier systems as well as in vitro and ex vivo model systems.

    Science.gov (United States)

    Naumann, Sandy; Meyer, Jean-Philippe; Kiesow, Andreas; Mrestani, Yahya; Wohlrab, Johannes; Neubert, Reinhard H H

    2014-04-28

    The penetration behavior into human nails and animal hoof membranes of a novel antifungal agent (EV-086K) for the treatment of onychomycosis was investigated in this study. The new drug provides a high lipophilicity which is adverse for penetration into nails. Therefore, four different formulations were developed, with particular focus on a colloidal carrier system (CCS) due to its penetration enhancing properties. On the one hand, ex vivo penetration experiments on human nails were performed. Afterwards the human nail plates were cut by cryomicrotome in order to quantify the drug concentration in the dorsal, intermediate and ventral nail layer using high-performance liquid chromatography (HPLC) with UV detection. On the other hand, equine and bovine hoof membranes were used to determine the in vitro penetration of the drug into the acceptor compartment of an online diffusion cell coupled with Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy. In combination, both results should exhibit a correlation between the EV-086K penetration behavior in human nail plates and animal hoof membranes. The investigations showed that the developed CCS could increase drug delivery through the human nail most compared to other formulations (nail lacquer, solution and hydrogel). Using animal hooves in the online diffusion cell, we were able to calculate pharmacokinetic data of the penetration process, especially diffusion and permeability coefficients. Finally, a qualitative correlation between the penetration results of human nails and equine hooves was established.

  2. Scedosporium apiospermum infections and the role of combination antifungal therapy and GM-CSF: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Chloe Goldman

    2016-03-01

    Full Text Available Scedosporium apiospermum, a ubiquitous environmental mold, is increasingly reported as causing invasive fungal disease in immunocompromised hosts. It poses a therapeutic challenge due to its intrinsic resistance to traditional antifungals and ability to recur despite demonstrating susceptibility. We present an immunocompromised patient with a cutaneous S. apiospermum infection that disseminated despite treatment with voriconazole, the drug of choice. Adding echinocandins and GM-CSF provided partial recovery, indicating a potential synergistic role of dual-antifungal and immunotherapeutic agents.

  3. Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties, in vitro drug release and anti-fungal efficacy.

    Science.gov (United States)

    Gandra, Sarath C R; Nguyen, Sanko; Nazzal, Sami; Alayoubi, Alaadin; Jung, Rose; Nesamony, Jerry

    2015-01-01

    The aim of this study was to develop thermosensitive gels using poloxamers for topical delivery of fluconazole (FLZ). Eight different formulations containing 1% FLZ in poloxamer and a particular co-solvent (propylene glycol (PG) or Transcutol-P) of various concentrations were prepared. The gels were characterized for transition temperatures, rheological and mechanical properties. FLZ permeability and antifungal effect of the gels were also evaluated. Except for one formulation, all gels exhibited thermosensitive property, i.e. transformed from Newtonian (liquid-like) behavior at 20 °C to non-Newtonian (gel-like) behavior at 37 °C. Transcutol-P increased the transition temperature of the formulations, while the opposite effect was observed for PG. At 37 °C, formulations with high poloxamer concentrations (17%) resulted in high viscosity, compressibility and hardness. Formulations containing 17% poloxamer and 20% Transcutol-P and 10% PG, respectively, exhibited high adhesiveness. No significant differences in the in vitro antifungal activity of FLZ were observed among the formulations suggesting that the gel vehicles did not influence the biological effect of FLZ. FLZ permeability decreased with increasing poloxamer concentration. Formulations containing 17% poloxamer and 20% Transcutol-P and 10% PG seemed to be promising in situ gelling systems for the topical delivery of FLZ.

  4. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    Science.gov (United States)

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution.

  5. pncA Gene Mutations Associated with Pyrazinamide Resistance in Drug-Resistant Tuberculosis, South Africa and Georgia.

    Science.gov (United States)

    Allana, Salim; Shashkina, Elena; Mathema, Barun; Bablishvili, Nino; Tukvadze, Nestani; Shah, N Sarita; Kempker, Russell R; Blumberg, Henry M; Moodley, Pravi; Mlisana, Koleka; Brust, James C M; Gandhi, Neel R

    2017-03-01

    Although pyrazinamide is commonly used for tuberculosis treatment, drug-susceptibility testing is not routinely available. We found polymorphisms in the pncA gene for 70% of multidrug-resistant and 96% of extensively drug-resistant Mycobacterium tuberculosis isolates from South Africa and Georgia. Assessment of pyrazinamide susceptibility may be prudent before using it in regimens for drug-resistant tuberculosis.

  6. Hepatitis C Virus and Antiviral Drug Resistance

    Science.gov (United States)

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-01-01

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens. PMID:27784846

  7. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway

    Science.gov (United States)

    Thangamani, Shankar; Maland, Matthew; Mohammad, Haroon; Pascuzzi, Pete E.; Avramova, Larisa; Koehler, Carla M.; Hazbun, Tony R.; Seleem, Mohamed N.

    2017-01-01

    Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin's potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin's antifungal activity—mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections. PMID:28149831

  8. [Multidrug-resistant tuberculosis: current epidemiology, therapeutic regimens, new drugs].

    Science.gov (United States)

    Gómez-Ayerbe, C; Vivancos, M J; Moreno, S

    2016-09-01

    Multidrug and extensively resistant tuberculosis are especially severe forms of the disease for which no efficacious therapy exists in many cases. All the countries in the world have registered cases, although most of them are diagnosed in resource-limited countries from Asia, Africa and South America. For adequate treatment, first- and second-line antituberculosis drugs have to be judiciously used, but the development of new drugs with full activity, good tolerability and little toxicity is urgently needed. There are some drugs in development, some of which are already available through expanded-access programs.

  9. Biophysical principles predict fitness landscapes of drug resistance.

    Science.gov (United States)

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies.

  10. Recent developments in genomics, bioinformatics and drug discovery to combat emerging drug-resistant tuberculosis.

    Science.gov (United States)

    Swaminathan, Soumya; Sundaramurthi, Jagadish Chandrabose; Palaniappan, Alangudi Natarajan; Narayanan, Sujatha

    2016-12-01

    Emergence of drug-resistant tuberculosis (DR-TB) is a big challenge in TB control. The delay in diagnosis of DR-TB leads to its increased transmission, and therefore prevalence. Recent developments in genomics have enabled whole genome sequencing (WGS) of Mycobacterium tuberculosis (M. tuberculosis) from 3-day-old liquid culture and directly from uncultured sputa, while new bioinformatics tools facilitate to determine DR mutations rapidly from the resulting sequences. The present drug discovery and development pipeline is filled with candidate drugs which have shown efficacy against DR-TB. Furthermore, some of the FDA-approved drugs are being evaluated for repurposing, and this approach appears promising as several drugs are reported to enhance efficacy of the standard TB drugs, reduce drug tolerance, or modulate the host immune response to control the growth of intracellular M. tuberculosis. Recent developments in genomics and bioinformatics along with new drug discovery collectively have the potential to result in synergistic impact leading to the development of a rapid protocol to determine the drug resistance profile of the infecting strain so as to provide personalized medicine. Hence, in this review, we discuss recent developments in WGS, bioinformatics and drug discovery to perceive how they would transform the management of tuberculosis in a timely manner.

  11. "Applied" Aspects of the Drug Resistance Strategies Project

    Science.gov (United States)

    Hecht, Michael L.; Miller-Day, Michelle A.

    2010-01-01

    This paper discusses the applied aspects of our Drug Resistance Strategies Project. We argue that a new definitional distinction is needed to expand the notion of "applied" from the traditional notion of utilizing theory, which we call "applied.1," in order to consider theory-grounded, theory testing and theory developing applied research. We…

  12. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Picchianti-Diamanti

    2014-03-01

    Full Text Available Autoimmune diseases such as systemic lupus erythematosus (SLE, rheumatoid arthritis (RA and psoriatic arthritis (PsA are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS, synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive.

  13. Leukemia stem cells in drug resistance and metastasis

    Institute of Scientific and Technical Information of China (English)

    DENG Chao-hua; ZHANG Qiu-ping

    2010-01-01

    Objective To review the central role of leukemia stem cells (LSCs) in drug resistance and metastasis, aiming to provide key insights into leukemogenic pathology and developing novel therapeutic strategies against the relapse of leukemia.Data sources The data used in this review were obtained mainly from the studies reported in PubMed using the key terms "tumor-initiating cells", "leukemia stem cells", "drug resistance" and "metastasis".Study selection Relevant articles on studies of leukemia stem cells were selected.Results Increasing numbers of studies have suggested the importance of cancer stem cells (CSCs) in the initiation and maintenance of cancer, especially in leukemia. This review has summarized the origin, characteristics, isolation and identification of LSCs. It highlights the crucial role of LSCs in drug resistance and metastasis of leukemia by illustrating possible mechanisms and aims to provide novel therapeutic strategies for LSCs-targeted treatment.Conclusion LSCs play a crucial role in drug resistance and metastasis of leukemia and new promising LSCs-targeted therapies warrant investigation in both experimental models and clinical practice.

  14. Alcohol and Other Drug Resistance Strategies Employed by Rural Adolescents

    Science.gov (United States)

    Pettigrew, Jonathan; Miller-Day, Michelle; Krieger, Janice; Hecht, Michael L.

    2011-01-01

    This study seeks to identify how rural adolescents make health decisions and utilize communication strategies to resist influence attempts in offers of alcohol, tobacco, and other drugs (ATOD). Semi-structured interviews were conducted with 113 adolescents from rural school districts to solicit information on ATOD norms, past ATOD experiences, and…

  15. Drug-resistant tuberculosis: time for visionary political leadership.

    Science.gov (United States)

    Abubakar, Ibrahim; Zignol, Matteo; Falzon, Dennis; Raviglione, Mario; Ditiu, Lucica; Masham, Susan; Adetifa, Ifedayo; Ford, Nathan; Cox, Helen; Lawn, Stephen D; Marais, Ben J; McHugh, Timothy D; Mwaba, Peter; Bates, Matthew; Lipman, Marc; Zijenah, Lynn; Logan, Simon; McNerney, Ruth; Zumla, Adam; Sarda, Krishna; Nahid, Payam; Hoelscher, Michael; Pletschette, Michel; Memish, Ziad A; Kim, Peter; Hafner, Richard; Cole, Stewart; Migliori, Giovanni Battista; Maeurer, Markus; Schito, Marco; Zumla, Alimuddin

    2013-06-01

    Two decades ago, WHO declared tuberculosis a global emergency, and invested in the highly cost-effective directly observed treatment short-course programme to control the epidemic. At that time, most strains of Mycobacterium tuberculosis were susceptible to first-line tuberculosis drugs, and drug resistance was not a major issue. However, in 2013, tuberculosis remains a major public health concern worldwide, with prevalence of multidrug-resistant (MDR) tuberculosis rising. WHO estimates roughly 630 000 cases of MDR tuberculosis worldwide, with great variation in the frequency of MDR tuberculosis between countries. In the past 8 years, extensively drug-resistant (XDR) tuberculosis has emerged, and has been reported in 84 countries, heralding the possibility of virtually untreatable tuberculosis. Increased population movement, the continuing HIV pandemic, and the rise in MDR tuberculosis pose formidable challenges to the global control of tuberculosis. We provide an overview of the global burden of drug-resistant disease; discuss the social, health service, management, and control issues that fuel and sustain the epidemic; and suggest specific recommendations for important next steps. Visionary political leadership is needed to curb the rise of MDR and XDR tuberculosis worldwide, through sustained funding and the implementation of global and regional action plans.

  16. Flu Resistance to Antiviral Drug in North Carolina

    Centers for Disease Control (CDC) Podcasts

    2011-12-19

    Dr. Katrina Sleeman, Associate Service Fellow at CDC, discusses resistance to an antiviral flu drug in North Carolina.  Created: 12/19/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/19/2011.

  17. Potential Use of Alginate-Based Carriers As Antifungal Delivery System

    Science.gov (United States)

    Spadari, Cristina de Castro; Lopes, Luciana B.; Ishida, Kelly

    2017-01-01

    Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections. PMID:28194145

  18. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Ying-Lien Chen

    Full Text Available The object of this study was to test whether posaconazole, a broad-spectrum antifungal agent inhibiting ergosterol biosynthesis, exhibits synergy with the β-1,3 glucan synthase inhibitor caspofungin or the calcineurin inhibitor FK506 against the human fungal pathogen Candida albicans. Although current drug treatments for Candida infection are often efficacious, the available antifungal armamentarium may not be keeping pace with the increasing incidence of drug resistant strains. The development of drug combinations or novel antifungal drugs to address emerging drug resistance is therefore of general importance. Combination drug therapies are employed to treat patients with HIV, cancer, or tuberculosis, and has considerable promise in the treatment of fungal infections like cryptococcal meningitis and C. albicans infections. Our studies reported here demonstrate that posaconazole exhibits in vitro synergy with caspofungin or FK506 against drug susceptible or resistant C. albicans strains. Furthermore, these combinations also show in vivo synergy against C. albicans strain SC5314 and its derived echinocandin-resistant mutants, which harbor an S645Y mutation in the CaFks1 β-1,3 glucan synthase drug target, suggesting potential therapeutic applicability for these combinations in the future.

  19. ANTIFUNGAL PROPHYLAXIS IN IMMUNOCOMPROMISED PATIENTS

    Directory of Open Access Journals (Sweden)

    Lourdes Vazquez

    2016-09-01

    Full Text Available Invasive fungal infections (IFIs represent significant complications in patients with hematological malignancies. Chemoprevention of IFIs may be important in this setting, but most antifungal drugs have demonstrated poor efficacy, particularly in the prevention of invasive aspergillosis. Antifungal prophylaxis in hematological patients is currently regarded as the gold standard in situations with a high risk of infection, such as acute leukemia, myelodysplastic syndromes, and autologous or allogeneic hematopoietic stem cell transplantation. Over the years, various scientific societies have established a series of recommendations for antifungal prophylaxis based on prospective studies performed with different drugs. However, the prescription of each agent must be personalized, adapting its administration to the characteristics of individual patients and taking into account possible interactions with concomitant medication.

  20. Modeling mass drug treatment and resistant filaria disease transmission

    Science.gov (United States)

    Fuady, A. M.; Nuraini, N.; Soewono, E.; Tasman, H.; Supriatna, A. K.

    2014-03-01

    It has been indicated that a long term application of combined mass drug treatment may contribute to the development of drug resistance in lymphatic filariasis. This phenomenon is not well understood due to the complexity of filaria life cycle. In this paper we formulate a mathematical model for the spread of mass drug resistant in a filaria endemic region. The model is represented in a 13-dimensional Host-Vector system. The basic reproductive ratio of the system which is obtained from the next generation matrix, and analysis of stability of both the disease free equilibrium and the coexistence equilibria are shown. Numerical simulation for long term dynamics for possible field conditions is also shown.

  1. Clinically relevant transmitted drug resistance to first line antiretroviral drugs and implications for recommendations.

    Directory of Open Access Journals (Sweden)

    Susana Monge

    Full Text Available BACKGROUND: The aim was to analyse trends in clinically relevant resistance to first-line antiretroviral drugs in Spain, applying the Stanford algorithm, and to compare these results with reported Transmitted Drug Resistance (TDR defined by the 2009 update of the WHO SDRM list. METHODS: We analysed 2781 sequences from ARV naive patients of the CoRIS cohort (Spain between 2007-2011. Using the Stanford algorithm "Low-level resistance", "Intermediate resistance" and "High-level resistance" categories were considered as "Resistant". RESULTS: 70% of the TDR found using the WHO list were relevant for first-line treatment according to the Stanford algorithm. A total of 188 patients showed clinically relevant resistance to first-line ARVs [6.8% (95%Confidence Interval: 5.8-7.7], and 221 harbored TDR using the WHO list [7.9% (6.9-9.0]. Differences were due to a lower prevalence in clinically relevant resistance for NRTIs [2.3% (1.8-2.9 vs. 3.6% (2.9-4.3 by the WHO list] and PIs [0.8% (0.4-1.1 vs. 1.7% (1.2-2.2], while it was higher for NNRTIs [4.6% (3.8-5.3 vs. 3.7% (3.0-4.7]. While TDR remained stable throughout the study period, clinically relevant resistance to first line drugs showed a significant trend to a decline (p = 0.02. CONCLUSIONS: Prevalence of clinically relevant resistance to first line ARVs in Spain is decreasing, and lower than the one expected looking at TDR using the WHO list. Resistance to first-line PIs falls below 1%, so the recommendation of screening for TDR in the protease gene should be questioned in our setting. Cost-effectiveness studies need to be carried out to inform evidence-based recommendations.

  2. Characterization of Antifungal Activity and Nail Penetration of ME1111, a New Antifungal Agent for Topical Treatment of Onychomycosis

    OpenAIRE

    Tabata, Yuji; Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori

    2016-01-01

    Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 ...

  3. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    Science.gov (United States)

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.

  4. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens.

    Science.gov (United States)

    Wilson, Benjamin A; Garud, Nandita R; Feder, Alison F; Assaf, Zoe J; Pennings, Pleuni S

    2016-01-01

    Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance. Throughout this review, we discuss the uses of sequence data and population genetic theory in studying the evolution of drug resistance.

  5. Systematic review of the performance of rapid rifampicin resistance testing for drug-resistant tuberculosis.

    Directory of Open Access Journals (Sweden)

    Matthew Arentz

    Full Text Available INTRODUCTION: Rapid tests for rifampicin resistance may be useful for identifying isolates at high risk of drug resistance, including multidrug-resistant TB (MDR-TB. However, choice of diagnostic test and prevalence of rifampicin resistance may both impact a diagnostic strategy for identifying drug resistant-TB. We performed a systematic review to evaluate the performance of WHO-endorsed rapid tests for rifampicin resistance detection. METHODS: We searched MEDLINE, Embase and the Cochrane Library through January 1, 2012. For each rapid test, we determined pooled sensitivity and specificity estimates using a hierarchical random effects model. Predictive values of the tests were determined at different prevalence rates of rifampicin resistance and MDR-TB. RESULTS: We identified 60 publications involving six different tests (INNO-LiPA Rif. TB assay, Genotype MTBDR assay, Genotype MTBDRplus assay, Colorimetric Redox Indicator (CRI assay, Nitrate Reductase Assay (NRA and MODS tests: for all tests, negative predictive values were high when rifampicin resistance prevalence was ≤ 30%. However, positive predictive values were considerably reduced for the INNO-LiPA Rif. TB assay, the MTBDRplus assay and MODS when rifampicin resistance prevalence was < 5%. LIMITATIONS: In many studies, it was unclear whether patient selection or index test performance could have introduced bias. In addition, we were unable to evaluate critical concentration thresholds for the colorimetric tests. DISCUSSION: Rapid tests for rifampicin resistance alone cannot accurately predict rifampicin resistance or MDR-TB in areas with a low prevalence of rifampicin resistance. However, in areas with a high prevalence of rifampicin resistance and MDR-TB, these tests may be a valuable component of an MDR-TB management strategy.

  6. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis

    Science.gov (United States)

    Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong

    2015-03-01

    Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in

  7. Antimalarial drug resistance in Bangladesh, 1996-2012.

    Science.gov (United States)

    Haque, Ubydul; Glass, Gregory E; Haque, Waziul; Islam, Nazrul; Roy, Shyamal; Karim, Jahirul; Noedl, Harald

    2013-12-01

    Malaria remains an important health problem in Bangladesh, with approximately 14 million people at risk. Antimalarial drug resistance is a major obstacle to the control of malaria in endemic countries. In 2012, Bangladesh reported an estimated 29 522 malaria episodes, of which 94% were reported as being caused by Plasmodium falciparum. In this study, we reviewed and summarized antimalarial drug resistance data from Bangladesh published until June 2013. We searched published sources for data referring to any type of P. falciparum drug resistance (in vivo, in vitro, or molecular) and found 169 articles published in peer-reviewed journals. Of these, 143 articles were excluded because they did not meet our inclusion criteria. After detailed review of the remaining 26 articles, 14 were selected for evaluation. Published studies indicate that P. falciparum shows varying levels of resistance to chloroquine, mefloquine and sulfadoxine-pyrimethamine. Combination therapy of chloroquine and primaquine has proven ineffective and combinations of sulfadoxine-pyrimethamine with either quinine or chloroquine have also shown poor efficacy. Recent studies indicate that artemisinin derivatives, such as artesunate, remain highly efficacious in treating P. falciparum malaria. Available data suggest that artemisinins, quinine, doxycyline, mefloquine-artesunate and azithromycin-artesunate combination therapy remain efficacious in the treatment of P. falciparum malaria in Bangladesh.

  8. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  9. Experience with pulmonary resection for extensively drug-resistant tuberculosis.

    Science.gov (United States)

    Shiraishi, Yuji; Katsuragi, Naoya; Kita, Hidefumi; Toishi, Masayuki; Onda, Takahito

    2008-12-01

    Extensively drug-resistant tuberculosis is becoming a global threat. It is a relatively new phenomenon, and its optimal management remains undetermined. We report our experience in using pulmonary resection for treating patients with this disease. Records were reviewed of 54 consecutive patients undergoing a pulmonary resection for multidrug-resistant tuberculosis at Fukujuji Hospital between 2000 and 2006. These patients were identified using the definition approved by the World Health Organization Global Task Force on extensively drug-resistant tuberculosis in October 2006. Five (9%) patients (3 men and 2 women) aged 31-60 years met the definition. None of the patients was HIV-positive. Although the best available multidrug regimens were initiated, no patient could achieve sputum conversion. Adjuvant resectional surgery was considered because the patients had localized disease. Procedures performed included pneumonectomy (2) and upper lobectomy (3). There was no operative mortality or morbidity. All patients attained sputum-negative status after the operation, and they were maintained on multidrug regimens for 12-25 months postoperatively. All patients remained free from disease at the time of follow-up. Pulmonary resection under cover of state-of-the-art chemotherapy is safe and effective for patients with localized extensively drug-resistant tuberculosis.

  10. Economic considerations of antifungal prophylaxis in patients undergoing surgical procedures

    Directory of Open Access Journals (Sweden)

    Maria Adriana Cataldo

    2011-01-01

    Full Text Available Maria Adriana Cataldo, Nicola PetrosilloSecond Infectious Diseases Division, National Institute for Infectious Diseases, “Lazzaro Spallanzani”, Rome, ItalyAbstract: Fungi are a frequent cause of nosocomial infections, with an incidence that has increased significantly in recent years, especially among critically ill patients who require intensive care unit (ICU admission. Among ICU patients, postsurgical patients have a higher risk of Candida infections in the bloodstream. In consideration of the high incidence of fungal infections in these patients, their strong impact on mortality rate, and of the difficulties in Candida diagnosis, some experts suggest the use of antifungal prophylaxis in critically ill surgical patients. A clinical benefit from this strategy has been demonstrated, but the economic impact of the use of antifungal prophylaxis in surgical patients has not been systematically evaluated, and its cost–benefit ratio has not been defined. Whereas the costs associated with treating fungal infections are very high, the cost of antifungal drugs varies from affordable (ie, the older azoles to expensive (ie, echinocandins, polyenes, and the newer azoles. Adverse drug-related effects and the possibly increased incidence of fluconazole resistance and of isolates other than Candida albicans must also be taken into account. From the published studies of antifungal prophylaxis in surgical patients, a likely economic benefit of this strategy could be inferred, but its usefulness and cost–benefits should be evaluated in light of local data, because the available evidence does not permit general recommendations.Keywords: antifungal prophylaxis, cost-effectiveness, economics, surgery, fungal infection 

  11. Magnitude of drug resistant shigellosis: A report from Bangalore

    Directory of Open Access Journals (Sweden)

    Srinivasa H

    2009-01-01

    Full Text Available Shigella is an important cause of acute invasive diarrhea in children and others. Antimicrobial susceptibility of Shigella spp. isolated from diarrhoeal/ dysenteric patients in Bangalore was studied in our hospital from January 2002 to December 2007. One hundred and thirty-four isolates were identified as Shigella species. S. flexneri, S. sonnei , S. boydii and S. dysenteriae were accounted respectively for 64.9%, 21.6%, 8.2% and 3.7% of the total number of Shigella isolated. Of these 56 (41.8% were from children (0 to 14 years and 78 (58.2% were from adults and elderly patients. Over 70% of Shigella isolates were resistant to two or more drugs including Ampicillin and Co-trimoxazole. During 2002 to 2007, resistance to Ampicillin had increased from 46.7% to 68%. For Co-trimoxazole, though the resistance had gradually decreased from 100% to 72%, but still the resistance is high. Chloramphenicol resistance showed sudden decline from 73.3% to 25% from 2002 to 2003, but gradually has reached 48%. Nalidixic acid resistance was more than 70%. All isolates were sensitive to Ciprofloxacin during the period 2002 to 2004, but over the years the resistance pattern gradually increased up to 48%. Ceftriaxone had shown no resistance. The results of the study revealed the endemicity of Shigellosis with S. flexneri as the predominant serogroup. Children were at a higher risk of severe shigellosis. The results also suggest that Ampicillin, Co-trimoxazole, Chloramphenicol, Nalidixic acid and Ciprofloxacin should not be used empirically as the first line drugs in the treatment of Shigellosis. Periodic analysis and reporting of antibiotic susceptibility is an important measure to guide antibiotic treatment.

  12. Metabolism and resistance of Fusarium spp. to the manzamine alkaloids via a putative retro pictet-spengler reaction and utility of the rational design of antimalarial and antifungal agents.

    Science.gov (United States)

    Kasanah, Noer; Farr, Lorelei Lucas; Gholipour, Abbas; Wedge, David E; Hamann, Mark T

    2014-08-01

    As a part of our continuing investigation of the manzamine alkaloids we studied the in vitro activity of the β-carboline containing manzamine alkaloids against Fusarium solani, Fusarium oxysporium, and Fusarium proliferatum by employing several bioassay techniques including one-dimensional direct bioautography, dilution, and plate susceptibility, and microtiter broth assays. In addition, we also studied the metabolism of the manzamine alkaloids by Fusarium spp. in order to facilitate the redesign of the compounds to prevent resistance of Fusarium spp. through metabolism. The present research reveals that the manzamine alkaloids are inactive against Fusarium spp. and the fungi transform manzamines via hydrolysis, reduction, and a retro Pictet-Spengler reaction. This is the first report to demonstrate an enzymatically retro Pictet-Spengler reaction. The results of this study reveal the utility of the rational design of metabolically stable antifungal agents from this class and the development of manzamine alkaloids as antimalarial drugs through the utilization of Fusarium's metabolic products to reconstruct the molecule.

  13. Insights into the mechanism of drug resistance. X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Harbor Hospital Baltimore, MD (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Inst. of Health (NIH), Bethesda, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ., Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2013-01-08

    Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.

  14. Drug induced superinfection in HIV and the evolution of drug resistance.

    Science.gov (United States)

    Leontiev, Vladimir V; Maury, Wendy J; Hadany, Lilach

    2008-01-01

    The rapid evolution of HIV drug resistance is a major cause of AIDS treatment failure. Superinfection, the infection of an already infected cell by additional virions, can be a major factor contributing to the evolution of drug resistance. However, the pattern and consequences of superinfection in HIV populations are far from fully understood. In this paper we study the implications of the fact that superinfection is regulated by HIV. We propose that superinfection is negatively associated with the success of the virus, so that more successful viruses are less likely to allow superinfection. We use computational models to investigate the effect that regulated superinfection would have on the evolution of drug resistance in HIV population. We find that regulated, fitness-associated superinfection can provide a distinct advantage to the virus in adapting to anti-HIV drugs in comparison with unregulated superinfection. Based on the results of the computational models and on current biological evidence, we suggest that the mechanism of fitness-associated regulation of coinfection in HIV is plausible, and that its investigation can lead to new ways to fight viral drug resistance.

  15. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance.

    Science.gov (United States)

    Wongsrichanalai, C; Sibley, C H

    2013-10-01

    Following a decade-long scale up of malaria control through vector control interventions, the introduction of rapid diagnostic tests and highly efficacious Artemisinin-based Combination Therapy (ACT) along with other measures, global malaria incidence declined significantly. The recent development of artemisinin resistance on the Cambodia-Thailand border, however, is of great concern. This review encompasses the background of artemisinin resistance in Plasmodium falciparum, its situation, especially in the Greater Mekong Sub-region (GMS), and the responses taken to overcome this resistance. The difficulties in defining resistance are presented, particularly the necessity of measuring the clinical response to artemisinins using the slow parasite-clearance phenotype. Efforts to understand the molecular basis of artemisinin resistance and the search for molecular markers are reviewed. The markers, once identified, can be applied as an efficient tool for resistance surveillance. Despite the limitation of current surveillance methods, it is important to continue vigilance for artemisinin resistance. The therapeutic efficacy "in vivo study" network for monitoring antimalarial resistance in the GMS has been strengthened. GMS countries are working together in response to artemisinin resistance and aim to eliminate all P. falciparum parasites. These efforts are crucial since a resurgence of malaria due to drug and/or insecticide resistance, program cuts, lack of political support and donor fatigue could set back malaria control success in the sub-region and threaten malaria control and elimination if resistance spreads to other regions.

  16. 2010~2012年我院深部抗真菌药使用情况分析%Analysis of deep antifungal drugs in Shidong hospital from 2010 to 2012

    Institute of Scientific and Technical Information of China (English)

    毛亚佩; 李婷; 卫英

    2014-01-01

    Objective To evaluate the utilization of deep antifungal drugs in our hospital,so as to provide evidence for the effective management of medication. Methods The defined daily dose (DDD) was used as the unit.The usage figure and consumption sum of deep antifungal drugs,DDC,DUI and AUD were analyzed in our hospital from 2010 to 2012. Results The kinds, usage figure and consumption sum of deep antifungal drugs were increasing over the 3 years.The consumption sum of Fluconazole was accounted for more than 70% of all deep antifungal drugs in three years.And the antibiotics use densities (AUD) of deep antifungal drugs presented clearly growing trend. Conclusion In order to promote the rational use of deep antifungal drugs,the causes should be further analyzed.%目的:对我院深部抗真菌药物的使用情况进行统计与评价,为临床合理用药和有效管理提供参考。方法使用限定日剂量(DDD)作为分析单位,计算累积DDDs,并以此为基础对2010~2012年我院(二级甲等)住院患者的深部抗真菌药物用药数量与金额、日均费用(DDC)、药物利用指数(DUI)、药物使用强度(AUD)进行统计计算。结果我院深部抗真菌药品种、使用数量和销售金额均呈逐年上升趋势。氟康唑是治疗深部真菌感染的主要药品。深部抗真菌药的用药强度逐年增长趋势明显。结论为促进抗菌药物合理应用,需进一步分析原因,加强监控。

  17. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida-Paes

    Full Text Available Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC and minimal fungicidal concentrations (MFC of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  18. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  19. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies. PMID:27031728

  20. [MOLECULAR MECHANISMS OF DRUG RESISTANCE NEISSERIA GONORRHOEAE HISTORY AND PROSPECTS].

    Science.gov (United States)

    Bodoev, I N; Il'ina, E N

    2015-01-01

    Neisseria gonorrhoeae (gonococcus) is a strict human pathogen, which causes gonorrhea--an infectious disease, whose origin dates back to more than two thousand years. Due to the unique plasticity of the genetic material, these bacteria have acquired the capacity to adapt to the host immune system, cause repeated infections, as well as withstand antimicrobials. Since the introduction of antibiotics in 1930s, gonococcus has displayed its propensity to develop resistance to all clinically useful antibiotics. It is important to note that the known resistance determinants of N. gonorrhoeae were acquired through horizontal gene transfer, recombination and spontaneous mutagenesis, and may be located both in the chromosome and on the plasmid. After introduction of a new antimicrobial drug, gonococcus becomes resistant within two decades and replaces sensitive bacterial population. Currently Ceftriaxone is the last remaining antibiotic for first-line treatment of gonorrhea. However, the first gonococcus displaying high-level resistance to Ceftriaxone was isolated in Japan a few years ago. Therefore, in the near future, gonorrhea may become untreatable. In the present review, we discuss the chronology of the anti-gonorrhea drugs (antibiotics) replacement, the evolution of resistance mechanisms emergence and future perspectives of N. gonorrhoeae treatment.

  1. Flu channel drug resistance: a tale of two sites.

    Science.gov (United States)

    Pielak, Rafal M; Chou, James J

    2010-03-01

    The M2 proteins of influenza A and B virus, AM2 and BM2, respectively, are transmembrane proteins that oligomerize in the viral membrane to form proton-selective channels. Proton conductance of the M2 proteins is required for viral replication; it is believed to equilibrate pH across the viral membrane during cell entry and across the trans-Golgi membrane of infected cells during viral maturation. In addition to the role of M2 in proton conductance, recent mutagenesis and structural studies suggest that the cytoplasmic domains of the M2 proteins also play a role in recruiting the matrix proteins to the cell surface during virus budding. As viral ion channels of minimalist architecture, the membrane-embedded channel domain of M2 has been a model system for investigating the mechanism of proton conduction. Moreover, as a proven drug target for the treatment of influenza A infection, M2 has been the subject of intense research for developing new anti-flu therapeutics. AM2 is the target of two anti-influenza A drugs, amantadine and rimantadine, both belonging to the adamantane class of compounds. However, resistance of influenza A to adamantane is now widespread due to mutations in the channel domain of AM2. This review summarizes the structure and function of both AM2 and BM2 channels, the mechanism of drug inhibition and drug resistance of AM2, as well as the development of new M2 inhibitors as potential anti-flu drugs.

  2. Multi drug resistant tuberculosis presenting as anterior mediastinal mass

    Directory of Open Access Journals (Sweden)

    Parmarth Chandane

    2016-01-01

    Full Text Available Enlargement of the mediastinal lymphatic glands is a common presentation of intrathoracic tuberculosis (TB in children. However, usually, the mediastinal TB nodes enlarge to 2.8 ± 1.0 cm. In this report, we describe a case of anterior mediastinal lymphnode TB seen as huge mass (7 cm on computed tomography (CT thorax without respiratory or food pipe compromise despite anterior mediastinum being an enclosed space. CT guided biopsy of the mass cultured Mycobacterium TB complex which was resistant to isoniazide, rifampicin, streptomycin ofloxacin, moxifloxacin, and pyrazinamide. Hence, we report primary multi drug resistant TB presenting as anterior mediastinal mass as a rare case report.

  3. Lenghty reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs.

    Science.gov (United States)

    Figueroa-Ochoa, Edgar B; Villar-Alvarez, Eva M; Cambón, Adriana; Mistry, Dharmista; Llovo, José; Attwood, David; Barbosa, Silvia; Soltero, J F Armando; Taboada, Pablo

    2016-08-20

    In this work, we present a detailed study of the potential application of polymeric micelles and gels of four different reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) copolymers (BOnEOmBOn, where n denotes the respective block lengths), specifically BO8EO90BO8, BO14EO378BO14, BO20EO411BO20 and BO21EO385BO21, as effective drug transport nanocarriers. In particular, we tested the use of this kind of polymeric nanostructures as reservoirs for the sustained delivery of the antifungals griseofulvin and fluconazole for oral and topical administration. Polymeric micelles and gels formed by these copolymers were shown to solubilize important amounts of these two drugs and to have a good stability in physiologically relevant conditions for oral or topical administration. These polymeric micellar nanocarriers were able to release drugs in a sustained manner, being the release rate slower as the copolymer chain hydrophobicity increased. Different sustained drug release profiles were observed depending on the medium conditions. Gel nanocarriers were shown to display longer sustained release rates than micellar formulations, with the existence of a pulsatile-like release mode under certain solution conditions as a result of their inner network structure. Certain bioadhesive properties were observed for the polymeric physical gels, being moderately tuned by the length and hydrophobicity of the polymeric chains. Furthermore, polymeric gels and micelles showed activity against the yeast Candida albicans and the mould demartophytes (Trichophyton rubrum and Microsporum canis) and, thus, may be useful for the treatment of different cutaneous fungal infections.

  4. Physiological Stress-Induced Drug Resistance and its Reversal

    Science.gov (United States)

    2004-07-01

    resistance but does shift the dose response curve . • Demonstrate that p53 status does not alter sensitization to drug by NFkB inhibitors such as PGA1...Figure 13). The presence of p53 (ON) shifts the dose response curve to the right but the response remains the same. PGA1 pretreatment, sensitizes...shift the dose response curve . • Demonstrate that p53 status does not alter sensitization to drug by NFkB inhibitors such as PGA1. • Demonstrated that

  5. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency

    Science.gov (United States)

    Lovmar, Martin; Nilsson, Karin; Lukk, Eliisa; Vimberg, Vladimir; Tenson, Tanel; Ehrenberg, Måns

    2009-01-01

    We characterized the effects of classical erythromycin resistance mutations in ribosomal proteins L4 and L22 of the large ribosomal subunit on the kinetics of erythromycin binding. Our data are consistent with a mechanism in which the macrolide erythromycin enters and exits the ribosome through the nascent peptide exit tunnel, and suggest that these mutations both impair passive transport through the tunnel and distort the erythromycin-binding site. The growth-inhibitory action of erythromycin was characterized for bacterial populations with wild-type and L22-mutated ribosomes in drug efflux pump deficient and proficient backgrounds. The L22 mutation conferred reduced erythromycin susceptibility in the drug efflux pump proficient, but not deficient, background. This ‘masking' of drug resistance by pump deficiency was reproduced by modelling with input data from our biochemical experiments. We discuss the general principles behind the phenomenon of drug resistance ‘masking', and highlight its potential importance for slowing down the evolution of drug resistance among pathogens. PMID:19197244

  6. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins.

    Science.gov (United States)

    Kuhn, D M; George, T; Chandra, J; Mukherjee, P K; Ghannoum, M A

    2002-06-01

    Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have activities against Candida biofilms. We also explored effects of preincubation of C. albicans cells with subinhibitory concentrations (sub-MICs) of drugs to see if they could modify subsequent biofilm formation. Finally, we used confocal scanning laser microscopy (CSLM) to image planktonic- and biofilm-exposed blastospores to examine drug effects on cell structure. Candida biofilms were formed on silicone elastomer and quantified by tetrazolium and dry weight (DW) assays. Susceptibility testing of fluconazole, nystatin, chlorhexidine, terbenafine, amphotericin B (AMB), and the triazoles voriconazole (VRC) and ravuconazole revealed resistance in all Candida isolates examined when grown as biofilms, compared to planktonic forms. In contrast, lipid formulations of AMB (liposomal AMB and AMB lipid complex [ABLC]) and echinocandins (caspofungin [Casp] and micafungin) showed activity against Candida biofilms. Preincubation of C. albicans cells with sub-MIC levels of antifungals decreased the ability of cells to subsequently form biofilm (measured by DW; P formulations.

  7. Analysis of Etiology and Drug Resistance of Biliary Infections

    Institute of Scientific and Technical Information of China (English)

    王欣; 李秋; 邹声泉; 孙自庸; 朱峰

    2004-01-01

    The bile was collected from fro patients with biliary infections, with the bacterium isolated to study the sensitivity of each kind of the bacterium to several antibiotics in common use. Except G- bacterium, we also found some kinds of G+ bacterium in infection bile. G- bacterium were not sensitive to Clindamycin, G+ bacterium were sensitive to Ciprofloxacin. Escherichia coli,Xanthomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa were sensitive to Ampicillin. G+ bacterium were not sensitive to Azactam. Enterococcus faecalis, Enterococcus faecium,Enterobacter cloacae were not sensitive to Ceftazidime. Enterococcus faecalis, Staphylococcus coagulase negative, Staphylococcus epidermidis, Pseudomonas aeruginosa were not sensitive to Ceftriaxone Sodium. We didn't found any bacterium resistance Imipenem. The possibility of the existence of G+ bacterium as well as drug resistance should be considered n patients with biliary infections.The value of susceptibility test should be respected to avoid drug abuse of antibiotics.

  8. Clinical Prediction Rule of Drug Resistant Epilepsy in Children

    OpenAIRE

    2015-01-01

    Background and Purpose: Clinical prediction rules (CPR) are clinical decision-making tools containing variables such as history, physical examination, diagnostic tests by developing scoring model from potential risk factors. This study is to establish clinical prediction scoring of drug-resistant epilepsy (DRE) in children using clinical manifestationa and only basic electroencephalography (EEG). Methods: Retrospective cohort study was conducted. A total of 308 children with diagnosed epileps...

  9. Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs.

    Science.gov (United States)

    Hefnawy, Aya; Berg, Maya; Dujardin, Jean-Claude; De Muylder, Géraldine

    2017-03-01

    New drugs are needed to control leishmaniasis and efforts are currently on-going to counter the neglect of this disease. We discuss here the utility and the impact of associating drug resistance (DR) studies to drug discovery pipelines. We use as paradigm currently used drugs, antimonials and miltefosine, and complement our reflection by interviewing three experts in the field. We suggest DR studies to be involved at two different stages of drug development: (i) the efficiency of novel compounds should be confirmed on sets of strains including recent clinical isolates with DR; (ii) experimental DR should be generated to promising compounds at an early stage of their development, to further optimize them and monitor clinical trials.

  10. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Fenner, Lukas; Egger, Matthias; Bodmer, Thomas; Altpeter, Ekkehardt; Zwahlen, Marcel; Jaton, Katia; Pfyffer, Gaby E; Borrell, Sonia; Dubuis, Olivier; Bruderer, Thomas; Siegrist, Hans H; Furrer, Hansjakob; Calmy, Alexandra; Fehr, Jan; Stalder, Jesica Mazza; Ninet, Béatrice; Böttger, Erik C; Gagneux, Sebastien

    2012-06-01

    Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.

  11. Epidemiology and antifungal susceptibilities of yeasts causing vulvovaginitis in a teaching hospital.

    Science.gov (United States)

    Gamarra, Soledad; Morano, Susana; Dudiuk, Catiana; Mancilla, Estefanía; Nardin, María Elena; de Los Angeles Méndez, Emilce; Garcia-Effron, Guillermo

    2014-10-01

    Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis.

  12. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  13. Assessing transmissibility of HIV-1 drug resistance mutations from treated and from drug-naive individuals

    Science.gov (United States)

    Winand, Raf; Theys, Kristof; Eusébio, Mónica; Aerts, Jan; Camacho, Ricardo J.; Gomes, Perpetua; Suchard, Marc A.; Vandamme, Anne-Mieke; Abecasis, Ana B.

    2015-01-01

    Objectives: Surveillance drug resistance mutations (SDRMs) in drug-naive patients are typically used to survey HIV-1-transmitted drug resistance (TDR). We test here how SDRMs in patients failing treatment, the original source of TDR, contribute to assessing TDR, transmissibility and transmission source of SDRMs. Design: This is a retrospective observational study analyzing a Portuguese cohort of HIV-1-infected patients. Methods: The prevalence of SDRMs to protease inhibitors, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) in drug-naive and treatment-failing patients was measured for 3554 HIV-1 subtype B patients. Transmission ratio (prevalence in drug-naive/prevalence in treatment-failing patients), average viral load and robust linear regression with outlier detection (prevalence in drug-naive versus in treatment-failing patients) were analyzed and used to interpret transmissibility. Results: Prevalence of SDRMs in drug-naive and treatment-failing patients were linearly correlated, but some SDRMs were classified as outliers – above (PRO: D30N, N88D/S, L90 M, RT: G190A/S/E) or below (RT: M184I/V) expectations. The normalized regression slope was 0.073 for protease inhibitors, 0.084 for NRTIs and 0.116 for NNRTIs. Differences between SDRMs transmission ratios were not associated with differences in viral loads. Conclusion: The significant linear correlation between prevalence of SDRMs in drug-naive and in treatment-failing patients indicates that the prevalence in treatment-failing patients can be useful to predict levels of TDR. The slope is a cohort-dependent estimate of rate of TDR per drug class and outlier detection reveals comparative persistence of SDRMs. Outlier SDRMs with higher transmissibility are more persistent and more likely to have been acquired from drug-naive patients. Those with lower transmissibility have faster reversion dynamics after transmission and are associated with

  14. Response surface methodology in drug design: A case study on docking analysis of a potent antifungal fluconazole.

    Science.gov (United States)

    Bohlooli, Fatemeh; Sepehri, Saghi; Razzaghi-Asl, Nima

    2017-04-01

    Molecular docking is a valuable in silico technique for discovery/design of bioactive compounds. A current challenge within docking simulations is the incorporation of receptor flexibility. A useful strategy toward solving such problem would be the docking of a typical ligand into the multiple conformations of the target. In this study, a multifactor response surface model was constructed to estimate the AutoDock based binding free energy of fluconazole within multiple conformations of 14α-demethylase (CYP51) (cross docking) as a validated antifungal target. On the basis of developed models, individual and interactive effects of important experimental parameters on cross docking of fluconazole were elucidated. For this purpose, a set of high-resolution holo crystallographic structures from CYP51 of human pathogen Trypanosoma cruzi were retrieved to statistically model the binding mode and affinity of fluconazole. The changes of AutoDock binding free energy for the complexes of CYP51-fluconazole were elucidated with the simultaneous variations of six independent variables including grid size, grid spacing, number of genetic algorithm (GA) runs, maximum number of energy evaluations, torsion degrees for ligand and quaternion degrees for ligand. It was revealed that grid spacing (distance between adjacent grid points) and maximum number of energy evaluations were two significant model terms. It was also revealed that grid size, torsion degrees for ligand and quaternion degrees for ligand had insignificant effects on estimated binding energy while the effect of GA runs was non-significant. The interactive effect of "torsion degrees for ligand" with number of GA runs was found to be the significant factor. Other important interactive effects were the interaction of "number of GA runs" with "grid spacing" and "number of energy evaluations" with "grid size". Furthermore; results of modeling studies within several CYP51 conformations exhibited that "number of GA runs" and

  15. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W. (SJCH)

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  16. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA-dam...

  17. The new concepts on overcoming drug resistance in lung cancer

    Directory of Open Access Journals (Sweden)

    Zhang W

    2014-06-01

    Full Text Available Weisan Zhang,1 Ping Lei,1 Xifeng Dong,2 Cuiping Xu31Department of Geriatrics, 2Department of Hematology-Oncology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China; 3Qianfoshan Hospital, Shandong University, Jinan, People’s Republic of ChinaAbstract: Lung cancer is one of the most deadly diseases worldwide. The current first-line therapies include chemotherapy using epidermal growth factor receptor tyrosine kinase inhibitors and radiotherapies. With the current progress in identifying new molecular targets, acquired drug resistance stands as an obstacle for good prognosis. About half the patients receiving epidermal growth factor receptor-tyrosine kinase inhibitor treatments develop resistance. Although extensive studies have been applied to elucidate the underlying mechanisms, evidence is far from enough to establish a well-defined picture to correct resistance. In the review, we will discuss four different currently developed strategies that have the potential to overcome drug resistance in lung cancer therapies and facilitate prolonged anticancer effects of the first-line therapies.Keywords: ALK receptors cancer stem cell, chemotherapy, EGFR-TKI, target therapy, pharmacology, molecular biology, biotherapy

  18. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

    Directory of Open Access Journals (Sweden)

    Kryzhanovsky D.G.

    2014-11-01

    Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

  19. Ethanol-resistant polymeric film coatings for controlled drug delivery.

    Science.gov (United States)

    Rosiaux, Y; Muschert, S; Chokshi, R; Leclercq, B; Siepmann, F; Siepmann, J

    2013-07-10

    The sensitivity of controlled release dosage forms to the presence of ethanol in the gastro intestinal tract is critical, if the incorporated drug is potent and exhibits severe side effects. This is for instance the case for most opioid drugs. The co-ingestion of alcoholic beverages can lead to dose dumping and potentially fatal consequences. For these reasons the marketing of hydromorphone HCl extended release capsules (Palladone) was suspended. The aim of this study was to develop a novel type of controlled release film coatings, which are ethanol-resistant: even the presence of high ethanol concentrations in the surrounding bulk fluid (e.g., up to 40%) should not affect the resulting drug release kinetics. Interestingly, blends of ethylcellulose and medium or high viscosity guar gums provide such ethanol resistance. Theophylline release from pellets coated with the aqueous ethylcellulose dispersion Aquacoat® ECD 30 containing 10 or 15% medium and high viscosity guar gum was virtually unaffected by the addition of 40% ethanol to the release medium. Furthermore, drug release was shown to be long term stable from this type of dosage forms under ambient and stress conditions (without packaging material), upon appropriate curing.

  20. Exosomes in development, metastasis and drug resistance of breast cancer.

    Science.gov (United States)

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system.

  1. OTYPIC CHARACTERIZATION AND ANTIFUNGAL SUSCEPTIBILITY PATTERN OF CANDIDA SP ISOLATED FROM A TERTIARY CARE CENTER

    Directory of Open Access Journals (Sweden)

    Rudramurthy

    2014-02-01

    Full Text Available ACT: Candida , a yeast like ubiquitous fungus , is an endogenous species which produces commonest fungal infection; Candidiasis. Resistance to antifungal agents is an alarming sign for the emerging common nosocomial candidiasis. MATERIALS AND METHODS: Various types of specimens we re collected from the c linically suspected cases of candidiasis. Isolation and characterization of candida sp . was done by standard procedures. Antifungal susceptibility was done by disc diffusion method. RESULT: The candida was isolated from various clinical specimens , vaginal swab (24.66% , skin scraping (13.33% oral swabs (12.66% , ear swabs ( 11.33% , nail scraping (10% , and pus from diabetes foot ulcer and post - operative wound infection ( 8% , sputum ( 6% , urine (4.66% , stool ( 4% , blood ( 2.66% , and eye swabs ( 2.66%. Amon g different species of candida isolated C.albicans was the predominant species (79.33% followed by C tropicalis (19.33% and C.Guilliermondii (1.33%. Antifungal resistance of different species of candida was higher to fluconazole . The least resistance wa s seen with amphotericin - B (1.33%. CONCLUSION: The increased isolation of candida species and development of resistance to commonly used antifungal drugs requires careful interpretation and the in vitro susceptibility testing. This facilitates better pat ient care.

  2. Seasonal distribution of anti-malarial drug resistance alleles on the island of Sumba, Indonesia

    NARCIS (Netherlands)

    Asih, P.B.; Rogers, W.O.; Susanti, A.I.; Rahmat, A.; Rozi, I.E.; Kusumaningtyas, M.A.; Dewi, R.M.; Coutrier, F.N.; Sutamihardja, A.; Ven, A.J.A.M. van der; Sauerwein, R.W.; Syafruddin, D.

    2009-01-01

    BACKGROUND: Drug resistant malaria poses an increasing public health problem in Indonesia, especially eastern Indonesia, where malaria is highly endemic. Widespread chloroquine (CQ) resistance and increasing sulphadoxine-pyrimethamine (SP) resistance prompted Indonesia to adopt artemisinin-based com

  3. Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence

    NARCIS (Netherlands)

    Waard, de M.A.; Andrade, A.C.; Hayashi, K.; Schoonbeek, H.; Stergiopoulos, I.; Zwiers, L.H.

    2006-01-01

    Drug transporters are membrane proteins that provide protection for organisms against natural toxic products and fungicides. In plant pathogens, drug transporters function in baseline sensitivity to fungicides, multidrug resistance (MDR) and virulence on host plants. This paper describes drug transp

  4. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells.

    Science.gov (United States)

    Kim, Kyoung-Ran; Kim, Da-Rae; Lee, Taemin; Yhee, Ji Young; Kim, Byeong-Su; Kwon, Ick Chan; Ahn, Dae-Ro

    2013-03-11

    A DNA tetrahedron is employed for efficient delivery of doxorubicin into drug-resistant breast cancer cells. The drug delivered with the DNA nanoconstruct is considerably cytotoxic, whereas free doxorubicin is virtually non-cytotoxic for the drug-resistant cells. Thus, the DNA tetrahedron, made of the inherently natural and biocompatible material, can be a good candidate for the drug carrier to overcome MDR in cancer cells.

  5. Cross-resistance patterns and antigen expression in Vinca alkaloid- and other multiple drug-resistant human leukemic cell lines.

    Science.gov (United States)

    Beck, W T; Danks, M K; Cirtain, M C; van Heiningen, J N

    1986-01-01

    The studies presented in this report demonstrate that Vinca alkaloid-resistant human leukemic lymphoblasts display patterns of cross-resistance to other drugs that differ from those of cell lines selected for primary resistance to anthracyclines or epipodophyllotoxins. These various drug-resistant cell lines also showed differential expression of an antigen recognized by an antibody that distinguishes VLB-resistant from VLB-sensitive cells. Furthermore, comparable levels of resistance or cross-resistance to one drug are not predictive of cross-resistance to other drugs. Our data suggest, then, that the MDR phenotype is complex and may be the result of many and different biochemical lesions. Thus, in order to predict MDR, it may be necessary to document more than one of these changes with specific reagents.

  6. [In vitro biofilm formation and relationship with antifungal resistance of Candida spp. isolated from vaginal and intrauterine device string samples of women with vaginal complaints].

    Science.gov (United States)

    Calışkan, Seyda; Keçeli Özcan, Sema; Cınar, Selvi; Corakçı, Aydın; Calışkan, Eray

    2011-10-01

    Intrauterin device (IUD) application is a widely used effective, safe and economic method for family planning. However IUD use may cause certain changes in vaginal ecosystem and may disturb microflora leading to increased colonization of various opportunistic pathogen microorganisms. The aims of this study were (i) to detect the biofilm production characteristics of Candida spp. isolated from vaginal and IUD string samples of women with IUDs, and (ii) to investigate the relationship between biofilm production and antifungal resistance. A total of 250 women (mean age: 34.4 ± 7.6 years) admitted to gynecology outpatient clinics with vaginal symptoms (discharge and itching) were included in the study. The patients have been implanted CuT380a type IUDs for a mean duration of 59.8 ± 42.4 months. Without removing IUD, string samples were obtained by cutting and simultaneous vaginal swab samples were also collected. Isolated Candida spp. were identified by conventional methods and API 20C AUX (BioMerieux, Fransa) system. Minimal inhibitory concentrations (MIC) of fluconazole, itraconazole and amphotericin B were determined by broth microdilution method according to the CLSI guidelines. Biofilm formation was evaluated by crystal violet staining and XTT-reduction assays, and the isolates which yielded positive results in both of the methods were accepted as biofilm-producers. In the study, Candida spp. were isolated from 33.2% (83/250) of the vaginal and 34% (85/250) of the IUD string samples, C.albicans being the most frequently detected species (54 and 66 strains for the samples, respectively). The total in vitro biofilm formation rate was 25% (21/83) for vaginal isolates and 44.7% (38/85) for IUD string isolates. Biofilm formation rate of vaginal C.albicans isolates was significantly lower than vaginal non-albicans Candida spp. (14.8% and 44.8%, respectively; p= 0.003). Biofilm formation rate of C.albicans strains isolated from vaginal and IUD string samples were found

  7. Transmission of extensively drug-resistant and multidrug resistant Mycobacterium tuberculosis in families identified by genotyping

    Institute of Scientific and Technical Information of China (English)

    YAN Li-ping; QIN Lian-hua; ZHANG Qing; SUN Hua; HAN Min; XIAO He-ping

    2013-01-01

    Background Diagnosis and appropriate treatment of multidrug-resistant tuberculosis (MDR-TB) remain major challenges.We sought to elucidate that persons who share a household with drug resistance tuberculosis patients are at high risk for primary drug resistance tuberculosis and how to prevent these outbreaks.Methods We used 12-locus mycobacterial interspersed repetitive unit and 7-locus variable-number tandem repeat to identify household transmission of extensively drug resistant and multiple drug resistant Mycobacterium tuberculosis in three families admitted in Shanghai Pulmonary Hospital affiliated with Tongji University.Drug susceptibility tests were done by the modified proportion method in the MGIT 960 system in the same time.Clinical data were also obtained from the subjects' medical records.Results All of the six strains were defined as Beijing genotype by the deletion-targeted multiplex PCR (DTM-PCR) identification on the genomic deletion RD105.Strains from family-1 had the same minisatellite interspersed repetitive unit (MIRU) pattem (232225172531) and the same MIRU pattern (3677235).Strains from family-2 had the same MIRU pattern (2212261553323) and the same MIRU pattern (3685134).Strains from family-3 did not have the same MIRU pattern and they differed at only one locus (223326173533,223325173533),and did not have the same VNTR pattern with two locus differed (3667233,3677234).Conclusions Household transmission exists in the three families.A clear chain of tuberculosis transmission within family exists.Tuberculosis susceptibility should be considered when there is more than one tuberculosis patients in a family.Household tuberculosis transmission could be prevented with adequate treatment of source patients.

  8. The epidemiology and spread of drug resistant human influenza viruses.

    Science.gov (United States)

    Hurt, Aeron C

    2014-10-01

    Significant changes in the circulation of antiviral-resistant influenza viruses have occurred over the last decade. The emergence and continued circulation of adamantane-resistant A(H3N2) and A(H1N1)pdm09 viruses mean that the adamantanes are no longer recommended for use. Resistance to the newer class of drugs, the neuraminidase inhibitors, is typically associated with poorer viral replication and transmission. But 'permissive' mutations, that compensated for impairment of viral function in A(H1N1) viruses during 2007/2008, enabled them to acquire the H275Y NA resistance mutation without fitness loss, resulting in their rapid global spread. Permissive mutations now appear to be present in A(H1N1)pdm09 viruses thereby increasing the risk that oseltamivir-resistant A(H1N1)pdm09 viruses may also spread globally, a concerning scenario given that oseltamivir is the most widely used influenza antiviral.

  9. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  10. Synthesis of Antifungal Drug Amorolfine Hydrochloride%抗真菌药盐酸阿莫罗芬的合成研究

    Institute of Scientific and Technical Information of China (English)

    王兴旺; 张珩; 杨艺虹; 张秀兰; 曾威

    2012-01-01

    Antifungal drug amorolfine hydrochloride was synthesized starting from formaldehyde and propanal via the processes of Mannich reaction, Friedel -Crafts reaction, saponification, condensation, reduction and salification. The affecting factors including the ratio of the raw materials, the reaction time, the reaction temperature and the catalyst were investigated. The product was prepared in an overall yield of 30.97%, and the structure was confirmed with IR, GC-MS and 'H NMR.%以甲醛和丙醛为原料,经Mannich反应、Friedel-Crafts烷基化、Saponification反应、缩合、还原、成盐反应合成抗真菌药盐酸阿莫罗芬.对影响收率的原料配比、反应时间、反应温度和催化剂等因素进行了工艺优化.通过IR、GC-MS、1H NMR确证了盐酸阿莫罗芬结构.其工艺简单、原料易得、条件温和、操作简便,总收率达30.97%(以丙醛计),具有工业化应用前景.

  11. New and emerging antifungal agents: impact on respiratory infections.

    Science.gov (United States)

    Feldmesser, Marta

    2003-01-01

    Fungal pathogens are increasingly important causes of respiratory disease, yet the number of antifungal agents available for clinical use is limited. Use of amphotericin B deoxycholate is hampered by severe toxicity. Triazole agents currently available have significant drug interactions; fluconazole has a limited spectrum of activity and itraconazole was, until recently, available only in oral formulations with limited bioavailability. The development of resistance to all three agents is increasingly being recognized and some filamentous fungi are resistant to the action of all of these agents. In the past few years, new antifungal agents and new formulations of existing agents have become available.The use of liposomal amphotericin B preparations is associated with reduced, but still substantial, rates of nephrotoxicity and infusion-related reactions. An intravenous formulation of itraconazole has been introduced, and several new triazole agents have been developed, with the view of identifying agents that have enhanced potency, broader spectra of action and improved pharmacodynamic properties. One of these, voriconazole, has completed large-scale clinical trials. In addition, caspofungin, the first of a new class of agents, the echinocandins, which inhibit cell wall glucan synthesis, was approved for use in the US in 2001 as salvage therapy for invasive aspergillosis. It is hoped that the availability of these agents will have a significant impact on the morbidity and mortality of fungal respiratory infections. However, at the present time, our ability to assess their impact is limited by the problematic nature of conducting trials for antifungal therapy.

  12. Probiotics as Antifungals in Mucosal Candidiasis.

    Science.gov (United States)

    Matsubara, Victor H; Bandara, H M H N; Mayer, Marcia P A; Samaranayake, Lakshman P

    2016-05-01

    Candidais an opportunistic pathogen that causes mucosal and deep systemic candidiasis. The emergence of drug resistance and the side effects of currently available antifungals have restricted their use as long-term prophylactic agents for candidal infections. Given this scenario, probiotics have been suggested as a useful alternative for the management of candidiasis. We analyzed the available data on the efficacy of probiotics in candidal colonization of host surfaces. A number of well-controlled studies indicate that probiotics, particularly lactobacilli, suppressCandidagrowth and biofilm development in vitro.A few clinical trials have also shown the beneficial effects of probiotics in reducing oral, vaginal, and enteric colonization byCandida; alleviation of clinical signs and symptoms; and, in some cases, reducing the incidence of invasive fungal infection in critically ill patients. Probiotics may serve in the future as a worthy ally in the battle against chronic mucosal candidal infections.

  13. Definition of drug-resistant epilepsy: is it evidence based?

    Science.gov (United States)

    Wiebe, Samuel

    2013-05-01

    Clinical case definitions are the cornerstone of clinical communication and of clinical and epidemiologic research. The ramifications of establishing a case definition are extensive, including potentially large changes in epidemiologic estimates of frequency, and decisions for clinical management. Yet, defining a condition entails numerous challenges such as defining the scope and purpose, incorporating the strongest evidence base with clinical expertise, accounting for patients' values, and considering impact on care. The clinical case definition of drug-resistant epilepsy, in addition, must address what constitutes an adequate intervention for an individual drug, what are the outcomes of relevance, what period of observation is sufficient to determine success or failure, how many medications should be tried, whether seizure frequency should play a role, and what is the role of side effects and tolerability. On the other hand, the principles of evidence-based medicine (EBM) aim at providing a systematic approach to incorporating the best available evidence into the process of clinical decision for individual patients. The case definition of drug-resistant epilepsy proposed by the the International League Against Epilepsy (ILAE) in 2009 is evaluated in terms of the principles of EBM as well as the stated goals of the authors of the definition.

  14. Reversal of Vinca alkaloid resistance but not multiple drug resistance in human leukemic cells by verapamil.

    Science.gov (United States)

    Beck, W T; Cirtain, M C; Look, A T; Ashmun, R A

    1986-02-01

    We examined the ability of verapamil, a Ca2+ channel blocker, to overcome Vinca alkaloid and multiple drug resistance in our CEM/VLB100 and CEM/DOX human leukemic lymphoblasts. Compared with the parent CCRF-CEM cells, CEM/VLB100 cells are approximately equal to 200- to 800-fold resistant to vinblastine and express cross-resistance to vincristine, doxorubicin, and other "natural product" drugs, as determined by comparing 50% inhibitory concentrations in a 48-h growth inhibition assay. Verapamil (10 microM) decreased the 50% inhibitory concentrations for Vinca alkaloids in CEM/VLB100 cells by approximately equal to 75- to 85-fold but caused only slight (approximately equal to 2- to 5-fold) decreases in 50% inhibitory concentrations for anthracyclines, epipodophyllotoxins, and other tubulin-binding drugs (colchicine and podophyllotoxin). Qualitatively similar results were obtained with doxorubicin-resistant cells, termed CEM/DOX; verapamil caused a 19-fold increase in doxorubicin toxicity but 67- and 3500-fold increases in the toxicities of vinblastine and vincristine, respectively. These results indicate that the effect of verapamil is relatively greater for Vinca alkaloids, with less pronounced effects for the other natural product drugs against which these cells express multiple drug resistance. In flow cytometric studies, individually nontoxic or minimally toxic concentrations of vinblastine plus verapamil caused measurable accumulation in the G2 + M phase as early as 4 h after the drug combination was added to cultures of CEM/VLB100 cells; this finding correlated with a comparable increase in the number of cells in mitosis and measurable decreases in the total number of cells. Since similar effects on cell cycle distribution, percentage of cells in mitosis, and cell number were seen when CEM/VLB100 cells were treated with toxic concentrations of vinblastine alone, we conclude that the primary toxicity of the vinblastine-verapamil combination stems from the

  15. Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance.

    Directory of Open Access Journals (Sweden)

    Thomas Lettner

    Full Text Available BACKGROUND: Hyphal growth and multidrug resistance of C. albicans are important features for virulence and antifungal therapy of this pathogenic fungus. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by phenotypic complementation analysis that the C. albicans gene AGE3 is the functional ortholog of the yeast ARF-GAP-encoding gene GCS1. The finding that the gene is required for efficient endocytosis points to an important functional role of Age3p in endosomal compartments. Most C. albicans age3Delta mutant cells which grew as cell clusters under yeast growth conditions showed defects in filamentation under different hyphal growth conditions and were almost completely disabled for invasive filamentous growth. Under hyphal growth conditions only a fraction of age3Delta cells shows a wild-type-like polarization pattern of the actin cytoskeleton and lipid rafts. Moreover, age3Delta cells were highly susceptible to several unrelated toxic compounds including antifungal azole drugs. Irrespective of the AGE3 genotype, C-terminal fusions of GFP to the drug efflux pumps Cdr1p and Mdr1p were predominantly localized in the plasma membrane. Moreover, the plasma membranes of wild-type and age3Delta mutant cells contained similar amounts of Cdr1p, Cdr2p and Mdr1p. CONCLUSIONS/SIGNIFICANCE: The results indicate that the defect in sustaining filament elongation is probably caused by the failure of age3Delta cells to polarize the actin cytoskeleton and possibly of inefficient endocytosis. The high susceptibility of age3Delta cells to azoles is not caused by inefficient transport of efflux pumps to the cell membrane. A possible role of a vacuolar defect of age3Delta cells in drug susceptibility is proposed and discussed. In conclusion, our study shows that the ARF-GAP Age3p is required for hyphal growth which is an important virulence factor of C. albicans and essential for detoxification of azole drugs which are routinely used for antifungal therapy. Thus, it

  16. Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Nisana Tepsiri; Liengchai Chaturat; Banchob Sripa; Wises Namwat; Sopit Wongkham; Vajarabhongsa Bhudhisawasdi; Wichittra Tassaneeyakul

    2005-01-01

    AIM: To study the effect of a number of chemotherapeutic drugs on five human intrahepatic cholangiocarcinoma (CCA) cell lines. The expressions of genes that have been proposed to influence the resistance of chemotherapeutic drugs including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), glutathione-S-transferase P1 (GSTP1), multidrug resistance protein (MDR1) and multidrug resistance-associated proteins (MRPs) were also determined.METHODS: Five human CCA cell lines (KKU-100, KKU M055, KKU-M156, KKU-M214 and KKU-OCA17) weretreated with various chemotherapeutic drugs and growth inhibition was determined by 3-(4,5-dimethylthiazol-2-yl)5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Semi-quantitative levels of gene expression were determined by a reverse transcriptase polymerase chain reaction (RT-PCR). Results of IC50 values and the ratios of gene expression were analyzed by linear regression to predict their relationship. RESULTS: Among five CCA cell lines, KKU-M055 was the most sensitive cell line towards all chemotherapeutic drugs investigated, particularly taxane derivatives with IC50 values of 0.02-3 nmol/L, whereas KKU-100 was apparently the least sensitive cell line. When compared to other chemotherapeutic agents, doxorubicin and pirarubicin showed the lowest IC50 values (<5 μmol/L) in all five CCA cell lines. Results from RT-PCR showed that TS, MRP1, MRP3 and GSTP1 were highly expressed in these five CCA cell lines while DPD and MRP2 were only moderately expressed. It should be noted that MDR1 expression was detected only in KKU-OCA17 cell lines. A strong correlation was only found between the level of MRP3 expression and the IC50 values of etoposide, doxorubicin and pirarubicin (r = 0.86-0.98, ,P<0.05). CONCLUSION: Sensitivity to chemotherapeutic agents is not associated with the histological type of CCA. Choosing of the appropriate chemotherapeutic regimen for the treatment of CCA requires knowledge of drug

  17. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates.

    Science.gov (United States)

    Straimer, Judith; Gnädig, Nina F; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D; Urnov, Fyodor D; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M; Ménard, Didier; Fidock, David A

    2015-01-23

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.

  18. 含有额外拷贝黄曲霉cyp51同源基因的烟曲霉对抗真菌药物的敏感性测定%Antifungal susceptibility of the A.fumigatus transformants containing extra copies of A.flavus cyp51 gene homologues to the common antifungal drugs

    Institute of Scientific and Technical Information of China (English)

    刘伟霞; 孙毅; 万喆; 李若瑜; 刘伟

    2011-01-01

    Objective To investigate the effect of Aspergillus flavus cyp51 genes on antifungal susceptibility by cloning and constucting the extra copies of Aspergillus flavus cyp51 genes. Methods A.flavus cyp5l gene homologues were identified by tblastn searches inA. flavus genome database. PCR fragments composed of the 5'flanking sequence (approximately 1 000 bp) ofcyp51 ,cyp51 ORF, and its 3'flanking sequence (approximately 1 000 bp), were subcloned into shuttle plasmid pRG3-AMAl-NotI to produce recombinant plasmids. These plasmids and empty plasmid pRG3-AMA1-Notl were transformed into A.fumigatus strain AF293.1 (pyrG-) respectively to produce transformants. The Clinical Laboratory Standard Institute broth microdilution method M38-A2 and E-test method were used to assay the minimal inhibitory concentrations (MICs) of itraconazole ( ITC), voriconazole ( VRC), amphotericin B (AMB), and posaconazole (POS), or minimal effect concentration (MEC) of caspofungin (CAS), against these transformants. Results A. flavus genome contains three cyp51 gene homologues, cyp51A ,cyp51B and cyp51 C, of which the ORF size are 1 400-2 000 bp. When these genes were subcloned into shuttle plasmid pRG3-AMA1-NotI, we get plasmids pRG3-AMA1-CYP51 A, pRG3-AMA1-CYP51B and pRG3-AMA1-CYP51C. These plasmids and empty plasmid were transformed into A.fumigatus strain AF293.1 (pyrG-) to produce transformants rCYP51A, rCYP51B, rCYP51C and rpRG. The antifungal susceptibility of these A.fumigatus transformants to the antifungal drugs by broth microdilution assaying and E-test method showed that, rCYP51A and rCYP51B were cross-resistant to VRC and ITC, susceptible to both AM B and CAS; rCYP51C and rpRG were intermediate to ITC and VRC, susceptible to both A MB and CAS. Conclusion In A. fumigatus , extra copies of A.flavus ' cyp51A gene or cyp51B gene have effect on antifungal susceptibility to azoles, have no effect on AMB and CAS. Extra copy ofcyp51C has no obvious effect on all the tested drugs.%目的

  19. Chrysin and its emerging role in cancer drug resistance.

    Science.gov (United States)

    Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Barua, Chandana C; Gogoi, Ranadeep

    2015-07-05

    This letter illustrates the significant chemosensitizing effects of chrysin to resistance cancer cells and refers to the article on "Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53" by Li et al., published in your journal recently. Recent studies have demonstrated that chrysin is able to sensitize or kill cancer cells which are resistant to chemotherapeutic drugs such as cisplatin, doxorubicin and adriamycin. Owing to its potential anti-cancer effects and devoid of toxicity to non-transformed cells, further research is required to completely explore its chemosensitizing effects in other cancers and also assess and evaluate its safety, before going for possible human application.

  20. Identification and Characterization of Novel Drug Resistance Loci in Plasmodium falciparum

    OpenAIRE

    Van Tyne, Daria Natalie

    2012-01-01

    Malaria has plagued mankind for millennia. Antimalarial drug use over the last century has generated highly drug-resistant parasites, which amplify the burden of this disease and pose a serious obstacle to control efforts. This dissertation is motivated by the simple fact that malaria parasites have become resistant to nearly every antimalarial drug that has ever been used, yet the precise genetic mechanisms of parasite drug resistance remain largely unknown. Our work pairs genomics-age techn...

  1. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections.

    Science.gov (United States)

    Viehman, J Alexander; Nguyen, M Hong; Doi, Yohei

    2014-08-01

    Acinetobacter baumannii is a leading cause of healthcare-associated infections worldwide. Because of various intrinsic and acquired mechanisms of resistance, most β-lactam agents are not effective against many strains, and carbapenems have played an important role in therapy. Recent trends show many infections are caused by carbapenem-resistant or even extensively drug-resistant (XDR) strains, for which effective therapy is not well established. Evidence to date suggests that colistin constitutes the backbone of therapy, but the unique pharmacokinetic properties of colistin have led many to suggest the use of combination antimicrobial therapy. However, the combination of agents and dosing regimens that delivers the best clinical efficacy while minimizing toxicity is yet to be defined. Carbapenems, sulbactam, rifampin and tigecycline have been the most studied in the context of combination therapy. Most data regarding therapy for invasive, resistant A. baumannii infections come from uncontrolled case series and retrospective analyses, though some clinical trials have been completed and others are underway. Early institution of appropriate antimicrobial therapy is shown to consistently improve survival of patients with carbapenem-resistant and XDR A. baumannii infection, but the choice of empiric therapy in these infections remains an open question. This review summarizes the most current knowledge regarding the epidemiology, mechanisms of resistance, and treatment considerations of carbapenem-resistant and XDR A. baumannii.

  2. Spectrum and the In Vitro Antifungal Susceptibility Pattern of Yeast Isolates in Ethiopian HIV Patients with Oropharyngeal Candidiasis

    Directory of Open Access Journals (Sweden)

    Birhan Moges

    2016-01-01

    Full Text Available Background. In Ethiopia, little is known regarding the distribution and the in vitro antifungal susceptibility profile of yeasts. Objective. This study was undertaken to determine the spectrum and the in vitro antifungal susceptibility pattern of yeasts isolated from HIV infected patients with OPC. Method. Oral pharyngeal swabs taken from oral lesions of study subjects were inoculated onto Sabouraud Dextrose Agar. Yeasts were identified by employing conventional test procedures and the susceptibility of yeasts to antifungal agents was evaluated by disk diffusion assay method. Result. One hundred and fifty-five yeast isolates were recovered of which 91 isolates were from patients that were not under HAART and 64 were from patients that were under HAART. C. albicans was the most frequently isolated species followed by C. glabrata, C. tropicalis, C. krusei, C. kefyr, Cryptococcus laurentii, and Rhodotorula species. Irrespective of yeasts isolated and identified, 5.8%, 5.8%, 12.3%, 8.4%, 0.6%, and 1.3% of the isolates were resistant to amphotericin B, clotrimazole, fluconazole, ketoconazole, miconazole, and nystatin, respectively. Conclusion. Yeast colonization rate of 69.2% and 31% resistance to six antifungal agents was documented. These highlight the need for nationwide study on the epidemiology of OPC and resistance to antifungal drugs.

  3. Antibiotic Restriction Might Facilitate the Emergence of Multi-drug Resistance.

    Science.gov (United States)

    Obolski, Uri; Stein, Gideon Y; Hadany, Lilach

    2015-06-01

    High antibiotic resistance frequencies have become a major public health issue. The decrease in new antibiotics' production, combined with increasing frequencies of multi-drug resistant (MDR) bacteria, cause substantial limitations in treatment options for some bacterial infections. To diminish overall resistance, and especially the occurrence of bacteria that are resistant to all antibiotics, certain drugs are deliberately scarcely used--mainly when other options are exhausted. We use a mathematical model to explore the efficiency of such antibiotic restrictions. We assume two commonly used drugs and one restricted drug. The model is examined for the mixing strategy of antibiotic prescription, in which one of the drugs is randomly assigned to each incoming patient. Data obtained from Rabin medical center, Israel, is used to estimate realistic single and double antibiotic resistance frequencies in incoming patients. We find that broad usage of the hitherto restricted drug can reduce the number of incorrectly treated patients, and reduce the spread of bacteria resistant to both common antibiotics. Such double resistant infections are often eventually treated with the restricted drug, and therefore are prone to become resistant to all three antibiotics. Thus, counterintuitively, a broader usage of a formerly restricted drug can sometimes lead to a decrease in the emergence of bacteria resistant to all drugs. We recommend re-examining restriction of specific drugs, when multiple resistance to the relevant alternative drugs already exists.

  4. Species distribution & antifungal susceptibility pattern of oropharyngeal Candida isolates from human immunodeficiency virus infected individuals

    Directory of Open Access Journals (Sweden)

    Partha Pratim Das

    2016-01-01

    Results: From the 59 culture positive HIV seropositive cases, 61 Candida isolates were recovered; Candidaalbicans (n=47, 77.0%, C. dubliniensis (n=9, 14.7%, C. parapsilosis (n=2, 3.2%, C. glabrata (n=2, 3.2%, and C. famata (n=1, 1.6%. Candida colonization in HIV-seropositive individuals was significantly higher than that of HIV-seronegative (control group. Antifungal susceptibility testing revealed (n=6, 9.3% C. albicans isolates resistant to voriconazole and fluconazole by disk-diffusion method whereas no resistance was seen by Fungitest method. Interpretation & conclusions: C. albicans was the commonest Candida species infecting or colonizing HIV seropositive individuals. Oropharyngeal Candida isolates had high level susceptibility to all the major antifungals commonly in use. Increased level of immunosuppression in HIV-seropositives and drug resistance of non-albicans Candida species makes identification and susceptibility testing of Candida species necessary in different geographical areas of the country.

  5. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of ion...

  6. In Vitro Susceptibility of Aflatoxigenic and Non-aflatoxigenic Aspergillus flavus Strains to Conventional Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Mahmoud Mahmoudi

    2012-12-01

    Full Text Available Presently appearance of resistance to antifungal agents among Aspergillus species is dramatically increasing. The objective of this study was to look at the in vitro activities of antifungal drugs against Iranian clinical (from nail, bronchoalveolar lavage, paranasal sinus isolated A. flavus strains. The susceptibility of 45 aflatoxigenic and non-aflatoxigenic Aspergillus flavus strains were evaluated to six antifungal agents (caspofungin, itraconazole, amphotericin B, ketoconazole, fluconazole, nystatin using CLSI M38-A2 broth microdilution method. The results indicated that 57.1%, 28.6% of aflatoxigenic and 25.8%, 6.5% of non-aflatoxigenic isolates were susceptible to caspofungin, amphotericin B respectively. All isolates but one aflatoxigenic strain were sensitive to ketoconazole. All 45 strains showed to be resistant to nystatin. Also 64.28%, 92.9% of aflatoxigenic and 64.51%, 100% of non-aflatoxigenic isolates were resistant to fluconazole and itraconazole in ranking order. There was no statistically significant difference between the susceptibilities of aflatoxigenic and non-aflatoxigenic strains of A. flavus to tested antifungal agents

  7. Synthesis, Structure-Activity Relationships (SAR and in Silico Studies of Coumarin Derivatives with Antifungal Activity

    Directory of Open Access Journals (Sweden)

    José M. Barbosa-Filho

    2013-01-01

    Full Text Available The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 µg/mL. The structure-activity relationships (SAR study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate favor activity. These findings were confirmed using density functional theory (DFT, when calculating the LUMO density. In Principal Component Analysis (PCA, two significant principal components (PCs explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity.

  8. Encapsulation of Antifungals in Micelles Protects Candida albicans during Gall-Bladder Infection

    Science.gov (United States)

    Hsieh, Shih-Hung; Brunke, Sascha; Brock, Matthias

    2017-01-01

    Candida albicans is a dimorphic fungus that colonizes human mucosal surfaces with the potential to cause life-threatening invasive candidiasis. Studies on systemic candidiasis in a murine infection model using in vivo real-time bioluminescence imaging revealed persistence of C. albicans in the gall bladder under antifungal therapy. Preliminary analyses showed that bile conferred resistance against a wide variety of antifungals enabling survival in this cryptic host niche. Here, bile and its components were studied for their ability to reduce antifungal efficacy in order to elucidate the underlying mechanism of protection. While unconjugated bile salts were toxic to C. albicans, taurine, or glycine conjugated bile salts were well tolerated and protective against caspofungin and amphotericin B when exceeding their critical micellar concentration. Microarray experiments indicated that upregulation of genes generally known to mediate antifungal protection is not involved in the protection process. In contrast, rhodamine 6G and crystal violet in- and efflux experiments indicated encapsulation of antifungals in micelles, thereby reducing their bioavailability. Furthermore, farnesol sensing was abolished in the presence of conjugated bile salts trapping C. albicans cells in the hyphal morphology. This suggests that bioavailability of amphiphilic and hydrophobic compounds is reduced in the presence of bile. In contrast, small and hydrophilic molecules, such as cycloheximide, flucytosine, or sodium azide kept their antifungal properties. We therefore conclude that treatment of gall bladder and bile duct infections is hampered by the ability of bile salts to encapsulate antifungals in micelles. As a consequence, treatment of gall bladder or bile duct infections should favor the use of small hydrophilic drugs that are not solubilised in micelles. PMID:28203228

  9. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus

    DEFF Research Database (Denmark)

    de Evgrafov, Mari Cristina Rodriguez; Gumpert, Heidi; Munck, Christian

    2015-01-01

    revealed that resistance to drug combinations was mediated largely by mutations in the same genes as single-drug-evolved lineages highlighting the importance of the component drugs in determining the rate of resistance evolution. Results of this work suggest that the mechanisms of resistance to constituent......As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations......, and the scientific model emerging from in vitro experimental work, which maintains that this interaction provides greater selective pressure toward resistance development than other interaction types. We sought to extend the current paradigm, based on work below or near minimum inhibitory concentration levels...

  10. Managing drug-resistant epilepsy: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Dalic L

    2016-10-01

    Full Text Available Linda Dalic,1 Mark J Cook2,3 1Department of Neurology, Austin Health, 2St Vincent’s Hospital, Centre for Clinical Neurosciences and Neurological Research, 3Department of Medicine, The University of Melbourne, Melbourne, Australia Abstract: Despite the development of new antiepileptic drugs (AEDs, ~20%–30% of people with epilepsy remain refractory to treatment and are said to have drug-resistant epilepsy (DRE. This multifaceted condition comprises intractable seizures, neurobiochemical changes, cognitive decline, and psychosocial dysfunction. An ongoing challenge to both researchers and clinicians alike, DRE management is complicated by the heterogeneity among this patient group. The underlying mechanism of DRE is not completely understood. Many hypotheses exist, and relate to both the intrinsic characteristics of the particular epilepsy (associated syndrome/lesion, initial response to AED, and the number and type of seizures prior to diagnosis and other pharmacological mechanisms of resistance. The four current hypotheses behind pharmacological resistance are the “transporter”, “target”, “network”, and “intrinsic severity” hypotheses, and these are reviewed in this paper. Of equal challenge is managing patients with DRE, and this requires a multidisciplinary approach, involving physicians, surgeons, psychiatrists, neuropsychologists, pharmacists, dietitians, and specialist nurses. Attention to comorbid psychiatric and other diseases is paramount, given the higher prevalence in this cohort and associated poorer health outcomes. Treatment options need to consider the economic burden to the patient and the likelihood of AED compliance and tolerability. Most importantly, higher mortality rates, due to comorbidities, suicide, and sudden death, emphasize the importance of seizure control in reducing this risk. Overall, resective surgery offers the best rates of seizure control. It is not an option for all patients, and there is

  11. Drug Resistance versus Spiritual Resistance: A Comparative Analysis from the Perspective of Spiritual Health

    Directory of Open Access Journals (Sweden)

    Mohammad Baqer Mohammadi Laini

    2014-12-01

    Full Text Available Background and Objectives: Taking into account a few principles concerning human being, it becomes plausible that the human spirit would also have a similar reaction to spiritual “medicine” provided to it. In order to better understand how this is possible, we must consider the means by which the human spirit becomes resistant to spiritual remedies and compare them with the resistance developed by the body against physical drugs. As such, this research aimed at creating a comparative analysis between the elements that cause the human spirit to become resistant against spiritual remedies in comparison to the body’s resistance against physical treatments (e.g. drugs and other physical treatment. Methods: The research at hand highlights the conclusions of an overall study of the Holy Quran, books of Islamic narration, and extensive Internet research concerning this subject. With these resources, the various aspects of the spirit’s resistance against spiritual remedies were discussed in detail. Results: According to Holy Quran and Islamic narrations: Based on the expectations which God has of man, his heart (i.e. spirit has the potential to fall under one of two categories – positive or negative. An afflicted heart may at times, like an afflicted body, become resistant against a remedy designed to cure it. In both cases of physical or metaphysical resistance, the underlying element that causes this resistance as well as the symptoms which accompany it are similar to one another. Having considered the teachings found in religious texts, this research discovered the underlying causes of spiritual resistance, and outlined some solutions which can prevent this issue from arising in the first place. Conclusion: Based on the standards of health and spiritual wellbeing as outlined in Holy Quran, it is said that some hearts are unhealthy and require treatment and healing. In Holy Quran, there is also no doubt in it, guidance to the God wary

  12. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development

    DEFF Research Database (Denmark)

    Imamovic, Lejla; Sommer, Morten

    2013-01-01

    New drug deployment strategies are imperative to address the problem of drug resistance, which is limiting the management of infectious diseases and cancers. We evolved resistance in Escherichia coli toward 23 drugs used clinically for treating bacterial infections and mapped the resulting...

  13. Extensively drug-resistant Streptococcus pneumoniae, South Korea, 2011-2012.

    Science.gov (United States)

    Cho, Sun Young; Baek, Jin Yang; Kang, Cheol-In; Kim, So Hyun; Ha, Young Eun; Chung, Doo Ryeon; Lee, Nam Yong; Peck, Kyong Ran; Song, Jae-Hoon

    2014-05-01

    To better understand extensively drug resistant Streptococcus pneumoniae, we assessed clinical and microbiological characteristics of 5 extensively drug-resistant pneumococcal isolates. We concluded that long-term care facility residents who had undergone tracheostomy might be reservoirs of these pneumococci; 13- and 23-valent pneumococcal vaccines should be considered for high-risk persons; and antimicrobial drugs should be used judiciously.

  14. [Progress in researches on molecular markers of Plasmodium falciparum drug resistance].

    Science.gov (United States)

    Zhang, Mei-hua; Lu, Feng; Cao, Jun; Gao, Qi

    2015-06-01

    Effective chemotherapy is the mainstay of malaria control. However, it is undergoing the serious threat by resis- tance of falciparum malaria to antimalarial drugs. In recent years, with the development of molecular biology technology, molec- ular markers have been widely used to monitor antimalarial drug resistance. This paper reviews the researches on the common molecular markers related to Plasmodiumfalciparum drug resistance.

  15. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    Science.gov (United States)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  16. Managing drug-resistant epilepsy: challenges and solutions

    Science.gov (United States)

    Dalic, Linda; Cook, Mark J

    2016-01-01

    Despite the development of new antiepileptic drugs (AEDs), ~20%–30% of people with epilepsy remain refractory to treatment and are said to have drug-resistant epilepsy (DRE). This multifaceted condition comprises intractable seizures, neurobiochemical changes, cognitive decline, and psychosocial dysfunction. An ongoing challenge to both researchers and clinicians alike, DRE management is complicated by the heterogeneity among this patient group. The underlying mechanism of DRE is not completely understood. Many hypotheses exist, and relate to both the intrinsic characteristics of the particular epilepsy (associated syndrome/lesion, initial response to AED, and the number and type of seizures prior to diagnosis) and other pharmacological mechanisms of resistance. The four current hypotheses behind pharmacological resistance are the “transporter”, “target”, “network”, and “intrinsic severity” hypotheses, and these are reviewed in this paper. Of equal challenge is managing patients with DRE, and this requires a multidisciplinary approach, involving physicians, surgeons, psychiatrists, neuropsychologists, pharmacists, dietitians, and specialist nurses. Attention to comorbid psychiatric and other diseases is paramount, given the higher prevalence in this cohort and associated poorer health outcomes. Treatment options need to consider the economic burden to the patient and the likelihood of AED compliance and tolerability. Most importantly, higher mortality rates, due to comorbidities, suicide, and sudden death, emphasize the importance of seizure control in reducing this risk. Overall, resective surgery offers the best rates of seizure control. It is not an option for all patients, and there is often a significant delay in referring to epilepsy surgery centers. Optimization of AEDs, identification and treatment of comorbidities, patient education to promote adherence to treatment, and avoidance of triggers should be periodically performed until further

  17. Susceptibilidad "in vitro" de cepas de Cryptococcus a 5 drogas antifungicas "In vitro" susceptibility of Cryptococcus strains to 5 antifungal drugs

    Directory of Open Access Journals (Sweden)

    A. J. Bava

    1989-10-01

    Full Text Available Se estudió la susceptibilidad "in vitro" de 24 cepas de 3 especies del género Cryptococcus a 5 drogas antifúngicas (anfotericina B, 5 fluorocitosina, ketoconazol, itraconazol y miconazol. Las mismas se agruparon según su especie, variedad y origen de aislamiento. Para determinar la concentración inhibitoria mínima (C.I.M. de cada droga se empleó el método de dilución en agar con el medio básico nitrogenado para levaduras, adicionado de glucosa. Se obtuvo además la media geométrica de estos valores para cada grupo y se comparó cada uno de ellos. Los resultados obtenidos fueron homogéneos con la sola excepción de las cepas de Cryptococcus sp (no neoformans, en las cuales se detectaron elevados valores de C.I.M. para la 5 fluorocitosina.A comparative study of the "in vitro" susceptibility of 24 Cryptococcus strains to 5 antifungal drugs (amphotericin B, 5 fluorocytosine, miconazole, itraconazole and ketoconazole, was carried out. These strains were grouped according to species, varieties and isolation's origins. The minimum inhibitory concentration (M.I.C. was determinated by the agar dilution technique in yeast nitrogen base agar with dextrose. The mean geometrical of the M.I.C. values of each group was compared with the others. The results obtained were homogeneous with the only exception of the "non neoformans" strains, in which, higher M.I.C. to 5 fluorocytosine values were detected.

  18. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine; Gulten, Gulcin; Langley, Robert; Schiehser, Guy A.; Jacobus, David P.; Jacobs, Jr., William R.; Sacchettini, James C.; (Einstein); (TAM); (Jacobus)

    2009-06-30

    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.

  19. Atomic modelling and systematic mutagenesis identify residues in multiple drug binding sites that are essential for drug resistance in the major Candida transporter Cdr1.

    Science.gov (United States)

    Nim, Shweta; Lobato, Lucia Gonzalez; Moreno, Alexis; Chaptal, Vincent; Rawal, Manpreet Kaur; Falson, Pierre; Prasad, Rajendra

    2016-11-01

    The ABC (ATP-Binding Cassette) transporter Cdr1 (Candida drug resistance 1) protein (Cdr1p) of Candida albicans, shows promiscuity towards the substrate it exports and plays a major role in antifungal resistance. It has two transmembrane domains (TMDs) comprising of six transmembrane helices (TMH) that envisage and confer the substrate specificity and two nucleotide binding domains (NBDs), interconnected by extracellular loops (ECLs) and intracellular loops (ICLs) Cdr1p. This study explores the diverse substrate specificity spectrum to get a deeper insight into the structural and functional features of Cdr1p. By screening with the variety of compounds towards an in-house TMH 252 mutant library of Cdr1p, we establish new substrates of Cdr1p. The localization of substrate-susceptible mutants in an ABCG5/G8 homology model highlights the common and specific binding pockets inside the membrane domain, where rhodamines and tetrazoliums mainly engage the N-moiety of Cdr1p, binding between TMH 2, 11 and surrounded by TMH 1, 5. Whereas, tin chlorides involve both N and C moieties located at the interface of TMH 2, 11, 1 and 5. Further, screening of the in house TMH mutant library of Cdr1p displays the TMH12 interaction with tetrazolium chloride, trimethyltin chloride and a Ca(2+) ionophore, A23187. In silico localization reveals a binding site at the TMH 12, 9 and 10 interface, which is widely exposed to the lipid interface. Together, for the first time, our study shows the molecular localization of Cdr1p substrates-binding sites and demonstrates the participation of TMH12 in a peripheral drug binding site.

  20. Second-line drug resistance in multidrug-resistant tuberculosis cases of various origins in the Netherlands.

    NARCIS (Netherlands)

    Ingen, J. van; Boeree, M.J.; Wright, A.; Laan, T.; Dekhuijzen, P.N.R.; Soolingen, D van

    2008-01-01

    SETTING: The Netherlands. OBJECTIVE: To investigate the frequency of resistance to second-line drugs among multidrug-resistant tuberculosis (MDR-TB) cases and its correlation with patients' geographic origin. DESIGN: Retrospective laboratory database study of multidrug-resistant Mycobacterium tuberc

  1. High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea

    Science.gov (United States)

    Lavu, Evelyn; Kave, Ellan; Mosoro, Euodia; Markby, Jessica; Aleksic, Eman; Gare, Janet; Elsum, Imogen A.; Nano, Gideon; Kaima, Petronia; Dala, Nick; Gurung, Anup; Bertagnolio, Silvia; Crowe, Suzanne M.; Myatt, Mark

    2017-01-01

    Introduction Papua New Guinea is a Pacific Island nation of 7.3 million people with an estimated HIV prevalence of 0.8%. ART initiation and monitoring are guided by clinical staging and CD4 cell counts, when available. Little is known about levels of transmitted HIV drug resistance in recently infected individuals in Papua New Guinea. Methods Surveillance of transmitted HIV drug resistance in a total of 123 individuals recently infected with HIV and aged less than 30 years was implemented in Port Moresby (n = 62) and Mount Hagen (n = 61) during the period May 2013-April 2014. HIV drug resistance testing was performed using dried blood spots. Transmitted HIV drug resistance was defined by the presence of one or more drug resistance mutations as defined by the World Health Organization surveillance drug resistance mutations list. Results The prevalence of non-nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 16.1% (95% CI 8.8%-27.4%) and 8.2% (95% CI 3.2%-18.2%) in Port Moresby and Mount Hagen, respectively. The prevalence of nucleoside reverse transcriptase inhibitor transmitted HIV drug resistance was 3.2% (95% CI 0.2%-11.7%) and 3.3% (95% CI 0.2%-11.8%) in Port Moresby and Mount Hagen, respectively. No protease inhibitor transmitted HIV drug resistance was observed. Conclusions The level of non-nucleoside reverse transcriptase inhibitor drug resistance in antiretroviral drug naïve individuals recently infected with HIV in Port Moresby is amongst the highest reported globally. This alarming level of transmitted HIV drug resistance in a young sexually active population threatens to limit the on-going effective use of NNRTIs as a component of first-line ART in Papua New Guinea. To support the choice of nationally recommended first-line antiretroviral therapy, representative surveillance of HIV drug resistance among antiretroviral therapy initiators in Papua New Guinea should be urgently implemented. PMID:28146591

  2. Drug resistance of deep fungi in cancer patients%肿瘤患者深部真菌耐药性分析

    Institute of Scientific and Technical Information of China (English)

    周杨霄; 蒋小伟; 李国钢; 李佳俊; 万汝根

    2012-01-01

    OBJECTIVE To understand the situation of drug resistance of the deep fungi in cancer patients, to provide evidence for rational use of antifungal agents. METHODS From Jun. 2006 to Jun. 2010, clinical specimens were cultured, and CHROMager Candida medium or ATB identification card were employed for strain identification. Susceptibility test was performed using the ATB-Fungus3 drug susceptibility plate. Retrospective and statistical analysis were performed. RESULTS Totally 386 strains of fungi were isolated. Detection rate was the highest in fungi isolated from the sputum, accounting for 47. 7% ; Candida albicans was the major pathogen in fungus infections, accounting for 58. 81% , followed by C. Glabrata, accounting for 17. 62%. The drug resistance rates to amphotericin B and-5-fluorocytosine were less than 10. 00% in isolated fungus, the resistance rates to fluconazole and itraconazol were higher. CONCLUSION Drug resistant strains of commonly used antifungal agents are increased in isolated fungus, the monitoring of drug resistance of fungi should be strengthened.%目的 了解肿瘤患者深部真菌的耐药现状,为临床合理使用抗真菌药物提供依据.方法 对2006年6月-2010年6月临床标本进行培养,用科玛嘉显色培养基或ATB鉴定卡作菌种鉴定,ATB-Fungus3药敏板进行药敏试验,并作回顾性分析和统计.结果 分离到真菌386株,在痰液中检出率最多,占47.7%;真菌感染中以白色假丝酵母菌为主,占58.81%,其次为光滑假丝酵母菌占17.62%;分离的菌株对两性霉素B和5-氟胞嘧啶的耐药率均<10.00%,对氟康唑和伊曲康唑的耐药率较高.结论 分离的菌株对常用抗真菌药物的耐药株增多,应加强对真菌耐药性的监测.

  3. Antifungal susceptibility and virulence factors of clinically isolated dermatophytes in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afshari

    2016-03-01

    Full Text Available Background and Objectives: Dermatophytes possess a wide array of virulence factors and various antifungal susceptibility patterns which influence their pathogenesis in humans and animals. The aim of this study was to evaluate antifungal suscep- tibility and keratinase and proteinase activity of 49 dermatophyte strains from the genera Microsporum, Trichophyton and Epidermophyton which were isolated from human cases of dermatophytosis.Materials and Methods: Forty-nine dermatophyte strains isolated from clinical samples were cultured on general and spe- cific culture media. Keratinase and proteinase activity was screened on solid mineral media and confirmed in liquid cultures. Drug susceptibility toward azoles (fluconazole, ketoconazole and itraconazole, griseofulvin and terbinafine was evaluated using disk diffusion method on Mueller-Hinton agar and minimum inhibitory concentrations (MICs were determined using microbroth dilution assay according to the Clinical and Laboratory Standards Institute (CLSI guidelines.Results: Our results indicated that clinically isolated dermatophytes from 7 major species produced keratinase and protein- ase at different extents. The mean keratinase and proteinase activity was reported as 6.69 ± 0.31 (U/ml and 2.10 ± 0.22 (U/ ml respectively. Disk diffusion and microbroth dilution (MIC results of antifungal susceptibility testing showed that ke- toconazole was the most effective drug against Epidermophyton floccosum and Trichophyton mentagrophytes, itraconazole against T. rubrum and E. floccosum, and griseofulvin and terbinafine against Trichophyton verrucosum. Our results showed that all dermatophyte isolates were resistant to fluconazole. Overall, ketoconazole and itraconazole were the most effective drugs for all dermatophyte species tested.Conclusion: Our results showed that antifungal susceptibility testing is an urgent need to select drugs of choice for treatment of different types of dermatophytosis and

  4. Application of antifungal drugs in the treatment of cutaneous and mucocutaneous leishmaniasis%抗真菌药物在皮肤黏膜利什曼病治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    曲卉; 李若瑜; 余进; 王爱平

    2015-01-01

    Leishmaniasis is zoonotic disease caused byLeishmania with different clinical manifestations. It can be characterized into three clinical types: visceral leishmaniasis, mucocutaneous leishmaniasis and cutaneous leishmaniasis. Traditionally, antimony is the ifrst-line treatment for leishmaniasis, but its application is compromised due to the high adverse effects and the emergence of drug resistantLeishmania isolates. Clinical researches have shown that amphotericin B can be used in patients infected by antimony resistant isolates, and treatment of azole and propylene amine can also be effective and safe. Through the analysis of the components inLeishmania membrane, this article further illustrates the mechanism, usage and efifcacy of antifungal agents in the treatment of leishmaniasis.%利什曼病(leishmaniasis)是由利什曼原虫(Leishmania spp)引起的一组具有不同临床表现的疾病,可分为内脏利什曼病、黏膜皮肤利什曼病和皮肤利什曼病3个临床类型。利什曼病的治疗首选五价锑制剂,但因其不良反应发生率高、部分利什曼原虫对锑剂耐药,应用受到了一定的限制。临床研究显示抗真菌药物两性霉素B可以用于对锑剂耐药的患者,唑类和丙烯胺类抗真菌药物对部分利什曼病治疗有效、安全。该文从利什曼原虫胞膜成分的分析入手,重点介绍抗真菌药物在利什曼病治疗中的作用机制、用法及疗效。

  5. The problem of resistant Trichomonas vaginalis to antiprotozoal drugs

    Directory of Open Access Journals (Sweden)

    A. L. Poznyak

    2011-01-01

    Full Text Available This review presents recent data on the energy metabolism of Trichomonas vaginalis and ways the activation of metronidazole. The sensitivity of microorganisms to the 5-nitroimidazole by the presence of their enzyme systems, generating and transporting electrons, which can then transfer them to the nitro group of the drug. In T.vaginalis these are pyruvate ferredoxin-oxydoreductase, thioredoxin reductase and flavin reductase. The development of resistance T.vaginalis to metronidazole preparations of this multistep process, based on the gradual reduction (up to a loss activity hydrogenosomal enzymes and / or violation of the flavindependent metabolic pathways.

  6. Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'.

    Science.gov (United States)

    Jassim, Sabah A A; Limoges, Richard G

    2014-08-01

    Antibiotics have been a panacea in animal husbandry as well as in human therapy for decades. The huge amount of antibiotics used to induce the growth and protect the health of farm animals has lead to the evolution of bacteria that are resistant to the drug's effects. Today, many researchers are working with bacteriophages (phages) as an alternative to antibiotics in the control of pathogens for human therapy as well as prevention, biocontrol, and therapy in animal agriculture. Phage therapy and biocontrol have yet to fulfill their promise or potential, largely due to several key obstacles to their performance. Several suggestions are shared in order to point a direction for overcoming common obstacles in applied phage technology. The key to successful use of phages in modern scientific, farm, food processing and clinical applications is to understand the common obstacles as well as best practices and to develop answers that work in harmony with nature.

  7. 3-Halo Chloroquine Derivatives Overcome Plasmodium falciparum Chloroquine Resistance Transporter-Mediated Drug Resistance in P. falciparum.

    Science.gov (United States)

    Edaye, Sonia; Tazoo, Dagobert; Bohle, D Scott; Georges, Elias

    2015-12-01

    Polymorphism in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) was shown to cause chloroquine resistance. In this report, we examined the antimalarial potential of novel 3-halo chloroquine derivatives (3-chloro, 3-bromo, and 3-iodo) against chloroquine-susceptible and -resistant P. falciparum. All three derivatives inhibited the proliferation of P. falciparum; with 3-iodo chloroquine being most effective. Moreover, 3-iodo chloroquine was highly effective at potentiating and reversing chloroquine toxicity of drug-susceptible and -resistant P. falciparum.

  8. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

    Directory of Open Access Journals (Sweden)

    Noriko Shinoda

    2016-02-01

    Full Text Available Abstract Background Multi-drug-resistant Mycobacterium tuberculosis has been an important problem in public health around the world. However, limited information about disinfectant-susceptibility of multi-drug-resistant strain of M. tuberculosis was available. Findings We studied susceptibility of several Japanese isolates of multi-drug-resistant M. tuberculosis against disinfectants, which are commonly used in clinical and research laboratories. We selected a laboratory reference strain (H37Rv and eight Japanese isolates, containing five drug-susceptible strains and three multi-drug-resistant strains, and determined profiles of susceptibility against eight disinfectants. The M. tuberculosis strains were distinguished into two groups by the susceptibility profile. There was no relationship between multi-drug-resistance and disinfectant-susceptibility in the M. tuberculosis strains. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance. Conclusions Disinfectant-resistance is independent from multi-drug-resistance in M. tuberculosis. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

  9. Pattern of primary tuberculosis drug resistance and associated treatment outcomes in Transnistria, Moldova.

    Science.gov (United States)

    Dolgusev, O; Obevzenco, N; Padalco, O; Pankrushev, S; Ramsay, A; Van den Bergh, R; Manzi, M; Denisiuk, O; Zachariah, R

    2014-10-21

    This cohort study assessed drug susceptibility testing (DST) patterns and associated treatment outcomes from Transnistria, Moldova, from 2009 to 2012. Of 1089 newly registered tuberculosis (TB) patients with available DST results, 556 (51%) had some form of drug resistance, while 369 (34%) had multidrug-resistant TB (MDR-TB). There were four cases of extensively drug-resistant TB. MDR-TB patients had poor treatment success (45%); human immunodeficiency virus positivity and a history of incarceration were associated with an unfavourable treatment outcome. This first study from Trans-nistria shows a high level of drug-resistant TB, which constitutes a major public health problem requiring urgent attention.

  10. Reversal of multidrug resistance in drug-resistant human gastric cancer cell line SGC7901/VCR by antiprogestin drug mifepristone

    Institute of Scientific and Technical Information of China (English)

    Da-Qiang Li; Zhi-Biao Wang; Jin Bai; Jie Zhao; Yuan Wang; Kai Hu; Yong-Hong Du

    2004-01-01

    AIM: To explore the reversal effect of mifepristone on multidrug resistance (MDR) in drug-resistant human gastric cancer cell line SGC7901/VCR and its mechanisms.METHODS: Expression of multidrug resistance-associated protein(MRP) was detected using reverse transcriptionpolymerase chain reaction(RT-PCR). Flow cytometry was used to assay the expression of P-glycoprotein(P-gp), Bcl-2,Bax, and the mean fluorescent intensity of intracellular rhodamine 123 in the cells. Meanwhile, the protein levels of Bcl-2 and Bax were also detected by Western blotting analysis. The sensitivity of cells to the anticancer agent,vincrimycin(VCR), and the intracellular [3H]VCR accumulation were determined by tetrazolium blue (MTT) assay and a liquid scintillation counter, respectively.RESULTS: Expression of MRP and P-gp in SGC7901/VCR cells was 6.04-and 8.37-fold higher as compared with its parental SGC7901 cells, respectively. After treatment with 1, 5, 10, and 20 μmol/L mifepristone, SGC7901/VCR cells showed a 1.34-, 2.29-, 3.11-, and 3.71-fold increase in the accumulation of intracellular VCR, a known substrate of MRP,and a 1.03-, 2.04-, 3.08-, and 3.68-fold increase in the retention of rhodamine 123, an indicator of P-gp function, respectively.MTT assay revealed that the resistance of SGC7901/VCR cells to VCR was 11.96-fold higher than that of its parental cells. The chemosensitivity of SGC7901/VCR cells to VCR was enhanced by 1.02-, 7.19-, 12.84-, and 21.17-fold after treatment with mifepristone at above-mentioned dose. After 96 h of incubation with mifepristone 10 μmol/L, a concentration close to plasma concentrations achievable in human, the expression of Bcl-2 protein was decreased to (9.21±0.65)%from (25.32±1.44)%, whereas the expression of Bax protein was increased to (19.69±1.13)% from (1.24±0.78)%(P<0.01). Additionally, the effects of mifepristone on the expression of Bcl-2 and Bax proteins in SGC7901/VCR cells were further demonstrated by Western blotting analysis

  11. 我院2009-2011年老年真菌感染菌种分布及其对抗真菌药敏感性分析%Analysis of Species Distribution and Drug Susceptibility to Antifungal Agents in the Aged with Fungal Infection of Our Hospital during 2009-2011

    Institute of Scientific and Technical Information of China (English)

    张慧儿; 裘莉佩

    2013-01-01

    目的:探讨临床老年患者标本中所分离的假丝酵母菌属的菌种分布及其对临床常用抗真菌药的敏感性,为老年人使用抗真菌药提供参考.方法:对我院2009-2011年从老年体内分离的213例假丝酵母菌进行回顾性分析,分析其菌种分布情况以及对5种抗真菌药的敏感性.结果:在213株假丝酵母菌中,白假丝酵母菌占42.3%(90/213),非白假丝酵母菌占57.7% (123/213);5-氟胞嘧啶、两性霉素B、氟康唑、伊曲康唑和伏立康唑的总敏感率分别为87.8%、100%、93.2%、85.9%和95.9%;90株白假丝酵母菌对上述5种抗真菌药的敏感率分别为93.3%、100%、95.4%、92.2%和96.3%,123株非白假丝酵母菌分别为83.7%、100%、91.6%、81.3%和95.6%.结论:在老年感染假丝酵母菌中最常见的菌种仍是白假丝酵母菌,但其比例较已报道的非老年感染者比例有所下降;白假丝酵母菌对常用抗真菌药仍有较高的敏感性,非白假丝酵母菌的耐药性则高于白假丝酵母菌.%OBJECTIVE: To discuss the species distribution and drug susceptibility to antifungal agent of isolated Candida, and to provide reference for the use of antifungal agent in the aged. METHODS: A total of 213 isolates were collected from our hospital during 2009 — 2011 were analyzed statistically, and the species distribution of Candida and drug resistance to 5 commonly used antifungal agents were analyzed. RESULTS: Among 213 Candida, Candida albicans accounted for 42.3% (90/213) and non-Candida albicans accounted for 57.7% (123/213). The overall percentage of strains susceptible to 5-flucytosine, amphotericin B, flucytosine, itraconazole and voriconazole were 87.8% , 100% , 93.2% , 85.9% and 95.9% , respectively. About 93.3% , 100%, 95.4% , 92.2% and 96.3% of 90 strains of Candida albicans were susceptible to these 5 antifungal agents. The susceptibility rates of 123 non-Candida albicans isolates were 83.7%, 100

  12. Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus

    Science.gov (United States)

    Houldcroft, Charlotte J.; Bryant, Josephine M.; Depledge, Daniel P.; Margetts, Ben K.; Simmonds, Jacob; Nicolaou, Stephanos; Tutill, Helena J.; Williams, Rachel; Worth, Austen J. J.; Marks, Stephen D.; Veys, Paul; Whittaker, Elizabeth; Breuer, Judith

    2016-01-01

    Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1–27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome. PMID:27667983

  13. Detection of low frequency multi-drug resistance and novel putative maribavir resistance in immunocompromised paediatric patients with cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Charlotte Jane Houldcroft

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed paediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analysed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54 and C480F (UL97. In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of eleven subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.

  14. Drug resistance of Mycobacterium tuberculosis strains in southern Brazil

    Directory of Open Access Journals (Sweden)

    Laynara Katize Grutzmacher

    2012-02-01

    Full Text Available INTRODUCTION: The aim of this work was to evaluate the prevalence of Mycobacterium tuberculosis (MT strains with mutations that could result in resistance to the main drugs used in treatment in a region with one of the highest numbers of tuberculosis (TB cases in southern Brazil. METHODS: Deoxyribonucleic acid (DNA from 120 sputum samples from different patients suspicious of pulmonary tuberculosis who attended the Municipal Public Laboratory for Mycobacterium sp. diagnosis was directly amplified and analyzed by PCR-SSCP. The DNA was amplified in known hotspot mutation regions of the genes rpoB, ahpC, embB, katG, inhA, and pncA. RESULTS: The percentage of samples positive by culture was 9.2% (11/120; 5% (6/120 were positive by bacilloscopy and MT-PCR, and DNA fragments of the aforementioned resistance genes could be amplified from seven (7 of the eleven (11 samples with positive results, either by culture or PCR/bacilloscopy. All presented a SSCP pattern similar to a native, nonresistant genotype, with the ATCC strain 25177 as control, except for one sample (0.01%, which presented a SSCP profile demonstrating mutation at the embB gene. CONCLUSIONS: These results are consistent with the empirical observations by physicians treating TB patients in our region of a low occurrence of cases that are refractory to conventional treatment schemes, in contrast to other parts of the country. Continued surveillance, especially molecular, is essential to detect and monitor the outbreak of MT-resistant strains.

  15. Design, synthesis and antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains.

    Science.gov (United States)

    Jiang, Zhigan; Gu, Julin; Wang, Chen; Wang, Shengzheng; Liu, Na; Jiang, Yan; Dong, Guoqiang; Wang, Yan; Liu, Yang; Yao, Jianzhong; Miao, Zhenyuan; Zhang, Wannian; Sheng, Chunquan

    2014-07-23

    Due to increasing incidence of invasive fungal infections and severe drug resistance to triazole antifungal agents, a series of novel antifungal triazoles with substituted triazole-piperidine side chains were designed and synthesized. Most of the target compounds showed good inhibitory activity against a variety of clinically important fungal pathogens. In particular, compounds 8t and 8v were highly active against Candida albicans and Cryptococcus neoformans with MIC values in the range of 0.125 μg/mL to 0.0125 μg/mL. They represent promising leads for the development of new generation of triazole antifungal agents. Molecular docking studies revealed that the target compounds interacted with CACYP51 mainly through hydrophobic and Van der Waals interactions.

  16. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement.

    Science.gov (United States)

    Domínguez, J; Boettger, E C; Cirillo, D; Cobelens, F; Eisenach, K D; Gagneux, S; Hillemann, D; Horsburgh, R; Molina-Moya, B; Niemann, S; Tortoli, E; Whitelaw, A; Lange, C

    2016-01-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis is a challenge to global tuberculosis (TB) control. Although culture-based methods have been regarded as the gold standard for drug susceptibility testing (DST), molecular methods provide rapid information on mutations in the M. tuberculosis genome associated with resistance to anti-tuberculosis drugs. We ascertained consensus on the use of the results of molecular DST for clinical treatment decisions in TB patients. This document has been developed by TBNET and RESIST-TB groups to reach a consensus about reporting standards in the clinical use of molecular DST results. Review of the available literature and the search for evidence included hand-searching journals and searching electronic databases. The panel identified single nucleotide mutations in genomic regions of M. tuberculosis coding for katG, inhA, rpoB, embB, rrs, rpsL and gyrA that are likely related to drug resistance in vivo. Identification of any of these mutations in clinical isolates of M. tuberculosis has implications for the management of TB patients, pending the results of in vitro DST. However, false-positive and false-negative results in detecting resistance-associated mutations in drugs for which there is poor or unproven correlation between phenotypic and clinical drug resistance complicate the interpretation. Reports of molecular DST results should therefore include specific information on the mutations identified and provide guidance for clinicians on interpretation and on the choice of the appropriate initial drug regimen.

  17. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  18. Epidemiology and patterns of drug resistance among tuberculosis patients in Northwestern Iran

    Directory of Open Access Journals (Sweden)

    L Sahebi

    2016-01-01

    Full Text Available Background: Multidrug-resistant tuberculosis (MDR-TB has emerged as an important global health concern and is on the rise throughout the world. Objective: The aim of this study was to examine the epidemiology and pattern of TB drug resistance. Methods: In this cross-sectional study, 180 pulmonary TB patients from two Northwestern provinces of Iran were selected. The first and second line drug susceptibility testing was carried out using the 1% proportion method on the Lφwenstein-Jensen medium. Full demographic, environmental and clinical history was evaluated. Results: Prevalence of resistance to any TB drug was 13.8%. Eight (4.4% patients had MDR-TB (2.4% in the province of East Azerbaijan and 9.3% in the province of Ardabil and one patient had extensively drug-resistant TB. Patient resistance to both isoniazid and streptomycin was the most prevalent at a rate of 8.3%. Patients showed the least resistance to ethambutol (2.8%. There was a significant relationship between the previous history of TB drug treatment and TB drug resistance. Migrants from rural to urban areas were in high-risk groups for the occurrence of TB drug resistance. Conclusion: In our study, prevalence of MDR was less than the global average. It is essential to monitor the patients with previous history of TB treatment and migrants by rapid and accurate techniques in terms of drug-resistance odds.

  19. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells.

    Science.gov (United States)

    Ohi, Y; Kim, R; Toge, T

    2000-05-01

    Multidrug resistance associated protein (MRP) is one of drug transport membranes that confer multidrug resistance in cancer cells. Multidrug resistance has been known to be associated with resistance to apoptosis. In this study, using MRP overexpressing multidrug resistant nasopharyngeal cancer cells, we examined the expression of apoptosis related genes including p53, p21WAF1, bax and bcl-Xs between drug sensitive KB and its resistant KB/7D cells. We also examined whether the introduction of apoptosis related gene could increase the sensitivity to anticancer drugs in association with apoptotic cell death. The relative resistances to anticancer drugs in KB/7D cells evaluated by IC50 values were 3.6, 61.3, 10.4 and 10.5 to adriamycin (ADM), etoposide (VP-16), vincristine (VCR) and vindesine (VDS), respectively. The resistance to anticancer drugs in KB/7D cells was associated with the attenuation of internucleosomal DNA ladder formation in apoptosis. Of important, the mRNA expression of bcl-Xs gene in KB/7D cells was decreased in one-fourth as compared to that of KB cells among the apoptosis genes. The mRNA expression of bcl-Xs gene in a bcl-Xs transfected clone (KB/7Dbcl-Xs) was increased about 2-fold compared to that of KB/7Dneo cells, while the mRNA expression of MRP gene was not significantly different in KB/7bcl-Xs and KB/7Dneo cells. The sensitivities to anticancer drugs including ADM, VCR and VDS except VP-16 were increased in KB/7Dbcl-Xs cells, in turn, the relative resistance in KB/7Dbcl-Xs cells was decreased to 1.4, 4.0, and 3.0 in ADM, VCR and VDS, respectively, as compared to those of KB/7Dneo cells. Of interest, the studies on the accumulation of [3H]VCR showed that the decrease of [3H]VCR accumulation in KB/7Dbcl-Xs was not significantly different from that of KB/7Dneo cells. Collectively, these results indicated that the mechanism(s) of drug resistance in KB/7D cells could be explained at least by two factors: a) reduced drug accumulation mediated by

  20. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug.

    Science.gov (United States)

    Bacaer, Nicolas; Sokhna, Cheikh

    2005-04-01

    A mathematical model representing the difusion of resistance to an antimalarial drug is developed. Resistance can spread only when the basic reproduction number of the resistant parasites is bigger than the basic reproduction number of the sensitive parasites (which depends on the fraction of infected people treated with the antimalarial drug). Based on a linearization study and on numerical simulations, an expression for the speed at which resistance spreads is conjectured. It depends on the ratio of the two basic reproduction numbers, on a coefficient representing the difusion of mosquitoes, on the death rate of mosquitoes infected by resistant parasites, and on the recovery rate of nonimmune humans infected by resistant parasites.

  1. Prevalence of Pre-Extensively Drug-Resistant Tuberculosis (Pre XDR-TB) and Extensively Drug-Resistant Tuberculosis (XDR-TB) among Pulmonary Multidrug Resistant Tuberculosis (MDR-TB) at a Tertiary Care Center in Mumbai

    OpenAIRE

    Unnati D. Desai; Joshi, Jyotsna M

    2016-01-01

    Background: India is a high burden country for Tuberculosis (TB). As per the World Health Organization (WHO) statistics, 24000 cases of Multi Drug Resistant (MDR) TB were diagnosed in India in 2014. MDR-TB patients consist of a heterogeneous cohort and management has its challenges. Aims and objectives: We studied the prevalence of PreExtensively Drug Resistant TB (Pre XDR-TB) and Extensively Drug Resistant TB (XDR-TB) among patients of pulmonary MDR-TB not previous...

  2. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran

    Science.gov (United States)

    Mohammadi, Faezeh; Dehghan, Parvin; Nekoeian, Shahram; Hashemi, Seyed Jamal

    2016-01-01

    Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus. Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method. Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus. Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran. PMID:27656605

  3. Toward genetic transformation of mitochondria in mammalian cells using a recoded drug-resistant selection marker

    Institute of Scientific and Technical Information of China (English)

    Young Geol Yoon; Michael Duane Koob

    2011-01-01

    Due to technical difficulties, the genetic transformation of mitochondria in mammalian cells is still a challenge. In this report, we described our attempts to transform mammalian mitochondria with an engineered mitochondrial genome based on selection using a drug resistance gene. Because the standard drug-resistant neomycin phosphotransferase confers resistance to high concentrations of G418 when targeted to the mitochondria, we generated a recoded neomycin resistance gene that uses the mammalian mitochondrial genetic code to direct the synthesis of this protein in the mitochondria, but not in the nucleus (mitochondrial version). We also generated a universal version of the recoded neomycin resistance gene that allows synthesis of the drug-resistant proteins both in the mitochondria and nucleus. When we transfected these recoded neomycin resistance genes that were incorporated into the mouse mitochondrial genome clones into mouse tissue culture cells by electroporation, no DNA constructs were delivered into the mitochondria. We found that the universal version of the recoded neomycin resistance gene was expressed in the nucleus and thus conferred drug resistance to G418 selection, while the synthetic mitochondrial version of the gene produced no background drug-resistant cells from nuclear transformation. These recoded synthetic drug-resistant genes could be a useful tool for selecting mitochondrial genetic transformants as a precise technology for mitochondrial transformation is developed.

  4. Epidemiology and antifungal susceptibility of Candida species in a tertiary care hospital, Kolkata, India

    Directory of Open Access Journals (Sweden)

    Partha Bhattacharjee

    2016-06-01

    Conclusion: Species-level identification of Candida and their antifungal sensitivity testing should to be performed to achieve better clinical result and to select an appropriate and effective antifungal therapy. High resistance to antifungal agents is an alarming sign to the healthcare professionals.

  5. New drugs to treat multidrug-resistant tuberculosis: the case for bedaquiline.

    Science.gov (United States)

    Leibert, Eric; Danckers, Mauricio; Rom, William N

    2014-01-01

    Mycobacterium tuberculosis develops spontaneous resistance mutants to virtually every drug in use. Courses of therapy select for these mutants and drug-resistant organisms emerge. The development of drug-resistant organisms has reached the point that drug resistance now threatens to undermine global success against tuberculosis (TB). New drugs are needed. The last new class of drugs specifically developed for treatment of TB was the rifamycins over 40 years ago. New funding sources and the development of product development partnerships have energized the TB drug development effort. There are now more TB drugs in development than at any time in the past. The first of these drugs to be developed and marketed was bedaquiline. Bedaquiline has an entirely novel mechanism of action and so should be active against otherwise highly resistant organisms. It acts on the transmembrane component of adenosine triphosphate synthase and acts by preventing electron transport. This raises the exciting possibility that bedaquiline may be active against less metabolically active organisms. Drug-drug interactions between rifamycins and the cytochrome P450-3A system will limit bedaquiline's utility and create complexity in treatment regimens. In clinical trials, treatment with bedaquiline added to a background multidrug-resistant TB regimen was associated with earlier culture conversion and higher cure rates, but there were unexplained excess deaths in the bedaquiline arms of these trials. Food and Drug Administration approved bedaquiline for the treatment of multidrug-resistant TB when an effective treatment regimen cannot otherwise be provided. They required a black box warning about excess deaths and require that a phase III trial be completed. A planned Phase III trial is being reorganized. While bedaquiline is an exciting drug and marks a dramatic moment in the history of TB treatment, its ultimate place in the anti-TB drug armamentarium is unclear pending the Phase III trial and

  6. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  7. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids

    Science.gov (United States)

    Mor, Visesato; Rella, Antonella; Farnoud, Amir M.; Singh, Ashutosh; Munshi, Mansa; Bryan, Arielle; Naseem, Shamoon; Konopka, James B.; Ojima, Iwao; Bullesbach, Erika; Ashbaugh, Alan; Linke, Michael J.; Cushion, Melanie; Collins, Margaret; Ananthula, Hari Krishna; Sallans, Larry; Desai, Pankaj B.; Wiederhold, Nathan P.; Fothergill, Annette W.; Kirkpatrick, William R.; Patterson, Thomas; Wong, Lai Hong; Sinha, Sunita; Giaever, Guri; Nislow, Corey; Flaherty, Patrick; Pan, Xuewen; Cesar, Gabriele Vargas; de Melo Tavares, Patricia; Frases, Susana; Miranda, Kildare; Rodrigues, Marcio L.; Luberto, Chiara; Nimrichter, Leonardo

    2015-01-01

    ABSTRACT Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. PMID:26106079

  8. HIV-1 drug resistance among antiretroviral treatment-naïve Ethiopian patients

    Directory of Open Access Journals (Sweden)

    A Mulu

    2012-11-01

    Full Text Available Background: In many African countries, access to antiretroviral treatment (ART has been significantly scaled up over the last five years. Nevertheless, data on drug resistance mutation are scarce. The objective of the current study was to determine the predominant subtypes of HIV-1 as well as to identify baseline mutations with potential drug resistance among ART-naïve patients from Ethiopia. Methods: Genotypic drug resistance on the entire protease and partial reverse transcriptase (codons 1–335 regions of the pol gene was determined by an in-house protocol in 160 ART-naïve patients. Genotypic drug resistance was defined as the presence of one or more resistance-related mutations, as specified by the consensus of the Stanford University HIV drug resistance database (HIVDB available at http://hivdb.stanford.edu/ and the 2011 International AIDS Society (IAS mutation list (http://www.iasusa.org/resistance-mutations/. Results: A predominance of HIV-1 subtype C (98.7% was observed. According to the IAS mutation list, antiretroviral drug resistance mutations were detected in 20 patients (13%. However, the level of drug resistance is 5.2% (8/155 when the most conservative method, HIVDB algorithms were applied. In both algorithms, none had major PI mutation and mutation-conferring resistance to NRTI and NNRTI were not overlapping. Conclusions: There is strong evidence for clade homogeneity in Ethiopia and low influx of other subtypes to the country. The level of transmitted drug resistance exceeds that of WHO estimates and indicates that many HIV-infected individuals on ART are practicing risk-related behaviours. The results also show that HIV drug resistance testing should be installed in resource limited settings.

  9. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy

    DEFF Research Database (Denmark)

    Nicita, Francesco; Spalice, Alberto; Papetti, Laura;

    2014-01-01

    Verapamil, a voltage-gated calcium channel blocker, has been occasionally reported to have some effect on reducing seizure frequency in drug-resistant epilepsy or status epilepticus. We aimed to investigate the efficacy of verapamil as add-on treatment in children with drug-resistant epilepsy....

  10. Extremely Drug-Resistant Salmonella enterica Serovar Senftenberg Infections in Patients in Zambia

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Joensen, Katrine Grimstrup; Lukwesa-Musyani, Chileshe;

    2013-01-01

    Two cases of extremely drug-resistant Salmonella enterica serovar Senftenberg isolated from patients in Zambia were investigated by utilizing MIC determinations and whole-genome sequencing. The isolates were resistant to, and harbored genes toward, nine drug classes, including fluoroquinolones...

  11. Transferable and non-transferable drug resistance in enteric bacteria from hospital and from general practice

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Bülow, P;

    1976-01-01

    Drug resistance to 8 different antibiotics in Enterobacteriaceae isolated from different hospitals and two groups of general practitioners was studied. Escherichia coli dominated among the 632 strains investigated. Drug resistance was found in 62% of the 512 hospital strains and in 38% of the 120...

  12. Transmission Intensity and Drug Resistance in Malaria Population Dynamics : Implications for Climate Change

    NARCIS (Netherlands)

    Artzy-Randrup, Yael; Alonso, David; Pascual, Mercedes

    2010-01-01

    Although the spread of drug resistance and the influence of climate change on malaria are most often considered separately, these factors have the potential to interact through altered levels of transmission intensity. The influence of transmission intensity on the evolution of drug resistance has b

  13. Prevalence and Risk Factors of Primary Drug-Resistant Tuberculosis in China

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng Fen; ZHOU Yang; PANG Yu; ZHENG Hui Wen; ZHAO Yan Lin

    2016-01-01

    ObjectiveTo investigatetheprevalence of primary drug-resistant tuberculosis (TB) and associated risk factors in China.We also explored factors contributing tothe transmission of multidrug-resistant tuberculosis (MDR-TB). MethodsA total of 2794 representative,Mycobacterium tuberculosis isolates from treatment-naive patients were subjected to drug susceptibility testing, and risk factors for drug-resistant TBwere analyzed. We also analyzed MDR-TB strain sublineages, drug-resistance-conferring mutations, and risk factors associated with clustered primary MDR strains. ResultsAmong 2794Mycobacterium tuberculosis isolates from treatment-naive patients, the prevalence of any resistance to first-line drugs was 33.2%andthe prevalence of MDR-TB was 5.7%. We did not find any risk factors significantly associated with resistance to first-line drugs.The93 primary MDR-TB isolates were classified into six sublineages, of which, 75 (80.6%) isolates were the RD105-deleted Beijing lineage.The largest sublineage included 65 (69.9%) isolates with concurrent deletions of RD105, RD207, and RD181.Twenty-nine (31.2%) primary MDR strains grouped in clusters;MDR isolates in clusters were more likely to have S531LrpoBmutation. ConclusionThis study indicates that primary drug-resistantTBand MDR-TBstrains are prevalent in China,and multiplemeasures should be taken toaddress drug-resistant TB.

  14. Surveillance of extensively drug-resistant tuberculosis in Europe, 2003-2007.

    NARCIS (Netherlands)

    Devaux, I.; Manissero, D.; Fernandez de la Hoz, K.; Kremer, K.; Soolingen, D. van

    2010-01-01

    This paper describes the results of second-line drug (SLD) susceptibility tests among multidrug-resistant tuberculosis (MDR TB) cases reported in 20 European countries aiming to identify extensively drug-resistant tuberculosis (XDR TB) cases. A project on molecular surveillance of MDR TB cases was c

  15. Multi-drug resistant tuberculosis in the Netherlands : Personalised treatment and outcome

    NARCIS (Netherlands)

    van Altena, Richard

    2016-01-01

    Tuberculosis (TB) caused by bacilli that are resistant to the two major drugs, rifampicin and isoniazid is defined as Multi-Drug Resistant TB or MDRTB. MDRTB kills around 50% of people affected around the world. In contrast, treatment results of MDR-TB in the Netherlands (1985-2013) have consistentl

  16. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  17. Delivering on Antimicrobial Resistance Agenda Not Possible without Improving Fungal Diagnostic Capabilities

    Science.gov (United States)

    Perlin, David S.; Muldoon, Eavan G.; Colombo, Arnaldo Lopes; Chakrabarti, Arunaloke; Richardson, Malcolm D.; Sorrell, Tania C.

    2017-01-01

    Antimicrobial resistance, a major public health concern, largely arises from excess use of antibiotic and antifungal drugs. Lack of routine diagnostic testing for fungal diseases exacerbates the problem of antimicrobial drug empiricism, both antibiotic and antifungal. In support of this contention, we cite 4 common clinical situations that illustrate this problem: 1) inaccurate diagnosis of fungal sepsis in hospitals and intensive care units, resulting in inappropriate use of broad-spectrum antibacterial drugs in patients with invasive candidiasis; 2) failure to diagnose chronic pulmonary aspergillosis in patients with smear-negative pulmonary tuberculosis; 3) misdiagnosis of fungal asthma, resulting in unnecessary treatment with antibacterial drugs instead of antifungal drugs and missed diagnoses of life-threatening invasive aspergillosis in patients with chronic obstructive pulmonary disease; and 4) overtreatment and undertreatment of Pneumocystis pneumonia in HIV-positive patients. All communities should have access to nonculture fungal diagnostics, which can substantially benefit clinical outcome, antimicrobial stewardship, and control of antimicrobial resistance. PMID:27997332

  18. Extraction and identification of exosomes from drug-resistant breast cancer cells and their potential role in cell-to-cell drug-resistance transfer

    Institute of Scientific and Technical Information of China (English)

    许金金

    2014-01-01

    Objective To explore whether docetaxel-resistant cells(MCF-7/Doc)and doxorubicin-resistant cells(MCF-7/ADM)can secrete Exosomes and their potential role in cell-cell drug-resistance transfer.Methods Exosomes were extracted from the cell culture supernatants of MCF-7/Doc and MCF-7/ADM cells by fractionation ultracentrifugation,and were identified by transmission

  19. Drug-resistant tuberculosis control in China: progress and challenges

    Institute of Scientific and Technical Information of China (English)

    Qian Long; Yan Qu; Henry Lucas

    2016-01-01

    Background:China has the second highest caseload of multidrug-resistant tuberculosis (MDR-TB) in the world.In 2009,the Chinese government agreed to draw up a plan for MDR-TB prevention and control in the context of a comprehensive health system reform launched in the same year.Discussion:China is facing high prevalence rates of drug-resistant TB and MDR-TB.MDR-TB disproportionally affects the poor rural population and the highest rates are in less developed regions largely due to interrupted and/or inappropriate TB treatment.Most households with an affected member suffer a heavy financial burden because of a combination of treatment and other related costs.The influential Global Fund programme for MDR-TB control in China provides technical and financial support for MDR-TB diagnosis and treatment.However,this programme has a fixed timeline and cannot provide a long term solution.In 2009,the Bill and Melinda Gates Foundation,in cooperation with the National Health and Family Planning Commission of China,started to develop innovative approaches to TB/MDR-TB management and case-based payment mechanisms for treatment,alongside increased health insurance benefits for patients,in order to contain medical costs and reduce financial barriers to treatment.Although these efforts appear to be in the right direction,they may not be sufficient unless (a) domestic sources are mobilized to raise funding for TB/MDR-TB prevention and control and (b) appropriate incentives are given to both health facilities and their care providers.Summary:Along with the on-going Chinese health system reform,sustained government financing and social health protection schemes will be critical to ensure universal access to appropriate TB treatment in order to reduce risk of developing MDR-TB and systematic MDR-TB treatment and management.

  20. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Marna S Costanzo

    Full Text Available BACKGROUND: Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness. METHODOLOGY/PRINCIPAL FINDINGS: We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possible public health implications of these findings are discussed.

  1. Phylogeny and drug resistance of HIV PR gene among HIV patients receiving RT inhibitors in Iran

    Institute of Scientific and Technical Information of China (English)

    Kazem Baesi; Majedeh Moradbeigi; Mehrdad Ravanshad; Ashrafolnesa Baghban

    2016-01-01

    Objective: To survey the level and patterns of reverse transcriptase-based drug resistance and subtype distribution among antiretroviral-treated HIV-infected patients receiving only reverse transcriptase inhibitors in Iran. Methods: A total of 25 samples of antiretroviral therapy experienced patients with no history of using protease inhibitors were collected. After RNA extraction, reverse transcriptase-nested PCR was performed. The final products were sequenced and then analysed for drug-resistant mutations and subtypes. Results: No drug resistant mutations were observed among the 25 subjects. The results showed the following subtypes among patients:CRF 35_AD (88%), CRF 28_BF (8%), and CRF 29_BF (4%). Conclusions: A significant increase in drug resistance has been noted in recently-infected patients worldwide. Subtype distributions are needed to perform properly-designed surveillance studies to continuously monitor rates and patterns of transmitted drug resistance and subtypes to help guide therapeutic approaches and limit transmission of these variants.

  2. Functional analysis of a wheat pleiotropic drug resistance gene involved in Fusarium head blight resistance

    Institute of Scientific and Technical Information of China (English)

    WANG Gui-ping; KONG Ling-rang; HOU Wen-qian; ZHANG Lei; WU Hong-yan; ZHAO Lan-fei; DU Xu-ye; MA Xin; LI An-fei; WANG Hong-wei

    2016-01-01

    The pleiotropic drug resistance (PDR) sub-family of adenosine triphosphate (ATP)-binding cassette (ABC) transporter had been reported to participate in diverse biological processes of plant. In this study, we cloned three novelPDR genes in Fusarium head blight (FHB) resistant wheat cultivar Ning 7840, which were located on wheat chromosomes 6A, 6B and 6D. In phylogeny, these genes were members of cluster I together with AePDR7 andBdPDR7. Subcelular localization analysis showed thatTaPDR7 was expressed on the plasmalemma. The quantitative real time PCR (RT-PCR) analysis showed that this gene and its probable orthologues in chromosomes 6B and 6D were both up-regulated sharply at 48 h after infected byFusarium graminearum and trichothecene deoxynivalenol (DON) in spike. When knocking down the transcripts of alTaPDR7 members by barely stripe mosaic virus-induced gene silencing (BSMV-VIGS) system, it could promote the F. graminearum hyphae growth and made larger pathogen inoculation points in Ning 7840, which suggested that TaPDR7 might play an important role in response toF. graminearum. Although salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA) had been reported to possibly regulate wheat FHB resistance, here, we found that the three members ofTaPDR7 were negatively regulated by these three hormones but positively regulated by indoleacetic acid (IAA).

  3. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe : a TBNET consensus statement

    NARCIS (Netherlands)

    Lange, Christoph; Abubakar, Ibrahim; Alffenaar, Jan-Willem C.; Bothamley, Graham; Caminero, Jose A.; Carvalho, Anna Cristina C.; Chang, Kwok-Chiu; Codecasa, Luigi; Correia, Ana; Crudu, Valeriu; Davies, Peter; Dedicoat, Martin; Drobniewski, Francis; Duarte, Raquel; Ehlers, Cordula; Erkens, Connie; Goletti, Delia; Guenther, Gunar; Ibraim, Elmira; Kampmann, Beate; Kuksa, Liga; de lange, Wiel; van Leth, Frank; van Lunzen, Jan; Matteelli, Alberto; Menzies, Dick; Monedero, Ignacio; Richter, Elvira; Ruesch-Gerdes, Sabine; Sandgren, Andreas; Scardigli, Anna; Skrahina, Alena; Tortoli, Enrico; Volchenkov, Grigory; Wagner, Dirk; van der Werf, Marieke J.; Williams, Bhanu; Yew, Wing-Wai; Zellweger, Jean-Pierre; Cirillo, Daniela Maria

    2014-01-01

    The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) substantially challenges TB control, especially in the European Region of the World Health Organization, where the highest prevalence of MDR/XDR cases is reported. The current management of patients wit

  4. Molecular diagnosis and treatment of drug-resistant hepatitis B virus.

    Science.gov (United States)

    Kim, Jeong Han; Park, Yong Kwang; Park, Eun-Sook; Kim, Kyun-Hwan

    2014-05-21

    Oral antiviral agents have been developed in the last two decades for the treatment of chronic hepatitis B (CHB). However, antiviral resistance remains an important challenge for long-term CHB therapy. All of the clinically available oral antiviral agents are nucleoside or nucleotide analogues that target the activity of viral reverse transcriptase (RT), and all are reported to have resistant mutations. Since the hepatitis B virus (HBV) RT, like other viral polymerases, lacks proofreading activity, the emergence of drug-resistance occurs readily under selective pressure from the administration of antiviral agents. The molecular diagnosis of drug-resistant HBV is based on sequence variations, and current diagnostic methods include sequencing, restriction fragment polymorphism analysis, and hybridization. Here, we will discuss the currently available molecular diagnosis tools, in vitro phenotypic assays for validation of drug-resistant HBV, and treatment options for drug-resistant HBV.

  5. In vitro evaluation of the effects of anti-fungals, benzodiazepines and non-steroidal anti-inflammatory drugs on the glucuronidation of 19-norandrosterone: implications on doping control analysis.

    Science.gov (United States)

    Palermo, Amelia; Alessi, Beatrice; Botrè, Francesco; de la Torre, Xavier; Fiacco, Ilaria; Mazzarino, Monica

    2016-09-01

    We have studied whether the phase II metabolism of 19-norandrosterone, the most representative metabolite of 19-nortestosterone (nandrolone), can be altered in the presence of other drugs that are not presently included on the Prohibited List of the World Anti-Doping Agency. In detail, we have evaluated the effect of non-prohibited drugs belonging to the classes of anti-fungals, benzodiazepines, and non-steroidal anti-inflammatory drugs on the glucuronidation of 19-norandrosterone. In vitro assays based on the use of either pooled human liver microsomes or specific recombinant isoforms of uridine diphosphoglucuronosyl-transferase were designed and performed to monitor the formation of 19-norandrosterone glucuronide from 19-norandrosterone. Determination of 19-norandrosterone (free and conjugated fraction) was performed by gas chromatography - mass spectrometry after sample pretreatment consisting of an enzymatic hydrolysis (performed only for the conjugated fraction), liquid/liquid extraction with tert-butylmethyl ether, and derivatization to form the trimethylsilyl derivative. In parallel, a method based on reversed-phase liquid chromatography coupled to tandem mass spectrometry in positive electrospray ionization with acquisition in selected reaction monitoring mode was also developed to identify the non-prohibited drugs considered in this study. Incubation experiments have preliminarily shown that the glucuronidation of 19-norandrosterone is principally carried out by UGT2B7 (39%) and UGT2B17 (31%). Inhibition studies have shown that the yield of the glucuronidation reaction is reduced in the presence of the anti-fungals itraconazole, ketoconazole, and miconazole, of the benzodiazepine triazolam and of the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen, while no alteration was recorded in the presence of all other compounds considered in this study. Copyright © 2015 John Wiley & Sons, Ltd.

  6. 阴道白假丝酵母菌的耐药性和ERG11基因突变关系研究%Research on the relationship between the mutations of ERG11 gene and the resistance of pyrrolic antifungal agents in vaginal candida albicans

    Institute of Scientific and Technical Information of China (English)

    谭皓妍; 李倩珺; 冯浩华; 何艳屏

    2014-01-01

    目的 探讨ERG11基因突变与白假丝酵母菌对吡咯类药物敏感性下降的关系.方法 收集VVC患者的白假丝酵母菌60株,用科玛嘉念珠菌显色培养基作菌种鉴定,纸片扩散法进行药敏试验,选取所有中度敏感株和耐药株用聚合酶链反应扩增(PCR)ERG11基因,将PCR产物进行测序分析和比对分析.结果 60株白假丝酵母菌对咪康唑、酮康唑和氟康唑敏感率分别为36.7%、56.1%和80%;将38株中度敏感株和耐药株进行ERG11基因分析后共发现29个有义突变和25个同义突变,其中,有义突变中发现多个新突变位点.结论 有些新发现的突变位点可能与耐药相关;多位点有义突变可能降低菌株对药物的敏感性.%Objective To invesigate the relationship between mutation of ERG11 gene and the decreased sensitivity to pyrrolic antifungal agents in vaginal Candida albicans.Methods sixty strains of Candida albicans from VVC patients were collected and identified by CHROM agar.The drug resistance was detected by disk diffusion method.The ERG11 gene of the moderately susceptible and resistant strains was amplified by PCR.The PCR products were analyzed by DNA sequencing.Results The sensitive rates of sixty strains of Candida albicans strains to miconazole,ketoconazole and fluconazole were 36.7%,56.1% and 80%,respectively.After comparison of ERG11 gene DNA sequences alignment,we found 29 missense mutations and 25 silent mutations in 38 strains of moderately susceptible and resistant strains.Several new mutations were found in ERG11 genein the missense mutations.Conclusion Some new mutations were found in ERG11 gene which might be associated with drug resistance.Multiple amino acid substitutions in Erg11 of vaginal Candida albicans may reduce the sensitivity to pyrrolic antifungal agents.

  7. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes.

    Science.gov (United States)

    Marui, Junichiro; Yoshimi, Akira; Hagiwara, Daisuke; Fujii-Watanabe, Yoshimi; Oda, Ken; Koike, Hideaki; Tamano, Koichi; Ishii, Tomoko; Sano, Motoaki; Machida, Masayuki; Abe, Keietsu

    2010-08-01

    Demand for novel antifungal drugs for medical and agricultural uses has been increasing because of the diversity of pathogenic fungi and the emergence of drug-resistant strains. Genomic resources for various living species, including pathogenic fungi, can be utilized to develop novel and effective antifungal compounds. We used Aspergillus oryzae as a model to construct a reporter system for exploring novel antifungal compounds and their target genes. The comprehensive gene expression analysis showed that the actin-encoding actB gene was transcriptionally highly induced by benomyl treatment. We therefore used the actB gene to construct a novel reporter system for monitoring responses to cytoskeletal stress in A. oryzae by introducing the actB promoter::EGFP fusion gene. Distinct fluorescence was observed in the reporter strain with minimum background noise in response to not only benomyl but also compounds inhibiting lipid metabolism that is closely related to cell membrane integrity. The fluorescent responses indicated that the reporter strain can be used to screen for lead compounds affecting fungal microtubule and cell membrane integrity, both of which are attractive antifungal targets. Furthermore, the reporter strain was shown to be technically applicable for identifying novel target genes of antifungal drugs triggering perturbation of fungal microtubules or membrane integrity.

  8. Clinical and operational value of the extensively drug-resistant tuberculosis definition.

    Science.gov (United States)

    Migliori, G B; Besozzi, G; Girardi, E; Kliiman, K; Lange, C; Toungoussova, O S; Ferrara, G; Cirillo, D M; Gori, A; Matteelli, A; Spanevello, A; Codecasa, L R; Raviglione, M C

    2007-10-01

    Currently, no information is available on the effect of resistance/susceptibility to first-line drugs different from isoniazid and rifampicin in determining the outcome of extensively drug-resistant tuberculosis (XDR-TB) patients, and whether being XDR-TB is a more accurate indicator of poor clinical outcome than being resistant to all first-line anti-tuberculosis (TB) drugs. To investigate this issue, a large series of multidrug-resistant TB (MDR-TB) and XDR-TB cases diagnosed in Estonia, Germany, Italy and the Russian Federation during the period 1999-2006 were analysed. Drug-susceptibility testing for first- and second-line anti-TB drugs, quality assurance and treatment delivery was performed according to World Health Organization recommendations in all study sites. Out of 4,583 culture-positive TB cases analysed, 361 (7.9%) were MDR and 64 (1.4%) were XDR. XDR-TB cases had a relative risk (RR) of 1.58 to have an unfavourable outcome compared with MDR-TB cases resistant to all first-line drugs (isoniazid, rifampicin ethambutol, streptomycin and, when tested, pyrazinamide), and an RR of 2.61 compared with "other" MDR-TB cases (those susceptible to at least one first-line anti-TB drug among ethambutol, pyrazinamide and streptomycin, regardless of resistance to the second-line drugs not defining XDR-TB). The emergence of extensively drug-resistant tuberculosis confirms that problems in tuberculosis management are still present in Europe. While waiting for new tools which will facilitate management of extensively drug-resistant tuberculosis, accessibility to quality diagnostic and treatment services should be urgently ensured and adequate public health policies should be rapidly implemented to prevent further development of drug resistance.

  9. Prevalence and risk factors associated with drug resistant TB in South West, Nigeria

    Institute of Scientific and Technical Information of China (English)

    Olusoji Daniel; Eltayeb Osman

    2011-01-01

    Objective:To determine the prevalence and risk factors associated with drug resistant tuberculosis(TB) in South West Nigeria.Methods: A retrospective study conducted among pulmonary tuberculosis (PTB) patients from Oyo and Osun States in South West Nigeria who had their culture and drug susceptibility test performed at the institute of tropical medicine Antwerp, Belgium between2007 and2009. Data on the patient’s characteristics were retrieved from the TB treatment card. Univariate analysis was performed to assess the risk factors for drug resistant tuberculosis. The Level of significance was atP<0.05.Results:Among the88 patients who had drug-susceptibility test result, there were50 males and38 females. Of the88patients,55 (62.5%) had strains resistant to at least one or more anti-drugs. The proportion ofTBcases with resistance to a single drug was12.7%. The multi-drug resistantTB (MDR-TB) rate was76.4%. The only significant factor for the development of drug resistance andMDR was the history of previous anti TB treatment (P<0.01). Other factors such as age[OR 0.86 (0.35-2.13);P=0.72] and gender[OR 1.24 (0.49-3.14);P=0.62] were not significantly associated with drug resistanceTB.Conclusions: The study highlighted a high prevalence ofMDR-TBamong the study population. History of previous TB treatment was associated withMDR-TB. There is an urgent need to conduct a nationalTB drug resistance survey to determine the actual burden and risk factors associated with drug resistance TB in the country.

  10. Diversity and antifungal resistance patterns of prevalent opportunistic pathogenic yeasts colonizing the oral cavities of asymptomatic human immunodeficiency virus-infected individuals, and their relation to CD4 + counts

    Directory of Open Access Journals (Sweden)

    Deepa Anil Kumar

    2015-01-01

    Full Text Available Background: Yeasts are important opportunistic pathogens, in individuals infected with human immunodeficiency virus (HIV. Yeast species inhabiting the oral mucosa of HIV-infected persons can act as source of oral lesions, especially as the individual progresses towards immunocompromised state. Present study was conducted to evaluate the diversity of yeasts in oral cavities of asymptomatic HIV-infected persons and their association with CD4 + cell counts. Materials and Methods: 100 HIV seropositive subjects and 100 healthy controls were screened for oral yeast carriage using standard procedures. Results: Of the 100 HIV-seropositive persons screened, 48 were colonized by different yeasts, either alone or in association with another species. Candida albicans was the most common species (56.90% while non C. albicans Candida (NCAC accounted for 39.65%. Among NCAC, Candida tropicalis and Candida krusei were most common. One isolate each of rare opportunistic pathogenic yeasts, Geotrichum candidum and Saccharomyces cereviseae, was recovered. The control group had an oral candidal carriage rate of 23%; C. albicans was the predominant species, followed by Candida glabrata, C. tropicalis and Candida parapsilosis. Antifungal susceptibility testing revealed no resistance in C. albicans, to the commonly used antifungal agents, whereas resistance or dose dependent susceptibility to fluconazole was observed in some of the NCAC species. Conclusion: Oral carriage of opportunistic pathogenic yeasts was greater in HIV-seropositive persons heading towards immunocompromised state, as evidenced by their CD4 + cell count. The predominant yeast isolated in this study (C. albicans, was found to be susceptible to commonly used antifungals.

  11. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Felix Schmidt

    2016-06-01

    Full Text Available Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1 single cell isolation (e.g., by laser-capture microdissection, fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase, and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems. Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.

  12. Multimodal neuroimaging in presurgical evaluation of drug-resistant epilepsy

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-01-01

    Full Text Available Intracranial EEG (icEEG monitoring is critical in epilepsy surgical planning, but it has limitations. The advances of neuroimaging have made it possible to reveal epileptic abnormalities that could not be identified previously and improve the localization of the seizure focus and the vital cortex. A frequently asked question in the field is whether non-invasive neuroimaging could replace invasive icEEG or reduce the need for icEEG in presurgical evaluation. This review considers promising neuroimaging techniques in epilepsy presurgical assessment in order to address this question. In addition, due to large variations in the accuracies of neuroimaging across epilepsy centers, multicenter neuroimaging studies are reviewed, and there is much need for randomized controlled trials (RCTs to better reveal the utility of presurgical neuroimaging. The results of multiple studies indicate that non-invasive neuroimaging could not replace invasive icEEG in surgical planning especially in non-lesional or extratemporal lobe epilepsies, but it could reduce the need for icEEG in certain cases. With technical advances, multimodal neuroimaging may play a greater role in presurgical evaluation to reduce the costs and risks of epilepsy surgery, and provide surgical options for more patients with drug-resistant epilepsy.

  13. Drug Resistance Strategies and Substance Use among Adolescents in Monterrey, Mexico

    OpenAIRE

    Kulis, Stephen; Marsiglia, Flavio Francisco; Castillo, Jason; Becerra, David; Nieri, Tanya

    2008-01-01

    This study examined drug resistance strategies and substance use among adolescents from Monterrey, Mexico. The focus was strategies that U.S. adolescents use most often to resist using substances, including refuse (saying no), explain (declining with an explanation), avoid (staying away from situations where drugs are offered), and leave (exiting situations where drugs are offered). Using self-administered questionnaire data from a convenience sample of 327 Mexican students enrolled at two se...

  14. Evaluation of efflux pump gene expression among drug susceptible and drug resistant strains of Mycobacterium tuberculosis from Iran.

    Science.gov (United States)

    Kardan Yamchi, Jalil; Haeili, Mehri; Gizaw Feyisa, Seifu; Kazemian, Hossein; Hashemi Shahraki, Abdolrazagh; Zahednamazi, Fatemeh; Imani Fooladi, Abbas Ali; Feizabadi, Mohammad Mehdi

    2015-12-01

    Absence of mutations within the genes encoding drug targets in some phenotypically drug resistant strains of Mycobacterium tuberculosis suggests possible involvement of alternative mechanisms such as over-expression of efflux pumps. We investigated the expression level of Rv1410c, Rv2459, Rv1218c and Rv1273c efflux pumps gene by real-time quantitative reverse transcription PCR (qRT-PCR) in 31 clinical isolates of M. tuberculosis. Susceptibility to first-line drugs was performed using the proportion method. Twenty one isolates were characterized with drug resistance (DR), and among them 12 showed a significantly elevated level of expression (>4 fold) for at least one of the studied genes encoding for efflux pumps. Point mutations in the katG (codons 315 or 335) and rpoB (codons 456 and 441) genes were found in 42.85% and 66.6% of drug resistant isolates, respectively. Only one isolate showed mutation at position -15 of the inhA promoter region. Among the 7 isolates (33.33%) which had no mutation in the studied regions of drug target genes, 5 isolates showed over-expression for efflux pumps. Our results demonstrated that over-expression of efflux pumps can contribute to drug resistance in M. tuberculosis.

  15. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false In vitro human immunodeficiency virus (HIV) drug... OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay....

  16. [In vitro susceptibility of isolates of Paracoccidioides spp complex to systemic antifungals using the microdilution method].

    Science.gov (United States)

    Cermehol, Julman R; Alvarado, Primavera; Mendoza, Mireya; Herndndez, Isabel; Cuestal, De

    2015-09-01

    Broth microdilution, the reference method recommended by the Clinical Laboratory Standards Institute (CLSI), is not available for use with dimorphic fungi, such as those of the Paracoccidioides genus. In this work, in vitro susceptibility of the Paracoccidioides complex (n=19) to systemic antifungals: amphotericin B, 5-flucytosine, ketoconazole, itraconazole, fluconazole, voriconazole and caspofungin, was evaluated using the microdilution method (Document M27-A3, M27-S3), with some modifications such as: culture time in Sabouraud dextrose agar (7-10 days), RPMI 1640 medium supplemented with 2% glucose and the incubation time (7, 8 and 18 days). The sensitivity in vitro was variable; the majority of Paracoccidioides isolates was susceptible to ketoconazol (73.7%), followed by voriconazole (68.4%), itraconazole (63.1%), amphotericin B (52.6%), fluconazole (47.4%), 5-flucytosine (42.1%) and caspofungin (5%). The overall resistance was mainly to caspofungin (94.7%), followed by 5-flucytosine (52.6%) and amphotericin B (47.4%). Fifty-three percent of the isolates were susceptible-dose dependent to fluconazole followed by itraconazole (15.7%) and 5-fluorocytosine (5.3%). Amphotericin B, itraconazole and voriconazole were the most potent antifungal drugs against Paracoccidioides spp (CMI: 0.03-1 microg/mL). Based on these results, we tentatively propose a microdilution assay protocol for susceptibility testing of Paracoccidioides spp to antifungal drugs. This method may be clinically useful to predict resistance, even though further studies are needed.

  17. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  18. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Julia Jezmir

    Full Text Available To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS methodology.The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance.This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains.Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  19. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  20. Different frequencies of drug resistance mutations among HIV-1 subtypes circulating in China: a comprehensive study.

    Directory of Open Access Journals (Sweden)

    Hongshuai Sui

    Full Text Available The rapid spreading of HIV drug resistance is threatening the overall success of free HAART in China. Much work has been done on drug-resistant mutations, however, most of which were based on subtype B. Due to different genetic background, subtypes difference would have an effect on the development of drug-resistant mutations, which has already been proved by more and more studies. In China, the main epidemic subtypes are CRF07_BC, CRF08_BC, Thai B and CRF01_AE. The depiction of drug resistance mutations in those subtypes will be helpful for the selection of regimens for Chinese. In this study, the distributions difference of amino acids at sites related to HIV drug resistance were compared among subtype B, CRF01_AE, CRF07_BC and CRF08_BC strains prevalent in China. The amino acid composition of sequences belonging to different subtypes, which were obtained from untreated and treated individuals separately, were also compared. The amino acids proportions of 19 sites in RT among subtype B, CRF01_AE and CRF08_BC have significant difference in drug resistance groups (chi-square test, p<0.05. Genetic barriers analysis revealed that sites 69, 138, 181, 215 and 238 were significantly different among subtypes (Kruskal Wallis test, p<0.05. All subtypes shared three highest prevalent drug resistance sites 103, 181 and 184 in common. Many drug resistant sites in protease show surprising high proportions in almost all subtypes in drug-naïve patients. This is the first comprehensive study in China on different development of drug resistance among different subtypes. The detailed data will lay a foundation for HIV treatment regimens design and improve HIV therapy in China.

  1. Comparison of the Vitek 2 Antifungal Susceptibility System with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest Techniques for In Vitro Detection of Antifungal Resistance in Yeast Isolates ▿ ‖

    Science.gov (United States)

    Cuenca-Estrella, Manuel; Gomez-Lopez, Alicia; Alastruey-Izquierdo, Ana; Bernal-Martinez, Leticia; Cuesta, Isabel; Buitrago, Maria J.; Rodriguez-Tudela, Juan L.

    2010-01-01

    The commercial technique Vitek 2 system for antifungal susceptibility testing of yeast species was evaluated. A collection of 154 clinical yeast isolates, including amphotericin B- and azole-resistant organisms, was tested. Results were compared with those obtained by the reference procedures of both the CLSI and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Two other commercial techniques approved for clinical use, the Etest and the Sensititre YeastOne, were included in the comparative exercise as well. The average essential agreement (EA) between the Vitek 2 system and the reference procedures was >95%, comparable with the average EAs observed between the reference procedures and the Sensititre YeastOne and Etest. The EA values were >97% for Candida spp. and stood at 92% for Cryptococcus neoformans. Intraclass correlation coefficients (ICC) between the commercial techniques and the reference procedures were statistically significant (P < 0.01). Percentages of very major errors were 2.6% between Vitek 2 and the EUCAST technique and 1.6% between Vitek 2 and the CLSI technique. The Vitek 2 MIC results were available after 14 to 18 h of incubation for all Candida spp. (average time to reading, 15.5 h). The Vitek 2 system was shown to be a reliable technique to determine antifungal susceptibility testing of yeast species and a more rapid and easier alternative for clinical laboratories than the procedures developed by either the CLSI or EUCAST. PMID:20220169

  2. Molecular approaches for detection of the multi-drug resistant tuberculosis (MDR-TB in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Tafsina Haque Aurin

    Full Text Available The principal obstacles in the treatment of tuberculosis (TB are delayed and inaccurate diagnosis which often leads to the onset of the drug resistant TB cases. To avail the appropriate treatment of the patients and to hinder the transmission of drug-resistant TB, accurate and rapid detection of resistant isolates is critical. Present study was designed to demonstrate the efficacy of molecular techniques inclusive of line probe assay (LPA and GeneXpert MTB/RIF methods for the detection of multi-drug resistant (MDR TB. Sputum samples from 300 different categories of treated and new TB cases were tested for the detection of possible mutation in the resistance specific genes (rpoB, inhA and katG through Genotype MTBDRplus assay or LPA and GeneXpert MTB/RIF tests. Culture based conventional drug susceptibility test (DST was also carried out to measure the efficacy of the molecular methods employed. Among 300 samples, 191 (63.7% and 193 (64.3% cases were found to be resistant against rifampicin in LPA and GeneXpert methods, respectively; while 189 (63% cases of rifampicin resistance were detected by conventional DST methods. On the other hand, 196 (65.3% and 191 (63.7% isolates showed isoniazid resistance as detected by LPA and conventional drug susceptibility test (DST, respectively. Among the drug resistant isolates (collectively 198 in LPA and 193 in conventional DST, 189 (95.6% and 187 (96.9% were considered to be MDR as examined by LPA and conventional DST, respectively. Category-II and -IV patients encountered higher frequency of drug resistance compared to those from category-I and new cases. Considering the higher sensitivity, specificity and accuracy along with the required time to results significantly shorter, our study supports the adoption of LPA and GeneXpert assay as efficient tools in detecting drug resistant TB in Bangladesh.

  3. Molecular characterization of drug-resistant and drug-sensitive Aspergillus isolates causing infectious keratitis

    Directory of Open Access Journals (Sweden)

    Niranjan Nayak

    2011-01-01

    Full Text Available Purpose: To study the susceptibilities of Aspergillus species against amphotericin B in infectious keratitis and to find out if drug resistance had any association with the molecular characteristics of the fungi. Materials and Methods: One hundred and sixty Aspergillus isolates from the corneal scrapings of patients with keratitis were tested for susceptibilities to amphotericin B by broth microdilution method. These included Aspergillus flavus (64 isolates, A. fumigatus (43 and A. niger (53. Fungal DNA was extracted by glass bead vertexing technique. Polymerase chain reaction (PCR assay was standardized and used to amplify the 28S rRNA gene. Single-stranded conformational polymorphism (SSCP of the PCR product was performed by the standard protocol. Results: Of the 160 isolates, 84 (52.5% showed low minimum inhibitory concentration (MIC values (≤ 1.56 μg/ml and were designated as amphotercin B-sensitive. Similarly, 76 (47.5% had high MICs (≥ 3.12 μg/ml and were categorized as amphotericin B-resistant. MIC 50 and MIC 90 values ranged between 3.12-6.25 μg/ml and 3.12-12.5 μg/ml respectively. A. flavus and A. niger showed higher MIC 50 and MIC 90 values than A. fumigatus. The SSCP pattern exhibited three extra bands (150 bp, 200 bp and 250 bp each in addition to the 260 bp amplicon. Strains (lanes 1 and 7 lacking the 150 bp band showed low MIC values (≤ 1.56 μg/ml. Conclusion: A. niger and A. flavus isolates had higher MICs compared to A. fumigatus, suggesting a high index of suspicion for amphotericin B resistance. PCR-SSCP was a good molecular tool to characterize Aspergillus phenotypes in fungal keratitis.

  4. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum.

    Science.gov (United States)

    de Oliveira Pereira, Fillipe; Mendes, Juliana Moura; de Oliveira Lima, Edeltrudes

    2013-07-01

    Trichophyton rubrum is a worldwide agent responsible for chronic cases of dermatophytosis which have high rates of resistance to antifungal drugs. Attention has been drawn to the antimicrobial activity of aromatic compounds because of their promising biological properties. Therefore, we investigated the antifungal activity of eugenol against 14 strains of T. rubrum which involved determining its minimum inhibitory concentration (MIC) and effects on mycelial growth (dry weight), conidial germination and morphogenesis. The effects of eugenol on the cell wall (sorbitol protect effect) and the cell membrane (release of intracellular material, complex with ergosterol, ergosterol synthesis) were investigated. Eugenol inhibited the growth of 50% of T. rubrum strains employed in this study at an MIC = 256 μg/ml, as well as mycelial growth and conidia germination. It also caused abnormalities in the morphology of the dermatophyte in that we found wide, short, twisted hyphae and decreased conidiogenesis. The results of these studies on the mechanisms of action suggested that eugenol exerts antifungal effects on the cell wall and cell membrane of T. rubrum. Eugenol act on cell membrane by a mechanism that seems to involve the inhibition of ergosterol biosynthesis. The lower ergosterol content interferes with the integrity and functionality of the cell membrane. Finally, our studies support the potential use of the eugenol as an antifungal agent against T. rubrum.

  5. Transmission of HIV Drug Resistance and the Predicted Effect on Current First-line Regimens in Europe

    NARCIS (Netherlands)

    L.M. Hofstra (L. Marije); N. Sauvageot (Nicolas); J. Albert (Jan); I. Alexiev (Ivailo); F. Garcia (Federico); D. Struck (Daniel); D.A.M.C. van de Vijver (David); B. Asjö (Birgitta); D. Beshkov (Danail); S. Coughlan (Suzie); D. Descamps (Diane); A. Griskevicius (Algis); O. Hamouda (Osamah); A. Horban (Andrzej); M.E.E. van Kasteren (Marjo); T. Kolupajeva (Tatjana); L.G. Kostrikis (Leondios); K. Liitsola (Kirsi); M. Linka (Marek); O. Mor (Orna); C. Nielsen (Claus); D. Otelea (Dan); D. Paraskevis (Dimitrios); R. Paredes (Roger); M. Poljak (Mario); E. Puchhammer-Stockl E. (E.); A. Sonnerborg (Anders); D. Stanekova (Danica); M. Stanojevic (Maja); K. Van Laethem (Kristel); M. Zazzi (Maurizio); S. Zidovec Lepej (Snjezana); C.A.B. Boucher (Charles A. B.); J.-C. Schmit (Jean-Claude); A.M.J. Wensing (Annemarie); E. Puchhammer-Stöckl (Elisabeth); M. Sarcletti (M.); B. Schmied (B.); M. Geit (M.); G. Balluch (G.); A.-M. Vandamme; J. Vercauteren (Jurgen); I. Derdelinckx; A. Sasse; M. Bogaert; H. Ceunen (H.); A. de Roo (Annie); S. De Wit; F. Echahidi (F.); K. Fransen; J.-C. Goffard (J.); P. Goubau; E. Goudeseune (E.); J.-C. Yombi (J.); P. Lacor; C. Liesnard (C.); M. Moutschen; L.A. Pierard; R. Rens (R.); J. Schrooten; D. Vaira; L.P.R. Vandekerckhove; A. van den Heuvel (A.); B. van der Gucht (B.); M. Van Ranst; E. Van Wijngaerden; B. Vandercam; M. Vekemans; C. Verhofstede; N. Clumeck (N.); K. van Laethem (Kristel); D. Beshkov; I. Alexiev; S.Z. Lepej (Snjezana); J. Begovac; L.G. Kostrikis (Leondios); I. Demetriades (I.); I. Kousiappa (Ioanna); V.L. Demetriou (Victoria); J. Hezka (Johana); M. Linka; M. Maly; L. MacHala; C. Nielsen; L.B. Jørgensen; J. Gerstoft (J.); L. Mathiesen (L.); C. Pedersen (Court); H. Nielsen; A. Laursen (A.); B. Kvinesdal (B.); K. Liitsola (Kirsi); M. Ristola (M.); J. Suni; J. Sutinen (J.); D. Descamps; L. Assoumou; G. Castor; M. Grude; P. Flandre; A. Storto; O. Hamouda (Osamah); C. K̈ucherer (C.); T. Berg; P. Braun; G. Poggensee; M. Daumer (Martin); J. Eberle; H. Heiken; R. Kaiser; H. Knechten (H.); K. Korn; H. Müller; S. Neifer; B. Schmidt; H. Walter; B. Gunsenheimer-Bartmeyer (B.); T. Harrer (T.); D. Paraskevis (Dimitrios); A. Hatzakis (Angelos); A. Zavitsanou (A.); A. Vassilakis; M. Lazanas; L. Chini; A. Lioni; V. Sakka (V.); S. Kourkounti (S.); V. Paparizos (V.); A. Antoniadou (A.); A. Papadopoulos; G. Poulakou; I. Katsarolis; K. Protopapas; G. Chryssos (G.); S. Drimis (S.); P. Gargalianos; G. Xylomenos; G. Lourida; M. Psichogiou (M.); G.L. Daikos (G.); N.V. Sipsas; A. Kontos (Angelos); M.N. Gamaletsou; G. Koratzanis (G.); H. Sambatakou; H. Mariolis; A. Skoutelis; V. Papastamopoulos; O. Georgiou; P. Panagopoulos (P.); E. Maltezos; S. Coughlan (Suzie); C. de Gascun (Cillian); C. Byrne; M. Duffy; P. Bergin; D. Reidy; G. Farrell; J. Lambert; E. O'Connor; A. Rochford; J. Low; P. Coakely (P.); S. O'Dea; W. Hall; O. Mor; I. Levi (I.); D. Chemtob (D.); Z. Grossman (Zehava); M. Zazzi; A. de Luca (Andrea); C. Balotta (Claudia); C. Riva (Chiara); C. Mussini (C.); I. Caramma (I.); A. Capetti (A.); M. Colombo (Massimo); C. Rossi; F. Prati (Francesco); F. Tramuto; F. Vitale (F.); M. Ciccozzi; G. Angarano (Guiseppe); G. Rezza (G.); T. Kolupajeva; O. Vasins; A. Griskevicius (Algis); V. Lipnickiene; J.C. Schmit; D. Struck (Daniel); N. Sauvageot; R. Hemmer (R.); V. Arendt (V.); C. Michaux; T. Staub (T.); C. Sequin-Devaux; A.M.J. Wensing (Annemarie); C.A. Boucher (Charles); D.A.M.C. van de Vijver (David); A. Van Kessel; P.H.M. Van Bentum; K. Brinkman; B.J. Connell; M.E. van der Ende (Marchina); I.M. Hoepelman (Ilja Mohandas); M.E.E. van Kasteren (Marjo); M. Kuipers; N. Langebeek (Nienke); C. Richter; R.M.W.J. Santegoets (R. M W J); L. Schrijnders-Gudde (L.); R. Schuurman (Rob); B.J.M. van de Ven (B. J M); B. Åsjö (Birgitta); A.-M.B. Kran (A.-M. Bakken); V. Ormaasen (Vidar); P. Aavitsland (P.); A. Horban (Andrzej); J. Stanczak (J.); G.P. Stanczak (G.); E. Firlag-Burkacka (E.); A. Wiercinska-Drapalo; E. Jablonowska (E.); E. Maolepsza; M. Leszczyszyn-Pynka (M.); W. Szata (W.); R.J. Camacho (Ricardo Jorge); A. de Palma (Andre); F. Borges (F.); T. Paixão; V. Duque (V.); F. Araújo; D. Otelea; C. Paraschiv (Corina); A.M. Tudor; R. Cernat; C. Chiriac; F. Dumitrescu; L.J. Prisecariu; M. Stanojevic (Maja); D.J. Jevtovic (D.); D. Salemovic (D.); D. Stanekova; M. Habekova (M.); Z. Chabadová; T. Drobkova; P. Bukovinova; A. Shunnar; P. Truska; M. Poljak (Mario); M.M. Lunar (Maja M.); D. Babic; J. Tomazic (J.); S. Vidmar (Suzanna); T. Vovko; P. Karner (P.); F. Garcia; R. Paredes (Roger); S. Monge; S. Moreno; J. Del Amo; V. Asensi; J.L. Sirvent; C. de Mendoza (Carmen); R. Delgado; F. Gutiérrez; J. Berenguer; S. Garcia-Bujalance; N. Stella; I. De Los Santos; J.R. Blanco; D. Dalmau; M. Rivero; F. Segura; M.J.P. Elías (M. J. Pcrossed); M. Alvarez; N. Chueca; C. Rodríguez-Martín; C. Vidal; J.C. Palomares; I. Viciana; P. Viciana; J. Cordoba; A. Aguilera; P. Domingo; M.J. Galindo; C. Miralles; M.A. Del Pozo; E. Ribera; C. Iribarren (Carlos); L. Ruiz; J. De La Torre; F. Vidal; B. Clotet (Bonaventura); J. Albert; A. Heidarian; K. Aperia-Peipke (K.); M. Axelsson; M. Mild; A. Karlsson; A. Sonnerborg (Anders); A. Thalme; L. Navénr; G. Bratt (G.); A. Karlsson; A. Blaxhult; M. Gisslénn; B. Svennerholm; I.-M. Bergbrant (I.); P. Bj̈orkman (P.); C. Säll; A. Mellgren; A. Lindholm; N. Kuylenstierna; R. Montelius; F. Azimi; B. Johansson; M. Carlsson; E. Johansson; B. Ljungberg; H. Ekvall; A. Strand; S. Mäkitalo; S. Öberg; P. Holmblad; M. Höfer; H. Holmberg; P. Josefson; U. Ryding

    2016-01-01

    textabstractBackground. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, the

  6. European recommendations for the clinical use of HIV drug resistance testing: 2011 update

    DEFF Research Database (Denmark)

    Vandamme, Anne-Mieke; Camacho, Ricardo J; Ceccherini-Silberstein, Francesca;

    2011-01-01

    ) consider testing earliest detectable plasma RNA when a successful nonnucleoside reverse transcriptase inhibitor-containing therapy was inappropriately interrupted; (v) genotype source patient when postexposure prophylaxis is considered; for HIV-2, (vi) consider resistance testing where treatment change......The European HIV Drug Resistance Guidelines Panel, established to make recommendations to clinicians and virologists, felt that sufficient new information has become available to warrant an update of its recommendations, explained in both pocket guidelines and this full paper. The Panel makes...... the following recommendations concerning the indications for resistance testing: for HIV-1 (i) test earliest sample for protease and reverse transcriptase drug resistance in drug-naive patients with acute or chronic infection; (ii) test protease and reverse transcriptase drug resistance at virologic failure...

  7. Resistance to antimalarial drugs: An endless world war against Plasmodium that we risk losing.

    Science.gov (United States)

    Severini, Carlo; Menegon, Michela

    2015-06-01

    The objective of this review was to describe the 'state of the art' of Plasmodium falciparum resistance to the main antimalarial drugs. A brief note on Plasmodium vivax is also included. Resistance of P. falciparum to the various antimalarials has a long history of hits and misses. During the last 60 years, the pace at which this parasite has developed resistance to antimalarial drugs has exceeded the pace at which new drugs have been developed. In the last decade, the introduction of artemisinin-based combination therapies (ACTs) as a first-line drug treatment for non-complicated P. falciparum malaria had led to extraordinary results in disease control, especially in sub-Saharan Africa. However, the emergence and spread of resistance to artemisinin in Southeast Asia jeopardise these results. In conclusion, the possible spread of artemisinin resistance in Africa should be considered as an epochal disaster.

  8. STUDIES ON ANTIBACTERIAL EFFECT OF APAMARGA (ACHYRANTHES ASPERA ON MULTI-DRUG RESISTANT CLINICAL ISOLATES

    Directory of Open Access Journals (Sweden)

    Patil Usha

    2013-04-01

    Full Text Available Recent reports on emergence of multidrug resistant bacteria are cause of concern in medical world. Several ayurvedic drugs have been proved to contain the antimicrobial activity. Literature on effect of ayurvedic drugs on multidrug resistant bacterial pathogens is limited. Present study reports the antimicrobial effect of Achyranthes aspera (Apamarga crude extracts on the clinical isolates of multidrug resistant bacteria. The drug was evaluated by using phytochemical tests. Crude extracts of aqueous, methanol, ethanol and chloroform was prepared. Antibacterial activity against clinically isolated multidrug resistant bacteria belonging to groups of bacillus, citrobacter, E.coli, klebsiella, proteus and salmonella was tested. The drug showed highest efficacy against Bacillus organism while least effectiveness on Proteus spp bacteria. Results of the study conclude that the medicinal plant A. aspera might be useful against multidrug resistance in pathogens of clinical importance.

  9. European recommendations for the clinical use of HIV drug resistance testing: 2011 update

    DEFF Research Database (Denmark)

    Vandamme, Anne-Mieke; Camacho, Ricardo J; Ceccherini-Silberstein, Francesca;

    2011-01-01

    The European HIV Drug Resistance Guidelines Panel, established to make recommendations to clinicians and virologists, felt that sufficient new information has become available to warrant an update of its recommendations, explained in both pocket guidelines and this full paper. The Panel makes...... the following recommendations concerning the indications for resistance testing: for HIV-1 (i) test earliest sample for protease and reverse transcriptase drug resistance in drug-naive patients with acute or chronic infection; (ii) test protease and reverse transcriptase drug resistance at virologic failure......) consider testing earliest detectable plasma RNA when a successful nonnucleoside reverse transcriptase inhibitor-containing therapy was inappropriately interrupted; (v) genotype source patient when postexposure prophylaxis is considered; for HIV-2, (vi) consider resistance testing where treatment change...

  10. The emergence of drug resistant HIV variants and novel anti-retroviral therapy

    Institute of Scientific and Technical Information of China (English)

    Koosha Paydary; Parisa Khaghani; Sahra Emamzadeh-Fard; SeyedAhmad SeyedAlinaghi; Kazem Baesi

    2013-01-01

    After its identification in 1980s, HIV has infected more than 30 million people worldwide. In the era of highly active anti-retroviral therapy, anti-retroviral drug resistance results from insufficient anti-retroviral pressure, which may lead to treatment failure. Preliminary studies support the idea that anti-retroviral drug resistance has evolved largely as a result of low-adherence of patients to therapy and extensive use of anti-retroviral drugs in the developed world;however, a highly heterogeneous horde of viral quasi-species are currently circulating in developing nations. Thus, the prioritizing of strategies adopted in such two worlds should be quite different considering the varying anti-retroviral drug resistance prevalence. In this article, we explore differences in anti-retroviral drug resistance patterns between developed and developing countries, as they represent two distinct ecological niches of HIV from an evolutionary standpoint.

  11. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance.

    Directory of Open Access Journals (Sweden)

    C Brandon Ogbunugafor

    2016-01-01

    Full Text Available The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions-drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR to two related inhibitors-pyrimethamine and cycloguanil-across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis influence paths taken at evolutionary "forks in the road" that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with

  12. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance.

    Science.gov (United States)

    Ogbunugafor, C Brandon; Wylie, C Scott; Diakite, Ibrahim; Weinreich, Daniel M; Hartl, Daniel L

    2016-01-01

    The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions-drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors-pyrimethamine and cycloguanil-across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary "forks in the road" that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with regards to their

  13. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance

    Science.gov (United States)

    Ogbunugafor, C. Brandon; Wylie, C. Scott; Diakite, Ibrahim; Weinreich, Daniel M.; Hartl, Daniel L.

    2016-01-01

    The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions—drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors—pyrimethamine and cycloguanil—across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary “forks in the road” that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with

  14. Prevalenoe of Drug - Resistant Staphylococci in Teheran University Hospital Wards

    Directory of Open Access Journals (Sweden)

    F. Shafa

    1960-01-01

    Full Text Available 1 Fifty coagulase posittve strains of staphylococc~~ ~folated fr.o~ .the nose"nand wrist of Hospital nurses have been examined for sensltfvlty to pemcilhn, tetracyclines,"nchloramphenicol, dihydrostreptomycin, erythrorriycm, neomycin, kana.n:ycin,"nbacitracin, polymyxin-B and the triple sulfa. The percentages of fully sensittve strains at the present are as followe:                                       Erythromycin                                       100%"nNeomycin                                             78%"nKanamycin                                            78%"nChloramphenicol                                     68%"nDihydrostreptomycin                               52%"nPenicillin                                                18%"nTetracyclines                                         16%"nPolymyxin-B                                            1%"nTriple sulfa                                              0%"n2 The following topics have been discussed:"na The origin anr" mechanism of drug resistance"nb Cross-resistr.nee"nc The hospital epidemiology of Staphylococcus"nd The clinical implications of Staphylococcus drug-resistance

  15. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs.

    Science.gov (United States)

    Ramos, Sónia; Silva, Nuno; Hébraud, Michel; Santos, Hugo M; Nunes-Miranda, Júlio Dinis; Pinto, Luís; Pereira, José E; Capelo, José-Luis; Poeta, Patrícia; Igrejas, Gilberto

    2016-06-01

    Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress.

  16. Differential Persistence of Transmitted HIV-1 Drug Resistance Mutation Classes

    Science.gov (United States)

    Jain, Vivek; Sucupira, Maria C.; Bacchetti, Peter; Hartogensis, Wendy; Diaz, Ricardo S.; Kallas, Esper G.; Janini, Luiz M.; Liegler, Teri; Pilcher, Christopher D.; Grant, Robert M.; Cortes, Rodrigo; Deeks, Steven G.

    2011-01-01

    Background. Transmitted human immunodeficiency virus type 1 (HIV-1) drug resistance (TDR) mutations can become replaced over time by emerging wild-type viral variants with improved fitness. The impact of class-specific mutations on this rate of mutation replacement is uncertain. Methods. We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco, California, and São Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates between mutation classes with use of a parametric proportional hazards model. Results. Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval [CI], 14.7–408.2; P < .0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71 log10 copies/mL; 95% CI, .90–3.25 log10 copies/mL; P = .11). We found substantial person-to-person variability in mutation replacement rates not accounted for by viral load or mutation class (P < .0001). Conclusions. The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement and warrant further study. PMID:21451005

  17. Insulin-like growth factor 2 silencing restores taxol sensitivity in drug resistant ovarian cancer.

    Science.gov (United States)

    Brouwer-Visser, Jurriaan; Lee, Jiyeon; McCullagh, KellyAnne; Cossio, Maria J; Wang, Yanhua; Huang, Gloria S

    2014-01-01

    Drug resistance is an obstacle to the effective treatment of ovarian cancer. We and others have shown that the insulin-like growth factor (IGF) signaling pathway is a novel potential target to overcome drug resistance. The purpose of this study was to validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and to determine the efficacy of targeting IGF2 in vivo. An analysis of The Cancer Genome Atlas (TCGA) data in the serous ovarian cancer cohort showed that high IGF2 mRNA expression is significantly associated with shortened interval to disease progression and death, clinical indicators of drug resistance. In a genetically diverse panel of ovarian cancer cell lines, the IGF2 mRNA levels measured in cell lines resistant to various microtubule-stabilizing agents including Taxol were found to be significantly elevated compared to the drug sensitive cell lines. The effect of IGF2 knockdown on Taxol resistance was investigated in vitro and in vivo. Transient IGF2 knockdown significantly sensitized drug resistant cells to Taxol treatment. A Taxol-resistant ovarian cancer xenograft model, developed from HEY-T30 cells, exhibited extreme drug resistance, wherein the maximal tolerated dose of Taxol did not delay tumor growth in mice. Blocking the IGF1R (a transmembrane receptor that transmits signals from IGF1 and IGF2) using a monoclonal antibody did not alter the response to Taxol. However, stable IGF2 knockdown using short-hairpin RNA in HEY-T30 effectively restored Taxol sensitivity. These findings validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and show that directly targeting IGF2 may be a preferable strategy compared with targeting IGF1R alone.

  18. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia.

    Science.gov (United States)

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry.

  19. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Xue Xue; Xing-Jie Liang

    2012-01-01

    Multidrug resistance (MDR),which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence,has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades.Several mechanisms of overcoming drug resistance have been postulated.Well known Pglycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure.Innovative theranostic (therapeutic and diagnostic)strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits.In this review,we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.

  20. Human therapeutic and agricultural uses of antibacterial drugs and resistance of the enteric flora of humans.

    Science.gov (United States)

    Siegel, D; Huber, W G; Drysdale, S

    1975-11-01

    Fecal samples were collected from five groups of people differing in the manner of their exposure to antibacterial drugs. The groups included: (i) people working on farms who were continuously in contact with the predominantly resistant florae of farm animals receiving rations containing antibacterial drugs, (ii) people residing on the same farms with no direct exposure to the farm animals, (iii) people treated with antibacterial drugs, (iv) untreated people residing with treated individuals, and (v) untreated people with no exposure to farm animals or treated individuals. The samples were examined by quantitative plating for proportions of antibiotic-resistant, gram-negative enteric organisms. Individual isolates were also examined for their susceptibility to 11 different antibacterial drugs. The results indicate that enteric florae unexposed directly to the selective effects of antibacterial drugs may be affected by contact with predominantly resistant florae directly exposed to antibacterial drugs.

  1. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

    Science.gov (United States)

    Magiorakos, A-P; Srinivasan, A; Carey, R B; Carmeli, Y; Falagas, M E; Giske, C G; Harbarth, S; Hindler, J F; Kahlmeter, G; Olsson-Liljequist, B; Paterson, D L; Rice, L B; Stelling, J; Struelens, M J; Vatopoulos, A; Weber, J T; Monnet, D L

    2012-03-01

    Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided.

  2. CHARACTERIZATION AND ANTIFUNGAL SUSCEPTIBILITY PATTERN OF CANDIDA SPP . ISOLATED FROM CLINICAL SPECIMENS

    Directory of Open Access Journals (Sweden)

    Sagarika

    2015-05-01

    Full Text Available BACKGROUND: With the changing health scenario fungal infections have increased significantly, contributing to morbidity, mortality and health care cost. Candida is major human fungal pathogens that cause both superficial and deep tissue infections. With emergence of non - albicans Candida species, availability of advanced identification methods and antifungal resistance, the spectrum of candidiasis has changed. OBJ ECTIVE: The aim of our study was to identify the distribution of Candida species among clinical isolates, risk factors associated with candidiasis and their sensitivity pattern for common antifungal drugs. MATERIALS AND METHODS: One hundred thirty nine dif ferent clinical isolates of Candida were collected from indoor patients of a tertiary care centre of Gujarat from May 2009 to June 2010. Identification of Candida species and antifungal susceptibility testing was performed with miniAPI (Analytical Prophylactic Index (Biomerieux, France which is an automatic identification and susceptibility testing instrument. RESULTS: We found that the non ‑ albicans Candida were more prevalent than Candida albicans . Candida tropicalis (48.9% was the most common Candida spp. and also more resistant than that of C.albicans . C.albicans showed resistance against fluconazole (3.5% and itraconazole (8.8% whereas C.tropicalis were res istant to amphotericin B (10.3%, fluconazole (20.7%, itraconazole (32.3%, and voriconazole (23.5% and flucytosine (5.8%. Overall resistance rates of Candida for amphotericin B, fluconazole, itraconazole, and voriconazole and flucytosine were 6.4%, 15. 2%, 22.3%, 12.9%, 5% respectively. CONCLUSION: To achieve better clinical results species ‑ level identification of Candida spp. and their antifungal sensitivity testing should be performed.

  3. Multidrug-resistant and extensively drug-resistant tuberculosis in multi-ethnic region, Xinjiang Uygur Autonomous Region, China.

    Directory of Open Access Journals (Sweden)

    Ying-Cheng Qi

    Full Text Available BACKGROUND: The multidrug-resistant (MDR and extensively drug-resistant (XDR tuberculosis (TB has emerged as a global threat. Xinjiang is a multi-ethnic region and suffered second highest incidence of TB in China. However, epidemiological information on MDR and XDR TB is scarcely investigated. METHODOLOGY/PRINCIPAL FINDINGS: A prospective study was conducted to analyze the prevalence of MDR and XDR TB and the differences of drug resistance TB between Chinese Han and other nationalities population at Chest Hospital of Xinjiang Uygur Autonomous Region, China. We performed in vitro drug susceptibility testing of Mycobacterium tuberculosis to first- and second-line anti-tuberculosis drugs for all 1893 culture confirmed positive TB cases that were diagnosed between June 2009 and June 2011. Totally 1117 (59.0%, 95% CI, 56.8%-61.2% clinical isolates were resistant to ≥1 first-line drugs; the prevalence of MDR TB was 13.2% (95% CI, 11.7%-14.7%, of which, 77 (30.8%; 95% CI, 25.0%-36.6% and 31 (12.8%; 95% CI, 8.6%-17.0% isolates were pre-XDR and XDR TB respectively. Among the MDR/XDR TB, Chinese Han patients were significantly less likely to be younger with an odds ratio 0.42 for age 20-29 years and 0.52 for age 40-49 years; P(trend = 0.004, and Chinese Han patients has a lower prevalence of XDR TB (9.6% than all the other nationality (14.9%. CONCLUSIONS/SIGNIFICANCE: The burden of drug resistance TB cases is sizeable, which highlights an urgent need to reinforce the control, detection and treatment strategies for drug resistance TB. However, the difference of MDR and XDR TB between Chinese Han and other nationalities was not observed.

  4. Potent Antifungal Activity of Pure Compounds from Traditional Chinese Medicine Extracts against Six Oral Candida Species and the Synergy with Fluconazole against Azole-Resistant Candida albicans

    Directory of Open Access Journals (Sweden)

    Zhimin Yan

    2012-01-01

    Full Text Available This study was designed to evaluate the in vitro antifungal activities of four traditional Chinese medicine (TCM extracts. The inhibitory effects of pseudolaric acid B, gentiopicrin, rhein, and alion were assessed using standard disk diffusion and broth microdilution assays. They were tested against six oral Candida species, Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, Candida dubliniensis, and Candida guilliermondii, including clinical isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. It was found that pseudolaric acid B had the most potent antifungal effect and showed similar antifungal activity to all six Candida spp, and to isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. The MIC values ranged from 16 to 128 μg/mL. More interestingly, a synergistic effect of pseudolaric acid B in combination with fluconazole was observed. We suggest that pseudolaric acid B might be a potential therapeutic fungicidal agent in treating oral candidiasis.

  5. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  6. The skill and style to model the evolution of resistance to pesticides and drugs.

    Science.gov (United States)

    2010-07-01

    Resistance to pesticides and drugs led to the development of theoretical models aimed at identifying the main factors of resistance evolution and predicting the efficiency of resistance management strategies. We investigated the various ways in which the evolution of resistance has been modelled over the last three decades, by reviewing 187 articles published on models of the evolution of resistance to all major classes of pesticides and drugs. We found that (i) the technical properties of the model were most strongly influenced by the class of pesticide or drug and the target organism, (ii) the resistance management strategies studied were quite similar for the different classes of pesticides or